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Introduction

These notes contain the material of a course given at the Institute of Math-
ematics of the Federal University of Rio de Janeiro during the second semester
of 1996. The aim of these notes is to present a few methods that are useful for
the study of nonlinear partial differential equations of elliptic type. Every method
which is introduced is illustrated by specific examples, describing various properties
of elliptic equations.

The reader is supposed to be familiar with the basic properties of ordinary
differential equations, with elementary functional analysis and with the elementary
theory of integration, including L? spaces. Of course, we use Sobolev spaces in
most of the chapters, and so we give a self-contained introduction to those spaces
(containing all the properties that we use) in an appendix at the end of the notes.

We study the model problem

—Au=g in €,
u=0 in 0.

Here, g = g(z,u) is a function of z € Q and v € R, and  is an open domain of
RY. This is clearly not the most general elliptic problem, but we simply whish to
introduce some basic tools, so we leave to the reader the possible adaptation of the
methods to more general equations and boundary conditions.

The first chapter is devoted to ODE methods. We first study the one dimen-
sional case, and give a complete description of the solutions. We next study the
higher dimensional problem, when €2 is a ball or the whole space, by the shooting
method.

In the second chapter, we first study the linear equation, and then we present
some variational methods: global and constrained minimization and the mountain
pass theorem. We also introduce two techniques that can be used to handle the
case of unbounded domains, symmetrization and concentration-compactness.

The third chapter is devoted to the method of super- and subsolutions. We first
introduce the weak and strong maximum principles, and then an existence result
based on an iteration technique.

In the fourth chapter, we study some qualitative properties of the solutions.
We study the LP and Cj regularity for the linear equation, and then the regularity
for nonlinear equations by a bootstrap method. Finally, we study the symmetry
properties of the solutions by the moving planes technique.

Of course, there are other important methods for the study of elliptic equations,
in particular the degree theory and the bifurcation theory. We did not study these
methods because their most interesting applications require the use of the C"®
regularity theory, which we could not afford to present in such an introductory text.
The interested reader might consult for example H. Brezis and L. Nirenberg [14].
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Notation

almost all

almost everywhere

the closure of the subset E of the topological space X

the space of k times continuously differentiable functions from the
topological space F to the topological space F'

the Banach space of linear, continuous operators from the Banach
space F to the Banach space F', equipped with the norm topology
the space L(E, E)

the topological dual of the space X

if X C Y with continuous injection

an open subset of RV

the closure of © in RV

the boundary of Q, i.e. 90 =Q\ Q

if w C © and @ is compact

= ou
o 788301-
zu,«:—uz—x-Vu,Wherer:m

g o
- prT ...GI%N for a = (ay,...,ay) € NV
(alua"' aaNu)
T L 02

i=1 i
the convolution in RV, i.e.

weow) = [ ulete-pdy= [ ate -yl dy
RN RN
the Fourier transform in RY, defined by

Fu(§) = /RN e 2™ Sy () da

= F~1, given by Fo(zr) = / 2 iETy(&) d

]RN
=Fu
the space of continuous functions 2 — R with compact support
the space of functions of C*(£2) with compact support
the Banach space of continuous, bounded functions 2 — R, equipped
with the topology of uniform convergence

c(Q) the space of continuous functions @ — R. When Q is bounded,
C(9) is a Banach space when equipped with the topology of uniform
convergence

Lwith this definition of the Fourier transform, || Ful;2 = |ullpz, F(uv) = FuFv and

F(Du) = (2md) I ]I, 257 Fu.
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NOTATION

the Banach space of uniformly continuous and bounded functions
Q — R equipped with the topology of uniform convergence
the Banach space of functions u € C, () such that D%u € C, 4(Q),

for every multi-index a such that || <m. C7', (Q) is equipped with
the norm of W™ (Q)
for 0 < a < 1, the Banach space of functions u € C{', (Q) such that
B _ DB

fulleme = ulwn + sup 224D D@ o

z,y€Q |z —yl|*

|B|=m
= C(Q), the Fréchet space of C*° functions Q@ — R (or Q@ — C)
compactly supported in 2, equipped with the topology of uniform
convergence of all derivatives on compact subsets of )
the closure of C°(2) in L*°(Q)
the closure of C'2°(Q2) in W™ (Q)

the space of distributions on €, that is the topological dual of D(Q)

1 1
the conjugate of p given by — + — =1
p p

the Banach space of (classes of) measurable functions v :  — R

such that / lu(z)]Pde < oo if 1 < p < o0, or esssup |u(z)] < oo if
Q e
p =o00. LP(Q) is equipped with the norm

1

(fQ [u(x |pdx>7 if p< oo

esssup,eq |u(z)|, if p = oco.

lullr =

the set of measurable functions u : @ — R such that wu, € LP(w) for
allw cc Q

the space of (classes of) measurable functions u : £ — R such that
D%y € LP(Q) in the sense of distributions, for every multi-index
a € NV with |a] < m. W™P(Q) is a Banach space when equipped
with the norm [Jul[wm» =32, < [D%ul L

the set of measurable functions u : 2 — R such that u|, € W™P(w)
for all w CC Q

the closure of C°(Q2) in W™P(Q)

the topological dual of W)™ ()

=Wm2(Q). H™(Q) is equipped with the equivalent norm

fullae = (3 [ 10wt ar)

|a]<m

and H™( Q) is a Hilbert space for the scalar product (u,v)pgm =

/% (z)v(z)

loc (Q)
= WomQ(Q)
= Wm2(Q)
= Z‘cﬂ:m HDaU”Lp(Q)



CHAPTER 1

ODE methods

Consider the problem

—Au=g(u) in Q,
u=0 in 0,

where € is the ball
Q= {z eR"Y; |z| < R},

for some given 0 < R < oo. In the case R = oo, the boundary condition is
understood as u(z) — 0 as x| — oo. Throughout this chapter, we assume that
g : R — R is a locally Lipschitz continuous function. We look for nontrivial
solutions, i.e. solutions u # 0 (clearly, u = 0 is a solution if and only if ¢g(0) = 0).
In this chapter, we study their existence by purely ODE methods.

If N =1, then the equation is simply the ordinary differential equation

v +gu)=0, —R<r<R,

and the boundary condition becomes u(£R) = 0, or u(r) — 0 as r — £o0 in the
case R = co. In Sections 1.1 and 1.2, we solve completely the above problem. We
give necessary and sufficient conditions on ¢ so that there exists a solution, and we
characterize all the solutions.

In the case N > 2, then one can also reduce the problem to an ordinary
differential equation. Indeed, if we look for a radially symmetric solution u(z) =
u(]z|), then the equation becomes the ODE

N -1
W'+ ——u' +gu)=0, 0<r<R,
r

and the boundary condition becomes u(R) = 0, or u(r) — 0 as r — oo in the case
R = oco. The approach that we will use for solving this problem is the following.
Given ug > 0, we solve the ordinary differential equation with the initial values
u(0) = ug, v/ (0) = 0. There exists a unique solution, which is defined on a maximal
interval [0, Rp). Next, we try to adjust the initial value ug in such a way that
Ry > R and u(R) = 0 (Ryp = oo and Tlggo u(r) = 0 in the case R = co0). This is
called the shooting method. In Sections 1.3 and 1.4, we give sufficient conditions
on g for the existence of solutions. We also obtain some necessary conditions.

1.1. The case of the line

We begin with the simple case N = 1 and R = oco. In other words, ) = R.
In this case, we do not need to impose radial symmetry (but we will see that any
solution is radially symmetric up to a translation). We consider the equation

w4+ g(u) =0, (1.1.1)
for all x € R, with the boundary condition
lim w(z) =0. (1.1.2)

z—+to0

1
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We give a necessary and sufficient condition on ¢ for the existence of nontrivial
solutions of (1.1.1)—(1.1.2). Moreover, we characterize all solutions. We show that
all solutions are derived from a unique positive, even one and a unique negative,
even one (whenever they exist) by translations.

We begin by recalling some elementary properties of the equation (1.1.1).

REMARK 1.1.1. The following properties hold.

(i) Given mg,ug,vo € R, there exists a unique solution u of (1.1.1) such that
u(zg) = up and u'(xg) = vp, defined on a maximal interval (a,b) for some
—o00 < a <z <b<oo. Inaddition, if a > —oo, then |u(z)| + |u/(z)| — oo as
x | a (similarly, |u(z)|+ |v/'(2)] = oo as T b if b < 00). This is easily proved
by solving the integral equation

) = o+ (o~ oo — | / 9(u(0)) do ds,

on the interval (g — a,zo + «) for some « > 0 sufficiently small (apply
Banach’s fixed point theorem in C'([zg — o, g + ¢])), and then by considering
the maximal solution.

(ii) It follows in particular from uniqueness that if u satisfies (1.1.1) on some
interval (a,b) and if u'(x¢) = 0 and g(u(zg)) = 0 for some zy € (a,b), then
u = u(xg) on (a,b).

(iii) If u satisfies (1.1.1) on some interval (a,b) and zq € (a,b), then

%u'(x)Q + Glulx)) = %u'(mo)Q + Glulao)), (1.1.3)

for all x € (a,b), where

G(s) = /Osg(o) do, (1.1.4)

for s € R. Indeed, multiplying the equation by u’, we obtain

d (1

—{5v@?*+Glu@) } =0,
for all x € (a,b).

(iv) Let o € R and h > 0. If u satisfies (1.1.1) on (z¢ — h, xo + h) and «'(x¢) = 0,
then u is symmetric about xg, i.e. u(xg+ s) = u(xg —s) for all 0 < s < h.
Indeed, let v(s) = u(zo + s) and w(s) = u(zg — s) for 0 < s < h. Both v and
w satisfy (1.1.1) on (—h,h) and we have v(0) = w(0) and v’'(0) = w’(0), so
that by uniqueness v = w.

(v) If u satisfies (1.1.1) on some interval (a,b) and u’ has at least two distinct
zeroes xg,x1 € (a,b), then u exists on (—oo,400) and u is periodic with
period 2|zg — z1|. This follows easily from (iv), since u is symmetric about
both z¢ and x;.

We next give some properties of possible solutions of (1.1.1)—(1.1.2).

LEMMA 1.1.2. If u # 0 satisfies (1.1.1)—(1.1.2), then the following properties
hold.
() 9(0) = 0.
(ii) Fither u >0 on R or else u < 0 on R.
(iii) w is symmetric about some xg € R, and u'(x) # 0 for all x # x¢. In particular,
|u(z—x0)| is symmetric about 0, increasing for x < 0 and decreasing for x > 0.
(iv) For ally € R, u(- —y) satisfies (1.1.1)—(1.1.2).

ProOF. If ¢(0) # 0, then w”(z) has a nonzero limit as + — £oo, so that
u cannot have a finite limit. This proves (i). By (1.1.2), u cannot be periodic.
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Therefore, it follows from Remark 1.1.1 (v) and (iv) that «/ has exactly one zero on
R and is symmetric about this zero. Properties (ii) and (iii) follow. Property (iv)
is immediate. U

By Lemma 1.1.2, we need only study the even, positive or negative solutions
(since any solution is a translation of an even positive or negative one), and we
must assume ¢(0) = 0. Our main result of this section is the following,.

THEOREM 1.1.3. Let g : R — R be locally Lipschitz continuous with g(0) = 0.
There exists a positive, even solution of (1.1.1)~(1.1.2) if and only if there exists
ug > 0 such that

g(ug) >0, G(ug) =0 and G(u) <0 for 0<u< ug, (1.1.5)

where G is defined by (1.1.4). In addition, such a solution is unique. Similarly,
there exists a negative, even solution of (1.1.1)—(1.1.2) if and only if there exists
vy < 0 such that

g(vg) <0, G(vg) =0 and Gu) <0 for vy <u<O0, (1.1.6)
and such a solution is unique.

PROOF. We only prove the first statement, and we proceed in five steps.
STEP 1. Let 2o € R and let u € C?([zg,0)). If u(z) — £ € R and u”(x) — 0
as x — 0o, then u/(x) — 0. Indeed, we have

u'(s) = u'(z) + /; u” (o) do,

for s > x > xg. Therefore,

w4+ 1) —u(z) = /:H u'(s)ds = u'(z) + /:H /: u" (o) do ds,

from which the conclusion follows immediately.
STEP 2. If u is even and satifies (1.1.1)—(1.1.2), then

%u’(:ﬂ)Q + G(u(z)) =0, (1.1.7)

for all z € R and

G(u(0)) = 0. (1.1.8)
Indeed, letting zy — oo in (1.1.3), and using Step 1 and (1.1.2), we obtain (1.1.7).
(1.1.8) follows, since u’(0) = 0.

STEP 3. If u is a positive, even solution of (1.1.1)—(1.1.2), then g satis-
fies (1.1.5) with ug = w(0). Indeed, we have G(ug) = 0 by (1.1.8). Since u/(x) # 0
for # # 0 (by Lemma 1.1.2 (iii)), it follows from (1.1.7) that G(u(x)) < 0 for all
x # 0, thus G(u) < 0 for all 0 < u < wp. Finally, since u is decreasing for > 0
we have u/(z) < 0 for all > 0. This implies that «”(0) < 0, i.e. g(up) > 0. If
g(ug) = 0, then u = up by uniqueness, which is absurd by (1.1.2). Therefore, we
must have g(ug) > 0.

STEP 4. If g satisfies (1.1.5), then the solution u of (1.1.1) with the initial
values u(0) = up and v/(0) = 0 is even, decreasing for x > 0 and satisfies (1.1.2).
Indeed, since g(up) > 0, we have u”(0) < 0. Thus «/(z) < 0 for > 0 and small.
u’ cannot vanish while u remains positive, for otherwise we would have by (1.1.7)
G(u(x)) = 0 for some = such that 0 < u(x) < up. This is ruled out by (1.1.5).
Furthermore, u cannot vanish in finite time, for then we would have u(z) = 0
for some z > 0 and thus «'(z) = 0 by (1.1.7), which would imply v = 0 (see
Remark 1.1.1 (ii)). Therefore, u is positive and decreasing for > 0, and thus has
a limit £ € [0,ug) as x — co. We show that ¢ = 0. Since v (z) — ¢g({) as x — o0,
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we must have g(¢) = 0. By Step 1, we deduce that u'(x) — 0 as & — oo. Letting
2 — 00 in (1.1.7) (which holds, because of (1.1.3) and the assumption G(ug) = 0),
we find G(¢) = 0, thus £ = 0. Finally, u is even by Remark 1.1.1 (iv).

STEP 5. Conclusion. The necessity of condition (1.1.5) follows from Step 3,
and the existence of a solution follows from Step 4. It thus remain to show unique-
ness. Let w and u be two positive, even solutions. We deduce from Step 3 that g sat-
isfies (1.1.5) with both ug = u(0) and ug = %(0). It easily follows that @(0) = u(0),
thus u(z) = u(x). O

REMARK 1.1.4. If g is odd, then the statement of Theorem 1.1.3 is simplified.
There exists solution v Z 0 of (1.1.1)—(1.1.2) if and only if (1.1.5) holds. In this case,
there exists a unique positive, even solution of (1.1.1)—(1.1.2), which is decreasing
for z > 0. Any other solution @ of (1.1.1)—(1.1.2) has the form u(z) = eu(z — y)
fore = +1 and y € R.

REMARK 1.1.5. Here are some applications of Theorem 1.1.3 and Remark 1.1.4.

(i) Suppose g(u) = —Au for some A € R (linear case). Then there is no nontrivial
solution of (1.1.1)—(1.1.2). Indeed, neither (1.1.5) nor (1.1.6) hold. One can
see this directly by calculating all solutions of the equation. If A = 0, then all
the solutions have the form u(x) = a + bx for some a,b € R. If A > 0, then
all the solutions have the form wu(z) = aeV>® 4 be=VA for some a,b € R. If
A < 0, then all the solutions have the form u(z) = ae’™=>* 4 be~ V=7 for
some a,b € R.

(i) Suppose g(u) = —Au + plulP~1u for some A\, € R and some p > 1. If A <0
or if ;1 < 0, then there is no nontrivial solution of (1.1.1)—(1.1.2). If A, u > 0,
then there is the solution

1 2
u(z) = (Lp - 1)) o (cosh(p;l\/Xx» T
2u 2
All other solutions have the form @(z) = eu(xz —y) for e = +£1 and y € R. We
need only apply Remark 1.1.4.
(iii) Suppose g(u) = —Au + plulP"ru — v|u|?7"tu for some \, pu,v € R and some
1 < p < ¢q. The situation is then much more complex.
a) If A <0, then there is no nontrivial solution.
b) If A = 0, then the only case when there is a nontrivial solution is when
p < 0 and v < 0. In this case, there is the even, positive decreasing
solution u corresponding to the intial value u(0) = ((¢+ 1)u/(p+ 1)1/)ﬁ
and «'(0) = 0. All other solutions have the form u(z) = eu(x — y) for
e¢==1and y € R.
¢) fA>0, p<0and v >0, then there is no nontrivial solution.
d) f A >0, p > 0 and v < 0, then there is the even, positive decreasing
solution u corresponding to the intial value ug > 0 given by

Hooop—1 YV q—1 A
_~ = —, 1.1.9
pr1o 1 2 (1.1.9)
All other solutions have the form u(x) = eu(z — y) for e = £1 and y € R.
) IfA>0,u>0and v >0, let 7= (( D(p—Dp/(p+1)(qg—Dv)as. If
Lﬂlkl _ LE‘I*l < §7
p+1 g+1 2
then there is no nontrivial solution. If
H P! — v 7?1 > i
p+1 q+1 2
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then there is the even, positive decreasing solution u corresponding to the
intial value u € (0,%) given by (1.1.9). All other solutions have the form
u(r) = eu(z —y) for e = +£1 and y € R.

f) If A > 0 and v < 0, then there is the even, positive decreasing solution
u corresponding to the intial value wg > 0 given by (1.1.9). All other
solutions have the form u(z) = eu(x —y) for e = £1 and y € R.

1.2. The case of the interval

In this section, we consider the case where {2 is a bounded interval, i.e. N =1
and R < co. In other words, Q = (—R, R). We consider again the equation (1.1.1),
but now with the boundary condition

u(—R) = u(R) = 0. (1.2.1)

The situation is more complex than in the preceding section. Indeed, note first
that the condition ¢(0) = 0 is not anymore necessary. For example, in the case
g(u) = 4u — 2 and R = T, there is the solution u(z) = sin?z. Also, there are
necessary conditions involving not only g, but relations between g and R. For
example, let g(u) = w. Since in this case all solutions of (1.1.1) have the form
u(z) = asin(z+b), we see that there is a nontrivial solution of (1.1.1)-(1.2.1) if and
only if R = km/2 for some positive integer k. Moreover, this example shows that,
as opposed to the case R = oo, there is not uniqueness of positive (or negative)
solutions up to translations.

We give a necessary and sufficient condition on g for the existence of nontrivial
solutions of (1.1.1)-(1.2.1). Moreover, we characterize all solutions. The charac-
terization, however, is not as simple as in the case R = oco. In the case of odd
nonlinearities, the situation is relatively simple, and we show that all solutions are
derived from positive solutions on smaller intervals by reflexion.

We recall some simple properties of the equation (1.1.1) which follow from
Remark 1.1.1.

REMARK 1.2.1. The following properties hold.

(i) Suppose that u satisfies (1.1.1) on some interval (a,b), that u(a) = u(b) =0
and that v > 0 on (a,b). Then u is symmetric with respect to (a + b)/2, i.e.
u(z) = ula+b—x), and v'(x) > 0 for all @ < x < (a + b)/2. Similarly, if
u < 0 on (a,b), then u is symmetric with respect to (a + b)/2 and u'(z) < 0
foralla < z < (a+0b)/2. Indeed, suppose that u’(zg) = 0 for some zg € (a,b).
Then u is symmetric about xg, by Remark 1.1.1 (iv). If o < (a + b)/2, we
obtain in particular u(2z¢g — a) = u(a) = 0, which is absurd since uv > 0 on
(a,b) and 2x9 —a € (a,b). We obtain as well a contradiction if xg > (a+b)/2.
Therefore, (a + b)/2 is the only zero of w’ on (a,b) and u is symmetric with
respect to (a + b)/2. Since u > 0 on (a,b), we must then have u/(z) > 0 for
all a <z < (a+0)/2.

(ii) Suppose again that u satisfies (1.1.1) on some interval (a,b), that u(a) =
u(b) = 0 and that v > 0 on (a,b). Then g((a +b)/2) > 0. If instead v < 0
on (a,b), then g((a+ b)/2) < 0. Indeed, it follows from (i) that u achieves its
maximum at (a + b)/2. In particular, 0 < u”’((a + b)/2) = —g(u((a + b)/2)).
Now, if g(u((a 4+ b)/2)) = 0, then v = u((a + b)/2) by uniqueness, which is
absurd.

REMARK 1.2.2. In view of Remarks 1.1.1 and 1.2.1, we see that any nontrivial
solution w of (1.1.1)-(1.2.1) must have a specific form. More precisely, we can make
the following observations.
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(i) u can be positive or negative, in which case u is even and |u(z)| is decreasing

for x € (0, R) (by Remark 1.2.1 (i)).

(ii) If w is neither positive nor negative, then u’ vanishes at least twice in Q, so

that u is the restriction to € of a periodic solution in R (by Remark 1.1.1).

(iii) Suppose w is neither positive nor negative and let 7 > 0 be the minimal period

(iv

of u. Set w(z) = u(—R+ x), so that w(0) = w(7) = 0. Two possibilities may

occur.

a) Either w > 0 (respectively w < 0) on (0,7) (and thus w/(0) = w'(7) =0
because u is C1). In this case, we clearly have R = k7 for some integer
k > 1, and so u is obtained by periodicity from a positive (respectively
negative) solution (u itself) on the smaller interval (—R, —R + 7).

b) Else, w vanishes in (0, 7), and then there exists o € (0, 7) such that w > 0
(respectively w < 0) on (0,0), w is symmetric about /2, w < 0 (respec-
tively w > 0) on (o, 7) and w is symmetric about (7 + ¢)/2. In this case,
u is obtained from a positive solution and a negative solution on smaller
intervals (v on (—R,—R + o) and uw on (—R + 0,—R + 7)). The deriva-
tives of these solutions must agree at the endpoints (because u is C') and
2R = mo +n(1 — o), where m and n are positive integers such that n = m
orn=m+1orn=m-—1. To verify this, we need only show that w takes
both positive and negative values in (0,7) and that w vanishes only once
(the other conclusions then follow easily). We first show that w takes val-
ues of both signs. Indeed, if for example w > 0 on (0, 7), then w vanishes
at some 71 € (0,7) and w'(0) = w'(m1) = w'(7) = 0. Then w is periodic
of period 27 and of period 2(7 — 1) by Remark 1.1.1 (v). Since 7 is the
minimal period of w, we must have 7 = 7/2. Therefore, w’ must vanish
at some 7o € (0,71), and so w has the period 275 < 7, which is absurd.
Finally, suppose w vanishes twice in (0, 7). This implies that w’ has three
zeroes 71 < T2 < 73 in (0,7). By Remark 1.1.1 (v), w is periodic with the
periods 2(72 — 71) and 2(73 — 72). We must then have 2(2 —71) > 7 and
2(r3 — o) > 7. It follows that 73 — 71 > 7, which is absurd.

) Assume g is odd. In particular, there is the trivial solution v = 0. Suppose
u is neither positive nor negative, u # 0 and let 7 > 0 be the minimal period
of u. Then it follows from (iii) above that u(7 — z) = —u(z) for all x € [0, 7].
Indeed, the first possibility of (iii) cannot occur since if u(0) = «/(0) = 0, then
u = 0 by uniqueness (because g(0) = 0). Therefore, the second possibility
occurs, but by oddness of g and uniqueness, we must have ¢ = 7/2, and
u(t — ) = —u(z) for all x € [0,7]. In other words, u is obtained from a
positive solution on (=R, —R + o), with ¢ = R/2m for some positive integer
m, which is extended to (—R, R) by successive reflexions.

It follows from the above Remark 1.2.2 that the study of the general nontrivial

solution of (1.1.1)-(1.2.1) reduces to the study of positive and negative solutions
(for possibly different values of R). We now give a necessary and sufficient condition

for

the existence of such solutions.

THEOREM 1.2.3. There exists a solution u > 0 of (1.1.1)-(1.2.1) if and only if

there exists ug > 0 such that

(i
(ii
(iii

(iv

) g(uo) >
) G(u) < G(uo) for all 0 < u < wp;
) ezther G(ug) > 0 or else G(ug) =0 and g(0) < 0;
) ds _n
V2,/G(ug) — G(s) '

o\
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In this case, u > 0 defined by

o ds
/ — la], (1.2.2)
u(@) V2y/G(uo) — G(s)
for all x € Q, satisfies (1.1.1)-(1.2.1). Moreover, any positive solution has the
form (1.2.2) for some ug > 0 satisfying (1)—(ii).

Similarly, there exists a solution u < 0 of (1.1.1)-(1.2.1) if and only if there
exists vo < 0 such that g(vg) < 0, G(vg) < G(v) for all v < v < 0, g(0) > 0 if
G(v9) =0, and

0 ds
w0 V2A/G5) — Gluo)

In this case, u < 0 defined by

R.

u(z) d
/ i = ||, (1.2.3)
w  V2/G(s) — G(u)
for all x € Q, satisfies (1.1.1)-(1.2.1). Moreover, any negative solution has the
form (1.2.3) for some vy < 0 as above.

PROOF. We consider only the case of positive solutions, the other case being
similar. We proceed in two steps.

STEP 1. The conditions (i)—(iv) are necessary. Let uy = u(0). (i) follows
from Remark 1.2.1 (ii). Since u/(0) = 0 by Remark 1.2.1 (i), it follows from (1.1.3)
that

u'(x)? + G(u(x)) = G(uo), (1.2.4)
for all x € (a,b). Since u/(z) # 0 for all x € (=R, R), * # 0 (again by Re-
mark 1.2.1 (i)), (1.2.4) implies (ii). It follows from (1.2.4) that G(ug) = v/(R)?/2 >
0. Suppose now G(ug) = 0. If g(0) > 0, then (ii) cannot hold, and if g(0) = 0,

then u cannot vanish (by Theorem 1.1.3). Therefore, we must have g(0) < 0, which
proves (iii). Finally, it follows from (1.2.4) that

W (x) = —V2/G(ug) — G(u(x)),

N =

~

d
on (0, R). Therefore, %F(U(I)) =1, where

Fly) = / B & ;

v V2y/Gug) = G(s)’
and so F(u(z)) = «, for x € (0,R). (1.2.2) follows for € (0,R). The case

x € (—R,0) follows by symmetry. Letting now z = R in (1.2.2), we obtain (iv).

STtEP 2. Conclusion. Suppose (i)—(iv), and let u be defined by (1.2.2). It
is easy to verify by a direct calculation that u satisfies (1.1.1) in Q, and it follows
from (iv) that w(+=R) = 0. Finally, the fact that any solution has the form (1.2.2)
for some ug > 0 satisfying (i)—(iv) follows from Step 1. O

REMARK 1.2.4. Note that in general there is not uniqueness of positive (or
negative) solutions. For example, if R = 7/2 and g(u) = u, then u(z) = acosz is a
positive solution for any a > 0. In general, any ug > 0 satisfying (i)—(iv) gives rise
to a solution given by (1.2.2). Since u(0) = ug, two distinct values of ug give rise to
two distinct solutions. For some nonlinearities, however, there exists at most one
ug > 0 satisfying (i)—(iv) (see Remarks 1.2.5 and 1.2.6 below).

We now apply the above results to some model cases.

REMARK 1.2.5. Consider g(u) = a + bu, a,b € R.
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(i) If b = 0, then there exists a unique solution w of (1.1.1)-(1.2.1), which is given
by u(z) = a(R? — 2?)/2. This solution has the sign of a and is nontrivial iff
a # 0.

(ii) If a = 0 and b > 0, then there is a nontrivial solution of (1.1.1)-(1.2.1) if and
only if 2vbR = kr for some positive integer k. In this case, any nontrivial
solution u of (1.1.1)-(1.2.1) is given by u(z) = csin (vVb(z + R)) for some
c € R, ¢ # 0. In particular, the set of solutions is a one parameter family.

(iii) If @ = 0 and b < 0, then the only solution of (1.1.1)-(1.2.1) is u = 0.

(iv) Ifa # 0 and b > 0, then several cases must be considered. If VbR = (7/2)+kn
for some nonnegative integer k, then there is no solution of (1.1.1)-(1.2.1). If
VbR = kx for some positive integer k, then there is a nontrivial solution
of (1.1.1)-(1.2.1), and all solutions have the form

u(x) = E<M — 1) + ¢sin (Vbz),
b \cos (VbR)

for some ¢ € R. In particular, the set of solutions is a one parameter family.
If ¢ = 0, then u has constant sign and v'(—R) = «/(R) = 0. (If in addition
k is even, then also u(0) = «/(0) = 0.) If ¢ # 0, then u takes both positive
and negative values. If VbR # (7/2) + km and VbR # kr for all nonnegative
integers k, then there is a unique solution of (1.1.1)-(1.2.1) given by the above
formula with ¢ = 0. Note that this solution has constant sign if \/l_)R <7 and
changes sign otherwise.

(v) If a # 0 and b < 0, then there is a unique solution of (1.1.1)-(1.2.1) given by

u(z) = %<17 cosh(\/—_bx))'

cosh (v/—bR)
Note that in particular u has constant sign (the sign of a) in Q.

REMARK 1.2.6. Consider g(u) = au + blu|P~lu, with a,b € R, b # 0 and
p > 1. Note that in this case, there is always the trivial solution u = 0. Note also
that ¢ is odd, so that by Remark 1.2.2 (iv) and Theorem 1.2.3, there is a solution
of (1.1.1)-(1.2.1) every time there exists up > 0 and a positive integer m such that
properties (i), (ii) and (iv) of Theorem 1.2.3 are satisfied and such that

/ v ds _r
0 V2V/Glu) = Gls)  2m
Here, G is given by G(u) = 22+ b
' s Y 2 p+1
(i) If a <0 and b < 0, then there is no ug > 0 such that g(up) > 0. In particular,
there is no nontrivial solution of (1.1.1)-(1.2.1).
(ii) If a > 0 and b > 0, then g > 0 and G is increasing on [0, c0). Therefore, there

is a pair +u of nontrivial solutions of (1.1.1)-(1.2.1) every time there is ug > 0
and an integer m > 1 such that property (1.2.5) is satisfied. We have

(1.2.5)

Ju”*

“o ds
/0 V2,/G(ug) — G(s)

' dt
- = (ug). (1.2.6
/0 \/5\/%(1_752)_’_#1#0;—1(1_”4_1) ¢( O) ( )

It is clear that ¢ : [0,00) — (0, 00) is decreasing, that ¢(co) =0 and that

(+o0 if a = 0),

! dt ™
#0) :/0 VI /E0-1) 2Va
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by using the change of variable ¢ = sin . Therefore, given any integer
m > 2y\/aR/m, there exists a unique ug(k) such that (1.2.5) is satisfied. In par-
ticular, the set of nontrivial solutions of (1.1.1)-(1.2.1) is a pair of sequences
+(u")n>0. We see that there exists a positive solution (which corresponds to
m = 1) iff 2\/aR < .

(iii) If @ > 0 and b < 0, then both g and G are increasing on (0, u,) with u, =
(—a/b)ﬁ. On (u.,00), g is negative and G is decreasing. Therefore, the
assumptions (i)—(iii) of Theorem 1.2.3 are satisfied iff ug € (0,u*). Therefore,
there is a pair +u of nontrivial solutions of (1.1.1)-(1.2.1) every time there is
up € (0,us) and an integer m > 1 such that property (1.2.5) is satisfied. Note
that for ug € (0, u.), formula (1.2.6) holds, but since b < 0, ¢ is now increasing
on (0,u), ¢(0) = 7/2v/a and ¢(u.) = +oc. Therefore, there exists nontrivial
solutions iff 2\/aR > , and in this case, there exists a unique positive solution.
Moreover, still assuming 2\/aR > , the set of nontrivial solutions of (1.1.1)-
(1.2.1) consists of ¢ pairs of solutions, where ¢ is the integer part of 2y/aR/m.
Every pair of solution corresponds to some integer m € {1,...,¢} and uy €
(0, u) defined by ¢(ug) = R/2m.

(iv) If a < 0 and b > 0, then assumptions (i)—(iii) of Theorem 1.2.3 are satisfied
iff ug > w* with v* = (—a(p+ 1)/2b)vlj. Therefore, there is a pair +u
of nontrivial solutions of (1.1.1)-(1.2.1) every time there is ug > u* and an
integer m > 1 such that property (1.2.5) is satisfied. Note that for ug > u*,
formula (1.2.6) holds, and that ¢ is decreasing on (u*,00), ¢(u*) = +oo and
¢(00) = 0. Therefore, given any integer k > 2,/aR/m, there exists a unique
uo(k) such that (1.2.5) is satisfied. In particular, the set of nontrivial solutions
of (1.1.1)-(1.2.1) is a pair of sequences £(u"),>0. We see that there always
exists a positive solution (which corresponds to m = 1).

1.3. The case of RV, N >2
In this section, we look for radial solutions of the equation
~Au=g(u) in RV,
{u(m) — 2| =00 0.

As observed before, the equation for u(r) = u(|z|) becomes the ODE
N -1
u’ + Tu' +g(u)=0, r>0,

with the boundary condition u(r) — 0. For simplicity, we consider the model case
T—>00

9(u) = —Nu+ prlul”

(One can handle more general nonlinearities by the method we will use, see McLeod,
Troy and Weissler [38].) Therefore, we look for solutions of the ODE

N -1
u” + ———u' — M+ pluPru =0, (1.3.1)
r
for r > 0 such that
u(r) — 0. (1.3.2)
r—00

Due to the presence of the nonautonomous term (N — 1)u’/r in the equation (1.3.1),
this problem turns out to be considerably more difficult than in the one-dimensional
case. On the other hand, it has a richer structure, in the sense that there are “more”
solutions.

We observe that, given ug > 0, there exists a unique, maximal solution u €
C?([0, Ry)) of (1.3.1) with the initial conditions u(0) = ug and «/(0) = 0, with the
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blow up alternative that either Ry, = oo or else |u(r)| + |u/(r)] — oo as r T Ry. To
see this, we write the equation in the form

(PN h () = AV (u(r) = plu(n) [P (), (1.3.3)

thus, with the initial conditions,
u(r) = uo+

/OT s~ (V=D /0S oV (o) — plu(o)|P u(o)) dods.  (1.3.4)

This last equation is solved by the usual fixed point method. For r > 0, the equation
is not anymore singular, so that the solution can be extended by the usual method
to a maximal solution which satisfies the blow up alternative.

The nonautonomous term in the equation introduces some dissipation. To see
this, let u be a solution on some interval (a,b), with 0 < a < b < 0o, and set

1 A
E(u,r) = 51/(7“)2 — §u(r)2 + #W(TW’H. (1.3.5)
Multiplying the equation by u'(r), we obtain
dE N-1,
o - 1.3.6
2R WO (136)

so that E(u,r) is a decreasing quantity.
Note that if u > 0, there is a constant C' depending only on p, 4, A such that

E(u,r) > %(u'(r)2 +u(r)?) - C.

In particular, all the solutions of (1.3.1) exist for all » > 0 and stay bounded as
r — 00.
The first result of this section is the following.

THEOREM 1.3.1. Assume A\, pu > 0 and (N —2)p < N + 2. There exists xg > 0
such that the solution u of (1.3.1) with the initial conditions u(0) = x¢ and u’'(0) =0
is defined for all r > 0, is positive and decreasing. Moreover, there exists C' such
that

u(r)? + /' (r)? < Ce 2V, (1.3.7)
for allr > 0.

When N = 1 (see Section 1.1), there is only one radial solution such that
u(0) > 0 and u(r) — 0 as r — co. When N > 2, there are infinitely many such
solutions. More precisely, there is at least one such solution with any prescribed
number of nodes, as shows the following result.

THEOREM 1.3.2. Assume \,pr > 0 and (N — 2)p < N + 2. There exists an
increasing sequence (Tn)n>0 of positive numbers such that the solution u, of (1.3.1)
with the initial conditions u,(0) = z,, and u,,(0) = 0 is defined for all ¥ > 0, has
exactly n nodes, and satisfies for some constant C' the estimate (1.3.7).

We use the method of McLeod, Troy and Weissler [38] to prove the above
results. The proof is rather long and relies on some preliminary informations on
the equations, which we collect below.

PROPOSITION 1.3.3. If u is the solution of

" N—-1_ p—1, _
u' 4+ =’ 4 [u[PT e = 0, (13.5)
u(0)=1, «/(0)=0,

then the following properties hold.
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(i) If N >3 and (N —2)p > N + 2, then u(r) > 0 and u'(r) < 0 for all r > 0.
Moreover, u(r) = 0 as r — 0.

(ii) If (N —2)p < N + 2, then u oscillates indefinitely. More precisely, for any
ro > 0 such that u(rg) # 0, there exists r1 > 1o such that u(ro)u(r1) < 0.

PROOF. We note that u”(0) < 0, so that «/(r) < 0 for > 0 and small. Now,
if v/ would vanish while u remains positive, we would obtain v’ < 0 from the
equation, which is absurd. So w’ < 0 while v remains positive. Next, we deduce
from the equation that

u/2 U p+1y/ N —1
(50 - 139
(TN_luul)l + TN—1|u|p+1 = N1y, (1.3.10)
and
N N / N —2 N
(S + )+ X Zvee - Noveppn g
) p

We first prove property (i). Assume by contradiction that u has a first zero rg.
By uniqueness, we have u/(rg) # 0. Integrating (1.3.10) and (1.3.11) on (0,79), we

obtain
0 0
/ PN=Lp+l / PN =12,
0 0
and
N 70 0
T N —2 N
0 ./ 2 N-1,/2 N-1 1
—u'(rg)* + —— rV et = —— N T HulP
2 2 0 p+1Jo
and so,

N 0
OTRY ( N N _2>/ N—1_/2
0< o = (=== <0,
5 u'(ro) | 5 ; r u'® <

which is absurd. This shows that w(r) > 0 (hence v/(r) < 0) for all » > 0. In
particular, u(r) decreases to a limit £ > 0 as r — oo. Since u/(r) is bounded
by (1.3.9), we deduce from the equation that u”(r) — —¢P, which implies that
¢ = 0. This proves property (i)

We now prove property (ii), and we first show that u must have a first zero.
Indeed, suppose by contradiction that w(r) > 0 for all » > 0. It follows that
u/(r) < 0 for all » > 0. Thus v has a limit ¢ > 0 as  — oo. Note that by (1.3.6),
u’ is bounded, so that by the equation u”(r) — —¢P as r — oo, which implies that
¢ =0. We write equation (1.3.8) in the form

TN (r) = f/ NP (s); (1.3.12)
0
and so
T T 7nN
—rN =N/ (7) :/ sN=lyP > u(r)p/ sV = —a(r)P.
0 0 N

Therefore,

which implies that
u(r) < Crv, (1.3.13)
By the assumption on p, this implies that

o0
/ Ny (r)P L < oo (1.3.14)
0
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If N = 2, then (1.3.12)-(1.3.13) show that ru/(r) converges to a negative limit as
r — oo, which is absurd. We now suppose N > 3 and we integrate (1.3.11) on
(0,7):

WP Sty S [
— N "
T+l
Letting » — oo and applying (1.3.14), we deduce that

sNTlyP L (1.3.15)

/ N7/ (r)? < . (1.3.16)
0

It follows in particular from (1.3.14) and (1.3.16) that there exist 7, — oo such
that

rN (W (rp)? + u(rn)PT) — 0.
Letting r = r,, in (1.3.15) and applying (1.3.14) and (1.3.16), we deduce by letting
n— oo

N-2 [ N e
—/ sNT/? = —— sNlyptL, (1.3.17)
2 Jo p+1Jo
Finally, we integrate (1.3.10) on (0, 7):
T T
N () () —|—/ sN=lyp Tl = / sN71y'2, (1.3.18)
0 0

N Y
We observe that u(r,) < crn, P** and that |u/(r,)| < ern 2. By the assumption on
p, this implies that r~u(r,)u/(r,) — 0. Letting r = r,, in (1.3.18) and letting

n — 00, we obtain
o0 o0
/ GN-1,p+1 _ / GN—1,/2
0 0

Multiplying the above identity by N/(p+1) and making the difference with (1.3.17),

we obtain N N
_9 00
0— (A A2y [T
p+1 2 0

which is absurd.

In fact, with the previous argument, one shows as well that if » > 0 is such
that u(r) # 0 and w'(r) = 0, then there exists p > r such that u(p) = 0.

To conclude, we need only show that if p > 0 is such that u(p) = 0, then there
exists r > p such that u(r) # 0 and «/(r) = 0. To see this, note that u/(p) # 0
(for otherwise u = 0 by uniqueness), and suppose for example that u'(p) > 0. If
u'(r) > 0 for all » > p, then (since u is bounded) u converges to some positive limit
¢ as r — o0; and so, by the equation, u”(r) — —¢P as r — oo, which is absurd.
This completes the proof. O

REMARK 1.3.4. Here are some comments on Proposition 1.3.3 and its proof.

(i) Property (ii) does not hold for singular solutions of (1.3.8). Indeed, for p >
N/(N —2), there is the (singular) solution

u(r) = ((N2)pN)pll(( 2 )T)p?l, (1.3.19)

2 p—1
which is positive for all r > 0.

(ii) The argument at the beginning of the proof of property (ii) shows that any
positive solution u of (1.3.8) on [R,00) (R > 0) satisfies the estimate (1.3.13)
for r large. This holds for any value of p. The explicit solutions (1.3.19) show
that this estimate cannot be improved in general.




1.3. THE CASE OF RN, N > 2 13

(iii) Let p > 1, N > 3 and let u be a positive solution of (1.3.8) on (R,o0) for
some R > 0. If u(r) — 0 as r — oo, then there exists ¢ > 0 such that

u(r) =

for all » > R. Indeed, (rV~1u') = —rN~1yP <0, so that
u'(r) < RN~/ (R)r— V=1,
Integrating on (r,00), we obtain (N — 2)rV=2u(r) > —RN~1/(R). Since

u >0 and u(r) = 0 as r — 0o, we may assume without loss of generality that
u'(R) < 0 and (1.3.20) follows.

COROLLARY 1.3.5. Assume A\, > 0 and (N —2)p < N+2. For any p > 0 and
any n € N, n > 1, there exists M, , such that if o > M, ,, then the solution u
of (1.3.1) with the initial conditions w(0) = x¢ and u'(0) = 0 has at least n zeroes

on (0, p).
PRrROOF. Changing u(r) to (u/)\)ﬁu()ﬁ%r), we are reduced to the equation
N-1
u + ———u' —u+ [uP"ru = 0. (1.3.21)
r

Let now R > 0 be such that the solution v of (1.3.8) has n zeroes on (0, R) (see
Proposition 1.3.3).

Let # > 0 and let u be the solution of (1.3.21) such that w(0) = z, v/(0) = 0.
Set

so that

xp—1
u(0) =1, @'(0)=0.
It is not difficult to show that @ — v in C*([0, R]) as * — oo. Since v’ # 0 whenever
v = 0, this implies that for x large enough, say x > x,, @ has n zeroes on (0, R).

Coming back to u, this means that u has n zeroes on (0, (R/x)%) The result
follows with for example M, , = max{zy, (R/p)ﬁ 1. 0

{ﬂ” + N;lﬂ/ S ey |ﬂ|p71ﬂ: 0,

LEMMA 1.3.6. For every ¢ > 0, there exists a(c) > 0 with the following prop-
erty. If u is a solution of (1.3.1) and if E(u,R) = —c < 0 and w(R) > 0 for some
R >0 (E is defined by (1.3.5)), then u(r) > a(c) for all r > R.

PROOF. Let f(x) = plz[Pt1/(p+1)—Ax?/2 for z € R, and let —m = min f < 0.
One verifies easily that for every ¢ € (0, m) the equation f(x) = —c has two positive
solutions 0 < a(c) < f(c), and that if f(z) < —¢, then x € [-8(c¢), —a(c)] U
[a(c), B(c)]. Tt follows from (1.3.6) that f(u(r)) < —c for all » > R, from which the
result follows immediately. O

We are now in a position to prove Theorem 1.3.1.

PROOF OF THEOREM 1.3.1. Let
Ao ={x>0; u>0on (0,00)},

where u is the solution of (1.3.1) with the initial values u(0) = z, «/(0) = 0.

We claim that T = (0, (A(p + 1)/2,u)ﬁ) C Ay, so that Ag # 0. Indeed,
suppose x € I. Tt follows that F(u,0) < 0; and so, ig%u(r) > 0 by Lemma 1.3.6.

On the other hand, Ay C (0, M1,1) by Corollary 1.3.5. Therefore, we may consider
xo = sup Ag. We claim that xy has the desired properties.
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Indeed, let u be the solution with initial value zo. We first note that xy €
Ap. Otherwise, u has a first zero at some 9 > 0. By uniqueness, u'(r9) # 0,
so that u takes negative values. By continuous dependance, this is the case for
solutions with initial values close to z, which contradicts the property zo € Ay.
On the other hand, we have xg > (A(p + 1)/2,u)ﬁ > ()\/u)p%l This implies that
u”(0) < 0, so that v/(r) < 0 for » > 0 and small. We claim that «/(r) cannot
vanish. Otherwise, for some rg > 0, u(rg) > 0, u'(r¢9) = 0 and u”(ro) > 0. This
implies that u(rg) < ()\/u)v%l, which in turn implies E(u,r9) < 0. By continuous
dependance, it follows that for vy close to xg, we have E(v,79) < 0, which implies
that vy € Ag by Lemma 1.3.6. This contradicts again the property zy = sup Ap.
Thus «/(r) < 0 for all » > 0. Let

. o S
m irﬁ%u(r) Thﬂrgo u(r) >0

We claim that m = 0. Indeed if m > 0, we deduce from the equation that (since u’
is bounded)

u’(r) — Am — pm?.
=00

Thus, either m = 0 or else m = ()\/M)P%l. In this last case, since u'(r,) — 0 for
some sequence 1, — 00, we have liminf F(u,r) < 0 as r — oo, which is again
absurd by Lemma 1.3.6. Thus m = 0. The exponential decay now follows from the
next lemma (see also Proposition 4.4.9 for a more general result). il

LEMMA 1.3.7. Assume A\, > 0. If u is a solution of (1.3.1) on [rg,o0) such
that u(r) — 0 as r — oo, then there exists a constant C such that

u(r)? +u'(r)? < 06_2\&7‘,
forr>mrg.

PROOF. Let v(r) = (u/)\)ﬁu()\_%r), so that v is a solution of (1.3.21). Set
F(r) =w(r)® +2'(r)? = 20(r)0 (r).
We see easily that for r large enough v(r)v'(r) < 0, so that, by possibly chosing r¢
larger,
f(r) > v(r)? 4+ (r)?, (1.3.22)
for » > rg. An elementary calculation shows that

Fir)y+2f(r) = —m(v'2 — ') + 2P (v? — )

< 2P (w? — ) < 2ufPTf

It follows that
f'(r)
f(r)

and so, given rg sufficiently large,

L (logtsn+2r—2 [ i) <0,

+2-2fof " <0,

Since v is bounded, we first deduce that f (r) < Ce™". Applying the resulting
estimate |v(r)| < Ce™ % in the above inequality, we now deduce that f(r) < Ce™?".
Using (1.3.22), we obtain the desired estimate. O

Finally, for the proof of Theorem 1.3.2, we will use the following lemma.



1.3. THE CASE OF RN, N > 2 15

LEMMA 1.3.8. Let n € N, x > 0, and let u be the solution of (1.3.1) with the
ingtial conditions u(0) = x and u'(0) = 0. Assume that u has exactly n zeroes on
(0,00) and that u®> +u'?> — 0 as r — oo. There exists € > 0 such that if |[v —y| < ¢,
then the corresponding solution v of (1.3.1) has at most n+ 1 zeroes on (0,00).

PROOF. Assume for simplicity that A = p = 1. We first observe that E(u,r) >
0 for all » > 0 by Lemma 1.3.6. This implies that if » > 0 is a zero of v/, then
lu(r)[P~1 > (p+1)/2 > 1, so that u(r)u”(r) < 0, by the equation. In particular,
if ro > r1 are two consecutive zeroes of «’, it follows that u(ri)u(re) < 0, so that
u has a zero in (r1,72). Therefore, since u has a finite number of zeroes, it follows
that ' has a finite number of zeroes.

Let 7/ > 0 be the largest zero of v/ and assume, for example, that u(r’) > 0.
In particular, u(r’) > 1 and u is decreasing on [r’,00). Therefore, there exists a
unique o € (r',00) such that u(rg) = 1, and we have u/(r9) < 0. By continuous
dependance, there exists e > 0 such that if | — y| < ¢, and if v is the solution
of (1.3.1) with the initial conditions v(0) = x, then the following properties hold.

(i) There exists pg € [rog — 1,79 + 1] such that v has exactly n zeroes on [0, po]
(ii) v(po) =1 and v'(pg) < 0.

Therefore, we need only show that, by choosing £ possibly smaller, v has at
most one zero on [pg,00). To see this, we suppose v has a first zero p; > po, and
we show that if e is small enough, then v < 0 on (p1,00). Since v(p1) = 0, we
must have v'(p1) < 0; and so, v'(r) < 0 for r — p; > 0 and small. Furthermore,
it follows from the equation that v’ cannot vanish while v > —1. Therefore, there
exist ps > p3 > p1 such that v" < 0 on [p1, p3] and v(p2) = —1/4, v(ps) = —1/2.
By Lemma 1.3.6, we obtain the desired result if we show that E(v, p3) < 0 provided
¢ is small enough. To see this, we first observe that, since v > 0 on [r', 00),

VM > 0,3¢’ € (0,¢) such that p; > M if |z —y| < &',

Let
x|PT 22
flay= T
p+1 2
It follows from (1.3.6) that
2(N —1 2(N —1
L o) + 2 gy = 28U iy,
d r r
and so,
d

PNV E(w, ) = 2N = DN £ (o)

Integrating on (pg, p3), we obtain

P3
P2 VDB, ps) = pe ™ TV E(v, po) + 2(N — 1)/ r2N=3 £ (u(r)) dr.
Po

Note that (by continuous dependence)
pe N VB (v, po)? VY < ¢,

with C' independent of y € (z—¢,2+4¢). On the other hand, f(v(r)) < 0 on (pg, p3)
since —1 < v < 1, and there exists @ > 0 such that f(§) < —a for 0 € (—1/4,-1/2).
It follows that

P3
pg(Nfl)E(v,pg) <C-2(N - 1)a/ r2N=3 dr
p2
< C— 2N = 1)apN " (ps — pa).
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Since v’ is bounded on (p2, p3) independently of y such that | — y| < &', it follows
that p3 — po is bounded from below. Therefore, we see that F(v,p3) < 0 if ¢ is
small enough, which completes the proof. ]

PRrROOF OF THEOREM 1.3.2. Let
Ay = {x > x0; u has exactly one zero on (0,00)}.

By definition of 2y and Lemma 1.3.8, we have A; # (). In addition, it follows from
Corollary 1.3.5 that A; is bounded. Let

x1 = sup Ay,

and let u; be the corresponding solution. By using the argument of the proof of
Theorem 1.3.1, one shows easily that u; has the desired properties. Finally, one
defines by induction

Ant1 = {x > x,; u has exactly n + 1 zeroes on (0,00},

and
Tpg1 = sup Api1,
and one show that the corresponding solution u,, has the desired properties. O

REMARK 1.3.9. Here are some comments on the cases when the assumptions
of Theorems 1.3.1 and 1.3.2 are not satisfied.

(i) If A, > 0 and (N —2)p > N+2, then there does not exist any solution u Z 0,
u € C1([0,00)) of (1.3.1)-(1.3.2). Indeed, suppose for simplicity A = u = 1
and assume by contradiction that there is a solution u. Arguing as in the
proof of Lemma 1.3.7, one shows easily that v and %' must have exponential
decay. Next, arguing as in the proof of Proposition 1.3.3, one shows that

o0 oo oo
/ SN71|u|p+1 :/ SNflu/2+/ SN71u2,
0 0 0

N <>O!sN1|u|pﬂ—NQ/OOSN1u’2+E/OOSN1u2.
p+1Jo 2 0 2 Jo

It follows that

0< (M,L) /wsN_1|u|p+1/oosN_1u2<0,
2 p+1/Jo 0

which is absurd.

(ii)) If A > 0 and p < 0, then there does not exist any solution u # 0, u €
C*([0,00)) of (1.3.1)-(1.3.2). Indeed, suppose for example A\ = 1 and pu =
—1 and assume by contradiction that there is a solution w. Since E(u,r)
is decreasing and u — 0, we see that v’ is bounded. It then follows the
equation that u” — 0 as r — oo; and so, v’ — 0 (see Step 1 of the proof
of Theorem 1.1.3). Therefore, E(u,r) — 0 as r — oo, and since E(u,r) is
nonincreasing, we must have in particular E(u,0) > 0. This is absurd, since
E(u,0) = —u(0)2/2 — u(0)P*1/(p+ 1) < 0.

(i) If A = 0 and p < 0, then there does not exist any solution u # 0, u €
C1([0,00)) of (1.3.1)-(1.3.2). This follows from the argument of (ii) above.

(iv) fA=0, g > 0and (N —2)p = N + 2, then for any x > 0 the solution u
of (1.3.1) such that «(0) = z is given by

and

N-—2

u(r) = x(l + N/E‘J]U\fi]tz)ﬂ)i :

In particular, u(r) ~ r~(¥=2) as r — oco. Note that u € LPTY(RN). In
addition, v € HY(RY) if and only if N > 5.




(v)

(vii)
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IfAN=0,u>0and (N—2)p > N + 2, then for any > 0 the solution
uw of (1.3.1) such that u(0) = z satisfies (1.3.2). (This follows from Propo-
sition 1.3.3.) However, u has a slow decay as r — oo in the sense that
u ¢ LPYL(RYN). Indeed, if u were in LPT1(RY), then arguing as in the proof
of Proposition 1.3.3 (starting with (1.3.14)) we would get to a contradiction.
IfA=0,u>0and (N—2)p < N + 2, then for any > 0 the solution u
of (1.3.1) such that u(0) = = satisfies (1.3.2). However, u has a slow decay as
r — o0 in the sense that u ¢ LPT1(RY). This last property follows from the
argument of (v) above. The property u(r) — 0 as r — oo is more delicate,
and one can proceed as follows. We show by contradiction that E(u,r) — 0
as 7 — oo. Otherwise, since E(u,r) is nonincreasing, F(u,r) | ¢ > 0 as
r — o0. Let 0 < r;1 <7y < ... be the zeroes of u (see Proposition 1.3.3).
We deduce that u'(r,)?> — 2¢ as n — oo. Consider the solution w of the
equation w” 4 p|w[P~'w = 0 with the initial values w(0) = 0, w'(0) = V/2L.
w is anti-periodic with minimal period 27 for some 7 > 0. By a continuous
dependence argument, one shows that r,4; —r, — 7 as n — oo and that
|u(ry, + ) —w(:) signw/(ry,)| — 0 in C*([0, 7]). This implies that r,, < 2n7 for
n large and that

Tn41 1 T
/ o' (r)* dr > 5/ W(r)dr >8>0,
Tn 0

for some 0 > 0 and n large. It follows that

/’“”+1 u'(r)? ) )
dr > > .
, T Tny1  27(n+1)

n

We deduce that

oo ./ 2
0

r

which yields a contradiction (see (1.3.6)).

If A < 0, then there does not exist any solution u of (1.3.1) with u € L2(R").
This result is delicate. It is proved in Kato [27] in a more general setting (see
also Agmon [2]). We follow here the less general, but much simpler argument
of Lopes [34]. We consider the case u < 0, which is slightly more delicate,

and we assume for example A = y = —1. Setting ¢(r) = r" = u(r), we see
that
N-1)(N-3 _WN=1e=1) _
QDHJrsD: ( 4)(2 )50+T 3 |<p|p 190.
r
Setting
1 1 (N-=1)(N-3) 1 w-ye-yn
Hir) = 202 4 22 2 _ ) pH1
(r) = 5¢" +3 2 o |l
Lo, 1 2{ (N -1)(N —3) |“|p_1}
= — —_ 1 - -
3¢ T3¥ 812 p+10
we deduce that
N —1)(N —3) (N-1)(p—1) _N-1De-1) _
H(r) — ( 2 1), 1p+1
") ey S ey
_ ((N — 1)(N — 3) (N — 1)(]7 — 1) |u|p—1>(p2
4r3 2(p+ 1)r '

Since u(r) — 0 as r — oo, we deduce from the above identities that for any
€ > 0, we have
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for r large enough, which implies that H(r) < C.r¢.In particular, |u(r)] <
C’I“_N 1—¢

. Therefore,

(N-1-&)(p—1)

H(r)<Cr 3 4+r 172 H(r),

which now implies that H(r) is bounded as r — oo. Since H(r) and H'(r)
are positive for r large, we deduce that H(r) T ¢ > 0 as r — oo; and so,
©'(r)? + ¢(r)? = 2¢ > 0 as r — oo. Coming back to the equation for ¢, we
now see that

©" + ¢ =he,

with h(r) bounded as r — oo. Multiplying the above equation by ¢ and
integrating on (1, p), we deduce that

/ /1— so+[sw”<0+0/
/l(ap + ¢?) <C+C/

Since liminf ¢'(r)% + ¢(r)? > 0 as r — oo, we see that

o0
/ p? = +oo,
1

ie. u g L2(RY). In fact, one sees that u € LY(RY) for ¢ > 2 and u ¢ LI(RY)
for ¢ < 2.

Therefore,

REMARK 1.3.10. The proof of Theorems 1.3.1 and 1.3.2 suggests that for every
integer n > 0, there might exist only one initial value x, such that the solution
of (1.3.1) with the initial conditions «(0) = x,, and «/(0) = 0 is defined for all r > 0,
converges to 0 as r — 0o, and has exactly n zeroes on [0, 00). This uniqueness prop-
erty was established for n = 0 only, and its proof is very delicate (see Kwong [29]
and McLeod [37]). Tt implies in particular uniqueness, up to translations, of posi-
tive solutions of the equation —Au = g(u) in RY such that u(x) — 0 as |z| — oo.
Indeed, it was shown by Gidas, Ni and Nirenberg [22] that any such solution is
spherically symmetric about some point of RV,

1.4. The case of the ball of RN, N > 2

In this section, we suppose that Q = Br = {z € RY; || < R} and we look for
radial solutions of the equation

—Au=g(u) in Q,
u=0 on O

The equation for u(r) = u(|x|) becomes the ODE

u"+N 1u'—l—g(u)zO7 0<r<R,
with the boundary condition u(R) = 0.

It turns out that for the study of such problems, variational methods or super-
and subsolutions methods give in many situations more general results. (See Chap-
ters 2 and 3) However, we present below some simple consequences of the results
of Section 1.3.

For simplicity, we consider the model case

g(u) = —Nu+ plu’ ",



1.4. THE CASE OF THE BALL OF RM, N > 2 19

and so we look for solutions of the ODE

N -1
u” + ———u' — M+ pluP e =0, (1.4.1)
7

for 0 < r < R such that

u(R) = 0. (1.4.2)

We first apply Proposition 1.3.3, and we obtain the following conclusions.

(1)

(iii)

Suppose A = 0, p > 0 and (N — 2)p > N + 2. Then for every z > 0,
the solution u of (1.4.1) with the initial conditions «/(0) = 0 and u(0) = =
does not satisty (1.4.2). This follows from property (i) of Proposition 1.3.3.
Indeed, if we denote by w the solution corresponding to x = 1 and p = 1, then
u(r) = xU(IL;lr)

Suppose A =0, 4 > 0 and (N —2)p < N + 2. Then for every integer n > 0,
there exists a unique z, > 0 such that the solution v of (1.4.1) with the initial
conditions u’(0) = 0 and u(0) = =z, satisfies (1.4.2) and has exactly n zeroes
on (0, R). This follows from property (ii) of Proposition 1.3.3 and the formula
u(r) = UOE(U;T T).

Suppose A, > 0 and (N — 2)p < N + 2. Then for every sufficiently large
integer n, there exists x,, > 0 such that the solution w of (1.4.1) with the
initial conditions u/(0) = 0 and u(0) = x,, satisfies (1.4.2) and has exactly n
zeroes on (0, R). Indeed, by scaling, we may assume without loss of generality
that A = p = 1. Next, given any x > 0, it follows easily from the proof of
Corollary 1.3.5 that the corresponding solution of (1.4.1) oscillates indefinitely.
Moreover, it follows easily by continuous dependence that for any integer £ > 1
the k*" zero of u depends continuously on x. The result now follows from
Corollary 1.3.5.

For results in the other cases, see Section 2.7.






CHAPTER 2

Variational methods

In this chapter, we present the fundamental variational methods that are useful
for the resolution of nonlinear PDEs of elliptic type. The reader is referred to Ka-
vian [28] and Brezis and Nirenberg [14] for a more complete account of variational
methods.

2.1. Linear elliptic equations

This section is devoted to the basic results of existence of solutions of linear
elliptic equations of the form

(2.1.1)

—Aut+au+u=f in
u=0 in 0.

Here, a € L*>(Q), A is a real parameter and, throughout this section, € is any
domain of RY (not necessarily bounded nor smooth, unless otherwise specified). We
will study a weak formulation of the problem (2.1.1). Given u € H* (), it follows
that —Au+au+ A u € H-1(Q) (by Proposition 5.1.21), so that the equation (2.1.1)
makes sense in H~(Q) for any f € H~(Q). Taking the H ! — H{ duality product
of the equation (2.1.1) with any v € HJ(2), we obtain (by formula (5.1.5))

/VU'VU+/QUU+)\/U'U:(f,'U)H—17Hé. (2.1.2)
Q Q Q

Moreover, the boundary condition can be interpreted (in a weak sense) as u €
H}(Q). This motivates the following definition.

A weak solution u of (2.1.1) is a function u € H}(Q2) that satisfies (2.1.2)
for every v € H}(Q). In other words, a weak solution u of (2.1.1) is a function
u € H(Q) such that —Au+ au + Au = f in H}(Q). We will often call a weak
solution simply a solution.

The simplest tool for the existence and uniqueness of weak solutions of the
equation (2.1.1) is Lax-Milgram’s lemma.

LeEmMA 2.1.1 (Lax-Milgram). Let H be a Hilbert space and consider a bilinear
functional b: H x H — R. If there exist C' < oo and o > 0 such that

|b(u,v)| < Cllu|l ||v]l, for all (u,v) € H x H (continuity),
|b(u,u)| > a|lul|?, for allu € H (coerciveness),

then, for every f € H* (the dual space of H), the equation
b(u,v) = (f,v)u+u forall veH, (2.1.3)
has a unique solution u € H.
PRrROOF. By the Riesz-Fréchet theorem, there exists ¢ € H such that

(fav)H*,H = ((p, U)Ha

21
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for all v € H. Furthermore, for any given v € H, the application v — b(u, v) defines
an element of H*; and so, by the Riesz-Fréchet theorem, there exists an element of
H, which we denote by Awu, such that

b(u,v) = (Au,v) g,
for all v € H. It is clear that A : H — H is a linear operator such that

[Aulzr < Cllul|a,
(Au,u)g > alull3,

for all w € H. We see that (2.1.3) is equivalent to Au = ¢. Given p > 0, this last
equation is equivalent to

u="Tu, (2.1.4)
where Tu = u + pp — pAu. It is clear that T': H — H is continuous. Moreover,
Tu—Tv=(u—v)— pA(u—v); and so,

1T~ Tollf = lu = vl + p*[[ACu = v)l[F = 20(A(u = v),u — v)g
< (14 p°C* = 2pa)|lu —vl/%.
Choosing p > 0 small enough so that 1+ p?C? —2pa < 1, T is a strict contraction.

By Banach’s fixed point theorem, we deduce that T has a unique fixed point v € H,
which is the unique solution of (2.1.4). O

In order to study the equation (2.1.1), we make the following definition.
Given a € L™(Q), we set

AM(—A+a;Q) =
inf{/(|Vu|2 +au?); ue HYQ), ||ull 2 = 1}. (2.1.5)
Q
When there is no risk of confusion, we denote A1 (—A + a;Q) by A\ (—A +a) or

simply A;.

REMARK 2.1.2. Note that A\ (—A + a;Q) > —|la||p~. Moreover, it follows
from (2.1.5) that

/|Vu|2+/a|u|22)\1(fA+a)/ u|?, (2.1.6)
Q Q Q

for all u € H}(Q).

When  is bounded, we will see in Section 3.2 that A\;(—A + a; ) is the first
eigenvalue of —A + a in H}(Q). In the general case, there is the following useful
inequality.

LEMMA 2.1.3. Leta € L™(Q) and let \y = A\ (—A+a; Q) be defined by (2.1.5).
Consider X\ > —\1 and set

. A+
= 1, ——mM8M8M8M8m8™ 0 2.1.7
@ mln{ 71+A1+HaHLOO} = ’ ( )

by Remark 2.1.2. It follows that

/ |Vul? —|—/ au® —i—)\/ u? > allu|| %, (2.1.8)
Q Q Q
for all uw € HY(Q).
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PROOF. We denote by ®(u) the left-hand side of (2.1.8). It follows from (2.1.6)
that, given any 0 < e < 1,

<I>(u)2 > s/ﬂ (|Vu|2 + a|u|2) + (1 =)+ N /Q |u|2
>e /Q Tl + (1= &) + A — ellal =) /Q uf?

—= [ 19+ Ot A= =0+ =) [ Jul®
Q Q
The result follows by letting ¢ = a. O

Our main result of this section is the following existence and uniqueness result.

THEOREM 2.1.4. Let a € L>®(Q) and let A1 = M (—A + a;Q) be defined

by (2.1.5). If X > —\y, then for every f € H~1(Q), the equation (2.1.1) has a
unique weak solution. In addition,

aflullgr < 1 flla-— < (L llallze + [ADull a2, (2.1.9)

where « is defined by (2.1.7). In particular, the mapping f — u is an isomorphism

H=1(Q) = HY(D).
b(u,v):/Vu-Vv—l—/auv—i—)\/uv,
Q Q Q

for u,v € H}(Q). Tt is clear that b is continuous, and it follows from (2.1.8) that b is
coercive. Existence and uniqueness now follow by applying Lax-Milgram’s lemma
in H = H}(Q) with b defined above. Next, we deduce from (2.1.8) that

allullfzp < b(u,u) = (f,u) g gy < | flla-llull e,
from which we obtain the left-hand side of (2.1.9). Finally,
[l < [Aullp-r + llaw]l g- + M Jullz-+ < (1 + llallze + [AD]ull a2,

which proves the right-hand side of (2.1.9). O

REMARK 2.1.5. If a = 0, then A\ = A\ (—A;Q) depends only on Q. A\ may
equal 0 or be positive. The property A\; > 0 is equivalent to Poincaré’s inequality.
In particular, if 2 has finite measure, then A\; > 0 by Theorem 5.4.19. On the
other hand, one verifies easily that if Q@ = R, then \; = 0 (Take for example
us(z) = 2 p(ex) with p € C®(RYN), ¢ # 0 and let ¢ | 0). If @ = RN \ K, where
K is a compact subset of RV a similar argument (translate u. in such a way that
supp u. C ) shows that as well Ay = 0.

PROOF. Let

REMARK 2.1.6. The assumption A > —A; implies the existence of a solution
of (2.1.1) for all f € H~(Q). However, this condition may be necessary or not,
depending on (2. Let us consider several examples to illustrate this fact.

(i) Suppose € is bounded. Let (\,,),>1 be the sequence of eigenvalues of —A+a
in H}(Q) (see Section 3.2) and let (¢,)n>1 be a corresponding orthonormal
system of eigenvectors. Given f € H (), we may write f = Y o anpn
with > A, o [? < oo. A function uw € H}() is given by u = Y, o, ann
with Y Aulan|? < oo. Since necessarily (A, + Aa, = «, for a solution
of (2.1.1), we see that if A # —\,, for all n > 1, then (2.1.1) has a solution for
all f € H=1(Q). On the other hand, if A = —\,, for some n > 1, then it is
clear that for f = ¢, the equation (2.1.1) does not have any solution. So in
this case, the equation (2.1.1) has a weak solution for all f € H~1() if and
only if A # —\,, for all n > 1.
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(ii) Suppose © = R and let a = 0, so that in particular A; = 0. We claim that
there exists f € H~1(RY) such that for any A < 0, the equation (2.1.1) does
not have any solution. Indeed, suppose A < 0 and consider f(x) = e~lel’.
We have f(«f) = nre Tl If (2.1.1) has a solution u, then by applying
the Fourier transform, we obtain (472(£|% + \)u(¢) = f(f) =% e ™1 thus
U(E) = mre ™ 167 (472(€)2 + A\)~! ¢ L2(RY). This yields a contradiction.

(iii) Suppose N > 2 and 2 = R X w, where w is a bounded, open domain of
RM=1 and let @ = 0. We claim that there exists f € H~1(f2) such that for
any A < —\p, the equation (2.1.1) does not have any solution. Indeed, let
(Xn)n21 be the sequence of eigenvalues of —A in H{(w) and let ($,,)n>1 be
a corresponding orthonormal system of eigenvectors (see Section 3.2 below).
It is not difficult to verify that A\; = A1. Consider fla,y) = e*|x|2gZ1 (y) for
(x,y) € R xw. If (2.1.1) has a solution u, we obtain that v(§,y), the Fourier
transform of u(z,y) in the variable x, has the form v(&,y) = 6(£)@1(y) with
(47222 + A 4+ N)O(E) = wze ™16 If A < —X; = —Aq, then 6(-) ¢ L3(R),
thus u € L?(£2), which is absurd.

2.2. C! functionals

We begin by recalling some definitions. Let X be a Banach space and consider
a functional F € C(X,R). F is (Fréchet) differentiable at some point 2z € X if
there exists L € X* such that
|F(z+y) — F(z) — (L y)x+ x| 0
[yl llyllo

Such a L is then unique, is called the derivative of F at X and is denoted F’(x).
F € CY(X,R) if F is differentiable at all x € X and if the mapping z — F'(z) is
continuous X — X*.

There is a weaker notion of derivative, the Gateaux derivative. A functional

F € C(X,R) is Gateaux-differentiable at some point € X if there exists L € X*
such that

Flzt+ty) — F(z) |

t t10

(L,y)x+ x>

for all y € X. Such a L is then unique, is called the Gateaux-derivative of F at
X and is denoted F’(x). It is clear that if a functional is Fréchet-differentiable
at some = € X, then it is also Gateaux-differentiable and both derivatives agree.
On the other hand, there exist functionals that are Gateaux-differentiable at some
point where they are not Fréchet-differentiable. However, it is well-know that if
a functional F € C(X,R) is Gateaux-differentiable at every point z € X, and
if its Gateaux derivative F'(x) is continuous X — X*, then FF € C*(X,R). In
other words, in order to show that F is C'', we need only show that F' is Gateaux-
differentiable at every point « € X, and that F’(x) is continuous X — X*.

We now give several examples of functionals arising in PDEs and which are C*
in appropriate Banach spaces. In what follows, Q is an arbitrary domain of RY.

Consider a function g € C(R,R), and assume that there exist 1 < r < oo and
a constant C such that

lg(u)] < Clul", (2.2.1)
for all u € R. Setting

G(u) = /Oug(s) ds, (2.2.2)
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C
it follows that |G (u)| < o |u|" 1. Therefore, we may define
r

u):/QG(u(I))dI, (2.2.3)

for all u € L™ (Q). Our first result is the following.

PROPOSITION 2.2.1. Assume g € C(R,R) satisfies (2.2.1) for some r € [1,00),
let G be defined by (2.2.2) and let J be defined by (2.2.3). It follows that the mapping
u— g(u) is continuous from L™H(Q) to L™+ (). Moreover, J € CY(L"+1(Q),R)

and

J'(u) = g(u), (2.2.4)
for allw € L™T1(Q).

PROOF. It is clear that ||g(u)|\Lm < C|lulljtl,, thus g maps L™(Q) to

L5 (Q (©). We now show that g is continuous. Assume by contradiction that wu, —

win L™(Q) as n — oo and that ||g(u,) — g(u)] 1 > & > 0. By possibly

extracting a subsequence, we may assume that u,, — u a.e.; and so, g(u,) — g(u)
a.e. Furthermore, we may also assume that there exists f € L"T(Q) such that
|un| < f a.e. Applying (2.2.1) and the dominated convergence theorem, we deduce

that g(uyn) — g(u) in L%(Q) Contradiction.
Consider now u,v € L"1(Q). Since g = G’, we see that
t —
G(u+tv) — G(u) ~ g(uw)o—0,
t t10

a.e. Note that by (2.2.1), [g(u)v| < Clu|"|v] € L}(Q) and for 0 <t < 1
|G u+tv) = Gu)| _ 1y [
4

) ds‘ < Clo|(Jul” + o]

< Clol(jul + |v]") € LY(Q).

By dominated convergence, we deduce that

/Q‘ G(u+ tvt) —Gu) o(u)

This means that J is Gateaux differentiable at u and that J'(u) = g(v). Since g is
r+1

continuous L™ () — L= (£2), the result follows. O

— 0.
tlo

Consider again a function g € C(R,R), and assume now that there exist 1 <
r < oo and a constant C' such that

lg(u)l < C(ful + [u]"), (2.2.5)
for all v € R. (Note that in particular g(0) = 0.) Consider G defined by (2.2.2)
and, given h; € H~}(Q) and hs € L (Q), let

T =3 [ 1vup = [ 6
= (hi,w) g g — (ho,u ) Lo (2.2.6)

for u € HE () N L™1(Q). We note that G(u) € L1(2), so J is well defined. Let

X =H;(Q)NnLT(Q), (2.2.7)

and set
lullx = llullm + [[ull -+, (2.2.8)
for u € X. It follows immediately that X is a Banach space with the norm || - || x.

41

One can show that X* = H~1(Q) + L~ (Q), where the Banach space H~1(Q) +
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L () is defined appropriately (see Bergh and Lofstrom [10], Lemma 2.3.1 and
Theorem 2.7.1). We will not use that property, whose proof is rather delicate, but
we will use the simpler properties H~1(Q) < X* and L™+ () < X*. This is
immediate since, given f € H~1(Q), the mapping u — (f, U)H—I’H% defines clearly
an element of X*. Furthermore, this defines an injection because if (f,u)z-1, my for

all u € X, then in particular (f,u)g-1 gy for all u € CZ°(Q2). By density of C2°(Q2)
in H}(Q), we deduce f = 0. A similar argument shows that L (Q) < X*.

COROLLARY 2.2.2. Assume that g € C(R,R) satisfies (2.2.5) and let hy €
r+1

H=Y(Q) and hy € L~ (Q). Let J be defined by (2.2.6) and let X be defined
by (2.2.7)-(2.2.8). Then g is continuous X — X*, J € C1(X,R) and

J'(u) = —Au — g(u) — hy — ha, (2.2.9)

for allu e X.

PRrROOF. We first show that g is continuous X — X*, and for that we split g
in two parts. Namely, we set

9(u) = g1(u) + ga(u),
where g1(u) = g(u) for |u| < 1 and g1(u) = 0 for |u] > 2. It follows immediately
that
|91 ()] < Clul,
and that
|92(u)] < Clul",

by possibly modifying the value of C'. By Proposition 2.2.1, we see that the mapping
u — g1(u) is continuous L2(2) — L2(Q), hence H} () — H~(Q), hence X — X*.

r+1

(), hence X — X*.

As well, the mapping u — g2(u) is continuous L™ (Q) — L
Therefore, g = g1 + go is continuous X — X*.
We now define

. 1
Tw) =3 [ 19l
2 Ja
so that J € CL(HL(Q),R) € CY(X,R) and J'(u) = —Au (see Corollary 5.1.22).
Next, let
Jo(u) = (hy,w) g gy + (ho,u) rer = Jo (u) + J§ (u).

LTt

One verifies easily that Jj3 € C'(H}(Q),R) and that J3'(u) = hy. Also, JZ €
CHL™1 R) and that J3'(u) = ha. Thus Jy € CYX,R) and J}(u) = hy + ha.
Finally, let

&M=A@w,

for ¢ = 1,2, where Gy¢(u) = / ge(s)ds. The result now follows by applying
0
Proposition 2.2.1 to the functionals J, and writing J = J — Jy — J1 — Jo. U

COROLLARY 2.2.3. Assume that g € C(R,R) satisfies (2.2.5), with the ad-
ditional assumption (N — 2)r < N + 2, and let h € H=*(Q). Let J be defined
by (2.2.6) (with hy = h and hy = 0). Then g is continuous H} () — H~1(Q),
J € CY(HE(Q),R) and (2.2.9) holds for all u € H}(Q).

PROOF. Since H}(Q) N L™TH(Q) = HY(Q) by Sobolev’s embedding theorem,
the result follows from Corollary 2.2.2. (]
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2.3. Global minimization

We begin by recalling some simple properties. Let X be a Banach space and
consider a functional F' € C'(X,R). A critical point of F is an element 2 € X such
that F'(x) = 0. If ' achieves its minumum, i.e. if there exists o9 € X such that

F = inf F

(o) = inf F(),

then z( is a critical point of F. Indeed, if F'(xzo) # 0, then there exists y € X

such that (F'(z0),y)x+ x < 0. It follows from the definition of the derivative that
t

F(zo +ty) < F(zo) + i(F’(mo),y)X*,X < F(x0) for t > 0 small enough, which is

absurd.
In this section, we will construct solutions of the equation

—Au = h in Q
u=glw)+h in L, (2.3.1)
u=0 in 09,
by minimizing a functional J such that J'(u) = —Au — g(u) — h in an appropriate

Banach space. Of course, this will require assumptions on g and h. We begin with
the following result.

THEOREM 2.3.1. Assume that g € C(R,R) satisfies (2.2.5), with the additional
assumption (N —2)r < N +2. Let Ay = M\ (—A) be defined by (2.1.5), and suppose
further that

G(u) < —%uQ, (2.3.2)

for all w € R, with A > —\y. (Here, G is defined by (2.2.2).) Finally, let h €
H=Y(Q) and let J be defined by (2.2.6) with hy = h and hy = 0 (so that J €
CYH(HY(Q),R) by Corollary 2.2.3). Then there exists u € H}(Q) such that

J(u) = inf J(v).
()= nf )

In particular, u is a weak solution of (2.3.1) in the sense that u € Hg(Q) and
—Au=g(u) +h in H-1(Q).
For the proof of Theorem 2.3.1, we will use the following lemma.

LEMMA 2.3.2. Let A > —\;, where A\; = M\ (—A) is defined by (2.1.5). Let
h € H71(Q) and set

1 A
W) = g [ VP45 [ s,

for all w € HJ (). If (un)n>0 is a bounded sequence of HJ(Y), then there exist a
subsequence (un, k>0 and u € HY(Q) such that

U(u) < liminf U(u,, ), (2.3.3)
k—o0

and Uy, — u a.e. in Q.
k— o0

PROOF. Since (uy)n>0 is a bounded sequence of HJ (2), there exist u € HE(Q)
and a subsequence (up, )r>o such that u,, — v a.e. in Q as k — oo and uy,, — u
in L2(Q N {|z| < R}) for all R > 0 (see Remark 5.5.6). For proving (2.3.3), we
proceed in two steps.

STEP 1. For every f € H (),

(f, Umc)Hfl,H(} k—> (f, U)Hfl,H(}-
—00
Indeed,

(fa Uny, — u)Hfl,Hé — Oa
k—o00
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when f € C.(2), by local L? convergence. The result follows by density of C(£2)
in H=1(Q) (see Proposition 5.1.18).
STEP 2. Conclusion. By Step 1, we need only show that if

@(u):/ |Vu|2+)\/u2,
Q Q

then ®(u) < liminf ®(u,,) as k — co. Indeed, we have ®(u) > aljul|%, by (2.1.8).
Since clearly ®(u) < max{1, A}||ul|3., it follows that

lvll] = @(v)=,

defines an equivalent norm on H{(Q2). We equip H ~!(Q) with the corresponding
dual norm ||| - |||,. (Note that this dual norm is equivalent to the original one and
that, by definition, the duality product (-, -)g-1, my is unchanged.) We have

llwlll = sup{(f,w) g1 uz; £ € HH(Q), IfIll, = 1}-

By Step 1,

(frwg- m = Jim (foun) -1 my s

—00

for every f € H=(Q). Since (f, Uny )1, < [l M[wn [ll; we deduce that

(fw) g my < (I im nf [y, |,

—00

from which the result follows. O

ProOOF OF THEOREM 2.3.1. We first note that, by (2.3.2),

1 A
J(u) > —/ |Vu|? + —/ u? — (hyu) -1 g1
2 Ja 2 Jo ne
By (2.1.8), this implies that
«@ «@ 1
J(u) = Zllullfn = Mol llullm > Zllullf — allhllir—l, (2.3.4)
for all u € Hg (), where « is defined by (2.1.7). It follows from (2.3.4) that J is
bounded from below. Let

m= inf J(v)> —o0,
vEHL(Q)

and let (un)n>0 C HE(Q) be a minimizing sequence. It follows in particular
from (2.3.4) that (up)n>o is bounded in H}(Q). We now write

J(u) = J1(u) + JQ(U),
where

1 A
) =g [Vl 45 [ 0 = s

Ta(u) = /Q <G(u)%u2).

Applying Lemma 2.3.2, we find that there exist u € H}(Q) and a subsequence
(Un,, k>0 such that u,, — v a.e. in Q as k — oo and

Ji(u) < liminf Jy (up, ).
k—o0

and

A
Since —G(t) — 5752 > 0 by (2.3.2), it follows from Fatou’s lemma that

Ja(u) < liminf Ja(up, );
k—o0
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and so, J(u) < liminf J(uy,, ) = m as k — oo. Therefore, J(u) = m, which proves
the first part of the result. Finally, we have J'(u) = 0, i.e. —Au = g(u)+ h by
Corollary 2.2.3. O

REMARK 2.3.3. If © is bounded, then one can weaken the assumption (2.3.2).
One may assume instead that (2.3.2) holds for |u| large enough. Indeed, we have
then

G(u) < C — %uQ,

for all w € R and some constant C'. The construction of the minimizing sequence
is made as above, since one obtains instead of (2.3.4)

« « 1
J(u) = EIIUII?p — Al g2 [lul e — Cl€2 > ZHUH?p - Ellhllim - C19.

For the passage to the limit, we have G(u) < pu? for u large enough (since G(u) =
O(u?) near 0). Therefore, one can use the compact embedding H} () — L?(Q)
(Theorem 5.5.5) to pass to the limit in the negative part of .J.

REMARK 2.3.4. We give below some applications of Theorem 2.3.1 and Re-
mark 2.3.3.

(i) If © is a bounded subset, then Theorem 2.3.1 (together with Remark 2.3.3
above) applies for example to the equation

—Au A+ M+ alulPu = blu|t = f,
where f € H1(Q) (for example, f may be a constant), A € R, a > 0, b € R
and 1 < g <p<(N+2)/(N-2).

(ii) When © is not bounded, Theorem 2.3.1 applies to the same equation with the
additional restrictions A > 0 and b < A»=1as=1(p—1)(¢+1)(p—q) "+ ((q —
D(p+1))#.

In the examples of Remark 2.3.4 (i) and (ii), one can indeed remove the as-
sumption p < (N 4 2)/(N — 2). More generally, one can remove this assumption

in Theorem 2.3.1, provided one assumes a stronger upper bound on G. This is the
object of the following result.

THEOREM 2.3.5. Assume that g € C(R,R) satisfies (2.2.5) for some r > 1.
Let \y = M (—A) be defined by (2.1.5), and suppose that G satisfies (2.3.2) for all
uw € R, with A\ > —\1. Suppose further that

G(u) < —alu|" ", (2.3.5)
for all |u| > M, where a > 0. Finally, let hy € H~*(Q) and hy € L (Q) and let

J be defined by (2.2.6) (so that J € C*(H}(Q) N L™TY(Q),R) by Corollary 2.2.2).
Then there exists u € HE () N L™ Q) such that

J(uw)= inf J(v).
()= int J0)

r+1
=

In particular, u is a weak solution of (2.3.1) with h = hy + he in the sense that
uw € HF(Q)NL™HQ) and —Au = g(u) + h1 + hy in (Hg(2) N L™H(Q))*.

PROOF. The proof is parallel to the proof of Theorem 2.3.1. We first observe
that by (2.3.2) and (2.3.5) we have

G(u) < f%’uQ — alu|™t, (2.3.6)

for all u € R, by possibly modifying ¢ > 0 and A > —A;. It follows from (2.3.6)
that
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1 A
g0z 5 [+ [ [
2 Jo 2 Ja Q

_ (hl,u)H_17Hé - (hQ’U)LL-?‘"i,LT‘*'l'
By (2.1.8), this implies that
«
J(u) = 5||u||%n +allullp = Il llulla = el ze flullpre,

so that

(0% a
T(u) 2 Zllullfn + 5wl

1

1 2rr r+1
_ a”h”%’_l — thﬂ L:tl7 (2.3.7)

for all u € H}(Q) N L™(Q), where « is defined by (2.1.7). It follows from (2.3.7)
that J is bounded from below on Hg(2) N L™ T1(Q). Let

m= inf J(v)>—o0,
veHINL"+1

and let (u,)n>0 C HE(Q) N L™1(Q) be a minimizing sequence. It follows in par-
ticular from (2.3.7) that (uy,)n>0 is bounded in H}(Q) N L™1(2). We now write

J(u) = Ji(u) + Ja(u) + J3(u),

where

and
Ja(u) = (ha,u) i

1 .
LTt

Applying Lemma 2.3.2, we find that there exist u € H}(Q) and a subsequence
(tn, )e>0 such that u,, — v a.e. in Q as k — oo and

Ji(u) < liminf Jy (up, ).
k—o0
Since —G(t) — At?/2 > 0 by (2.3.2), it follows from Fatou’s lemma that
Ja(u) < liminf Ja(up, ).
k—o0

Applying Corollary 5.5.2 and Lemma 5.5.3, we may also assume, after possibly
extracting a subsequence, that

(hQa Un )L 7.7,1 L1 k‘jo(ha, U)L 7't1 ,L"*l;

and so, J(u) < liminf J(uy,, ) = m as k — oo. Therefore, J(u) = m, which proves
the first part of the result. Finally, we have J'(u) = 0, i.e. —Au = g(u) + h by
Corollary 2.2.2. O

REMARK 2.3.6. Here are some comments on Theorem 2.3.5.

(i) If © is bounded, then one does not need the assumption (2.3.2). (See Re-
mark 2.3.3 for the necessary modifications to the proof.)

(ii) One may apply Theorem 2.3.5 (along with (i) above) to the examples of
Remark 2.3.4, but without the restriction p < (N +2)/(N — 2).
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Let us observe that the equation (2.3.1) may have one or several solutions,
depending on g and h. For example, if h = 0 and ¢(0) = 0, then © = 0 is a trivial
solution. It may happen that there are more solutions. In that case, we speak of
nontrivial solutions. We give below two examples that illustrate the two different
situations.

THEOREM 2.3.7. Let g, A and h be as in Theorem 2.3.1, and let u be the solution
of (2.3.1) given by Theorem 2.3.1. If the mapping u — g(u) + A is nonincreasing,
then u is the unique solution in H}(Q) of (2.3.1).

PRrROOF. We write J(u) = Jo(u) + Ji(u) + J2(u) with

1 A
Bow) = 5 [ 1vaR 43 [,

niw = [ (=6 -3u).

J2(u) = (h,u) -1 my-
We observe that, since A > —Ay, Jo(u) is strictly convex. (Indeed, if a(u,v) is a
bilinear functional such that a(u,w) > 0, then the mapping u +— a(u,u) is convex;
and if a(u,u) > 0 for all u # 0, then it is strictly convex.) Furthermore, .J; is convex
because the mapping u — —g(u) — Au is nondecreasing. Finally, .J5 is linear, thus
convex. Therefore, J is strictly convex. Assume now u and v are two solutions, so
that J'(u) = J'(v) = 0. It follows that (J'(u) — J'(v),u — v)g-1 gz = 0, and since
J is strictly convex, this implies u = v. O

and

REMARK 2.3.8. One shows similarly that, under the assumptions of Theo-
rem 2.3.5, and if the mapping u — ¢(u) + Au is nonincreasing, then the solution
of (2.3.1) is unique in H}(Q) N L™T1(Q). Note also that if A = —);, then the same
conclusion holds, provided the mapping u — g(u) + Au is decreasing. Indeed, in
this case, Jy is not strictly convex (but still convex), but .J; is strictly convex.

The above results apply for example to the equation —Au + \u + alu|P~tu =
p+1

hi—+ ho, with A > =X\, a>0,p>1, hy € H_l(Q) and hy € H_I(Q) ﬂLT(Q)
In the case A < —\q, the situation is quite different, as shows the following result.

THEOREM 2.3.9. Let Q be a bounded domain of RN, and assume X < —)\
where \y = A1 (—A) is defined by (2.1.5). Let a > 0 and p > 1. Then the equation

— Au+ M+ alulP "ty =0, (2.3.8)

has at least three distinct solutions 0, u and —u, where u € HY(Q)NLPTL(Q), u # 0
and u > 0.

PROOF. It is clear that 0 is a solution. On the other hand, there is a solution
that minimizes J(u) on Hg(2) N LPTH(Q) (see Remark 2.3.6), where

1 A a
J(U):§/Q|VU|2+§/QLL2+m/Q|U|p+1.

We first claim that we can find a solution that minimizes J and that is nonnegative.
Indeed, remember that the minimizing solution is constructed by considering a
minimizing sequence (up)n>0. Setting v, = |u,|, we have J(v,) = J(u,), so that
(n)n>0 is also a minimizing sequence, which produces a nonnegative solution. Since
—u is a solution whenever u is a solution, it remains to show that the infimum of
J is negative, so that this solution is not identically 0. Since A < —\;, there exists
¢ € H}(Q) such that [|¢]|z2 = 1 and |[|[Ve||2, € (A1, —A). By density, there exists
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¢ € C2°(Q) such that [|¢]|z2 =1 and [|[Ve||2, € (A1, —A). Set u = [[Vep||2,. Given
t > 0, we have

t? a
J(te) = = A t”“—/ Pt
(o) = F AN+ | 1ol
Since 1 + A < 0, we have J(t¢) < 0 for ¢ small enough, thus inf J(u) < 0. This
completes the proof. O

REMARK 2.3.10. Note that if @ > 0 and A > —\y, the only solution of (2.3.8)
is u = 0. Indeed, let u be a solution, and multiply the equation (2.3.8) by u. It

follows that
/ |Vul? +>\/ u? +a/ |u|PT =0,
Q Q Q

2.4. Constrained minimization

thus v = 0.

Consider the equation
—Au+ Au=alulP~tu in Q,
u=0 in 09,

with A > —)\; where Ay = A\ (—A) is defined by (2.1.5), a > 0 and 1 < p <
(N +2)/(N —2). A solution of (2.4.1) is a critical point of the functional

1 A a
B(u) = §/Q|Vu|2+5/gu2—p+1/g|u|p“, (2.4.2)

for u € H}(Q2). Tt is clear that u = 0 is a trivial solution. If we look for a nontriv-
ial solution, we cannot apply the global minimization technique of the preceding
section, because F is not bounded from below. (To see this, take u = t¢ with
P €CX(Q), ¢ #0,and let t — 0.)

In this section, we will solve the equation (2.4.1) by minimizing

1 2 )\ 2
2/Q|Vu|+2/9u,

{uem@no@s [ -1},

i.e. we will solve a minimization problem with constraint. For that purpose, we
need the notion of Lagrange multiplier.

(2.4.1)

on the set

THEOREM 2.4.1 (Lagrange multipliers). Let X be a Banach space, let F,J €
CL(X,R) and set
M ={veX; F(v)=0}.
Let S C M, S # 0, and suppose xq € S satisfies
J(ug) = 522 J(v).

If F'(ug) # 0 and if M N{x € X; ||z — uol|x <n} C S for somen >0, then there
exists a Lagrange multiplier A € R such that J' (ug) = NF' (ug).

Proor. Let f = J'(up) and g = F'(up). If f =0, then A = 0 is a Lagrange
multiplier. Therefore, we may assume f # 0. Note that by assumption, we also
have g # 0. We now proceed in two steps.

SteEP 1. ¢ 1(0) € f71(0). Set Xo = g~'(0). Since g # 0, there exists
w € X such that g(w) = 1. Consider now the mapping ¢ : Xg x R — R defined by
$(v,t) = F(uo + v + tw). We have ¢(0,0) = 0, 9;¢(0,0) = g(w) = 1, 8,4(0,0) =
gx, = 0. By the implicit function theorem, there exist € > 0 and a function
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t € CY(B.,R) such that t(0) = 0, ¢(0) = 0, and ¢(v,t(v)) = 0 for all v € B..
Here, B. = {v € Xo; ||v||x < e}. Therefore, F(ug+ v+ t(v)w) = 0 for all v € B.,
hence ug + v + t(v)w € M for all v € B.. By taking ¢ sufficiently small, we have
ug+ v+ t(v)w € S for all v € Be, thus in particular

J(ug + v+ t(v)w) > J(ug), (2.4.3)
for all v € B.. Let now v € g~ 1(0), i.e. (F'(ug),v)x+ x = 0. We need to show that
ve f710), ie. (J'(uo),v)x+x = 0. Let

o(s) = J(ug + sv + t(sv)w) — J(uop),
for |s| < e|lv]|x". We have (0) = 0, and it follows from (2.4.3) that ¢(s)
Therefore, ¢’(0) = 0. Since
90/(0) = (J/(UO)a v+ (t/(0)7 U)X*,XUJ)X*7X = (J/(UO)a ’U)X*,Xv

the result follows.

STEP 2. Conclusion. Since g # 0, there exists w € X such that g(w) = 1.
Set A = f(w). Given any u € X, we have

9(u = g(uw) = g(u) = g(u)g(w) = 0.
Therefore, u — g(u)w € g~1(0), so that by Step 1, u — g(u)w € f~1(0). It follows
that f(u—g(uw)w) =0, ie. f(u)=g(u)f(w)= Ag(u). This means that f = Ag, i.e.
JI(UO) = )\FI(’LLQ). O

Y
o

We now give an application of Theorem 2.4.1 to the resolution of the equa-
tion (2.4.1).

THEOREM 2.4.2. Let Q be a bounded domain of RYN. Suppose X > —\; where
M = M (—A) is defined by (2.1.5), a>0and1 <p< (N+2)/(N—-2) (1<p< o0
if N =1 or2). Then there exists a solution u € H}(Q), u > 0, u # 0 of the

equation (2.4.1).
el Al
p p+1

1 2 A 2
u)—2/Q|Vu| +2/Qu
It follows that F,J € C*(H}(Q2),R) (Corollary 2.2.3). Let
M =8 ={uc Hj(Q); F(u) = 0}.
We have F'(u) = |u|P~tu # 0 for all u € S. We construct v € S such that
J(u) = 522 J(v). (2.4.4)

PROOF. Set

and

Since J > 0, we may consider a minimizing sequence (u,, ), >0 C S, which is bounded
in H}(Q) (by (2.1.8)). Set now v, = |uy,|. It follows that (v,),>0 C S and is also a
minimizing sequence. Therefore (Theorem 5.5.5), there exist a subsequence, which
we still denote by (v, )n>0, and v € Hg(Q) such that v, — v in LPT1(Q) and
[IVv||zz < liminf ||Vu,| 2 as n — oo. It follows that F(v) = 0, i.e. v € S and
J(v) < Hnnl,io%f J(vy). Thus v satisfies (2.4.4). In addition, we have v > 0, and since

v e S, v # 0. By Theorem 2.4.1, there exists a Lagrange multiplier © € R such
that J'(v) = pF’(v), i.e

— Av+ v = plv|P . (2.4.5)
Taking the H~1 — H} duality product of (2.4.5) with v, we obtain

/ |’U|p+1
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Since v # 0, we have J(v) > 0, and it follows that p > 0. Finally, set u = (u/a)ﬁv.
It follows from (2.4.5) that u satisfies (2.4.1). This completes the proof. O

REMARK 2.4.3. Here are some comments on Theorem 2.4.2.

(i) If, instead of the equation (2.4.1), we consider the equation —Au + Au =
alulP~lu + h, with h # 0, then the existence problem is considerably more
difficult, and only partial results are known. See Struwe [43], Bahri and
Berestycki [6], Bahri and Lions [7], Bahri [5].

(i) If we replace the nonlinearity |u[?~u by a nonhomogeneous one g(u) with the
same behavior (for example, g(u) = |u[P~ u + |u|?7"1u), then the method we
used to prove existence does not apply, because of the scaling used at the very
end of the proof (which uses the homogeneity). In this case, what we obtain is
the existence of u € H(Q) and p > 0 such that —Au+ Au = pg(u). In order
to solve equations of the type (2.4.1) with nonhomogeneous nonlinearities, we
will apply the mountain pass theorem in the next section.

(iii) The assumption p < (N + 2)/(N — 2) may be essential or not, depending on
the domain . See Section 2.7.

(iv) The assumption A > —X\; is not essential for the existence of a nontrivial
solution u € H}(Q) of the equation (2.4.1). (See for example Kavian [28],
Example 8.7 of Chapter 3.) However, it is necessary for the existence of a
nontrivial solution u > 0. Indeed, suppose u > 0 is a solution of (2.4.1).
Multiplying the equation by ¢1, a positive eigenvector corresponding to the
first eigenvalue of —A in H}(Q) (see Section 3.2 below), we obtain

(M +>\)/ upy :a/ lu|P L ug;.
Q Q

Since ;7 > 0, the right-hand side is positive, so the left-hand side must be
positive, which implies A > —\;. Note that even when A < —\;, we can apply
the minimization technique of the proof of Theorem 2.4.2. It is clear that the
minimization sequence (v,,),>0 is bounded in H}(Q2) (note that it is a priori
bounded in L?(Q) since v,, € S. Therefore, we obtain a solution v > 0, v # 0
of the equation (2.4.5). However, multiplying the equation (2.4.5) by ¢1, we
see that 4 = 0 if A = —A; and p < 0 if A < —A;. Therefore, the method
applies, but it produces a solution of the equation (2.4.1) with a < 0.

Solutions of minimal energy E (defined by (2.4.2)) may be important for some
applications, because they tend to be “more stable”, in some appropriate sense.
However, we saw that the energy F is not bounded from below, so a solution cannot
minimize the energy on the whole space Hg(€2). There is still an appropriate notion
of solution of minimal energy, the ground state. A ground state is a nontrivial
solution of (2.4.1) which minimizes E among all nontrivial solutions of (2.4.1).

We will show below the existence of a ground state. We can use two arguments
for that purpose:

— We can minimize E(u) on the set

S:{uGHO( u;«éOand/|Vu|2+)\/u —a/|u|7”Jrl

in order construct in one step a solution of (2.4.1) which is a ground state. In
addition, we obtain the existence of a ground state u > 0.

— We can consider a minimizing sequence of nontrivial solutions of the equa-
tion (2.4.1) (which exists by Theorem 2.4.2) and show that some subsequence
converges to a ground state.

We show below the existence of a ground state by using the first method. We
will also prove a more general result in the following section (Theorem 2.5.8).
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THEOREM 2.4.4. Under the assumptions of Theorem 2.4.2, there exists a ground
state u > 0 of the equation (2.4.1).

u)z/ |Vu|2+)\/u2—a/ JulPT1,
) Q Q

M = {ue H}(); F(u) =0}, §={ueM;u+0},

and consider E defined by (2.4.2). Given any v € H}(Q), v # 0, we see that
F(tu) = 0 for some t > 0. Thus S # (). We proceed in four steps.

STEP 1. (F'(v),0)g-1, gy < 0 and (E'(v),0)g-1 g2 = 0 for all v € S.
Indeed,

PROOF. Let

set

(F'(v),0) g1 gz = (=200 + 220 —a(p + D)ol o,0) g1

:2/ |Vv|2+2)\/v27a(p+1)/ |v|erl
Q Q Q
—2F(0) —alp-1) [ o+,

Q

from which we deduce the first property. Since (E'(v),v)g-1, g1 = F(v), the second
property follows.

STEP 2. There exists § > 0 such that ||v]|z»+1 > § for all v € S. Indeed,
since F'(v) = 0 and A > —)\q, there exists a constant C' such that

[l < Cllvllis,
for all v € S. By Sobolev’s inequality, we deduce that
[vl1Z001 < Cllvllfbes,

from which the result follows.
STEP 3. There exists u € S, u > 0, such that

E(u) = ing E(v) :=m. (2.4.6)
ve
Indeed,

B) = 3P0 +a(3 - —) [P

1
:a—f— vfPtL,
(2 p+1 /QH

for all v € S, so that m > 0 by Step 2. Furthermore, it follows from (2.4.6)
and (2.4.7) that

(2.4.7)

1
R Pt 2438
m a<2 p+1 ves/ [l ( )

Let (upn)n>0 C S be a minimizing sequence for (2.4.6), hence for for (2.4.8). Re-
placing u, by |uy|, we see that we may assume wu, > 0. Since u, € S and (un)n>0
is bounded in LP*1(Q2) (hence in L?(2)) by (2.4.8), we see that (uy,)n>0 is bounded
in H}(Q). Therefore (Theorem 5.5.5), there exist a subsequence, which we still
denote by (un)n>0, and u € H}(Q), u > 0, such that u, — u in LPT1(Q) and
(IVul|rz < liminf | Vu,|| 22 as n — oo. It follows that

- — m / |U|p+1 =1m, (249)
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and F(u) < 0. We deduce in particular that there exists ¢ € (0,1] such that
F(tu) =0, i.e. tu € S. Therefore,

mSa(l_L)/ |tu|p+1:t”+1a(l—L)/ |u|p+1:t”+1m,
2 p+1/ Jq 2 p+1/ Jg

by (2.4.9). Since m > 0, this implies that ¢ = 1. Therefore, u € S and thus
E(u) =m by (2.4.9) and (2.4.7).

STEP 4. Conclusion. Let u be as in Step 3. By Step 1 we have F’(u) # 0;
and so, we may apply Theorem 2.4.1. It follows that there exists a Lagrange
multiplier A € R such that E'(u) = AF'(u). Since, by Step 1, (E£'(u), u)g—1 g3 =0
and (F'(v),v)g-1 g2 # 0, we must have A = 0; and so u is a solution of the
equation (2.4.1). It remains to show that E(v) > E(u) for all solutions v # 0
of (2.4.1). This is clear, since any solution v of (2.4.1) satisfies F(v) = 0, i.e.
v € S, and v minimizes F on S. O

We now establish the existence of nontrivial solutions of (2.4.1) in some domains
for supercritical nonlinearities, i.e. for p > (N +2)/(N —2).

THEOREM 2.4.5. Assume N > 2. Let 0 < Ry < R1 < oo and let Q2 be the
annulus {x € RY; Ry < |z| < Ri}. Suppose X > —\; where \; = A\ (—A) is
defined by (2.1.5), a > 0 and p > 1. It follows that there exists a radially symmetric
solution u € H}(Q), u> 0, u# 0 of the equation (2.4.1).

PROOF. Recall that if w € H'(R") is radially symmetric, then
N-—-1
()| < V2la|” 77 [|w]| g2 ]| V]| 2, (2.4.10)

for a.a. z € RY (see (5.6.13)). We denote by W the subspace of H{ () of radially
symmetric functions, so that W is a closed subspace of Hg (). Given u € W, let

() = u(z) if zeq,
N0 i e g0

It follows that u € H*(RY). Since u is also radially symmetric, we may apply
estimate (2.4.10) and we deduce that

N—-1
Ju(@)] < V202”77 |lul 2|V 2, (2.4.11)

for a.a. o € Q. This implies in particular that W < L°(Q), thus W — LPT1(Q).
We now argue as in Theorem 2.4.2. Set

F(w = [ Jur* -1,

Q
1 A

It follows that F,J € C*(W,R). (Apply Corollary 2.2.2 and the embedding W —
LPTL(Q).) Let

and

M=8={ueW; F(u) =0}.
We have F'(u) = |ulP~1u # 0 for all u € S. We construct v € S such that
J(v) = ul)IéfSJ(w) (2.4.12)

Since J > 0, we may consider a minimizing sequence (u,, ), >0 C S, which is bounded
in W (by (2.1.8)). Set now v, = |uy|. It follows that (v,)n,>0 C S and is also a
minimizing sequence. We now consider separately two cases.

CASE 1: R; < oo. There exist a subsequence, which we still denote by
(Vn)n>0, and v € W such that v, — v in L?(Q) and ||Vv||p2 < liminf |V, 72
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as n. — oo (Theorem 5.5.5). It follows that J(v) < liminf J(v,). Furthermore,
since W < L*°(Q) and v,, — v in L?(€2), we deduce from Holder’s inequality that
vp, — v in LPT1(Q). This implies that F(v) = 0; and so v € S satisfies (2.4.12)

CASE 2: R; = oo. In this case, it follows from Remark 2.1.5 that Ay = 0,
thus A > 0. There exist a subsequence, which we still denote by (vy)n>0, and
v € W such that v,, — v in L"(Q2) as n — oo for all 2 < r < 2N/(N — 2).
Furthermore, |[v||zz < liminf||v,|z2 and ||[Vo||rz < liminf [|[Vo,|/z2 as n — .
(The estimate (2.4.11) is essential for that compactness property, see Remark 5.6.5
and Lemma 5.5.3.) Since A > 0, it follows that J(v) < liminf .J(v, ). Furthermore,
since W — L*(Q) and v, — v in L?(Q2), we deduce from Holder’s inequality
that v, — v in LPT1(Q) as n — oo. This implies that F(v) = 0; and so v € S
satisfies (2.4.12)

We see that in both cases, v satisfies (2.4.12). In addition, we have v > 0 and,
since v € S, v # 0. By Theorem 2.4.1, there exists a Lagrange multiplier p € R
such that J'(v) = pF’(v), i.e

— Av+ v = plvP . (2.4.13)
Taking the H~1 — H} duality product of (2.4.13) with v, we obtain

= [ o

Since v # 0, we have J(v) > 0, and it follows that p > 0. Finally, set u = (u/a)ﬁv.
It follows from (2.4.13) that u satisfies (2.4.1). This completes the proof. O

REMARK 2.4.6. One can show that if N > 2, A > 0,a > 0and 1 < p <
(N +2)/(N — 2), then there exists a radially symmetric solution u € H!(RY),
u > 0, u # 0 of the equation (2.4.1). The proof is the same as the proof of
Theorem 2.4.5 (use Theorem 5.6.3 for passing to the limit). Note that the upper
bound on p is essential by Pohozaev’s identity (see Section 2.7 and in particular
Lemma 2.7.1).

REMARK 2.4.7. Note that one cannot obtain ground states for the equations
considered in Theorem 2.4.5 and Remark 2.4.6 by adaptating the argument that
we used in the proof of Theorem 2.4.4 to the radial case. This would only prove the
existence of a nontrivial solution that minimizes the energy among all nontrivial,
radial solutions. We will obtain ground states by other methods (see Section 2.6).

2.5. The mountain pass theorem

In the preceding section, we established the existence of a nontrivial solution
of the equation

{Aqu)\u =f(u) in €Q (2.5.1)

u=0 in 09,
in a bounded domain 2, with A > —\;, and for homogeneous nonlinearities of the
form f(u) = alulP"'u with a > 0 and p < (N + 2)/(N — 2). The homogeneity
of f was essential for the method (constrained minimization). In this section, we
will use the mountain pass theorem in order to establish existence of a nontrivial
solution for nonhomogeneous nonlinearities.
We begin by establishing the mountain pass theorem, more precisely one of its
many versions. We first introduce the Palais-Smale condition.

DEFINITION 2.5.1. Let X be a Banach space and J € C1(X,R). Given ¢ € R,
we say that J satisfies the Palais-Smale condition at the level ¢ (in brief, J satisfies
(PS).) if the following holds. If there exists a sequence (un)p>0 C X such that
J(un) — ¢ and J'(u,) — 0 (in X*) as n — oo, then ¢ is a critical value (i.e.
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there is u € X such that J(u) = ¢ and J'(u) = 0). We say that J satisfies the
Palais-Smale condition (in brief, J satisfies (PS)) if .J satisfies (PS), for all ¢ € R.

We will see later examples of functionals that satisfy the Palais-Smale condition.
We are now in a position to state the mountain pass theorem of Ambrosetti and
Rabinowitz (see [4]).
THEOREM 2.5.2 (The mountain pass theorem). Let X be a Banach space, and
let J € CY(X,R). Suppose that:
(i) J(0) =0;
(ii) there exist e,y > 0 such that J(u) > v for |lul]| = €;
(iii) there exists ug € X such that ||ugl| > € and J(u) < 7.

Set A= {pe C([0,1],X); p(0) =0, p(1) =uo} and let

= inf J(p(t)) > .
€= inf max (p(t)) =

If J satisfies (PS)., then ¢ is a critical value of J.
COROLLARY 2.5.3. Let X be a Banach space and J € C*(X,R). Suppose that:
(i) J(O) =0;
(ii) there exist €,y > 0 such that J(u) >~ for ||lul| = ¢;
(iii) there exists ug € X such that ||ugl| > e and J(u) < 7.
If J satisfies (PS), then there exist ¢ > v and u € X such that J(u) = ¢ and
J'(u) = 0.

Corollary 2.5.3 is an immediate consequence of Theorem 2.5.2. For the proof
of Theorem 2.5.2, we follow the argument of Brezis and Nirenberg [14], which is
especially simple and elegant. We will use the following two results.

LEMMA 2.5.4 (Ekeland’s principle [21]). Let (A,d) be a complete metric space
and let 1 € C(A,R) be bounded from below. If

— inf
c= inf ¥(p),
then for every e > 0, there exists p. € A such that

ng(pe) <c+eg,

and

¥(p) — ¥(pe) +ed(p,pe) 2 0,
for allp € A.

PrOOF. Fix € > 0. Let p; € A satisfy
CS w(pl) S C+€,

and set

Ey = {p € A; ¢(p) —¥(p1) +ed(p,p1) < 0}.
It is clear that p; € Eq, so that Fy # 0. Set

— ]'nf = l)] .
c1 = ¢(p) [C7w( )]
E].X p2 c 17] Such t}lat

P(p2) —c1 < %(Qﬁ(pl) —c1),

(observe that such a py exists. Indeed, if ¥(p1) = ¢1, we take po = p1, and if
P(p1) — 1 > 0, there exists a sequence (p1,¢)r>0 C E1 such that ¥(p1¢) — ¢1 as
¢ — o0, so we take pgs = p1 ¢ for some ¢ large enough) and set

Ey ={p€ A; ¥(p) — ¢(p2) +ed(p, p2) <0}
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It is clear that py € Es, so that Fy # 0. Set
= inf € le1, :
cz = inf Y(p) € [e1,9(p2)]
We claim that Fo C E;. Indeed, if p € E5, then

Y(p) — ¥(p1) +ed(p,p1) = [¥(p) — ¥(p2) + ed(p, p2)|+
[¥(p2) — ¥ (p1) + ed(p2, p1)] + €ld(p, p1) — d(p, p2) — d(p2,p1)] < 0.

Since E5 C FEi, we see that co > ¢;. By induction, we construct a sequence
(pn)n>1 C A, a nonincreasing sequence (E,)n>1 of nonempty, closed subsets of A,
and a nondecreasing sequence (¢, )n>1 of real numbers, ¢ < ¢; < --- < c+e. We
have

Yonr) ~ en < 3 ((pa) — cn),

for all n > 1. Since the sequence (¢p,)n>1 is nondecreasing, we deduce that

Ypus) — ensr < 5 (00n) — )

and so,
Y(Prt1) — 1 < 27" (P(p1) —c1).
Furthermore, if p € E, 11, then by definition
ed(p, pny1) < V(Pnt1) = (P) < YPnt1) — 1 <277 (P(p1) — ).

This means that the diameter of F,, converges to 0 as n — oco. Since A is complete,
it follows that N,>1 £}, is reduced to a point, which we denote by p.. Given now
p €A, p+#pe, we have p € E,, for n > ng; and so,

w(p) - ¢(pn) + Ed(p,pn) >0,
for n > ng. Letting n — oo, we obtain
¥(p) — ¥(pe) +ed(p, pe) > 0.
Since p # p. is arbitrary, the result follows. O

LEMMA 2.5.5. Let X be a Banach space and let f € C([0,1], X*). For every
e > 0, there exists v € C([0,1], X) such that

lo@]x <1,
and
(f(®), v®)x=x = [[f(B)llx- — &,
for all t € [0,1].

ProOF. Fix ¢ > 0. For every ¢ € [0, 1], there exists z; € X such that
[zellx <1, (f(8),z)xx > [If(B)][x+ —e.
By continuity, there exists §(¢) > 0 such that
(f(8), ) x> x > [[f(8)llx+ =&,
for all s € [0,1] such that |s —¢| < d(¢). In particular,

0,1 U (t—=46(t),t+6(t

0.1 U (=501 + 500,
and we deduce by compactness of [0,1] that there exist an integer £ > 1 and
(tj)1<j<e C [0,1] such that

1 I
0.1] 1§Lf§e 77
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where I; = [0,1] N ( —6(tj),tj +6(t;)). If I; = [0,1] for some 1 < j < £, then we
can take v(t) = x Otherw1se given any 1 < j <L, we set

pj( ) = dist (taKj)v
where K; =[0,1]\ I;, and

14
)= 00

for all t € [0, 1]. We observe that any ¢ € [0, 1] belongs to some I, so that p;(t) > 0.
In particular, p(¢) > 0 for all ¢ € [0, 1]. Finally, set

1L
t) = m;pj(t)xtj.

We claim that v satisfies the conclusions of the lemma. Indeed,

L
1
lo@lx < —)Z )l llx < 1.

In addition, note that if p;(¢) > 0, then ¢ € I;; and so,

¢
(F(8), v(t))x- x = ﬁ prt)(f(t),xt,.)m,x

1
>0 ij (I @Bllxe =) > [If B+ —e,

which completes the proof. ]

PRrROOF OF THEOREM 2.5.2. Let d(p, q) = [[p—qllc(o,1),x) for all p,q € A, and
set

Y(p) = Jnax. J(p(1)),

for p € A. We note that (A,d) is a complete metric space and that ¢ € C(A,R).
Therefore, we may apply Ekeland’s principle and we see that for every € > 0, there
exists p. € A such that

ng(pe) <c+e,

and
¥(p) — ¥(p:) +ed(p, pe) > 0, (2.5.2)
for all p € A. We claim that there exists t. € (0, 1), such that
c< J(pe(ta)) <c+e, (2.5.3)
and
17 (P (L)) | x+ < e. (2.5.4)

To see this, consider the set
Be = {t € [0,1]; J(p=(t)) = 9 (pe)}-
We need only show that there exists t. € B. such that
17 (p= (te)) |+ < 2e. (2.5.5)

Applying Lemma 2.5.5 with f(t) = J'(pc(t)), we obtain a function v. € C([0, 1], X)
such that

loe@®llx <1, (J'(pe(t), ve(t))x+.x = 17" (p(1)) | x+ — e, (2.5.6)
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for all ¢ € [0,1]. Since B. C (0,1) (recall that J(p:(0)), J(pe(1)) < ¢) there exists a
function a. € C([0,1],R) such that 0 < a. <1, @.(0) = a-(1) =0 and o =1 on
a neighborhood of B.. Given n > 1, we let
1
p(t) =pe(t) — Eae(t)vg(t),
in (2.5.2), and we obtain

w(pe - nilasvs) - 11)(175) + E 2 0 (257)

()

We set,

Bey = {t €[0,1]; J(p(t) = n~ ac(t)ve (1)) = $(p: — 0 acve)},
and we observe that B, # 0 by definition of ¢. Consider a sequence (tcn)n>1
with ¢z, € B.,. There exist a subsequence, which we still denote by (ten)n>1
and t. € [0,1] such that t.,, — ¢- as n — oco. Note that, since v is continuous,
P(pe — n"taeve) — P(pe) as n — oo, so that

J(pe(te)) = nlggo J(pe(ten) — n~ta. (ten)ve(ten))
= nh—>n;o w(pa - n_laeva) = w(pa)-

We deduce that t. € B.. Note that for n large enough, we have ac(t.,) = 1
(because a. =1 on a neighborhood of B.), so that

J(Pe(ten) =" ve(ten)) = I (pe(ten))
= J(Pe(ten) — 0 e (ten)ve(ten)) = J (pe(ten))
> J(pelten) — 17 ae(ten)ve(ten)) — ¥ (pe),
since t. € B.. Therefore, since t.,, € B; p,
J(Pe(ten) —n" ve(ten)) — I (Pe(ten))
> Y(p. —n o) — U(p) 2 =, (258)
by (2.5.7). On the other hand,

J(pa (ta,n) - n_lve(te,n)) - J(pe(te,n))
— / dij(ps(ts,n) — snilvg(tan)) ds
o ds
1 ! / —1 .
= _E/O (J (pe(ta,n) — Ssn Ue(ta,n));va(ta,n))X*,X ds;

and so,

J(ps(ts,n) - nilve(te,n)) - J(pe(te,n)) + %(Jl(pe(ts,n)); Us(ts,n))X*,X

1t -

= [ el = 507 b)) = Tt )l
Since ||ve]|x < 1 and since J is C1, it follows that the right-hand side of the above
identity is o(n~1). Therefore,

J(pa (ta,n) - n_lve(te,n)) - J(pe(te,n))
- *%(J/(ps(ts,n))a Ve (ts,n))X*,X + O(nil)' (259)
We deduce from (2.5.8) and (2.5.9) that

(Jl(pE(tE,n))vve(te,n))X*,X <e+ 0(1)
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Using now (2.5.6), we see that
HJI(pa(te,n))HX* S 2e + 0(1),

Letting n — oo, we obtain (2.5.5), which proves the claim (2.5.3)-(2.5.4). Finally,
we let ¢ = 1/n for n > 1, and we let u,, = p(t:)). It follows from (2.5.3)-(2.5.4)
that J(uy,) — c and J'(u,) — 0 as n — oco. The result now follows by applying the
condition (PS).. O

We now give some applications of the mountain pass theorem.

THEOREM 2.5.6. Assume Q is a bounded domain of RN, and let X > —\; where
A1 = A (=A) is defined by (2.1.5). Let f € C(R,R) satisfy f(0) =0, and suppose
there exist 1 <p < (N+2)/(N—-2) (1<p<ooif N=1or2), v <A+ and
0 > 2 such that

[flw)] <C+ |ulP)  forall ueR,
F(u) < g
0<0F(u) <uf(u) for |u|l large,

2 for |u|l small,

u

where F(u) = / f(s)ds. It follows that there exists a solution u € H}(Q), u # 0,

0
of the equation (2.5.1).
1
- —/ |w|2+5/u2—/F(u). (25.10)
2 Ja 2 Jo Q

We will show, by applying the mountain pass theorem, that there exists a critical
point u € H}(Q) of J such that J(u) > 0 (and so, u # 0). We proceed in two steps.

STEP 1. J satisfies (PS). Suppose (up)n>0 C H{ () satisfies J(u,) — c € R
and J'(up) — 0 in H™1(Q) as n — oo. Since J'(u,) = —Auy + Auy — f(uy), it
follows that

PROOF. Set

(' (), tn) -1 g2 = / Vun|? + A/ w2 — / i f(11):
Q Q Q

and so,

27 (1) = (' )i = [ (10 Fa) = 2F ).
Note that uf(u) > 0F (u) — C for all u € R and some constant C. Therefore,

2J(un) = (')t g = (6-2) [ Flun) = €.
We deduce that

(6 — 2)/QF(un) < 2J(un) + | (n) |1 [lunll 51 + C1€2. (2.5.11)
It follows that there exists a constant C' such that
[ Fun) <€+ Clula

Therefore, by (2.1.8),
I(un) > allunlzpn = Cllun| m — C,

with a given by (2.1.7); and so (uy)n>0 is bounded in Hg(2). We deduce (The-
orem 5.5.5) that there exist a subsequence, which we still denote by (us,)n>0 and
u € HY(Q) such that u,, — u in LPT1(Q) as n — oo and

/Vun Vo — Vu Vo,
Q

n—oo
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for all p € HE(2). Furthermore, we may also assume that there exists h € LPT1(Q)
such that |u,| < h a.e. in . We deduce easily by dominated convergence and
the growth assumption on f that f(u,) — f(u) in L%(Q), hence in H~1(Q), as
n — oo. It follows that

flun)e — [ flu)gp,

for all ¢ € H}(Q). Therefore,
(=Aup + Mup — f(un), @)H—l,Hg — (=Au+ Au— f(u), @)H—l,H(}-
n— o0

Since —Auy, + Ay — f(un) = J'(un) — 0, it follows that J'(u) = 0. It now
remains to show that J(u) = ¢. It follows from what precedes that —Auw, + Au,, —
—Au+ M in H~1(Q). By Theorem 2.1.4, this implies that u,, — u in H}(Q); and
so, J(u) = lim J(u,) = ¢ as n — oo.

STEP 2. Conclusion. We have J(0) = 0. In addition, there exists a constant
C' such that F(u) < %uQ + ClufP*! for all u € R; and so,

12
[P <g [ ool
Q Q

1 A—
Tz 5 [ v+ 25 [ el
2 Jo 2 Jg
Since A — v > —\q, we deduce that there exists § > 0 such that

J(u) > dlull3p — Cllullbf

Therefore,

Therefore, setting ¢ = (5/20)1)%1, we have J(u) > de2/2 > 0 for ||u| g1 = . We
claim that there exists u € Hg(£2) such that ||ul/z: > ¢ and J(u) < 0. Indeed, for
s large, we have
f(s)
F(s)
and so, F(s) > cs? for s large. Thus F(u) > ¢s? — C for all s > 0. Consider now
P € C°(Q) such that ¢» > 0 and ¢ # 0, and ¢ > 0. We have

£ 2 2 0 0
sy < & (/Qw v ) ol - [ . (2.5.12)

Therefore, J(ty) < 0 for ¢ large enough, which proves the claim. Since J satisfies
(PS) by Step 1, it follows from what precedes that we may apply the mountain pass
theorem, from which the result follows. O

b

>

| >

REMARK 2.5.7. Here are some comments on Theorem 2.5.6.

(i) We see that Theorem 2.5.6 applies to more general nonlinearities than The-
orem 2.4.2; because it does not require homogeneity. On the other hand, we
do not know if the nontrivial solution that we construct is nonnegative.

(ii) Note that the assumption A > —)\; is not essential in Theorem 2.5.6. However,
the proof in the general case requires a slightly stronger assumption on f
(namely, we need F' > 0) and a more general version of the mountain pass
theorem (see for example Kavian [28], Example 8.7 of Chapter 3.).

(iii) Note that in Step 1 of the proof, we proved a slightly stronger property than
(PS). We proved that if (u,),>0 C Ha(Q) satisfies J'(u,,) — 0 and J(u,) —
¢ € R asn — oo, then there exist a subsequence (uy, )k>0 and u € Hg () such
that u,, — u in H}(Q) as k — oo (and so, J(u) = ¢ and J'(u) = 0). This
property is sometimes used as the definition of the Palais-Smale condition.
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We saw that the energy J is not bounded from below (see (2.5.12)), so a solution
cannot minimize the energy on the whole space H}(Q2). However, there is still the
notion of ground state, as in the preceding section. A ground state is a nontrivial
solution of (2.5.1) which minimizes J among all nontrivial solutions of (2.5.1). We
now show the existence of a ground state, under slightly stronger assumptions on
f than in Theorem 2.5.6.

THEOREM 2.5.8. Assume Q is a bounded domain of RN, and let X > —\; where
A1 = A (=A) is defined by (2.1.5). Let f € C(R,R) satisfy f(0) =0, and suppose
there exist 1 <p < (N+2)/(N—=2) (1<p<ooif N=1or2), v <A+ XA and
0 > 2 such that
lf(w)] < C(+ |u|P) forall ueTR,

uf(u) <vu? + ClulP™  for all ue€R,
0<OF(u) <uf(u) for |ul Ilarge,

u

where F(u) = / f(s)ds. It follows that there exists a ground state of the equa-
0
tion (2.5.1).

PROOF. Since f satisfies the assumptions of Theorem 2.5.6, there exists a non-
trivial solution of (2.5.1). Let & # () be the set of nontrivial solutions of (2.5.1),
and set

m = 11}22 J(v).

If v € &, then it follows from (2.5.11) that
9/ ) < 2J(v) + CQ|.

Since F' is bounded from below, we deduce that J(v) is bounded from below; and
so, m > —oo. Let now (uy)n>0 be a minimizing sequence. Since J'(u,) = 0 and
J(un) = m € R, it follows from Remark 2.5.7 (iii) that there exist a subsequence
(tun, k>0 and u € H}(Q) such that u,, — u in H}(Q) as k — oco. In particular,
J(u) =m and J'(u) = 0. Therefore, it only remains to show that u # 0. Indeed,
we have (J'(un), un)g-1, g1 =0, ie.

/|Vun|2+)\/ /unfun <y/u +C’/|u [Pt

< V/ uZ 4 Oluy |25
Q

/IVun|2+(Afv>/ < Clluallbf
Q Q

Since A — v > — Ay, we deduce that

lunlfp < Cllunlfi;

and so,

and since u, # 0, we conclude that ||u,|/ g > C~ 771, Tt follows that [lwl| g2 >
C_P%l,so that u # 0. O

2.6. Specific methods in RV

In this section, we consider the case = RY, and we study the existence of
nontrivial solutions, and in particular of ground states, of the equation (2.5.1).

Under appropriate assumptions on f, we already obtained an existence result
in Section 1.3. However, the method we applied fails if we consider a nonlinearity f
that also depends on z in a non-radial way. Also, it does not show the existence of
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a ground state. We also obtained an existence result in the homogeneous case by a
global minimization technique (see Remark 2.4.6), but we observed that the method
does not apply to show the existence of a ground state (see Remark 2.4.7). Note also
that we cannot apply the mountain pass theorem, since the associated functional
does not satisfy the Palais-Smale condition, due to the lack of compactness of the
embedding H'(RY) — L%(RY).

We will show in this section, the existence of a ground state, by solving a
relevant constrained minimization problem, as in Berestycki and Lions [8]. The
resolution of that problem will be an opportunity for introducing two different
tools which allow to circumvent the difficulties raised by the lack of compactness.
Both tools apply to the situation we consider, but it may happen that for a given
problem one tool applies but the other does not.

Throughout this section, we assume that

feC'R), f(0)=f(0)=0, (2.6.1)
and that there exists 1 < p < (N +2)/(N — 2) such that
|f(u)] < C+ [ul”), (2.6.2)

for all u € R. We set
F(u) :/ f(s)ds, (2.6.3)
0

and for some of the results we will assume that there exists ug € R such that

A
F(ug) — §u3 > 0, (2.6.4)
where A > 0 is a given number. Finally, we set
A
V(u) = F(u) — —/ u?, (2.6.5)
RN 2 RN

for u € HY(RY). If f satisfies (2.6.1)-(2.6.2), then it follows from Corollary 2.2.2
that V € C*(HY(RY),R) and that V' (u) = f(u) — \u.

We recall that a ground state of (2.5.1) is a solution u # 0, u € H*(RY)
of (2.5.1), such that J(u) < J(v) for all solutions v # 0, v € HY(RY) of (2.5.1).
Here, J is defined by (2.5.10). Our main result is the following.

THEOREM 2.6.1. Let N >3, A > 0 and assume (2.6.1), (2.6.2) and (2.6.4). It
follows that there exists a ground state u of (2.5.1).

The proof of Theorem 2.6.1 consists in two steps. First, one reduces the ex-
istence of a ground state to the resolution of a constrained minimization problem
(Proposition 2.6.2 below). Next, one solves the minimization problem (Proposi-
tion 2.6.4 below). As a matter of fact, we give two different proofs of Proposi-
tion 2.6.4, one based on the concentration-compactness principle of P.-L. Lions, the
other (under slightly more restrictive assumptions on f) based on symmetrization.
Note that we assume N > 3 for simplicity. The case N = 1 is solved completely
in Section 1.1, and the case N = 2 is more delicate (see for example Kavian [28],
Théoreme 5.1 p. 276).

We first reduce the existence of a ground state of (2.5.1) to the resolution of a
constrained minimization problem.

PROPOSITION 2.6.2. Suppose N > 3. Assume (2.6.1)-(2.6.2), and let X\ € R.
If there exists a solution u € H'(RN) of the minimization problem

V) =1,
f]RN |Vﬂ|2 = inf{fRN |V’U|2; = HI(RN), V(v) = 1} —m, (2.6.6)
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then there exists a ground state uw of (2.5.1). More precisely, if u is a solution
of (2.6.6), then u defined by u(x) = u(yzx) with v = /2N/(N —2)m is a ground
state of (2.5.1).

REMARK 2.6.3. Note that if @ satisfies (2.6.6), then in particular V(z) = 1, so
that @ # 0. It follows that |Vu||z2 > 0, so that v > 0.

PROOF OF PROPOSITION 2.6.2. Let @ be a solution of (2.6.6). It follows from
Theorem 2.4.1 that there exists a Lagrange multiplier A € R such that

— AT = A(f() — M) (2.6.7)

Indeed, we need only verify that V'(u) # 0 in order to apply Theorem 2.4.1. Note
that u € L>®(RY) by standard regularity results (see e.g. Corollary 4.4.3). Set
H(x) = F(x) — A2?/2, so that H'(z) = f(z) — Az, V(u) = [pn H(u) and V'(u) =
H'(u). Since u is bounded, we may modify the values of H(x) for = large without
modifying V' (u) nor V'(u). In particular, we may assume that H’ is bounded, so
that H(u) € H*(RY). Since V (u) # 0, we must have H(u) # 0, so that VH (u) # 0
(see Proposition 5.1.11). Since VH (u) = H'(u)Vu, we see that H'(u) # 0, which
proves the claim, hence (2.6.7) is established.

Since u € L*®(RY), we deduce from Pohozaev’s identity (see Lemma 2.7.1)

that
N -2 ~ ~
—_— |Vi|? = NAV (u) = NA;
2 Jry
and so,
_N-2
L
Therefore, it follows from (2.6.7) that u defined by u(x) = u(yz) satisfies (2.5.1).
It remains to show that u is a ground state of (2.5.1). We observe that

N-—2

N—2 2 N
2 2—N ~12 2—N
\v4 — \V4 — — 2, ‘268

Suppose now that v # 0 is another solution of (2.5.1). It follows from Pohozaev’s
identity that

N -2

T/RN V|2 = NV (v); (2.6.9)

and so
N -2 9
V(v) = N o Vol

Therefore, if we set v(x) = v(ux) with

we see that V (v) = pVV(v) = 1, so that

/ V7|2 > m.
RN
It follows that

/ |VU|2 _ ,LL2_N/ |V5|2 > 'u2—Nm
RN RN

and so,

(o [ 7o) T

fou o= (5) T

wlz
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Comparing with (2.6.8), we obtain

/|VU|22/ |Vul?. (2.6.10)
RN RN

Finally, we observe that if w is any solution of (2.5.1), then it follows from Poho-
zaev’s identity (2.6.9) that

1 1
J(w) = = P V(w) = — %,
W =3 [ Vel =V =5 [ Vul
In particular, (2.6.10) implies J(v) > J(u), which completes the proof. O

We now study the existence for the problem (2.6.6).

PROPOSITION 2.6.4. Suppose N > 3 and A > 0, and assume (2.6.1)-(2.6.2)
and (2.6.4). It follows that there exists a solution uw € H*(RYN) of the minimization
problem (2.6.6).

PROOF. We proceed in five steps.
STeP 1. {ve H'RY); V(v) =1} #0. Consider the function v defined by

o(z) = {uo it |z <1,

0 if |z >1,
where ug is as in (2.6.4). It follows from (2.6.4) that

/RN (F(U) - %v2> > 0.

By convolution of v with a smoothing sequence, we obtain a sequence (Un)nzo C
C>(RY) such that v, — v in LPTHRY) N L2(RY) as n — oo. It follows that

/RN (F(vn) - %vi) fvd /RN (F(v) - %’uQ).

Therefore, for n large enough, we have v, € H*(R") and V(v,) > 0. Fixing such
a n and setting w(x) = v, (ux) with g = V(v,)¥, we see that w € H*(RV) and
V(w) =1.

STEP 2. If (v,)n>0 is a minimizing sequence for the problem (2.6.6), then
(Un)n>0 is bounded in H'(RY) and is bounded from below in L*(RY) and in
LPTYRYN).  We first observe that by assumption, ||Vov,||z2 is bounded, and we
estimate ||v,||z2. Since V' (v,) = 1, we have

2 2
/ v: = —( F(vy,) — 1) <= F(vp,). (2.6.11)
On the other hand, it follows from (2.6.1)-(2.6.2) that for every € > 0, there exists
C. such that
F(s) <es? + Cc|s[PT. (2.6.12)

Therefore, we deduce from (2.6.11) that

/ v2 < C/ v, [P (2.6.13)
RN RN

Since p+ 1 < 2N/(N — 2), we deduce from Gagliardo-Nirenberg’s inequality that

(N+2)—p(N—=2)

P+l ~ eil\v4 N(pzil) 2
- [Un | <C| Un||L2 ””n”Lz )

so that (2.6.13) yields

(N=2)(p—1) N(p-1)
lvnllpz * < ClVunl®
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which establishes the upper estimate of ||v,||z2, hence of ||[v,|g:. We now prove
the lower estimate of ||v,| 2. We have

A
LYy
2 RN RN RN

by (2.6.12). Applying again Gagliardo-Nirenberg’s inequality, we obtain

—1) N+2)—p(N—2 (N+2)—p(N=2)

N(p ( )
L< Vol ol * <Clloall. =,

which proves the desired estimate. Finally, the lower estimate of ||v,||z»+1 follows
from (2.6.13).

STEP 3. m > 0. It is clear that m > 0. Suppose now by contradiction m = 0
and consider a minimizing sequence (vy,)n>0. Since (v,)n>0 is bounded in L2(RY)
and m = 0, we deduce from Gagliardo-Nirenberg’s inequality that |||/ ze+1 — 0
as n — 0o, which contradicts the lower estimate of Step 2.

STEP 4. There exist a minimizing sequence (uy)n>0 for the problem (2.6.6)
and u € H'(RY) such that u,, — u in L?>(RY) asn — co.  Consider a minimizing
sequence (v,)n>0. It follows from Step 2 that (vy),>o is bounded in H!(RY)
and bounded from below in L?(RY). Therefore, we may assume without loss of
generality that ||v,| 2 — a > 0 as n — oco. We now apply the concentration-
compactness principle of P.-L. Lions, see Theorem 5.6.1. It follows that there exists
a subsequence, which we still denote by (v, )n>0 which satisfies one of the following
properties.

(i) Compactness up to a translation: There exist v € H'(RY) and a sequence
(Yn)n>0 C RY such that v, (- —yn) — uwin L"(RY) as k — oo, for 2 < r <
2N/(N —2).

(i) Vanishing: vy, |- — 0 as k — oo for 2 < r < 2N/(N — 2).

(iii) Dichotomy: There exist 0 < p < a and two bounded sequences (wy,)p>0 and
(2n)n>0 of HY(RY) with compact support such that, as n — oo,

lwallZe = 1 Nlznllze = a—p, (2.6.14)

dist (supp wy,, supp z,) — 00, (2.6.15)

||vn, — wy, — zp||Lr — 0 for 2 <r < 2N/(N — 2), (2.6.16)
limsup || Vw, |22 + | V2|7 < m. (2.6.17)

We see that if (i) holds, then setting u,(-) = vn(- — yn), (Un)n>0 is also a
minimizing sequence which is relatively compact in L2(RY). Therefore, we need
only rule out (ii) and (iii). Since (v,)n>0 is bounded from below in LPTL(RYN) by
Step 2, it follows that (ii) cannot occur. We finally rule out (iii). It is convenient
to introduce, for A > 0,

my = mf{/ IVol% o € H'(RY), V(p) = )\}. (2.6.18)
RN
It follows easily from the scaling identity V(¢(u)) = p= NV (p(+)) that
N—-2
myx=A N m. (2.6.19)

Since m > 0 (by Step 3), we deduce in particular that
m < My + My, (2.6.20)

for 0 < v < 1. Assume now by contradiction that (iii) holds. Since w, and z,
have disjoint support, we see that V(w, + z,) = V(wy) + V(z,). Also, it follows
from (2.6.16) that V(vy,) — V(wn + 2,) — 0; and so, V(v,) — V(wy) — V(z,) — 0.
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Since (wp)n>0 and (2, )n>0 are bounded in H*(RY) and V (v,) = 1, we may assume
without loss of generality that there exists v € R such that

V(wn)njol —v and V(zn)n:zofy. (2.6.21)
We consider separately the different possible values of v. If v < 0, then in particular,
V(wn) > 1 for n large. It follows in particular from (2.6.17) that ||[Vw,||?, <
m. Since on the other hand |[Vw,||3. > my(,,) > m by (2.6.19), we obtain a
contradiction. If v > 1, then we also get to a contradiction by considering the
sequence (zp)n>0. If v = 0, then the argument of Step 2 shows that (wy,)n>0
is bounded from below in LPTY(RY). By Gagliardo-Nirenberg’s inequality, this
implies that ||Vwy||r2 is bounded from below. We now deduce from (2.6.17) that
limsup ||Vz,||? < m. Since V(z,) — 1, we may assume by scaling that V(z,) = 1,
and we get to a contradiction with the definition of m. If v = 1, then we also get to a
contradiction by inverting the roles of the sequences (wy,),>0 and (25, )n>0. Finally,
if v € (0,1), then we easily deduce from (2.6.17) and (2.6.21) that m., +mi_, < m,
which contradicts (2.6.20).

STEP 5. Conclusion. We apply Step 4. Since the minimizing sequence
(tn)n>0 is bounded in H(R™) by Step 2, and since u,, — u in L2(RY), we deduce
from Gagliardo-Nirenberg’s inequality that u, — u in LP*1(RY) as n — oco. In
particular, 1 = V(u,) — V(u). In addition, it follows from (5.5.8) that ||Vul2, <
liminf | Vu,||2, = m as n — co. Therefore, u satisfies (2.6.6). O

We now give an alternative proof of Proposition 2.6.4, which is applicable when
f is odd. That alternative proof is based on the properties of the symmetric-
decreasing rearrangement. (See for example Lieb and Loss [31]; Hardy, Littlewood
and Pdlya [24]. For a different approach, see Brock and Solynin [16].) Given a
measurable set E of R, we denote by E* the ball of RY centered at 0 and such
that

[E*| = |E].
Accordingly, we set
1% = 1g-.

Given now a measurable function u : RY — R such that |[{|u| > t}| < oo for all
t > 0, we set

F () = /0 1 (@) d, (2.6.22)

for all z € RV, It is not difficult to show that «* is nonnegative, radially symmetric
and nonincreasing. Moreover, u* has the same distribution function as u, i.e.

H{u® = A} = [{lul = A},

for all A > 0. It follows from the above identity that if ¢ € C(R) is continuous,
nondecreasing, and ¢(0) = 0, then

p(u’) = [ o(lul).
RN RN
(Integrate the function O(A,z) = 1{(u(z))>r} on (0,00) x RY and apply Fubini.)
The assumption that ¢ is nondecreasing can be removed by writing ¢ = ¢1 — ¢o,
where ¢; and ¢9 are nondecreasing. In particular, if H € C'(R) is even, H(0) = 0,
and if H(u) € L*(RY), it follows that H(u*) € L'(R") and that

H(u") = H(u). (2.6.23)
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One can show that if Vu € LP(RY) for some 1 < p < oo, then Vu* € LP(RY) and

/ V' < / VP (2.6.24)
RN RN

This result, however, is more delicate. See Lieb [30] for a relatively simple proof in
the case p = 2. See Brock and Solynin [16] for a really simple proof in the general
case, via polarization.

ALTERNATIVE PROOF OF PROPOSITION 2.6.4 WHEN f IS ODD. We only give
an alternative proof of Steps 4 and 5. Note that, since f is odd, F' is even. Consider
a minimizing sequence (v,)n>0 of the problem (2.6.6), and let u,, = v}. It follows
from (2.6.23) that V(uy) = 1, and it follows from (2.6.24) that (uy)n>0 is also a min-
imizing sequence. Since u,, is spherically symmetric, it follows from Theorem 5.6.3
that there exist a subsequence, which we still denote by (uy,),>0, and v € H I(RN )
such that u,, — win L"(R™) asn — oo, for every 2 < r < 2N/(N —2). Note that for
every € > 0, there exists C. such that |F(z)—F(y)| < e|lz—y|+Ce(|z|P +|y|?) |z —y].
Therefore, we see that

/]RN F(u,) — F(u).

n—oo RN

/ u? < hminf/ u?,
RN n—oo RN
|Vu|? < lim inf |Vu,|?,
RN n—o0 RN

by (5.5.6) and (5.5.8), we see that V(u) > 1 and [[Vul|2, < m. It now remains
to show that V(u) = 1. Suppose by contradiction that V(u) > 1, and set v(z) =

w(pz) with g = (V(u))¥ > 1. It follows that V(v) = 1 and that [Vol2, =
p~ N2 Vul2, < pm W =2m < m, which contradicts the definition of m. This
completes the proof. O

Since also

and

2.7. Study of a model case

In this section, we apply the results obtained in Chapters 1 and 2 to a model
case, and we discuss the optimality. For the study of optimality, the following
results, known as Pohozaev’s identity, will be useful. The first one concerns the
case Q = RN,

LEMMA 2.7.1 (Pohozaev’s identity). Let g € C(R) and set G(u) = [, g(
for allu € R. Ifu € LS (RY) satisfies
— Au = g(u), (2.7.1)

in D'(RN), then
N -2
/ {—|Vu|2 — NG(U)} =0, (2.7.2)
n U2
provided G(u) € LY(RY) and Vu € L*(RYN).

PrOOF. We use the argument of Berestycki and Lions [8], proof of Propo-
sition 1, p. 320. It follows from local regularity (see Theorem 4.4.5) that u €
WIO’C’)(RN) NCOLY(RN) for all 1 < p < 0o and all 0 < a < 1. A long but straight-
forward calculation shows that, given any o € RV,

= [~2u— gw)][(e — x0) - Vu] = ~{*2[Vul ~ NG }+

V- {(%|Vu|2 — G(u)) (x —x9) — ((x — z0) - Vu)Vu}, (2.7.3)
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a.e. in RY. Choosing 79 = 0 and integrating (2.7.3) on Bg (the ball of RV of
center 0 and radius R), we obtain

JREE
/ |Vu|2 ()):cf(:c-Vu)Vu}-ﬁ. (2.7.4)

Since Vu € L?(RY) and G(u) € LY(RY), we see that
N -2
= AWVl —
[ AT we - ve}

/RN{MW - NG} (275)

/OO/ <|Vu|2+|G<u>|>dodR:/ (IVul? + |G(w)]) < oo,
0 OBRr RN

so that there exists a sequence R,, — co such that

Moreover,

Rn/ (1Vul? + |G@)) — 0. (2.7.6)
OBR,,

We finally let R = R,, in (2.7.4) and let n — oo. It follows from (2.7.6) that the

right-hand converges to 0 as n — co. Since the limit of the left-hand side is given

by (2.7.5), we obtain (2.7.2) in the limit. O
For the case of a general domain, we have the following result.

LEMMA 2.7.2 (Pohozaev’s identity). Let g and G be as above. Let Q be an
open domain of RN with boundary of class C*. If u € H*(Q) N HE(Q) is such that
g(u) € HY(RY) and G(u) € LY(RYN) and satisfies (2.7.1) in D'(Q2), then for any
o € RN,

/Q{¥|Vu|27NG(u)}+ %/69|Vu|2(mfxo)~ﬁ:0, (2.7.7)

where © denotes the outward unit normal.

PROOF. We give a formal argument, and we refer to Kavian [28], p. 253 for its
justification. Integrating (2.7.2) on 2, and using the property G(u) = 0 on 052, we
obtain

N -2
0= [ {F5219uP - NGl
(=517l - NG |
1
+ / {—|Vu|2(:c —x9) — ((x — o) - VU)VU} -1
o0\ 2
Since v = 0 on 052, we see that Vu || 7, so that Vu = (Vu - 77)7i. Therefore,
((x — x0) - Vu)Vu = (Vu - 1) ((x — 20) - 7)) = |Vul*((x — x0) - 77)7,
and we obtain (2.7.7). O
We now consider the equation
—Au=—du+ plulP~tu in Q, (2.7.8)
u=0 on 0,

where p > 1 and A\, u € R.
We will consider three examples of domains €.
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Case 1: Q=RY. In this case, (2.7.2) has the form

N -2 N Nu
—= Vul? = - == 2 —/ P 2.7.9
2 j@Nl Ul 2 /LNU +_p%71 RN|U| ( )

provided v € H*(RY) N LPTY(RY). In addition, multiplying the equation by u, we

obtain
/ |Vu|? = f/\/ u2+u/ [P (2.7.10)
RN RN RN

under the same assumptions on wu.

— Suppose first p < 0.
— If A > 0, then it follows immediately from (2.7.10) that the unique solution
of (2.7.8) in HY(RM) N LPTHRYN) is u = 0.
— If A < 0, then the unique solution of (2.7.8) in the space H!(RV)NLPFL(RY) is
u = 0. This follows from the delicate result of Kato [27] (see also Agmon [2]).
See also Remark 1.3.9 (vii) for the radial case and Remark 1.1.5 (ii) for the
case N = 1.
— Suppose now p > 0.
— If A =0, then it follows from (2.7.9)-(2.7.10) that

N-2 N
e Vaul? = 0.
( 2 p+1)/]RN| u

Therefore, if N = 1,2, or if N > 3 and p # (N + 2)/(N — 2), then the
unique solution of (2.7.8) in H*(RN) N LPHL(RY) is w = 0. If N > 5 and
p = (N +2)/(N — 2), then there is a (radially symmetric, positive) solution
u#0in HY(RY) N LPHLHRY) (see Remark 1.3.9 (iv)).

— If A <0, then the unique solution of (2.7.8) in the space H'(RY) N LPH1(RY)
is u = 0. (See above.)

— Suppose A > 0. If N =1,20rif N >3 and p < (N +2)/(N — 2), then there
is a solution u € H'(RY), u # 0 of (2.7.8). Moreover, there is a positive,
spherically symmetric solution. (See for example Theorem 1.3.1 for the case
N > 2 and Remark 1.1.5 (ii) for the case N =1.) If N > 3 and p > (N +
2)/(N —2), then it follows from (2.7.9)-(2.7.10) that

N —2 N N N
- = - v 2 A(_______)J/ 2::&
( 2 p+1)/RN| WEMT o) Lt

so that the unique solution of (2.7.8) in H*(RY) N LPTHRY) is u = 0.
Cask 2: Q = {z € RY; |z| < 1}. In this case, (2.7.7) has the form (taking

xO::O)
u/ |Vul? = 7&/ u?
2 Ja 2 Ja
Ny / p1_ 1 / 2

+ Pl | 3 oo [Vul?, (2.7.11)
provided u € H?(Q) N LPTY(Q). In addition, multiplying the equation by u, we
obtain (2.7.10) under the same assumptions on u. Let Ay = A\(—A) be defined
by (2.1.5).
— Suppose first p < 0.

— If A > — )y, then the unique solution of (2.7.8) in H'(Q) N LPTY(Q) is u = 0.
(See Remark 2.3.10.)

— If A < —Aq, then there is a solution u # 0, w € H'(Q2) N LPT1(Q) of (2.7.8).
Moreover, there is a positive, radially symmetric solution. (See Theorem 2.3.9
for the existence of a positive solution and Theorem 4.5.1 for the symmetry.)

— Suppose now p > 0.
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— Suppose N <2or N >3 andp < (N+2)/(N—2). If A\ > —\y, then there is a
solution u # 0, u € HY(Q) N LPT1(Q) of (2.7.8). Moreover, there is a positive,
radially symmetric solution. (See Theorem 2.4.2 for the existence of a positive
solution and Theorem 4.5.1 for the symmetry.) If A < —\;, then there is a
solution u # 0, w € H*(Q) N LPT(Q) of (2.7.8). (See Remark 2.4.3 (iii).)
These solutions are smooth, i.e. u € Cp(2), see Remark 4.4.4.

— Suppose N > 3 and p = (N +2)/(N —2). If A > 0, then the unique solution
of (2.7.8) in H%(Q) is u = 0. Indeed, it follows from (2.7.10)-(2.7.11) that

NA(pf]-)/,u?:il/ |VU|2
2p+1) Jo 2 Jaa

The conclusion follows if A > 0. The case A = 0 is more delicate: one observes
that Vu = 0 a.e. on 9, and this implies v = 0 (see Pohozaev [40]). In
fact, one can show that a solution in H'(Q) belongs to H?(Q2), so that the
unique solution in Hl(Q) isu=0. If N>4and —\; < A <0, there is a
positive solution. This is a difficult result of Brezis and Nirenberg [15]. If
N =3 and —\; < A < —A1/4, then there is a positive solution (see [15]). If
N =3 and A < —\y, there is a solution u # 0 (see Comte [20]). If N = 4,
A< —=A1and A # — )\ for all k£ > 1, then there is a solution u # 0 (see Cerami,
Solimini and Struwe [19]). If N > 5 and A < —\y, then there is a solution
u # 0 (see [19]). The case N = 4 and A = —\; seems to be open. The case
N =3 and X € [-)\1/4,0) is a very challenging open problem, which probably
requires some new ideas. Note that in this last case, it is known that there
is no nontrivial radial solution, and in particular, there is no positive solution
(see Brezis and Nirenberg [15]).
— Suppose N >3 and p > (N +2)/(N —2). If

2(p+1))
N(p-1)/’

then the unique solution of (2.7.8) in H?(Q) N LP1(Q) is u = 0. Indeed, it
follows from (2.7.10)-(2.7.11) that

N -2 —1 1
(—f— /I 2+ )/ung_/ Vul?;
p+1 p+1) Q 2 Jaq

and so,

(52 Ao ) [ L

The conclusion follows as above. If N = 3, then there exists \* € (0, 1)
such that for A € (—A1, —A*) there is a positive, radial solution (see Budd and
Nurbury [17]). Also, one can show that there is always a bifurcation branch
starting from Ay, for every k > 1. The other cases seem to be open.

CaseE 3: Q={x € RN; 1< |z|] <2}. Let A\; = \i(—A) be defined by (2.1.5).

— Suppose first p < 0.
— If A > — )y, then the unique solution of (2.7.8) in H*(Q) N LPT1(Q) is u = 0.
(See Remark 2.3.10.)
— If A < —\q, then there is a solution u # 0, u € H'(Q) N LPT1(Q) of (2.7.8).
Moreover, there is a positive, radially symmetric solution (See Theorem 2.3.9.
In fact, Theorem 2.3.9 produces a positive solution, but one can construct a
radially symmetric solution by minimizing on radially symmetric functions.)
This solution is smooth, i.e. u € Cy(2), see Remark 4.4.4.
— Suppose now p > 0.

Azfm(k
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— If A > —\y, then there is a solution u # 0, u € HY(Q) N LPT1(Q) of (2.7.8).
Moreover, there is a positive, radially symmetric solution. (See Theorem 2.4.5
for the case N > 2 and Remark 1.2.6 for the case N = 1.) This solution is
smooth, i.e. u € Cy(f), see Remark 4.4.4.

— If A < =)\, then there is a spherically symmetric solution u # 0, u € H'(Q) N
LPTH(Q) of (2.7.8). (See Kavian [28], Exemple 8.7 p. 173. Note that the
assumption p < (N + 2)/(N — 2) in [28] is not essential. It is used only for
the verification of the Palais-Smale condition, which holds in the present case
because of the embedding W < L°°()), see Theorem 2.4.5.) This solution is
smooth, i.e. u € Cyp(R), see Remark 4.4.4.



CHAPTER 3

Methods of super- and subsolutions

3.1. The maximum principles

Let © be an open subset of RY. We recall that a distribution f € H~(Q) is
nonnegative (respectively, nonpositive), i.e. f > 0 (respectively, f < 0) if and only
if (f,)mg-1,mp = 0 (vespectively, (f,¢)g-1,g2 < 0), for all p € HY(Q), ¢ > 0. By
density, this is equivalent to saying that f > 0 in D’'(f2), i.e. that (f,¢)p.p > 0
for all p € C°(Q), ¢ > 0. In particular, if f € L ()N H'(Q), then f > 0 in
H~1(Q) if and only if f > 0 a.e. in Q. Therefore, the above definition is consistent
with the usual one for functions.

We now can state the following weak form of the maximum principle.

THEOREM 3.1.1. Consider a function a € L>(Q), let \i(—A + a) be defined
by (2.1.5) and let A\ > — A1 (=A+a). Supposeu € HY(Q) satisfies —Au-+au+u > 0
(respectively, < 0) in H=Y(Q). If u= € H(Q)(respectively, u™ € HF(Q)), then
u >0 (respectively, u < 0) almost everywhere in ).

PrOOF. We prove the first part of the result, the second follows by changing
u to —u. Since u~ > 0, we see that
(—Au+au+ M, —u" ) g1 g <0,

which we rewrite, using formula (5.1.5), as
/Q[Vu -V(—u") +au(—u") + du(—u")] <0.
This means (see Remark 5.3.4) that
JI9G)E + alu P+ M) < 0
Since A > —A1(—A + a), we deduce from (2.1.6) that u~ =0, i.e. uw > 0. O

We now study the strong maximum principle. Our first result in this direction
is the following.

THEOREM 3.1.2. Suppose @ C RY is a connected, open set. Let \i(—A) be
defined by (2.1.5) and let X > —\1(=A). Suppose u € HY(Q) N C(Q) satisfies
—Au+ M > 0 (respectively, < 0) in H=Y(Q). If u= € H}(Q) (respectively, u™ €
HY(Q)) and if u £ 0, then u > 0 (respectively, u < 0) in Q.

The proof of Theorem 3.1.2 is based on the following simple lemma.

LEMMA 3.1.3. Let 0 < p < R < 00 and set w = {p < || < R}. Let A € R
and suppose > max{0, N — 2} satisfies B(3 — N +2) > |\ R2. If v is defined by
v(z) = |z|7% — R=P for p < |z| < R, then the following properties hold.

(i) ve C™w).

(ii) v(z) =0 if |z| = R.
(i) o > o(z) > BR-CH(R— |a)) if p < |2] < R.
(iv) —Av+ v <0 in w.

55



56 3. METHODS OF SUPER- AND SUBSOLUTIONS

PROOF. Properties (i), (i) and (iii) are immediate. Next,
—Av+ w=—B(8-N+2)z|~ P+ £ \z| P — AR
< BB~ N+2)R™ |~ + Al 2|7,
and (iv) easily follows. O

PROOF OF THEOREM 3.1.2. We prove the first part of the result, the second
follows by changing u to —u. We first note that by Theorem 3.1.1, u > 0 a.e. in €.
Since v € C(2) and u # 0, the set

O ={z € Q; u(z) >0},

is a nonempty open subset of ). £ being connected, we need only show that O is
a closed subset of 2. Suppose (yn)n>0 C O and y,, =y € Q asn — 0o. Let R >0
be such that B(y,2R) C , and fix ng large enough so that |y — y,,| < R. Since
U(Yny) > 0, there exist 0 < p < R and € > 0 such that u(x) > e for |[x — yp,| = p.
Set U = {p < |x — yn,| < R} and let w(z) = u(x) — epPv(z — yn,) for x € U, where
B and v are as in Lemma 3.1.3. It follows that w € H'(U) N C(U). Moreover,
—Aw+ Aw > 0 by property (iv) of Lemma 3.1.3. Also, since u > 0 in €2, we deduce
from property (ii) of Lemma 3.1.3 that w(x) > 0 if |z — yn,| = R. Furthermore,
w(xz) > 0 if | — yn,| = p by property (iii) of Lemma 3.1.3 and because u(z) > e.
Thus we may apply Theorem 3.1.1 and we deduce that w(z) > 0 for z € U. In
particular, u(y) > ep®v(y — yn,) > 0 by property (iii) of Lemma 3.1.3, so that
y € O. Therefore, O is closed, which completes the proof. O

We now state a stronger version of the maximum principle, which requires a
certain amount of regularity of the domain.

THEOREM 3.1.4. Let Q C RY be a bounded, connected, open set. Assume there
exist n,v > 0 with the following property. For every x € Q such that d(x,00Q) < n,
there exists y € 1 such that

z € B(y,m),
B(y,n) C Q, (3.1.1)
n— |z —y| > vd(z,0N).

Let \1(—A) be defined by (2.1.5) and let X > —\1(—A). Suppose uw € H(Q)NC(Q)
satisfies —Au+Au > 0 (respectively, < 0) in H=Y(Q). Ifu™ € HJ () (respectively,
ut € HY(Q)) and if uw # 0, then there exists p > 0 such that u(x) > pd(z, )
(respectively, u(x) < —pd(z, 0)) in Q.

REMARK 3.1.5. The assumption (3.1.1) is satisfied if 9 is of class C2. Indeed,
let y(z) denote the unit outwards normal to 092 at z € 9. Since €2 is bounded, 9
is uniformly C?2, so that there exists > 0 such that B(z —ny(z),n) C Q for every
z€ 00 IfxeQand d(z,00) <n,let z € 0N be such that |z — z| = d(x, 0N).
It follows that o — z is parallel to v(y). Thus, if we set y = z — ny(z), we see that
x € B(y,n), B(y,n) C Qand n— |z —y| = |z — 2| = d(x, 00Q).

PROOF OF THEOREM 3.1.4. We prove the first part of the result, the second
follows by changing u to —u. Let 0 < e < /2 and consider Q. = {z € Q; d(z,9Q) >
e}. We fix € > 0 sufficiently small so that . is a nonempty, compact subset of .
It follows from Theorem 3.1.2 that there exists 6 > 0 such that

u(zr) >6 forall x €. (3.1.2)

We now consider zg € Q such that d(zg, Q) < €, and we let yo € Q satisfy (3.1.1).
Since B(yo,n) C Q2 and n > 2¢, we see that d(z,00Q) > ¢ for all z € B(yo,n/2). It
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then follows from (3.1.2) that
u(z) >4 forall ze€ B(yo,n/2). (3.1.3)

We let p = n/2, R =nand U = {p < |z — yo| < R}, so that zp € U. Let
w(z) = u(z) — epPv(z — yo) for x € U, where B and v are as in Lemma 3.1.3. It
follows that w € H*(U) N C(U). Moreover, —Aw + Aw > 0 by property (iv) of
Lemma 3.1.3. Also, w(z) > 0 if |# — yo| = R by property (ii) of Lemma 3.1.3 and
because v > 0 in Q. Furthermore, w(z) > 0 if | — yo| = p by property (iii) of
Lemma 3.1.3 and (3.1.3). Thus we may apply Theorem 3.1.1 and we deduce that
w(x) > 0 for z € U. In particular,

u(zo) > Bep’ R™PTI(R — |20 — yol) > vBep’ R™PHd(x0,09),

where the first inequality above follows from of Lemma 3.1.3 (iii) and the second
from (3.1.1). Since xo € Q\ €. is arbitrary, we see that there exists u > 0 such
that u(z) > pd(z,09Q) for all € @\ Q.. On the other hand, (3.1.2) implies that
there exists p/ > 0 such that u(z) > p/d(x,00Q) for all x € Q.. This completes the
proof. O

3.2. The spectral decomposition of the Laplacian

Throughout this section, we assume that €2 is bounded and connected, and we
give some important properties concerning the spectral decomposition of —A + a
where a € L>().

THEOREM 3.2.1. Assume € is a bounded, connected domain of RN and let
a € L>®(Q). It follows that there exist a nondecreasing sequence (Ap)n>1 C R with
An — 00 as n — oo and a Hilbert basis (n)n>1 of L2(Q) such that (¢n)n>1 C
HY(Q) and
— Apn + apn = A@n, (3.2.1)
in H=1(Q). Moreover, the following properties hold.
(1) on € L=(Q)NC(), for every n > 1.
(il) M =AM (—A+a;Q), where A\ (—A+ a;Q) is defined by (2.1.5).
(i) A1 is a simple eigenvalue and either 1 > 0 or else o1 < 0 on Q.

For the proof of Theorem 3.2.1, we will use the following fundamental property.

PROPOSITION 3.2.2. Suppose Q is a bounded, connected domain of RY. Let
a € L>®(Q) and A = A\ (—A+a) where \y(—A+a) is defined by (2.1.5). It follows
that there exists ¢ € Hi(Q) NL>®(Q)NC(Q), ¢ >0 in Q, ||pl|rz =1, such that
—Ap+ap =Ap, (3.2.2)
in H=1(Q). In addition, the following properties hold.
(i) @ is the unique nonnegative solution of the minimization problem

we s, Ju)= ing J(v), (3.2.3)
ve

where )
J(v) = 5/{|W|2 + av?}, (3.2.4)
Q

and S = {v € H}(Q); ||lv]|z2 = 1}.
(ii) Ifv € HY(Q) is a solution of the equation (3.2.2), then there exists a constant
c € R such that ¥ = cp.

PrROOF. We proceed in five steps.

STEP 1. The minimization problem (3.2.3) has a solution u € H}(Q), u > 0.
Indeed, it follows from the techniques of Section 2.2 that if J is defined by (3.2.4),
then J € CY(H}(Q),R) and J'(u) = —Au + au for all u € H(2). Moreover, if
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F(u) = ||u|?., then F € C'(H}(Q),R) and F’(u) = 2u for all u € H(Q). Next, it
follows from (2.1.5) that

A
inf == 2.
inf J(v) = 3 (3.2.5)
Consider a minimizing sequence (v,)p>0 of (3.2.3). Letting u,, = |v,], it follows

that u, > 0 and that (uy),>0 is also a minimizing sequence of (3.2.3). Moreover,
since ||un|/zz = 1, we see that (uy,)n>0 is bounded in H{ (). Since  is bounded,
it follows that there exists u € Hg () such that u, — v in L*(Q) and ||Vu|p: <
liminf [|[Vuy||L2 as n — oo (see Theorem 5.5.5). In particular, u > 0 and u is a
solution of the minimization problem (3.2.3).

STEP 2. If u € H}(Q) and ||ul[z2 = 1, then is a solution of the minimization
problem (3.2.3) if and only if u is a solution of the equation (3.2.2). Suppose
first that « is a solution of the minimization problem (3.2.3). It follows from
Theorem 2.4.1 that there exists a Lagrange multiplier A such that —Au + au = \u.
Taking the H~! — H} duality product of that equation with u, we see that 2J(u) =
A, so that A = A by (3.2.5). Thus u satisfies the equation (3.2.2). Conversely,
suppose u is a solution of the equation (3.2.2). Taking the H~! — H{ duality
product of the equation with u, we see that 2.J(u) = A, so that, by (3.2.5), u is a
solution of the minimization problem (3.2.3).

STEP 3. Ifu € H}(Q), u >0, u #0, is a solution of the equation (3.2.2), then
ue L*(Q)NC(N2) and u > 0in Q. The property u € L*(Q2) N C(2) follows from
Corollary 4.4.3. Next, we write (3.2.2) in the form —Au+ ||a||p~u = (||a|| L~ —a)u.
Since ||a||=~ —a > 0, we see that (||a|| L~ —a)u > 0, and it follows from the strong
maximum principle that v > 0 in Q.

STEP 4. If u,v > 0 are two solutions of the minimization problem (3.2.3), then
u =v. Indeed, let w = u — v and assume by contradiction that w % 0. It follows
from Step 2 that w is a solution of the equation (3.2.2). Thus, again by Step 2,
w/||w|| L2 is a solution of the minimization problem (3.2.3), so that z = |w|/||w|| L2
is also a solution of the minimization problem (3.2.3). By Steps 2 and 3, we see
that z > 0 in Q, so that w does not vanish in . In particular, w does not change
sign and we may assume for example that w > 0. It follows that 0 < v < w, which
is absurd since ||ul|z2 = ||v]|L2-

STEP 5. Conclusion. Let ¢ = u with u as in Step 1. It follows from Steps 2
and 3 that ¢ is a solution of (3.2.2) and that ¢ € HZ () N L>=(Q)NC(Q), ¢ >0
in Q@ and ||¢l|2 = 1. Next, property (i) follows from Step 4. Finally, suppose
v € HYHQ), ¢ # 0, is a solution of the equation (3.2.2). Setting z = [4|/||¢| L2,
we deduce from Step 2 (see the proof of Step 4) that z is a nonnegative solution
of (3.2.3). Thus z = ¢, so that || = |||z 2. In particular, ¢ does not vanish
in ©, so that ¢ has constant sign. We deduce that ¢ = %||¢|| 2, which proves
property (ii). O

PROOF OF THEOREM 3.2.1. Set A = A\ (—A+a) where A\;(—A+a) is defined
by (2.1.5). Let f € H-Y(Q), and let u € H}(Q) be the solution of the equation
—Au+au+ (1 —A)u= fin H 1(Q). Let us set u = K f. By Theorem 2.1.4, K is
bounded H~1(Q) — Hi(Q), hence L?(Q) — H(2). Therefore, by Theorem 5.5.4,
K is compact L?(Q2) — L?*(Q). We claim that K is self adjoint. Indeed, let
f,g€ L*(Q) and let u = K f, v = Kg. We have

(u,9)2 = (fv)r2 = (mAv+av+ (1 = Ao, u) g1
—(Au+au+ (1= Mu,v)g1 g1 =0,
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by (5.1.5). It is clear that K~1(0) = {0}. Moreover, if f € L*(Q) and u = K f,
then
(Kf, [z = (u,—Au+tau+ (1 = AN)u) g g

_ /(|W|2 Fau? + (1— A)u?),
Q
so that by (2.1.6),
(Kf, f)r2 > / u? > 0.
Q

Therefore (see Brezis [11], Theorem VI.11), L?(Q) possesses a Hilbert basis (¢n, )n>1
made of eigenvectors of K, and the eigenvalues of K consist of a nonincreasing
sequence (0, )p>1 C (0,00) converging to 0, as n — oco. We observe that ¢, =
o, L K pp, so that ¢, € H(Q) and ¢, satisfies the equation (3.2.1) with

An = Ui —1+A. (3.2.6)
This proves the first statement, and we now prove properties (i), (i) and (iii).

(i) This follows from Corollary 4.4.3.

(ii) By formula (3.2.6), this amounts in showing that o1 = 1. We first observe
that if ¢ is as in Proposition 3.2.2, then K¢ = . Thus 1 is an eigenvalue of K,
so that o1 > 1. Next, we see that —Ap; + ap; = (afl — 1+ A)py. Taking the
H~! — H} duality product of the equation with ¢1, we deduce that

/{|wl|2+asa%} —orl 14 A
Q

Using (2.1.5), we deduce that o7 ' — 1+ A > A. Thus o; < 1, which proves (ii).
(iii) This follows from Proposition 3.2.2. O

REMARK 3.2.3. Connectedness of € is required only for property (iii) of The-
orem 3.2.1. Without Connectedness, these two properties may not hold, as shows
the following example. Let = (0,7) U (7, 27). Then A; = 1, and the correspond-
ing eigenspace is two-dimensional. More precisely, it is the spaces spanned by the
two functions 1 and @; defined by

(2) sinz if 0 <z <, 51(2) 0if0 <z <m,
X)) = X)) =
71 0if 7 <z < 2m, 7t —singif 7 <z < 2

In particular, both ¢; and @ vanish on a connected component of €.

We end this section with a useful characterization of Hg(£2) in terms of the
spectral decomposition.

PROPOSITION 3.2.4. Assume € is a bounded, connected domain of RN, let
a € L>®(Q) and let (A\y)n>1 C R and (pn)n>1 C HF(Q) be as in Theorem 3.2.1.
Given any u € L*(Q), let oj = (u, ;)2 for all j > 1 so that uw = > a;p;. It
follows that w € Hy(2) if and only if Y- \ja5 < co. Moreover, Y- NjaF = [[Vul|3..

PROOF. Since (p;);>1 is a Hilbert basis of L?(£2), we may consider the isomet-
ric isomorphism 7' : £2(N) — L?(Q) defined by

o0
TA= Zajgoj,
j=1
if A= (o;);>1. Let now

V={Ae(N); Y Xa? < oo},
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equipped with the norm
oo 1
3
IAllv = (E )\ja?) ,
j=1

so that V is a Banach (in fact, Hilbert) space. We first claim that T'(V) C HJ ()
and
[Ally = IVT A e, (3.2.7)

for all A € V. Indeed, let A € V and consider the sequence (Ay)n>0 C V defined
by a,; = a; if j <nand a, ; = 01if j > n. It follows that A, — A in V (hence in
¢2(N)). Moreover,

HVTARH%2 ATAn,TA )H—l Hl

(=
(zn:)‘ O‘J%az%%)H L
(

J
(3.2.8)
A‘%%Z%%)Lz
1 j=1

I
i

M:

Ajag = (1A

Il

1

J
A similar calculation shows that if m > n > 1, then

V(TA, —TA)|7: = Aja? — 0. 3.2.9

I9( e Jg;l . (32.9)
We deduce in particular from (3.2.9) that (T'4,,),>1 is a Cauchy sequence in H} (€2).
Since TA,, — TA in L?(Q) (because A, — A in (%(N)), we deduce that TA €
HY(Q) and TA,, - TA in V. Thus (3.2.7) follows by letting n — oo in (3.2.8). It
now remains to show that TV = Hg (). Since V is a Banach space and T : V —
H}(Q) is isometric, we see that TV is a closed subspace of H}(Q). Suppose by
contradiction that V # H}(Q). Tt follows that there exists w € Hg(£2), w # 0 such
that (I'A,w)gys =0 for all A€ V. Fixn > 1, and define A€ V by a; =1if j=n
and a; = 0 if j # n. It follows that TA = ¢, so that (¢, w)g1 = 0. Since

(e, w) g = (Veon, Vw)rz = (=Apn, w)g-1 3
- )\n((mew)H*l,Hé = )\n((Pna w)L2

and n > 1 is arbitrary, we conclude that w = 0, which is a contradiction. (]

3.3. The iteration method

Throughout this section, we assume that €2 is a bounded domain of RY and we
consider the problem

(3.3.1)

—Au=g(u) in £,
u=0 on 09,

where g € C1(R) is a given nonlinearity. The method we will use relies on the
notion of sub- and supersolutions, which are defined as follows.

DEFINITION 3.3.1. A function © € H'(Q) N L>°(Q) is called a supersolution
of (3.3.1) if the following properties hold.
() AT > g(@) in H-'(Q);
(i) w~ € H ().
Similarly, a function u € H*(£2) N L>°(£) is called a subsolution of (3.3.1)
if the following properties hold.
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(iii) —Au < g(u) in HH(Q);
(iv) u™ € H}(Q).

In particular, a solution u € H}(Q) of (3.3.1) is a both a supersolution and a
subsolution.

REMARK 3.3.2. Here are some comments on Definition 3.3.1.
(i) As observed in Section 3.1, the property —Au > g(u) in H~1(Q) is equivalent
to saying that —Au > ¢g(u) in D'(Q), i.e. that (—AT — g(u),¢)p,p > 0 for
all p € C2(Q), ¢ > 0.

(ii) It follows from (i) above that if w € L°°(Q2) N H? () satisfies —Au > g(u) a.e.
in Q, then —Au > g(u) in H-1(Q).

(iii) Property (ii) of Definition 3.3.1 is a weak way of saying “z > 0 on 9Q”.
Indeed, if @ € C(Q), then @ > 0 on 99 implies that = € H}(Q) (see
Remark 5.1.10 (ii)). Conversely, if Q is of class C!, if w € C(Q) and if
u~ € HY(Q), then @ > 0 on 99 (see Remark 5.1.10 (iii)). (A similar observa-
tion holds for property (iv).)

Our main result of this section is the following.

THEOREM 3.3.3. Assume that ) is a bounded domain of RN and let g € C1(R).
Suppose that there exist a subsolution u and a supersolution @ of (3.3.1). Ifu <7u
a.e. in §2, then the following properties hold.

(i) There exists a solution u € Hi(2) N L>®(Q) of (3.3.1) which is minimal with
respect to w, in the sense that if w is any supersolution of (3.3.1) with w > u,
then w > u.

(i) Similarly, there exists a solution u € H}(Q) N L>®(Q) of (3.3.1) which is
maximal with respect to w, in the sense that if z is any subsolution of (3.3.1)
with z < u, then z < 1.

(iii) In particular, u <u <u <u. (Note that w and U may coincide.)

REMARK 3.3.4. Here are some comments on Theorem 3.3.3.

(i) The main conclusion of Theorem 3.3.3 is the existence of a solution of (3.3.1).
On the other hand, the maximal and minimal solutions can be useful.

(ii) Theorem 3.3.3 is somewhat surprising because no assumption is made on the
behavior of g. Of course, in practice the behavior of g will be important for
the construction of sub- and supersolutions.

(iii) The assumption u < 7 is absolutely essential in Theorem 3.3.3. This can be
seen on a quite elementary example: consider for example the equation

—u"=2+9
wm e (3.3.2)
upn =0,
in @ = (0,7). It is clear that u(x) = 0 is a subsolution. Furthermore,

u(z) = —sin(x)? is a supersolution. Indeed,
" —9u = 2 + 5sin(z)? > 2.

Next, we claim that there is no solution of (3.3.2). Indeed, suppose u satis-
fies (3.3.2). Multiplying the equation by sin(3z) and integrating by parts, we
obtain

9/ u(z) sin(3x) = 2/ sin(3x) +9/ u(z) sin(3x),
0 0 0
which is absurd since

T ' 9
/0 sin(3z) = 3 # 0.
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Thus we have an example where there is a subsolution, there is a supersolution,
but there is no solution. Obviously, Theorem 3.3.3 does not apply because

uZu.
PROOF OF THEOREM 3.3.3. We use an iteration technique. Set
M = max{||ul[L, [[al| L=},

let

A > 9"l Los (—n,am (3.3.3)
and set

ga(u) = g(u) + \u, (3.3.4)
for all w € R. Finally, we set up = u and u’ = @ and we define the sequences
(un)n>0 and (u")p>0 by induction as follows.

{AunJrl + Mipg1 = ga(un),

Un+1jo0 = 0,
e (3.3.5)

un+1

—Au"T 4 Mt = gy (u”),
oo = 0,

We will show that the sequences are well defined, that
up <up <ug <o <’ <t <Al

and that w = lim u, and © = lim " have the desired properties. We proceed in
n—oo n—oo

five steps.

STEP 1. up < wp < ul < Wl Since ug,u’ € L*>(Q), we see that
gx(ug), ga(u®) € L*>®(). Therefore, we may apply Theorem 2.1.4, from which
it follows that uy,u! € Hg(Q) are well-defined. (Note that A > 0 and, since  is
bounded, A1 (—A) > 0, see Remark 2.1.5.) Furthermore,

—Auy 4 Auy = ga(uo) > —Aug + Aug,

since ug is a subsolution. It follows from the maximum principle that u; > ug. One
shows similarly that u! < u®. Next, observe that gy is nondecreasing on [—M, M];
and so,
—Auy + Aug = ga(ug) < gA(uO) = —Aut + .

Applying again the maximum principle, we deduce that u; < u!'. Hence the result.

STEP 2. For all n > 1, u, and u™ are well-defined, and u,,_1 < u,, < u" <
u"~'. We argue by induction. It follows from Step 1 that the property holds
for n = 1. Suppose it holds up to some n > 1. In particular, u,,u™ € L*(Q),
so that w41, u"™ € H}(Q) are well-defined by Theorem 2.1.4. Next, since gy is
nondecreasing on [—M, M], it follows that

*AunJrl + )\unJrl = g/\(un) > g)\(unfl) = —Aup + Al

and S0, Uy 41 > U, by the maximum principle. One shows as well that vt < u".
Finally, using again the nondecreaing character of gy, we see that

= D1+ M1 = ga(un) < ga(u”) = =A™ 4 Au"

and 50, Up41 < u™*! by the maximum principle. Thus u, < upi1 < ™t < u?,
which proves the result.

Step 3. If 4 = limu, and 4 = limu" as n — oo, then u,u € Hg(Q) N
L>(Q) are solutions of (3.3.1). Indeed, it follows from Step 2 that (u)n>0 is
nondecreasing and bounded in L*°(£2). Thus @ = limu,, as n — oo is well-defined
as a limit a.e. in €. Since gy is continuous, it follows that gx(u,) — gx(u) a.e. in
Q. Since (up)n>0 is bounded in L>®(£2), (gx(un))n>0 is also bounded in L>(£2),
and by the dominated convergence theorem it follows that g(u,) — gx(u) in L?(Q).
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Finally, since (—A + A )~! is continuous L?(Q) — HJ(2) (see Theorem 2.1.4), we
deduce that u,, converges in H}(Q) as n — oo to the solution v € Hg(Q) of

— D+ € = ga(@),
’U‘BQ =0.

Since u, — u a.e., we see that v = w and the result follows for u. A similar
argument applies to u.

STEP 4. The solutions u and u are independent of A satisfying (3.3.3).  We
show the result for u, and the same argument applies to u. Let A, X satisfy (3.3.3)
and let u = nh_{r;O u, and @ = nh—>Holo u,, be the corresponding solutions of (3.3.1)

constructed as above. Since A and X' play a similar role, we need only show that
We first show that @ < @’. Assume for definiteness that A > \. We claim that
u' > uy, for all n > 0. We argue by induction. This is clear for n = 0. Assuming it
holds for some n > 0, we have

=AU+ X = ga(U') > ga(un) = =Dun g1 + Minga.

It follows from the maximum principle that @' > u,1, which proves the claim.
Letting n — oo, we deduce that u < ’'.

STEP 5. Minimality of u and maximality of u. ~ We only show the minimality
of @, the other argument being similar. Let w be a supersolution of (3.3.1), w > wy.
Let M = max{||w||ps, ||[@]| <, [|w|] L=} and let

A > ||gl||Loo(7M7M)'

Let (un)n>0 be the corresponding sequence defined by (3.3.5), so that w = lim w,
= n—oo

by Steps 3 and 4. We claim that w > w, for all n > 0. We argue by induction.
This is true by assumption for n = 0. Assuming this holds up to some n > 0, we
have

—Aw + dw > gr(w) > gr(un) = =Dtppr + Mipgr.

It follows from the maximum principle that w > u, 41, which proves the claim. We
deduce the result by letting n — oco. This completes the proof. O

We now give applications of Theorem 3.3.3 in elementary cases where sub- and
supersolutions are trivially constructed. We will consider more delicate cases in the
next section.

COROLLARY 3.3.5. Assume that Q is a bounded domain of RN and let g €
CL(R). If there exist a < 0 < b such that g(a) = g(b) = 0, then there exists a
solution u € H}(Q) N L>(Q) of (3.3.1), with a <u < b.

PROOF. u = a is clearly a subsolution and u = b is clearly a supersolution. [

COROLLARY 3.3.6. IfQ is a bounded domain of RN and if g € C1(R), then the
following properties hold.

(i) If g(0) < 0 and if there exists a < 0 such that g(a) = 0, then there exists a
solution u € H}(Q) N L>(Q) of (3.3.1), with a <u < 0.

(ii) If g(0) > 0 and if there exists b > 0 such that g(b) = 0, then there exists a
solution u € H}(Q) N L>(Q) of (3.3.1), with 0 < u < b.

PROOF. Suppose for example g(0) < 0, the other case being similar. Then
u = a is clearly a subsolution and u = 0 is clearly a supersolution. (]
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3.4. The equation —Au = Ag(u)

In this section, we consider a function g € C*(R) and we study the problem

{Au)\g(u) in £,

(3.4.1)
u=0 on 09,

where \ is a nonnegative parameter. We will apply Theorem 3.3.3 in order to
determine the set of A’s such that (3.4.1) has a solution in an appropriate sense.

We observe that we may assume g(0) # 0, since otherwise there is always the
trivial solution u = 0. Next, by possibly changing ¢ to —g, we may assume g(0) > 0.
Finally, if g(b) = 0 for some b > 0, then the existence of a solution for every A > 0
follows from Corollary 3.3.6 (ii). Therefore, we need only consider the case g(u) > 0
for all w > 0. Our first result is the following.

THEOREM 3.4.1. Let Q be a bounded, connected, open subset of RN . Let g €
CL(R) and assume g(u) > 0 for all u > 0. There exists 0 < \* < oo with the
following properties.

(i) For every \ € [0,\*), there exists a (unique) minimal solution uy > 0, uy €
HYQ)NL>®(Q) of (3.4.1). uy is minimal in the sense that any supersolution
v >0 of (3.4.1) satisfies v > uy. In addition, uy € C(£2).
(ii) The map u > uy is increasing (0,00) — HE(Q) N L>®(£).
(iii) If \* < oo and if X\ > X\*, then there is no solution u € HE(Q) N L>®(Q)
of (3.4.1).

PROOF. The proof relies on the results of Sections 3.1 and 3.3. We proceed in
three steps.

STEP 1. If A > 0 is sufficiently small, then the equation (3.4.1) has a minimal
solution uy > 0, uy € Hg(2) N L>(Q). We first note that, since g(0) > 0, 0 is
a subsolution of (3.4.1) for all A > 0. Next, let R > 0 be sufficiently large so
that Q@ C B(0, R) and set w(x) = cosh R — coshz;. It follows that w > 0 on €,
w € C®(Q) ¢ HY(Q) and —Aw = coshz; > 1. Therefore, if A > 0 is sufficiently
small so that 1/A > sup{g(s); 0 < s < cosh R}, then —Aw > Ag(w), so that w is a
supersolution of (3.4.1). The result now follows from Theorem 3.3.3.

STEP 2. Construction of \* and proof of (i) and (iii). We set

A ={X > 0; (3.4.1) has a nonnegative solution in
H3(Q)NL>™(Q)}, (3.4.2)

and
A" =supA. (3.4.3)

It follows from Step 1 that A # 0, so that 0 < A\* < oo. Consider now 0 < X\ < \*.
It follows from (3.4.3) that there exists A > X such that X € A. Let @ € H}(Q) N
L>=(2), W > 0 be a solution of (3.4.1) with \. It follows that —Au = \g(u) > \g(a),
so that u is a supersolution of (3.4.1). Since, as abserved above, 0 is a subsolution
of (3.4.1), it follows from Theorem 3.3.3 that the equation (3.4.1) has a minimal
solution uy > 0, uy € HE(Q)NL>®(Q2). In addition, since —Auy = Ag(uy) € L=(Q),
we see that uy € C(Q2) by Corollary 4.2.7. This proves part (i), and part (iii) follows
from (3.4.2)-(3.4.3).

STEP 3.  Proof of (ii). Let 0 < A < p < X*. It is clear that u, is a
supersolution of (3.4.1). Since u, > 0, we deduce from part (i) that v, > ux. On
the other hand, since g > 0 and A > p, it is clear that u, # uy). Let

v = max{|g'(s)]; 0 < 5 < |Ju,| L~}
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Setting w = u,, — uy, it follows that
—Aw + Myw = Myw + pg(u,) — Ag(ua)
> )\[V(uu - “A) + g(uu) - g(u,\)] > 0.

By the strong maximum principle (Theorem 3.1.2), we deduce that w > 0, i.e.
u, > uy in Q. This completes the proof. ]

REMARK 3.4.2. Here are some comments on Theorem 3.4.1.

(i) The mapping A — uy can have discontinuities, even for a smooth nonlinearity
g. On the other hand, if g is convex (or concave) on [0, 00), then the mapping
A+ uy is smooth. On these questions, see for example [18].

(ii) The conclusion of Theorem 3.4.1 can be strengthened. In particular, for A =
A*, there always exists a solution of (3.4.1) in an appropriate weak sense.
That solution is unique. Moreover, if A* < co and A > A*, then there is no
solution of (3.4.1), even in a weak sense. See in particular [12, 36] .

The parameter \* introduced in Theorem 3.4.1 can be finite or infinite, de-
pending on the behavior of g(u) as u — oo, as shows the following result.

PROPOSITION 3.4.3. Let Q be a bounded, connected, open subset of RN. Let
g € CL(R) and assume g(u) > 0 for all u > 0. With the notation of Theorem 3.4.1,
the following properties hold.
(i) If g(u) — 0, then \* = oo.

U u—oo
(if) If liminf 9(w) >0, then \* < oc.
U—00 u
PROOF. (i) By Theorem 3.3.3, we need only construct a nonnegative, bound-
ed supersolution of (3.4.1) for every A > 0. (Recall that 0 is always a subsolution.)
To do this, we consider the function w(xz) = cosh R — coshz; introduced in the
Step 1 of the proof of Theorem 3.4.1. Fix A > 0 and let £ > 0 to be chosen later.
If w = kw, then —A%w = kcoshxy > k. Since w < cosh R, we deduce that
k k kw k 1 k
—ATU> - = > —— - = T+ —. 4.4
25T 37 2cshR T2 ZcoshR' 2 (38.44)
Since g(u)/u — 0 as u — oo, we see that for every ¢ > 0, there exists C; such that
g(u) <eu+ C; for all uw > 0. In particular, there exists K such that

< -
Ag(u) < 2cosh R + K,

for all w > 0. Applying (3.4.4), we deduce that

—AT > \g(T) + g - K.

Thus if we choose k > 2K, then  is a supersolution of (3.4.1). This proves part (i).
(ii) Let ¢1 > 0 be the first eigenfunction of —A (see Section 3.2). It follows
from (3.4.1) that

)\1/ UNP1 zA/g(uA)gol, (3.4.5)
Q Q

for all 0 < XA < A*. By assumption, there exist 7, K > 0 such that g(u) > nu — K
for all u > 0; and so,

A K\
A / urgr < 2L / g(ux)1 + =L o 1 (3.4.6)
Q n Ja n



66 3. METHODS OF SUPER- AND SUBSOLUTIONS

On the other hand, ¢ is clearly bounded from below on [0,00), i.e. there exists
g > 0 such that g(u) > e for all w > 0. It then follows from (3.4.5) and (3.4.6) that

)\1 )\1 K)\l
-2 < _ < -1
(A » >€||80||L1 < (A . ) /QQ(UA)% - o1z,
for 0 < A < A*, which implies \* < (K 4 €)1 /ne < . O

Assuming € is sufficiently smooth, we study the “stability” of the solutions wuy.

PROPOSITION 3.4.4. Let Q be a bounded, connected, open subset of RN. Let
g € CY(R) and assume g(u) > 0 for all u > 0. If O is of class C* then, with the
notation of Theorem 3.4.1, the following properties hold.
(1) M(—=A = Ag'(ux)) > 0 for every 0 < X < X*, where Ay is defined by (2.1.5).
(ii) If g is convex or concave on [0,00), then A\i(—A — Ag'(uy)) > 0 for every
0 <A< A"

PROOF. Let Ay = A\ (—A —Ag'(uy)) be as defined by (2.1.5) and let ¢1 > 0 be
the corresponding first eigenvector (see Section 3.2). It follows that

— Ap1 = Mg (un)1 + A1 (3.4.7)

We observe that, by Theorem 3.1.4 and Remark 3.1.5 (for the lower estimate) and
Theorem 4.3.1 and Remark 4.3.2 (i) (for the upper estimate), there exist 0 < k < K
such that

kd(z,00) < p1(x) < Kd(z,09), (3.4.8)
for all x € Q. As well, it follows that for every 0 < A < A* there exist 0 < ¢) < C),
such that

exd(z, 0Q) < uy(z) < Chd(z, 09), (3.4.9)
for all x € 2. We now proceed in two steps.

STEP 1. Proof of (i). Assume by contradiction that A (—A — Ag’(uy)) < 0.

Let € > 0 and let w. = uy — ;. It follows from (3.4.1) and (3.4.7) that

— Awe — Ag(we) = =A(g(ur —ep1) — g(un)
+ep1]g (un) + (A /N)]).  (3.4.10)
On the other hand, since g is C! and uy, @1 € L®(2), we see that

glux —ep1) — glun) +ep1g’ (un) = o(egr). (3.4.11)

Since Ay < 0, we deduce from (3.4.10)-(3.4.11) that —Aw. > Ag(w.) for all suf-
ficiently small € > 0, which implies that w. is a supersolution of (3.4.1). Note
that 0 is a subsolution and that by (3.4.8)-(3.4.9) , 0 < w. < uy if € > 0 is suf-
ficiently small. It then follows from Theorem 3.3.3 that there exists a solution
0 <w < w. <wuy of (3.4.1), which contradicts the minimality of wy.

STEP 2. Proof of (ii). The result is clear if A\ = 0, so we consider A > 0.
Assume by contradiction that Aj(—A — Ag’(ux)) = 0 and let 0 < p < A* to be
chosen later. It then follows from (3.4.7) and (3.4.1) (for A and u) that

/ Ver Vuy = A / o (us)prum, / Vi1 - Vi, = A / ¢ (un) o1t
Q Q Q Q

and

/Vsé’l'VuA = )\/ g(ux)e1, /Vsm -Vu, = ,u/ g(uu)er.
Q Q Q Q

It follows that

A/ g (ux)pruy = A/ g(ux)e1, A/ g (ux)pruy, = u/ g(uw)epr,
Q Q Q Q
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from which we deduce that

/Q[Q(Uu) —g(uy) = (uy — un)g' (ux))pr = /FT“ /Qg(uu)cpl. (3.4.12)

Next, we observe that by (3.4.8),

/ 9(uu)pr > 0. (3.4.13)
Q

We now argue as follows. If g is convex, then the integrand in the left-hand side
of (3.4.12) is nonnegative. We then chose p > X so that by (3.4.13) the right-hand
side of (3.4.12) is negative, yielding a contradiction. If ¢ is concave, then the inte-
grand in the left-hand side of (3.4.12) is nonpositive and we obtain a contradiction
by choosing A < p. O

REMARK 3.4.5. We give an explicit characterization of all solutions of (3.4.1)
in a model case. Let = (0,¢) and g(u) = e, i.e. consider the problem
—u" = X", w(0) =u(l)=0. (3.4.14)

Note first that by any solution of (3.4.14) is positive in Q. Applying Theorem 1.2.3,
we see that there exists a solution of (3.4.14) every time there exists x > 0 such
that

r ds
——— = U\/ /2. 4.1
| A= (3.4.15)

Let H(x) be the left-hand side of (3.4.15). Setting successively 0 = e®, 7 =e* — 0o
and 6 = e "7, we find

< do et dr
H = - = -
W=) ==l v

=z

1 e do
\/6_/0 (1-0)Vo

Since

1 d 14+0
1-08 o °1- Vo

we deduce that
H(x)=F(1—-e"),

where

5

1+/y
F(y) =+/1—-ylog ,
() = V= los 7
for y € [0,1). We note that F(O)ZOZH%F(?J), and that
y

F(y) s}

1
:42\/?3 1_y(2—\/§10g17\@
1+

vy

Since the function y — /ylog is increasing, there exists a unique yo € (0,1)

such that
1+ /yo
VYo log == 2.
— VYo

Thus F' is increasing on (0, yo) and decreasing on (yo, 1). If

2 2
P — F
7 (yren(gﬁ) (y)) ,
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then it follows that if 0 < A < A*, then there exist exactly two solutions of (3.4.14);
if A = A*, then there exists exactly one solution of (3.4.14); if A > A*, then there is
no solution of (3.4.14).



CHAPTER 4

Regularity and qualitative properties

In this section, we study the regularity and symmetry properties of the solutions
of nonlinear elliptic equations. We begin by studying the regularity for linear
equations, then use bootstrap arguments in the nonlinear case. For the symmetry
properties, we use the “moving planes” technique, based on the maximum principle.

4.1. Interior regularity for linear equations
In this section, we study the interior regularity of the solutions of the equation
—Au+u=f, (4.1.1)
in D’(€2). Our first result concerns the case where the equation holds in the whole
space RV,

PROPOSITION 4.1.1. Let m € Z and 1 < p < oo. Suppose X\ > 0 and let
v,h € 8'(RY) satisfy (4.1.1) in S'"(RN). If h € W™P(RN), then v € WmH2P(RN),
and there exists a constant C' such that ||v||yym+20 < C||h||wm.p.

PROOF. Taking the Fourier transform of (4.1.1), we obtain (A + 472[£|?)0 = h
m+2

in S'(RY), so that (A + 472(¢[2)"2° 0 = (A + 472[¢|?) % f, and the result follows
from Theorem 5.2.3. g

We now consider the case of a general domain (2.

PROPOSITION 4.1.2. Let A € R and let u, f € D'(Q) satisfy the equation (4.1.1)
in D'(Q).
(1) If f € WIoP(Q) and uw € WP () for somem >0, n €Z and 1 < p < 0,

then u € WIZLCH”)(Q). In addition, for every Q" CC Q' CC €, there exists
a constant C' (depending only on m, ' and Q") such that ||u|lywm+2p0r) <
CUlflTwme @y + ullwnesn)-

(i) If f € C™(Q) and u € WP (Q) for some n € Z and 1 < p < oo, then

loc
ue C>®(Q).

PrOOF. We proceed in two steps.

STEP 1. Consider w” CCw' CCQ k€ Zand 1 < p < oco. If u € WFP(W)
and f € WF=1P(w') solve the equation (4.1.1) in D'(w’), then u € WHHLP(w")
and there exists C' such that |[ulyr+1.0m) < C(|fllwr-10@wy + lullwrr@y).  To
show this, consider p € C>°(R”) such that p = 1 on w” and supp p C w’ and define
v e D' (RY) by v =pu, ie.

(v, 9)pr &™), D@RN) = (U PP) D (1), D(w)-

It is not difficult to show that v € WP (RN) and that [[v]|yr.®y) < Cllullweswr)-
An easy calculation shows that v solves the equation

—ANv+v="T+ T+ T3, (4.1.2)

69
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in D'(RY), where the distributions T}, T and T3 are defined by
(T1, @) pr @™y, pEN) = (f + (1= U, po)pr (1) D(w)s
(T2, ) pr(evy, DY) = — (U @AP) D (1), D)
(T3, 0)pr®ny, p@N) = —2(VU, 9V P) D1 (01), D (w15
for every ¢ € C°(RY). It follows easily that T; € W*~1LP(RY) and that

1T llwr—1p@yy < CULf ey + lullwerewy),

for j = 1,2,3. Applying (4.1.2) and Proposition 4.1.1, we deduce v € W12 (RN)
and [[v]lyrrre@yy < CUflwr—1p(w0) + [[ullwrry). The result follows, since the
restrictions of v and v to w” coincide.

STEP 2. Conclusion. Without loss of generality, we may assume n = —¢ < 0.
Let Q" cc ' cc Q. Consider now a family (w;)o<j<m-+e+1 of open subsets of €,
such that

Q' = wmier1 CC - CCwpCC

(one constructs easily such a family). It follows from Step 1 that u € W12 (wg)
and that

||U||W—@+1m(wo) < C(||f||w—@—1m(9') + H“HW-M(Q/))
< O fllwmw@y + llullwne@y)-

We deduce from (4.1.3) and Proposition 4.1.1 that u € W—*+2P(w;) and

(4.1.3)

lllw—s20n) < CUL =ty + lullw=cs100)
< O f ey + llullwnr@r))-

Iterating the above argument, one shows that u € W™ (w,, 4 p41) = WmH2P(Q)
and that there exists C' such that [[ulym+2rr) < C(|fllwmr@y + lullwnreq)-
Hence property (i), since " and Q" are arbitrary. Property (ii) follows from Prop-
erty (i) and the fact that C°°(2) = N0 WL (Q) (see Corollary 5.4.17). O

loc

4.2. LP regularity for linear equations

In this section, we consider an open subset @ C RM and we study the LP
regularity for solutions of the linear equation

{—Au—l—)\u:f in £,

; (4.2.1)
u=0 1in ON.

It follows from Theorem 2.1.4 that if A > —X; with Ay = A\ (—A) defined by (2.1.5),
then for every f € H-1(Q), the equation (4.2.1) has a unique weak solution u €
H} (). We begin with the following result.

THEOREM 4.2.1. Let A > 0, let f € H1(Q) and let u € H}(Q) be the solution
of (4.2.1). If f € LP(Q) for some p € [1,00], then u € LP(Q) and A||u|/zr < ||f||Le-

PROOF. Let p € C*(R,R). Assume that ¢(0) = 0, ¢’ > 0 and ¢’ € L>=(R).
It follows from Proposition 5.3.1 that p(u) € Hg(Q2) and that Vi(u) = ¢'(u)Vu
a.e. in €. Therefore, taking the H~! — H{ duality product of (4.2.1) with ¢(u),
we obtain

' ? A = da;
/Q o ()| Vuf? da: + / wp(u) da / folu) dz;
and so

A /Q wp(u) dz < /Q Foolu) dz.
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p—1

Assume that |p(u)| < [u|P~L. Tt follows that |o(u)] < (ue(u)) » ; and so

A et do < 17l ([ wptwar) ™

A(/Q wp() d:c)% <NF e (4.2.2)

and we consider separately two cases.
CASE 1: p<2 Given e > 0, let o(u) = u(e +u2)"= . It follows from (4.2.2)
that

We deduce that

A( w?(e +u2) 7 d:c)p < Ifllze-
Q

Letting € | 0 and applying Fatou’s Lemma yields the desired result.
CASE 2: 2 < p < oo We use a duality argument. Given h € C(Q), let
v € H}(Q) be the solution of (4.2.1) with f replaced by h. We have

/ uh = (u, —Av+ M) g1 = (—Ou+ A, v) g1
Q

= (f;’U)Hfl,Hg :/va-

Therefore,
1
| [ b <17l < S50 en
)
by the result of Case 1 (since p’ < 2). Since h € C°(Q) is arbitrary, we deduce
that [JullLe < A7 fllLe- O

For some A < 0, one can still obtain L* regularity results. More precisely, we
have the following.

THEOREM 4.2.2. Let \y = A\ (—A) be defined by (2.1.5) and let X > —\. Let
f € H Q) and let u € HF () be the solution of (4.2.1). If f € LP(Q) + L>(Q)
for some p > 1, p > N/2, then u € L*®(QQ). Moreover, given 1 < r < oo, there
ezists a constant C' independent of f such that

[ullzee < C([fllr+roe + llullr)-
In particular, ||lu|[ < C([fllLrro + 1 fllH-1)-

PROOF. The proof we follow is adapted from Hartman and Stampacchia [25]
(see also Brezis and Lions [13]). By homogeneity, we may assume that |ul|p- +
[ fllp4ree < 1. In particular, f = f1 + fo with || fi|lz» <1 and ||f2]lr~ < 1. Since
—u solves the same equation as u, with f replaced by — f (which satisfies the same
assumptions), it is sufficient to estimate |[u™||p~. Set T = ||[u™||L= € [0, 0] and
assume that T > 0. For t € (0,7T), set v(t) = (u —t)". We have v(t) € Hi(Q) by
Corollary 5.3.6. Let now «a(t) = [{z € Q,u(z) > t}| for all ¢ > 0. Note that «(t) is
always finite. In particular, since v(t) € L?(f2) is supported in {x € Q,u(x) > t},
we have v(t) € L1(2). We set

Integrating the function 1y~ (z) on (t,00) x  and applying Fubini’s Theorem,
we obtain

5= [ ats)as

so that 8 € W, (0, 00) and
§(1) = —a(t), (12.3)
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for almost all ¢ > 0. The idea of the proof is to obtain a differential inequality on
B(t) which implies that §(t) must vanish for ¢ large enough. Taking the H ! — H}
duality product of (4.2.1) with v(¢), we obtain

/Vu Voul(t —l—)\/uv () -1,

for every t > 0. Therefore, by applying formula (5.3.3) and the property v(t) €
LY(Q), we deduce that

/{|V’u(t)|2 + AMo(t)|?} do = / (f —tA)v(t) dz.
Q Q

Since A > — A1, we deduce by applying (2.1.8) that

o()%: < C/(f—t)\)v(t)dx < C/(|f|+t|)\|)v(t)dx. (4.2.4)
9] Q
We observe that

/ | flo(?) / [fil+1£2Do() < [ fillzello@)l e + | fallLe=[lo(@)]] 22
< @l o + llo@)] 21,
and we deduce from (4.2.4) that
@7 < CA+OUvOl L + To®)20). (4.2.5)

Fix now p > 2p’ such that p < 2N/(N —2) (p < oo if N = 1). (Note that this is
possible since p > min{1, N/2}.) We have in particular Hg(Q2) — LP(Q2). Also, it
follows from Holder’s inequality that ||v(¢)||z1 < a(t)17%|\v(t)||1;p and [[v(t)||,, <
a(t)ﬁf%Hv(t)HLp. Thus we deduce from (4.2.5) that

11 1

l®IZ, < CA+ (@) > +a®)'?)|v®)] L.

Finally, since 5(t) = |[v(t)]| 1 < a(t)17%||v(t)|\,;p, we obtain

1+ -2 2-2

Alt) < CL+1)(alt) 7 +a(t)™7),
which we can write as
B(t) < C(L+ ) F(a(t)),
. 1+L72 22

with F(s) =s "» 7 + 5" ». It follows that

—alt) + F—%%) <0. (4.2.6)
Setting z(t) = %, we deduce from (4.2.3) and (4.2.6) that
r o p()

with ¢(s) = F~1(s) + Cs. Integrating the above differential inequality yields

/t do </Z<S> do
s C+o) = Loy (o)

forall 0 < s <t <T. If T <1, then by definition ||ut|L~ < 1. Otherwise, we

obtain
Z(l) do_
/ C ].+O' - /z ) 1/}(0')7
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for all 1 < ¢ < T, which implies in particular that

T do M o
_ %7 - ey
/1 C(1+o) _/0 Y(o)

Note that F(s) = sV TE as s L 0and 1+ 1/p' —2/p > 1, so that 1/¢ is
integrable near zero. Since 1/(1 + o) is not integrable at oo, this implies that
T = ||u™||L=~ < co. Moreover, |[u™||L= is estimated in terms of z(1), and

1 1 1 1
1)=— -1t <= < = r<—.
(1) O/Q(“ ) —C/{u>1}“—c sy C

This completes the proof. ]

IN

One can improve the L? estimates by using Sobolev’s inequalities. In particular,
we have the following result.

THEOREM 4.2.3. Let A > 0, f € H Q) and let w € H}(Q) be the solution
of (4.2.1). If f € LP(Q) for some p € (1,0], then the following properties hold.

(i) If p > N/2, then u € LP(Q) N L>(Q), and there exists a constant C indepen-
dent of f such that ||ul|Lr < C|fllre for all r € [p,c].

(ii)) If p = N/2 and N > 3, then u € L"(Q) for all r € [p,00), and there exist
constants C(r) independent of f such that ||u||L- < C(r)| f]lLe-

N

(i) If 1 < p < N/2 and N > 3, then u € LP(Q) N L% (), and there ex-
ists a constant C independent of f such that ||ul|lz < C||fllze for all v €
[, Np/(N = 2p)].

PROOF. Property (i) follows from Theorems 4.2.1 and 4.2.2 and Hélder’s in-
equality. It remains to establish properties (ii) and (iii). Note that in this case
N > 3. By density, it is sufficient to establish these properties for f € C(Q).
In this case, we have u € L'(Q) N L*°(Q) by Theorem 4.2.1. Consider an odd,
increasing function ¢ : R — R such that ¢’ is bounded and define

x
P(x) :/ V'(s)ds. (4.2.7)
0
It follows that 1) is odd, nondecreasing, and that v’ is bounded. By Proposi-
tion 5.3.1, ¢(u) and 9 (u) both belong to H}(Q2), and
Vo (u)? = ¢ (u)|Vul* = Vu - V(p(u)), (4.2.8)

a.e. Taking the H '~ H} duality product of (4.2.1) with ¢(u), it follows from (4.2.8)
that

/Q (V)2 + Aup()) d = (f, p(0)) g1 11

In addition, z¢(z) > 0, and it follows from (4.2.7) and Cauchy-Schwarz inequality
that z¢(z) > |¢(2)|?. Therefore, there exists a constant C' such that

[ Fn < O () g1 3
We deduce that, given any p € [1, o0],

[p@)lF: < Cllfllze o) Lo
Since HL(Q) < L¥2(Q), it follows that

Hw<u>|lj§g2 < Clfleelle) o - (4.2.9)
Consider now 1 < ¢ < oo such that (¢—1)p" > 1. If ¢ < 2, let ¢ () Z(€+x2)%.

Clz|7~1 and

If ¢ > 2, take ¢.(z) = z|z|72(1 + 5:02)2%2. It follows that |pe(z)] <
2 < C|z]? and that

)
that |p-(x)| — |91 as € | 0. One verifies easily that |y (z)> <
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[Y=(2)]? — (4(q — 1)/q*)|x|?. Applying (4.2.9), then letting € | 0 and applying the
dominated convergence theorem, it follows that

2
q -1
Jull? vy < C—q_ T el oy (4.2.10)

LN—-2

for all 1 < ¢ < oo such that (¢ — 1)p’ > 1. We now prove property (ii). Suppose
that N > 3 and that p = N/2. Apply (4.2.10) with ¢ > N/2. Tt follows that

2
q _
lull? xy < C—=IfllLnrllul N - (4.2.11)
LN=-2 q— L N—-2
On the other hand, it follows from Holder’s inequality and Theorem 4.2.1 that
qg—1 < éiq:NNJF)g 2qIXE2+2 < Z(I:N]\;)g 2qg;+2
Il S <l el T <l T 17

Substitution in (4.2.11) yields
Jull, g, < C@IS, 5

Property (ii) follows from the above estimate and Theorem 4.2.1, since ¢ is arbitrary.
Finally, we prove property (iii). We set ¢ = (N —2)p/(N — 2p). It follows in
particular that Ng/(N —2) = (¢ — 1)p’ = Np/(N — 2p), so that by (4.2.10)

sy <O

N-—2p

Jull
Property (iii) follows from the above estimate and Theorem 4.2.1. ]

COROLLARY 4.2.4. Let A\ > 0, let f € H Q) and let u € H}(Q) be the
solution of (4.2.1). If f € LY(Q), then the following properties hold.
(i) If N =1, then u € L*(Q)NL>(Q), and there exists a constant C independent
of [ and r such that ||u| L~ < C||f|l1 for all r € [1, ].
(ii) If N > 2, thenu € L"(Q2) for allr € [1, N/(N —2)) and there ezists a constant
C(r) independent of f such that ||ullr < C(r)||fllLr-

PROOF. If N =1, then u € H}(Q) < L*>(Q). Taking the H~! — H} duality
product of (4.2.1) with u, we deduce easily that there exists x> 0 such that

pllullip < (Fw) g my < fllellullzee < CIFllza e

Therefore, p||ul|g: < C|f|lLr, and (i) follows. In the case N > 2, we use a duality
argument. Let u and f be as in the statement of the theorem. It follows from
Theorem 4.2.1 that u € L'() and

ullLr < Clf 21 (4.2.12)

Fix ¢ > N/2. Let h € C(Q2), and let p € H}(Q2) be the solution of the equation
—Ap + Ap = h. It follows from Theorem 4.2.3 that

el < Clihl|La- (4.2.13)
Since
(f, @)H*l,Hé = (—Au+ \u, @)H*l,Hé
= (u,—De+X0) g g = (W, h) gy g1,
we deduce from (4.2.12)-(4.2.13) that

| [t < 1ol < Ul

Since ¢ € C°(9) is arbitrary, we obtain ||ul|; o+ < C||f||z1. Since N/2 < ¢ < 00 is
arbitrary, 1 < ¢’ < N/(N — 2) is arbitrary and the result follows. O
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REMARK 4.2.5. Note that the estimates of Theorem 4.2.3 and Corollary 4.2.4

are optimal in the following sense.

(i)

(i)

(iii)

If N >2and f € L (Q), then u is not necessarily in L>(£2). For example, let
Q be the unit ball, and let u(z) = (—log|z|)” with v > 0. Then u & L*>(f2).
On the other hand, one verifies easily that if 0 < v < 1/2in the case N = 2 and
0 <~ <1—2/N in the case N > 3, then u € H}(Q) and —Au+u € Lz (Q).
If N >3 and f € L'(Q), then there is no estimate of the form ||u||Lﬁ <

C||fll:. (Note that since u € H}(2), we always have u € L%(Q)) One
constructs easily a counter example as follows. Let 2 be the unit ball, and
let u = 2z with p € C(Q), ¢(0) # 0, and z(z) = |z|>~V (- log |z|)” with
v < 0. Then —Au+u € LY(Q) and u ¢ L%(Q) By approximating
u by smooth functions, one deduces that there is no estimate of the form
lull e, < CllFlLcr.

If N >3 and 1 < p < N/2, then by arguing as above one shows the fol-
lowing properties. There is no estimate of the form |uljr« < C||f| 1 for
g > Np/(N — 2p). Moreover, if f € LP(Q), then in general u ¢ L%() for
q > Np/(N —2p), ¢ >2N/(N - 2).

REMARK 4.2.6. Under some smoothness assumptions on €2, one can establish

higher order LP estimates. However, the proof of these estimates is considerably
more delicate. In particular, one has the following results.

(1)

If Q has a bounded boundary of class C? (in fact, C*! is enough) and if
1 < p < oo, then one can show that for every A > 0 and f € LP(Q), there
exists a unique solution u € Wy () N W2P(Q) of equation (4.2.1), and that

[ullwzr < C(lullze + [ flr),

for some constant C' independent of f (see e.g. Theorem 9.15, p.241 in Gilbarg
and Trudinger [23]). One shows as well that for every f € W~1P(Q), there
exists a unique solution u € Wy ?(Q) of equation (4.2.1) (see Agmon, Douglis
and Nirenberg [3]).

One has partial results in the cases p = 1 and p = oco. In particular, if Q is
bounded and smooth enough, then for every A > 0 and f € L!(Q), there exists
a unique solution u € Wy (Q), such that Au € L'(Q), of equation (4.2.1) (see
Pazy [39], Theorem 3.10, p.218). It follows that A|ju||p: < || f]/z:. In general,
u g€ W2L(Q). If Q is bounded, it follows from Theorems 2.1.4 and 4.2.1 that for
every A > 0 and f € L>(2), there exists a unique solution u € H}(Q)NL>(Q),
such that Au € L*>(€), of equation (4.2.1). In general, u ¢ W2°>°(Q), even
if Q is smooth. On the other hand, it follows from property (i) above that
u e WyP(Q) N W2P(), for every p < co.

COROLLARY 4.2.7. Let A >0, f € H1(Q) and let uw € H}(Q) be the solution

of (4.2.1). If f € LP(Q) for some 1 < p < co with p > N/2, or if f € Cy(Q2), then

u €

p:

L®(Q) N C(Q).

PROOF. Let (fn)n>0 C C(82) such that f, — f in LP(Q2) as n — oo (we let
oo in the case f € Cy(2)), and let (un)n>0 be the corresponding solutions

of (4.2.1). Tt follows from Proposition 4.1.2 (ii) that u, € C(Q2). Moreover, u, — u

inL

() by Theorem 4.2.3 (i) (or Corollary 4.2.4 (i) in the case p =1 = N), and

the result follows. O



76 4. REGULARITY AND QUALITATIVE PROPERTIES

4.3. Cp regularity for linear equations

In this section we show that if §2 satisfies certain geometric assumptions, then
the solution of (4.2.1) with sufficiently smooth right-hand side is continuous at 9.

THEOREM 4.3.1. If N > 2 suppose that there exists p > 0 such that for every

x € OQ there exists y(zo) € RN with |zg — y(zo)| = p and B(yo,p) N Q = 0. Let

A>0, fe HY Q) NL®) and let u € HE(Q) be the solution of (4.2.1). It
follows that

lu(z)] < Clfllz~d(z, 69), (4.3.1)

for all x € Q, where C' is independent of f.

PROOF. We may assume without loss of generality that |f| < 1, so that |u| <
A~! by Theorem 4.2.1. We may also suppose N > 2, for the case N = 1 is
immediate. We construct a local barrier at every point of 9€2. Given ¢ > 0, set

1.2 2 :

z(p z|?) + clog(|z|/p) if N =2,

w(z) = 41( ) =1 )2 g_% ) o Ny (4.3.2)
sn (p7 = |z|*) 4+ c(p —Jz|*=%) if N >3.

It follows that —Aw = 1 in RV \ {0}. Furthermore, we see that if c is large enough,
then there exist p1 > pgo > p such that

w(z) >0 for p < || < p1, w(@) > A" for po < |z < p1. (4.3.3)
Given c as above, we observe that there exists a constant K such that
w(x) < K(|z| — p) for p < |z| < p1. (4.3.4)

Let now & € Q such that 2d(z,0) < p1 — p, and let g € 9Q be such that
|z—x0| < 2d(Z,00). Set @ = {x € Q; p < |x—y(xo)| < p1} and v(z) = w(z—y(x0))
for x € Q. We note that |Z — y(xg)| > p by the geometric assumption. Moreover,

|7 —y(z0)| < |7 — x0| + [0 — y(w0)| < p1 — p+p = p1,
so that & € Q. Next, it follows from (4.3.3)-(4.3.4) that v > 0 on © and that
0 <0(@) < K(|Z —y(zo)| — p) < K(|Z — zo| + [0 — y(20)| — p)
= KT — xo| < 2Kd(z,090).
On the other hand,
“Nu—v)+Au—v)=f—1+) < f-1<0,

in Q. We claim that
(u—v)t e HH(Q). (4.3.5)
It then follows from the maximum principle that v < v in Q. In particular, u(z) <
v(x) < 2Kd(z,012). Changing u to —u, one obtains as well that —u < v, so
that |u(Z)| < 2Kd(Z,09) for a.a. x € Q. In particular, |u(Z)| < 2Kd(Z,d90).
Since ¥ is arbitrary, we deduce that if z € Q such that 2d(z,9Q) < p1 — p, then
lu(z)| < 2Kd(z,00). For x € § such that 2d(x,09) > p; — p, we have u(z) <
A <207 (pr — p)td(w, 09), and the result follows.
It now remains to establish the claim (4.3.5). Let ¢ € C2°(RY) satisfy 0 < ¢ <
1, ¢ =1 on the set {|z — y(x0)| < po} and ¢ = 0 on the set {|x — y(zo)| > p1}. We
note that by (4.3.3), u < A < v, thus pu —v < u—v < 0 on QN {|z — y(ze)| >
po}. Therefore, (pu — v)t = (u— )t = 0 on QN {|z — y(zo)| > po}. On
QN {|lz —y(zo)| < po}, pu —v = u — v, so that (u — v)t = (pu —v)" in Q.
Let now (uy)n>0 C C(Q) satisfy u,, — u in H'(2) as n — oo. It follows (see
Proposition 5.3.3) that (gu, —v)" = (ou—v)* = (u—v)* in H'(Q). Thus, we
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need only verify that (ou, —v)™ € Hg(Q2). This follows from Remark 5.1.10 (i),
because pu,, =0 and v > 0 on ). O

REMARK 4.3.2. Here are some comments on Theorem 4.3.1.

(i) One verifies easily that it dQ is uniformly of class C?, then the geometric
assumption of Theorem 4.3.1 is satisfied.

(ii) Ome can weaken the regularity assumption on 2 and still obtain the continuity
of u at 0. However, one does not obtain in general the estimate (4.3.1).
(iii) Without any regularity assumption, it can happen that u ¢ Cy(f2) even for
some f € C®(Q2). For example, let Q = RV \ {0} with N > 2 and set
o(x) = coshzy for x € Q. It follows that ¢ € C®(RY), and —Ayp + ¢ = 0.
Let now 1 € C°(RY) satisfy ¢ = 1, for |z| < 1 and o = 0, for |z| > 2. Set
u = @, so that u € C°(RY). Tt is not difficult to verify that u € H} ()
(see Remark 5.1.10 iii). On the other hand, —Au 4+« = 0 for || < 1 and
for |z| > 2. In particular, if we set f = —Au + u, then f € C>(€2). Finally,

u & Cp(€2), since u =1 on ON.

COROLLARY 4.3.3. Suppose ) satisfies the assumption of Theorem 4.3.1. Let
A>0, fe  HY Q) NL®Q) and let u € HF(Q) be the solution of (4.2.1). If
f € LP(Q) for some 1 <p < oo withp> N/2, orif [ € Cy(R), then u € Cy(Q2).

Proor. By Corollary 4.2.7, u € C(2). Continuity at 91 follows from Theo-
rem 4.3.1. ]

4.4. Bootstrap methods

In this section, we consider an arbitrary open domain  C RY and we study
the regularity of the solutions of the equation

—Au=g(u) in €,
u=0 on 09,

where ¢ is a given nonlinearity. We use the regularity properties of the linear
equation (Sections 4.1, 4.2 and 4.3 above) and bootstarp arguments. We prove
two kind of results. We establish sufficient conditions (on ¢g and ) so that u €
L (). We also prove interior regularity, assuming u is (locally) bounded and g is
sufficiently smooth. Our first result is the following.

THEOREM 4.4.1. Let g(z,t) : @ x R — R be measurable in x €  for allt € R
and continuous in t € R for a.a. x € Q). Assume further that there exist p > 1 and
a constant C' such that

lg(z, )] < C(Jt] + [¢]7), (4.4.1)
for a.a. ¥ € Q and all t € R. Let u € H}(Q) satisfy g(-,u(-)) € H Q) and
assume that

in H=Y(Q). If N > 3, suppose that u € L1(Q) for some
N(p-1
q>p, q>—l%—l~ (4.4.3)

It follows that u € L (Q) N C(£).

PROOF. If N = 1, then the result follows from the embedding H}(Q) — Co(12).
If N =2, H}(Q) < L"(Q) for all 2 < r < co. In particular, it follows from (4.4.1)
that g(-,u) € LY (Q), and the result follows from Corollary 4.2.7. Therefore, we
may now suppose that N > 3. We first proceed to a reduction in order to eliminate
the first term in the right-hand side of (4.4.1). Let n € C*(R) satisfy n(t) = 0
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for 1] < 1. Set gu(x,£) = n(O)(t + g(, 1)) and ga(a,€) = (1 — (D) (¢ + gl ). To
follows from (4.4.1) that
|g1(x,t)| < C'min{1, |¢|}, (4.4.4)
lg2(z, )] < CJt", (4.4.5)

for a.e. € Q and all t € R. It follows from (4.4.4) that g (-,u) € L?(Q2) N L>=(Q).
Therefore, if we denote by u; € H}(Q) the solution of the equation

- A'Ufl +up = gl('a ’U,), (446)
then it follows from Corollary 4.2.7 that
up € LA(Q) N L>®(Q) N C(Q). (4.4.7)

Therefore, we need only show that ug = u —wu; € L*®(Q2) N C(2). We note that
by (4.4.2) and (4.4.6), uz € H}(Q) satisfies the equation

— Aug + uz = ga(-,u). (4.4.8)
We now note that, since u € L?(f2), we may assume that
q=2, (4.4.9)

and we proceed in three steps.

STEP 1. The case ¢ > Np/2. It follows from (4.4.5) that go(-,u) € L» ().
Since ¢/p > N/2 > 1, we deduce from Corollary 4.2.7 that uy € L*>(Q) N C(£),
and the result follows by applying (4.4.7).

STEP 2. The case p < ¢ < Np/2. Let

N
" Np-2g
by (4.4.3). Supppse u € L"(2) for some ¢ < r < Np/2. It follows from (4.4.5)
that go(-,u) € L¥ (). Since r/p > q/p > 1 and r/p < N/2, it follows from (4.4.8)
and Theorem 4.2.3 (iii) that uz € L?7(2). We note that by (4.4.9) and (4.4.10),

Or > r > 2, so that uy € L(Q) by (4.4.7). Therefore, u € L7(Q). Let now k
be an integer such that #¥q < Np/2 < 0¥tlq. Using successively r = 67q with

> 1, (4.4.10)

j =0,---,k in the argument just above, we deduce that u € L9k+1‘1(ﬂ). Since
0%+1q > Np/2, the result now follows by Step 1.

STEP 3. The case p = q (< Np/2). It follows from (4.4.5) that ga(-,u) €
L'(Q). By (4.4.8) and Corollary 4.2.4 (ii), we deduce that us € L"() for all
r € [1,N/(N —2)). Finally, we note that

N J—
N—-2 Np—2q

by (4.4.10). In particular, N/(N —2) > 2, so that u € L"(Q2) for all r € [2, N/(N —
2)). Thus we are reduced to the case of Step 2. d

q>4q,

If |Q] < oo, then one can weaken the assumption (4.4.1), as shows the following
result.

COROLLARY 4.4.2. Assume |Q| < co. Let g(x,t) : @ x R — R be measurable in
x € Q for all t € R and continuous int € R for a.a. © € Q. Assume further that
there exist p > 1 and a constant C' such that

lg(a,t)] < C(1+[t), (4.4.11)

for a.a. x € Q and allt € R. Letu € HF(Q) satisfy g(-,u(-)) € H1(Q) and (4.4.2)
in H=Y(Q). If N > 3, assume further (4.4.3). It follows that uw € L>(2) N C(Q).
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PrRoOOF. The proof of Theorem 4.4.1 applies, except for the beginning which
requires a minor modification. Instead of (4.4.4), the function g; satisfies |g1(x,t)] <
C; and so, g1(-,u) € L>®(2) — L3(), since || < co. The remaining of the proof
is then unchanged. (]

COROLLARY 4.4.3. Let g(z,t) : QxR — R be measurable in x € Q for allt € R
and continuous in t € R for a.a. x € Q. Assume further (4.4.10) (or (4.4.11) if
Q] < 00). Let u € HYQ) satisfy g(-,u(-)) € H-1(Q) and (4.4.2) in H-1(Q). If
N > 3, assume further that
N+2

: 4.4.12

p <
It follows that v € L (Q) N C(Q).

PROOF. If N > 3, then, since u € H}(Q), we have u € L%(Q) with ¢ =
2N/(N — 2). We deduce from (4.4.12) that ¢ satisfies (4.4.3). The result now
follows from Theorem 4.4.1 (or Corollary 4.4.2 if |Q] < c0). O

REMARK 4.4.4. Under the assumptions of Theorem 4.4.1 (or those of Corol-
lary 4.4.2 if |Q| < 00), we have g(-,u) € L?(2) N L>°(2). Therefore, if Q has a
bounded boundary of class C? (or, more generally, if  satisfies the assumptions
of Theorem 4.3.1), then it follows from Corollary 4.3.3 and Remark 4.3.2 (i) that
u € Cy (Q)

We now study higher order interior regularity.

THEOREM 4.4.5. Letm >0 and g € C"™(R,R). Ifu € LS () satisfies —Au =

loc

g(u) in D'(Q), then u € WFP(Q) N CH(Q) for all 1 < p < oo and all

loc loc

0 < a < 1. In particular, if g € C®°(R,R), then u € C*(9).
For the proof of Theorem 4.4.5, we will use the following estimate.

PROPOSITION 4.4.6. Let m > 1 and g € C™(R,R) such that g(0) = 0. Let
1 < p < oo. It follows that g(u) € W™P(RN) for all u € W™P(RN) N L°(RY).
Moreover, given any M > 0, there exists a constant C(M) such that

lg(@)lwm» < CM)|[ullwms, (4.4.13)
for all uw € W™P(RN) N L>®(RYN) such that ||lu|p~ < M.

ProoF. We fix M > 0, so that we may without loss of generality modify g(t)
for |t| > M. Considering for example a function n € C°(R) such that n(t) = 1 for
|t| < M, we may replace g(t) by n(t)g(t), so that we may assume

sup sup |9 (t)] < oo. (4.4.14)
teR 0<j<m
Next, we observe that if 0 < |3| < ¢, then it follows from Gagliardo-Nirenberg’s
inequality (5.4.2) (in fact, the simpler interpolation inequality (5.4.25) is sufficient)

that there exists a constant C' such that

% 4*[\13\
[ulig), 2. < Clulgfy llullz< (4.4.15)

for all u € C£(RY). We now proceed in three steps.
STEP 1. LP estimates. It follows from (4.4.14) that |g(t)| < C|t|, from which
we deduce that

lg()llze < CllullLe, (4.4.16)
for all u € LP(RY). Next, since |g(t) — g(s)| < C|t — s| by (4.4.14), we see that
llg(w) = g(v)llLr < Cllu—vl|Le, (4.4.17)

for all u € LP(RN).
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STEP 2. The case u € C°(RY). Let u € C®(RY) with |juljze~ < M. Let
1 < ¢ < m and consider a multi-index « with |a| = ¢. Tt is not difficult to show
that D%g(u) is a sum of terms of the form

k
g (u) H DPiu, (4.4.18)

J=1

where k € {1,...,¢} and the ;s are multi-indices such that o = 81 +--- 4 5§ and
|Bj| > 1. Let p;j = ¢p/|B;], so that

k
1 1
E — = - (4.4.19)
=P P

It follows from (4.4.19), Holder’s inequality and (4.4.15) that

k k
| T 2%l < [T ID%ulrs < CODJulr (1.4.20)
j=1 =1
We deduce from (4.4.16), (4.4.18) and (4.4.20) that (4.4.13) holds for all u €

C>(RY).

STEP 3. Conclusion. Letu € W™P(RY) with |lu| p~ < M and let (up)n>0 C
C>(RY) with u, — u in W™P(RY). We note that one can construct the se-
quence (up)n>0 by truncation and regularization, so that we may also assume that
[ltn||Loe < M. Therefore, it follows from Step 2 that

() lwms < COL) fatg s (4.4.21)

Since g(un) — g(u) in LP(RY) by (4.4.17), it follows from (4.4.21) that g(u) €
WmP(RYN) and that g(u,) — g(u) in W™P(RYN). (See Lemma 5.5.3.) Letting
n — oo in (4.4.21), we obtain (4.4.13). O

COROLLARY 4.4.7. Let m >0 and g € C"™(R,R). Let 2 be an open domain of
RN, If u e WIhP(Q) N L2, (Q) for some 1 < p < oo, then g(u) € WioP(Q).

PROOF. The result is immediate for m = 0, so we assume m > 1. Let w CC Q2
and let ¢ € C2°(Q) satisfy p(x) =1 for all z € w. Set

o(z) = {(p(x)u(x) it zeq,
0 if zeRN\Q,

so that v € W™P([RN) N L2(RY). Letting h(t) = g(t) — g(0), we deduce from
Proposition 4.4.6 that h(v) € W™P(RN). Since h(v) = h(u) = g(u) — g(0) in w, we
deduce that g(u) € W™P(w). Hence the result, since w CC €2 is arbitrary. O

PROOF OF THEOREM 4.4.5. Fix 1 < p < oco. Let 0 < j < m and assume that
u € WP(Q). (This is certainly true for j = 0.) It follows from Corollary 4.4.7 that
g(u) € WP(Q), so that u € leot2’p(Q) by Proposition 4.1.2 (i). By induction on j,

we deduce that u € W™ *?(Q) for all 1 < p < co. Let now w CC  and consider

loc

a function ¢ € C2°(Q) such that ¢ = 1 on w. It follows that v = u € W *?(Q)

for all 1 < p < co. Applying Theorem 5.4.16, we deduce that v € omLEE (Q) for
all N < p < oo. Since v = v in w and w CC 2 is arbitrary, the result follows. [

We end this section with two results concerning the case 2 = RY. One is the an
higher-order global regularity result, and the other an exponential decay property.
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THEOREM 4.4.8. Let m > 1 and g € C™(R,R) satisfy g(0) = 0. Let u €
L"(RN)YNL>®(RY) for some 1 < r < co. Ifu satisfies —Au = g(u) in D' (RY), then
u € WmH2P(RN) for all v < p < co. In particular, u € C;*TH(RY) n o™ +La(RN)
forall0 < a< 1.

Proor. Fix r < p < co. Let 0 < 7 < m and assume that u € Wj’p(RN).
(This is certainly true for j = 0.) It follows from Proposition 4.4.6 (if j > 1; or
a direct calculation based on the property g € C! and g(0) = 0 if j = 0) that
g(u) € WI3P(RN), so that u € Wi+2P(RN) by Proposition 4.1.1. By induction on
j, we deduce that u € W™T2P(RY) for all 7 < p < co. The last property follows
from Theorem 5.4.16. O

PROPOSITION 4.4.9. Let g € C1(R,R). Assume g(0) = 0, ¢g’(0) < 0 and let
u € L"(RN)NL=®(RYN) for some 1 <1 < co. If u satisfies —Au = g(u) in D' (RY),
then there exists € > 0 such that sup 1% (Ju(z)| + |[Vu(z)]) < co.

zERN
PROOF. We set § = /—¢/(0) > 0 and h(t) = g(t) + §%t, so that
ht) o, (4.4.22)
t t—0
and
— Au+ 6%u = h(u). (4.4.23)

3|

Given ¢ > 0, we set () = eT#lsT. One verifies easily that ¢. € W1 (RN) and
that
[Voe| < dpe. (4.4.24)

Next, we note that v € W39(RYM) for all p < ¢ < oo by Theorem 4.4.8. In
particular, u and Vu are globally Lipschitz continuous and |u(z)| + |Vu(z)| —
0 as |#| — co. Moreover, the equation (4.4.23) makes sense in LP(RY). Since
eu € WHL(RN) N WL (RN), and in particular g.u € WP (RN), we obtain by
multiplying the equation by p.u and integrating by parts (see formula (5.1.5))

/ 305|Vu|2+52/ <p€u2:/ gaguh(u)f/ uVu - Ve
RN RN RN RN

1 52
S/ %uh(U)Jr—/ %IVUI2+—/ peu?,

where we used (4.4.24) and Cauchy-Schwarz in the last inequality. Thus we see
that

/ o | Vul* + 52/ peu? < 2/ peuh(u). (4.4.25)
RN RN RN
Next, we deduce from (4.4.22) that there exists 7 > 0 such that 4th(t) < §%t? for all

[t] <mn. Also, since u(z) — 0 as |z| — oo, there exists R > 0 such that |u(z)| <7
for |z| > R. Thus we see that 2uh(u) < (§2/2)u? for |z| > R, so that

2
2/ peuh(u) < 2/ peuh(uw) + 5—/ R
RN {l2|<R} 2 J{lzl>Ry

Applying now (4.4.25), it follows that

/ ¢€|Vu|2+52/ peu? < 4/ -uh(u)
RN RN {|z|<R}

4/ 11| [h(u)] < oo.
{lz|<R}

IN
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Finally, letting € | 0, we deduce that

/ el wu)? +(52/ OlPly? < .
RN RN

Since both u and Vu are globally Lipschitz continuous, the exponential decay easily
follows. 0

4.5. Symmetry of positive solutions

In this section, we show that if u € H}(Q) is a solution of the equation —Au =
g(u) in H=1(Q), then u inherits some of the symmetry properties of 2, under certain
assumptions on g and u. The main result of this section is the following theorem,
due to Gidas, Ni and Nirenberg [22].

THEOREM 4.5.1. Let Q be the unit ball of RN. Let g : R — R be locally
Lipschitz continuous and let uw € H () N L>=(Q) satisfy —Au = g(u) in H(Q).
If u > 0 in Q, then u is radially symmetric and decreasing in r.

Since € is symmetric about every hyperplane of RY containing 0, Theorem 4.5.1
is a consequence of the following more general result (and Remark 4.5.3 (ii)).

THEOREM 4.5.2. Let Q be an open, bounded, connected domain of RYN. Let
g : R — R be locally Lipschitz continuous and let u € HE () N L>®(Q) satisfy
—Au = g(u) in H-1(Q). Suppose further that

Q is convex in the x1 direction, (4.5.1)

and
Q is symmetric about the hyperplane x1 = 0. (4.5.2)

If u > 0 in Q, then u is symmetric with respect to x1 and decreasing in x1 > 0.

REMARK 4.5.3. Here are some comments on Theorem 4.5.2.

(i) The assumption (4.5.1) means that, given any y € RN~1 the set {z; €
R; (x1,y) € 2} is convex (i.e. is an interval). The assumption (4.5.2) means
that, given any 21 € R and y € RN 7L if (z1,y) € Q, then (—21,y) € Q.

(i) Clearly, one can replace the direction z; by any arbitrary direction in SV,

(iii) If g(0) > 0 and if w > 0 in €, then it follows from the strong maximum
principle that if u # 0, then u > 0 in Q. Thus if g(0) > 0, the assumptions of
Theorem 4.5.2 can be weakened in the sense that we need only assume u # 0
and u > 0 in Q.

(iv) The conclusion of Theorem 4.5.2 can be false if 2 is not convex in the z;
direction or if u is not positive in 2. Here are two simple one-dimensional
examples. Let Q = (—1,0) U (0,1). We see that € is symmetric about z = 0
but € is not convex. Let u be defined by u(z) = sinmz if 0 < 2 < 1 and
u(z) = 2sin(—mz) if =1 < x < 0. It follows that v > 0 in © and that
u € H}(Q) satisfies the equation —Au = 72u. However, u is not even. Let now
Q= (—1,1), so that € satisfies both (4.5.1) and (4.5.2). and let u(x) = sin 7.
It follows that u € HJ () and that —Au = m?u. However, u is neither positive
in € nor even.

(v) We note that no regularity assumption is made on the set (.

We follow the proof of Berestycki and Nirenberg [9], based on the “moving
planes” technique of Alexandroff. We begin with the following lemma, which gives
a lower estimate of A\q(—A;Q) in terms of Q.

LEMMA 4.5.4. There exists a constant a(N) > 0 such that

M (—A;Q) > a(N)|Q ¥, (4.5.3)
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for every open domain @ C RN with finite measure, where \;(—A;Q) is defined
by (2.1.5).

PrOOF. It follows from Poincaré’s inequality (5.4.73) that
2
lullZ> < CN)IQUN [ VullZ2,
which implies (4.5.3) with a(N) =1/C(N). O
LEMMA 4.5.5. Let Q C RN be an open domain and let g : R — R be globally
Lipschitz continuous. If u,v € LL _(Q), then there exists a € L°°() such that

loc

g(u) — g(v) = a(u—v) a.e. inQ and ||a||L~ < L where L is the Lipschitz constant
of g.
PROOF. Let a be defined a.e. by
ae) = | SO (@) # (@),
0 if wu(x)=v(x),

and, given any € > 0, let
(u—v)(g(u) —g(v))
e+ (u—wv)2
It is clear that a. is measurable and that |a.| < L where L is the Lipschitz constant

of g. Moreover, a. — a a.e. as € ] 0, so that a € L>°(Q). Finally, (u—v)a.(u—v) —
g(u) — g(v) a.e. as e | 0, so that g(u) — g(v) = a(u — v). O

Az —

PROOF OF THEOREM 4.5.2. We note that in dimension N = 1, the result
follows from Remark 1.2.1. Thus we now assume N > 2. We first observe that, since
u € L>®(Q), we may change without loss of generality ¢(¢) for all sufficiently large
values of |t|. In particular, we may assume that g is globally Lipschitz continuous
and we denote by L the Lipschitz constant of g. Next, we note that u + g(u) €
L>(Q), so that u € C(Q2) by Corollary 4.2.7. We now introduce some notation.
We denote by P the orthogonal projection on RN=1 ie. if z = (z1,y) € RY, then

Px =y.
Let
U=PQ={yecRYL 3z, € R, (21,y) € Q}.
Given y € U, let
ply) = sup{z1 € R; (21,y) € Q}.
It follows from the assumptions (4.5.1)-(4.5.2) that

Q=Y (=py),py)) x {y}. (4.5.4)

In particular, we see that y € U if and only if (0,y) € Q, so that U is an open,
bounded, connected subset of RV=1. Set

R =sup{p(y); y € U}. (4.5.5)
Given 0 < A < R, we define the open set
M={ny eBa>Ab= U (Ap@y) x{y} (4.5.6)

where

Uy =P ={y € Us p(y) > A}
We see that Q) # 0 for 0 < A < R, that Q) is decreasing in A € [0, R], that Qp =0
and that

2] 5,0 (4.5.7)



84 4. REGULARITY AND QUALITATIVE PROPERTIES

Moreover, it follows from (4.5.4)-(4.5.6) that, given any (z1,y) € R x RV—1,
(x1,9) € Qx = 22X —21,y) € Q.
Given 0 < XA < R, we define the function uy on 2y by
ux(z1,y) = u(2A — x1,y) —u(z1,y), forall (z1,y) € Q. (4.5.8)

We then see that
uy € HI(Q,\) N C(Q)\),
and that —Auy = fy in H-1(Q), where fa(z1,y) = g(u(2)\ — 21, y) — g(u(x1,y))
for all (z1,y) € Q. Applying Lemma 4.5.5, we deduce that there exists a function
ay € L>=(£2) such that
laxllz= < L, (4.5.9)
and fy = ajuy. Therefore,
— Auy = auy, (4.5.10)
in H=1(Q,). We now proceed in nine steps.
STEP 1. If wis an open subset of €2, then Pw is an open subset of /. Indeed,
let y° € Pw and fix 29 € R such that (29,4°) € w. w being open, there exists ¢ > 0
such that if |(z1 — 29,y — y°)| < & then (z1,y) € w. In particular, if |y — y°| < e
(where the norm is in RV~1), then (2{,y) € w, so that y € Pw. Thus Pw is an
open subset of U.
STEP 2. If 0 < A < R and if w C Q) is a connected component of 2, then

w= ygo(/\,p(y)) x{y}, (4.5.11)

where O = Pw. Indeed, let (29,9y%) € w. Tt follows from (4.5.6) that A < 29 <
p(y°) and that (X, p(y)) x {y°} C Q. Since (A, p(y)) x {y°} is a closed, connected
subset of 2, w is a connected component of Qy, and (A, p(y)) x {y°} Nw # 0, we
see that (A, p(y)) x {y°} C w. In particular, w is given by (4.5.11).

STEP 3.  For almost all y € U, u(z1,y) — 0 as x1 1 p(y). Indeed, let
(un)n>0 C CX(Q) satisfy u, — u in H}(). In particular, u,(-,y) — u(-,y) €
H'(—p(y),p(y)) for a.a. y €U and

|O1un — 81“”%2(9) = /u l[un(,y) — “('W)H?{l(—p(y),p(y)) dy — 0.

n—oo

Therefore, up to a subsequence, u, (-, y) — u(-,y) in H*(—=p(y), p(y)) for a.a. y € U.
Since clearly u, (-, y) € Hi(—p(y),p(y)) for all y € U, we deduce that u(-,y) €
HY(—p(y), p(y)) for a.a. y € U, and the result follows.

STEP 4. If 0 < A < R and w C Q) is a connected component of €2, then
uyx Z 0 in w. Indeed, let O = P(w) so that O is an open subset of U by Step 1.
It follows from Step 3 that there exists y € O such that u(x1,y) — 0 as z1 T p(y).
We note that —p(y) < 2XA — p(y) < p(y), so that (2A — p(y),y) € Q. In particular,
u(2X — p(y),y) > 0 and u(2X — x1,y) — w(2X — p(y),y) as z1 T p(y). Thus we see
that ux(z1,y) = w(2X — p(y),y) > 0 as z1 1 p(y). Since (x1,y) € w for p(y) — =1
sufficiently small by (4.5.11), the result follows.

STEP 5. If 0 < A < R, then uy € Hj(Q)). Indeed, let (un)n>0 C C°(2)
satisfy u, > 0 and u,, — u in H}(Q) (see the beginning of Section 3.1). It follows
easily that (u,)x — uy in H'(Qy), so that (uy)y — uy in H'(Qy). It thus suffices
to show that (u,)y € H(2) for all n > 0. Since (u,)y € C(2), we need only
show that (uy), vanishes on 99\ (see Remark 5.1.10 (ii)). It is not difficult to
show that

o0 = (020 {(z1,9) € RN 1 > AN u( U {(Aw)})

vells (4.5.12)

=: AUB.
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If € A, then u,(x) = 0 since x € 09, so that (u,)x(x) > 0. Thus (u,); () = 0.
If x € B, then (up)x(z) = u(z) —u(z) = 0, so that (uy,)) (z) = 0. Thus we see that
(un)y (z) = 0 for all z € 90, which proves the desired result.

STEP 6. If 0 < A < R and uy > 0 in €, then uy > 0 in Q). Indeed, it
follows from (4.5.9)-(4.5.10) that —Auy + Luy > 0 in H~'(Q,). Using Steps 4
and 5, we may apply the strong maximum principle in every connected component
of Q2 and the result follows.

STEP 7. There exists 0 < § < R such that if R —§ < A < R, then uy > 0 in
Q. Indeed, we observe that

AL(—A = ax; Q) > A (=A;Q)) — |lax]|z> > a(N)|Q)\|_% —L,

by Lemma 4.5.4 and (4.5.9). Applying now (4.5.7), we see that there exists § > 0
such that A\;(—=A —ay) > 0 for R — ¢ < A < R. Therefore, we deduce from Step 5
and the maximum principle that uy > 0 in ), and the conclusion follows from
Step 6.

STEP 8. wuy > 01in Q) for all 0 < A < R. To see this, we set

w=1inf{0 <o < R; uy > 01in Q) for all 0 < A < R},

so that 0 < p < R by Step 7. The conclusion follows if we show that p = 0.
Suppose by contradiction that g > 0. Since u € C'(£2), we see by letting A | u that
u, > 0in ,, and it follows from Step 6 that u, > 0in Q,. Let K C Q, be a
closed set such that
2
a(N)|Q, \ K|~ > 2L, (4.5.13)
where a(NV) is given by Lemma 4.5.4. Since u,, > 7 > 0 on K by compactness, we
see that there exists 0 < 6 < p such that
u, >0 on K, (4.5.14)

for p — 9 < v < p. On the other hand, by choosing § > 0 possibly smaller, we
deduce from (4.5.13) that

a(N)|Q \ K% > L, (4.5.15)

for p — 0 < v < p. In particular,
A=A+ a0\ K) > (=89, \ K) — [lay[|L~

s (4.5.16)
> a(N)Q,\K|"~¥ —L>0,
by Lemma 4.5.4, (4.5.9) and (4.5.15). We claim that
u, € Hy(Q,\ K). (4.5.17)

To see this, we observe that by (4.5.14), u, vanishes in a neighborhood of K.
Therefore, there exists a function § € C°(R™ \ K) such that fu;, = u; . Consider a
sequence (¢n,)n>0 C C2°(£,) such that ¢, — u,, in Hi(£,). Since ¢, is supported
in a compact subset of Q, \ K, we see that 0y, € H}(Q, \ K); and since 0p,, —
Ou;, =wu, in HY(Q, \ K), the claim (4.5.17) follows. It now follows from (4.5.16),
(4.5.17) and the maximum principle that u, > 0 in , \ K. Applying (4.5.14), we
deduce that v, > 0 in €,, so that v, > 0 in €, by Step 6. This contradicts the
definition of p.

STEP 9. Conclusion. We deduce in particular from Step 8 (by letting A | 0)
that u(z1,y) > u(—z1,y) for all (z1,y) € Q with 1 > 0. Changing u(z1,y) to
u(—x1,y), we also have the reverse inequality, so that u is symmetric with respect
to x1. Moreover, we deduce from Step 8 that if (z1,y) € Q with 23 > 0, then
w(2A — x1,y) > u(zy,y) for all 0 < A < x1. In particular, if 0 < 2} < z1, then
letting A = (21 + #})/2 < 21 we obtain u(x1,y) < u(z],y). This proves that u is
decreasing in x; > 0. (]
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REMARK 4.5.6. Part of the technicalities in the proof of Theorem 4.5.2 come
from the fact that we do not assume that u € Cp(€2). Indeed, if u € Cp(£2), then
Steps 3, 4, 5 and the end of Step 8 are trivial. However, since we did not make any
smoothness assumption on €2, it is not clear how one could deduce the property
u € Cp(?) from standard regularity results.



CHAPTER 5

Appendix: Sobolev spaces

Throughout this section, € is an open subset of RY. We study the basic
properties of the Sobolev spaces WP (Q) and Wy (§2), and particularly the spaces
H'(Q) and H}(Q) (which correspond to m = 1 and p = 2). For a more detailed
study, see for example Adams [1] .

5.1. Definitions and basic properties

We begin with the definition of “weak” derivatives. Let u € C™(Q), m > 1. If
a € NV is a multi-index such that |a| < m, it follows from Green’s formula that

/QDaugaz(—l)W/QuDacp, (5.1.1)

for all ¢ € C"(£2). We note that both integrals in (5.1.1) make sense since D®u¢p €
C.(2) and uDYp € C.(R2). As a matter of fact, the right-hand side makes sense as
soon as u € Li, () and the left-hand side makes sense as soon as D% € L. (1).
This motivates the following definition.

DEFINITION 5.1.1. Let u € Ll _(Q) and let @ € N¥. We say that D% €
() if there exists u, € L (Q) such that

loc

/Quaga:(q)‘al/ﬂupw, (5.1.2)

for all ¢ € Clal(ﬂ). Such a function u, is then unique and we set D%u = uq,.
If uo, € LY () (respectively, u € LP(Q)) for some 1 < p < oo, we say that

loc
Dy € L, () (respectively, D*u € LP(2)).

The Sobolev spaces W P(€) are defined as follows.

Ll

loc

DEFINITION 5.1.2. Let m € N and p € [1, 00]. We set
W™P(Q) ={u € LP(Q); D € LP(Q) for |a| < m}.
For u € W™P(Q), we set

lullwrr = > 1Dl Lr,

laf<m

which defines a norm on W™P(Q2). We set
Hm(Q) _ W”L’Q(Q),
and we equip H™ () with the scalar product

(u,v)gm = /DauDa’u dx,
2 )y

laf<m

which defines on H™(2) the norm

1
2
lullem = (32 107l3:)",

laf<m

87
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which is equivalent to the norm || - ||ym.2.

PROPOSITION 5.1.3. W™P(Q) is a Banach space and H™ () is a Hilbert space.
If p < oo, then W™P(Q) is separable, and if 1 < p < oo, then W™P(Q) is reflexive.

PROOF. Let k = 1+ N +---+ N™ = (N —1)/(N—-1) (k = m + 1 if
N = 1), and consider the operator T : W™P(Q) — LP(Q)* defined by

Tu = (Do‘u)‘odgm.

It is clear that T is isometric and that T is injective. Therefore, W™ () can be
identified with the subspace T(W™?(Q)) of LP(Q)".

We claim that T(W™P(Q)) is closed. Indeed, suppose (u,)n>0 is such that
Up — w in LP(Q) and D%uy, — uq in LP(Q) for 1 < |a| < m. Applying (5.1.1) to
u, and letting n — oo, we deduce that D*u € LP(Q)) and that D%*u = u,; and
so, u € W™P(Q). Therefore, T(W™P(Q)) is a Banach space, and so is W"™P(Q).
If p < oo, then LP(Q)* is separable. Thus so is T(W™P(£2)), hence W™P(1Q).
Finally, if 1 < p < oo, then LP(Q)* is reflexive. Thus so is T(W™P(f2)), hence
Wmr(Q). O

REMARK 5.1.4. Here are some simple consequences of Definition 5.1.2.

(i) It follows easily that if v € W™P(Q) and if v € C™(RY) is such that
sup{||D“v||p=; |a| < m} < oo, then wv € W™P() and Leibnitz formula
holds.

(ii) If || < oo, then LP(Q2) — L7(f2) provided p > ¢. It follows that WP () —
Wma(Q).

REMARK 5.1.5. One can show that if p < oo, then W™P(2) N C>°(Q) is dense
in W™P(Q) (see Adams [1], Theorem 3.16 p. 52).

We now define the subspaces Wi (Q) for p < co. Formally, W;""(£2) is the
subspace of functions of W™ P(£) that vanish, as well of their derivatives up to
order m — 1, on 9f).

DEFINITION 5.1.6. Let 1 < p < oo and let m € N. We denote by Wy (Q) the
closure of C2°(Q) in W™ (1), and we set HJ*(Q) = WJ*(Q).
REMARK 5.1.7. It follows from Proposition 5.1.3 that W;"*(£2) is a separable

Banach space and that W;"?(Q2) is reflexive if p > 1. In addition, HJ* () is a
separable Hilbert space.

In general W)""(Q) # W™P(Q2), however both spaces coincide when 9 is
“small” (see Adams [1], Sections 3.20-3.33). In particular, we have the following
result.

THEOREM 5.1.8. If 1 <p < oo and m € N, then WP (RYN) = W™P(RY).
The proof of Theorem 5.1.8 makes use of the following lemma.

LEMMA 5.1.9. Let p € C(RY), p > 0, with suppp C {z € RY; |z| < 1} and
lpllzr = 1. Forn € N, n > 1, set p,(z) = nNp(nx). (pn)n>1 is called a smoothing
sequence.) Then the following properties hold.

(i) For every u € L (RN), p, xu € C°(RY).

(i) If u € LP(RN) for some p € [1,00], then p, xu € LP(RY) and ||p, x ul|L» <
llullre. If p < oo orif p=oc0 and u € Cy,u(RY), then pp xu — u in LP(RY)
asn — oo.

(iii) If u € W™P(RYN) for some p € [1,00] and m € N, then p, xu € W™P(RYN)
and D®(py, * u) = pn * D% for |a| < m. In particular, if p < oo or if p = 0o
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and D%u € Cyo(RY) for all |a| < m, then p, xu — u in W™P(RY) as
n — oo.

PROOF. (i) Since
pusua) = [ pule =iy

it is clear that p, xu € C(R™). One deduces easily from the above formula that
D%(pp xu) = (D%py) * u, and the result follows.
(ii) The first part of property (ii) follows from Young’s inequality, since

louller = [ pnerde=n¥ [ ptnaydo= [ pwrdy=1.
RN RN RN

Consider now u € C’b7u(RN) and set u, = p, x u. We have

up () = /RN pn(Y)u(z —y)dy, wu(z)= /RN pn(y)u(z) dy;
and so,
un(a) =~ u(e) = [ pulu)(ue ~ ) ~ u(e) dy

]RN
Therefore,

fun(z) — u(2)] < / pu()u(z — ) —u(@)|dy < sup fulz - y) - u(z)],
RN ly|<1/n

since supp pn C {y; |y| < 1/n}. Since w is uniformly continuous, we have

sup sup |u(z —y) —u(z)] — 0;

T€RN |y|<1/n nree
and so, u, — u uniformly. Consider next u € LP(RY), with p < oo, and let £ > 0.
There exists v € C.(RY) such that ||u — v||z» < /3. Furthermore, it follows from
what precedes that for n large enough, we have |[v — p, * v||» < €/3. (Since
pn * v — v uniformly and p, * v is supported in a fixed compact subset of RV.)
Finally, it follows from the inequality of (ii) that ||ppxv—pp*ul|rr < [[u—v||Lr < /3.
Writing

U—Pp U=U—V+V—Pp*V+ Pp*V— pp*u,
we deduce that ||u — p, * u||r < e. Since £ > 0 is arbitrary, this completes the
proof of property (ii).
(iii) For any v : RV — R, we set v(z) = v(—x). Given u € W™P(RY) and

¢ € C™(RY), we have

[ oarupro= [ a@spto)= [ upEs)
RN RN RN
By definition of D%u, we obtain
[ (o upro= -1y
RN

This means that D®(p,, x u) € LP(RY) and that D%(p, * u) = p, * D*u; and so,
pn*xu € W™P(RN). The convergence property follows from property (ii). O

Du(fy * 9) = (~1)l / (pn * D).

RN RN

PROOF OF THEOREM 5.1.8. Let u € W™P(RY) and ¢ > 0. It follows from
properties (iii) and (i) of Lemma 5.1.9 that there exists v € W™P(RN) 0 C*°(RY)
such that ||u—v|jwm.e» < e/2. Fix now n € C2(RY) such that 0 <5 <1, n(z) =1
for |z| < 1 and n(z) = 0 for || > 2. Set n,(z) = n(z/n) and let v, = n,v. It is
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clear that v, € C*(RY), and we claim that n,v — v in W™P(RY) as n — oo.
Indeed, it follows from Leibnitz’ formula (see Remark 5.1.4 (i)) that

D% (n,v) = Z DPp,DVu.
Bty=a

Since ||DVn,|lz~ < Cyn~ 11 it follows that all the terms with [3] > 0 converge
to 0 as n — co. The remaining term in the sum is 7, D“v which, by dominated
convergence, converges to D%v in LP(RY). We deduce that D%(n,v) — D% in
LP(RY), which proves the claim. Therefore, there exists w € C>°(RY) such that
[lv —wl||wm.» <e/2. This implies that |ju —w|wm.» < e, and the result follows. O

REMARK 5.1.10. We describe below some useful properties of the Sobolev space

Wy? ().

(i) If w € W™P(Q) and if suppw is included in a compact subset of €2, then
u € Wy"P(2). This is easily shown by using the regularization and truncation
argument described above.

(ii) If w € WhP(Q) N C(Q) and if ujpq = 0, then u € WyP(€). Indeed, if u has
a bounded support, let F € C1(R) satisfy |F(t)| < |t|, F(t) = 0 for |t| < 1
and F(t) = t for [t| > 2. Setting u,(z) = n~'F(nu(z)), it follows from
Proposition 5.3.1 below that u,, € W1P(Q). In addition, one verifies easily
(see (5.3.1) below) that u, — u in WP(Q) as n — oo. Since suppu,, C {z €
Q; |u(z)] > n~'}, suppu, is a compact subset of Q, thus u, € Wy (Q) by (i)
above; and so u € Wol’p(Q). If supp u is unbounded, we approximate u by &,u
where &, € C°(RY) is such that &,(z) = 1 for |z| < n.

(iii) If u € WyP(2) NC(Q) and if Q is of class C, then ujpq = 0 (see Brezis [11],
Théoreme IX.17, p. 171). Note that this property is false if  is not smooth
enough. For example, one can show that if Q = RY \ {0} and N > 2, then
H(Q) = HY(Q). In particular, if u € C°(RY) and u(0) # 0, then u € H}(Q2)
but u # 0 on 9.

(iv) Let u € LL () and define u € L{ (RY) by

loc loc

~ o Ju(x)ifreQ,
U =Voitz g

If u € WyP(Q), then & € WHP(RN). This is immediate by the definition
of W, (). More generally, if u € WJ"P(Q), then & € W™P(RY). Con-
versely, if © € WIP(RY) and if Q is of class C! (as in part (iii) above, the
smoothness assumption on ( is essential), then u € W, *(Q) (see Brezis [11],
Proposition IX.18, p. 171).

PROPOSITION 5.1.11. Let 1 < p < oo and let u € WHP(Q). Let w C Q be a
connected, open set. If Vu =0 a.e. on w, then there exists a constant ¢ such that
u=ca.e onw.

PROOF. Let # € w and let p > 0 be such that B(x,p) € w. We claim that
there exists ¢ such that u = c a.e. on B(x, p). The result follows by Connectedness.
To prove the claim, we argue as follows. Let 0 < ¢ < p and let n € C>=(RY)
satisfy n = 1 on B(x,p —€), suppn C B(x,p), and 0 < n < 1. Setting v = nu,
we deduce that v € W' (B(z,p)) and that Vo = 0 a.e. on B(z,p — ). We
now extend v by 0 outside B(z,p) and we call ¥ the extension. Let (p,)n>0 be
a smoothing sequence and fix n > 1/(p — ). We have w,, = p, xv € CZ(RY).
Furthermore, since Vw,, = p,, * VU, and since supp p,, C B(0,1/n), it follows that
Vw, =0 on B(z,p — e — 1/n). In particular, there exists ¢, such that w, = ¢,
on B(x,p —¢e —1/n). Since w, — v in L'(RY), we deduce in particular that for
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any < p — g, there exists ¢(u) such that v = ¢(u) on B(x, p — e — p). Therefore,
¢(u) is independent of p and we have T = ¢ on B(z, p — ). for some constant c. It
follows that ¢ is independent of e, and the claim follows by letting € | 0. O

PROPOSITION 5.1.12. Let u € W™ (RY) for somem > 0. If D*u € Cj, ,(RY)
for all || < m, then uw € C",(RN). In other words, the distributional derivatives
of u are the classical derivatives.

PROOF. Let (pp)n>0 be a smoothing sequence and set w, = p, * u. It follows
from Lemma 5.1.9 that u, € C®(RN) N W™>(RY). Moreover, it is clear that
D%u,, = p,* (D) is uniformly continuous on RY for all |a| < m and n > 0. Thus
(Un)n>0 C C" (RN). Moreover, it follows from Lemma 5.1.9 that D*u, — D%u
in L®(RY), i.e. up = uin W™ (RN). Since 3, (RY) is a Banach space, it is a
closed subset of W™ (RY), and we deduce that u € Gyl (RM). O

We next introduce the local Sobolev spaces.

DEFINITION 5.1.13. Given m € N and 1 < p < oo, we set Wl (Q) = {u €
(Q); D> € LY (w) for all |a| < m}.

loc

PROPOSITION 5.1.14. Let m € N and 1 < p < oo, let. If u € L, (), then the
following properties are equivalent.

(i) ue Wir(9).

(i) wy, € W™P(w) for all w CC Q.
(iii) gu € Wy"P(Q) (p € W™>(Q) if p=00) for all ¢ € C°().

Ll

loc

PROOF. (i)=-(ii). This is immediate.

(ii)=(iii). Suppose u € W;P(Q) and let ¢ € CX(Q). If w CC Q contains
supp ¢, then ¢u has compact support in w. Since u € W™P(w), we know (see
Remark 5.1.4 (i)) that ¢gu € W™P(w). If p < oo, then ¢gu € Wi "(Q) by Re-
mark 5.1.10 (i).

(iii)=-(i). Suppose ¢pu € W™P(Q) for all ¢ € CX(£2). Given |a| < m, we
define u, € LY, (Q2) as follows. Let w CC Q and let ¢ € C°(Q) satisfy ¢(z) =1
for all z € w. We set (uq)|, = D*(¢u)|, and we claim that (uq)), is independent

of the choice of ¢, so that u, is well-defined. Indeed, if ¢ € C°(f) is such that
¥(xz) =1 on w, then for all p € C&(w),

/ D (yhu — pu)p = (—1)l / (¥ — p)uDp = 0,

so that D*Yu = D%pu a.e. in w. It remains to show that u, = D%u. Indeed, let
la] <m and ¢ € C(‘;al(ﬂ). Let ¢ € C°(Q) satisty ¢(z) = 1 on supp ¢. We have

(*1)‘“'/(2%@:/QmDaso:/QuD“cp,

and the result follows. O

We now introduce the Sobolev spaces of negative index.
DEFINITION 5.1.15. Given m € N and 1 < p < oo, we define W= (Q) =
(Wg™P(Q))*. For p =2, we set H-™(Q) = W-™2(Q) = (H*(Q))*.
REMARK 5.1.16. Here are some comments on Definition 5.1.15.
(i) Tt follows from Remark 5.1.7 that w—mp’ (©) is a Banach space. If p > 1,

then W=7 (Q) is reflexive and separable. H~™(f2) is a separable Hilbert
space.
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(i) It follows from the dense embedding C°(Q) < W ™P(Q) that W=7 (Q) is
a space of distributions on . In particular, we see that (u, @)Wﬂn,p/7wén,,p =
(u, ©)pr p for every u € W= () and ¢ € C°(Q). Like any distribution, an
element of W' () can be localized. Indeed, if u € D’(€2) and €' is an open
subset of €2, then one defines u |/ as follows. Given any ¢ € C°(Q'), let ¢ €
Ce°(Q) be equal to ¢ on Q" and to 0 on Q\ . Then ¥(p) = (u, P)p (), D)
defines a distribution ¥ € D’(Q)'), and one sets ujqr = W. Note that this
is consistent with the usual restriction of functions. Since H@HW[;""P(Q') <

mp (g, we see that if w € W (Q), then ugq € W () and
wliwgr @) |
Hulgl”W*”"vp/(Q’) § HUHW—m,p’(Q).

DEFINITION 5.1.17. Given m € N and 1 < p < oo, we define ngcm’p/(Q) =
{u € D'(Q); v, € WP (w) for all w cC Q}. (See Remark 5.1.16 (i) for the
definition of uy,,.) For p =2, we set HJ["(Q) = W2 (9).

loc loc

PROPOSITION 5.1.18. If 1 < p < oo, then WP (Q) — LP(Q) < W~12(Q),
with dense embeddings, where the embedding e : LP(2) — W ~YP(Q) is defined by

eu(gp):/ﬂu(m)cp(x)d:c, (5.1.3)

for all o € WEP'(Q) and all u € LP(Q).

Proposition 5.1.18 is an immediate application of the following useful abstract
result.

ProproSITION 5.1.19. If X and Y are two Banach spaces such that X — Y
with dense embedding, then, the following properties hold.
(i) Y* < X*, where the embedding e is defined by (ef,x)x+ x = (f,x)y+y, for
allx € X and f € Y™,

(ii) If X is reflexive, then the embedding Y* — X* is dense.

(iii) If the embedding X — Y is compact and X is separable, then the embedding
Y* — X* is compact. More precisely, if (y,)n>0 C Y* and ||y, |y < M,
then there exist a subsequence (ng)p>0 and y' € Y* with ||y'|y+ < M such
that y,, —y" in X* as k — co.

PrROOF. (i) Consider ¥/ € Y* and z € X — Y. Let ey/(z) = (¢, )y~ y.

Since

ley' (@) < [y ly+llzlly < Clly v+ ll=llx,
we see that e € L(Y*, X*). Suppose that ey’ = ez, for some ',z € Y*. It
follows that (y" — 2’,z)y~y = 0, for every x € X. By density, we deduce that
(y — 2, y)y«y =0, for every y € Y; and so y' = z’. Thus e is injective and (i)
follows.

(ii) Assume to the contrary that Y* # X*. Then there exists g € X** = X
such that (y/,z0)x~ x = 0, for every ¢y € Y* (see e.g. Brezis [11], Corollary L.8).
Let E = Rzp C Y, and let f € E* be defined by f(Azg) = A, for A € R. We
have || f||g=~ = 1, and by the Hahn-Banach theorem (see e.g. Brezis [11], Corol-
lary 1.2) there exists y' € Y* such that ||y/||y+ = 1 and (v, zo)y~y = 1, which is a
contradiction, since (v, z0)y+y = (¥, z0)x+ x = 0.

(ili) Let Bx« (respectively, Bx, By«, By ) be the unit ball of X* (respectively,
X,Y*,Y). Consider a sequence (y,,)n>0 C By+. Since Y'* is the dual of a separable
Banach space, it follows (see e.g. Brezis [11], Corollary III1.26) that there exist a
subsequence, which we still denote by (y,,)n>0, and an element ¢y’ € By such that
y, — vy in Y* weak*. We show that ||y, — v'||x+ — 0, which proves the desired
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result. We note that

v =¥ llx- = P [(yr, — ', ) x+ x|
reBx
5.1.4
= sup [(y, — ¥’ 2)y+yl, 514
xEBx

by (i). Let € > 0. Since By is a relatively compact subset of Y, we see that there
exists a (finite) sequence (x)1<j<¢ C Bx such that for every z € Bx, there exists
1 < j < {such that ||z — zj[|ly <e. Given z € Bx and 1 < j < ( as above, we
deduce that
(o =¥ 2y v < |(yn =¥ 2 —2j)y v |+ [(yn — ¥ 2)v v

<ellyn = ¥'llvs +1(n = 2y vl

<2+ |y — ¥ )y vl
Aplying now (5.1.4), we deduce that

lyr, — ' llx+ <26+ sup [(y,, — v, z5)y= vl
1<j<e

Since y,, — y' in Y* weak*, we conclude that

limsup [y, — ¢/l x+ < 2e.

n—oo

Since € > 0 is arbitrary, the result follows. O

REMARK 5.1.20. Proposition 5.1.18 calls for the following comments.

(i) Note that any Hilbert space can be identified, via the Riesz representation
theorem, with its dual. By defining the embedding e : L?(Q) — H~1(Q)
by (5.1.3), we implicitely identified L?(Q2) with its dual. If we identify HE ()
with its dual, so that H~1(Q) = H}(Q), then Proposition 5.1.18 becomes
absurd. This means that we cannot, at the same time, identify L?(Q) with
its dual and H}(Q) with its dual, and use the canonical embedding H}(Q) <
L2(Q).

(ii) Note that the density of the embedding W, *(€2) < LP(£2) can be viewed by a
constructive argument (truncation and regularization). As well, any element
p € Wofl’p (©) with compact support (in the sense that there exists a compact
set K of © such that (¢, u)Wfl’RWOl,p/ =0 for all u € Wol’p,(ﬂ) supported in
0\ K) can be approximated by convolution by elements of C$°(€2). However,
it is not clear how to approximate explicitly an element ¢ € Wofl’p (Q) by
elements of Wofl’p (©) with compact support.

PROPOSITION 5.1.21. If 1 < p < o0 and —A is defined by
O /QV“ Ve, (5.1.5)
for all o € WEP'(Q), then —A € LOWIP(Q), W12 (Q)).
ProoF. We note that
[ 7 Vo] < I9ulal Vil < s el
for all u € WyP(Q),p € Wol’p’(ﬂ). It follows that (5.1.5) defines an element of

W=LP(Q) (note also that this definition is consistent with the classical definition)
and that || — Aully 1.0 < |Jullwie, ie. —A € LIWEP(Q), W—LP(Q)). O
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COROLLARY 5.1.22. Let
= %/Q|Vu|2, (5.1.6)
forue H} (). Then J € C*(HE(Q),R) and
J'(u) = —Au, (5.1.7)
for all w € HL ().
ProoF. We have
J(u+v) = J(u) = (=Du,v) g1 g1 = 5 /|Vv|2

from which the result follows. O

5.2. Sobolev spaces and Fourier transform

When Q = R¥, one can characterize the space W™P?(RY) in terms of the
Fourier transform. For that purpose, it is convenient in this section to consider the
Sobolev spaces of complex-valued functions. The case p = 2 is especially simple,
by using Plancherel’s formula. We begin with the following lemma.

LEMMA 5.2.1. Let u € L2(RY) and o a multi-index. Then D%u € L*(RY)
if and only if | - |®la € L2(RN). Moreover, F(Du)(¢) = (2mi)lel¢au(€), where
€8 = €M €08 | In particular |D%ul| gz = (2m)1|| | - [1o1a]| 2.

PROOF. Suppose D%u € L?(R"), which means that

Re/ uD% = (—1)1*Re Dutp, (5.2.1)
RN RN

for all p € C®(RY). By density, (5.2.1) holds for all ¢ € S(RV). By Plancherel’s
formula, (5.2.1) is equivalent to

Re / uF (Do) = (—1)*Re [  F(Du)?.
RN RN
Since F(D%p) = (2mi)!*1¢*3, we deduce that
(=2m)*Re [ ¢up = (-1)*Re [ F(D),
RN RN

for all p € S(RY), which means that F(D%u) = (27i)l*l¢%%. Conversely, suppose
| -|l*la € L2(RY) and let u, € L?(RY) be defined by g = (2mi)l*l¢*u. Given
p € S(RY),

Re/ UaP = Re/ Uap = (—1)‘O‘|Re/ u(2mi)lelgap
RN RN RN
= (—1)'“‘Re/ uF(Dop) = (—1)'“‘Re/ uDp,
RN RN
so that D“u = u,. This completes the proof. O

PROPOSITION 5.2.2. Given any m € Z,
H"RY) ={ue S'®Y); 1+ )%
and [|ull g = (1] )28 2.

7n ~

u € L*(RM)},

PrOOF. If m > 0, then the result easily follows from Lemma 5.2.1. Next, if m >
0, then it is clear that the dual of the space {u € S’(RN) (1+]-1)%ue L2 (RM)}
with the norm ||(1+]-|?)% ﬂHLz is the space {u € S'(RY); (1+|-|*)~2u € L?(RY)}
with the norm ||(1 + |- |*)~% | ;2. The result in the case m < 0 follows.

O
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Proposition 5.2.2 can be extended to W™P(RY) with p # 2. More precisely,
we have the following result.

THEOREM 5.2.3. Given any m € Z, a,b >0 and 1 < p < o0,
WP RY) = {ue S'®RY); F'(a+0]-[*) %7 € LP(RV)},
and ||ullwmr 2 | F 4 [(a + 0] - [*) 2| v

The proof of Theorem 5.2.3 is, as opposed to the proof of Proposition 5.2.2,
fairly delicate. It is based on a Fourier multiplier theorem, which is a deep result
in Fourier analysis. A typical such theorem that can be used is the following. (See
Bergh and Lofstréom [10], Theorem 6.1.6, p. 135.)

THEOREM 5.2.4. Let p € L®(RYN) and let £ > N/2 be an integer. Suppose
p € Wigek (RN \ {0}) and

sup esssup |€]!%110%p(€)] < 0.
la|<t €30

1t follows that for every 1 < p < oo, there exists a constant C, such that
IF=Hp0) e < Cpllvlze, (5.2.2)
for all v € S(RY).

PROOF. We refer the reader to Bergh and Lofstrom [10] for the proof. Note
that an essential ingredient in the proof is the Marcinkiewicz interpolation theorem.
In fact, only a simplified form of this theorem is needed, namely the form stated in
Stein [41], §4.2, Theorem 5, p. 21. A very simple proof of this (simplified version
of the) Marcinkiewicz interpolation theorem is given in Stein [41], pp. 21-22. O

PROOF OF THEOREM 5.2.3. Without loss of generality, we may assume a =
b = 1. We only prove the result for m > 0, the case m < 0 following easily by
duality (see the proof of Proposition 5.2.2). The case m = 0 being trivial, we
assume m > 1. Weset V = {u € S'(RN); F7 (1 +|-|>)%a] € LP(RV)} ! and
llully = |F7H@ + |- |*)Z4]|Ls for all u € V. It is not difficult to show that
(VoI - lv) is a Banach space. We now proceed in three steps.

SteP 1. S(RY)isdensein V. Letu €V and set w=F 1[(1+]-]?)%7] €
LP(RY). S(RY) being dense in LP(RY), there exists (wy)n>0 C S(RY) such that
wy, — w in LP(RY). Setting u, = F~1[(1+|-|?)~% w,] € S(RY), this means that
Up, — uin V.

STEP 2. V — W™P(RYN). By Step 1, it suffices to show that [uwm.» <
Cllullyv for all u € S(RY). Let a be a multi-index with |a| < m and let p(¢) =
€¥(1+ [€]?)~ 2. Tt easily follows that p satisfies the assumptions of Theorem 5.2.4.
Applying (5.2.2) with v = F~Y(1 + |- |2) % 1], we deduce that | F~1(£0)|r <
Cllully. Since F~1(£%u) = (2mi)~1*ID*u, we deduce that ||[D%ulr» < C|lullv.
The result follows, since a with |a| < m is arbitrary.

STeP 3. W™P(RN) — V. By density of S(RY) in W™P(RY), it suffices to
show that ||ullv < C|lu|lwm.» for all u € S(RY). Fix a function § € C=(R), 6 > 0,
such that 0(t) = 0 for [¢| <1 and 6(¢) =1 for |¢| > 2. Set

N -1
p(©) = (116 (14 2 0)leI™)

INote that (1+|-|2)% is a C°° function with polynomial growth, so that (1+|-|2)Z @ is a

well-defined element of S’(RY) for all u € S'(R™).
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It is not difficult to show that p satisfies the assumptions of Theorem 5.2.4. Apply-
ing (5.2.2) with v = F~1[(1 + Z;V=1 6(&;)1&51™)a], we deduce that

lully < cf| 7 [(1+ io@j)w)a} |

Lp
(5.2.3)

N
< C(Jlullze + 3 IF T OE) &™) 20 )
j=1

Next, we observe that p;(§) = 0(£;)[§;|™E; ™ satisfies the assumptions of Theo-
rem 5.2.4. Applying (5.2.2) with p = p; and v = u, successively for j =1,--- | N,
we deduce from (5.2.3) that

N
lullv < ¢l + 3 1F € D))

j=1

N
= C(HUHLP + (277)_7712 Hé)}”uHLp) < Cl|ul|wm.s,

j=1

which completes the proof. ]

5.3. The chain rule and applications

We now study the chain rule, and we begin with a simple result.

PROPOSITION 5.3.1. Let F € C'(R,R) satisfy F(0) =0 and |[F'||p~ = L < oo,
and consider 1 <p < oo. Ifu € WhP(Q), then F(u) € WHP(Q) and

VF(u) = F'(u)Vu, (5.3.1)

a.e. in Q. Moreover, if p < oo, then the mapping u — F(u) is continuous
WLP(Q) — WLP(Q). Furthermore, if p < oo and u € Wy (Q), then F(u) €
Wy?(Q).

PrOOF. We proceed in three steps.

STEP 1. The case u € C1(Q). It is immediate that F(u) € C1(Q) and
that (5.3.1) holds.

STEP 2. The case u € Wol’p(Q). Suppose p < oo, let u € Wol’p(Q) and let
(Un)n>0 C C°(Q) satisfy u, — u in Wy () as n — co. By possibly extracting a
subsequence, we may assume that

|un| + [Vun| < f € LP(Q),

and that
Up = u, Vu, = Vu,

a.e. in Q. It follows from Step 1 that F(u,) € CHQ) c WyP(Q) and that
VF(un) = F'(un)Vuy,. In particular,

[VF(un)| < LIVun| < Lf.
Since F'(un)Vu, — F'(u)Vu a.e., we obtain VF(u,) — F'(u)Vu in LP(§2). More-
over, since |F(u,) — F(u)| < Llu, — u|, we have F(u,) — F(u) in LP(Q2). This
implies that F(u,) — F(u) in W, ?(Q) and that (5.3.1) holds.

STEP 3. The case u € W1P(Q).  We have F(u) € LP(Q2). Furthermore,
given ¢ € CL(Q), let £ € CL(Q) satisfy ¢ =1 on supp . By Remark 5.1.4 (i) and

~— —
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Remark 5.1.10 (i), we have fu € Wol’q(ﬂ) for all 1 < ¢ < oo such that ¢ < p. It
follows from Step 2 that

| Fave= [ Fenve=- [ ePenvien = - [ oFwve

Since clearly F'(u)Vu € LP(Q), we deduce that F(u) € W1P(Q) and that (5.3.1)
holds.

STEP 4.  Continuity. Suppose p < co and u, — u in WHP(Q). We show
that F(u,) — F(u) in WHP(Q) by contradiction. Thus we assume that ||F(u,) —
F(u)|lwr» > € > 0. We have F(u,) — F(u) in LP(2). By possibly extracting
a subsequence, we may assume that u, — w and Vu, — Vu a.e. It follows by
dominated convergence that F’ (uy,)Vu, — F'(u)Vuin LP(2). Thus F(u,) — F(u)
in WH?(Q), which is absurd. O

REMARK 5.3.2. One can prove the following stronger result. If FF : R — R
is (globally) Lipschitz continuous and if F(0) = 0, then for every u € WHP(Q),
we have F(u) € WHP(Q). Moreover, VF(u) = F'(u)Vu a.e. This formula makes
sense, since F’ exists a.e. and Vu = 0 a.e. on the set {z € Q; u(x) € A} where
A C R is any set of measure 0. Furthermore, the mapping u — F'(u) is continuous
WhP(Q) — WP(Q) if p < oo. Finally, if p < oo and u € W,"?(Q), then F(u) €
I/VO1 P(Q). The proof is rather delicate and makes use in particular of Lebesgue’s
points theory. (See Marcus and Mizel [35]). We will establish below a particular
case of that result.

PROPOSITION 5.3.3. Set ut = max{u,0} for allu € R and let 1 < p < co. If
u € WP (Q), then u™ € WHP(Q). Moreover,

Vot — Vu if u> 0, (5.3.2)
loifu<o, -

a.e. If p < oo, then the mapping u — u' is continuous WHP(Q) — WLP(Q).
Furthermore, if u € Wy (Q), then ut € W, P(Q)

PROOF. We proceed in four steps.
STEP 1. If p < 0o and u € W, P(2), then ut € W, ?(Q) and (5.3.2) holds.

Given € > 0, let
Ve +u? —gif u> 0,
Pe(u) = { .
0if u <0.
It follows from Proposition 5.3.1 that ¢, (u) € W,"*() and that V. (u) = ¢L(u)Vu
a.e. We deduce easily that ¢.(u) — u and that V. (u) converges to the right-
hand side of (5.3.2) in LP(Q) as € | 0. Thus u* € W, ?(Q) and (5.3.2) holds.
STEP 2. Ifu € WHP(Q), then ut € W1P(Q) and (5.3.2) holds. Using Step 1,
this is proved by the argument in Step 3 of the proof of Proposition 5.3.1.
STEP 3. If a € R and u € W1P(Q), then Vu = 0 a.e. on the set {z €
Q; u(z) = a}. Consider a function n € C°(R) such that n(z) = 1 for |z| < 1,
n(x) =0for |z| >2and 0 <n <1. Forn e N, n>1, set
gn(x) = n(n(z — a)),
and

hio) = [ " ga(s) ds.

It follows from Proposition 5.3.1 that h,,(u) € WP(Q) and that Vh,(u) = gn(u)Vu
a.e. Therefore,

—Ahn(u)V¢=Agn(u)@VUa
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for all p € CL(Q). Since |h,,| < n7t||n||L1, the left-hand side of the above inequality
tends to 0 as n — oo. Therefore,

/gn(u)goVu — 0.
R

n—oo

Note that g, () = 1{ze0;u(z)=a}- Since 0 < g, < 1, we deduce that

for all ¢ € CL(Q); and so, l{ze0; u(z)=a} VU = 0 a.e. The result follows.

STEP 4. Continuity. Suppose p < oo and let u,, — u in WHP(Q) as n — oo.
We have [ut — wf| < |u — uyl, so that u;f — u™ in LP(Q2). Therefore, we need
only show that for any subsequence, which we still denote by (un)n>0, there exists
a subsequence (un, k>0 such that Vuf — Vut in LP(Q) as k — oo. We may
extract a subsequence (uy, )x>o0 such that u,, — u and Vu,, — Vu a.e., and such
that

[tn, | + [V, | < f € LP(Q).

Set

Ag = {:L' €Q; u(:c) = O}a

At ={x € Q;u(z) >0}, A} ={z€ Quy,(z) >0},

A7 ={zx e Qu(x) <0}, A, ={reQ; uy,(r) <0}
For a.a. x € AT, we have x € A} for k large, thus Vu,| (2) = Vg, (z) = Vu(z) =
Vut(z). For a.a. x € A-, we have z € A, for k large, hence Vu}! (z) = 0 =
Vut(z). For x € Ay, we have u(z) = 0, so that by Step 3, Vu(z) = 0 a.e. Since

Vi, — Vu =0 ae. on Ag, we deduce in particular that [Vu! | < [Vau,,| — 0
a.e. in Ag. Thus Vu! — 0= Vu™ ae. on Ag. It follows that

Vu if u>0
v, o {Tuifu>0
k 0ifu<0,
a.e., and the result follows by dominated convergence. This completes the proof. [

REMARK 5.3.4. Let v~ = max{0,—u}. Since u~ = (—u)", we may draw
similar conclusions for «~. In particular, if v € W1P(Q), then u= € WHP(Q).

Moreover,
Vi — —Vu if u <0,
0ifu>0,

a.e. If p < oo, then the mapping u — u~ is continuous W1P(Q) — W1P(Q).
Furthermore, if u € WP (Q), then u~ € W, ?(Q). Since |u| = ut +u~, we deduce
the following properties. If u € W1P(Q), then |u| € W1?(Q). Moreover,
Vu if u > 0,
V]u| = ¢ =Vu if u < 0,
0if u=0,
a.e. Note in particular that
9ul| = [Val,
a.e. If p < oo, then the mapping v — |u| is continuous WP(Q) — WP (Q).
Furthermore, if u € W, (), then |u| € W, ?(Q).
COROLLARY 5.3.5. Let 1 < p < oo, let u € WHP(Q) and v € WP (Q). If
lu| < |v| a.e., then u € W,P().
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PROOF. It follows from Remark 5.3.4 that |v| € WyP(Q). Let (w,)n>0 C
C2° () satisfy w,, — [v| in WHP(Q) as n — oo. It follows that w,, —u™ — |v| —u™
in Wh?(Q), so that (w, —ut)*™ — (jv| —u™)T in WHP(Q) by Proposition 5.3.3.
Since (w, —u™)T < w;, we see that (w, —ut)" has compact support; and so
(wn —ut)t € WyP(€). We deduce that (Jvu]—ut)t € W, P(Q). Since (Jv]—ut)t =
lu| — ut, we see that ut € W, ?(€2). One shows as well that u~ € Wy*(Q2), and
the result follows. g

COROLLARY 5.3.6. Let 1 < p < oo and let M > 0. If u € WHP(Q), then
(u—M)T €ue Wr(Q) and

Vu if u(z) > M,

0 i (o) < M. (5.3.3)

V(u—M)" = {
a.e. in Q. If p < oo, then the mapping u — (u — M)" is continuous WP(Q) —
WLP(Q). Moreover, if u € Wy (), then (u— M)t € Wy*().

PROOF. The last property is a consequence of Corollary 5.3.5, since (u—M)T <
ut € Wy P(9). Next, observe that if Q is bounded, then the conclusions are a
consequence of Proposition 5.3.3, because u—M € WhP(Q) whenever u € WP (Q).
In particular, we see that for an arbitrary Q, if u € WHP(Q), then (u — M)* €
WLP(Q) and (5.3.3) holds. In particular, |V(u — M)*| < |Vu| € LP(Q). Since
(u— M)t <ut € LP(Q), we see that (u— M)+t € WHP(Q) and that (5.3.3) holds.

It now remains to show the continuity of the mapping u +— (u — M)* when
p < oo. By the above observation, we may assume that 2 is unbounded. Given
R>0,let Qp ={z € Q; |z| < R} and Ur = Q\Qpr. We argue by contradiction, and
we consider a sequence (uy),>0 C WHP(Q) and u € WHP(Q) such that u, —u

in WP (Q) and ||(u, — M)™ — (u — M) ™ ||y1.o > € > 0. Note that

|(up, — M) — (u— M)Y| < |Jup —u| — 0,
n—o0

in LP(Q), so that we may assume [|V(u, — M)* — V(u — M)"||» > e > 0. By
possibly extracting a subsequence, we may also assume that there exists f € LP(2)
such that |Vu,|+ |Vu| < f a.e. In particular, it follows from (5.3.3) that |V (u, —
M)t =V (u—M)"| <|Vu,|+|Vu| < f a.e. Therefore, by dominated convergence,
we may choose R large enough so that

g
HVWW<MV—VW—AHWUWMSZ.

Finally, since Qg is bounded, it follows that ||V (up, —M)" =V (u—M)¥|| 1o, — 0
as n — o0o. Therefore, for n large enough,

€

[V (s = MY =V (= M) | poiany < -

We deduce that ||V (u, — M)+t — V(u — M)"||1r0) < /2, which yields a contra-
diction. This completes the proof. U

COROLLARY 5.3.7. Let 1 < p < 00, (up)n>0 C WHP(Q) and u € WHP(Q).
If up — u in WHP(Q) as n — oo, then there exist a subsequence (Un,, k>0 and
v € WHP(Q) such that |u,,| < v a.e. in Q for all k > 0. If, in addition, p < oo
and (un)n>0 C WoP(Q), then one can choose v € W, P (52).

PROOF. Let the subsequence (un, )x>0 satisfy |[u,, — ullp1r < 27571 so that
[[tny sy —tng lwre < 27F. Tt follows from Remark 5.3.4 that |un, , , —tn, | € WHP(Q)
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and that || [tn, ., — Un,| w1 <277 Thus, the series
v= |un0| + Z |unj+1 = Un; |,
Jj=0

is normally convergent in W1?(Q2). Since

k
Unpy = Ung + E (u’ﬂj+1 - unj)v
j=0

we see that |y, | < v. The result follows, using again Remark 5.3.4 in the case
p < oo and (up)n>o0 C Wy (Q). O

COROLLARY 5.3.8. Let 1 <p < oo, 0< A, B <00 and set
E={uecW,?Q); ~A<u<B aec},
F={uelCXQ); —A<u< B}

It follows that E = F, where the closure is in Wol’p(ﬂ). In particular, {u €
WyP(Q); u >0 a.e.} is the closure in Wy () of {u € C=(Q); u > 0}.

PROOF. We have F' C E. Since E is clearly closed in Wy (Q), we deduce that
F C E. We now show the converse inclusion. Let u € E and let (uy)n>0 C C° ()
be such that u, — u in Wy*(€). Set

vp = max{—A, min{u,, B}} = u, + (up + A)~ — (u, — B)".
It follows from Corollary 5.3.6 that v, € W, *(€2) and that

vy — u+(u+A)” —(u—B)t =u,
n—o0

in WO1 P(Q). Thus if (vp)n>0 C F, then the conclusion follows. Since clearly
vp € Ce(€2), we need only show the following property: if w € E N C.(£2), then
w e F. To see this, let (pn)n>0 be a smoothing sequence and set w, = p, * w,
where w is the extension of w by 0 outside Q2. Since w has compact support in €2, we
see that if n is sufficiently large, then w,, also has compact support in 2. Moreover,
Wy € CF(2), so that if w, = (w,)|q, then w, € CF(Q). In addition, w,, — w in
WhP(RY), so that w, — w in W, *(Q). It remains to show that —A < @, < B,
which is immediate since —A < w < B. This completes the proof. O

5.4. Sobolev’s inequalities

In this section, we establish some Sobolev-type inequalities and embeddings. It
is convenient to make the following definition.

DEFINITION 5.4.1. Given an integer m > 0, 1 < p < co and €2 and open subset
of RN, we set

[ulm.p.0 = Z [D“ul| r(c2)-

loe|=m
When there is no risk of confusion, we set
[ulmp = [tlm,p0,
i.e. we omit the dependence on €.

We begin with inequalities for smooth functions on RY. The following result
is the main inequality of this section.
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THEOREM 5.4.2 (Gagliardo-Nirenberg’s inequality). Consider
1<p,q,7r < oo and let j,m be two integers, 0 < j < m. If

1 J (1 m)+1—a
=al - — —
p N r N q

for some a € [j/m,1] (a <1 if r = N/(m —j) > 1), then there exists a constant
C =C(N,m,j,a,q,r) such that

luljp < Clulfy  Jlull 72 (5.4.2)

, (5.4.1)

for allu € CT"(RN).

The proof of Theorem 5.4.2 uses various important inequalities. The funda-
mental ingredients are Sobolev’s inequality (Theorem 5.4.5), Morrey’s inequality
(Theorem 5.4.8), and an inequality for intermediate derivatives (Theorem 5.4.10).
We begin with the following first-order Sobolev inequality.

THEOREM 5.4.3. Let N > 1. For every u € CH(RY), we have

1 Ou |+
lull, oer < §j];[1Ha—% e (5.4.3)
In particular,
lJull | §L|U|1,1, (5.4.4)

for alluw € CLRY).

PROOF. We proceed in three steps.
STEP 1. The case N =1. Given x € R, we have

—00
and so,
xT
()] < / [ (s)] ds.
— 00
As well,

+o0
u(z)| < / ' (s)| ds,

so that by summing up the two above inequalities,

+oo
u@l <3 [ W)l

—o00
which yields (5.4.3) (and (5.4.4)) in the case N = 1.
STEP 2. Proof of (5.4.3). We assume N > 2. For any 1 < j7 < N, it follows
from Step 1 that
1
|U(CL’)| < 5 /]R |aju(x1a sy L1, 8, Tjt1y - 733N)| dS,
and so,

N
u(z)| Y S2_NH/R|8ju($1,...,xj_l,s,xj+1,...,acN)|ds.
j=1

Taking the (N — 1)*" root and integrating on RY, we obtain

[ @)= do <
RN
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N 1
N N-1
2 N—1/ H(/ |aju(1'1,...,LL‘j,l,S,l‘jJrl,...,:L'N)|d5) .
RN j=1 R

We observe that the right-hand side is the product of N functions, each of which

depends only on N — 1 of the variables x1, ..., zy (with a permutation). Therefore,
integrating in each of the variables x1,...,zyN, we may apply Holder’s inequality
1 1 N-1 B
/alzvfl...axillg H(/GE)N_l.
R =1 VR

For example, if we first integrate in z1, we obtain

N 1
N—-1
/ dxy H(/ [Oju(z1, ..., Tj=1,8, Tjg1, - -, TN)] ds)
R i1 R

1

= (/ |81u(87x27"'a1’N)|d8) o
R
N 1
N—1
X/H(/ |8ju(x1,...,acj_l,s,xj+1,...,xN)|ds>
R VR
1
< (/ |01u(5,x2,...,ac1v)|ds> A
R

N
N—-1
X I I(/ |8ju(:£1,...,:cj,l,s,acjﬂ,...,:EN)|dsd:E1) "
j=2 R

Integrating successively in each of the variables z1,..., 25, we obtain finally the
estimate (5.4.3).
STEP 3. Proof of (5.4.4). We claim that if (a;)1<j<y € RY with a; > 0,

then
N L X
(H a;)" < 7O (5.4.5)
J=1 j=1

The estimate (5.4.4) is a consequence of (5.4.3) and (5.4.5). The claim (5.4.5)
follows if show that

max z?=N"7V, (5.4.6)

To prove (5.4.6), we observe that if the maximum is achieved at x, then there exists
a Lagrange multiplier A\ € R such that F’(z) = Az, where F(z) = 22 ...2%. This

implies that
2x; Z x? = Az,

J#i
for all 1 < ¢ < N. Since none of the z; vanishes (for the maximum is clearly
positive), this implies that 23 = --- = 2%, from which (5.4.6) follows. O

COROLLARY 5.4.4. Let 1 <r <N (r <N if N >2). If r* > r is defined by

1 1 1
™ r N’
then
lull = < enprlulyr, (5.4.7)

for every u € CHRYN), with e = (N — 1)r/2N(N —r). (We use the convention
that (N —-1)/(N-1)=14 N=1.)
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PROOF. The case N = 1 follows from Theorem 5.4.3, so we assume N > 2.
Let
N-1, (N-1)r
t: [/ — .
N N—r
Since r > 1, we have t > 1. We observe that

Nt
No1- (t—1)r" =r*,
and we apply (5.4.4) with u replaced by |u|'~!u, and we obtain

[l e < 2N)7H Jul* " a0 (5.4.8)

It follows from (5.3.1) that 8;(Jul*~'u) = t|u|'~'0;u for all 1 < j < N. Therefore,
by Hoélder’s inequality,

105 (Jul " )l e < tllully l0ullnr = tlull 7o 10l oo

Thus | |u|*tul 1 < t||u||’;1|u|1m, and we deduce from (5.4.8) that

[l .

< Nl (5.4.9)
and (5.4.7) follows. O

The following Sobolev’s inequality is now a consequence of Corollary 5.4.4.

THEOREM 5.4.5 (Sobolev’s inequality). Let m < N be an integer, let 1 < r <
N/m (r < N/m if N >2), and let r* > r be defined by

1 _ 1 m
r r N’
If
N —1)r|™
CN,m,r = [( )T] y (5410)
Ny ] (v —er)
1<e<m
then
HUHLT* < CN,m,r|U|m,r; (5.4.11)

for all u € C™(RY). (We use the convention that (N —1)/(N —1)=1if N =1.)

PROOF. We argue by induction on m. By Corollary 5.4.4, (5.4.11) holds for
m = 1. Suppose it holds up to some m > 1. We suppose that m +1 < N and we
show (5.4.11) at the level m+ 1. Let 1 <r < N/(m + 1) and let 7* be defined by

1 1 m+1

r* r N
Define p by

1 1 1 1 m

it 1 1 m 5.4.12

p o * N r N’ ( )
so that r < p < r*. It follows from Corollary 5.4.4 and the first identity in (5.4.12)
that

[ullzr < enplulip.
Next, it follows from the second identity in (5.4.12) and (5.4.11) applied to 0ju that
10jullLr < eNym,r|Ojulm,r,
for all 1 < j < N. We deduce that
[ult,p < N |Ulmett,rs

and (5.4.11) at the level m+ 1 follows with ¢y m41,r = cN pCNm,r, 1.€. (5.4.10). O
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REMARK 5.4.6. Note that when N > 2, the inequality ||u||ze < Clul|;,n does
not hold, for any constant C. Indeed, given 0 < §# < 1 —1/N, let f € C°(0,00)
satisfy f(r) = |logr|? for 7 < 1/2 and f(r) = 0 for 7 > 1. Let (fn)n>1 C
C*([0,00)) be such that f,(r) = f(r) for r > 1/n and 0 < f,(r) < f(r) and
[fh(r)] < |f'(r)] for all » > 0. Setting u,(x) = fn(|z|), one verifies easily that
[[tn||Le — oo and limsup [|[Vuy| v < oo as n — oo. More generally, a similar
example with 0 < 6§ < 1 —m/N shows that the inequality [|ul/z~ < Clu|m n/m
does not hold, for any constant C'if 1 < m < N.

The following result, in the same spirit as Theorem 5.4.3 (case N = 1) shows
that the inequality ||u||z= < Clu|y,1 holds in any dimension.

THEOREM 5.4.7. Given any N > 1,
lullze <27 Nuln 1, (5.4.13)
for all u € CN(RN).

PROOF. Let y € RY Integrating d; - -- Oyu in z1 on (—oo,y;) yields
Y1

Qo+ Onu(yr, xa,...,zN) = O1---Onyudzr;.
— 00
Integrating successively in the variables s, ...,z N, we obtain
Y1 YN
—o00 —o0

Therefore,

Y1 Y2 YN
y)|§/ / / |8y - Onu|dey - day. (5.4.14)

We observe that instead on integrating in x1 on (—o0o, y1), we might have integrated
n (y1,00), thus obtaining

e Y2 YN
ml g/ / / 0y - Onulday - - day. (5.4.15)
Y1 - -

Summing up (5.4.14) and (5.4.15), we obtain

yN
lu(y)| < 1/2/ / / 1 Onuldey - - doy.

Rereating this argument for each of the variables, we deduce that
)| <27 [ o1 oyl < fulx
RN

and the result follows since y is arbitrary. O

In the case p > N, we have the following result.
THEOREM 5.4.8 (Morrey’s inequality). If r > N > 1, then there exists a con-
stant ¢(N) such that

r N
Ju() = u(y)| < e(N)——|o =y~ fulv, (5.4.16)

for all u € CH(RYN). Moreover, if 1 < q < oo and a € [0,1) is defined by

O*a<l—i)+1ia
\r N qg ’

then

r
lull 2= < e(N) — [ulf, Pllullza®, (5.4.17)

for alluw € CLRY).
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ProoOF. In the following calculations, we denote by ¢(IN) various constants
that may change from line to line but depend only on N. Let z € RY and p > 0,
and set B = B(z, p). Consider x € B, and assume for simplicity = 0. We have

U(y)*U(O):/O %U(ty)dt:/o y - Vu(ty) dt,

for all y € B. Integrating on B and dividing by |B|, we obtain

1 I
E/BU(y)dyU(O)ﬁfo /ByVU(ty)dy dt.

‘/ByVU(ty) dy‘ < (/B lyl” dy)"l/(/B IVU(ty)Irdy)%

_1 & N N r
— (V) ([ vul dy)
t

N

N—d Aoy N
S(N+7) "y p ot

Since

1
T

Vul

L,
where yy is the measure of the unit sphere, we deduce

\%/Bu@)dyu(m\gNN’”

N
p=

N B
(N+7) "7y p'

Vul

L.
—r

Since (N + r’)*%fy;,% is bounded uniformly in r > 1, it follows that if B = B(z, p)
and z € B, then

r
r—N

1 _N
‘—/ u(y) dyfu(:c)‘ < ¢(N) P 1 (5.4.18)
1Bl Jp
Let now x1,22 € RN, o1 # 29 and let z = (z1 +22)/2 and p = |z1 — 22|. Ap-
plying (5.4.18) successively with & = x; and * = x5 and making the sum, we
obtain

u(@1) — u(e2)] < ¢(N) e e A1

r
r—N
which proves (5.4.16).

Consider now 1 < g < co. We have

[ ) o] <1817 s
B
and so,

1 1 R .

| [ u@)dy| < |BI7F Jullze = Ny 5 ful s

B[ /5

N
< ce(N)p~ o flullLa.

Therefore, we deduce from (5.4.18) that

N
p=

u(z)| < e(N)p ™ Jull Lo + e(N)

Vul

-
i L

We now choose p = ||u||¢,[|Vul||;~, with 1 = a(1 — N/r+ N/q), and we obtain

r —a
ju(w)| < e(N) IVl
Since # € R¥ is arbitrary, this proves (5.4.17). O

For the proof of Theorem 5.4.2, we will use the following (first-order) Gagliardo-
Nirenberg’s inequality, which is a consequence of Sobolev and Morrey’s inequalities.
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THEOREM 5.4.9. Let 1 < p,q,r < o0 and assume

1 1 1 1—-a

-=al-——= , 5.4.19

P a(?‘ N) + q ( )
for some a € [0,1] (a < 1 ifr = N > 2). It follows that there exists a constant
C =C(N,p,q,r,a) such that

lullze < Clulg [lullzz®, (5.4.20)

for every u € CL(RYN).

PROOF. We consider separately several cases.
THE CASE r > N. Note that in this case, p > ¢, so that by Holder’s inequality,

[ullze < lull % [lullLa-
Estimating ||u||z= by (5.4.17), we deduce (5.4.20).
THE CASE r < N (THUS N > 2). Let r* = Nr/(N —r). It follows from
Holder’s inequality that
[ullze < lullz

L |u||Lq ;
with a given by (5.4.19). (5.4.20) follows, estimating ||u|/z~ by (5.4.7).
THE CASE r = N. Suppose first N = 1. Then by Hoélder’s inequality,

lull o < Il oo 72,

and the result follows from (5.4.4). In the case N > 2 (thus a < 1) we cannot use
the same argument since ||u||z~ is not estimated in terms of ||Vu||p~. Instead, we
apply (5.4.4) with u replaced by |u|'~lu for some ¢t > 1. As in the proof of (5.4.9),
we obtain

Jull® o < (2N)” 17f||u||t o (Ul (5.4.21)
LN-1 N—
Suppose first that p > ¢+ N/(IN — 1), and let t > 1 be defined by
N
N-1 7V
It follows that (¢t — 1)N/(N — 1) > ¢. By Holder’s inequality,
lull aonx < |2 llull 72, (5.4.22)
with
N-1 _oN-1) l-a
(t—1)N tN q

It follows from (5.4.21)-(5.4.22) that
lullte < @N) Yl E D ull $o Pl

and so,
(t—1)(1—a)

lull e < (£/2N) =% [ 70 fu] e
Since one verifies easily that

1 — —1)(1 —
_r-a_, (t—1)( ) _4_q_,
t—(t—1a D t—(t—1a P
this yields (5.4.20), since t/2N < p. For p < ¢+ N/(N — 1), we apply Holder’s
inequality

ullzr < ||U||Laq ||u||L
(Note that 3¢ > ¢+ 2 > p.) We estimate ||u||p3« by applying (5.4.20) with p = 3g¢,
and the result follows. O

We now study interpolation inequalities for intermediate derivatives.
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THEOREM 5.4.10. Given an integer m > 1, there exists a constant C,, with the
following property. If 0 < j <m and if 1 < p,q,r < oo satisfy
m j m-—1

Z=ly : (5.4.23)
p r q
then for every i € {1,...,N},
107 ull e < Conllwll 7 107 ull 2, (5.4.24)
for all w € C™(RYN). Moreover,
luljp < Cmllull 7 ulr, (5.4.25)

for allu € CT"(RN).
The proof of Theorem 5.4.10 is based on the following lemma.

LEMMA 5.4.11. If 1 < p,q,r < oo satisfy
2 1 1
-=—4 - (5.4.26)
p q T
then

//|

. (5.4.27)

1
[l e < 8l Follu

for all u € C2(R).
PRrOOF. We first observe that we need only prove (5.4.27) for r > 1 and p < oo,

since the general case can then be obtained by letting p 1 oo or r | 1. Thus we now
assume p < oo and r > 1. Let 0 <~ < 2 be defined by

1 1
y=1+-=-. (5.4.28)
p T
so that by (5.4.26),
1 1
—y=—l-=+-. (5.4.29)
q P
We observe that p < 2r by (5.4.26), so that
v2>1/2. (5.4.30)
We now fix u € C2(R) and, given any interval I C R, we set
F) = 1" [l ry, (5.4.31)
g() = U7 1) (5.4.32)

We now proceed in five steps.
STEP 1. The estimate
||’Ul||Lp(071) S 4||’U||Lq(0’1) + 2||U”| L"(O,l); (5433)

holds for all v € C?([0,1]). Let &(z) =1 —22% for 0 <z < 1/2, £(x) = 2(1 — x)?
for 1/2 <z < 1. It follows that £ € C*([0,1]) N C%([0,1]\ {1/2}) and 0 < £ < 1,
£0) =1, £0) =&1) = ¢(1) = 0. Moreover, "(z) = —4 for 0 < z < 1/2,
&"(x) =4 for 1/2 < x < 1. An integration by parts yields

1 1/2 1
/ &' == (0) 74/ v+4/ v;
0 0 1/2

[ (0)] < 4lvllLro,1) + V"] L10,1)-
Given 0 < z < 1, we deduce that

and so,

T
v ()] < [v'(0)] +/O | < 4fvllzi) + 20" [0,
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x € [0, 1] being arbitrary, we conclude that

10"l L= (0,1 < 4llvllz2(0,1) + 210" [[L1(0,1)-
The estimate (5.4.33) follows by Holder’s inequality.
STEP 2. The estimate

0]l o apy < 40— a) 7 [[ullLaap) +2(0 = a)"[[u" | (o), (5.4.34)
holds for all —co < a < b < oco. Set v(x) =u(a+ (b— a)r), so that v € C%([0,1)).

The estimate (5.4.34) follows by applying (5.4.33) to v then using (5.4.28)-(5.4.29).
STEP 3. If f and g are defined by (5.4.31)-(5.4.32), then the estimate

/1 WP < 221 (2P £(1) + g(I)), (5.4.35)

holds for all finite interval I C R. This follows from (5.4.34) and the elementary
inequality (x + y)P < 2P~ (2P + yP).

STEP 4. Given any § > 0, there exist a positive integer £ and disjoints intervals
I,...,I; such that Uj<j<¢ E D supp u and with the following properties.

¢ <1+ |suppul/d, (5.4.36)

either |I;| = ¢ and f(I;) < g(I;)
or else |I;| > ¢ and f(I;) = g(I;),

for all 1 < j < ¢. Indeed, set zp = infsuppu and let T = (g, 20 + ). If f(I) <
g(I), welet Iy = I. If f(I) > g(I), we observe that the functions ¢(t) = f(zo,xo +
d+ 1), (t) = g(xo,z0 + d + t) satisfy ©(0) > 1(0) and p(t) — 0, ¥(t) — oo as
t — oo (we use (5.4.30)). Thus there exists ¢ > 0 such that p(t) = 1(t) and we
let I; = (xg,29 + 6 +t). We then see that I satisfies (5.4.37). If suppu ¢ I,
we can repeat this construction. Since suppu is compact and |I;| > J, we obtain
in a finite number of steps, say ¢, a collection of disjoint open intervals I; that all
satisfy (5.4.37) and such that

(5.4.37)

IstuppuC1 U I_j,

U
1<j<e-1 <j<t

which clearly imply (5.4.36).
STEP 5. Conclusion. Fix ¢ > 0. It follows from Step 4 and (5.4.35) that

l
/}R WP < 201 SRR R(E) + (1) (5.4.38)
j=1

We let
Av={jefl,-- 0} || = o},
Ay ={j e{L,-- 0} [I;| > 6},
so that by (5.4.37)
{1,--- £} = A1 U A,. (5.4.39)
If j € Ay, then f(I;) < g(I;) by (5.4.37), so that
<

<
2 1(I) + g(I;) < (27 + (L) < (2" + DILIPa |2,

(5.4.40)
< (27 + 1D [[u" |7 gy
where we applied (5.4.32). We deduce from (5.4.40) and (5.4.36) that
> 2SI + 9] < (27 + 1)(1+ [suppul /6)87 |}, ) (5.4.41)

JjEAL
If j € Ag, then f(I;) = g(I;) by (5.4.37). Since
P9 = [l "]

p
Lr(1;)’
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we see that . .
71) = o(1;) = el 1”1 v (5.4.42)

for all j € Ag. Tt follows from (5.4.42) that
Y 2PFI) + 9] < 28+ 1) Y ullfa, ]

JEA2 JEA2

e (5.4.43)

Using (5.4.26) and applying Holder’s inequality for the sum in the right-hand side
of (5.4.43), we deduce that

P

S @50 + 900 < @+ D( 3 Nlagry) ™ (3 15cr)

JEA2 JEA2 JEA2

which implies

SRR + o) € @+ Dllullfgy oMy (5449)
JEA2

We now deduce from (5.4.38), (5.4.39), (5.4.41) and (5.4.44) that

/ Ju'|P < 22P71(2P 4+ 1) x
R

[l gy 1”1 . gy + (1 + loupp ul /D)7 a2, ] (54.45)
Note that by (5.4.28)
w=1+p— i—j >1,
since r > 1. Letting 6 | 0 in (5.4.45) we obtain

P < 92=1(9p 4 | b "5
R|U| < (2 + Dllull 2oy lle" 12 ()

Since 2P + 1 < 27T we see that 22771(2P + 1) < 237 and the estimate (5.4.27)
follows by taking the pt" root of the above inequality. O

REMARK 5.4.12. The proof of Lemma 5.4.11 is fairly technical. Note, however,
that some special cases of the inequality (5.4.27) can be established very easily. For
example, if p = ¢ = r, then setting f = —u” + u, we see that u = (1/2)e~ 'l x f,
so that v/ = ¢ * f, with ¢(z) = (z/2|z|)e1*l. By Young’s inequality, ||u/[[z» <
ol Ll fllze = ||fllee- Since || fllzr < |u”|lLr + [JullLr, (5.4.27) follows. Another
easy case is p = 2 (so that 7 = ¢). Indeed, u"? = (uu')’ — uu”, so that

/UIQ _ */’U/U,” S ||ull|

by Hélder’s inequality, which shows (5.4.27). Note that in both these simple cases,
one obtains (5.4.27) with the (better) constant 1.

LT

u”an

PROOF OF THEOREM 5.4.10. The cases 7 = 0 and j = m being trivial, we
assume 1 < j < m — 1 and we proceed in four steps.
STEP 1. If 1 <p,q,r < oo satisfy (5.4.26) and ¢ € {1,..., N}, then

sl vy < 8l I102ll 2, v (5.4.46)

for all u € C2(RY). Indeed, assume first p < co and let © = (z1,...,7y5) € RV,
We apply (5.4.27) to the function
’U(t) = U(Il, ce ;wi—latmfi—i-h ce ,xN),

and we deduce that

[ <s( [ were)” ([ or)®.
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Integrating on RV~1 in the variables (x1,...,2;_1,%it1,...,2n) and applying
Holder’s inequality to the right-hand side (note that 2¢/p + 2r/p = 1), we de-
duce (5.4.46). The case p = oo follows by letting p 1 0o in (5.4.46).

STEP 2. If m > 2 and if 1 < p,q,r < oo satisfy

1 m-1
UL 3 (5.4.47)
P g

and ¢ € {1,..., N}, then

m—1 1
10sull Lo < 872 [lull 7 10 ul £, (5.4.48)

for all u € C(RY). We argue by induction on m. By Step 1, (5.4.48) holds for
m = 2. Suppose it holds up to some m > 2. Assume

1 1
ml_1,7 (5.4.49)
p r q
and let t be defined by
m 1 m-1
— == . 5.4.50
t T + p ( )
In particular, min{p, 7} < ¢ < max{p,r}, so that 1 <t < co. Applying (5.4.48) to

O;u, we obtain

102l e < 82307 ul| 7 |0l 13 (5.4.51)
Now, we observe that by (5.4.49) and (5.4.50), 2/p = 1/q + 1/t, so it follows
from (5.4.46) that

10sullzr < 8l102ullE.lullE.. (5.4.52)
(5.4.51) and (5.4.52) now yield (5.4.48) at the level m + 1.

STEP 3. Proof of (5.4.24). We argue by induction on m > 2. For m = 2,
the result follows from Step 1. Suppose now that up to some m > 2, (5.4.24) holds
forall1<j<m—1. Assume 1 < j <m,

mtl_J,mtl-J (5.4.53)
p r q

and let ¢ be defined by

q 1

=, mrod
r t

We first note that by (5.4.54) and (5.4.53),

m+1l—35 m m+1 j—1

(5.4.54)

=3

t T m4+1 p r
- om m+1l—7 m+1—j
m+ 1 q (m+1)r — 7

so that 0 <t < oo. Also, by the above identity, and since ¢,r > 1,
m+1l—j535 m m+1l—7 m+1-j

t om+1 q (m+ D)r
<m(m+1—j) m+1_‘7:m+1—j,
m+1 m+1
so that ¢ > 1. Applying (5.4.24) (with j replaced by j — 1) to d;u, we obtain
. j—1 m—j+1
1070l e < Co |07 || 77 (|0l o™ - (5.4.55)

Now, we observe that by (5.4.53) and (5.4.54), (m+1)/t = 1/r4+m/q, so it follows
from (5.4.48) (applied with m replaced by m + 1) that

0wl e < 8™ oy ul 7 flul 75 (5.4.56)

(5.4.55) and (5.4.56) now yield (5.4.24) at the level m + 1.
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STEP 4. Proof of (5.4.25). We note that by (5.4.48),

m—1 1
Julp < 8272l i fuldir,

whenever (5.4.47) holds. The proof is now parallel to the proof of the estimate (5.4.24)
in Step 3 above. O

PROOF OF THEOREM 5.4.2. We consider several cases, and we proceed in three
steps.
STEP 1. The case (m — j)r < N. Let t be defined by
1 1 m-—y

- - — 5.4.57
t r N ( )

so that 7 < t < oo. It follows from Sobolev’s inequality (5.4.11) applied to jt*
derivatives of u that
[ulje < Clulm,- (5.4.58)

Next, let s be defined by
] —1
m_J . m=- (5.4.59)
s r q

so that min{q,r} < s < max{q,r}. It follows from the interpolation inequal-
ity (5.4.25) that

m—j J
uljs < Cllull i Tulii.r- (5.4.60)

It follows from (5.4.1), (5.4.57) and (5.4.59) that

1 6 1-06
— =+ ,

D t S

with ‘
ozmaf’]'

m=7

Since j/m < a <1, we see that 0 < 0 < 1, and we deduce from Hélder’s inequality
that

m—j
™m

m=j i
Juljp < lulf olulis® < Clul, »(lull L7 ul#.r)
where we used (5.4.58) and (5.4.60). The estimate (5.4.2) follows.
STEP 2.  The case (m — j)r > N and a = 1. Note that if a = 1, then
by (5.4.1),

1-6
)

11 m=j_
p T N
The only possibility is (m — j)r = N and p = oo. This is allowed only if » = 1, and
the result is then a consequence of Theorem 5.4.7.
STEP 3. The case (m — j)r > N and a < 1. Let ¢ be defined by

m 7 m-1

— ==+ — 5.4.61

t r * q ( )
so that min{q,r} < t < max{q,r}. It follows from the interpolation inequal-
ity (5.4.25) that

uli (5.4.62)

m—j
m
La

|ulje < Cllul

Next, let s be defined by

i1 m—j-1
i Rt Ay (5.4.63)
s T P

so that min{p,r} < s < max{p,r}. It follows from the interpolation inequal-
ity (5.4.25) applied to j** order derivatives of u that
1 m—j—1

[uljs1,s < Clulmy [ul; ;77 (5.4.64)
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Next, let « € [0,1) be defined by
(m = §)a— j/m)

= - - ; 5.4.65
T—a+ (m—J)a—j/m) (546
so that by (5.4.61), (5.4.63) and (5.4.1)
1 (1 1 ) + 11—«
-—=al-—-—= .
P s N t
It follows from Theorem 5.4.9 applied to j** order derivatives of u that
luljp < Clul$yy gluli7®. (5.4.66)
We deduce from (5.4.66), (5.4.64) and (5.4.62) that
at(/m)A—a)(m=j) (—j/m)A—a)(m=4)
|U|j,p < C|u|m;+<lfa)(mﬂ) HuHanHkaxmﬂ)
Since by (5.4.65),
_a+(/m)d —a)(m —j)
at(l—a)m—j)
this yields (5.4.2). O

COROLLARY 5.4.13 (Gagliardo-Nirenberg’s inequality). Let Q C RY be an open
subset. Let 1 < p,q,v < oo and let j,m be two integers, 0 < j < m. Assume
that (5.4.1) holds for some a € [j/m,1] (a <1 if r = N/(m —j) > 1), and suppose
further that r < oo. It follows that D®u € LP(Q) for all w € Wy™" () N LI(Q) if
la| = j. Moreover, the inequality (5.4.2) holds for all w € W™ () N LI(£2).

PROOF. We first consider the case @ = RY. Let u € W™ (RY) N LY(RY)
and let (un)n>0 C C°(RY) be the sequence constructed by regularization and
truncation in the proof of Theorem 5.1.8, so that

Uy — win W™T(RY) and  |un||re < |Ju|pa. (5.4.67)
n— o0
Applying (5.4.2) to u, — ue, we obtain
|un = ueljp < Clun — wely, - llun — wel| 7 (5.4.68)
Let o be a multi-index with |a| = j. It follows from (5.4.67)-(5.4.68) that D%u,, is

a Cauchy sequence in LP(R™). Thus D%u,, has a limit v in L?(RY). In particular,

D%upp — v,
RN n— o0 RN

for all ¢ € CJ(RY). Since

Dauncp = (71)]/ unDaSD — (*1)]/ uDa(p,

RN RN n—>00 RN
by (5.4.67), we see that D% = v € LP(RY) and
[tn, —uljp — 0, (5.4.69)
n—oo

which proves the first part of the result. Finally, we apply the inequality (5.4.2) to
uyn. Letting n — oo and using (5.4.67) and (5.4.69), we deduce that (5.4.2) holds
for w. U

We are now in a position to state and prove the Sobolev embedding theorems.
We restrict ourselves to functions of W™ (§2). Similar statements hold for functions
of W™P(Q), but they are obtained by using extension operators, so they require a
certain amount of regularity of the domain. For functions of Wy"?(Q), instead, no
regularity assumption on €2 is necessary. Furthermore, these results are sufficient
for our purpose. Our first result in this direction is the following.
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THEOREM 5.4.14. Let Q C RY be an open subset, let 1 < r < oo and let m € N,
m > 1.
(i) Ifmr < N, then W' (2) < LP(Q) for all p such thatr <p < Nr/(N —mr).
(i) If m= N and r = 1, then WJ""(Q2) < LP(Q) for all p such that r < p < cc.
Moreover, Wi (Q) < Cy(9).
(iii) If mr = N and r > 1, then W' () < LP(Q) for all p such that r < p < oo.
(iv) Ifmr > N, then Wy"" (Q) < LP(Q) for all p such that r < p < co. Moreover,
Wi () = Co(9).
PROOF. The first embeddings of Properties (i)—(iv) follow from Corollary 5.4.13
by taking j = 0, ¢ = r and a = N(p—7)/mpr. The embeddings Wy"" () < Cp(Q2)

in (i) and (iv) follow from the density of C°(2) in W™ (2) and the embedding
Wy () < L>°(Q). O

The next result is the general case of Sobolev’s embedding for functions of
WP (€2).
THEOREM 5.4.15. Let Q C RY be an open subset, let 1 < r < oo and let
m,j € N, m>1.
(i) If mr < N, then WJ"7"(Q) < WJP(Q) for all p such that r < p <
Nr/(N —mr).
(ii) If m = N and r = 1, then Wg”rj"T(Q) — Wg’p(Q) NW3>(Q) for all p such
that r < p < oo. Moreover, W7 (Q) < CJ().
(iii) If mr = N and r > 1, then W' (Q) < WIP(Q) for all p such that
r<p<o0.
(iv) If mr > N, then W7 (Q) < WIP(Q) N W7(Q) for all p such that
r < p < oo. Moreover, WJ" " (Q) < CJ(Q).

PrOOF. We first prove (iv). Applying Theorem 5.4.14 (iv) to D%u with |a] < 7,
we deduce that W77 (Q) < WiP(Q) for all < p < co. The embedding
W (Q) — WIP(Q) if r < p < oo follows from the density of C°(Q) in
W (Q) and the embedding W) (Q) < WiP(Q). Next, the embedding
W7 (Q) — CJ(Q) follows from the density of C°(Q) in W7 (€2) and the
embedding Wom"_j’r(ﬂ) — W7°(Q). The proofs of (i), (ii) and (iii) are similar,
using properties (i), (ii) and (iii) of Theorem 5.4.14, respectively. O

We now apply Morrey’s inequality to obtain embedings in spaces of the type
C(Q).

THEOREM 5.4.16. Let Q C RN be an open subset, let 1 < r < oo. Let m > 1
be the smallest integer such that mr > N. It follows that for all integers j > 0,
W (Q) < CHQ)NCH(Q) with a = m—(N/r) if (m—1)r < N, o any number
in (0,1) if (m —1)r = N.

PROOF. Let u € C°(€). It follows from Theorem 5.4.15 (iv) that

lullwiee < Cllullwm+ir (5.4.70)
Let « be a multi-index with |a| = j. Setting v = D%u, we see that
||’UHWm,r S ||u||Wm+j,r. (5471)
Let
{p:% if (m—1)r <N,
max{r,N} <p<oo if (m—1)r=N,

so that p > N. It follows from Theorem 5.4.15 (i) and (5.4.71) that

[ollwie < Cllv]lwmer < Cllullmse (5.4.72)
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Finally, we deduce from (5.4.72) and Morrey’s inequality (5.4.16) that
_N
o(x) —v(y)| < Clz —y[' =7 [ullwmeir,

for all z,y € RYN. Applying (5.4.70), we conclude that [|u|cs.e < C|lullym+sr, with
a =1—(N/p), which is the desired estimate. O

The following two results are applications of Sobolev’s embedding theorems.

COROLLARY 5.4.17. Given any 1 < r < oo, , W (Q) = C™(Q).

loc

PROOF. It is clear that C>°(Q) C W,.2"(Q) for all m > 0. Conversely, suppose

loc
uwe Wi'(Q) for all m > 0. Let w CC Q and let ¢ € C°(Q) satisfy ¢(x) =1 for
z € w. Tt follows from Proposition 5.1.14 that v = u € W™ (Q) for all m > 0, so
that v € C*°(Q) by Theorem 5.4.15. Thus v € C*°(w) and the result follows, since

w is arbitrary. O

PROPOSITION 5.4.18. Let 1 < p < oo, m € N, m > 1 and v € W,_.P(Q). If
D% € C(Q) for all multi-index o with |o| = m, then u € C™(Q).

PROOF. We proceed in three steps.
STEP 1. u € C(2). Suppose u € L

() for some go < N and let go < ¢1 <
oo satisfy

1 1 1

>

@ g N
Let ¢ € C°(Q) and set v = gu, so that v € L?°(Q). Since Vv = ¢Vu + uVyp
, we deduce that Vv € L%(Q). v being compactly supported in €, it follows
that v € W, () (see Remark 5.1.10 (i)). Applying Theorem 5.4.14, we see that
v € L9 (Q) and, since ¢ is arbitrary, we deduce that u € L{ (). We now iterate the
above argument and, starting from gy = 1, we construct ¢p < --- < qr—1 < N < qx
such that u € L}’ (Q) for 0 < j < k. Finally, let ¢ € C2(2) and set v = pu. We
see as above that v € W1 (Q), and it follows from Theorem 5.4.14 that v € C(12).
Since ¢ is arbitrary, we conclude that u € C(£2).

STEP 2.  The case m = 1. It follows from Step 1 that v € C(f). Since
Vu € C(Q) by assumption, we have in particular u € W,">(Q). Let w CC Q and
let p € C() satisfy p(z) =1 for z € w. Set v = pu, so that v € WH>(Q) by
Proposition 5.1.14. Since v is supported in a compact subset of €2, it follows that if

w(z) = v(z) if z € Q,
~loifz e RN\ Q,

then w € WL>(RY) N C(RY). Moreover, one verifies easily that

Vi — uVe + pVu in Q,
10 RV\Q,

so that Vw € C(RY). Since w and Vw have compact support, we see that w, Vw €
Cpu(RY). Applying Proposition 5.1.12, we deduce that w € C'(RY), and since
w = u in w, it follows that u € C'(w). Hence the result, since w is arbitrary.

STEP 3. The case m > 2. We proceed by induction on m. By Step 2, the
result holds for m = 1. Suppose it holds up to some m > 1. Let u € W’I?CH”’(Q)
satisfy D%u € C'(2) for all multi-index « with |o| = m + 1. Consider 1 < j < N
and set v = d;ju. It follows that v € W12"(Q) and D*u € C(Q) for all multi-index
a with |a] = m. Applying the result at the level m, we deduce that v € C™(Q).
Thus Vu € C™(2). In particular, Vu € C(2) and we deduce from Step 2 that

u € C1(Q). Since Vu € C™ (), we conclude that u € C™1(Q). O
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If |Q] < oo, then ||u||- is dominated only in terms of ||Vul|r for functions of

W, ""(Q). This is the object of the following result.

THEOREM 5.4.19 (Poincaré’s inequality). If |Q < oo and 1 < r < oo, then
there exists a constant C'= C(N,r) (independent of u and ) such that

ull - < ClQ¥ || Vul

Ly (5473)
for every u € W, " (Q).

N _r_
PROOF. Let p =r(N +7)/N, so that by (5.4.20), ||u||rr < C||Vul|| 5" ||l /7.

Since ||lul|pr < |Q|N+” ||u||L» by Holder’s inequality, the result follows. O

COROLLARY 5.4.20. Let 1 < r < oo, and suppose |} < oo. Then ||u| =
|Vul|r- defines an equivalent norm on W, (S2).

We end this section with a result concerning the embedding of L? spaces in
negative order Sobolev spaces.

COROLLARY 5.4.21. Suppose Q C RN is an open set. Let 1 < r < oo and let
m > 1 be an integer. If

i mr < N,

N—mr

_{oo if mr >N,

then L”/(Q) < W= with dense embedding for all 7 < p < P (and p < oo
if mr = N). If, in addition, |Q] < oo, then the same property also holds for
1<p<r.

PROOF. The last part of the result (the case |Q| < oo) follows from the dense
embedding LP(2) — L9(Q2) if 1 < p < ¢ < co. The first part of the result follows
from Theorem 5.4.14 and Proposition 5.1.19, except for the case p = oo (thus
mr > N), since L*(Q) is not the dual of L>°(Q2). In this case, we argue directly as
follows. It follows from Theorem 5.4.14 that W;™" () < L (2). Define

culy) = [ up,
)
for all u € L'(Q) and ¢ € W' (). We have

leu(p)| < Jullprllellze < flullll@lwgr,

so that e defines a mapping L'(Q) — me”'(Q). This mapping is injective,
because if (eu, @)y —m v ymr = 0 forall p € W' (), then in particular [, up =0
for all ¢ € C°(€2), which implies u = 0. It remains to show that the embedding
e: LYQ) — W’ (Q) is dense. To prove this, we observe that by the density
of C°(Q) in L™ (Q) and of L™ (Q) in W~ (Q) (see just above), it follows that
C2°(9) is dense in in W~ (Q). The result follows, since C>°(Q) ¢ L'(). O

5.5. Compactness properties

We now study the compact embeddings of WO1 "(©2). We begin with a local
compactness result in RV,

PROPOSITION 5.5.1. Let1 <1 < 0o and let K be a bounded subset of W (RY).
For every R < oo, Kp := {u|p,; u € K} is relatively compact in L"(Br), where
Br = B(0,R).
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PROOF. We proceed in three steps.
STEP 1. If (py)n>1 is a smoothing sequence, then

c
= puxuller < <Vl

L7, (551)

1
for all u € W'"(RY), where C = ([gn [yl"p(y)dy) ™. By density, we need only
show (5.5.1) for u € C°(RY). We claim that

/RN lu(e —y) = u(@)]" dz < |y["[[VullL. (5.5.2)

Indeed,

u(z —y) —u(z) = /0 %u(w —ty)dt = /0 y - Vu(z — ty) dt;

and so,

=)~ ule) < o] [ V(e — eyl < / Ve - ) )

(5.5.2) follows after integration in z. Next, since ||p, || = 1,

P+ u(z) — u(z) = / pn(y)(u(z —y) —u(z)) dy

= /RN pn(¥) T lpn(y)

By Holder’s inequality, we deduce

|pn % () — u(@)|” < / Pz — y) — u(z)|" dy.

RN

Sl

(u(z —y) —u(@))] dy.

Integrating the above inequality on RY and applying (5.5.2), we find

lousu=ullpy <[l [ lolon(w) do.
R

Hence (5.5.1).
STEP 2. If (py)n>1 is as in Step 1, then

N
l[on > ullwre < 0 lp|

[ (5.5.3)

for all u € WL (RY). Since V(p, * u) = pn * Vu by Lemma 5.1.9, it follows from
Young’s inequality that

1on > ullwre < lpall o fullwsr,
L

and the result follows.

STEP 3.  Conclusion. Let R > 0, let Kr be as in the statement of the
proposition, and let e > 0. Given n > 1, set K™ = {p, xu; u € K} and K}, =
{u|By; v € K™}. Fix n large enough so that

sup [l — py * ul
ucK

Such a n exists by (5.5.1). It follows from (5.5.3) that K™ is a set of uniformly Lip-

schitz continuous functions on RY. By Ascoli’s theorem, K3 is relatively compact

in L>°(BR), thus in L"(Bgr). Therefore, K} can be covered by a finite number of

balls of radius /2 in L"(Bpr). By (5.5.4), we see that K can be covered by a finite

number of balls of radius €. Since € > 0 is arbitrary, this shows compactness. [

i < g (5.5.4)
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COROLLARY 5.5.2. Let Q@ C RY be an open subset, let 1 < r < oo and let
(Un)n>0 be a bounded sequence of W' (). There exist u € L"(Q) and a subse-
quence (Un, )g>0 such that u,, — u a.e. in Q and in L™ (2N Bg), for any R < oo,
as k — oo.

PROOF. We first consider the case = RY. It follows from Proposition 5.5.1
applied with R = 1 that there exist n(1,k) — oo as k — oo and wy € L"(By)
such that w,(; ) — wi in L"(B;) and a.e. in By. We now apply Proposition 5.5.1
with R = 2 to the sequence (un(l,k))kZO- It follows that there exist a subsequence
n(2,k) — oo as k — oo and wy € L"(By) such that u, ) — we in L7(Bz) and
a.e. in Bs. By recurrence, we construct n(f,k) — oo as k — oo and (wg)e>1
with we € L"(By) such that wy,ry — we in L"(Be) and a.e. in B,. Moreover,
(n(¢,k))k>0 is a subsequence of (n(m, k))k>o for £ > m, i.e. for every k > 0, there
exists k' > k such that n(¢, k) = n(m, k). We set ny = n(k, k). Since n(k, k) is a
subsequence of n(¢, k) for any £ > 1, we see that w,, — wy in L"(By) and a.e. in
By. In particular, wy = w,, on B, if £ > m. We now set u = wy on B,,, for £ > m.
We have u,, — u in L"(Bg) and a.e. in Bg, for any R < oo. In particular,

llullorBr) = kli_>rrgo ltn, N r(Br) < li;n_}solip 1wn | -y
We deduce that v € L"(R™). Since u,, — u a.e. in By for any R < oo, we
conclude that u,, — u a.e. in RY.

We now consider the case of an arbitrary domain Q Cc RV. Let (un)n>0 be as

above and set
_ Jun(z) if zeQ,
Un(@) = {o it 2 eRV\Q,

so that the sequence (uy),>0 is bounded in W17 (RY). (See Remark 5.1.10 (iv).)
It follows from what precedes that there exist u € L"(RY), supported in €2, and
a subsequence (Un, )r>0 such that w,, — % as k — oo in L"(Bpg) for any R < oo
and a.e. in RY. The result now follows by setting v = t|o. This completes the
proof. O

LEMMA 5.5.3. Let Q be an open subset of RN. Let 1 < r < oo, let (un)n>0 be
a bounded sequence of L"(Q)) and let u € LL (). Suppose that

loc

/ une — | ugp, (5.5.5)
Q

n—o0 0

for all p € CX(Q) (which is satisfied in particular if u, — u in L'(w) for every
w CC Q). Then ue L™() and

[[ul Lr- (5.5.6)

e < liminf |Juy,]
n—oo

Moreover, if r > 1 then (5.5.5) holds for all ¢ € LT'(Q). In addition, if 1 <r < o
and if ||up|| L — ||ul|Lr as n — oo, then w, — w in L™ ().

Suppose further that 1 < r < oo and that (un)n>0 i a bounded sequence of
Wy (). It follows that u € Wy (),

/Vunga — | Vuep, (5.5.7)
Q n—oo Q
for all p € L™ (Q) and

If in addition ||Vuy,|

L — ||VU|

Lr as n — 0o, then Vu, — Vu in L"(Q).
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PROOF. We claim that for all u € L{ (),

loc

Juller =sup{| [ wols ¢ € (@l =1} (55.9)

If # > 1, this is immediate because L™ (Q)* = L"(Q) and C>°(Q) is dense in
L™ (Q). Suppose now 7 = 1 and suppose u # 0 (the case u = 0 is immediate). Fix
0 <M < ||lu||pr < oo. There exists a compact set K C € such that

/ lu| > M.
K

u(x) .
W) = { T if w(x)#0andze K,
0 if w(x)=0orz¢kK.

Let

We have h € L*(Q), ||h||L~ = 1. Moreover, h has compact support in  and

/uh:/ |u] > M.
Q K

Let (pn)n>0 be a smoothing sequence and set h,, = (pn * h)|q. For n large enough,
we have h,, € C°(€2). Moreover, up to a subsequence, h,, — h a.e. In addition,
[[hn]lLoe < ||h]|Le = 1. By dominated convergence, we deduce

/uhn—> uh > M,
Q

n—oo Q

and so,
sup{‘/ﬁwp‘; 0 € CX(), ¢l Lo = 1} > M.

Since M < ||lu]| 1 is arbitrary, we deduce

sup{‘/gwp‘; w0 e C(), el = 1} > Jlull g

The converse inequality being immediate, (5.5.9) follows. Now, since

[ ] <l
Q

(5.5.6) follows from (5.5.5) and (5.5.9). The fact that if » > 1, then (5.5.5) holds
for all ¢ € L" () follows by density of C2°(Q) in L™ (Q).

Suppose now that 1 < r < oo, that ||u,||zr — |Jull- as n — oo and let us
show that w, — w in L™(Q2). If ||u||- = 0, then the result is immediate. Therefore,
we may assume that ||u||- # 0, so that also ||u,|/Lr # 0 for n large. Let then
U = ||ul|tu and U, = ||un | [ tu,. It follows that

LT SDHLT'a

2] =1

- = [[ul

Furthermore, (5.5.5) is satisfied with v and w,, replaced by @ and w,,. Setting w = 2u
and w, = @ + Uy, we deduce that (5.5.5) is satisfied with u and w,, replaced by w
and w,. In particular, it follows from what precedes that ||w||;r < lUminf ||w, | z-.
Since ||w||rr =2 and ||w, || < ||@]|Lr + ||@n||- = 2, it follows that

H'(Un| r — 2.
n—oo
If r > 2, we have Clarkson’s inequality (see e.g. Hewitt and Stromberg [26])

[t — @l <2772l

e+ [[wn|

) = llu+ tn|

r
Lr-
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Therefore, ||@,, — || - — 0, from which it follows that u,, — w in L"(£2). In the case
r < 2, the conclusion is the same by using Clarkson’s inequality (see e.g. Hewitt
and Stromberg [26])

~ ~ T ~ 1 ~ o~ e
[an —all " < 2(||ul L) = et

e+ llwn|

Suppose finally that 1 < r < co and that (un)n>0 is a bounded sequence of
Wy (). If o € C2°(Q), then for all j € {1,..., N}

Oy, o0 Oy
B AP Vs SN i 5.1
o 0r; " /Qu Ox; "%O/Quaxj (5:5.10)

9y
file) = /Qua_xj’
for ¢ € C*(2). It follows from (5.5.10) and the boundedness of the sequence
(un)nZO in WI’T(Q) that

by (5.5.5). Set now

Ifi()] < Cllgl

Therefore, f can be extended by continuity and density to a linear, continuous
functional on L" (). Since L" (2)* = L"(f2), there exists g; € L"(€2) such that

fily) = / 95
Q
for all ¢ € C°(€) and by density, for all o € L™ (). This implies that
Oy /
u="=— [ gjep,
/Q Iz o
for all ¢ € C°(Q). Thus u € WHT(Q). (5.5.7) follows from (5.5.10) and the above

identity. The last properties follow by using (5.5.7) and applying the first part of
the result to Vu,, instead of wu,,. O

L

We can now establish the compact sobolev embeddings.

TuEOREM 5.5.4 (Rellich-Kondrachov). Let Q C RN be a bounded, open set,
and let 1 < 1 < co. It follows that the embedding W, () < L"(Q) is compact.

PROOF. Let (uy)n>0 be a bounded sequence of W, (). It follows from Corol-
lary 5.5.2 that there exist u € L"(f2) and a subsequence (uy, )x>0 such that u,, — u
in L™(2) as k — oco. This completes the proof. O

In fact, we have the following stronger result.

THEOREM 5.5.5. Let Q C RY be a bounded, open set, let 1 < r < oo and set

_ o if r>N,
r= Nr .
N—r Zf r < N.

If (tn)n>0 is a bounded sequence of Wy'" (), then there is a subsequence (tn, )r>0
and u € L"(Q) such that u,, — u in L"(Q) as k — oo. Moreover, the following
properties hold.
(i) ue L™(Q) (ue LP(Q) for all1 < p<T ifr =N >2) and u, — u in LP(Q)
foralll1 <p<rT.
(ii) Ifr > 1, then u € Wy () and

/Vunkgo H/Vmp,
o) k— oo o)
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for all p € L™ (Q). In particular,
[Vl < liminf [|[Vu,, |-
k— o0

If, in addition, ||Vul L as k — 0o, then u,, — u in Wy (Q).

e = lm [|Vuy, |

PROOF. The first part of the result follows from Theorem 5.5.4. Next, except
in the case r = N > 2, it follows from Theorem 5.4.14 that (uy,),>0 is bounded
in L7(Q), from which we deduce u € L7(2). (See Lemma 5.5.3.) In the case
r =N > 2, it follows from Theorem 5.4.14 that (uy)n>0 is bounded in LP(Q2) for
any p < oo, from which we deduce u € LP(f2) for all p < oco. Property (i) now
follows from the L" bound (or L? bound for all p < oo if r = N > 2) and the
L™ convergence by applying Holder’s inequality to w,, — u. Finally, property (ii)
follows from Lemma 5.5.3. O

REMARK 5.5.6. If © is not bounded, we still have a local compactness result.
Given R > 0, set Qp = {z € Q; |x < R|}. Given any bounded sequence (ty)n>0
of W' (), there exist a subsequence (un, )x>0 and u € L"(Q) such that u,, — u
as k — oo, a.e. in Q and in L"(Qg) for every R < oo. Moreover, the following
properties hold.

(i) If r = N =1, then u € L*(Q) and u,, — u in LP(Qr) for every p < oo
and every R < co. In addition, ||u|z» < iminf ||u,|r» as n — oo for every
1<p< o0

(i) N >2and 1 <r < N, thenu € LNNi—T(Q) and u,, — win LP(QR) for every
p < Nr/(N —r) and every R < oco. In addition, ||ul/zr < liminf||u,| s as
n — oo.

(i) N > 2 and r = N, then u € LP(Q) and u,, — win LP(Qg) for every p < oo
and every R < oco. In addition, ||u|lrr < liminf ||u,|| s as n — oo.

(iv) If » > N, then u € L>®(Q) and u,, — u in L*(Qg) for every R < co. In
addition, |lul/z» <lminf ||u,|rr as n — oo for every r < p < oo.

(v) If 7 > 1, then u € W,""Q) and

/Vunkgo H/Vmp,
9] k— o0 O

for all p € L"/(Q). In particular,

([Vul L

e <liminf ||[Vuy,,|
k—o0

If moreover |Vul|zr = lim ||Vuy, |
then wu,, — u in Wy ().
Those properties are proved like Theorem 5.5.5, except for the local convergence

in (i)—(iv). This follows by applying Theorem 5.5.5 to the sequence ({uy,)n>0, Where
¢ € CX(RY) is such that £(z) =1 for |z| < R.

COROLLARY 5.5.7. Suppose @ C RN is a bounded open set. Let 1 < r < 0o
and let m > 1 be an integer. If

_ {oo if mr >N,
p:

- and ||u]

rr = lm [Jup, ||z as & — oo,

Nr if mr <N,

N—mr

then the embeddings W (Q) < LP(Q) and LP (Q) < W~""" are compact for all
1<p<p.

PrOOF. We first observe that by Theorem 5.5.4, the embedding Wol’T(Q) —
L"(2) is compact, hence the embedding Wy™"" () < L*(Q) is also compact. Ap-
plying Theorem 5.4.14 and Holder’s inequality, we deduce that if 1 < p < p, then
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the embedding Wj™" () < LP() is compact. This proves the first part of the
result, and the second part follows from the abstract duality property of Proposi-
tion 5.1.19 (iii). O

5.6. Compactness properties in RV

In the case of unbounded domains, compactness may fail for various reasons.
Consider for example the case Q = RY. Let ¢ € C°(RY), ¢ # 0, and let y € RV,
y # 0. Setting u, () = p(z — ny), it is clear that (uy),>0 is bounded in W (RY)
for any 1 < r < oo. On the other hand, one sees easily that given any R > 0,
uy =0 on Bp for n large enough, so that the limit u given by Corollary 5.5.2 is 0.
On the other hand, u, 4 wu in L"(RY) since ||un||L- = ||| L~ # 0. However, one
sees that the sequence is relatively compact in L"(R™), up to a translation (since
this is how the sequence was constructed).

One can also consider z € RN, 2 # 0, z # y and set u,(z) = p(r — ny) +
o(x — nz). In this case, u, also converges locally to 0 and for n large enough
[|un |l = 2||¢|lL-. However, in this case, one verifies easily that the sequence is not
relatively compact up to a translation. Indeed the sequence splits in two parts, each
of which is relatively compact up to translations, but with different translations.

Another case of noncompactness is the following. For n > 1, set u,(x) =
n~ 7 @(n~'z). Then |[u,||r = ||¢]lz-. On the other hand, ||Vun|/z- = n ||Vl Lr,
so that u,, is bounded in W17 (RY). However, u,, converges locally to 0. In this
case, the sequence is not relatively compact up to translations.

As a matter of fact, the three cases considered above describe the general
situation, as follows from the following result. For simplicity, we consider the case
r = 2, but a similar result holds in general. This result is based on the concentration
compactness techniques introduced by P.-L. Lions [32, 33].

THEOREM 5.6.1. Let (u,)n>0 be a bounded sequence of H(RY). Suppose there
exists a > 0 such that ||uy||3. — a as n — oco. It follows that there exists a
subsequence (un, x>0 which satisfies one of the following properties.

(i) (Compactness up to a translation.) There evist u € H'(RN) and a sequence
(yr)k>0 C RY such that un, (- — yr) — u in LP(RY) as k — oo, for 2 <p <
2N/(N—-2) 2<p<oco if N=1).

(ii) (Vanishing.) ||un,|lr — 0 as k — o0 for2 <p <2N/(N —-2) 2<p < oo if
N=1).

(iii) (Dichotomy.) There exist 0 < p < a and two sequences (vi)k>0 and (Wk)k>0
of H*(R™N) with compact support, such that

okl + [Jwill g < Csup{llunlar; n > 0},

and
lvelle = p,  llwkll7z = a—p,
dist (supp v, supp wy) — o0,
[tn, — v —wgllLe — 0 for 2 <p < 2N/(N —2),
limsup [|[Vog 72 + [ Vw72 < liminf [|[Vup, [|7..
as k — oo

For the proof of Theorem 5.6.1, we will use the following estimate.

LEMMA 5.6.2. If2<p <2N/(N —2) 2<p<ooif N=1), then there ezists
a contant C' such that

1-0
Jull sy < Cllullfymy (sup [ Jute)Pde)
YERN J]z—y|<1



122 5. APPENDIX: SOBOLEV SPACES

for every u € HY(RY). Here, = max{2/p, N(p — 2)/2p}.

PRrROOF. Let (Qj)j>1 be a sequence of disjoint unit cubes of RY such that
Uj>0 Q; = RY. Let z; be the center of the cube Q; and assume for example that
zg = 0. Let p € CX(RY) satisfy p = 1 on Qg and 0 < p < 1. Let k be the
number of cubes that intersect the support of p. Finally, set p;(z) = p(z — z;) and
po =24 4/N. It follows from Gagliardo-Nirenberg’s inequality that

4
lalo g, < sl gny < CLIV (o0 Baqeoy llosul o ns
Summing in j, we obtain

ey < O (3 I 05 ay) s il ooy
7>0

Since ||V (p;u)||3. @) S Collul? ))» we deduce

(supp (p;
DIVl Tz < kC2 Y llullfn g, < kCallullf @y
j=0 j>0

and so,

Il oy < KC1Callul oy sup sl e,

If R is large enough so that supp p C Br, we deduce that

]2 gy < kcl@nunmm)(sup /
lz—y|<R

4
ju(a)P dz) ™.
Changing u(z) to u(R™1x), we deduce

4

N

[y < Clllfiom (sup [ Juta)da)
lz—y|<1

yERY
The result now follows from Holder’s inequality between ||u|zz and ||ul|Lro if 2 <
p < po, and from Gagliardo-Nirenberg’s inequality between ||u||zro and ||Vul|pz if
P > po- 0

PROOF OF THEOREM 5.6.1. Givenu € H'(R"), consider the distribution func-
tion of u,

p(t) = sup / |u(z)|? du, (5.6.1)
yERN J{|z—y|<t}

for t > 0. It follows that p is a nondecreasing function of ¢ and that p(0) = 0,

p(o0) = |lul|3.. Moreover, we claim that for all ¢ > 0, there exists y(t) such that

= w(z)]? de. .6.
= ) (562)

Indeed, if p(t) = 0, we let y(¢t) = 0. If p(t) > 0, let (y;);>0 be a maximizing
sequence in (5.6.1). We claim that (y;);>o is bounded. Otherwise, we may extract
a subsequence such that o Iir<1f ) dist (y;, yx) > 2t. It follows that

/ |2dx>2/ (z))? dz = +oo,

{|lz— y,|<t}

which is absurd. Therefore, there exists a subsequence (y;,)e>0 which converges
to y(t), which clearly satisfies (5.6.2). Moreover, there exist C' < oo and 6 > 0,
independent of u, such that

o) = p(s)] < CEN 1+ M 100t — sl (5.6.3)
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for all s,¢ > 0. Indeed, if t > s then

plt) = ols) = [ u(@)P do [ u(w)? da
{le—y(b)l<t} {le—y(s)|<s}

S/ |u(m)|2dx—/ |u(z)|? do
{le—y(b)l<t} {le—y(b)]<s}

= / lu(z)|? d.
{s<lz—y(t)|<t}

Given ¢ > 2 such that H1(RY) < L(RY), it follows that

a=2
p(t) = p(s) < {s < |z —y@)] <t} = [|ullZa,

and (5.6.3) follows since |{s < |z — y(t)| < t}| < CHN =L + sVt — s|.

We now consider (u,)n>0 as above, and we denote by (py)n>0 the correspond-
ing distribution functions and by y,(t) the corresponding maximizers of (5.6.1).
It follows from (5.6.3) that (pn)n>0 is uniformly Holder continuous on bounded
intervals. By Ascoli’s theorem, there exists a subsequence, which we still denote by
(pn)n>0, which converges to a function p uniformly on bounded intervals. We have
p >0, p(0) =0, and p is nondecreasing. Let

w= lim p(t).

t—o00
We clearly have
0<pu<a.
Furthermore, we claim that, by considering again a subsequence, there exists a
sequence (ty,)n,>0 such that ¢, > 0, ¢, — oo and

W= nhﬂngo pn(tn). (5.6.4)

Indeed, for all k > 1, there exists t;, > k such that p(t;) > p—1/k. Therefore, there
exists ni > k such that p—2/k < pp, (tr) < p+1/k. (5.6.4) follows by considering
the subsequence (pn,, )k>0-

Next, we observe that for n large enough, ||u,||z2 > 1/2, and we set

Un(x) = un(z — yn(7)),
where T is such that p(7) > p/2. In particular,
pn(T) > /2,

for n large enough. Applying Corollary 5.5.2 and Lemma 5.5.3 to the sequence
(Un)n>0, we see that there exist a subsequence, which we denote again by (U, )n>0,
and v € HY(RY) such that @, — u in L?(Bg) for every R > 0. Moreover,
[|u||r2z < liminf, oo [|Un| L2 = a.

We now consider separately three cases.

CASE 1: o =a. We prove that in this case, (i) occurs. We first observe that

Juls < a=p.

On the other hand, let 11/2 < A < p and let R be large enough so that p(R) > \. Tt
follows that for n large enough, p,(R) > A. We claim that |y, (T) — yn(R)| < R+T.
Indeed, otherwise the sets {|z — y,(7)| <7} and {|x — yn(R)| < R} are disjoint, so

that
[ wPds= [ uaf?+ [ n
RN {lz=y.(P)|<7} {lz—yn(R)[<R}

= pu(F) +pu(R) 2 542>,
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for n large enough, which is absurd. Therefore, setting R = 27 + 2R, we have

| P | fun(2)[? dz = pu(R) >
{lz|<R} {lz—yn(R)|<R}

for n large. Since

/ |u(x)|2dx2/ lu(z)2 dz = lim i ()2 d,
RN {lz|<R} "0 J{|z| <Ry
we obtain [|uf?, > A. Letting A 1 u, we deduce |[ul|2, > p, thus |lul|2. = p. By
Lemma 5.5.3, this implies that %, — u in L?(RY), which proves (i) for p = 2,
with v, = y, (7). The case of an arbitrary p as in (i) now follows from Gagliardo-
Nirenberg’s inequality.

CASE 2: p = 0. We prove that in this case, (ii) occurs. Indeed, we have
pn(1) = 0, so that
sup / [, (2))? de — 0.

{lz—y|<1}

yGRN n— oo

Property (iii) now follows from Lemma 5.6.2.
CASE 3: 0 < pp < a. We prove that in this case, (iii) occurs. We first show
that

W= ILm on(tn/2). (5.6.5)
Indeed, we have py,(t,/2) < pp(ty), so that limsup py,(t,/2) < p by (5.6.4). On the
other hand, let ¢ > 0 and let n be large enough so that t,/2 > t. It follows that
Pu(tn/2) = pu(t) — p(t);

n—oo
and so, liminf p,, (t,/2) > p(t). Letting t — oo, we deduce that lim inf p,, (¢, /2) > p,
which proves (5.6.5). Next, we choose 7, > 0 such that

1
/ un|® > [Jun| 72 — = (5.6.6)
{lmfyn(tn/2)‘<7'n} n

It follows that for n large enough, 7, > ¢,. Finally, let § € C*([0,00)) satisfy
0t)=1for 0<t<1/2,0(t)=0fort>5/8and 0 < <1. Let ¢ € C*([0,0))
be such that ¢(t) =0 for 0 <¢ < 7/8, p(t) =1fort >1and 0 < ¢ < 1. Forn >0,
let

0, (z) = 9(\1*%;(%/2)\)’

on(z) = s0( l2—ya(tn/2)] >9( o= ya (6 /2)] )

for € RY. Note that 6,, vanishes for |z — v, (¢,/2)| > 5t,,/8 and that ¢, vanishes
for |z — yn(tn/2)| < Tt,/8 and |v — yn(tn/2)| > 57,/4. Moreover, 0, = 1 for
| — yn(tn/2)| < tn/2 and @, =1 for t,, < |z — yn(t,/2)] < 7, if n is large enough
so that 7, > t,,. In addition,

n

1 1 C
[VOn| + [Ven| < C(t_ + T—) < et (5.6.7)
(

We now define the sequences (v, )p>0 and (wy)n>0 by
v () = Op(2)un (),
wn () = @n(T)un ().

In particular, (vy)n>0 C HY(RY), (wn)n>0 € HY(RY), and both v,, and w,, have
compact support. Moreover, one sees easily that

dist (supp vn, supp wy,) > t, /8 — +oo, (5.6.8)
n—roo

and
[vnllmr + lwnllm < Cllupla- (5.6.9)
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Furthermore,

pultn)2) = | ol < [ el
{lz—yn(tn/2)|<tn/2} RN

so that
lonllze — . (5.6.10)

by (5.6.4) and (5.6.5). Note also that |u, — v, — wy| < |uy|. Since u, — v, — wy, is
supported in {t,/2 < |z — yn(tn/2)] < tn} U{|z — yn(tn/2)| > 7}, we deduce, by
applying (5.6.4), (5.6.5) and (5.6.6) that

tn — vn — wn|2s < / ui—i—/ u;
{tn/2<|z—yn(tn/2)|<tn} [2—Yn(tn/2)|<Tn} (5611)

< paltn) = pultn/2) + 1

2

so that
tn — v — wp |22 — 0. (5.6.12)
n—oo

By (5.6.10) and (5.6.8), we obtain in particular
2 —
lwale — a—p.

Next, by using Gagliardo-Nirenberg’s inequality together with (5.6.9) and (5.6.12),
we deduce that
lun — v — Wyl r — 0,
n—o0

for2<p<2N/(N-2) (2<p<o0if N=1). Finally,
|Vun|2 - |an|2 - |an|2 =(1- 9721 - @%)|Vun|2
- (|V9n|2 + |V¢n|2)|un|2 = 2(0,V0, + 0nVn)unVuy,

c C
> _t_2|“n|2 - t_|un| [V [;
n n
and so,
/ Vi ? —/ Vo —/ Vo ?
RN RN RN
C C
>~ lualfs = el 2 Valle = 0.
Therefore, (iii) is satisfied. O

For spherically symmetric functions in dimension N > 2, the situation is sim-
pler, and we have the following compactness result of Strauss [42].

THEOREM 5.6.3. Suppose N > 2. If (uy)n>0 C HY(RY) is a bounded sequence
of spherically symmetric functions, then there exist a subsequence (un,)k>0 and
u € HYRYN) such that uy, o in LP(RN) for every 2 < p < 2N/(N —2) (2 <

—00

p<ooif N=2).

PROOF. We proceed in three steps.

STEP 1. Let (un)n>0 be a bounded sequence of H'(RY). Assume that
un(x) = 0 as |z| — oo, uniformly in n > 0, i.e. for every € > 0 there exists R < oo
such that |u,(x)| < e for almost all [x| > R and all n > 0. It follows that there
exist a subsequence (uy, x>0 and u € HY(RY) such that u,, — u in LP(RY) as
k — oo, for all R < oo and all 2 < p < 2N/(N — 2).
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Indeed, by Remark 5.5.6, there exist a subsequence (uy, )r>0 and u € HY(RY)
such that w,, — u in LP(Bg) for any R < oo and a.e. in RY. In particular, u(x)
converges to 0 as x — co. We have

[tn, = ullLe@yy = lun, — ullLe(r) + lltn, = ullLo (o> rY)
p—2
< lun, — “HLT’(BR) + ||tn, — U’HLZO({‘;C‘>R})HU’T% - “HLz(RN)-
Let 6 > 0. By uniform convergence, there exists R < oo such that

0

p=2
Hunk - U’HL&({\:E\>R})||unk - U”L?(RN) < 5

Next, R being chosen, for k large enough we have
”unk - UHLP(BR) < 55
and 50, ||ty — ul Lr@yy < J. Hence the result.
STeP 2. If u € HY(RY) is spherically symmetric, then

2] "7 Ju()| < V2lJull 2 | V] 2, (5.6.13)

for a.a. z € R,

By truncation and regularisation, there exists a sequence of spherically sym-
metric functions (u,)n>0 C C2(RY) such that u,, — u as n — oo, in H(RY)
and a.e. Therefore, we need only establish the estimate for spharically symmetric,
smooth functions. In this case,

N hu(r)? = — /OO %(SN_IU(S)Q) ds < 2/00 sV Lu(s)u! (s) ds.

The result now follows from Cauchy-Schwarz inequality.
StEP 3. Conclusion. We deduce from the estimate (5.6.13) that u,(x) — 0
as || — oo, uniformly in n > 0, and the conclusion follows from Step 1. O

REMARK 5.6.4. The conclusion of Theorem 5.6.3 could also be obtained by
using Theorem 5.6.1 and the estimate (5.6.13).

REMARK 5.6.5. Suppose N > 2. Let R > 0 and Q = {z € RY; |z| > R}.
Let W be the subspace of H}(Q) of radially symmetric functions. Given u € W,
we may extend u by 0 outside 2 in order to obtain a radially symmetric function
of HY(RY). By applying (5.6.13), we deduce that W — L°°(£). Arguing as in
Theorem 5.6.3, one shows that if (uy)n>0 C W is a bounded sequence, then there
exist a subsequence (u,, )x>0 and u € W such that u,, — u in LP(RY) as k — oo,
for every 2 < p < oc.
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