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necessários à obtenção do t́ıtulo de Mestre em

Engenharia Mecânica.

Orientador: Thiago Gamboa Ritto

Rio de Janeiro

Outubro de 2018



IMPACT OF DAMPER SEAL COEFFICIENTS IN ROTOR DYNAMICS:

UNCERTAINTIES AND OPTIMIZATION

Raphael Timbó Silva
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ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
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Os selos amortecedores podem ter grande impacto na dinâmica de rotores,

mas o cálculo dos valores dos coeficientes de rigidez e amortecimento para

este componente é dif́ıcil e possui grande incerteza. No presente trabalho, um

modelo probabiĺıstico é proposto para modelar os coeficientes do selo, que são

dependentes da frequência. Um processo estocástico (indexado na frequência)

é constrúıdo de forma que o erro do modelo seja levado em consideração. O

impacto dessas incertezas no comportamento rotodinâmico de um compressor é

analisado. Os coeficientes determińısticos do selo são determinados considerando

o modelo ‘bulk-flow’ e valores calculados por um fabricante de compressores

baseado em uma extrapolação de dados experimentais. Os resultados obtidos

mostram que a incerteza desses coeficientes tem um impacto considerável no

comportamento rotodinâmico do compressor, afetando a margem de estabilidade

e a resposta ao desbalanceamento. Baseado nesta análise, um procedimento para

a otimização robusta do comportamento rotodinâmico do compressor é proposto.

Este procedimento considera parâmetros geométricos do selo como variáveis de

projeto. Os resultados da otimização robusta mostram que o comprimento do selo

e a profundidade das células podem ser alterados com o objetivo de se obter uma

melhor resposta ao desbalanceamento.
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Damper seals can have a significant impact on rotor dynamics, but the calculation

of the stiffness and damping coefficients for this component can be challenging and

has a high uncertainty. In the present work, a probabilistic model is proposed to

model the seal coefficients, which are frequency-dependent. We develop a stochastic

process (frequency indexed) so that the uncertainty in the model is taken into

account. The impact of these uncertainties on the rotordynamic behavior of a

compressor is analyzed. The deterministic coefficients of the seal are determined

considering a bulk-flow model and values calculated by a compressor vendor based

on the extrapolation of experimental data. The obtained results show that the

uncertainty of these coefficients have a considerable impact on the compressor

rotordynamic behavior, affecting the stability margin and the unbalance response.

Based on this analysis, a procedure for the robust optimization of the compressor

rotordynamic behavior is proposed. This procedure considers the seal geometric

parameters as design variables. The results for the robust optimization show that

the seal length and the cell hole depth can be modified to improve the unbalance

response.
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Chapter 1

Introduction

1.1 Motivation

Centrifugal compressors can be used to reinject gas during the oil production. This

reinjection is done to maintain the pressure of the oil reservoir and also to store gas

that cannot be exported.

The high pressure in which these compressors operate can lead to stability issues.

Seals such as the honeycomb and hole-pattern can be used to increase the damping

in the rotor, to this reason these are commonly referred as damper seals.

The damper seal has a high damping coefficient, but it can also have high stiff-

ness. These coefficients can be of the same order of the bearing’s coefficients and

can affect the natural frequencies and the equipment’s unbalance response.

The current standard for centrifugal compressors in the oil & gas industry

(API 617 [1]) does not require the damper seal to be considered in the unbalance

response analysis and its impact in this regard can go unnoticed until the equipment

starts operating.

Even when the analyst considers this component, there are many uncertainties

regarding the values of damping and stiffness coefficients, since experimental data

to validate codes used to perform their calculation are still limited to relatively low

pressure and density.

1.2 Dissertation Goals

The goals of this dissertation are the following:

• To study how uncertainties on damper seal’s coefficients can influence the

rotordynamic behavior;

• To propose a methodology to optimize unbalance response while keeping a safe

stability margin using the seal geometry as a design parameter.
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1.3 Centrifugal Compressors

Centrifugal compressors are widely used in the oil & gas industry in processes such as

gas field operations, hydrocarbon and chemical processing. Their primary purpose

is to increase gas flow pressure to the levels required by the process or to provide

pressure differences to overcome system resistances, thus enabling gas flow through

pipes and equipment LÜDTKE [6].

Centrifugal compressors are assembled in one or more sections. A section has

defined external process conditions and consists of a series of stages. Figure 1.1

shows a compressor stage. The gas enters the impeller, which is the part responsible

for transferring the shaft mechanical energy to an increase in pressure, temperature,

and velocity. In the diffuser, the gas velocity decreases, resulting in a further increase

in pressure and temperature. The return bend (or crossover bend) is responsible for

changing the flow direction to the next stage. In the return channel deswirling of

the gas occurs before entering the next impeller, since the gas swirling would impact

the capacity of the next impeller to transfer energy to the gas.

The dotted red lines in fig. 1.1 show the interstage leakage, which is usually

controlled by the use of labyrinth seals. These seals can exert forces on the rotor

leading to instability, especially if swirling of the gas is not controlled before the seal

entrance.

Impeller

Diffuser Return channel

Return bend

Labyrinth seals

Labyrinth seals

Figure 1.1: Compressor stage comprised by the impeller, return bend, return channel
and interstage seals.

In the gas field operations, centrifugal compressors can be used in the exportation

of produced gas, increasing of the oil production through gas lift or in the reinjection

of gas to maintain the pressure of the oil reservoir and also to store gas that cannot

be exported.

Reinjection of gas into the oil field can require a discharge pressure of more than

2



balance
piston

Figure 1.2: Inline compressor.

Figure 1.3: Honeycomb seal installed at the balance piston.

300 bar depending on the particular oil field. In some oil fields in which Petrobras

operates this pressure can reach more than 550 bar with a high CO2 content which

increases gas density, leading to a condition where we may have stability issues since

the forces exerted by the seals are proportional to the gas pressure and density.

The high-pressure compressors used for reinjection can have one section with an

’in-line’ (or straight-through) arrangement as shown in fig. 1.2, where the gas enters

in the left and is compressed in each stage before being discharged at the right end

side.

At the right end of the rotor, part of the gas goes to the discharge and part

goes through the balance piston and back to the suction (dotted red line). For an

in-line compressor, the balance piston helps to compensate the axial thrust caused

by the impeller, decreasing the size of the required thrust bearing. The damper seal

is installed in the balance piston and can have a honeycomb surface as illustrated

in fig. 1.3. The design of this seal will be explained later.

In a back-to-back design, the compressor has two sections, gas enters the first

section at the left end and is discharged after the third stage. Then the gas enters

3



balance
piston

section 2section 1

Figure 1.4: Back-to-back compressor.

the second section at the right end and is discharged at the middle. In this case,

gas flows through the balance piston coming from the second section discharge to

the first section discharge.

In a back-to-back compressor, the impellers arrangement balances most of the

axial load.

There are several types of seals that can be used in the balance piston such as

labyrinth, honeycomb, hole-pattern and pocket seals.

Labyrinth seals can have high cross-coupled stiffness terms that can make the

rotor unstable. Honeycomb seals are commonly used on high-pressure compressors

due to their stabilizing effect. According to VANNINI et al. [7] these seals also have

a high cross-coupled term, but their damping coefficient is much higher than the

labyrinth seals, resulting in a better overall effect on stability.

One point of great concern is that the damper seal has high stiffness, which can

affect the critical speed position, its mode shape and the overall equipment’s unbal-

ance response. As mentioned by CHILDS and VANCE [8] this higher stiffness has

been observed as shifts in critical speeds of compressors retrofitted with honeycomb

seals. This change can lead to vibration problems at the site. A case is related by

NORONHA et al. [9], in which a compressor presented high sensitivity to unbalance

when the discharge pressure was increased and the seal started to act. In this case,

the manufacturer had to change the damper seal design in order to decrease stiffness,

move the critical speed and improve the unbalance response.

4



1.4 Damper Seal’s Development

Around the mid-1970’s, annular seals had the primary function of restricting gas

leakage flow and were not considered important in rotordynamic. This lack of im-

portance was because, when compared to the bearings, forces produced by these

components were not considered relevant (CHILDS and VANCE [8]).

As described by VANNARSDALL [10], the push to achieve higher efficiency led

to the application of methods such as:

1. Decrease the seal clearance to reduce leakage, which in turn increases the force

generated in the seal;

2. Increase the operational speed, which raises the operational speed above the

first critical and increases circumferential flow velocity;

3. Increase the working pressure and thereby the fluid density. Seal forces are

proportional to pressure and density;

4. Adding stages to the machine thereby increasing the bearing span length and

lateral vibration amplitudes.

With the development of these methods, the first cases of instability started to

be reported. One of the most known cases is the Ekofisk compressor instability,

which was reported at the time by GEARY JR et al. [11] as “subsynchronous rotor

whirl” .

Although honeycomb (HC) seals have been used before in applications where

these seals would be more resilient to the fluid (VANNARSDALL [10]), the first

proposal of using seals to increase damping came from VON PRAGENAU [12],

which proposed a seal surface roughness for stabilization and sealing for use in the

fuel and oxidizer pumps of the space shuttle main engine.

The interest in these seals for rotordynamic application started to grow, and

studies for predicting their behavior were carried out. However, as stated by VAN-

NARSDALL [10], while HC seals can be superior to labyrinth seals regarding their

rotordynamic performance and leakage characteristics, their behavior was erratic

and hard to predict.

1.5 Available Data and Uncertainties on Damper

Seal Coefficients

Typically, the software used to predict seal’s coefficients use bulk-flow theory (which

will be explained in the modeling section), with empirical friction factor, but a full
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computational fluid dynamics (CFD) analysis can also be carried out to obtain these

coefficients (NORONHA et al. [9]).

Unfortunately, experimental data to validate the numerical code are limited when

we consider recent applications in which the pressure level (550 bar) and the high

CO2 content can significantly increase the density.

CHILDS et al. [13] presented experimental results for leakage and rotordynamic

coefficients for seven honeycomb seals. The test fluid was air, with a pressure up to

approximately 8 bar and rotor speed reaching 16 000 RPM.

HA and CHILDS [14] presented results for experiments that used flat-plates to

measure the friction factor for the damper seal surfaces. This work tested 36 different

honeycomb surfaces and three smooth surfaces. The honeycomb surfaces showed

a higher friction factor and a phenomenon named as ‘friction factor jump’ was

identified. The friction factor is normally expected to keep constant with increasing

Reynolds number when we consider a turbulent flow in a pipe, but in this case,

the friction factor would suddenly present an increase when increasing the Reynolds

number. This ‘friction factor jump’ was later attributed to acoustic phenomena.

HOLT and CHILDS [15] presented experimental results for two hole-pattern-

stator seals and one smooth bore seal. Excitation-frequency range was 40 to 230

Hz; top running speed was 20200 RPM and the highest discharge pressure 17.2 bar.

They used air as the test fluid.

CHILDS and WADE [16] present results for hole-pattern seal with a supply

pressure of 70 bar, three pressure ratios and speed up to 20 000 RPM with air as the

test fluid.

WAGNER et al. [17] gives results for dynamic coefficients of impeller eye

labyrinth seals in which a test rig with a maximum test pressure of 70 bar was

used. This work is not directly related to damper seal but gives an idea of the

available test apparatus at the time.

Experiments for a hole-pattern seal that had cells with a relatively high diameter

were carried out by VANNARSDALL and CHILDS [18]. In these experiments, a

test rig that could have an inlet pressure of 70 bar and speed up to 20 200 RPM was

used.

VANNINI et al. [7] presents the development of a test rig with a maximum test

pressure of 350 bar. The test gas is restricted to nitrogen. The work gives results

for a long labyrinth seal with inlet pressure up to 200 bar.

Considering the lack of experimental data and also the level of accuracy for tools

currently available, seal’s coefficients can present a high level of uncertainty, and

this can have an impact on the rotordynamic model. As an example, KOCUR et al.

[19] conducted a survey among vendors, users, academics and consulting companies

where the different rotordynamic coefficients predictions of the same journal bearings
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and labyrinth seals led to different results, with predictions for the first forward mode

ranging from 6000 RPM to 11 300 RPM and the log dec with magnitudes from -1 to

+1.
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Chapter 2

Rotordynamic analysis

The rotordynamic analysis required by API 617 [1] can be divided into two parts:

1. Damped unbalanced rotor response;

2. Stability analysis.

The requirements for each analysis will be discussed.

2.1 Damped Unbalanced Rotor Response

The first step in the unbalance response analysis is to determine the undamped

critical speeds and their mode shapes. Before detailing the analysis, we describe the

definition for the following terms:

• Nma : Minimum allowable Speed, RPM - Is the lowest rotational speed at

which the machine can operate. It is normally dependent on a separation

margin from the first critical speed;

• Nmc : Maximum Continuous Speed, RPM - Is the highest rotational speed at

which the machine, as-built and tested, is capable of continuous operation;

• Ur : Maximum allowable residual unbalance, g ·mm. Calculated as:

Ur = 6350
Wj

Nmc

(2.1)

where Wj is the equivalent mass to the journal static load in kg. Equation (2.1)

and the factor 6350 is in mm/min and is equivalent to a ISO 1940 [20] balance

grade of 0.7;

• Ua Input unbalance for the rotordynamic response analysis, g · mm - This

unbalance correspond to 2 · Ur.
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Figure 2.1: Typical mode shapes and corresponding unbalance API 617 [1].

For the critical speeds located within the speed range of 0 to 150 % of the

Nmc, an unbalance Ua, corresponding to two times the maximum allowable residual

unbalance Ur, shall be placed at the locations where they will cause the highest

excitation. The unbalance placing is illustrated in fig. 2.1.

Two criteria shall be met in this analysis:

• Vibration at probe (sensor) location shall not exceed the defined vibration

limit when operating over the range Nma to Nmc. Vibration probes are usually

located close to the bearings at both rotor ends;

• If, during the machine operation, the vibration at the probe location reaches

the defined limit for the operational speed range, rotor displacement will not

exceed 75 % of the minimum design diametral running clearance over the range

from zero to trip speed. That means that, even when the machine is operating

at the defined vibration limit, the rotor will be able to pass through critical

speeds without presenting contact between rotating and stationary parts.

In the compressor’s unbalance response analysis performed according to API 617

[1] item 4.8.2.4, the rotor is modeled considering a minimum of items that should

be included. Some of these items are listed:

a) rotor stiffness, mass and polar and transverse moments of inertia;

b) bearing lubricant-film stiffness and damping values including changes due to

speed, load, preload, oil inlet temperature, clearances, and the effect of asym-

metrical loading such as gear forces, side streams, eccentric clearances and

volutes;

c) for tilting-pad bearings, the pad pivot stiffness must be included;

d) structure stiffness, mass, and damping characteristics, including effects of ex-

citation frequency over the required analysis range. For machines whose dy-

namic structural stiffness values are less than or equal to 3.5 times the bearing
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stiffness values in the range from 0 to 150 % of Nmc, the structure character-

istics shall be incorporated as an adequate dynamic system model;

e) rotational speed, including the various starting-speed detents, operating speed

and load ranges.

Although the analysis is not limited to the listed items, it is not required by

the standard to include damper seal damping and stiffness characteristics in the

unbalance response evaluation.

According to API 617 [1] item 4.8.3, an unbalanced rotor response verification

test shall be performed as part of the mechanical running test. This test is carried

out by placing an unbalance weight at a previously defined rotor point (typically the

coupling will be used due to the easy access). The machine will then be accelerated

to the operating speed and the results, such as critical speed position and vibration

amplitude, will be compared with those from the analysis report. If the test results

are different from those encountered in the analysis, the vendor will have to review

the analysis to meet the test results. If this review indicates that the machine is not

according to the standard requirements a design change will be needed.

The problem with the unbalance response tests is that they are typically carried

out close to no load condition due to contractual and financial reasons since a test on

full load can be very expensive and sometimes prohibitive. In this case, the damper

seal forces are not present due to the low gas pressure. This means that the test

may not be representative when compared to the operating condition.

2.2 Stability Analysis

Stability analysis is divided into level 1 and level 2.

Level 1 analysis is an initial screening to identify rotors that do not require a

detailed study. The items to be included are the same as those listed in section 2.1.

We calculate an anticipated cross coupling QA based on conditions at the normal

operating point. The cross-coupling is the force responsible for making the rotor

unstable and it will be better explained in section 3.4. We also find the cross-

coupling Q0 required to produce a zero log decrement. These cross-coupling forces

are inserted in the model as cross-coupled stiffness at a node located at the center

of the rotor.

The real part of the eigenvalue can be used to verify the rotor stability, however

API 617 [1] prefers to use the logarithimic decrement (log dec) for this evaluation.

The log dec, denoted by δ is defined by:

δ = ln

(
x(t)

x(t+ T )

)
(2.2)
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where T is the period of oscillation. Considering the analytical form of the un-

damped response this can be written as (INMAN [21]):

δ = ln

(
Ae−ζωnt sin(ωdt+ φ)

Ae−ζωn(t+T ) sin(ωdt+ ωdT + φ)

)
(2.3)

where ζ is the damping ratio, ωn is the natural frequency and ωd is the frequency of

oscillation for the damped system.

Since ωdT = 2π, the expression reduces to:

δ = ln(eζωnT ) = ζωnT (2.4)

The period T in this case is the damped period (2π/ωd) so that the log dec can

be calculated from the damping ratio as:

δ = ζωn
2π

ωn
√

1− ζ2
=

2πζ√
1− ζ2

(2.5)

The level 2 stability analysis will be required if any of the following apply:

1.
Q0

QA

< 2.0;

2. δA < 0.1, where δa is the minimum log decrement at the anticipated cross

coupling;

3.
Q0

QA

< 10.0 and the point defined by CSR and average gas density is located

in Region B of fig. 2.2. CSR is the critical speed ratio and is defined as the

ratio between the first critical speed and Nmc. API 617 [1] defines a critical

speed as a speed at which the system is in a state of resonance.

For the level 2 stability analysis additional sources that contribute to the rotor

stability shall be considered such as:

a) labyrinth seals;

b) damper seals;

c) impeller/blade flow aerodynamic effects;

d) internal friction.

The acceptance criterion is that the final log decrement, δf , shall be greater than

0.1.

As described above, the current standard requires the damper seals to be included

only in the level 2 stability analysis, and its impact on the rotor unbalance response
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Figure 2.2: Stability experience plot API 617 [1].

is not evaluated. As shown in the next section, this component can have a significant

impact on the unbalance response due to its high stiffness characteristics.
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2.3 Damper Seals’ Impact in the Rotor Response

In contrast with labyrinth seals with teeth, damper seals have a much higher direct

stiffness. When the differential pressure across the damper seal is high, the magni-

tude of stiffness and damping synchronous coefficients associated with the seal may

be in the same order of magnitude of the bearings’ coefficients CHILDS and VANCE

[8]. This characteristic has even led to researches to verify if this component could

be used to replace oil lubricated bearings as described by RONDON [22]

Literature documents some cases relating different unbalance responses between

no-load condition and operation in rated condition with high pressure and gas den-

sity.

BALDASSARRE and FULTON [23] show a case where a compressor with 237 bar

discharge pressure presented high vibration during a full load test. Vibration varied

between 6 µm to 25 µm as pressure and flow were varied, showing that the unbalance

response was affected by the damper seal.

BALDASSARRE et al. [24] give as an example a back-to-back compressor with

a damper seal installed at mid-span. The compressor operates with 300 bar of dis-

charge pressure. A comparison is made between the critical speed map (Campbell

diagram) in the no-load and full-load cases. The no-load case has the first critical

speed around 6500 RPM with the second mode well above the operational speed.

The damper seal impacts the rotor response, with the first mode frequency increas-

ing with the speed after 7000 RPM. This behavior is mentioned by BALDASSARRE

et al. [24] as ‘tracking’.

A vibration issue for a compressor operating at 200 bar of discharge pressure is

presented by NORONHA et al. [9]. Figure 2.3 shows how the vibration was related

to the discharge pressure. The damper seal stiffness would increase with the pressure

changing the first critical position and also the mode shape. In this case, the problem

was detected only during operation, resulting in losses to the oil and gas production.

Around August 2013 a modified seal was installed, and the vibration decreased to

acceptable levels.

In BALDASSARRE et al. [25] two compressor units were evaluated. Unit ‘A’,

which is similar to the compressor that will be evaluated at this dissertation, presents

a considerable change in vibration when the compressor is operating on full load

condition. As an example, when the suction pressure was increased from 200 bar to

250 bar Unit ‘A’ presented an increase in vibration three times higher than Unit ‘B’.

According to the current API 684 [26], unbalance response is evaluated without

consideration for the seal effects. BALDASSARRE et al. [24] provides steps for

carrying out this kind of evaluation and proposes a specific acceptance criterion

based on a generalization of the API approach.
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Chapter 3

Modeling

This section will present the mathematical modeling of the rotor parts that were

considered when developing the code used in the current work.

3.1 Shaft

For the shaft elements, shear and rotary inertia effects will be considered (Timo-

shenko beam model). Figure 3.1 shows the effect of shear through an angle βe, which

is the difference between the plane of the beam cross-section and the normal to the

beam centerline (FRISWELL [2]).

The angle of the beam cross section, ψe, is:

ψe(ξ, t) =
∂ue(ξ, t)

∂ξ
+ βe(ξ, t) (3.1)

where ue is the lateral displacement.

For a symmetric shaft, if effects like internal damping and axial torque are ne-

glected we can consider that the two bending planes are uncoupled so that forces

and moments in one plane cause displacements and rotations only in the same plane.

Figure 3.1: Small section of a Timoshenko beam (adapted from FRISWELL [2]).
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Figure 3.2: Coordinates for beam element (adapted from FRISWELL [2]).

With this consideration we can solve separately for each plane. Based on coordinates

shown in fig. 3.2 we have:

ψe1(t) =
∂ue
∂ξ

∣∣∣∣
ξ=0

+ βe(0, t) (3.2)

ψe2(t) =
∂ue
∂ξ

∣∣∣∣
ξ=le

+ βe(le, t) (3.3)

where le is the beam length.

The lateral displacement, ue, is assumed to be cubic:

ue(ξ, t) = ao(t) + a1(t)ξ + a2(t)ξ2 + a3(t)ξ3 (3.4)

Neglecting inertia terms, the shear angle, βe, can be related to the lateral dis-

placement, ue, considering the moment equilibrium as:

∂

∂ξ

(
EeIe(ξ)

∂ψe(ξ, t)

∂ξ

)
= κeGeAeβe(ξ, t) (3.5)

where κe is the shear constant that depends on the shape of the cross section of the

beam and Ge is the shear modulus, with Ge = Ee/2(1+νe), where Ee is the Young’s

modulus and νe is Poisson’s ratio.

The shear constant κe is used to compensate the stiffening effect of the assump-

tion that plane sections remain plane. COWPER [27] gives values of the shear

constant for typical cross sections. For a hollow, circular shaft section, the shear

constant can be calculated as:

κe =
6(1 + νe)(1 + µ2

e)
2

(7 + 6νe)(1 + µ2
e)

2 + (20 + 12νe)µ2
e

(3.6)

where µe is the ratio of the inner shaft radius to the outer shaft radius, µe = ri/ro.
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Substituting equation eq. (3.1) into eq. (3.5) we have:

∂2βe(ξ, t)

∂ξ2
+
∂3ue(ξ, t)

∂ξ3
=
κeGeAe
EeIe

βe(ξ, t) (3.7)

The solution for this equation is a constant shear angle βe approximated by

βe(ξ, t) =
Φel

2
e

12

∂3ue(ξ, t)

∂ξ3
(3.8)

where

Φe =
12EeIe
κeGeAel2e

(3.9)

Applying conditions ue(0) = ue1 and ue(le) = ue2:

a0 = ue1 (3.10)

a0 + a1l3 + a2l
2
e + a3l

3
3 = ue2 (3.11)

Applying rotational nodal conditions eq. (3.2) and eq. (3.3):

a1 + a3
Φel

2
e

2
= ψe1 (3.12)

a1 + 2a2le + a3

(
3l2e +

Φel
2
3

2

)
= ψe2 (3.13)

Solving and grouping terms gives

ue(ξ, t) = [Ne1(ξ)Ne2(ξ)Ne3(ξ)Ne4(ξ)]


ue1(t)

ψe1(t)

ue2(t)

ψe2(t)

 (3.14)

where the shape functions, Nei(ξ), are

Ne1(ξ) =
1

1 + Φe

(
1 + Φe − Φe

ξ

le
− 3

ξ2

l2e
+ 2

ξ3

l3e

)
(3.15)

Ne2(ξ) =
le

1 + Φe

(
2 + Φe

2

ξ

le
− 4 + Φe

2

ξ2

l2e
+
ξ3

l3e

)
(3.16)

Ne3(ξ) =
1

1 + Φe

(
Φe
ξ

le
+ 3

ξ2

l2e
− 2

ξ3

l3e

)
(3.17)

Ne4(ξ) =
le

1 + Φe

(
− Φe

2

ξ

le
− 2− Φe

2

ξ2

l2e
+
ξ3

l3e

)
(3.18)
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The strain energy for the element is

Ue =
1

2

∫ le

0

EeIe(ξ)

(
∂ψe(ξ, t)

∂ξ

)2

dξ +
1

2

∫ le

0

κ2
eGeAe(ξ)β

2
e (ξ, t)dξ (3.19)

Since βe is constant across the length of the element with a uniform cross section:

∂ψe(ξ, t)

∂ξ
=
∂2ue(ξ, t)

∂ξ2
+
∂βe(ξ, t)

∂ξ
=
∂2ue(ξ, t)

∂ξ2
(3.20)

Then:

Ue =
1

2


ue1(t)

ψe1(t)

ue2(t)

ψe2(t)


T 

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44



ue1(t)

ψe1(t)

ue2(t)

ψe2(t)

 (3.21)

where the stiffness matrix elements are

kij = EeIe

∫ le

0

N
′′

ei(ξ)N
′′

ej(ξ)dξ +
EeIeΦel

2
e

12

∫ le

0

N
′′′

ei (ξ)N
′′′

ej (ξ)dξ (3.22)

After the integration of each matrix element, the resulting stiffness matrix is

Ke =
EeIe

(1 + Φe)l3e


12 6le −12 6le

6le l2e(4 + Φe) −6le l2e(2− Φe)

−12 −6le 12 −6le

6le l2e(2− Φe) 6le l2e(4 + Φe)

 (3.23)

The kinetic energy for a shaft element is

Te =
1

2

∫ le

0

(ρeAeu̇
2
e + ρeIeψ̇

2
e)dξ (3.24)

=
1

2

∫ le

0

ρeAeu̇
2
e + ρeIe

(
β̇e +

∂u̇e
∂ξ

)2

dξ (3.25)

where ρe is the density of the material and Ae is the beam cross sectional area.

In terms of the mass matrix we have

Te =
1

2


u̇e1(t)

ψ̇e1(t)

u̇e2(t)

ψ̇e2(t)


T 

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



u̇e1(t)

ψ̇e1(t)

u̇e2(t)

ψ̇e2(t)

 (3.26)
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For a uniform cross-sectional beam, the mij terms are

mij = ρeAe

∫ le

0

Nei(ξ)Nej(ξ)dξ+ρeIe

∫ le

0

(
Φel

2
e

12
N

′′′

ei (ξ)+N
′

ei(ξ)

)(
Ψel

2
e

12
N

′′′

ej (ξ)+N
′

ej(ξ)

)
dξ

(3.27)

Integrating the items we have the mass matrix:

Me =
ρeAele

840(1 + Φe)2


m1 m2 m3 m4

m2 m5 −m4 m6

m3 −m4 m1 −m2

m4 m6 −m2 m5

+
ρeIe

30(1 + Φe)2le


m7 m8 −m7 m8

m8 m9 −m8 m10

−m7 −m8 m7 −m8

m8 m10 −m8 m9


(3.28)

where

m1 = 312 + 588Φe + 280Φ2
e (3.29)

m2 = (44 + 77Φe + 35Φ2
e)le (3.30)

m3 = 108 + 252Φe + 140Φ2
e (3.31)

m4 = −(26 + 63Φe + 35Φ2
e)le (3.32)

m5 = (8 + 14Φe + 7Φ2
e)l

2
e (3.33)

m6 = −(6 + 14Φe + 7Φ2
e)l

2
e (3.34)

m7 = 36 (3.35)

m8 = (3− 15Φe)le (3.36)

m9 = (4 + 5Φe + 10Φ2
e)l

2
e (3.37)

m10 = (−1− 5Φe = 5Φ2
e)l

2
e (3.38)

The second matrix represents the effect of rotary inertia.

Since we made the assumption that the two bending planes do not couple, the

element matrices for the two planes are inserted in a 8 x 8 shaft element matrix

considering the choice of coordinates shown in fig. 3.3, where we have the local

coordinate vector [u1, v1, θ1, ψ1, u2, v2, θ2, ψ2]T . The final 8x8 matrices are displayed
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Figure 3.3: Coordinates used (adapted from FRISWELL [2]).

bellow for completeness.

Me =
ρeAele

840(1 + Φe)2



m1 0 0 m2 m3 0 0 m4

0 m1 −m2 0 0 m3 −m4 0

0 −m2 m5 0 0 m4 m6 0

m2 0 0 m5 −m4 0 0 m6

m3 0 0 −m4 m1 0 0 −m2

0 m3 m4 0 0 m1 m2 0

0 −m4 m6 0 0 m2 m5 0

m4 0 0 m6 −m2 0 0 m5



+
ρeIe

30(1 + Φe)2le



m7 0 0 m8 −m7 0 0 m8

0 m7 −m8 0 0 m7 −m8 0

0 −m8 m9 0 0 m8 m10 0

m8 0 0 m9 −m8 0 0 m10

−m7 0 0 −m8 m1 0 0 −m8

0 −m7 m8 0 0 m7 m8 0

0 −m8 m10 0 0 m8 m9 0

m8 0 0 m10 −m8 0 0 m9



(3.39)

Ke =
EeIe

(1 + Φe)l3e



12 0 0 6le −12 0 0 6le

0 12 −6le 0 0 −12 −6le 0

0 −6le l2e(4 + Φe) 0 0 6le l2e(2− Φe) 0

6le 0 0 l2e(4 + Φe) −6le 0 0 l2e(2− Φe)

−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0

0 −6le l2e(2− Φe) 0 0 6le l2e(4 + Φe) 0

6le 0 0 l2e(2− Φe) −6le 0 0 l2e(4 + Φe)


(3.40)

20



The shaft also produces gyroscopic effects. For a thin disk of thickness dξ the

polar moment of inertia may be written as:

Ip = 2ρeIedξ (3.41)

where Ie is the second moment of area of the shaft about the neutral plane.

The increment in kinetic energy of this thin disk due to the rotation about a

diameter is:

dT = −Ipωψ̇e(ξ, t)θe(ξ, t) = −2ρeIeωψ̇e(ξ, t)θe(ξ, t)dξ (3.42)

where ω = φ̇ is the rotational speed.

Integrating over the length gives the contribution to the kinetic energy as:

TGe = −2ρeIeω

∫ le

0

ψ̇e(ξ, t)θe(ξ, t)dξ (3.43)

The rotations may be written in terms of the shape functions:[
θe(ξ, t)

ψe(ξ, t)

]
=

[
0 −N ′

1 N
′
2 0 0 −N ′

3 N
′
4 0

N
′
1 0 0 N

′
2 N

′
3 0 0 N

′
4

]
qe

=

[
B11 B13 B13 B14 B15 B16 B17 B18

B21 B23 B23 B24 B25 B26 B27 B28

]
qe

(3.44)

where the B terms are used for convenience.

Substituting equation eq. (3.44) into eq. (3.43) gives:

TGe = q̇Te Aqe (3.45)

where

Aij = −2ρeIeω

∫ le

0

B2i(ξ)B1j(ξ)dξ (3.46)

Then, from Lagrange’s equations
d
dt

(
∂TGe

∂q̇1

)
− ∂TGe

∂q1
...

d
dt

(
∂TGe

∂q̇8

)
− ∂TGe

∂q8

 = [A−AT ]q̇ = ωGeq̇ (3.47)

Equation (3.46) gives the elements of the gyroscopic matrix as:

Gij = −2ρeIe

∫ le

0

(B2i(ξ)B1j(ξ)−B2j(ξ)B1i(ξ))dξ (3.48)
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Carrying out the calculations gives the shaft gyroscopic matrix considering rotary

inertia and shear effects:

Ge =
ρeIe

15(1 + Φe)2le



0 g1 −g2 0 0 −g1 −g2 0

−g1 0 0 −g2 g1 0 0 −g2

g2 0 0 g3 −g2 0 0 −g4

0 g2 −g3 0 0 −g2 −g4 0

0 −g1 g2 0 0 g1 g2 0

g1 0 0 g2 −g1 0 0 g2

g2 0 0 −g4 −g2 0 0 g3

0 g2 g4 0 0 −g2 −g3 0


(3.49)

where

g1 = 36

g2 = (3− 15Φe)le

g3 = (4 + 5Φ + 10Φ2
e)l

2
e

g4 = (−1− 5Φe + 5Φ2
e)l

2
e

(3.50)

3.2 Disk

For a disk, assuming the rotations θ and ψ are small, the kinetic energy is

(FRISWELL [2])

Td =
1

2
md(u̇

2 + v̇2) +
1

2
Id(θ̇

2 + ψ̇2) +
1

2
Ip(ω

2 − 2ωψ̇θ) (3.51)

where md is the mass of the disk, Ip, is the polar moment of inertia and Id is the

diametral moment of inertia about any axis perpendicular to the shaft line.

The terms from Lagrange’s equations are
d
dt

(
∂Td
∂u̇

)
− ∂Td

∂u

...

d
dt

(
∂Td
∂ψ̇

)
− ∂Td

∂ψ

 =


md 0 0 0

0 md 0 0

0 0 Id 0

0 0 0 Id



ü

v̈

θ̈

ψ̈

+ ω


0 0 0 0

0 0 0 0

0 0 0 Ip

0 0 −Ip 0



u̇

v̇

θ̇

ψ̇

 (3.52)
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Then the mass matrix for the disk is

Me =


md 0 0 0

0 md 0 0

0 0 Id 0

0 0 0 Id

 (3.53)

and the gyroscopic matrix is

Ge =


0 0 0 0

0 0 0 0

0 0 0 Ip

0 0 −Ip 0

 (3.54)

3.3 Bearings

It is assumed that the bearing has a linear load-deflection relationship. Thus, the re-

lation between transverse forces acting on the shaft (fx and fy) transverse vibrations

at the bearing positions (u and v) may be approximated by FRISWELL [2]:[
fx

fy

]
= −

[
Kuu kuv

kvu Kvv

][
u

v

]
−

[
Cuu cuv

cvu Cvv

][
u̇

v̇

]
(3.55)

where fx and fy are the dynamic forces in the x and y directions, and u and v are

the displacements of the shaft journal relative to the bearing house in the x and y

direction. Notice that in this work we will refer to direct terms in upper case letters

(Kuu) and cross-coupled terms in lower case letters (kuv).

The Kuu coefficient corresponds to the ratio between a force applied in the x

direction and the displacement in the x direction. Since force and displacement are

in the same direction, this coefficient is called a direct stiffness coefficient.

The kuv coefficient corresponds to a force applied in the x direction and a dis-

placement in the y direction. In this case, we have a cross-coupled stiffness coeffi-

cient.

The coefficients for the bearings were calculated using MAXBRG software, which

is a finite element code that performs steady-state thermo-elastohydrodynamic

(TEHD) analysis for fluid film journal bearings (HE [28]).

3.4 Damper Seal

The work of BLACK [29] (1969) is regarded as the first that analyzed the impact

of seals on the rotordynamic behavior of turbomachinery. His work shows that

23



Figure 3.4: Damper seal with triangular pockets on seal stator part from VON PRA-
GENAU [3] patent.

(a) Gas rotating slowly (λ < 1). (b) Gas rotating fast (λ > 1).

Figure 3.5: Gas rotating speed and its influence in the rotor stability.

instability at high speeds may result from forces caused by the rotation of the fluid

in the seals.

CHILDS [30] (1978) evaluated the SSME (Space Shuttle Main Engine) HPFTP

(High-Pressure Fuel Turbopump) rotordynamic instability problem, and suggested

that the seal forces could be used to improve the rotor stability. VON PRAGENAU

[12], based on models developed by BLACK et al. [31], proposed a stator with a high

surface roughness relative to the rotor roughness to reduce fluid whirl and improve

stability and leakage. In 1985 he also patented a damper seal with a surface of

triangular pockets as shown in fig. 3.4.

The mechanism by which fluid whirl can induce instability is visually explained

by BALDASSARRE et al. [25] and illustrated in section 3.4.
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Figure 3.6: Precessing rotor with seal radial and circumferential force components.

Consider the following parameter:

λ =
Ωw

Ω
(3.56)

where Ω is the rotor precession (different from ω that is the rotor speed) and Ωw is

the gas whirl precession.

If λ < 1, the gas is rotating slower than the shaft orbit, and the rotor has to

push the gas tangentially as a consequence of its radial displacement. Part of the

rotor’s kinetic energy is transferred to the gas and part is lost due to friction, so

that the gas has a stabilizing effect.

If λ > 1, the gas is rotating faster than the rotor orbit, so that the shaft is pushed

along the tangential direction by the gas. The rotor is gaining kinetic energy and

the effect is destabilizing.

This destabilizing force is manifested through the cross-coupled stiffness term,

which can be explained with the use of fig. 3.6, in which the radial and circumfer-

ential forces are displayed. The effective stiffness and the effective damping can be

calculated as:

Keff = (K(Ω) + Ωc(Ω))A (3.57)

Ceff = (C(Ω)− k(Ω)

Ω
)A (3.58)

where K and C are the direct terms, and k and c are the cross coupled terms for

stiffness and damping respectively. As noticed above, the dynamic coefficients are

frequency dependent. In this work we will consider synchronous coefficients, that

is: Ω = ω when calculating the coefficients.

As we can see, the effective damping, which is responsible for the rotor stability, is

subtracted by the cross-coupled stiffness term. Therefore, a component that presents

a high direct damping and a low cross-coupled stiffness will have a stabilizing effect

25



(a) Honeycomb surface. (b) Hole-pattern surface.

(c) Honey-comb seal CHILDS [32].

Figure 3.7: Damper seal and the commonly used surfaces - Honeycomb and Hole-
pattern.

in the rotor.

Nowadays manufacturers use either a honeycomb or a hole-pattern surface to

build the seals as shown in fig. 3.7:

Regarding the modeling of these components, CHILDS [33] developed an analysis

to calculate direct and cross-coupled terms of incompressible flow using bulk-flow

theory and a perturbation technique. This work has provided a general basis for

seal analysis.

Bulk-flow theory has been introduced by HIRS [34]. This theory does not make

use of information or model on:

1. fluctuations of local velocities of flow due to turbulence;

2. the shape of flow velocity profiles from which fluctuating components have

been eliminated through averaging.
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Only the bulk-flow relative to a surface and the corresponding shear stress are

considered and correlated. That is, the variation of fluid velocity components across

the clearance is neglected, and average (across the clearance) velocity components

are used, hence, the bulk-flow designation (CHILDS [32]).

The theory is based on the empirical finding that the wall-shear stress and mean

velocity of flow can be expressed as a relation with empirical numerical constants to

be fitted to the available experimental results.

This relation between wall-shear stress and mean velocity of flow relative to the

wall at which the shear stress is exerted can be expressed as

τ =
1

2
ρU2

mn0

(
2ρUmh

µ

)m0

(3.59)

where τ is the wall-shear stress, ρ is the fluid density, Um is the mean flow velocity,

h is the film thickness, n0 and m0 are empirical constants.

The empirical constants can be derived from bulk-flow measurements and do not

require the determination of flow velocity profiles.

NELSON [35] derived governing equations for compressible flow in a tapered

annular seal using the general basis developed by CHILDS [33], by applying the

bulk-flow theory and a perturbation technique. This model was based on:

• a compressible-flow continuity equation;

• an axial-momentum equation;

• a circumferential-momentum equation;

• an energy equation;

• a perfect-gas equation of state.

In the NELSON [35] model the seal stator surface was treated as a solid wall

with an increased friction factor in the momentum equations. No consideration was

given to the cell geometry when defining the control volume.

This model did a poor job in predicting measured rotordynamic coefficients.

Attempts to improve the model were made by ELROD et al. [36] and HA and

CHILDS [37], but they also failed because of their assumption that the problem was

related to their friction-factor model.

HA and CHILDS [14] showed that the friction-factor was dependent on cell ge-

ometry. In their work, the friction-factor has been measured for flat-plates with

honeycomb surfaces. In some cases, contrary to a turbulent flow in a pipe where

the friction factor decreases as the Reynolds number increases, the data showed
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a ’friction-factor-jump’. HA et al. [38] demonstrated that this phenomenon is ex-

plained by acoustic excitation of a coherent flow structure which impact the main

flow.

Following the discussion of the work from HA and CHILDS [37], SCHARRER

[39] mentioned that the application of different friction models was somewhat futile

and that similar attempts were made to model labyrinth seals. In the discussion

it is mentioned that, in labyrinth seal analysis, significant progress could only be

achieved after the application of a more realistic model by SCHARRER [40], where a

two-control volume was used. Based on this discussion KLEYNHANS and CHILDS

[41] carried out the implementation of a different model considering the following:

• a two-control-volume as shown in fig. 3.8;

• a compressible-flow continuity equation;

• an axial-momentum equation;

• a circumferential-momentum equation;

• isothermal flow - no energy equation required;

• a perfect-gas equation of state.

The governing equations are the following:

The continuity equation for the control volume A is given by

0 =
∂

∂t
(ρH) +

1

R

∂

∂θ
(ρUH) +

∂

∂Z
(ρWH) + ρV (3.60)

where U is the circumferential bulk fluid velocity, W is the axial bulk fluid velocity,

V is the radial bulk fluid velocity, H is the seal clearance and R is the radius.

For the control volume B we have

ρV = Hd
∂ρ

∂t
(3.61)

where Hd is the cell hole depth.

Notice that the addition of the second control volume that allows flow to only

enter and exit in the radial direction (V ) improves the model regarding the cell

acoustic behavior. It is also important to notice that if there is no perturbation

V = 0. This model leads to a strong frequency-dependent behavior of the seal’s

coefficients.

We can use eq. (3.61) in eq. (3.60) to eliminate V :

0 =
∂

∂t
(ρ(H + γcHd)) +

1

R

∂

∂θ
(ρUH) +

∂

∂Z
(ρWH) (3.62)
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Control Volume B

Control Volume A

Figure 3.8: Control volume for a honeycomb seal stator KLEYNHANS [4].

where γc is the ratio between the area covered by cells and the seal total area. The

product γcHd will be referred in this work as c - cell to volume area ratio.

The equation for the axial Momentum is

0 = ρH
∂W

∂t
+
ρUH

R

∂W

∂θ
+ ρWH

∂W

∂Z
+H

∂P

∂Z
+ τsz + τrz (3.63)

Considering the circumferential Momentum we get

0 = ρH
∂U

∂t
+
ρUH

R

∂U

∂θ
+ ρWH

∂U

∂Z
+
H

R

∂P

∂Z
+ τsθ + τrθ (3.64)

where τ represents the shear component and the subscripts s and r mean stator and

rotor respectively.

Finally, the state equation (ideal gas), which will be used to calculate ρ is written

as:

P = ρzcRgT (3.65)

where P is the pressure, zc is the compressibility factor, Rg is the gas constant and

T is the temperature.

The boundary conditions to account for contraction and expansion at the seal
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inlet and exit are

Pi − P (0) =
1 + ξi

2
ρ(0)[W (0)2] (3.66)

Pe − P (L) =
1 + ξe

2
ρ(L)[W (L)2] (3.67)

where ξi and ξe are the inlet loss and exit recovery factors.

At the inlet the flow direction is also specified:

u(0) = ΩwRω (3.68)

As described in KLEYNHANS and CHILDS [41] the solution of the above equa-

tion follows a procedure that employs a perturbation of the variables P , H, W , U

and ρ by the eccentricity ratio as φ(Z, θ, t) = φ0(Z) + εφ1(Z, θ, t), where φ are the

primitive flow variables and ε is the eccentricity ratio.

The zeroth-order equations are solved for the steady-flow and leakage. The first-

order equations are used to calculate the fluid reaction forces and rotordynamic

coefficients.

The method developed by KLEYNHANS and CHILDS [41] will be used in the

current work. This method has been implemented in the Texas A&M software ISOT-

SEAL. As shown in eq. (3.59), the bulk-flow theory requires a method to evaluate

the friction factors for the rotor and stator considering the empirical coefficients n0

and m0.

Lacking experimental data an estimation method can be used, such as Cole-

brook’s formula NELSON [42]. MIGLIORINI et al. [43] proposes a hybrid method

where CFD is applied to solve the base state flow, and a bulk-flow perturbation

method is used to solve for the fluid forces acting on an eccentric, whirling rotor. In

the current work, friction factors given by MIGLIORINI et al. [5] for a similar seal

will be used.

3.5 Deterministic Model

The general form of the equation for the system, after matrix assembly is

(FRISWELL [2])

Mq̈ + C(Ω)q̇ + ΩGq̇ + K(Ω)q = f (3.69)

where q represents the displacements and rotations at the nodes, M, K, C and G

are the mass, stiffness, damping and gyroscopic matrices, and f is the generalized

force vector.

In an example with 3 elements, the model will have 4 nodes. Each node will

have 4 degrees of freedom, resulting in a global matrix of 16x16. The first element
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contains degrees of freedom 1 to 8, the second element the degrees of freedom 5

to 12, and the third element the degrees of freedom 9 to 16. The coefficients for

each shaft, disk, bearing and seal elements are placed at the corresponding degree

of freedom to assemble the global matrices.

Writing eq. (3.69) using the state vector (q, q̇), for free-vibration, we have:

d

dt

[
q

q̇

]
=

[
0 I

−M−1K −M−1(C + ωG)

][
q

q̇

]
(3.70)

where the dependence of the stiffness and damping matrices on the excitation fre-

quency Ω is omitted.

If x = (q, q̇), we compact eq. (3.69)

ẋ(t) = Ax(t) (3.71)

with solutions of the form

x(t) = vest (3.72)

Substituting eq. (3.72) in eq. (3.71):

Av = λv (3.73)

Equation (3.73) is a generalized eigenvalue problem with 2n solutions of the form

si , sn+i = ωi

(
− ζi ±

√
1− ζ2

i

)
= −ζiωi ± jωdi (3.74)

where ωi and ζi are the i-th natural frequency and the i-th damping ratio that are

used to evaluate the rotor stability.

The forced response, in the frequency domain, can be calculated by

q(ω) = [−ω2M + jω(ωG + C) + K]−1f(ω) (3.75)

where α = [−ω2M + jω(ωG + C) + K]−1 is the receptance matrix.

3.6 Stochastic Model

For a compressor operating with a suction pressure of 250 bar, damper seal co-

efficients have been calculated using ISOTSEAL, which is a private software pro-

duced by Texas A&M and is based on a bulk-flow and Blasius friction factor model

(KLEYNHANS [4]). The values calculated are shown in fig. 3.9.

The compressor’s vendor proposed a correction to the values calculated based
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Figure 3.9: Seal coefficients calculated with ISOTSEAL and by the vendor.

on internal experiments done on a seal test rig. These tests were not carried out at

the compressor operational conditions and the correction applied can be considered

as an extrapolation of experimental results. These coefficients will be identified in

the current work as ’Vendor’s coefficients’.

As shown in fig. 3.9, the coefficients values proposed by the vendor differ from

those obtained using ISOTSEAL. Actually, for the operational conditions of interest,

it is not easy to accurately determine the seal coefficients. In this work synchronous

coefficients will be used, e.g. Kxx(Ω), where Ω is the rotor precession that in our

case is equal to the nominal rotation of the machine.

Let a(Ω) represent a seal coefficient (Kxx, , kxy, etc). We will model it as a

stochastic process {A(Ω) : Ω ∈ W} (frequency indexed), which is a collection of

random variables defined on a common probability space. First, let us define the

deterministic functions. The two curves shown in fig. 3.9 are used as references for

our seal coefficients model: (1) the result obtained by a bulk-flow model (ISOT-

SEAL) and (2) the results available by the vendor. The following function, which

considers a linear interpolation between the two curves, is then applied

a(Ω) = (1− f)a1(Ω) + fa2(Ω) (3.76)

where a1(Ω) is the coefficient curve obtained by the bulk- flow model (ISOTSEAL)

and a2(Ω) by the vendor’s values and f is an interpolation factor.

When the correction factor equals to one, we have the vendor’s curve, and when

f = 0, we have the bulk-flow model result. Therefore, the resulting coefficient a(Ω)

is a mixing of the two models. If 0 < f < 1 we get a curve between these two cases;

this is illustrated in fig. 3.10, where curves with f = 0.3 and f = 0.7 are plotted.

Note that depending on the coefficient a1 > a2 or a2 > a1.

The proposed stochastic model considers the interpolation factor f a random
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Figure 3.10: Example of random interpolation factors applied to obtain an interpo-
lated curve.

variable F , so that the random process is given by

A(Ω) = (1− F )a1(Ω) + Fa2(Ω) (3.77)

This means that the proposed uncertain model for the seal coefficients considers

that each observation of the stochastic process has a shape similar to the curves

shown in fig. 3.9, and each observation is shifted up or down on fig. 3.10.

If (i) the support of F is bounded, [Fmin, Fmax], (ii) the mean value is E{F} =

(Fmin+Fmax)/2, and (iii) no other information is known (for instance, knowlegdment

of other statistical moments), the maximum entropy principle (JAYNES [44]) yields

a Uniform distribution for F . Thus, the probability density function is given by

pF = 1/(Fmax − Fmin) within the bounds. Hence A(Ω) is a Uniform stochastic

process, i.e., for a fixed Ω, A(Ω) follows a Uniform distribution.

Since the coefficients are random, the response of the system, observed in the

Campbell diagram, and in the rotor unbalance response, is also random. The

stochastic system is then

MQ̈ + C(Ω)Q̇ + ΩGQ̇ +K(Ω)Q = f (3.78)

where the damping and stiffness random matrices C(Ω) and K(Ω) are random be-

cause of the random damper seal coefficients. Thus the response is also random Q.
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3.7 Robust Optimization

Provided that the general system design has been fixed, the optimization process

can be described as choosing the right design parameters x according to an (or

some) objective function(s) f(x). Typically, design constraints are also imposed on

x. This problem has the form (BOYD and VANDENBERGHE [45]):

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m.
(3.79)

The vector x = (x1, . . . , xn) is the optimization variable, the function f0 : Rn →
R is the objective function, the functions fi : Rn → R, i = 1, . . . ,m, are the

constraint functions, and the constraints b1, . . . , bm are the limits for the constraints.

A vector x∗ that has the smallest objective value and satisfy the constraints is called

optimal.

BEYER and SENDHOFF [46] provides some questions about whether it is de-

sirable to locate isolated, singular design points:

1. Objective and constraint functions always represent models of the real world.

As long as one does not have detailed knowledge of the error function of the

model, one cannot be certain the model optimum can be mapped to the true

optimum;

2. Even if we are able to map the model optimum, one might not be able to build

the true optimum due to manufacturing uncertainties or manufacturing cost;

3. The formulation of the optimization problem in eq. (3.79) is static. Reality is

dynamic: environmental parameters fluctuate, materials wear down, parts of

the system might be replaced.

Systems optimized in the classical sense can be very sensitive to small changes.

Robust design can be used to minimize the effect of the causes of variation

without eliminating these causes, as described by ZANG et al. [47]. The objective is

to optimize the mean performance and minimize its variation. Optimization of the

mean often conflicts with minimizing the variance, and a trade-off decision between

them is needed to choose the best design.

In the field of rotordynamics, RITTO et al. [48] has proposed a methodology

to optimize the performance of a flexible rotor-bearing system taking into account

uncertainties in parameters such as the stiffness of the bearing and the elasticity

modulus of the material.

ZANG et al. [47] shows the application of robust optimization to design a vi-

bration absorber with mass and stiffness uncertainty. In the present work, a similar

approach will be used.
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Three specific objective functions will be used. They are defined as follows:

• f1(L, c) evaluates the vibration amplitude at the Non-Drive-End side (NDE)

probe (sensor located at node 50) at operating speed;

• f2(L, c) evaluates the lowest logarithmic decrement between the first and sec-

ond forward mode at operating speed. These modes are chosen due to the fact

that they are the closest to the operating speed and the forward mode is the

one that will become unstable with a high cross-coupled stiffness;

• f3(L, c) evaluates the mass leakage for the seal at operating speed. The leakage

is directly calculated by ISOTSEAL.

where the design parameters are L and c, which are respectively the seal length and

the cell volume to area ratio. The parameter c is calculated as:

c = γHD (3.80)

where HD is the mean cell depth and γ is the seal area covered by cells and the total

seal area. This value is normally close to 0.8 for honeycomb and hole-pattern seals.

These objective functions are combined into a single objective function and the

deterministic optimization problem is

minimize [
∑3

i=1 βifi(L, c)]

subject to 65 ≤ L ≤ 95, 1.5 ≤ c ≤ 3.5
(3.81)

The factors βi are weights given to each function and they are chosen with the

following constraints:

βi < 1, ∀i ∈ {1, 2, 3} (3.82)

3∑
i=1

βi = 1 (3.83)

To construct the robust optimization problem we have to consider not only the

deterministic value from each function fi, but also its variance when we apply the

stochastic model proposed in section 3.6. Each specific objective function will be of

the form fi(µi, σ
2
i, αi) where µi is the mean σ2

i is the variance and αi ∈ [0, 1] is a

weighting factor that represents the relative importance between the mean and the

variance.

To combine the mean and the variance into a single objective function, we define

an utopia design point [µUi , σ
2U
i ], calculated by minimization of µi and σ2

i individ-

ually as single objective functions and the nadir point [µNi , σ
2N
i ] which is calculated

by maximizing µi and σ2
i also individually.
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The robust objective function f is then written

fi(µi, σ
2
i, αi) = αi

µi(L, c)− µUi
µNi − µUi

+ (1− αi)
σ2

i(L, c)− σ2U
i

σ2N
i − σ2U

i

(3.84)

And the robust optimization problem can be written as:

minimize [
∑3

i=1 βifi(µi, σ
2
i, αi)]

subject to 65 ≤ L ≤ 95, 1.5 ≤ c ≤ 3.5
(3.85)

It is important to notice here that in our problem the design parameters L and

c, which represents the seal’s length and cell volume to area ratio are not random,

but the C(Ω) and K(Ω) matrices are random, as defined by the stochastic model

presented in section 3.6.

The procedure for the robust optimization here can be summarized as follows:

1. Determine nadir and utopia by optimizing functions individually;

2. Choose initial value for L and c;

3. Calculate the deterministic matrices K(Ω) and C(Ω) given a value for L and c

using the method presented by KLEYNHANS and CHILDS [41] (with ISOT-

SEAL software), considering the synchronous coefficients;

4. Calculate the deterministic ‘vendor’ matrices K(Ω) and C(Ω) considering that

the vendor K is 70% from the value calculated with ISOTSEAL and the vendor

C is 200% from the value calculated with ISOTSEAL. The values of 70%

for the stiffness and 200% for the damping were obtained by analyzing the

extrapolation given by the vendor and described in section 3.6;

5. Apply the stochastic model presented in section 3.6 to obtain the random

matrices C(Ω) and K(Ω);

6. Use Monte Carlo simulations to calculate the mean and variance;

7. Calculate the objective according to eq. (3.84) and eq. (3.85);

These steps can then be used with a suitable optimization algorithm to find the

optimal solution.
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Chapter 4

Results

4.1 Deterministic Model Results

To evaluate the compressor rotordynamic behavior a finite element model written

in python considering the mathematical modeling described in chapter 3 is used.

The codes were developed using libraries numpy (WALT et al. [49]), scipy (JONES

et al. [50]) and matplotlib (HUNTER [51]).

Figure 4.1 displays the rotor system that will be analyzed in this work. Parts in

orange represent lumped masses at the impeller and coupling locations. Bearings

are represented as blue triangles. The shaft elements are in gray. A second layer

(lighter gray) with elements that have no stiffness or damping was used to represent

the dry gas seals parts.

Shaft elements have the following properties:

• Density: 7833.41 N/m3;

• Young’s modulus 2.068× 10−11 N/m2;

• Shear modulus 8.273× 10−10 N/m2.

Dimension and position for each shaft and disk element are given in the appendix.

The coefficients for the bearings were obtained from MAXBRG software (HE

[28]) and are presented in fig. 4.2 and fig. 4.3. Figure 4.2b shows low cross-coupled

coefficients when compared to damping coefficients. This is expected since tilting-

pad bearings with cylindrical pivot arrangement were used.

To validate the code used in this work, the same model has been constructed

using the XLTRC2 software (from Texas A&M Turbomachinery CONSORTIUM

[52]).

Figure 4.4 shows the undamped critical speed map calculated using the developed

code and the XLTRC2 software. This map is generated by varying the support
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Figure 4.1: Rotor model.
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Figure 4.2: Bearing stiffness coefficients.
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Figure 4.3: Bearing damping coefficients.
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Figure 4.4: Undamped critical speed map.

stiffness in a given range and calculating the natural frequencies for the rotor. The

rotor speed in this case is considered to be zero. The good agreement between

results shows that the developed code for the shaft model (with Timoshenko beam

elements) is presenting consistent results for all evaluated modes.

To evaluate the gyroscopic effect on the natural frequencies, it is useful to use the

natural frequency map (also known as Campbel diagram). Before evaluating these

results we discuss how the gyroscopic effects on a rigid rotor on isotropic supports

without damping. For this case the equations of motion are defined by FRISWELL

[2] as:

mü+ kTu+ kCψ = 0

mv̈ + kTv − kCθ = 0

Idθ̈ + Ipωψ̇ − kCv + kRθ = 0

Idψ̈ − Ipωθ̇ + kCu+ kRψ = 0

(4.1)

where u and v represent translation along Ox and Oy axes and θ and ψ represent

clockwise rotations about axes Ox and Oy as presented in fig. 3.3. The moment of

inertia about the longitudinal axis is Ip and the moment of inertia with respect to

the diameter of the rotor is Id. The rotor speed is ω and the subscripts T, C and

R indicate translational, coupling between displacement and rotation, and stiffness

coefficients.

As isotropic supports were considered, kC = 0, the first two equations uncouple

to give:

ω1 = ω2 =

√
kT
m

(4.2)
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Figure 4.5: Campbell diagram.

After some algebraic steps the second pair of equation can be solved to give:

ω3 = −Ipω
2Id

+

√(
Ipω

2Id

)
+
kR
Id

(4.3)

ω4 =
Ipω

2Id
+

√(
Ipω

2Id

)2

+
kR
Id

(4.4)

These natural frequencies are dependent of rotation. Depending on the relation

between angles θ and ψ the mode direction of rotation will be forward, if in the

same direction of the rotor speed, or backward if in the opposite direction. In the

developed code this direction is evaluated for each node of the rotor, in this case we

can also have a mixed mode, in which some nodes have a forward precession and

some have a backward precession.

Figure 4.5 shows the Campbell diagram. The plot has been generated by varying

the rotor speed and calculating the corresponding natural frequencies and evaluating

the nodes at each mode shape to determine if they have forward or backward pre-

cession. There is a good agreement between results, showing that gyroscopic effects

and the bearings coefficients are correctly handled by the developed code. Notice

that results below 500 rad/s were omitted since the calculated bearing coefficients

are not reliable in this speed range.

To carry a level 1 stability analysis a cross coupling Qa, varying from 0 to

3 500 000 N m−1, is inserted in the middle of the rotor (node 29), as shown in fig. 4.6

and the log decrement for the first forward mode is evaluated.

Figure 4.7 shows the level 1 stability analysis results. A good agreement was

also obtained in this case, showing that the calculated log decrement for an inserted

cross coupling is consistent for the used code.
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Figure 4.7: Level 1 stability analysis.
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Figure 4.8: Unbalance response.

Figure 4.8 shows the response to an unbalance placed in the middle of the rotor

(node 29), also presenting a good agreement between results.

4.2 Stochastic Results

The Campbell diagram for the condition without the seal is presented in fig. 4.9a.

For each rotor speed (x axis) the eigenvalues are calculated from eq. (3.74) and the

frequency of oscillation for the damped system are plotted (y axis). We can see that

around 600 rad/s the system crosses a critical speed. The eigenvalues also provide

information regarding the damping factor, which is used to calculate the log dec for

each natural frequency. This information is presented in the marker color. Different

markers are used to show which modes have a forward precession (same orientation

as the shaft rotation), a backward mode or a mixed mode.

To give an idea of how the Campbell diagram is affected by the damper seal
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Figure 4.9: Campbell constructed with and without considering the damper seal.
The campbell with damper seal uses the ISOTSEAL coefficients.
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Figure 4.11: Campbell considering different interpolation intervals.

coefficients, fig. 4.9b shows the analysis considering the ISOTSEAL coefficients.

From the six modes shown, we can note that the first two modes shift upward, and

the intersection between the synchronous speed (1 × nominal rotor speed) occurs

inside the operational range. Other modes are also affected and fig. 4.9b shows that

the damper seal increases the log dec especially for the first two modes.

Two different intervals will also be analyzed to help the understanding of how

the coefficients affect the diagram. These intervals are shown in fig. 4.10. To ap-

proximate the statistics of the response, the Monte Carlo method is employed.

For the first case (interpolation around the ISOTSEAL coefficients) the Campbell

diagram is presented in fig. 4.11a. Notice that in this plot the log dec bar scale has

been changed, since these values are much higher when we include the damper seal.

For the second case (interpolation around the vendor coefficients) the Campbell

diagram is presented in fig. 4.11b.

An analysis considering a wide interval of the interpolation factor, from -0.1 to
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Figure 4.12: Coefficients interval that will be analyzed.

Figure 4.13: Campbell random curves obtained from an interval with interpolation
factors F of -0.1 and 1.1.

1.1, is also be evaluated. This gives us an idea of how the uncertainties impact the

Campbell diagram and the unbalance response. Figure 4.13 shows the Campbell

diagram for random curves obtained from an interval with interpolation factors F

of -0.1 and 1.1.

Some conclusions can be drawn:

1. The seal affects considerably the system response (see fig. 4.9a and fig. 4.9b)

2. The values of the log decrement are much higher when the seal is included in

the analysis (being above 0.8 in all cases when API limit is 0.1)

3. Figure 4.9b shows that the natural frequency is increasing with the syn-

chronous speed. This kind of behavior was also reported by BALDASSARRE

et al. [24]
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Figure 4.14: Mode shape for the first forward mode at 1200 rad/s on no seal condi-
tion.
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Figure 4.15: Mode shape for the first forward mode at 1200 rad/s with a factor f
of 1.

4. Figure 4.9b shows that there is a natural frequency close to the maximum

operating speed.

5. The system first natural frequency curve is very sensitive to uncertainties in

the seal coefficients (see fig. 4.11a and fig. 4.11b).

6. The uncertainty in the response is very high if F ∈ [−0.1, 1.1]; see fig. 4.13.

Before evaluating the unbalance response the mode shape for the first forward

mode is presented for comparison. Figure 4.14 shows the mode shape for the no seal

condition and fig. 4.15 for a rotor with interpolation factor f equal to 1.

To verify the unbalance response two cases were evaluated. The first case con-

siders an unbalance mass placed at the middle of the rotor (node 29) corresponding
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Figure 4.16: Rotor unbalance response at middle. Continuous lines are selected
samples from the Monte Carlo simulation.
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Figure 4.17: Rotor unbalance response at rotor end. Continuous lines are selected
samples from the Monte Carlo simulation.

to 4 times the maximum residual unbalance determined by API 617 [1] (550 g.mm

in this case). The second case distributes this unbalance between the rotor ends

(nodes 0 and 57). All the unbalance masses have been placed considering a 0 phase

angle and the vibration amplitude has been observed at the probe locations at the

Drive-End side (DE), located at node 7, and at the Non-Drive-End side (NDE),

located at node 50.

Figure 4.16 and fig. 4.17 show the response considering a no seal condition and the

response obtained from the Monte Carlo simulation. The mean for the amplitude

at the NDE (Non Drive End) probe at maximum speed was calculated at each

simulation step and convergence was obtained when reaching around 400 iterations.

From the unbalance response results, we can conclude that:

1. The seal had a noticeable impact on the rotor unbalance response.
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2. The response peak around 650 rad/s, in the no seal case, is not noticed in the

case where the seal is present.

3. For the unbalance placed at the middle, the response close to the operating

speed has increased 3 to 4 times when compared with the no seal case.

4. The standard deviation for the unbalance mass placed at the middle is also

higher, especially in the NDE probe.

4.3 Robust Optimization

To evaluate the optimization the chosen interval for the seal length and cell volume

to area ratio will be used to create a surface with the values of h(L, c):

h(L, c) =
3∑
i=1

βifi(µi, σ
2
i, αi) (4.5)

in which µi and σ2
i are dependent of L and c.

The specific objective functions that will be used are listed here again for clarity:

• f1(L, c) evaluates the vibration amplitude at the non-drive-end side probe at

operating speed;

• f2(L, c) evaluates the lowest logarithmic decrement between the first and sec-

ond forward mode at operating speed. These modes are chosen due to the fact

that they are the closest to the operating speed and the forward mode is the

one that will become unstable with a high cross-coupled stiffness;

• f3(L, c) evaluates the mass leakage for the seal at operating speed. The leakage

is directly calculated by ISOTSEAL.

Two cases are presented. The first case considers the following:

α1 = 0.8

α2 = 0.8

α3 = 1

β1 = 0.6

β2 = 0.35

β3 = 0.05

(4.6)

The value of αi close to 1 indicates that, for this case, the mean value has more

importance than the variance. The value for α3 is equal to 1 due to the fact that for

the leakage we are going to consider only the mean value, since the leakage is not
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Figure 4.18: Optimization surface with α1 = 0.8, α2 = 0.8, α3 = 1 β1 = 0.6,
β2 = 0.35 and β1 = 0.05. Optimal point is shown by the red dot.

affected by the random matrices C(Ω) and K(Ω). The values for β are in decreasing

order of importance, from the vibration amplitude at operating speed to the log dec

and then to the seal leakage.

Results for this case are shown in fig. 4.18. The optimum point is the minimum

value for seal length (65 mm) and is close to the minimum value for cell volume to

area ratio (1.64 mm).

The second case considers the following:

α1 = 0.2

α2 = 0.2

α3 = 1

β1 = 0.6

β2 = 0.35

β3 = 0.05

(4.7)

In this case values for β are kept the same as in the previous case. The value

of αi in this case is close to 0 and the variance has a higher impact in the values of

h(L, c).

Figure 4.19 shows that in this case the optimum point is displaced to a seal

length of 95 mm and a cell volume to area ratio of 1.5 mm.

To have a better understanding of the results shown in fig. 4.18 and fig. 4.19,

each specific objective function will be evaluated separately regarding the impact of

the seal length and cell volume to area ratio in the mean value and variance.

The first function evaluated is the probe-nde amplitude at operating speed - f1.

Figure 4.20 shows the results for this specific function.

To better understand the results we can evaluate the stochastic analysis for the
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Figure 4.19: Optimization surface with α1 = 0.2, α2 = 0.2, α3 = 1, β1 = 0.6,
β2 = 0.35 and β1 = 0.05. Optimal point is shown by the red dot.
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(a) f1 mean - µ1.
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Figure 4.20: Surfaces for objective f1 - amplitude at the operating speed.
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(a) L = 95 and c = 1.5.
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(b) L = 95 and c = 3.5.
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(c) L = 65 and c = 1.5.
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(d) L = 65 and c = 3.5.

Figure 4.21: Stochastic analysis for the unbalance response with different values of
L and c (no seal condition plotted as dashed lines for refference).
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(a) f2 mean - µ2.
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Figure 4.22: Surfaces for objective f2 - log dec at the operating speed. For the mean,
the minimum values in this case represent points where the log decrement is higher,
which is the desired optimization.

unbalance response at four different pair of values for L and c. The results are

shown in fig. 4.21, where the amplitude values for the unbalance response with no

seals (dashed line) is plotted for reference. In the figure there is an indication for

the operational speed (1152 rad/s)

As we can see, fig. 4.21c presents the optimum result for the amplitude mean

and variance. The amplitude mean is lower in this case due to the reduced stiffness

that affects the natural frequency position and mode shape, therefore affecting the

unbalance response. Another important point is that for these values of L and c the

damping is also higher. A more general explanation regarding the effects of L and

c on the stiffness and damping will be discussed later.

Figure 4.21b shows the results with values of L = 95 and c = 3.5. In this case

the increase in the mean amplitude value can be attributed basically to the change

of the natural frequency position and mode due to the increase in stiffness. The

variance is also higher and this can be attributed to the stochastic model applied,

since the ’vendor’ stiffness is always scaled by the ISOTSEAL stiffness.

We evaluated the results for the log decrement, which are presented in fig. 4.22.

We can see that the minimum value for the optimization function, which in this case

represents the highest log decrement, is also close to the edge where L = 65 and

c = 1.5. This is a consequence of the high damping around these values of L and c.

To evaluate these results, the log decrement distribution for different values of L

and c is presented in fig. 4.23. We can see that the log dec for L = 65 and c = 3.5

(fig. 4.23c) has a higher variance.

To help the evaluation of the log dec variance, the Campbell diagrams for dif-

ferent values of L and c are shown in fig. 4.24. A higher variance for values close of

L = 65 and c = 3.5 is due to the fact that in some cases the lower value for the log
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Figure 4.23: Log decrement distribution for different values of L and c.

decrement will be linked to the first mode and in others to the second mode.

Results for the seal leakage are presented in fig. 4.25. The seal leakage does

not change with the cell volume to area ratio. MIGLIORINI et al. [5] evaluates

three seal with different hole depths. Their calculation for the seal leakage with the

bulk-flow model also shows the same leakage for the three seals, independent of the

hole depth. This is explained by the fact that in the model of KLEYNHANS and

CHILDS [41] the zeroth-order equations are independent of hole depth, since in this

equation there is no perturbation in the eccentricity and V = 0. The only parameter

that can change the leakage dependence on hole depth is the friction factor, which

in this work is kept constant. MIGLIORINI et al. [5] also keeps the friction factor

constant.

In reality the leakage will change with the hole-depth, as shown in experiments

carried out by CHILDS et al. [53]. MIGLIORINI et al. [5] CFD results show that the

surface streamlines along the seal are influenced by the vortex formation in the hole.

The vortex shape was affected by the hole depth which influenced the resistance felt

by the jet flow in the clearance region, resulting in a change of the leakage.
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(a) L = 95 and c = 1.5.
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(b) L = 95 and c = 3.5.
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(c) L = 65 and c = 1.5.
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(d) L = 65 and c = 3.5.

Figure 4.24: Stochastic analysis for the Campbell diagram with different values of
L and c.
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Figure 4.25: Seal leakage - µ3.
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4.4 Stiffness and Damping Dependence on L and

c

The purpose of this section is to explain how stiffness and damping vary with the

seal length - L, and the cell area to volume ratio - c.

To evaluate this dependence the same range of values for L and c used in the

robust optimization analysis are used here to generate surfaces that show the values

for each dynamic coefficient.

As explained earlier the effective stiffness and damping can be calculated as:

Keff = (K(Ω) + Ωc(Ω))A (eq. (3.57) revisited)

Ceff = (C(Ω)− k(Ω)

Ω
)A (eq. (3.58) revisited)

We will use these equations to group the results that will be presented next.

Figure 4.26 shows the results for the direct stiffness and the cross-coupled damp-

ing multiplied by the precession Ω. We can see that the direct stiffness is one order

of magnitude greater than the cross-coupled damping multiplied by Ω. This means

that the effective stiffness is basically not affected by the cross-coupled damping as

we can see in fig. 4.27.

Results show that the Keff increases with the seal length. This is explained

by the fact that the stiffness is calculated by integrating the pressure along the z

direction, so if we increase the length Keff is also increased.

The dependency of the stiffness to the cell volume to area ratio, and therefore to

the cell depth - Hd, is more complex. As explained by KLEYNHANS and CHILDS

[41], the cells of the seal act to reduce the effective acoustic velocity of flow through

the seal, which can drop the seal acoustic natural frequency.

The effective acoustic velocity for the seal is calculated with

c0 =

√
ZcRgT

1 + Hd

H

(4.8)

where Zc is the gas compressibility, Rg is the gas constant and T is the temperature.

Therefore, the effective acoustic velocity is a function of the ratio between cell depth

and clearance - Hd/H.

In the work of MIGLIORINI et al. [5] three seals with only different hole-depth

are compared. The stiffness coefficients for these seals calculated with ISOTSEAL

are reproduced here in fig. 4.28. As we can see, in lower frequencies we have the

stiffness increasing with the hole-depth, but in high frequencies the behavior is the

opposite.
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(a) Direct stiffness (Kxx).
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(b) Cross coupled damping times Ω (ΩCxy).

Figure 4.26: Direct stiffness (Kxx) and cross-coupled damping (Cxy) mean value at
operating speed.
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Figure 4.27: Effective stiffness - Keff .
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Figure 4.28: Direct stiffness for seals with different hole-depths.
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Figure 4.29: Seals presented in the work of MIGLIORINI et al. [5] but with the
same relation Hd/H.
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Figure 4.30: Effective damping - Ceff .

If we do a comparison by changing the clearance to keep the same relation Hd/H

for the three seals, and therefore the same effective acoustic velocity we have the

results shown in fig. 4.29. In this case, the lines do not intercept and we have a more

clear relation between Hd and the stiffness.

In the current work, the seal clearance does not change. Therefore we need to

know, regarding the acoustic effects, in which region we are operating. To do this,

we will show, for the seal and operational conditions used in the current work, what

is the stiffness coefficient when we consider the hole-depth used in the previous

example. The results are presented in fig. 4.30, and we can notice that for our

operational speed (1152 rad/s) the lower hole-depth presents a reduced stiffness. So

we can see that results presented in fig. 4.27 are coherent since we are operating at

a frequency where the effective acoustic velocity of the seal has an impact.

For the damping, results are presented in fig. 4.32.

As the effective stiffness, the effective damping is also increased by increasing
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(a) Direct damping (Cxx).
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Figure 4.31: Direct damping (Cxx) and cross-coupled stiffness (Cxy) mean value at
operating speed.
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Figure 4.32: Effective damping - Ceff .

the seal length - L. Differently to other seals, where the tangential velocity will

increase as the fluid progresses in the axial direction, in the damper seal the swirl of

the fluid is decreased at the entrance and its value is kept low throughout the seal.

This justifies the increase in damping when L is increased.
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Chapter 5

Conclusions

A stochastic model which considers the uncertainties in the damper seal model

has been proposed to evaluate how these uncertainties impact the rotordynamic

behavior.

We have evaluated the critical speed map (Campbell diagram) and the results

show that the uncertainties in this component modeling can have a considerable

impact on natural frequencies position and log decrement. All evaluated cases show

a much higher log decrement than the value of 0.1 required by the current standards.

The unbalance response has been changed when compared to the ‘no seal’ con-

dition. The change in the natural frequency positions, damping factors, and mode

shapes are responsible for this change in the unbalance response. The change in the

mode shapes is particularly important since this can change the balancing condition

obtained during the high-speed balance that is conducted without the seal in no

load conditions.

A robust optimization has been carried out to evaluate how the seal design could

be improved to optimize the following specific objectives:

• f1(L, c) evaluates the vibration amplitude at the non-drive-end side probe at

operating speed;

• f2(L, c) evaluates the lowest logarithmic decrement between the first and sec-

ond forward mode at operating speed. We choose these modes because they

are the closest to the operating speed and the forward mode is the one that

will become unstable with a high cross-coupled stiffness;

• f3(L, c) evaluates the mass leakage for the seal at operating speed.

This optimization suggests that the seal performance regarding the rotordynamic

coefficients could be improved by decreasing the hole depth and the seal length. We

have found a more robust solution with a higher length. However, given that with
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this higher length the log decrement is at minimum above 2.6, which is a very

conservative value when compared with the standard required value of 0.1, the use

of this design may not be justified.

5.1 Future Work

The analysis carried out in this work considered that the bearing coefficients remain

constant. However, the seal has such a high stiffness that it can move the shaft

position and alter the bearing coefficients. An iterative process may be necessary to

incorporate this in the current analysis.

The stochastic model and the robust optimization are costly in computational

terms. The application of different sampling methods could be applied to decrease

the time needed to carry out an analysis.

The software used to calculate the damper seal coefficients (ISOTSEAL) consid-

ers the ideal gas equation of state. The gas used in this work cannot be considered

ideal, due to the high pressure and high CO2 content. The implementation of a seal

model considering a real gas equation of state would help to diminish the uncertain-

ties within the model.

Other types of probability distribution could be considered to incorporate the

model uncertainties better. Data from experiments could be a source to determine

which distribution should be used.

The damper seal coefficients are highly dependent on the compressor operational

conditions. Other analysis regarding the uncertainties in these operational parame-

ters could be carried out to evaluate how this component can affect the equipment

in off-design conditions.

5.2 Reproducibility

All the developed code used in this dissertation is available at the following on-line

repository, except for small scripts used to treat and organize data and some files.

https://github.com/raphaeltimbo/ross

The last commit to the repository before the issue of this document has the

following hash:

commit 7c62530701af74e119dbdbe5fef0fae74f2da867

Unfortunately the complete reproduction of the work is compromised due to the

use of some proprietary software such as XLTRC2 (used to validate the developed

code) and ISOTSEAL (used to calculate the damper seal coefficients).
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Appendix A

Rotor geometry

.

Table A.1 shows the shaft elements table.

Table A.1: Shaft elements

n L i d o d E G s rho

0 0.0 0.0355 0.1409 0.1510 2.0684e+11 8.2737e+10 7833.4128

1 1.0 0.0360 0.1409 0.1510 2.0684e+11 8.2737e+10 7833.4128

2 2.0 0.0540 0.0000 0.0800 2.0684e+11 8.2737e+10 7833.4128

4 3.0 0.0430 0.0000 0.0800 2.0684e+11 8.2737e+10 7833.4128

5 4.0 0.0165 0.0000 0.0880 2.0684e+11 8.2737e+10 7833.4128

6 5.0 0.0070 0.0000 0.0880 2.0684e+11 8.2737e+10 7833.4128

7 6.0 0.0070 0.0000 0.0880 2.0684e+11 8.2737e+10 7833.4128

8 7.0 0.0365 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

9 8.0 0.0510 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

11 9.0 0.0250 0.0000 0.1030 2.0684e+11 8.2737e+10 7833.4128

12 9.0 0.0250 0.1030 0.1380 6.8947e+03 6.8947e+03 7833.4128

13 10.0 0.0160 0.0000 0.0850 2.0684e+11 8.2737e+10 7833.4128

14 10.0 0.0160 0.0850 0.1380 6.8947e+03 6.8947e+03 7833.4128

15 11.0 0.0242 0.0000 0.1040 2.0684e+11 8.2737e+10 7833.4128

16 11.0 0.0242 0.1040 0.1740 6.8947e+03 6.8947e+03 7833.4128

17 12.0 0.0045 0.0982 0.1740 6.8947e+03 6.8947e+03 7833.4128

18 12.0 0.0045 0.0000 0.0982 2.0684e+11 8.2737e+10 7833.4128

19 13.0 0.0125 0.1040 0.1740 6.8947e+03 6.8947e+03 7833.4128

20 13.0 0.0125 0.0000 0.1040 2.0684e+11 8.2737e+10 7833.4128

21 14.0 0.0200 0.0000 0.1060 2.0684e+11 8.2737e+10 7833.4128

22 14.0 0.0200 0.1060 0.1840 6.8947e+03 6.8947e+03 7833.4128

23 15.0 0.0627 0.0000 0.1080 2.0684e+11 8.2737e+10 7833.4128
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Table A.1: Shaft elements

n L i d o d E G s rho

24 15.0 0.0627 0.1080 0.1840 6.8947e+03 6.8947e+03 7833.4128

25 16.0 0.0380 0.0000 0.1100 2.0684e+11 8.2737e+10 7833.4128

26 16.0 0.0380 0.1100 0.1840 6.8947e+03 6.8947e+03 7833.4128

27 17.0 0.0380 0.0000 0.1220 2.0684e+11 8.2737e+10 7833.4128

28 17.0 0.0380 0.1220 0.1390 6.8947e+03 6.8947e+03 7833.4128

29 18.0 0.0300 0.0000 0.1350 2.0684e+11 8.2737e+10 7833.4128

30 18.0 0.0300 0.1350 0.1750 6.8947e+03 6.8947e+03 7833.4128

31 19.0 0.0530 0.1177 0.1965 6.8947e+03 6.8947e+03 7833.4128

32 19.0 0.0530 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

33 20.0 0.0194 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

34 20.0 0.0194 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

35 21.0 0.0135 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

36 21.0 0.0135 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

38 22.0 0.0495 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

39 23.0 0.0195 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

40 23.0 0.0195 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

41 24.0 0.0124 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

42 24.0 0.0124 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

44 25.0 0.0490 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

45 26.0 0.0197 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

46 26.0 0.0197 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

47 27.0 0.0123 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

49 27.0 0.0123 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128
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Table A.1: Shaft elements

n L i d o d E G s rho

50 28.0 0.0495 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

51 29.0 0.0198 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

52 29.0 0.0198 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

53 30.0 0.0116 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

54 30.0 0.0116 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

56 31.0 0.0495 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

57 32.0 0.0199 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

58 32.0 0.0199 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

59 33.0 0.0120 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

61 33.0 0.0120 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

62 34.0 0.0495 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

63 35.0 0.0201 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

64 35.0 0.0201 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

65 36.0 0.0124 0.0000 0.1223 2.0684e+11 8.2737e+10 7833.4128

66 36.0 0.0124 0.1223 0.1270 6.8947e+03 6.8947e+03 7833.4128

68 37.0 0.0570 0.0000 0.1177 2.0684e+11 8.2737e+10 7833.4128

69 38.0 0.0260 0.0000 0.1350 2.0684e+11 8.2737e+10 7833.4128

70 38.0 0.0260 0.1350 0.1750 6.8947e+03 6.8947e+03 7833.4128

71 39.0 0.0380 0.0000 0.1220 2.0684e+11 8.2737e+10 7833.4128

72 39.0 0.0380 0.1220 0.1390 6.8947e+03 6.8947e+03 7833.4128

73 40.0 0.0380 0.0000 0.1100 2.0684e+11 8.2737e+10 7833.4128

74 40.0 0.0380 0.1100 0.1840 6.8947e+03 6.8947e+03 7833.4128

75 41.0 0.0627 0.0000 0.1080 2.0684e+11 8.2737e+10 7833.4128

76 41.0 0.0627 0.1080 0.1840 6.8947e+03 6.8947e+03 7833.4128

77 42.0 0.0200 0.0000 0.1060 2.0684e+11 8.2737e+10 7833.4128

78 42.0 0.0200 0.1060 0.1840 6.8947e+03 6.8947e+03 7833.4128

79 43.0 0.0125 0.0000 0.1040 2.0684e+11 8.2737e+10 7833.4128

80 43.0 0.0125 0.1040 0.1740 6.8947e+03 6.8947e+03 7833.4128

81 44.0 0.0045 0.0982 0.1740 6.8947e+03 6.8947e+03 7833.4128

82 44.0 0.0045 0.0000 0.0982 2.0684e+11 8.2737e+10 7833.4128

83 45.0 0.0242 0.1040 0.1740 6.8947e+03 6.8947e+03 7833.4128

84 45.0 0.0242 0.0000 0.1040 2.0684e+11 8.2737e+10 7833.4128

85 46.0 0.0160 0.0000 0.0850 2.0684e+11 8.2737e+10 7833.4128

86 46.0 0.0160 0.0850 0.1380 6.8947e+03 6.8947e+03 7833.4128

87 47.0 0.0250 0.0000 0.1030 2.0684e+11 8.2737e+10 7833.4128
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Table A.1: Shaft elements

n L i d o d E G s rho

88 47.0 0.0250 0.1030 0.1380 6.8947e+03 6.8947e+03 7833.4128

89 48.0 0.0510 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

90 49.0 0.0505 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

92 50.0 0.0181 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

93 51.0 0.0181 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

94 52.0 0.0363 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

95 53.0 0.0135 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

96 54.0 0.0350 0.0900 0.2450 6.8947e+03 6.8947e+03 7833.4128

97 54.0 0.0350 0.0000 0.0900 2.0684e+11 8.2737e+10 7833.4128

98 55.0 0.0240 0.0000 0.0872 2.0684e+11 8.2737e+10 7833.4128

99 55.0 0.0240 0.0872 0.1120 6.8947e+03 6.8947e+03 7833.4128

100 56.0 0.0320 0.0000 0.0850 2.0684e+11 8.2737e+10 7833.4128

101 56.0 0.0320 0.0850 0.1130 6.8947e+03 6.8947e+03 7833.4128
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Table A.2: Disk elements.

n Mass Ip It

4 4 15.12 0 0

5 22 6.90999 0.0469997 0.0249998

6 25 6.92999 0.0469997 0.0249998

7 28 6.94999 0.0479997 0.0249998

8 31 6.97999 0.0479997 0.0249998

9 34 6.93999 0.0479997 0.0249998

10 37 6.95999 0.0479997 0.0249998
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