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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA MELHORAR A
PRECISÃO DE SIMULAÇÕES RANS

Matheus Altomare Cruz

Fevereiro/2018

Orientador: Roney Leon Thompson

Programa: Engenharia Mecânica

Há um grande número de escoamentos de interesse que são turbulentos. Como a
Simulação Numérica Direta (DNS) e os experimentos são caros, o uso dos modelos
RANS (Reynolds Average Navier-Stokes) torna-se uma necessidade. No entanto, tal
abordagem possui pouca precisão. Este fato justifica a alta demanda por melhores
modelos. Neste trabalho, uma técnica que usa o aprendizado de máquina, por
meio de redes neurais, é usada para corrigir o modelo RANS κ - ε, considerando
os dados DNS como ideais. As metodologias disponíveis na literatura empregam o
tensor de tensão de Reynolds como a principal quantidade a ser corrigida. Uma vez
que esta entidade é corrigida, o campo de velocidade é recalculado pelas equações de
transporte RANS. Consequentemente, o campo de velocidade obtido se aproxima dos
resultados de DNS. No entanto, no presente trabalho, essa metodologia é criticada
devido à existência de incertezas no campo de tensões turbulentas fornecido pelos
bancos de dados DNS. Sabe-se que os momentos estatísticos de segunda ordem
(tensor de Reynolds) não são tão bem convergidos quanto os de primeira ordem
(campos de velocidade e pressão médios) em simulações de DNS. Essas incertezas
são propagadas e contaminam a velocidade média calculada a partir da mesma. Por
esta razão, propõe-se, como nova metodologia, a correção do divergente do tensor de
Reynolds, por ser é a única parte que de fato entra no balanço de momentum linear
médio. Esta divergência pode ser calculada a partir dos campos de velocidade média
e pressão, que são bem convergidos, utilizando a equação de balanço de quantidade
de movimento linear médio. Os resultados obtidos até agora demonstraram que a
correção do campo divergente das tensões turbulentas RANS é capaz de reconstruir
os campos de velocidade média mais próximos do DNS do que a correção completa
do tensor geralmente empregado na literatura.
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There is a wide number of applications where the flow is turbulent. Since Direct
Numerical Simulation (DNS) and experiments are expensive, the use of Reynolds
Average Navier-Stokes (RANS) models is a necessity. However, the obtained models
from this approach have low accuracy. This fact justifies the high demand for better
models. In this work, a technique that uses machine learning, by means of neural
networks, is used to correct the κ-ε RANS model considering the DNS data as
ideal. The methodologies available in the literature employ the Reynolds stress
tensor as the main quantity to be corrected. Once this entity is corrected, the
velocity field is recalculated by the RANS transport equations. Consequently, the
obtained velocity field gets closer to DNS results. However, in the present work,
such methodology is criticized due to the existence of uncertainties in the turbulent
stress field provided by DNS databases. It is known that the second-order statistical
moments (Reynolds stress tensor) are not as well converged as the first order ones
(mean velocity and pressure fields) in DNS simulations. These uncertainties are
propagated, and contaminate the mean velocity field calculated from it. For this
reason, it is proposed, as a new methodology, the correction of the divergent of the
Reynolds stress tensor, because it is the only part that is computed in the mean linear
momentum balance. This divergence can be calculated from the mean velocity and
pressure fields, which are well converged, using the mean linear momentum equation.
The results obtained so far have demonstrated that the divergent correction of the
RANS turbulent stress field is able to reconstruct mean velocity fields closer to the
DNS than the complete tensor correction usually employed in the literature.
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7.7 êx ·R · êz component samples. . . . . . . . . . . . . . . . . . . . . . . 60

x
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7.16 t · êy component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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Chapter 1

Introduction

There is a wide number of applications where the flow is turbulent. Since Direct Nu-
merical Simulation (DNS) and experiments are prohibitively expensive for complex
geometries and high Reynolds number, the use of Reynolds Average Navier-Stokes
(RANS) models is a necessity. However, the obtained models from this approach
have low accuracy. This fact justifies the high demand for better models. In this
work, a technique that uses machine learning, by means of neural networks, will
be used to correct κ-ε RANS model with the aim to approach DNS results. The
methodologies present in the literature corrects the RANS Reynolds stress tensor
with machine learning techniques. After that, the velocity field is recalculated by the
RANS transport equations. Consequently, the obtained velocity field gets closer to
DNS results. However, in the present work, such methodology is criticized due to the
existence of uncertainties in the turbulent stress field provided by DNS databases.
It is known that the second-order statistical moments (Reynolds stress tensor) are
not as well converged as the first order ones (mean velocity and pressure fields) in
DNS simulations. These uncertainties are propagated, and contaminate the velocity
field calculated from it. For this reason, it is proposed, as a new methodology, the
correction of the divergent of the Reynolds stress tensor, because it is the only part
that is computed in the mean linear momentum balance. This divergence can be
calculated from the mean velocity and pressure fields, which are better converged,
using the mean linear momentum equation. Thus, it is demonstrated that the di-
vergent correction of the RANS turbulent stress field obtains velocity fields closer
to the DNS than the complete tensor correction usually employed in the literature
in the axial direction of the square duct flow.

Reynolds-everaged Navier-Stokes (RANS) simulations are widely employed in
industrial turbulent fluid dynamics applications. The most popular two-equations
models, assumes the Boussinesq hypothesis [12], a linear relation between Reynolds
stress tensor (R) and the mean strain rate tensor (D) defined by a turbulent viscos-
ity. But, these models do not capture all the physics of some relevant flows, com-
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promising their results reliability. HOFFMAN et al. [13] shows that those models
do not provide satisfactory results in curvature flows, e.g., secondary flows in ducts.
Flows with strong gradients and separation are poorly predicted when analysed by
RANS models [14] as well.

In the past few years, some studies have been made to apply machine learn-
ing (ML) techniques into turbulent fluid mechanics problems in order to develop
Reynolds stress closures. MILANO e KOUMOUTSAKOS [15] used a multiple hid-
den layer neural network (NN) to replicate a near-wall channel flow, however that
NN does not predict the turbulence in forward flows. TRACEY et al. [7] used ker-
nel regression to model turbulent stress anisotropy eigenvalues. They reported some
difficulties in generalizing the results to new flows and to scale to a large amount of
data. After that, TRACEY et al. [8] proposed a single hidden layer NN to model the
source terms from the Spalart Allmaras RANS model. This attempt has shown the
potential of NN for turbulence modeling. ZHANG e DURAISAMY [16] has used NN
to correct the production term, only affecting the magnitude, but not the anisotropy,
of R. LING et al. [9] used a random forest regression to model the deviatoric part of
R. This technique presented a poor ability to predict this tensor because of difficulty
to ensure Galilean invariance. Later, LING et al. [17] developed a NN to predict
the anisotropy Reynolds stress tensor eigenvalues using a set of Galilean invariants
inputs. That technique showed significant performance gains when compared to [9].
Those results evidenced the importance of the Galilean invariance in ML turbu-
lence modelling. More recently, LING et al. [18] developed a deep specialized NN
architecture witch ensured Galilean invariant anisotropic turbulent tensor. Those
results showed that deep learning and the specialized architecture is able to provide
a significant performance improvement.

In the present work, a different ML strategy is proposed to improve turbulence
modeling. Instead of predicting the anisotropy Reynolds stress tensor, a NN is
employed to correct its divergence. The main idea is to correct the term that re-
ally affects the mean linear momentum equation (MLME), (〈v〉 ·∇)v − ν∇2〈v〉 +

1/ρ∇〈p〉 = t. The proposed NN learns t, and this prediction is used to correct the
turbulent flow. Another original aspect of the new strategy is to employ objective
tensorial entities as inputs for the NN training, what can ensure a more generic
invariance than the ones proposed by POPE [19], and used in [18]. The motivation
behind the use of t is the RDNS intrinsic uncertainties. THOMPSON et al. [20]
have shown that turbulent stress is not as well converged as the mean velocities and
pressure in DNS simulations, and this lack of convergence creates uncertainties that
are propagated and amplified to the mean velocity and pressure. In other words,
the mean velocity and pressure fields reconstructed from RDNS, when compared
to the given fields, are significantly different. This result implies that if a NN is
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trained to achive RDNS, the calculated velocity and pressure fields be will contami-
nated by the intrinsic DNS uncertainties. Creating a NN to correct t dribbles that
problem, tDNS can be calculated from terms of the well-converged DNS fields by
MLME, t = (〈v〉 ·∇)〈v〉 + 1/ρ∇〈p〉 − ν∇2〈v〉. When the high-fidelity pressure
field is not provided, t is redefined as t = −1/ρ∇〈p〉 −∇ · R incorporating the
pressure gradient term. In order to obtain the corrected velocity field, the equation
(〈v〉 ·∇)〈v〉 − ν∇2〈v〉 = t will be solved. Both techniques, correcting R and t, are
evaluated and compared in this work.

3



Chapter 2

Turbulent flows

Historically, high viscous, or very low velocity flows, are called laminar flows because
these flows are characterized by overlapping blades of moving fluid, WILCOX [21].
When small disturbances act on the flow, if the viscous effects are sufficiently high,
then such perturbations will not be propagated and magnified. However, when such
viscous effects are not sufficiently high, then these perturbations cause instability in
the flow, TENNEKES e LUMLEY [22] causing the transition from a laminar to a
turbulent state. The balance between the viscous and inertial forces is evaluated by
the Reynolds number,

Re =
UL

ν
, (2.1)

where U and L are, respectively, characteristic velocity and length of the flow.
The larger this dimensionless number, the less viscous effects compared to inertia.
Therefore, the perturbations cause instabilities in the flow, leading them to the
turbulent state, when this number is high. As the viscosity of most fluids is extremely
low, then the turbulent regime is much more abundant in nature than the laminar,
DAVIDSON [1].

2.1 Fundamental characteristics

Given the great complexity of this phenomenon, it is difficult to establish a precise
definition. However, one can list fundamental characteristics of turbulence. In this
session will be listed the main characteristics described by TENNEKES e LUMLEY
[22].
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2.1.1 Multiple scales

First instability

Second instability

Third instability

Viscosity

Energy cascade

Figure 2.1: Energy scale, DAVIDSON [1].

The coherent structures present in turbulent flows, called vortex, are highly
unstable. They are constantly decomposed into smaller structures. In turn, these
smaller structures follow the same pattern of decomposition in even smaller vortices.
This pattern repeats to a lower boundary threshold, which defines the size of smaller
structures. RICHARDSON [23] then conjectured that this breakdown of structures
in other minor vortex occurs through the transfer of energy from the larger structures
to the smaller ones. This energy transfer from major structures to smaller ones is
known as the energy cascade. This holds to the point where, at the smallest possible
scales, viscous dissipation transforms the energy contained in the smaller structure
into thermal energy. That process is illustrated in Fig. (2.1).

KOLMOGOROV [24], from the energy cascade concept, conjectured that in the
smallest structures the viscous dissipation depends only on the turbulent kinetic en-
ergy (κ) and the turbulent dissipation (ε). At this scale, the dissipation is isotropic,
since it has completely lost information about the larger scales. The smaller struc-
ture possesses an equivalence of the viscous and inertial forces, that is,

Reη =
LηUη
ν

= 1. (2.2)

Writing a characteristic velocity (Uη) of this scale in function of relevant quantities,

Uη ∼ (νε)1/4, (2.3)

5



and using Eq. (2.2), it is possible to define a characteristic length of the smaller
scale,

Lη ∼

(
ν3

ε

)1/4

. (2.4)

By dimensional analysis, the turbulent dissipation is written in terms of the char-
acteristic velocity and length of the larger scales,

ε ∼ U3

L
. (2.5)

The ratio between the largest scale, referring to the geometry of the problem, and
the smallest scale (Kolmogorov scale) can be calculated from the Eqs. (2.4) and
(2.5),

L

Lη
∼ L

(
ν3

ε

)−1/4

∼

(
L−4ν3

LU3

)−1/4

∼

(
ν

LU

)−3/4

,

L

Lη
∼ Re3/4. (2.6)

So, the ratio between the characteristics volumes are(
L

Lη

)3

∼ V

Vη
∼ Re9/4. (2.7)

In order to capture all the scales of a turbulent flow, it is necessary to have a
mesh where the smallest dimension is comparable to that Kolmogorov scale. E.g.,
for a given flow with a fairly low Reynolds of 1000, by the Eq. (2.7), the simulation
will must to have approximately 5.6 million centroids. That is, the Kolmogorov scale
reveals that a full description of a turbulent flow requires a very high computational
cost, which is prohibitive with the variable technology for the vast majority of ap-
plications. Even so, there is a class of simulations called direct numerical simulation
(DNS) that perform this kind of analysis. They are extremely expensive, and are
only made for simple geometries and low Reynolds numbers. In Fig. 2.2 it is seen
the Reynolds number influence in the size of the turbulent structures.

The wide range of scales present in turbulent flows is characterized by very
strong fluctuations. However, for a great number of engineering cases of interest, the
description of an average flow is sufficient. This gives rise to the RANS simulations.
That approach does not need to use such mesh refinement, enabling it for broader
applications.

A summary of the theories of Richardson and Kolmogorov can be synthesized in
Fig. 2.3, which illustrates the usual energy spectrum profile found for turbulence,
together with the ideas developed by each author. The graph shows the energy

6



High Reynolds number

Moderate Reynolds number

Figure 2.2: Influence of the Reynolds number on the Kolmogorov length scale,
DAVIDSON [1].

Energy 
dissipation

Inertial 
subrange

Energy cascadeEnergy

Energy injected 
by the mean flow

Vortices depend on the 
velocity and charateristic length  

Vortices depend on 
viscosity

Figure 2.3: Energy spectrum, DAVIDSON [1].

contained in each vortex as a function of its wave number k, which corresponds to
the inverse of characteristic length.
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2.1.2 Diffusivity

Diffusivity is probably the most important characteristic of the turbulent flows for
industrial applications, WILCOX [21]. Compared to laminar ones, turbulent flows
present a greater ability to transport and mix properties of a fluid, what makes them
very attractive in processes that require rapid mixing, such as air-fuel in the vehicle
engine and reagents in chemical reactors, POPE [25]. The existence of the random
fluctuations in the velocity field intensifies the diffusion exchanges in the fluid, while
in the laminar regime they are given only by molecular means, KUNDU et al. [2].
An example that illustrates well this difference is the profile of the boundary layer
in each of these flows, Fig. 2.4.

Due to the non-slip condition imposed by the wall, the fluid decelerates from
its free velocity to the velocity of the wall in a short space given by the height
of the boundary layer. This region, therefore, is characterized by high velocity
gradients that give rise to surface drag. The turbulent flows, being more diffusive,
promote a greater exchange of linear momentum between the outermost fluid and
the innermost to the boundary layer, thus explaining why its profile is steeper near
the wall compared to the laminar flows.

Laminar

Turbulent

Figure 2.4: Profile of the boundary layer in a laminar flow and average profile in a
turbulent flow, KUNDU et al. [2].

As a consequence of the difference in velocity gradient near the surface between
a turbulent and laminar flow, the diffusivity caused by the first on the surface is
greater than that of the second,

µ∇2〈v〉|turb > µ∇2〈v〉|lam. (2.8)
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Although it seems at at first time that superior drag in the turbulent flows is
a disadvantage, there are actually applications in the study of aerodynamics that
benefit from this fact. When the boundary layer that develops in a body moving
in a fluid separates, a region of low pressure forms downstream. The imbalance
of the pressure field around the body creates a force contrary to its displacement
that can overlap in magnitude to the drag due to the friction of the fluid with the
surface. Given the higher concentration of linear momentum within the turbulent
boundary layer, deceleration of the fluid due to adverse surface pressure gradients
until the start of the separation is reduced, which, for an airplane, means greater
possible angles of attack before loss of support. Another example is the characteristic
cavities of golf balls that immediately create a turbulent flow around them, delaying
the separation of the boundary layer caused by the adverse pressure gradient, what
allow a greater reach for the shot.

2.1.3 Three-dimensionality

The three-dimensionality of the turbulence is closely related to the flow vorticity.
More specifically, with the vortex stretching (I term of the Eq. 2.9) mechanism
present in the vorticity transport equation,

∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v︸ ︷︷ ︸

I

+ν∇2ω. (2.9)

The vortex stretching is a vorticity creation mechanism related with the rota-
tion and stretching of the material filaments of the fluid. This mechanism is very
important to turbulence flows because it is through it that energy is extracted from
the mean flow for the formation of vortices in the energy cascade, DAVIDSON [1].

If the flow is bidimensional, v = v1ê1 + v2ê2, the vorticity is orthogonal to the
velocity field, ω = ωê3. When this happens, (ω ·∇)v = 0. So, for bidimensional
flows, there is no vortex stretching. As this phenomenon is of paramount importance
for the energy cascade, it is concluded that two-dimensional flows can not become
turbulent.

2.1.4 Dissipation

Turbulent flows are always dissipative. The energy cascade requires a continuous
supply of energy for the average flow in order to keep the vortex stretching mecha-
nism in operation. Once this supply has ceased, the turbulence decays rapidly due
the transformation of the kinematic energy in thermal energy at the lower scales.

One of the simpler, and also older, problems formulated on turbulence referred
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to how fast a turbulent flow dissipates turbulent kinetic energy when left isolated,
DAVIDSON [1]. An everyday example would be the time required for the fluctu-
ations induced in the coffee to stir it disappear. Although the problem is easy to
understand, physicists and mathematicians have been trying to answer this question
for over half a century and have yet to reach consensus on the topic, DAVIDSON
[1].

2.1.5 Deterministic chaos

A dynamic system, that is, a system that has a certain set of equations that models
its temporal evolution is deterministic. This means that, knowing the equations
that model it, its boundary conditions and initial conditions, any configuration can
be predicted at any desired instant of time. However, one does not always have
complete knowledge of the phenomena that circumvent the dynamic system. An
imprecision to the extent of certain quantities such as density or viscosity, or small
perturbations in the boundary or initial conditions may generate uncertainties in
the predictions.

The sensitivity to uncertainties depends on the number of degrees of freedom of
the equations that describes the problem. In general, the more nonlinear the greater
the dynamic system ability to propagate and amplify such uncertainties, this type
of system is known as chaotic. An example of this is the comparison between the
simple pendulum and the double pendulum. The simple pendulum has as only initial
condition the angle of the pendulum θ, its governing equation is the nonlinear ODE

d2θ

dt2
+
g

l
sin (θ) = 0, (2.10)

where l is the arm length and g is the gravity. It is known that small uncertainties
added in the initial angle of the pendulum will not profoundly modify the circular
trajectory of its end significantly. This means that the single degree of freedom
present in the equation is not enough to propagate such uncertainties.

However, the same does not occur with the double pendulum. This is governed
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by four non-linear ODEs,

dθ1

dt
=

6

ml2
pθ1 − 3 cos (θ1 − θ2)pθ2

16− 9 cos2(θ1 − θ2)

dθ2

dt
=

6

ml2
pθ2 − 8 cos (θ2 − θ2)pθ1

16− 9 cos2(θ1 − θ2)

dpθ1
dt

= −1

2
ml2
(dθ1

dt

dθ2

dt
sin(θ1 − θ2) + 3

g

l
sin(θ1)

)
dpθ2
dt

= −1

2
ml2
(
− dθ1

dt

dθ2

dt
sin(θ1 − θ2) +

g

l
sin(θ2)

)

, (2.11)

requiring two angles (referring to each arm) as initial conditions. It is observed that
this system has a degree of non-linearity much greater than that observed in the
simple pendulum. This impacts on the propagation of the uncertainties present in
the initial conditions. This means that when two identical double pendulums are
analyzed, but with very close but not identical initial conditions, their trajectories
will be completely different because the uncertainty that differentiated both will
be propagated and amplified by the non-linearities of the system, causing it to
generate two completely different answers. An example of the trajectory of a double
pendulum can be seen in Fig. 2.5.

Figure 2.5: Chaotic trajectory of a double pendulum, [3].

A similar behavior can be seen in flows. As has already been said, on the
basis of the Reynolds number, the equations that models the flow of a fluid may
assume a chaotic behavior. Since the flow of fluids can be understood as a dynamic
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system of many degrees of freedom having nonlinear interactions between them,
small perturbations such as roughness, impurities and/or external vibrations, can
be magnified causing the flow to transit to a turbulent state.

2.2 Turbulence modelling

As already mentioned in subsection 2.1.1, to capture all the nuances of a turbulent
flow, the mesh should at least be refined on the Kolmogorov scale. What for most
applications is not feasible because the Reynolds number is high. This undermines
the large-scale application of DNS simulations.

For most engineering applications, the average flow is more than sufficient for
engineering projects purposes. As can be seen in Fig. 2.6, the velocity profile
obtained through the sample mean of a series of measurements made in a turbulent
boundary layer represented well the physical phenomenon.

Many profiles measured. Mean profile.

Figure 2.6: Turbulent boundary layer, WILCOX [4].

For this, the Reynolds decomposition is applied. Given any φ field, this can be
decomposed into its mean, 〈φ〉, and into a float around the same, φ′,

φ = 〈φ〉+ φ′, (2.12)

where the mean field is calculated with respect its PDF function, ρφ,

〈φ〉 =

Φf∫
Φ0

φρφ dΦ, (2.13)

in the sample space φ ∈ [Φ0,Φf ].
The average operator has some important properties. The first one is that the

average of a given variable PHI is no longer in function of its sample space. Which
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is obvious, since, for its achievement, it has been integrated in this space. This
implies in the first important property, which says that the mean of an average is
the average itself,

〈〈φ〉〉 =

Φf∫
Φ0

〈φ〉ρφ dΦ = 〈φ〉
Φf∫

Φ0

ρφ dΦ

︸ ︷︷ ︸
=1

,

〈〈φ〉〉 = 〈φ〉. (2.14)

The second important property is that this operator is linear. From the linearity
of the mean operator, and from the first property, Eq. 2.14, it is proved that the
mean of the flotation is zero,

〈φ′〉 = 〈φ− 〈φ〉〉 = 〈φ〉 − 〈〈φ〉〉 = 〈φ〉 − 〈φ〉,

〈φ′〉 = 0. (2.15)

Another important property for future developments of this operator, concerns
the product average of two fields,

〈φα〉 =
〈

(〈φ〉+ φ′)(〈α〉+ α′)
〉

=
〈
〈φ〉〈α〉+ φ′〈α〉+ 〈φ〉α′ + φ′α′

〉
,

〈φα〉 = 〈φ〉〈α〉+ 〈φ′〉〈α〉+ 〈φ〉〈α′〉+ 〈φ′α′〉,

〈φα〉 = 〈φ〉〈α〉+ 〈φ′α′〉. (2.16)

The last relevant property is also a direct consequence of the linearity of the
mean operator and the derived operator. The derivative of the mean is the mean of
the derivatives, 〈 ∂φ

∂xi

〉
=
∂〈φ〉
∂xi

. (2.17)

Once the Reynolds decomposition, and all these properties of the average oper-
ator, have been established, it is sufficient to apply this theory in the velocity and
pressure fields. However, there is still a deadlock, as if calculating these average fields
without having access to their respective probability distribution functions. The er-
godicity theorem solves this problem, since it postulates a connection between the
mean calculated via probability density functions and sample and temporal means.

For a very large number of samples, this theorem guarantees that the sample
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mean of a function converges to its statistical mean,

Φf∫
Φ0

φρφ dΦ = lim
N→∞

1

N

N∑
n=1

φ(N), (2.18)

and also ensures that for sufficiently long times, the temporal average will also
converge to the statistical mean,

Φf∫
Φ0

φρφ dΦ = lim
T→∞

1

T

t+T∫
t

φ dτ. (2.19)

With this tool, it is now possible to extract average velocity and pressure fields
from experiments, or even from DNS simulations, provided that a sufficient number
of spatial or temporal samples are available to guarantee this convergence between
the means. An example of this can be seen in Fig. 2.6.

2.2.1 Reynolds averaged Navier-Stokes equations - RANS

For the sake of simplicity, this work will only analyze the flows of incompressible
Newtonian fluids, with constant properties and without body forces.

To deal with the average fields, we need the transport equations of these average
quantities. This is what the Reynolds averaged Navier-Stokes (RANS) approach.
From the continuity equations and linear momentum balance,

∇ · v = 0, (2.20a)

∂v

∂t
+ ∇ · (v ⊗ v) = −1

ρ
∇p+ ν∇2v, (2.20b)

the average operator, defined in the Eq. 2.13, is applied to obtain the average
equations. Using the properties listed in the previous session, you get

∇ · 〈v〉 = 0, (2.21a)

∂〈v〉
∂t

+ ∇ · (〈v〉 ⊗ 〈v〉) + ∇ · 〈v′ ⊗ v′〉 = −1

ρ
∇〈p〉+ ν∇2〈v〉. (2.21b)

Overall, the demonstration is very immediate. The mean operator linearity and
the mean property of a derivative are used, Eq. 2.17. What is interesting is when
the operator is applied on the advective term of the linear momentum balance. The
nonlinearity of this term produces an extra term for the equation in its average
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version, through the property described in Equation 2.16,〈
∇ · (v ⊗ v)

〉
=
〈
∂m(vmvi)êi

〉
,

= ∂m(〈vmvi〉︸ ︷︷ ︸
Eq. 2.16.

)êi,

= ∂m(〈vm〉〈vi〉+ 〈v′mv′i〉)êi,

=
(
∂m(〈vm〉〈vi〉) + ∂m〈v′mv′i〉

)
êi,

= ∇ · (〈v〉 ⊗ 〈v〉) + ∇ · 〈v′ ⊗ v′〉.

This extra term that arises is a tensor that is associated with the product average
of the instantaneous velocity field fluctuations. That is, this tensorial entity has
to do with the second statistical moment of the velocity field, the covariance of v.
Defining this extra term as R ≡ −〈v′ ⊗ v′〉, the RANS equations are

∇ · 〈v〉 = 0, (2.22a)

∂〈v〉
∂t

+ ∇ · (〈v〉 ⊗ 〈v〉) = −1

ρ
∇〈p〉+ ν∇2〈v〉+ ∇ ·R. (2.22b)

Comparing the instantaneous equations with the RANS equations, we can see
that the only difference between them is the presence of the divergent of this tensor.
Since this entity is a function of velocity fluctuations, it is concluded that the whole
effect of the turbulence on the average flow occurs through R. By rewriting the right
side of the mean linear momentum balance, we can establish a physical interpretation
for this extra term,

∂〈v〉
∂t

+ ∇ · (〈v〉 ⊗ 〈v〉) = ∇ ·
(
− 1

ρ
〈p〉I + ν∇〈v〉+ R

)
,

where I is the identity tensor. On the right side, inside the divergent, three portions
of stress acting on the fluid are observed. The first two are related to pressure and
molecular viscosity, analogous to their instantaneous formulation. The third portion,
which is the extra tensor itself, corresponds to a extra stress, called the turbulent
stress tensor or Reynolds stress tensor, that acts on the fluid. This term acts along
with the term associated with molecular viscosity, increasing the diffusivity.

2.2.2 The closure problem

With the appearance of the Reynolds tensor, the system of equations now becomes
indeterminate since the six components of R (symmetric tensor) are extra variables.
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So we need six more equations to close the problem. A first idea would be to define
a transport equation for R, to do so, we compute the transport equation of the
turbulent fluctuations by subtracting from the instantaneous equation the mean
equation. With this velocity fluctuation transport, the tensor product is applied on
both sides of this equation to define an equation for v′⊗v′. The transport equation of
R is obtained from the mean of this result. However, the same problem of the average
operator acting on the non-linear term occurs in this case, this gives rise to a third-
order statistical moment. That is, a new third order tensorial entity,〈v′⊗ v′⊗ v′〉 ,
representing twenty-seven variables.

A new transport equation can be deduced from this term, however, from the
advective term of the equation of R, there will be a new larger order entity with
even more variables to be determined. This problem suggests that it is impossible to
deduce a closure for the system of equations, this configures the problem of closing
the RANS equations [26].

The alternative then becomes the modeling of turbulent stresses.

2.2.3 RANS modeling

There is a wide range of closure models, each with its own peculiarities. This fact
denounces the inexistence of a universal model that can solve the problem of closure.
The various models are generally classified by the number of transport equations plus
the Reynolds equations that it adds to the problem. The most widely used models
in the industry are with two equations.

The two-equation models are based on the BOUSSINESQ [12] hypothesis, which
are also called closure viscosity models. This is because the Reynolds tensor is
defined in a manner analogous to the stress tensor for Newtonian fluids, through a
linear relationship between the anisotropic part of R and the mean strain rate of
the flow defined by a turbulent viscosity νT ,

R = 2νT 〈D〉 −
2

3
κI, (2.23)

where κ ≡ 1/2Tr(R) is defined as the turbulent kinematic energy.
Unlike molecular viscosity which is a property of the fluid, the turbulent viscosity

depends on the flow pattern itself, WILCOX [21].
With this, the average balance of linear momentum is,

∂〈v〉
∂t

+ ∇ · (〈v〉 ⊗ 〈v〉) = −1

ρ
∇
(
〈p〉+

2

3
ρκ
)

+ ∇ ·
(
(ν + νT )∇〈v〉

)
,

where νT ≡ µT/ρ. Generally an equivalent pressure is defined, adding in this way
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the average pressure with the term as a function of the turbulent kinetic energy,

p∗ ≡ 〈p〉+
2

3
ρκ. (2.24)

With the application of this hypothesis, the problem of closure has not yet been
solved. However, it was reduced from six extra variables to only one, which is the
turbulent viscosity,

∂〈v〉
∂t

+ ∇ · (〈v〉 ⊗ 〈v〉) = −1

ρ
∇p∗ + ∇ ·

(
(ν + νT )∇〈v〉

)
. (2.25)

In a first analysis, this hypothesis seems quite reasonable. For it implies an
increase in the effective viscosity of the medium flow. This is in line with the
discursive characteristics of the turbulent flows as high diffusivity and dissipation.

However, as has been said, there is no universal model for turbulence. in this case,
the models that use the Boussinesq hypothesis have certain limitations. According
to POPE [19], an explicit description of the turbulent stresses as a function of mean
strain rate is not correct. This happens because the Reynolds stress tensor does not
change instantaneously with the mean strain rate, there is a certain response delay
that has been experimentally detected. The second criticism made by POPE [19] is
that, even if there were an explicit relation between R and 〈D〉, this relation would
not be linear. Even for simple shear flows, it is observed that the linear hypothesis
misses significantly to represent the Reynolds stress tensor. It was concluded that
the linearity is not enough to capture all the anisotropy of R.

DESCHAMPS [27] lists the cases where the Boussinesq hypothesis fails:

• Flow with significant curvature of the streamlines;

• Flow with adverse pressure gradient;

• Flow with separation regions;

• Jet flows;

• Flow with body forces.

Despite these limitations, the results obtained by RANS models using the Boussi-
nesq hypothesis are sufficiently satisfactory, and computationally cheap, for a wide
variety of applications, SCHMITT [28].

The next step of closure is to model the turbulent viscosity. For this, a dimen-
sional analysis is made,

[νT ] =
[L2

T

]
= [L]×

[L
T

]
,

νT = cLU . (2.26)
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The turbulent viscosity is written as a function of a dimensionless c, a characteristic
length L and a characteristic velocity U .

Next, the closure model that will be used in this work will be described. The
characteristic length and velocity are described to describe the turbulent viscosity.

κ-ε RANS model

The κ-ε model uses as characteristic velocity the square root of the turbulent kinetic
energy [11],

U ≡ κ1/2. (2.27)

Due to this, a transport equation for κ is required. The turbulent kinetic energy can
be calculated from the average of the scalar product of the velocity field fluctuation
with itself,

κ =
1

2
〈v′ · v′〉.

Similarly, to find the κ equation, the same methodology is applied in the equa-
tion of transport of the velocity fluctuation. This equation is obtained from the
instantaneous linear momentum discounted from the average balance,

∂v′

∂t
+ ∇ · (v ⊗ v − 〈v〉 ⊗ 〈v〉) = −1

ρ
∇p′ + ν∇2v′ −∇ ·R.

Similar to what was done earlier, the inner product is applied on both sides of the
floating linear momentum transport equation with the floating velocity field itself,
and then the average operator is applied on both sides,〈∂v′

∂t
· v′ + ∇ · (v⊗ v− 〈v〉 ⊗ 〈v〉) · v′

〉
=
〈
− 1

ρ
∇p′ · v′ + ν∇2v′ · v′ −∇ ·R · v′

〉
,

∂κ

∂t
+ ∇ · (〈v〉κ) = P + ∇ ·

(
ν∇κ− 1

2
〈v′ ⊗ v′ · v′〉 − 1

ρ
〈p′v′〉

)
− ε, (2.28)

where P is the turbulent production,

P ≡ 2νT 〈D〉 : ∇〈v〉, (2.29)

and ε is the turbulent dissipation,

ε ≡ ν〈∇v′ : ∇v′T 〉. (2.30)

The turbulent production P is the energy rate that leaves the medium flow
and turns into turbulent kinetic energy. As previously stated in the text, turbulent
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dissipation ε is the rate of conversion of turbulent kinetic energy into thermal energy
at the smaller scales in the energy cascade. Although the classical terms used are
production and dissipation, both terms represent rates of energy transformation.
The diffusive term has three parcels: a portion of molecular diffusion ∇ · (ν∇κ), a
term of diffusion through a turbulent transport ∇ · (−1/2〈v′ ⊗ v′ · v′〉) and a term
of diffusion by pressure ∇ · (−1/ρ〈p′v′〉). These last two terms need modeling since
they are written as functions of velocity and pressure field fluctuations. Those terms
were modeled with a gradient-diffusion approach [11],

1

2
〈v′ ⊗ v′ · v′〉 − 1

ρ
〈p′v′〉 ≈ −νT

σκ
∇κ,

where σκ dimensionless constant.
The turbulent dissipation, as well as the latter two terms, is also written in terms

of the fluctuation of the velocity field. However, unlike these portions, ε will not be
modeled explicitly. Instead, along with the turbulent kinetic energy, it will be used
to define a characteristic length [11],

[L] =
[κ]3/2

[ε]
. (2.31)

Having defined velocity and characteristic length, one can then define the turbulent
viscosity (Eq. 2.26),

νT = Cµ
κ2

ε
. (2.32)

In order to close the problem, there is now only the transport equation of tur-
bulent dissipation. A transport equation can be derived just as it was done for the
turbulent kinetic energy, but this would be so laborious and complex that it becomes
more advantageous to model the equation entirely. It is then written in a manner
analogous to the κ equation, but with other constants to fit the model. The extra
transport equations are then,

∂κ

∂t
+ ∇ · (〈v〉κ) = P + ∇ ·

[(
ν +

νT
σκ

)
∇κ
]
− ε, (2.33a)

∂ε

∂t
+ ∇ · (〈v〉ε) = Cε1

ε

κ
P − Cε2

ε2

κ
+ ∇ ·

[(
ν +

νT
σε

)
∇ε
]
. (2.33b)

The parameters are described in Tab. (2.1).
As in the turbulent kinetic energy equation, the turbulent dissipation equation

has a production and dissipation term, where it is assumed that these are propor-
tional to the κ/ε ratio. The parameters Cε1 and Cε2 are defined to adjust such
proportionality. What justifies such a hypothesis is the fact that the production of
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Table 2.1: κ-ε model’s dimensionless parameters [11].
Cµ σκ σε Cε1 Cε2
0.09 1.00 1.30 1.44 1.92

turbulent kinetic energy is correlated with dissipation, where one is high, the other
is also [29].

The main deficiency of this model is the description of the flow near the solid
surfaces. In these regions, viscous effects predominate over turbulent effects, and
the κ-ε model does not contemplate this phenomenon. This is mainly because of
the uncertainties of the transport equation of the turbulent dissipation which is ex-
cessively modeled. There are two ways to circumvent this problem, the first is to
change the ε transport equation by introducing damping functions as a function of
the local Reynolds number to model the effect of viscosity in these regions. The sec-
ond option is through the wall functions, which are explicit solutions of the velocity
field in these regions through the Law of the Wall.

Despite the shortcomings of the Boussinesq hypothesis and the turbulent dis-
sipation transport equation cited above, the κ-ε model is the most widely used in
industry. This is justified by its relative success in several problems of interest, and
for being the most validated literature.

In this work we will use the second approach, which uses the wall laws to better
represent the solution near the walls.

Wall functions

In close proximity to the solid surfaces, the viscous effects are relevant, this can
be noticed through a simple dimensional analysis. This region, which defines the
boundary layer, to be characterized in a CFD simulation, requires a high mesh
refining. Wall functions are intended to use wall laws to directly calculate average
velocity and velocity fields. This is important because the turbulence model has
difficulties in describing this region of the flow.

In this region, the characteristic quantities are the shear stress, due to the prox-
imity to the wall, and the kinematic viscosity due to the importance of the viscous
effects. With the shear stress, a characteristic velocity is defined, the friction veloc-
ity,

vτ ≡

√
||τw||
ρ

. (2.34)

With this characteristic velocity and viscosity, the distance from the wall, and

20



the tangential velocity can be made dimensionless as,

y+ ≡ vτy⊥
ν

, (2.35a)

v+ ≡ v

vτ
. (2.35b)

It is known that the region to which the wall law will act is divided into three:
A linear region where the viscous forces are practically balanced only by the shear
stress. The region of logarithmic law, where the turbulent stresses increase suffi-
ciently to come into equilibrium with the viscosity and the shear stress. And the
transition region between the two, the buffer layer. The layers can be seen in Fig.
2.7.

DNS
Linear

Log Law

Figure 2.7: Law of the wall, BREDBERG [5].

The equations that govern each of the regions may be

v+ =

y
+ , y+ ≤ 5

1

κ
log (Ey+) , 30 < y+ < 200

. (2.36)

where κ = 0.41 and E = 9.8 for smooth walls.
The wall functions were developed from the wall law. The strategy is to find

an expression for the turbulent viscosity from it. With this νT calculated by the
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wall function, we can calculate the velocity and pressure field from the average
momentum equations modeled by the Boussinesq hypothesis.

To find an expression for the turbulent viscosity, a first order approximation
is used between the wall and the first mesh element for the derivative. Next, the
definition of friction velocity is used to find a second expression for the shear stress,

τw = ρ(ν + νT )
v

y
(2.37a)

τw = ρv2
τ (2.37b)

Equating both expressions we can find the turbulent viscosity in terms of y+,

ρ(ν + νT )
v

y
= ρv2

τ ,

νT =
v2
τ

v
y − ν,

νT =
1( v
vτ

) vτy
ν
ν − ν,

νT = ν

(
y+

v+
− 1

)
,

νT = ν

(
y+κ

log (Ey+)
− 1

)
. (2.38)

In order to be able to calculate the turbulent viscosity, it is necessary to compute
the y+. For this, of the logarithmic law,

v

vτ
=

1

κ
log (Ey+),

vτ =
vκ

log (Ey+)
,

vτ
y

ν
=

vκ

log (Ey+)

y

ν
,

y+ log (Ey+)− κvy

ν
= 0.
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The desired dimensionless distance is the roots of the function

f(y+) = y+ log (Ey+)− κvy

ν
. (2.39)

Which can be calculated by Newton’s method for example.
This is the so-called standard wall function. It has the limitation of not describing

cases out of equilibrium, ie, cases where there is a pressure gradient large enough to
peel off the boundary layer (zero shear stress). To circumvent this problem, a new
characteristic velocity is proposed using turbulent kinetic energy, and no more τw
[30],

u∗ ≡ C1/4
µ

√
κ, (2.40)

where κ is calculated from a law of the wall. The other details are similar to the
previous ones, just changing the characteristic velocities.
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Chapter 3

Neural networks

Machine learning (ML) is a computation and artificial intelligence branch. The
main objective of this field is the modelling of systems from some given database
solely. The machine is able to learn from this available data, understanding patterns,
without the necessity of previous implementations.

There are many ML techniques, e.g.: supported vector machine (SVM), neural
networks (NN), genetic algorithm, decision trees and random forests. Each one of
them can be used for different applications.

In this work, NN was chosen for the flexibility on building their structure and
the promising results previously obtained [18]. The theory of neural networks will
be discussed in this chapter.

3.1 Artificial neuron

In order to understand the concept of a artificial neuron, it is important to first
understand the basic functionally of the biological brain, and how it processes data.
The brain is a powerful and complex system that is capable to deal with a massive
amount of data, that can be noisy and inconsistent, but still capable to produce
right answers [31].

Comparing with computation science, the brain could be interpreted as a mas-
sive parallel processing performed by approximated 85 billions processors. Those
processors are the nervous system cell called neurons [31]. In Fig. (3.1), a neuron
cell structure is shown.

• Cell body: That’s the most important part of the neuron, where all the
input signals that comes from other neurons are processed. It is where all
the essential parts of a cell are located, and the place where all the metabolic
processes. This part is also called ’Sum’, because it sums all the signals that
comes from other neurons, as has already been said, and creates a new one

24



Figure 3.1: Biological neuron basic structure.[6]

that will be transmitted by the axon. This concept of sum of signals is very
important for the artificial neuron concept.

• Axon: Similar to a energy cable, it transmits the electrical signal generated in
the cell body by the metabolic processes for other cells, like another neuron.
It’s covered by a insulating layer called Myelin, what speeds up the signal
streaming.

• Dendrite: Are the extensions that leave the cell body, and which receive
signals from other neurons.

• Synapse: It’s the connection between the axon and another neuron’s den-
drites.

The neurons transmit information by electrical signals that are received by the
dendrites. That reception occurs when these cell body dendrites are connected
with others neurons by their synapses, what is called synaptic connection. This
connection is possible because of the existence of chemicals between the dendrites
and the synapses called neurotransmitters [32].

These described interactions occur in all the 85×109 neurons in the human brain.
This huge amount of synaptic connections defines the powerful parallel process told
before, and it is constantly changing. Providing to the brain the power to recognize
patterns, learning, solve complex problems and for make predictions [31].

Based on this basic biological neuron conception, MCCULLOCH e PITTS [33]
proposed the fist mathematical description of a artificial neuron, whose characteris-
tics are listed below:

• Inputs (in): Simulating the multiple electrical signals that come from other
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neurons by the dendrites, the artificial neuron receives the data that comes
from others connected to it.

• Weights (w): Each data that is received by the artificial neuron is weighted.
It simulates the synapses connections, those with higher weights are more
important then the others.

• Activation function (ϕ): It represents the metabolic process that happens in
the Cell body, where a new signal is created from the sum of all the weighted
signals arriving in the neuron. MCCULLOCH e PITTS [33] first presented
that function as a binary function, but later other mathematical expressions
were proposed, as the bias term. Bias is a number summed to the sum of
all weighted signals that arrives to the neuron. These updates improved the
performance of the method.

• Output (out): Represents the signal transmitted by the Axon. It is the result
of the application of the activation function on the weighted sum of all the
signals that arrive in the neuron plus the bias.

Therefore, the jth neuron’s output, of the mth layer (the neurons are presented in
the network organized by layers connected to each other, this architecture will be
better explained in the next session), (out(m)

j ) is the application of the activation
function ϕ in the weighted sum of signals that outputs from each one of the back
neuron’s layer n,

out
(m)
j = ϕ(in

(m)
j ) = ϕ

(
N∑
i=1

w
(m)
i out

(n)
i + b

(m)
j

)
. (3.1)

As shown in Fig. (3.2).
The most popular activation functions are listed below:

• Limiar function:

ϕ(in
(m)
j ) =

1, in(m)
j ≥ 1

0, in(m)
j < 1

(3.2)

• Linear function:
ϕ(in

(m)
j ) = k ∗ in(m)

j (3.3)

• Sigmoid function: Or the Logistic function, is a continous smooth func-
tion witch ranges between 0 and 1.

ϕ(in
(m)
j ) =

1

1 + exp (−in(m)
j )

(3.4)
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Figure 3.2: jth neuron of the mth layer.

• Hyperbolic tangent function: Its similar to the Sigmoid function, but it
ranges between −1 and 1.

ϕ(in
(m)
j ) =

1− exp (−in(m)
j )

1 + exp (−in(m)
j )

(3.5)

The multi-interactivity non-linear activation functions, as Sigmoid and Hyper-
bolic, from a neuron’s layer into another that gives to NN the capability to perform
non-linear mapping between the inputs X and a target Y,

Y = NN(w,b; X). (3.6)

CIBENKO [34] demosntrated a Universal Approximation Theorem that guaratees
the existence of a NN capable of mapping X to Y. Another benefit in the applica-
tion of those non-linear activation functions is the fact that they are diferenciable,
and their derivates are easy to be calculated, what helps in the NN tranning pro-
cess(backward).

3.2 Neural network architecture - Feedforward NN

Once the concept of artificial neuron was established in the previous session, it will
be discussed how they connect to each other in order to form the neural networks
properly said.

A typical NN topology presents neuron layers distributions. These layers repre-
sent a collection of neurons that are connected with the previous neuron’s layer, and
are also connected with the layer ahead. The first layer is called input layer, the
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last one is the output layer, and all the others in the middle are the hidden layers.
Neural networks whose outputs from each layer do not connect with previous layers,
that is, only connect to the layers forward, are called feedforward networks. There
are other types of architectures, e.g., the feedback neural nets, but these will not be
discussed in the present work because they are not part of the scope of the work. A
feedforward NN that presents non-linear neuron (with a non-linear activation func-
tion) in their hidden layer is also called a multi layer perceptron (MLP). In Fig.
(3.3) there is a MLP example with four inputs, one output and two hidden layers
with five neurons each. Because of its feedforward structure, the data flows from
the input layer to the output layer, passing through the hidden layers.

Input 1

Input 2

Input 3

Input 4

Output

Figure 3.3: MLP NN example.

Therefore, what constitutes a MLP architecture is the number of neurons in
each layer, the number of hidden layers and the activation functions. That topology
will depend on the project, if the problem has a strong non-linearity, then more
neurons and more hidden layers with nonlinear activation functions, e.g., sigmoid
or hyperbolic tangent, will probably be needed to better represent it. On the other
hand, an excess of neurons in the network can cause overfitting, that is, the network
loses generalization capacity. The opposite also occurs, if a small number of neurons
is used the network loses abstraction capacity and, therefore, cannot capture all the
patterns present in the data used in training stage. In this case, it is said that the
problem is underfitted by the NN.

3.3 Training a NN - Backpropagation

Usually, the NN weights and bias are initialized by random numbers between −1

and 1. So, there will be an error (E) between the regression NN results (Y) and the
target (Ỹ). That error is a function of all the weights and bias of the NN,

E = E(w,b).
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Training a NN is the process of finding the weights and bias that minimizes E. The
algorithm that does that is the backpropagation.

Defining the error function as

E =
∑
b∈L1

1

2
(ỹb − yb)2. (3.7)

Given a NN backward enumerated, the output layer is the first and the hidden layer
before the input layer is theN th, Fig. (3.4). The derivate of the square error function
E = E(w,b) with respect each one of neuron’s weights, and bias, from every layer

are calculated,
∂E

∂w
(m)
tv

and
∂E

∂b
(m)
v

, respectively. Those derivate will be required to

update the weights and bias, minimizing the error function by some optimization
technique, e.g., gradient descent.

...
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...

...
...
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H1

HL

ỹ1
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Input
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Hidden
layer (LN)
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Output
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. . .

Figure 3.4: Neural net topology example.

The first layer, the output one, will be calculated. Using the chain rule,

∂E

∂w
(1)
lj

=
∂in

(1)
j

∂w
(1)
lj

∂out
(1)
j

∂in
(1)
j

∂E

∂out
(1)
j

,

and applying the in(1)
j and out(1)

j definitions, Eq. (3.1). And Eq. (3.7),

∂E

∂w
(1)
lj

=
∂

∂w
(1)
lj

(∑
a∈L1

w
(1)
aj out

(2)
a + b

(1)
j

)
∂ϕ(in

(1)
j )

∂in
(1)
j

∂

∂out
(1)
j

(∑
b∈L1

1

2
(ỹb − yb)2

)
,
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∂E

∂w
(1)
lj

= out
(2)
l ϕ′(in

(1)
j )

∂

∂ỹj

(∑
b∈L1

1

2
(ỹb − yb)2

)
,

∂E

∂w
(1)
lj

= out
(2)
l ϕ′(in

(1)
j )(ỹj − yj).

A delta function related to the first layer is defined as,

δ
(1)
j ≡ ϕ′(in1

j)(ỹj − yj), (3.8)

and the with respect the weights of the first layer is

∂E

∂w
(1)
lj

= out
(2)
l δ

(1)
j . (3.9)

The same procedure done in the first layer is done in the second one,

∂E

∂w
(2)
ml

=
∂in

(2)
l

∂w
(2)
ml

∂out
(2)
l

∂in
(2)
l

∂E

∂out
(2)
l

,

∂E

∂w
(2)
ml

=
∂

∂w
(2)
ml

(∑
a∈L2

w
(2)
al out

(3)
a + b

(2)
l

)
∂ϕ(in

(2)
l )

∂in
(2)
l

∂

∂out
(2)
l

(∑
b∈L1

1

2
(ỹb − yb)2

)
,

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )

∂

∂out
(2)
l

(∑
b∈L1

1

2
(ỹb − yb)2

)
,

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )
∑
b∈L1

(
(ỹb − yb)

∂ỹb

∂out
(2)
l

)
.

Applying the chain rule in
∂ỹb

∂out
(2)
l

,

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )
∑
b∈L1

(
(ỹb − yb)

∂ỹb

∂in
(1)
b

∂in
(1)
b

∂out
(2)
l

)
,

and using the fact that the predicted y (ỹb) is equal to the bth first layer neuron
output (ỹb = out

(1)
b = ϕ(in

(1)
b )),

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )
∑
b∈L1

(
(ỹb − yb)

∂ϕ(in
(1)
b )

∂in
(1)
b

∂in
(1)
b

∂out
(2)
l

)
.
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Utilizing the definition Eq. (3.1) in
∂in

(1)
b

∂out
(2)
l

,

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )
∑
b∈L1

(
(ỹb − yb)ϕ′(in(1)

b )︸ ︷︷ ︸
eq. 3.8.

w
(1)
lb

)
,

∂E

∂w
(2)
ml

= out(3)
m ϕ′(in

(2)
l )
∑
b∈L1

(
δ

(1)
b w

(1)
lb

)
.

A delta function related to the second layer is also defined as,

δ
(2)
l = ϕ′(in

(2)
l )
∑
b∈L1

(
δ

(1)
b w

(1)
lb

)
, (3.10)

and the derivate with respect the weights of the second layer is

∂E

∂w
(2)
ml

= out(3)
m δ

(2)
l . (3.11)

To complete this demonstration, again, the same procedure is done in the third
layer,

∂E

∂w
(3)
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∂in
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∂out
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∂in
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∂w
(3)
nm

= out(4)
n ϕ′(in(3)

m )
∑
b∈L1

(
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Using again the chain rule in
∂in

(1)
b

∂out
(3)
m

,
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and applying the Eq. (3.1),
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eq. 3.10.
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A delta function related to the third layer is also defined as,

δ(3)
m = ϕ′(in(3)

m )
∑
c∈L2

(
δ(2)
c w(2)

mc

)
, (3.12)

and with respect the weights of the second layer is

∂E

∂w
(3)
nm

= out(4)
n δ(3)

m . (3.13)

Observing the Eqs. (3.8), (3.10) and (3.12), a recursive definition of delta func-
tion is observed. Then, by induction, the general definition of the each layer delta
function is,

δ(m)
v =


ϕ′(in

(1)
v )(ỹv − yv), m = 1

ϕ′(in
(m)
v )

∑
b∈Lm−1

(
δ

(m−1)
b w

(m−1)
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)
, N ≥ m > 1

, (3.14)

and the general error with respect each one of the N layer’s nodes definition is

∂E

∂w
(m)
tv

= out
(m+1)
t δ(m)

v . (3.15)
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The bias of each node must be corrected as well. The procedure to calculate the
error with respect to the bias is similar with the one used before for the weights,
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(ỹb − yb)2

)
,

∂E

∂b
(1)
j

= ϕ′(in
(1)
j )

∂

∂ỹj
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,
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∂b
(1)
j

= δ
(1)
j .

That definition will be recursive as well. Then,

∂E

∂b
(m)
v

= δ(m)
v . (3.16)

Because of that recursive definition of δ(m)
v , where, in order to calculate the mth

layer’s delta, it is needed the backward one (δ(m−1)
l ). It is said that the error is

back-propagated from the output layer to the first hidden layer before the inputs
(N th layer).

Once each one of the error derivates with respect to all the weights and bias of
all layers are calculated, then that error function can be minimized by some of the
techniques listed below.

3.3.1 Gradient descent

The gradient descent is the most popular, and intuitive one. Basically the increment
that will be summed to correct the weights and bias updates the error function in
the opposite direction of its gradient (that’s why there is a negative sign), Eqs.
(3.17) and (3.18). That is, the updates make the error function to decrease in each
step (also called epochs). That update is regulated by η, called learning rate. The
value prescribed for η is crucial because if it is too high, the minimum error can be
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missed, and if it is too low will overly slow the minimization.

∆w
(m)
tv = −η ∂E

∂w
(m)
tv

(3.17)

∆b(m)
v = −η ∂E

∂b
(m)
v

(3.18)

3.3.2 RMSProp

TIELEMAN e HINTON [35] proposed a variable learning rate method, where η
is divided by the recent gradient magnitude average. γ is a forgetting factor, that
regulates the weight of the previous gradient magnitude in the minimization process.
That adaptive learning rate helps the convergence, creating a robust optimizer.
Below, we can find how the forgetting factor is applied, whose value used in the
literature is usually between 0.9 and 0.95.

vw(t+ 1) = γvw(t) + (1− γ)

(
∂E

∂w
(m)
tv

)2

(3.19a)

∆w
(m)
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∂E
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(3.19b)

vb(t+ 1) = γvb(t) + (1− γ)

(
∂E

∂b
(m)
v

)2

(3.20a)

∆b(m)
v = − η√

vb(t+ 1)

∂E

∂b
(m)
v

(3.20b)

3.3.3 ADAM

KINGMA e BA [36] updated the RMSProp optimizer. It obeys the same concept,
but the adaptive learning rate also take into account the second moment of the
gradient, with the need of two corresponding forgetting factors, β1 and β2. That
algorithm achieves good results in deep neural nets.

mw(t+ 1) = β1mw(t) + (1− β1)
∂E
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(3.21a)

vw(t+ 1) = β2vw(t) + (1− β2)
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(3.21b)

m̂w(t+ 1) =
mw(t+ 1)

1− β1

(3.21c)
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v̂w(t+ 1) =
vw(t+ 1)

1− β2

(3.21d)
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(3.22e)

3.4 Validation and test groups

During the process of minimizing the error function, to face iteration of the same
(epochs), the neural network is applied in a set of data called validation data. That
is, for a given time, the neural network is applied on a training input and on a
validation input. Both outputs generated training and validation errors. The mini-
mization process acts on the training error, whereas this validation error is used as
the training stop criterion. This is important because it is normal for a training to
minimize the training error, but the network loses the power of generalization for
data that was not part of the training process. This is the so-called overfitting of the
neural network, in other words, it has only learned from the data that belongs to the
training group, but it can not extrapolate results to unprecedented inputs. One pos-
sible stopping criterion is the so-called early stoppig, which interrupts minimization
when the validation error increases for a number of consecutive times.

After the neural network is converged, at the end of its training, it is evaluated.
The data group that is intended for this evaluation is the so-called test group. The
neural network basically reads a test input, and predicts a output. This output is
compared to the test output, thus generating an error metric associated with this
neural network. The test group is distinct from both the training group and the
validation group. Soon this evaluation also helps to study the power of generalization
of the network.
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3.5 Cross-validation

The result of the test error, the error that actually evaluates the neural network,
has a certain volatility. Initially the weights and bias of the network are chosen
randomly, so a second training, with the same training and validation data, can
lead to minimization for a different response. So impacting the test error. In order
to have a statistically significant response, several training sessions with different
training, validation and test groups are carried out. And, in the end, there is an
average error with a given standard deviation. This average error will, in fact,
validate the neural network.

A normal practice is to consider a single large database and allocate, for example,
60% of it for training, 20% for validation and 20% for testing. These groups are
chosen randomly for each training process.
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Chapter 4

Machine learning and turbulence

In recent years, machine learning has entered the universe of computational fluid
dynamics simulations of turbulent flows aiming to correct the shortcomings of the
turbulence models of describing phenomena such as separation of the boundary
layer and secondary flows. In this chapter, the main works done in this segment are
summarized, in order to better contextualize what is proposed in this present work.

The various machine learning techniques act in this segment as nonlinear re-
gression processes for the description of some aspect of turbulence modeling, for
example, to directly describe the Reynolds stress tensor. Nonlinear regression is
created from data extracted from high fidelity databases, DNS or LES, that serves
as targets of the various machine learning methods used in the literature. Basically,
from certain inputs extracted from the RANS simulations, a non-linear regression
is performed, which will, for example, predict a new R field that is intended to be
close to a DNS or LES quality established as a target.

TRACEY et al. [7] used a machine learning technique called kernel regression to
correct turbulent stress anisotropy eigenvalues, using as target some DNS database.
The eigenvalues λ1, λ2 and λ3 of the deviatoric part of R, normalized with respect
to the turbulent kinetic energy κ,

a ≡ 1

2κ
R− 1

3
δ, (4.1)

are written in a space defined by these three quantities,

C1c = λ1 − λ2, (4.2a)

C2c = 2(λ2 − λ3), (4.2b)

C3c = 3λ3 + 1. (4.2c)

Once these quantities are determined, a point inside the so-called barycentric map
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can be located with
xbary = C1cx1c + C2cx2c + C3cx3c, (4.3a)

ybary = C1cy1c + C2cy2c + C3cy3c. (4.3b)

This map is defined inside a triangle, a color map is used to locate the point inside
the map, as shown in Fig. (4.1). This map shows the limits of turbulence flows. Each

Figure 4.1: Color map representing the location in the barycentric map. [7]

one of the corners of the map is associated with a specific turbulent flow pattern.
In order to the flow to be realizable, the anisotropy of the turbulent field must be
inside this equilateral triangle.

The authors of this work have used machine learning to predict a corrected
anisotropy turbulent field, written in barycentric map coordinates, of a periodic hill
flow pattern in order to correct a RANS simulation that used a κ-ω SST turbulent
model. It was used a target a related DNS simulation. In Fig. (4.2), it is notable
that after the correction the anisotropic field is closer to the DNS result, showing the
capability of correcting the eigenvalues of the deviatoric part of R. It was reported
some difficulties in generalizing the results to new flows and to scale to a large
amount of data.

(a) DNS. (b) RANS.

(c) Predicted.

Figure 4.2: Anisotropy in a periodic hill. [7]

After that, TRACEY et al. [8] proposed a single hidden layer NN to model the
source terms from the Spalart Allmaras RANS model. In this case, it no longer fixes
the tensor R directly, but rather a specific portion of a RANS model. This example
constitutes a hybrid model, which still carries RANS modeling and uses machine
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learning to describe turbulence. In that work, it was analysed a external flow with
respect to a NACA 0012 wing, and its friction coefficient correction performed by
the prediction of the source term of the turbulent viscosity transport equation of
the Spalart Allmaras turbulent model. In Fig. (4.3) it can be seen two results in,
each one of them different training data are used: in Fig. (4.3(a)) pressure driven
channels data, and in Fig. (4.3(b)) flat plate solutions. This attempt has shown the
potential of NN for turbulence modeling.

(a) NACA 0012 airfoil using training data
from the pressure driven channels.

(b) NACA 0012 airfoil using training data
from the three flat plate solutions.

Figure 4.3: Friction coefficient. [8]

LING et al. [9] used a random forest regression to model the deviatoric part
of R. In Fig. (4.4) it is possible to see the correction of the second invariant of
the anisotropy of R of a κ-ε RANS simulation, using as a target a jet-in-cross flow
LES results. This technique presented a poor ability to predict this tensor because

(a) LES. (b) RANS. (c) Predicted.

Figure 4.4: Second anisotropy invariant IIa in a periodic hill. [9]

of difficulty to ensure Galilean invariance. If a certain DNS database is used as
training data and then this same database is used for a second training but written
in another reference system, this new regression will be distinct from the first. This
is because what is being predicted by the network, in this case a tensor field, is
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not invariant under Galilean transformations. This compromises the generalization
potential of the regression process because the resulting neural network can only be
used in RANS simulations that have a coordinate system similar to that used in the
DNS base.

Later, LING et al. [17] developed a NN to predict the anisotropy Reynolds stress
tensor eigenvalues using a set of Galilean invariants inputs. That technique showed
significant performance improvements when compared to [9]. Those results evi-
denced the importance of the Galilean invariance in ML turbulence modelling.

More recently, LING et al. [18] developed a deep specialized NN architecture
witch ensured Galilean invariant anisotropic turbulent tensor. Those results showed
that deep learning and the specialized architecture is able to provide a significant
performance improvement.
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Chapter 5

Square duct flow

Figure 5.1: Schematic drawing of the square duct flow [10].

The geometry of the square duct flow is presented in the Fig. (5.1). The Reynolds
number that rules the problem is computed with respect to the hydraulic diameter
D and the bulk velocity. As it can be seen, only a quarter of the duct section
is numerically analyzed (the colored one). This flow pattern was chosen due to
the existence of a secondary flow located in the cross-plane. A secondary flow is
a minor flow that is superposed by a primary flow. The primary flow is close to
the magnitude of total flow, since the secondary velocity components are order of
magnitude smaller than the primary flow. For the square duct flow, in each one of
the four edges of this cross-plane, there is a counter-rotating recirculation pair.

It is known that two equations RANS models have difficulty on capturing this
type of phenomenon because of linear eddy viscosity hypothesis [13], as mentioned
in Turbulent flows sections. The inability to describe this secondary flow will be
overcome by the correction of turbulent stresses via machine learning.
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The chosen RANS model was the κ-ε [30] implemented in OpenFOAM-4.x (OF).
The employed boundary conditions are the non-slip condition and null pressure
gradient on the solid faces (green faces in Fig. 5.2), symmetry in the cut-off regions
of the quarter section (red faces in Fig. 5.2). In the direction of the main flow
(x direction in Fig. 5.2) the periodic condition and the constant section average
velocity are defined. This constant bulk velocity condition basically creates an
artificial component of pressure gradient in the axial direction of the duct, this is
necessary because in the inlet and outlet faces the boundary conditions are periodic.
This component then passes through an iterative process whose stopping criterion
is defined with respect to the bulk velocity difference obtained at each iteration and
the desired one. The turbulent kinetic energy in the walls is zero, and for turbulent
dissipation the OF wall function epsilonWallFunction was used.

xy

z

Figure 5.2: Boundary conditions.

It was used the simpleFoam, a finite volume OF solver. It is a solver for non-
steady and incompressible flows of Newtonian fluids. It uses the SIMPLE algorithm
of pressure and velocity decoupling. The discretization of divergent operators from
the transport equations chosen for the RANS simulations was Gauss upwind, the
gradient operators were discretized with linear Gauss. For the laplacians, linear
corrected Gauss was chosen, and the point-to-point interpolation scheme used was
linear.
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For the solution of the discretized pressure equation, the Preconditioned Con-
jugate Gradient (PCG) solver was used, with the Diagonal Incomplete-Cholesky
(DIC) preconditioner. For the velocity, κ and ε was used the smooth solver, with
the Gauss Seidel symmetrical smoother. The tolerances for all four variables were
1e−07, with relaxation factors for the pressure field of 0.5, from 0.15 for the velocity
equation and 0.5 for the turbulent fields.

In order to create a neural network capable of correcting the turbulent flow
predicted by the κ-ε, it is necessary to provide a reference database. The machine,
to carry out its learning process, will use as reference the turbulence coming from
a high fidelity and very computationally expensive database, DNS simulations. For
this work, it will be used a set of flow cases corresponding to the following values
for the Reynolds number: 2200, 2400, 2600, 2900, 3200 and 3500. The square duct
DNS data was made available by PINELLI et al. [37]. For each one of those six
DNS, a corresponding RANS simulation is performed. With these DNS and RANS
data, a NN will be trained in order to correct the turbulent flow obtained from a
RANS model using the results provided by the DNS as targets.

For all the simulations, it was used a bulk velocity of 0.4819m s−1. The solved
domain has 1m× 1m× 10m, that is D = 1m. Each simulations is differentiated by
the kinematic viscosities listed in tab. 5.1.

Re ν[m2 s−1]× 10−4

2200 2.1858
2400 2.0082
2600 1.8537
2900 1.6619
3200 1.5061
3500 1.3770

Table 5.1: Simulations viscosities.

The mesh topology can be seen in Fig. (5.3). The cross-section has 40×40 nodes,
where the mesh is more refined near the walls in such a way to ensure y+ < 0.2. In
the main flow direction, the mesh is equally divided in ten parts. Then the mesh
has a total of 16000 centroids.

Although the κ - ε model is a high Reynolds number model, we chose to perform
a extra-refinement near the walls so that there were more points in this region and,
thus, the neural network could correct there as well. OF was set to use wall laws
even though there are centroids within the viscous sublayer.

43



Figure 5.3: Mesh’s topology.
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Chapter 6

Methodology

This chapter explains how to use neural networks to correct RANS simulations. The
first thing to do is to define which inputs the neural network will receive to correct the
turbulence obtained by the RANS simulations. In this work we selected quantities
associated with mean kinematics and turbulence, as can be seen in Tab. 6.1. The

Table 6.1: Inputs.
D ∇ ·D
P ∇ ·P
D2 ∇ ·D2

P2 ∇ ·P2

D ·P + P ·D ∇ · (D ·P + P ·D)
D2 ·P + P ·D2 ∇ · (D2 ·P + P ·D2)
P2 ·D + D ·P2 ∇ · (P2 ·D + D ·P2)
R ∇ ·R
R2 ∇ ·R2

D ·R + R ·D ∇ · (D ·R + R ·D)
D2 ·R + R ·D2 ∇ · (D2 ·R + R ·D2)
R2 ·D + D ·R2 ∇ · (R2 ·D + D ·R2)

list of features that the neural network is calculated as a function of the strain rate
tensor D, the non-persistence-of-straining tensor P and the Reynolds stress tensor
R computed from the RANS simulations. In total there are twelve symmetrical
tensors, and the vectors that correspond to the divergence operation applied to
these tensors. Each component of each of these tensors and vectors corresponds to
a feature, that is, in total the NN receives an input with 108 features.

The tensor P is the non-persistence-of-straining tensor [38],

P = D ·W −W ·D. (6.1)

W is the relative vorticity [38], it is the regular vorticity tensor discounted from the
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tensor that represents the rate of rotation of the eigenvectors of D (ΩD),

W = W −ΩD. (6.2)

Both entities are objective. The non-persistence-of-straining tensor is a deformation
local measurement. If the tensor is zero, it means that the fluid is in a configu-
ration of maximum deformation. Which makes sense because, observing P in D

eigenvectors base,

[P][D] =

 0 (λ
(D)
2 − λ(D)

1 )w3 (λ
(D)
1 − λ(D)

3 )w2

(λ
(D)
2 − λ(D)

1 )w3 0 (λ
(D)
3 − λ(D)

2 )w1

(λ
(D)
1 − λ(D)

3 )w2 (λ
(D)
3 − λ(D)

2 )w1 0

 ,
the tensor only cancels out in two cases: Having all D eigenvalues equal, indicating
that any direction is a direction of maximum stretching. Or if the relative vorticity
is zero, which means that the filament rotates along with the eigenvectors of D, so
that it always stays at maximum stretching direction. More details about P can be
found in [39].

The samples that will be drawn to compose the NN input are taken from the cen-
troids of each of the RANS simulations. In this work we use six RANS simulations,
differentiated by the Reynolds number, each with 16000 centroids. For network
training, four of these six RANS are always used, for validation one simulation and
for testing the converged network, the last simulation. This means that the training
input will have 64000 samples, while the test and validation inputs have 16000 each.

In this work, a open source python library, called Keras [40], is used to construct
the neural networks architectures, performing the training and to validate the NN
itself. Keras library uses other famous libraries like GOOGLE’s TensorFlow, and
Theano with the advantage of creating a more user-friendly interface.

The input must be defined as an array whose columns represent the features
defined in the table 6.1, and each lines represent each sample, in this case each of
the centroids of the RANS simulations. The training input is a 64000× 108 matrix
and is defined as Xtrain. The inputs for the validation and testing of the neural
network will be both matrices of 18000× 108 defined as Xval and Xtest respectively.

The output is what is wanted from the NN to be able to predict. The literature-
based output is a set composed by the six components of the Reynolds stress tensor
provided by DNS databases. The purpose of the neural network is to correct the tur-
bulence predicted by RANS models, making it as close as possible to the turbulence
obtained from a DNS. Therefore, the choice of output as being the R components
of a DNS database is justified. The training output is a 64000×6 array, Ytrain array.
And the validation and test outputs are 18000 × 6 matrices, called Yval and Ytest
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respectively.
A common practice in neural networks is to conduct all data, both input and

output, go through a preprocessing step. For example, each of the columns in
some of the input arrays represent distinct features. One can represent the value
of some component of the tensor D, while another column may represent some
component of the divergence of the tensor P. These columns may have different
order of magnitudes. When these order of magnitudes are very distinct, this is
likely to make the convergence of the minimization that occurs in the NN training
stage very difficult. Because of this, it is necessary to pre-process the data, including
the input and output. The preprocessing in question is the application of some kind
of normalization in each of the columns of the matrices. In this work the standard
normalization was chosen. For each column of training inputs and outputs, the
standard deviation (σ) and the mean (µ) are calculated, and then each of these
columns is normalized using their respective means and standard deviations,

normalized column =
column− µcolumn

σcolumn
. (6.3)

This normalization is applied to all data, inputs and outputs for training, val-
idation and testing is defined only in terms of the means and standard deviations
computed from the columns of the training data. Normalization is expected to be
done for the validation and test data as these are well represented by the training
data. The resulting neural network provides a normalized Reynolds tensor, what
implies that afterwards the results need to be rescaled,

column = σcolumn (normalized column) + µcolumn. (6.4)

To do this in Python, you use a widely known library of machine learning called
scikit-learn [41] using the following code.

1 import numpy as np
2 from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler
3
4 # normal i z ing the da t a s e t
5 x_sca ler = StandardSca ler ( )
6 Xn_train = x_scaler . f i t_trans fo rm (X_train )
7 y_sca ler = StandardSca ler ( )
8 Yn_train = y_scaler . f i t_trans fo rm (Y_train )
9 Xn_val = x_sca ler . t rans form (X_val )
10 Yn_val = y_sca ler . t rans form (Y_val )
11 Xn_test = x_sca ler . t rans form (X_test )
12 Yn_test = y_sca ler . t rans form (Y_test )

With the normalized data, the architecture of the neural network itself is now
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projected. For this work two hidden layers are used with 100 neurons in each totally
connected. The first layer of neurons, the inputs layer, must have the same number
of input data features, that is, 108 neurons in the first layer of the NN. The last layer
must have the same number of neurons as the number of elements to be predicted
with the network, in the case of the methodology based on the literature, the 6
components of the Reynolds stress tensor. So the last layer will have 6 neurons.

The activation functions chosen were the sigmoid for the hidden layers, and linear
for the last layer, the choice of this activation function for the output layer is classic
for regression tasks. Below you can see how this architecture is implemented using
Keras.

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Activat ion , Dense
3
4 # crea t e model
5 hidenNeurons=100
6 f e a t u r e s=108
7
8 model = Sequent i a l ( )
9 model . add (Dense ( hidenNeurons , input_dim=f e a t u r e s ) )
10 model . add ( Act ivat ion ( ’ s igmoid ’ ) )
11 model . add (Dense ( hidenNeurons ) )
12 model . add ( Act ivat ion ( ’ s igmoid ’ ) )
13 model . add (Dense (6 ) )
14 model . add ( Act ivat ion ( ’ l i n e a r ’ ) )

The employed numerical method of minimizing bias and weights of NN is ADAM.
The ADAM coefficients are the Keras standards, there was no need for line 5 of
the code below, it was only displayed in order to show the possibility that these
minimization parameters may be customizable. The error function that will be
minimized is the mean square error (mse). The so-called ’early stopping’ was used
as the stopping criterion. It is a criterion that interrupts the minimization process
when the error of the validation group begins to grow after a certain number of
epochs. In the present case it was set for this to occur if the validation error goes
up for 10 consecutive epochs. The other criterion chosen was a maximum number
of epochs equal to 500.

1 from keras . c a l l b a c k s import EarlyStopping
2 from keras import opt im i z e r s
3
4 # Compile model
5 adam=opt im i z e r s .Adam( l r =1.0e−08, beta_1=0.9 , beta_2=0.999 , e p s i l o n

=1e−08, decay=0.0)
6 model . compile ( l o s s=’mse ’ , opt imize r=’adam ’ )
7
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8 # Fit the network
9 ear lyStopp ing=EarlyStopping ( monitor=’ va l_los s ’ , pa t i ence =10,

verbose=0, mode=’ auto ’ )
10 h i s t o r y = model . f i t (Xn_train , Yn_train , epochs=500 , c a l l b a c k s =[

ear lyStopp ing ] , va l idat ion_data=(Xn_val , Yn_val ) )

With the neural network converged, its architecture is saved in a ’json’ file and
the weights and bias in an ’h5’ file.

1 #save
2 # s e r i a l i z e model to JSON
3 model_json = model . to_json ( )
4 with open( "model . j s on " , "w" ) as j s o n_ f i l e :
5 j s o n_ f i l e . wr i t e (model_json )
6 # s e r i a l i z e we i gh t s to HDF5
7 model . save_weights ( "model . h5" )
8 print ( "Saved model to d i sk " )

At this point the NN can be used to predict new Reynolds stress tensors for a
new set of data that was not part of its training. A successful network will predict a
tensor field of DNS-quality turbulent voltages from the test input data. As its name
suggests, this is a way of testing whether the network has the ability to generalize
what was learned in the training stage. The network will then predict a field of R

that will be normalized , so this result must be post-processed to be rescaled (Ypred)
by applying the inverse transformation described in Eq. 6.4.

1 # Make p r e d i c t i o n s
2 Yn_pred = model . p r ed i c t (Xn_test )
3 Y_pred = y_sca ler . inverse_trans form (Yn_pred)
4 np . save txt ( ’Y_pred . dat ’ ,Y_pred)

To evaluate the neural network, we compare the predicted output with the test
output. The error metric used in this is the coefficient of variation

vc = 100

√
mse

||mean(Ytest)||
. (6.5)

Which computes the root mean square error percentage with respect to the expected
average value.

1 # Evaluate the network
2 from s k l e a rn . met r i c s import mean_squared_error
3
4 mse=mean_squared_error (Y_test , Y_pred , mult ioutput=’ raw_values ’ )
5
6 erms=np . sq r t (mse )
7
8 vc=100∗np . d i v id e ( erms , np . abso lu t e (np .mean(Y_test ) ) )
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The complete code, which includes the preprocessing, NN creation and prediction
of the corrected Reynolds tensor field can be seen below.

Listing 6.1: Complete code.
1 def main ( ) :
2 import numpy as np
3 from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler
4
5 # normal i z ing the da t a s e t
6 x_sca ler = StandardSca ler ( )
7 Xn_train = x_scaler . f i t_trans fo rm (X_train )
8 y_sca ler = StandardSca ler ( )
9 Yn_train = y_scaler . f i t_trans fo rm (Y_train )
10 Xn_val = x_sca ler . t rans form (X_val )
11 Yn_val = y_sca ler . t rans form (Y_val )
12 Xn_test = x_sca ler . t rans form (X_test )
13 Yn_test = y_sca ler . t rans form (Y_test )
14
15
16
17
18 import numpy as np
19 from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler
20
21 # normal i z ing the da t a s e t
22 x_sca ler = StandardSca ler ( )
23 Xn_train = x_scaler . f i t_trans fo rm (X_train )
24 y_sca ler = StandardSca ler ( )
25 Yn_train = y_scaler . f i t_trans fo rm (Y_train )
26 Xn_val = x_sca ler . t rans form (X_val )
27 Yn_val = y_sca ler . t rans form (Y_val )
28 Xn_test = x_sca ler . t rans form (X_test )
29 Yn_test = y_sca ler . t rans form (Y_test )
30
31
32
33
34 from keras . models import Sequent i a l
35 from keras . l a y e r s import Activat ion , Dense
36
37 # crea t e model
38 hidenNeurons=100
39 f e a t u r e s=108
40
41 model = Sequent i a l ( )
42 model . add (Dense ( hidenNeurons , input_dim=f e a t u r e s ) )
43 model . add ( Act ivat ion ( ’ s igmoid ’ ) )
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44 model . add (Dense ( hidenNeurons ) )
45 model . add ( Act ivat ion ( ’ s igmoid ’ ) )
46 model . add (Dense (6 ) )
47 model . add ( Act ivat ion ( ’ l i n e a r ’ ) )
48
49
50
51
52 from keras . c a l l b a c k s import EarlyStopping
53 from keras import opt im i z e r s
54
55 # Compile model
56 adam=opt im i z e r s .Adam( l r =1.0e−08, beta_1=0.9 , beta_2=0.999 , e p s i l o n

=1e−08, decay=0.0)
57 model . compile ( l o s s=’mse ’ , opt imize r=’adam ’ )
58
59 # Fit the network
60 ear lyStopp ing=EarlyStopping ( monitor=’ va l_los s ’ , pa t i ence =10,

verbose=0, mode=’ auto ’ )
61 h i s t o r y = model . f i t (Xn_train , Yn_train , epochs=500 , c a l l b a c k s =[

ear lyStopp ing ] , va l idat ion_data=(Xn_val , Yn_val ) )
62
63
64
65
66 #save
67 # s e r i a l i z e model to JSON
68 model_json = model . to_json ( )
69 with open( "model . j s on " , "w" ) as j s o n_ f i l e :
70 j s o n_ f i l e . wr i t e (model_json )
71 # s e r i a l i z e we i gh t s to HDF5
72 model . save_weights ( "model . h5" )
73 print ( "Saved model to d i sk " )
74
75
76
77
78 # Make p r e d i c t i o n s
79 Yn_pred = model . p r ed i c t (Xn_test )
80 Y_pred = y_sca ler . inverse_trans form (Yn_pred)
81 np . save txt ( ’Y_pred . dat ’ ,Y_pred)
82
83
84
85
86 # Evaluate the network
87 from s k l e a rn . met r i c s import mean_squared_error
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88
89 mse=mean_squared_error (Y_test , Y_pred , mult ioutput=’ raw_values ’ )
90
91 erms=np . sq r t (mse )
92
93 vc=100∗np . d i v id e ( erms , np . abso lu t e (np .mean(Y_test ) ) )
94 main ( )

This code is then able to use machine learning to predict a new Reynolds stress
field with a quality closer to the one obtained from DNS. With this new field, the
average velocity and pressure fields are recalculated with the same solver, hoping
that these are also closer to the DNS. Below is a summary of the methodology used.

Training

• Select a subset of DNS cases (geometry ans flow conditions);

• Run a RANS simulation for the same subset of cases;

• Extract the inputs described in tab. 6.1 from all RANS simulations, from each
centroids, creating Xtrain and Xval;

• Extract the six components of R from DNS database, defining the Ytrain and
Yval outputs;

• Run the python code in order to create (training) the NN.

Correcting

• Run the RANS;

• Post process the converged results in order to get the NN inputs described in
tab. 6.1 from each RANS centroids;

• Run the NN with the extracted inputs before, and predicts the Reynolds stress
tensor Rpred using the Python code;

• Replaces the Rrans field with Rpred in OpenFOAM;

• With that turbulent stress corrected, rerun the used solver in order to obtain
the mean corrected velocity and pressure fields.

6.1 Correcting ∇ ·R

Since the primary objective is to correct the turbulence obtained from the RANS
model through neural networks, it would be considered as a first analysis to correct
the turbulent stresses. However, this is not the ideal choice. THOMPSON et al.
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[20] have shown fields that the Reynolds stress tensor is not as well converged as the
mean velocity and pressure fields in DNS simulations, and this lack of convergence
creates uncertainties that are propagated and amplified to the mean velocity and
pressure fields if this tensor is plugged in the balance of mean momentum equation.
What implies that if a NN is trained to achieve RDNS, the velocity and pressure
calculated will be contaminated by the intrinsic DNS uncertainties.

To bypass this problem, one can correct the divergence of the Reynolds stress
tensor. There are two ways to calculate the Reynolds stress tensor divergent, the
first one is directly applying the divergence operator in the tensorial field provided
by the DNS database,

∇ ·R|DNS = ∇ ·RDNS. (6.6)

As were discussed, this resulting vector field will carry uncertainties originated from
the DNS data. To calculate this divergence bypassing this problem, it is necessary to
calculate it only in terms of the given first order statistical momentum entities, the
DNS pressure and velocity fields. That can be done using the averaged momentum
equation,

∇ ·R|DNS = −(〈v〉DNS ·∇)(〈v〉DNS)− 1

ρ
∇〈p〉DNS + ν∇2〈v〉DNS. (6.7)

The vector field ∇ ·R|DNS calculated by Eq. 6.7 will be more accurate than the one
calculated by Eq. 6.6. Because of that, this one will be used as target for the NN
correction, that is the neural network will correct the ∇ ·R|RANS in the direction of
∇ ·R|DNS that was extract from DNS data by Eq. 6.7.

However, for this specific DNS database [37], the mean pressure field was not
given. So, a auxiliary vector t is defined as,

t ≡∇ ·R +
1

ρ
∇〈p〉, (6.8)

and, this vector field can be extracted from the DNS database in terms of the given
velocity field only as,

tDNS = −(〈v〉DNS ·∇)(〈v〉DNS) + ν∇2〈v〉DNS. (6.9)

In the present work we propose a new methodology which consists on correcting
the t vector field. The output corresponding is the t field computed from the DNS
data, tDNS. Therefore, the number of columns of the training, validation and test
outputs is three, one for the witch component of the vector t, evaluated at each
centroid of each of the simulations.

The algorithm to correct this vector is similar to the previous one, the only
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difference between them is the number of columns of the output, defined in line 46
of the code 6.1, witch becomes three. The summary of this methodology is shown
below.

Training

• Select a subset of DNS cases (geometry and flow conditions);

• Run a RANS simulation for the same subset of cases;

• Extract the inputs from described in tab. 6.1 from all RANS simulations, from
each centroids, creating Xtrain and Xval;

• Extract the three components of t, calculated with Eq. 6.9, from DNS
database, defining the Ytrain and Yval outputs;

• Run the python code in order to create (training) the NN.

Correcting

• Run the RANS;

• Post process the converged results in order to get the NN inputs described in
tab. 6.1 from each RANS centroids;

• Run the NN with the extracted inputs before, and predicts the Reynolds stress
tensor tpred using the Python code;

• Replaces the trans field with tpred in OpenFOAM;

• With the corrected t, solve

(〈v〉 ·∇)〈v〉+ tpred = ν∇2〈v〉. (6.10)

Note that the Eq. 6.10 does not use the SIMPLE algorithm, as it is not solving the
average pressure, only the mean velocity field.
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Chapter 7

Results

To motivate the proposed methodology, it was plotted the velocity fields calculated
from provided DNS Reynolds tensor, in order to show uncertainty propagations
caused by its lack of convergence.

In Fig. 7.1, you can see three columns of figures. The first column refers to the
velocity field calculated from the Reynolds tensor field provided by the Re = 3200

DNS database. This is calculated by the linear momentum average equation,

(〈v〉rec ·∇)〈v〉rec = −1

ρ
∇〈p〉rec + ν∇2〈v〉rec + ∇ ·RDNS. (7.1)

The result is the mean velocity field reconstructed by RDNS (〈v〉rec), Figs. (7.1(a)),
(7.1(d)) and (7.1(g)). The second one is the velocity field obtained from the tDNS ex-
tracted from the Re = 3200 DNS database by solving the modified linear momentum
average equation

(〈v〉rec2 ·∇)〈v〉rec2 + tDNS = ν∇2〈v〉rec2. (7.2)

The result of this equation is the mean velocity field reconstructed by tDNS (〈v〉rec2),
Figs. (7.1(b)), (7.1(e)) and (7.1(h)). The third column is the average velocity field
provided by the DNS database itself (〈v〉DNS), Figs. (7.1(c)), (7.1(f)) and (7.1(i)).

The uncertainties of the Reynolds stress tensor provided by the DNS database,
as expected, were propagated to the velocity field. In the main flow direction (x) the
error was higher than in the others. But the secondary flow was also affected. This
shows that even in the case of a perfect correction applied to the RANS Reynolds
stress tensor towards the direction of the DNS Reynolds stress tensor, as is done
in the literature, the velocity field obtained from this will be contaminated by the
uncertainties of the DNS database itself.

On the other hand, the velocity fields obtained by t are satisfactorily similar
to the DNS field, showing that if this entity is corrected in the RANS simulations
to approach DNS, the velocity field obtained from it will be very close to a DNS
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(a) vrec · êx.
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(b) vrec2 · êx.
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(c) vDNS · êx.
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(d) vrec · êy.

1.0 0.8 0.6 0.4 0.2 0.0
y

1.0

0.8

0.6

0.4

0.2

0.0

z

0.00490

0.00324

0.00159

0.00007

0.00172

0.00338

0.00503

0.00669

0.00834

0.01000

(e) vrec2 · êy.
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(f) vDNS · êy.
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(g) vrec · êz.
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(h) vrec2 · êz.
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(i) vDNS · êz.

Figure 7.1: Reconstructed velocity field by RDNS (vrec), by tDNS (vrec2) and the
velocity field given by DNS Re = 3200 database.

quality.

7.1 Correction using the Reynolds stress tensor as

the target

The architecture of the neural network was evaluated through a cross-validation
performed in ten different training, validation and test groups. After that, the
means of each of the coefficients of variation, the error metric that calculates the
percentage of the mean square error in relation to the expected average

vc = 100× rms

〈test〉
, (7.3)

of each of the six components predicted by the network. Each of the cross-validation
groups were composed by simulations numbered from 1 to 6 corresponding to the
Reynolds numbers of 2200, 2400, 2600, 2900, 3200 and 3500, respectively.

In the Tab. 7.1, we can see that the highest error was found in the forecast of
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the xx component of the Reynolds tensor, 4.06%. For the other components, the
errors were all less than 1%. This shows the ability of the network to correct this
turbulent tensor field.

Table 7.1: R cross-validation errors (variation coefficients described in Eq. 7.3) [%].

train val test êx ·R · êx êx ·R · êy êx ·R · êz êy ·R · êy êy ·R · êz êz ·R · êz
1-2-4-6 3 5 2.38 0.28 0.31 0.41 0.03 0.51
1-2-3-4 5 6 8.80 0.84 0.87 0.99 0.09 1.00
3-4-5-6 1 2 6.29 0.44 0.58 0.55 0.06 0.68
1-4-5-6 3 2 3.69 0.43 0.41 0.54 0.03 0.62
1-2-5-6 3 4 2.95 0.34 0.34 0.53 0.04 0.53
1-3-4-5 2 6 3.78 0.39 0.41 0.68 0.05 0.49
1-4-5-6 2 3 3.28 0.39 0.20 0.43 0.04 0.65
2-3-4-5 1 6 3.00 0.39 0.53 0.94 0.05 0.60
2-3-5-6 1 4 2.09 0.22 0.21 0.50 0.04 0.40
2-4-5-6 1 3 4.32 0.51 0.33 0.47 0.03 0.52
average 4.06 0.42 0.42 0.60 0.05 0.60

In this session it can be observed that the methodology based on the literature
was able to correct very efficiently the tensor field of the turbulent stresses. From the
Fig. 7.2 to the Fig. 7.13, it is possible to observe that all the tensorial components
were well corrected by the neural network.

57



1.0 0.8 0.6 0.4 0.2 0.0
y

1.0

0.8

0.6

0.4

0.2

0.0

z

0.000000

0.000828

0.001655

0.002483

0.003310

0.004138

0.004966

0.005793

0.006621

0.007448

(a) êx ·R · êx RANS.

1.0 0.8 0.6 0.4 0.2 0.0
y

1.0

0.8

0.6

0.4

0.2

0.0

z

0.000000

0.000828

0.001655

0.002483

0.003310

0.004138

0.004966

0.005793

0.006621

0.007448

(b) êx ·R · êx DNS.
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(c) êx ·R · êx corrected.

Figure 7.2: êx ·R · êx.
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(a) z = −0.95.
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(b) z = −0.65.
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(c) z = −0.35.
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(d) z = −0.05.

Figure 7.3: êx ·R · êx component samples.
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(a) êx ·R · êy RANS.
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(b) êx ·R · êy DNS.
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(c) êx ·R · êy corrected.

Figure 7.4: êx ·R · êy.
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(a) z = −0.95.
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(b) z = −0.65.
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(d) z = −0.05.

Figure 7.5: êx ·R · êy component samples.
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(a) êx ·R · êz RANS.
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(b) êx ·R · êz DNS.
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(c) êx ·R · êz corrected.

Figure 7.6: êx ·R · êz.
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(c) z = −0.35.
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(d) z = −0.05.

Figure 7.7: êx ·R · êz component samples.
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(a) êy ·R · êy RANS.
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(b) êy ·R · êy DNS.
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(c) êy ·R · êy corrected.

Figure 7.8: êy ·R · êy.
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(a) z = −0.95.
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(b) z = −0.65.
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(c) z = −0.35.
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(d) z = −0.05.

Figure 7.9: êy ·R · êy component samples.
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(a) êy ·R · êz RANS.
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(b) êy ·R · êz DNS.
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(c) êy ·R · êz corrected.

Figure 7.10: êy ·R · êz.
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(b) z = −0.65.
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(d) z = −0.05.

Figure 7.11: êy ·R · êz component samples.
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(a) êz ·R · êz RANS.
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(b) êz ·R · êz DNS.
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(c) êz ·R · êz corrected.

Figure 7.12: êz ·R · êz.
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(a) z = −0.95.
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(b) z = −0.65.
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(c) z = −0.35.
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(d) z = −0.05.

Figure 7.13: êz ·R · êz component samples.
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7.2 Correction using the t vector as a target

Comparing to the correction of the Reynolds tensor field, the errors obtained by the
proposed technique reach higher percentage values. As occurred in the correction
of R, the largest error is associated with the main direction of the flow, 16.19%. In
the secondary directions, the error was of the order of 2%, Tab. 7.2.

Table 7.2: t cross-validation errors (variation coefficients described in Eq. 7.3) [%].

train val test t · êx t · êy t · êz
1-2-4-6 3 5 13.15 1.37 1.14
1-2-3-4 5 6 26.39 3.02 3.65
3-4-5-6 1 2 13.24 1.11 1.57
1-4-5-6 3 2 13.76 1.04 1.09
1-2-5-6 3 4 11.85 1.01 1.54
1-3-4-5 2 6 20.46 2.44 2.39
1-4-5-6 2 3 15.39 0.98 1.09
2-3-4-5 1 6 18.56 2.57 2.43
2-3-5-6 1 4 11.02 1.10 0.97
2-4-5-6 1 3 18.05 2.01 4.06
average 16.19 1.66 1.99

The field is well corrected in the main direction of the flow, as can be seen in
Figs. (7.14), (7.15),

In the y direction, the field is also well corrected. Rebuilding the existing struc-
tures near the bottom solid wall from a null RANS field, Fig. (7.16).

However, in the Fig. (7.17) it is observed that the NN generates a result as it
moves away from the solid wall, towards the center of the flow.

Due to the symmetry of the flow, a behavior similar to that observed in y is
seen in the z-direction. The field is reconstructed from a null RANS field, and the
correction worsens in regions far from the wall, Figs. (7.18) and (7.19).
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(a) t · êx RANS.
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(b) t · êx DNS.
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(c) t · êx corrected.

Figure 7.14: t · êx.
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Figure 7.15: t · êx component samples.
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(b) t · êy DNS.
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(c) t · êy corrected.

Figure 7.16: t · êy component.
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Figure 7.17: t · êy component samples.
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(c) t · êz corrected.

Figure 7.18: t · êz component.
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Figure 7.19: t · êz component samples.
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7.3 Velocity and pressure corrections

The correction of the velocity field in the main direction is more accurate when
correcting the field t than when correcting the field R, as can be seen in Figs. (7.20)
and (7.21). This is due to the uncertainties propagated from the DNS database
itself, as already mentioned.
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(a) Ux RANS.
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(b) Ux DNS.
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(c) Ux corrected by t.
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(d) Ux corrected by R.

Figure 7.20: Ux component.

Both techniques reconstruct the structures observed in the DNS field, from a null
RANS field, as shown in Fig. (7.22), in the y-direction. However, the R correction
is closer to DNS in the entire domain, as shown in Fig. (7.23). The same is seen in
the z-direction, as can be seen in Figs. (7.24) and (7.25).

The secondary flow is plotted in Fig. (7.26), both techniques reconstruct the
recirculation cells that are not seen in the RANS result, but the correction via R is
closer to the DNS result, as has already been said.
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Figure 7.21: Ux component samples.
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(b) Uy DNS.
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(c) Uy corrected by t.
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(d) Uy corrected by R.

Figure 7.22: Uy component.
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Figure 7.23: Uy component samples.
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(a) Uz RANS.
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(b) Uz DNS.

1.0 0.8 0.6 0.4 0.2 0.0
y

1.0

0.8

0.6

0.4

0.2

0.0

z

0.00979

0.00648

0.00317

0.00014

0.00345

0.00676

0.01007

0.01338

0.01669

0.02000

(c) Uz corrected by t.
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(d) Uz corrected by R.

Figure 7.24: Uz component.
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Figure 7.25: Uz component samples.
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(c) Corrected by t.
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(d) Corrected by R.

Figure 7.26: Secondary flow magnitude contour levels (
√
U2
y + U2

z ), and stream lines.

71



Both techniques have well corrected the pressure gradient that feeds the flow,
Fig. (7.27).
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ρ
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.
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Chapter 8

Conclusions

It is concluded that, in fact, it is problematic to target the Reynolds stress tensor
field provided by DNS databases because they have uncertainties associated with
poor convergence of the second order statistics they provide. Such uncertainties will
then always be propagated to the average velocity field, no matter how well designed
the neural networks.

The main direction flow component is very well corrected by t, but the same
does not occur with the correction by R. This is due to the propagation of the
uncertainties mentioned above.

The secondary flow that is not captured by the RANS model, is recovered by
both techniques. However, the R-correction arrives closer to the DNS result than
via t.

The pressure gradient that feeds the flow is corrected by both techniques.
The non-persistence-of-straining tensor (P) was successful as input of the neural

network that corrects R and t. Showing its your application is promising.
In general, the proposed methodology surpasses the methodology available in

the literature, because its primary flow correction is much better, and the secondary
flow and pressure gradient corrections were similar to the results obtained in the
literature based methodology. That shows the potential of machine learning in
improving the turbulent flows simulations.
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Chapter 9

Future works

The next step of the research is to add more flow patterns to evaluate the abstraction
power of the neural network.

When the divergence of the Reynolds stress tensor was chosen to be corrected
instead of the tensor itself, the problem of the the DNS databases uncertainties was
solved. But, at the same time, the universality of the learning capability decreased,
because the tensorial entity is more general than its divergence. In order to in-
crease the universality of the machine learning correction, a new methodology will
be proposed to correct the Helmholtz decomposition of the ∇ ·R field,

∇ ·R = ∇φ+ ∇×ψ.

The potential fields φ and ψ obtained from the decomposition will be corrected.
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