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ABSTRACT

Descriptive Sampling (DS) is a new sampling approach
in Monte Carlo simulation, based on a deterministic selection of
the input sample values and their random permutation. Although
many empirical tests were already carried out to confirm the
usefulness of DS, most of the attention has been given to the
estimation of the mean and the standard deviation of the
responses under study. A more complete wvalidation of DS is
possible by estimating the cumulative distribution function of
the response variables. An application of this methodology and

the results showing the benefits from using DS are reported.



INTRCDUCTION

Recently proposed (Saliby,1990), Descriptive Sampling
(DS) is a new approach to sampling in Monte Carlo simulation.
Apart from the benefits in terms of variance reduction it
produces, Descriptive Sampling represents a considerable change
to basic simulation ideas. This follows because the random
selection of " the sample values 1is replaced by a fully
deterministic selection of such values. The only random element
in a descriptive sample comes from the random permutation of the
input values. Up to now, the empirical validation of DS has been
concentrated on a few parameters of the simulation response
variables, mainly the mean and standard deviation (Saliby, 1989
and 1990). However, given that DS was proposed as a general
approach to any Monte Carlo application, it is important to show
that its’ benefits extend to the whole response distribution, not
only a few parameters. This is carried out focusing the attention
to the empirical cumulative distribution function (EDF)} of the
response variables and estimating a whole set of percentiles
using both simple random sampling (SRS) and descriptive sampling
(DS). As will be shown, the use of DS improves the quality of
simulation estimates for the entire response variable

distribution scope.
DESCRIPTIVE SAMPLING

This section presents a basic introduction to the idea
of DS. A mnore extensive description is given in papers by
Saliby (1990) and Saliby and Paul(1993}. Descriptive sampling was
proposed in order to avoid the set wvariability in simulation
studies. When using the standard Simple Random Sampling (SRS) or
Monte Carlo approach, two kinds of variation are present in a
randomly generated sample - one related to the set of values and
the other to their segquence. But, of these two kinds of
variability, only the sequence variability is really inevitable,
while the set variability is in fact unnecessary. Symbolically,
the two sampling methods can be represented as
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Simple random sampling random set X random seguence,
whilst
Descriptive sampling = deterministic set X random

seguence.

The only additional requirement to use DS instead of
SRS is to know, in advance, the input sample size, which, as
stressed in Saliby and Paul(1993), must be related to a full
simulation run. Once the sample size 1is known, at least
approximately, the set values are defined using the inverse
transform method, also used for SRS, and given by

Xb, = F'[(i-0.5)/n}] , 1i=1,..,n ,
where

FY(R) , R e (0,1)

is the inverse transform for the particular input distribution.

When the inverse distribution 1is not available,
numerical or functicnal approximations can be used. One such case
is the LogNormal distribution, for which the Ramberg and
Schmeiser (1972) approximation for the parent Normal distribution
works fairly well.

Completing the DS generation process, each set of input
values is used in a random sequence in each simulation run. Now,
unlike with SRS, set values are the same for all replicated runs
in a simulation experiment. This random shuffling process is
easily accomplished by sampling without replacement the
descriptive set of values (Saliby,1990).

Apart from a higher memory requirement than SRS, DS
generation is usually as fast as SRS generation. It can even be
faster than SRS when multiple runs are carried out and the random
generation of the input values is too time~consuming. Like this,

other issues concerning DS generation deserve attention, but they
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are outside the scope of the present work. Here, our attention

is directed to the quality of the results that DS produces.
EXTENDING THE EMPIRICAL VALIDATION

‘Assuming for simplicity, but without 1loss of
generality, a terminating simulation with a single response Z,
represented as a generic function of the input variables
(Xy0+++,%), so that

Z = F(Xy, o0 %X),

a simulation run is defined by N>1 trials, each trial producing
one observed value for the response variable. Based on the sample
of response values

Z., 3=1,..,N ,

j‘f
we can estimate parameters related to the response variable
distribution. In this case, a generic parameter ©; may be
estimated as

Y, = H(Zy, 00,2y,
for which wunbiasedness, so that E[Y;]=0; as N-w, and
consistency, so that Var([Y;]»0 as N»o, are two asymptotic

properties required.

Up to the present, the empirical validation of DS has
been concentrated on the mean and standard deviation estimates
of the response variables. However, it is the aim of the present
work to show that the benefits from using DS extend to the whole
response variable distribution. This is achieved by comparing the
performance of both sampling methods in estimating the response

wvariable cumulative distribution function.
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, 3=1,..,N , the
cumulative distribution function (CDF) is estimated by the

Given a sample of response values Z;
empirical cumulative distribution function (EDF), defined by
EDF(z) = #(2,,...,2,22)/N, 2z € R,

where #(2,,...,2,£2) 1is the nunber of cases for which %,<=2,
4y=1,..,N. As such, once z is fixed, EDF(z) can be seen as a
random variable.

Let EDFR(z) be the empirical cumulative distribution
function for the response variable Z when using SRS, and let
EDFD(z) be the corresponding empirical cumulative distribution
function when using DS. To give a full empirical validation for

the DS proposal, we want to show that

E[EDFR(z)] ~ E[EDFD(z)}] ,
and that
Var{EDFD(z)] < Var[EDFR(z)] ,

for any zeR. However, instead of fixing the z values and letting
EDF(z) vary, we fixed EDF(z) to a set of «,, t=1,..k values of
interest, thus letting the corresponding fractile 2,6 vary between
simulation runs. Defining an experiment by M>1 replicated runs,
we can estimate E[Z,] and Var[Z,] for both sampling methods and
compare them. If Z2ZR, and ID, are, respectively, estimated
fractiles using SRS and DS, we want to show that

E[ZR,} = E[2D,] ,
and that

Var[ZR,] < Var(zD,] ,

for the whole set of «,, t=1,..k values of interest.



METHODOLOGY

A common but simple situation in a risk analysis
problem is when two independent input random variables, like

X total market demand,

and

!
il

market share,

produce a response

R = XY,
that can be viewed as the revenue. For instance, the net present
value of a project (NPV), a standard response in a risk analysis

problem, is usually a linear combination of such products.

ILet X and Y be the two input random variables and R
the response random variable when using simple random sampling,
and let XD, YD and RD be the corresponding random variables when
using descriptive sampling. No matter the sampling method in use
(SRS or DS), due to the independence of the two input variables,
it follows that

E[{R] = E[X].E[Y] ,
E[RD] = E[XD].E[YD] ,
Var[R]=[E(X) ]%2.Var(Y)+{E(Y) ]%.Var (X)+Var (X) .Var(Y) ,
and
Var[RD]={E(XD)]Z.Var(YD)+[E(YD)]Z.Var(XD)+Var(XD).Var(YD)

But, since DS does not alter the sampled distribution,

apart from inconsequential rounding errors, it follows that

E[(X) = E[XD] and E[Y] = E[YD] ,
and that

Var[X] = Var{XD] and Var([Y] = Var[¥D] ,
and, hence,

E[{R] = E[RD}, and

Var[R] = Var[RD]
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Therefore, as far as the first two sample moments are
concerned, DS produces unbiased estimates for the product of two
independent random variables. Following a similar approach we
could extend this proof to any moment related to the response
variable distribution, thus showing that the DS response
distribution is equal to the SRS response distribution. In this
paper, however, we present an empirical verification of this
property, which can be used to test this property for any kind
of simulation and response variable, not just the product of two
independent random variables.

Here, to study this product, the following input
variable distributions were considered:

(a) Negative exponential,
(k) Normal,

{c) LogNormal,

(d) Triangular, and

(e} Uniform.

Different combinations of the two input variables were
also considered, so that a more general conclusion could be drawn
from the study. A simulation run was defined by N=1000 trials
(products) so that in this case the input sample size was also
N=1000 for both input variables. Based on the N response values,

each run produced a set of 41 estimates:

(a) the mean of the N response values,
(b) the standard deviation of the N response values, and
(c) A set of k=39 fractiles:

Z,, @ = 0.025, 0.050, ..., 0.950, 0.975

For each combination of input variables under study,
a simulation experiment, defined by M=1000 replicated runs using
SRS and another M=1000 replicated runs using DS, was carried out.
Each experiment produced the following results (Tables 2, 3 and

4 present such results for 3 experiments}:



(a)

(b)

(c)

(d)
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Mean and standard deviation of the M mean estimates from
the M runs, for both SRS and DS (First 1line of the bottom
part of the table of results);

Mean and standard deviation of the M standard deviation
estimates from the M runs, for both SRS and DS (Second line
of the bottom part of the table of results);

For each of the K=39 fractiles under study, identified as

Z, @=0.025,...,0.975, the mean and standard deviation of

af
the M fractile values from the M runs;

For each of the (K+2) estimates above, the mean ratio
defined by (DS overall mean)/ (SRS overall mean} and the
standard deviation ratic defined by (DS overall standard
deviation) / (SRS overall standard deviation). The mean
ratio, if close to unity, will show that DS estimates are
unbiased, whilst the standard deviation ratio will evaluate

the standard error reduction achieved with DS.

Set values generation and fractile computation

Using the inverse transform method, descriptive set

values XD,, i=1,..,N , were generated in the following way:

(a)

(b)

Uniform distribution.
Uniform{a:lower limit, b:upper limit):
XD, = a + (b-a).(i-0.5)/n

Negative exponential distribution.
Negexp (a:mean) :
XD, = ~a.In[{(i-0.5)/n]



(c)

(d)

(e)

Normal distribution.
Normal (m:mean, s:standard deviation):

Using the Ramberg and Schmeiser (1972) approximation,
a descriptive value for the standard Normal distribution is

given by

ZD, = {[((i-0.5)/n1%™ + [1-(i-0.5)/n1%"¥}1/0.1975
and

XD, = m + s.ZD,

LogNormal distribution.
LogNormal (m:mean, s:standard deviation):

Using the Ramberg and Schmeiser approximation above to
generate descriptive values for the standard Normal, and
then using

XD, = Exp(ma + sa.ZD;) ,

where

Ln(m) - Ln[1l+ (s/m)?]/2 , and
{Ln[1+ (s/m)21}"?

are the mean and standard deviation of the Normal random

ma

I

sa

variable that produces the LogNormal variable with mean m

and standard deviation s {(Law and Kelton, 1982).

Triangular distribution.

Triangular{a:lower limit, b:upper limit, c:most likely):
Using the inverse transform (Law and Kelton, 1982),

generate a value for the triangular(0,1,(c-a)/(b-a)), given

by

¥D, = {[(c-a)/(b-a)].[(i~0.5)/n]}"¢ ,
if [(i-0.5)/n £ (c-a)/(b-a)] ,
or
YD, = 1 - {[1-(c-a)/(b=a)].[1-(i-0.5)/n])}/?
if [(i-0.5)/n > (c=-a)/(b-a)]
A descriptive value for the triangular(a,b;c) is given
by

XD; = a + (b-a).¥D;
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Simple random sampling values were also generated using
the inverse transform, thus based on the same algorithms above,
The only difference was the argumént of the inverse
transformation which, instead of a descriptive value in the unit
interval defined by {(i-0.5)/n], was defined as a random uniform
value.

For the fractile estimation, the N=1000 response values
produced in each simulation run were first sorted into ascending
order (we used the guicksort algorithm). Based on this set of
ordered values z,,, i=1,..,N, the at fractile was given by

2, = 2

a @y T OINa=(k=0.5) 1. (201,72 ¢) o

where
k is such that k/N < o < (k+1}/N

For example, given that N=1000, the a=0.500 fractile
(the sample median)} was given by the average

Zo.s00 = (2¢s00ytZs0m)) /2 »

with a similar result applying to any other fractile under study.
Also based on the N=1000 respense values from each run, their
mean and standard deviation were computed in the usual way.

Finally, based on the results from M=1000 runs for each
sampling method, the mean and standard deviation of the 41
estimates under study were computed. This procedure defined a
simulation experiment, which was the same for all problems here
studied. This experimental procedure was programmed in TURBO-
PASCAL (source code available from the author) and run on a 486
microcomputer. Processing times ranged from 5 to 10 minutes for

each experiment.
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RESULTS

Table 1 presents a list of the problems used in our
tests. A notable finding was that, for all probklems and for all
estimates, DS performed better than SRS. As a whole, precision
gains, which varied betweenh problems, were very high for the mean
and lower, but still substantial, for the standard deviation.
Concerning the fractiles, standard error ratios typically ranged
from 0.5 to 0.9, with lower ratios (greater gains) near the
distribution centre (median) and higher ratics (lower gains) near
the distribution extremes.

As an example, Table 2 presents the results from one
of such experiments, for problem 22. This problem concerns the
product of twe LogNormal random variables and was previously
studied by Zaino and D’Errico (1989) in the context of decision
and risk analysis. As seen, the mean ratios were very close to
one, therefore showing that DS produces unbiased estimates. On
the other hand, the standard deviation ratios, keing lower than
one, confirm that DS estimates are more precise. Those properties
are better seen in figure 1, where the mean and standard
deviation ratios are plotted for the whole set of fractiles under

study.

To give further evidence in favour of DS, the results
and corresponding graphics for two other problems are displayed:
Table 3 and fiqure 2, which refer to problem 1 (Product of two
negative exponential random variables); and Table 4 and figure
3, which refer to problem 11 ({Product of an uniform and a

triangular random variable).



Table i. List of problems for which 2=X*Y was studied
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Problem number

X Variable

Y Variable

10

11

12

i3

14

15

16

17

18

19

20

21

22

Negexp(4)

Negexp (1)

LogNormal (3,1)
LogNormal(1.5,0.3)
Nermal(3.4,0.15)
Normal(3.4,0.15%)
Uniform(2,6)
Uniform(-1,4)
Triangular(0,1,0.5)
Triangular(0,1,0.5)
Uniform(2,6)
Uniform(0,1)
Uniform{2,4)
Uniform(-1,4)
Triangular(l,5,3)
Triangular(1,6,4)
Triangular(0,1,0.1)
Negexp{2)

Negexp(l)
LogNormal(l.5,0.3)

Triangular(1,5,3)

LogNormal({(30.3,4.571)

Negexp (1)

Negexp (1)
LogNormal(1.5,0.3)
LogNormal(1.5,0.3)
Normal(-1.5,0.3)
Neormal(3.4,0.15)
Uniform(-1,4)
Uniform(-1,4)
Triangular(2,4,3)
Triangular(0,1,0.5)
Triangular (2,6, 4)
LogNormal(1.5,0.3)
Negexp (3)
Normal(3.4,0.3)
Negexp (2)
LogNormal(2.5,0.2)
Normal(3.4,0.3)
LogNormal(1.5,0.3)
Normal{3.4,0.15)
Normal{(3.4,0.15)

Negexp (3)

LogNormal (0.23,0.072)




Table 2. Summary of results for problem 22: Z =
X ~ LogNormal{30.3031,4.5712), Y ~
LogNormal(0.2334,0.0716)
Sample size = 1000 , Number of runs = 1000

X.Y

—=w= SRS ===

st dev

Mezan ratio
DS/SRS

&t Dev ratio
DS/SRS

Fractile mean
0.025 3.4598
0.050 3.8489
0.075 4,1230
0.100 4,3504
0.125 4.5472
0.150 4,7254
0.175% 4,8890
0.2C0 5.0436
0.225% 5.1913
0.250 5.3334
0.275 5.4714
0.300 5.6067
0.325 5.7409
0.350 5.8743
0.375% £.0062
0.400 6.1397
0.425 €.2727
0.450 6.4073
0.475 6.5438
0.500 6.6822
0.525 6.8235
0.550 6.9691
0.575 7.1171
0.6C0 7.2718
0.625 7.4323
0.650 7.5999
0.875 7.7771
C.700 7.9630
0.725 8.1€03
0.750 8.3746
0.775 8.6043
0.800 8.8591
0.825 9.1417
0.85C 9.4600
0.875 G.8290

0.950 11.5950

10.2684
10.8199
11.5900
12.871%

0.975 12.8822
MEAN 7.,0735
ST DEV 2.4395

0.1279

13
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Table 3. Summary of results for problem 1: 2 =
X ~ Negexp(4), Y ~ Negexp(l)
Sample size = 1000 , Number of runs = 1000

---- SRS ----

Fractile mean
0.025 0.0191
0.050 0.0461
0.075 0.0784
0.100 0.1155
0.125 0.1577
0.150 0.2045
0.175 0.2567
0.200C 0.3137
0.225 0.3771
0.250 0.4460
C.275 0.5214
¢.300 0.e030
0.325 0.6%19
0.350 0.788%
0.375 0.8945%
0.400 1.0094
0.425 1.1344
0.450 1.2715
0.475 1.419C
0.500 1.5817
0.525 1.7600
0.550 1.9563
0.575 2.1697
Q.600 2.4089
.625 2.6702
0.650 2.9638
0.675 3.2938
0.700 3.6618
0.725 4.0845
0.750 4.5708
0.775 5.1330
0.800 5.7872
0.825 £.5647
0.8%0 7.5257
0.875 8.7161

st dev

3.6562
4.0753
4.5614
5.117C
5.7755
6.5602
7.525¢
8.7454
10.3277
12.5240

Mean ratic
DS/SRS

8t Dev ratio
DS/SRS

0.7577

MEAN 3.9939

0.5560

1s
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Table 4. sSummary of results for problem 11: 2 =

X ~ Uniform(2,6), Y ~ Triangular(2,6,4)

Sample size = 1000

; Number ©f runs = 1000

———- SRS --—-

st dev

---- DS

Mean ratio
DS /SRS

St Dev ratio
DS/SRS

Fractile mean
0.025 6.9591
¢.050 7.8113
0.075 8.4354
0.100 8.9582
0.125 ©.4225
0.150 9.8614
0.175 10.2760
0.200 10.6802
0.225 11.0762

0.27% 11.8415
0.300 12.2228
0.325 12.6080

0.350 12.9959
C.375 13.3780
0.400 13.7675
0.425 14.1605
0.450 14.5545
0.475 14.9501
0.500 15.3612
0.525 15.7705
0.550 16.1852
0.575 16.6122

0.600 17.0466
0.625 17.4933
0.€50 17.9540

0.€75 18.4291
0.700 18.9131
0.725 19.4248
0.7590 19.69544

0.77%5 20.5108
0.800 21.09%6
0.82% 21.7202
0.850 22.4066
0.875 23.1603
0.900 24.0165
0.925 25.0320
¢.950 26.3510
C.975 28.2242

0.2254
0.2326
0.2368
0.2426
0.251¢9
0.2486
0.2521
0.2526
0.2551
0.2572
0.2620
0.2644
0.2703
0.273%
0.278%
0.284¢6
0.2871
0.2915
0.2970
0.2983
0.3070
C.3108
0.3221
0.3329
0.3416
0.3581
0.3811
0.4154

9.4187

9.8591
10.2742
10.6782
11.0718
11.4565%
11.8383
12.2230
12.6066
12.9942
13.3808
13.7697
14.1621
14.5%90
14.953¢
15.3605
15.7683
16.1865
16.6132
17.04¢8
17.4976
17.9553
18.4253
18.9160
19.4206
19.9445
20.5036
21.0886
21.7136
22.3924
23.1430
24.0116
25.0400
26.3344
28,2023

¢.9995
0.9999
1.0002
1.000Q2
1.0001
1.00023
1.0002
1.0000
0.9959
1.0001
1.0001
1.0002
1.0002
1.0001
0.9998
1.0002
0.9998
0.9995
0.9997
0.2995
0.9997
0.99%4
0.99¢5
0.9998
1.0003

ST DEV 5.7367

0.9997

7
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Mean and St Deviation ratios

Figure 3.

(Problem 11}
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CONCLUSIONS

The results showed that DS produces better estimates
for the whole response variable distribution, not just the mean
and standard deviation. This same methodology can also be applied
to any other simulation problem. In fact, studying the project
duration in a PERT network, we arrived at similar results as
those reported here. Although not a common practice in simulation
studies, the estimation of a response variable distribution is
a valuable information for the decision maker. For instance, this
is the case in a risk analysis, where a risk profile (the
probability distribution of the net present value or the internal
rate of return) is usually estimated. As such, Descriptive
Sampling represents a highly promising improvement as far as risk

analysis and other simulation studies are concerned.
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Table 3. Summary of results for problem 1: Z = X.Y
X ~ Negexp(4), Y ~ Negexp(1l)
Sample size = 1000 , Number of runs = 1000

===v SRS =w=- -~-- D§ -———- Mean ratio St Dev ratio
Fractile mean st dev mean st dev DS/SRS DS/SRS
0.025 0.0191 0.0047 0.0192 0.0033 1.0075 0.7190
0.050 0.0461 0.0083 0.0458 0.0056 0.9927 0.6708
0.07% 0.0784 0.0117 0.0779 0.0074 0.9933 0.6295
0.100 0.1155 0.0156 0.1151 0.0093 0.9969 0.5986
0.125 0.1577 0.0191 0.1571 0.0115 0.9961 0.6006
0.150 0.2045 0.0229 0.2043 0.0136 0.9991 0.5934
0.175 0.2567 0.0267 C.2564 (0.0185 0.99390 0.5800
0.200 0.3137 10,0316 0.3137 0.0181 1.0000 0.5720
0.225 G.3771 0.0364 0.3764 0.0203 0.9983 0.5562
G.250 0.4460 0.0410 ©.4455 0.0225 0.9990 0.5501
0.275 0.5214 0.0456 0.5203 0©.0255 0.9978 0.5581
0.300 0.6C030 0.0506 C.e011 0.0282 0.9968 0.5577
0.325 0.63919 0.0562 0.6900 0.0C31le ¢.9973 0.5626
0.350 0.7885 0.0617 0.7873 0.0358 0.9985 0.5806
0.375 0.8945 0.0672 0.8917 0.0394 0.9958 0.5869
0.400 1.0094 00,0756 1.0057 0.0423 C.9964 0.5601
0.425 1.1244 0.0828 1.1300 0.0487 0.9%61 0.5642
0.450 1.2715 0.0916 1.2660 0.050¢ 0.9957 0.5560
0.475 1.4190 0.1003 1.4135 0.0555 0.92961 0.5527
6.500 1.5817 0.1115 1.5767 (0.0603 0.%968 0.5413
0.525 1.7600 00,1196 1.7534 (©.0658 0.9962 0.5506
0.550 1.8563 00,1300 1.9482 0.0722 0.%8958 0.5550
0.575% 2.16%97 0.1416 2.1640 0.07%0 0.9973 0.5577
0.600 2.4089 0.1584 2.400C0 0.08%6 0.9963 0.5656
0.625 2.6702 0,1738 2.6649 0.0995 0.9980 0.5728
0.650 2.9638 0.1912 2.8%94 0.1111 0.9985 0.5810
0.675 3.2%38 0.2114 3.2879 0.1217 0.9982 0.5756
0.700 3.6618 0.2373 3.6562 0.1341 0.9985 0.5652
0.725% 4.0845 0,2693 4.0753 0.1536 0.9977 0.5703
0.750 4.5708 0.30286 4.5614 0.1784 0.9979 0.58%4
0.775 5.1330 0.3420 5.1170 0.2071 0.9969 0.6056
0.800 5.7872 0.3857 5.7755 0.2481 0.9980 0.6432
0.825 6.5647 0.4304 6.5602 0.2952 0.9993 0.6858
0.850 7.5257 0.4903 7.5259 0.3555 1.0000 0.7250
0.875 8.7161 0.5785 8.7454 0,42%0 1.0034 G.7440
¢.900 10.2833 0.7101 10.3277 (0.5310 1.0043 0.7478
0.925 12.4900 0.9133 12.5240 0.6995 1.0027 0.765%9
0.950 15,8791 1.2436 15.9242 0.9423 1.0028 0.7577
0.975 22.4282 2.0774 22.5074 1.7036 1.0035 0.8201
MEAN 3.9939 (.2278 3.99%941 0.12867 1.0001 0.5560
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Figure 2. Mean and St Deviation ratios
(Problem 1)
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Table 4. Summary of results for problem 11: Z = X.Y¥
X ~ Uniform(2,6), Y ~ Triangular{2,6,4)

Sample siz

-———— 8
Fractile mean
0.025 6.9591
0.050 7.8113
0.075 §.4354
0.100 8.9582
0.12% ©.4225
0.150 9.8614
0.175 10.27€0
0.200 10.6802
0.225 11.0762
0.250 11.4627
0.275 11.8415
0.300 12.2228
0.325 12.6080C
0.350 12.9955
0.375 13,3780
0.400 13.7675
0.425 14.1605

0.450 14.5545

0.475 14.9501
0.500 15.3612
0.525 15.7705
0.550C l16.1852
0.575 16.6122

0.600 17.0466
0.625 17.4933
0.4650 17.9540

0.6875 18.42%1
0.700 18.9131
0.725 19.42483

0.750 19.9544
0.775 20.5108
0.80C0 21.0996
0.825 21.7z202
¢.850 22.4066
0.875 23.1603
0.900 24.0165
0.925 25.0320
0.950 26.3510C

0.975 28.2242
MEAN 16.0037
ST DEV 5.7387

e = 1000 , Number of runs = 1000

RS =~w==—=— ———= D8 —+——- Mean ratio St Dev ratio
st dewv mean st dev DS/SRS DS/SRS
0.2162 6.9477 0.1803 0.9984 0.8341
0.1982 7.8014 0.1534 ©.9987 0.7737
0.1889 8.4237 0.1482 0.9%86 0.7846
0.184¢6 8.9471 0.134¢6 0.9588 0.72%93
0.1917% 9.4187 0.1327 0.9996 0.6924
0.1982 9.85%1 0.1323 0.9998 0.6676
0.2037 10.2742 0.1300 0.9998 0.6382
0.2065 10.6782 (.1l272 0.%998 0.6159
0.2146 11.0718 0.1259 0.99%6 0.5869
0.21%4 11.4866 (.1228 0.9995 0.85595
0.2254 11.8393 0.1224 ¢.9998 0.5427
0.2326 12.2230 0.1218 1.0000 0.5237
0.2368 12.6066 0.1217 0.989% 0.5137
0.24286 12.9942 0.1238 0.9999 0.5104
0.2519 13.3808 0.1296 1.0002 0.5147
0.2486 13.76%7 0.1304 1.0002 0.5245
0.2521 14.1621 0.1344 1.0001 0.5329
0.2526 14.559C 0.1367 1.0C03 0.5413
0,2551 14.9539 0.1407 1.0002 0.5516
0.2572 15.3605 0.1439 1.0000 0.5597
0.2620 15,7683 0.1448 0.9999 0.5525
0.2644 16.1865 0.1449 1.0001 0.5480
0.2703 16.6132 0.1510 1.0001 0.5589
0.2735 17.0498 0.1543 1.0002 0.5641
0.278% 17.4976 0.1619 1.0002 0.5811
0.284¢6 17.95%3 (0.1669 1.0001 0.5866
0.2871 18.4253 0.175%4 0.99¢8 0.6109
0.2915 18.9160 0.181l6 1.0002 0.6228
0.2970 19.4206 0.1822 0.9998 0.6134
0.2983 19.9445 (0.1878 0.9995 0.6297
0.3070 20.5036 0.1965 0.9%997 0.6401
0.3108 21.0886 0.2018 0.999% 0.6491
0.3221 21.7136 0.2093 0.9997 0.6498
0.3329 22.3924 0.2209 0.8994 C.6636
0.3416 23.14%0 0©.,2330 0.%9%85 0.6821
0.3581 24.0116 (.2493 0.994%8 0.6%961
0.3811 25.0400 0.2896 1.0003 0.7600
0.4154 26.3344 0.3363 0.9994 0.8096
0.4761 28.2023 0.4332 0.9992 0.5099
0.1880C 15,9994 0.03C1 0.9997 0.15603

0.115& 5.7343 0.0884 0.9996 0.7647
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Figure 3. Mean and St Deviation ratios
{Problem 11)
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CONCLUSIONS

The results showed that DS produces better estimates
for the whole response variable distribution, not just the mean
and standard deviation. This same methodology can also be applied
to any other simulation problem. In fact, studying the project
duration in a PERT network, we arrived at similar results as
those reported here. Although not a common practice in simulation
studies, the estimation of a response variable distribution is
a valuable information for the decision maker. For instance, this
is the case in a risk analysis, where a risk profile (the
probability distribution of the net present value or the internal
rate of return) is usually estimated. As such, Descriptive
Sampling represents a highly promising improvement as far as risk
analysis and other simulation studies are concerned.
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