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AVALIAÇÃO NUMÉRICA DO EFEITO DA SUPERFÍCIE LIVRE NA

HIDRODINÂMICA E DINÂMICA DE VEÍCULOS SUBMARINOS

Mojtaba Maali Amiri

Outubro/2018

Orientadores: Sergio Hamilton Sphaier

Paulo de Tarso Themistocles Esperança

Marcelo de Araujo Vitola

Programa: Engenharia Oceânica

A presente tese tem como objetivo avaliar o efeito da superf́ıcie livre na

hidrodinâmica e dinâmica de um véıculo submarino (UV) genérico no plano hor-

izontal. Portanto, os testes cativos, incluindo os testes de reboque e de braço rota-

tivo, são realizados num modelo UV usando as simulações numéricas baseadas nas

equações de URANS com um modelo de turbulência de Reynolds implementados

no código comercial STARCCM+. Estes testes são realizados nas várias profun-

didades de submersão e faixas apropriadas das velocidades. Para fins de avaliação

de manobrabilidade, as forças e os momentos obtidos a partir das simulações dos

testes cativos são implementados nas equações de movimento nas várias profundi-

dades. Adicionalmente, as equações anaĺıticas são usadas para calcular as forças e

os momentos que surgem das acelerações, impulso e leme, os quais são assumidos

constantes em relação à profundidade. Os resultados obtidos mostram que, geral-

mente, uma diminuição na profundidade provoca um aumento em todas as forças

geradas pelas velocidades. Os resultados ainda mostram que aproximar a superf́ıcie

livre tem um efeito insignificante na força lateral e no momento de yaw ambos ger-

ados pelas regiões de proa e popa. Além disso, observa-se que, com a diminuição da

profundidade, a região entre o meio do UV e o ombro de ré é o principal responsável

pelo aumento ou diminuição da força lateral e do momento de yaw atuantes sobre o

casco do UV. Observa-se também que, com um decréscimo na profundidade, devido

a um aumento nas caracteŕısticas de amortecimento do UV, a estabilidade dinâmica

aumenta consideravelmente, o que leva a uma diminuição da manobrabilidade do

UV.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

NUMERICAL EVALUATION OF THE FREE SURFACE EFFECT ON THE

HYDRODYNAMICS AND DYNAMICS OF UNDERWATER VEHICLES

Mojtaba Maali Amiri

October/2018

Advisors: Sergio Hamilton Sphaier

Paulo de Tarso Themistocles Esperança

Marcelo de Araujo Vitola

Department: Ocean Engineering

The present thesis seeks to evaluate the free surface effect on the hydrodynam-

ics and dynamics of a generic underwater vehicle (UV) in the horizontal plane.

Accordingly, the captive tests, including the straight-ahead resistance, drift and ro-

tating arm tests, are performed on the bare hull of a UV model by using numerical

simulations based on URANS equations with a Reynolds stress turbulence model

implemented in the commercial code STARCCM+. These tests are carried out for

various submergence depths and proper ranges of UV velocity components. For the

purpose of maneuverability assessment, the forces and moments arising from the

velocity components obtained from the simulations of the captive tests are imple-

mented in the equations of motion for various submergence depths. Additionally,

analytical equations are used to calculate the forces and moments arising from the

UV accelerations, thrust and rudder, which all are assumed to remain constant with

respect to submergence depth. The obtained results show that, generally, a decrease

in submergence depth causes an increase in all the forces arising from the velocity

components. The results further show that approaching the free surface has a neg-

ligible effect on the lateral force and yaw moment generated by the bow and stern

regions. Moreover, it is seen that with a decrease in submergence depth, the region

between the UV midlength and the aft shoulder is mainly responsible for the in-

crease or decrease in the lateral force and yaw moment acting on the UV hull. It

is also observed that, with a decrease in submergence depth, due to an increase in

the UV damping characteristics, the dynamic stability increases remarkably, which

leads to a decrease in the UV maneuverability.
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Chapter 1

Introduction

1.1 General problem of operations of underwater

vehicles in littoral and near surface environ-

ments

Menuvering simulations of underwater vehicles (UVs) in six degrees of freedom

are usually performed by using the standard equations of motion proposed by

GERTLER e HAGEN [1]. In this mathematical model, which is considered as the

first official dynamic model to perform the maneuverability tests of the UVs, the

hydrodynamic forces and moments acting on the UV hull constitute the heart of the

model. These forces and moments are classified into two general categories: forces

and moments arising from the UV velocities and forces and moments generated by

the UV accelerations [1]. In this regard, relevant hydrodynamic captive tests are

performed to obtain these hydrodynamic forces and moments in terms of the UV

velocity and acceleration components [1–3]. Additionally, this mathematical model

is primarily developed under the key assumption that the UVs operate in an infinite

domain far from the free surface and the seabed.

To improve the maneuverability predictions of the UVs, the model proposed by

GERTLER e HAGEN [1] has been followed by a series of modifications to account

for several effects, such as the effect of the interaction between the sail trailing vortex

and the hull [4], the effect of the slipstream of propeller on the control surfaces [5]

and recently the effect of the presence of the calm water free surface [6], which all

are neglected in the original model.

In this respect, due to a significant increase in the strategic requirement for UVs

to operate in the littoral and near surface environments, the evaluation of the free

surface effect on the hydrodynamics and dynamics of the shallowly submerged UVs

has stimulated extensive studies in hydrodynamics [6–19]. The need to operate in
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the littoral and near surface environments increases even more for autonomous un-

derwater vehicles (AUVs) as they have increasingly found many ocean applications

such as ocean surveillance and measurements, exploration and exploitation of sea

minerals, environmental monitoring and protection and sea exploration of hydrocar-

bons [10, 13].

An immediate consequence of a UV traversing close to the calm water free surface

is the creation of surface gravity waves that are stationary with respect to the body.

The generation of this gravity wave system is attributed to the interaction between

the dynamic pressure distribution around the UV hull and the nearby non-rigid

free surface. This wave system is composed of several wave systems created at

points along the body and is a function of several factors, such as the UV overall

length, body form and advance velocity [20]. In this regard, Figure 1.1 shows the

wave system generated by a generic axisymmetric UV hull traveling along a straight

path with a constant advance velocity corresponding to a Froude number equal to

Fn = 0.512 at a submergence depth of h = 1.1D (D: UV maximum diameter) in

a deep-water scenario. As can be seen in this figure, for a UV traveling along a

straight path with a constant advance velocity beneath the free surface in a deep-

water scenario the generated wave system has a form similar to the classical Kelvin

wave pattern.

Figure 1.1: Wave system generated by a generic axisymmetric UV hull traveling
along a straight path with a constant advance velocity corresponding to a Froude
number equal to Fn = 0.512 at a submergence depth of h = 1.1D (D: UV maximum
diameter) in a deep-water scenario (This figure was generated from the simulations
conducted in this work)

As is well known from NEWMAN [21], the energy required for the creation of

this surface wave system leads to an increase in the hydrodynamic forces generated

by the velocity components on a shallowly submerged UV. Likewise, as shown by

MAALI AMIRI et al. [19], the increase in the forces arising from the velocity com-

ponents with a decrease in submergence depth can also be explained through the
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effect of the free surface deformations on the dynamic pressure distribution along

the length of the UV hull. In this regard, as demonstrated by MAALI AMIRI et al.

[19], the crests and troughs of the self-induced wave system of a shallowly submerged

UV modify the dynamic pressure distribution around the UV hull by creating local

regions of high and low dynamic pressure, respectively, along the body length. In

this regard, Figure 1.2 shows the dynamic pressure distribution around a generic ax-

isymmetric UV hull traveling along a straight path with a constant advance velocity

corresponding to a Froude number equal to Fn = 0.294 over two different submer-

gence depths h = 1.1D (shallowly submerged) and h =∞ (totally submerged) (D:

UV maximum diameter). As can be inferred from this figure, the crests and troughs

of the generated wave system through creating local regions of high and low dy-

namic pressure along the length of the UV introduce modification into the dynamic

pressure distribution around the UV hull.

(a) h =∞ (totally submerged)

(b) h = 1.1D (shallowly submerged)

Figure 1.2: Dynamic pressure distribution around a generic axisymmetric UV hull
traveling along a straight path with a constant advance velocity corresponding to a
Froude number equal to Fn = 0.294 over two different submergence depths h = 1.1D
(shallowly submerged) and h =∞ (totally submerged) (D: UV maximum diameter)
(This figure was generated from the simulations conducted in this work)

Therefore, it can be inferred that a crucial effect of the wave system generated by

a shallowly submerged UV is the modification that it introduces into the dynamic

pressure distribution around the submerged body. The degree of modification intro-

duced into the dynamic pressure distribution around the UV hull by the free surface

deformations depends on submergence depth. The less the submergence depth the
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more will be the free surface deformations, which consequently increases the free

surface effect on the dynamic pressure distribution, MAALI AMIRI et al. [19].

Thus, from a theoretical point of view, all of the external forces and moments

acting on a UV traveling beneath the free surface are subject to change as a result of

approaching the free surface. Furthermore, as shown in Figure 1.2, the modification

of the dynamic pressure distribution across the depth of the UV hull gives rise to

the generation of the forces and moments in the vertical plane [6, 7, 10–19].

1.1.1 Scope of the present thesis

As can be inferred from the previous section, the calm water free surface effect on

a shallowly submerged UV hydrodynamics, maneuverability and operations can be

significant. Consequently, a well-founded understanding of the hydrodynamics and

dynamics of a shallowly submerged UV traveling in a close proximity to the free

surface is required to enable the prediction of the UV maneuverability with the

presence of the free surface. A good knowledge of the free surface effect on the

maneuverability is extremely useful especially in case of the AUVs in which this

knowledge can be effectively employed to fine-tune the motion controllers before

missions in littoral and near surface environments.

In the previous studies, the evaluation of the free surface effect on the dynamics

and hydrodynamics of a UV traveling close to the free surface has been restricted

mainly to the interaction between a UV traveling along a straight path with a con-

stant advance velocity and the free surface with little attention paid to the hydro-

dynamics and dynamics of a shallowly submerged UV in other degrees of freedom,

especially in the horizontal plane [6–19]. Additionally, very little attempt has been

made toward the maneuverability evaluation of the UVs with the presence of the

free surface.

Accordingly, the present thesis seeks to evaluate the free surface effect on the

hydrodynamics and dynamics of a shallowly submerged generic UV traveling close

to the free surface in the horizontal plane. In other words, this study investigates the

horizontal planar motion of a shallowly submerged UV traveling in a close proximity

to the free surface.

However, for the sake of simplicity, in the present thesis, the free surface effect

is merely investigated on the hydrodynamic forces and moments produced by the

UV velocity components. Accordingly, the hydrodynamic captive tests, including

the straight-ahead resistance tests, drift tests and rotating arm tests, are performed

over various submergence depths and proper ranges of axial, lateral and angular yaw

velocity components.

The hydrodynamic captive tests are usually performed by model experiments in a
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towing tank. Nevertheless, a towing carriage equipped with the essential mechanism

to conduct such experiments along with proper transducers to measure the global

variables can be prohibitively expensive. Aside from the expenses, the main difficulty

is encountered in case of a UV traveling close to the free surface. In this respect,

the utilization of the support to suspend the model to the towing carriage during

the experiments, besides from affecting the pressure distribution around the body,

causes the generation of a wave system that interferes with the UV wave system and

may introduce additional modifications into the local and global variables acting on

the UV hull [22]. Furthermore, to investigate more closely the true role of the

free surface in the hydrodynamics and dynamics of a shallowly submerged UV, the

measurement of the local variables such as the local dynamic pressure and skin

friction along with the fluid flow characteristics are necessary, which requires a new

series of experiments to be conducted in wind tunnels or water tunnels, using hot-

film sensors, PIV, smoke flow visualizations and pressure tabs [23–25].

Hence, in the present research to avoid high costs of model experiment and

the intrusive nature of experimental measurements, a numerical method based on

unsteady Reynolds-averaged Navier-Stokes (URANS) equations coupled with a tur-

bulence model is used to perform the captive tests over various submergence depths

and proper ranges of UV axial, lateral and angular yaw velocity components. Re-

garding the detailed information of the local and global variables that the numerical

simulations provide, which indeed is difficult to obtain from experiment, the usual

CPU time requirement in numerical simulations appears reasonable. For instance,

in this study, a desktop PC, which has a 64 bit Intel Processor i7-3770@ 3.40 GHz

with 16 GB of RAM, is used and each simulation takes a maximum physical time

about 70 h to complete.

1.1.2 Literature review

The literature review of the works performed to evaluate the hydrodynamics and dy-

namics of the shallowly submerged UVs traveling close to the free surface presented

in this section is divided into three main categories: studies conducted to evaluate

the free surface effect on the hydrodynamics of axisymmetric UVs moving with a

constant advance velocity beneath the free surface at zero incidence with respect

to the incoming flow, studies conducted to evaluate the free surface effect on the

hydrodynamics of UVs moving with a constant advance velocity beneath the free

surface at nonzero incidence and studies conducted to evaluate the maneuverability

of the shallowly submerged UVs with the presence of the free surface.
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Studies on the shallowly submerged UVs at zero incidence

The free surface effect on the hydrodynamics of the shallowly submerged UVs moving

with a constant advance velocity at zero incidence beneath the free suface has long

been the subject of numerous studies. The earlier studies on this subject have been

conducted by using the solvers based on potential flow theories, such as the ones con-

ducted by HAVELOCK [26], HAVELOCK [27], HAVELOCK [28], WIGLEY [29],

DOCTORS e BECK [30] and CROOK [31]. In this regard, Havelock calculates the

resistance component due to the generated-wave system (wave-making resistance

component) of a shallowly submerged sphere [26], oblate and prolate spheroid [27]

and ellipsoid [28] and demonstrates that this component has an oscillatory behav-

ior with respect to Froude number and reduces exponentially with an increase in

submergence depth. In this regard, based on NEWMAN [21], the advent of the

wave-making resistance component can be attributed to the energy required for the

generation of the surface wave system as the submerged body approaches the free

surface. Additionally, it is further shown by WIGLEY [29], DOCTORS e BECK [30]

and CROOK [31] that a slender axisymmetric body traveling along a straight path

with a constant advance velocity at zero incidence close to the free surface, besides

the wave-making resistance component, experiences a vertical lift force and pitch

moment, which all vary in an oscillatory manner with respect to Froude number.

The potential solvers have also been used recently in several studies, such as

BELIBASSAKIS et al. [32], GOURLAY e DAWSON [33] and ARZHANNIKOV e

KOTELNIKOV [34] to evaluate the free surface effect on the hydrodynamics of the

shallowly submerged axisymmetric UVs traveling with a constant advance velocity

at zero incidence along a straight path beneath the free surface. The obtained results

from these studies show the same trends for the wave-making resistance component,

lift force and pitch moment as those obtained by HAVELOCK [26], HAVELOCK

[27], HAVELOCK [28], WIGLEY [29], DOCTORS e BECK [30] and CROOK [31].

Additionally, DAWSON [10] conducted an experimental investigation and nu-

merical examination (based on potential flow) into the influence of submergence

depth, Froude number and length-to-diameter ratio on the interaction between an

axisymmetric generic UV and the free surface. The results show that the resistance

force, lift force and pitch moment all vary periodically with respect to Froude number

and are directly influenced by the wavelength of the free surface wave field generated

by the submerged body. It is further demonstrated that the free surface effect is

negligible beyond the depth to diameter ratio of three and completely disappears at

depth to diameter ratios larger than five.

Recently, the rapid advance in the computers enables the utilization of more

sophisticated solvers that account for the viscosity effects in the evaluation of the
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free surface effect on the hydrodynamics of a shallowly submerged axisymmetric

body traveling at a constant advance velocity at zero incidence close to the free

surface. For instance, WILSON-HAFFENDEN et al. [35] MANSOORZADEH e

JAVANMARD [12], NEMATOLLAHI et al. [13], SALARI e RAVA [14], SHARIATI

e MOUSAVIZADEGAN [18] and MAALI AMIRI et al. [19] evaluate the free surface

effect on the hydrodynamics of shallowly submerged UVs over various submergence

depths and Froude numbers by using a solver based on URANS equations coupled

with a turbulence model.

In this regard, WILSON-HAFFENDEN et al. [35] uses numerical simulations

based on URANS equations with k−ω SST turbulence model together with exper-

imental methods to evaluate the free surface effect on the behavior of the resistance

force exerted on a generic axisymmetric UV hull over various submergence depths

and Froude numbers. It is shown that the URANS solvers coupled with turbulence

models are able to predict the hydrodynamic behavior of a shallowly submerged UV

to an acceptable level. It is further demonstrated that at small Froude numbers, the

free surface effect on the resistance force is negligible beyond the depth to diameter

ratio of two.

Additionally, MANSOORZADEH e JAVANMARD [12] by using URANS equa-

tions coupled with k−ε turbulence model along with experimental approaches show

that both the drag and lift coefficients of a shallowly submerged UV are functions

of both Froude number and submergence depth. Also, NEMATOLLAHI et al. [13]

by using the same method as that used by MANSOORZADEH e JAVANMARD

[12] demonstrate that the reduction in submergence depth of an axisymmetric UV

results in an increase in drag coefficient, and additionally the influence of the free

surface at each submergence depth is intensified with respect to Reynolds number.

Furthermore, SALARI e RAVA [14] by using URANS equations with k − ω SST

turbulence model, the same as the other researchers, demonstrate that a UV close

to the free surface experiences a larger drag force along with a lift force and a pitch

moment.

Moreover, SHARIATI e MOUSAVIZADEGAN [18] investigate the effect of differ-

ent appendages on the hydrodynamics of a shallowly submerged generic UV traveling

close to the free surface. This investigation is carried out by performing numerical

simulations based on URANS equations coupled with k − ε turbulence model over

various submergence depths and Froude numbers. SHARIATI e MOUSAVIZADE-

GAN [18] show that the presence of the appendages has negligible effect on the UV-

generated wave system and consequently contributes slightly to the wave-making

resistance component. It is further demonstrated that the presence of appendages

causes an average increase of about 16% in the total resistance force, which is at-

tributed to the viscosity effects and the hull-appendages interaction.
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Finally, MAALI AMIRI et al. [19] employ a solver based on URANS equations

coupled with a Reynolds stress turbulence model to determine that, in case of the

shallowly submerged axisymmetric UVs, whether the interaction between the bow

and aft shoulder waves or the interaction between the bow and stern waves has

the dominant effect on the hydrodynamic behavior of a shallowly submerged UV.

The analysis of the obtained results demonstrates that the interaction between the

bow and aft shoulder waves has a dominant effect on the behavior of the resistance

force, lift force and pitch moment. This is due mainly to the closer proximity of

the aft shoulder to the free surface, which consequently contributes more to the

UV-generated wave system, compared to the stern.

Studies on the shallowly submerged UVs at nonzero incidence

As can be expected, because of the limitations of the potential solvers, they are

likely unable to evaluate accurately the interaction between the free surface and a

yawed/trimmed UV, due to the vortical structure formed on the leeward side of the

body at incidence. Therefore, their use to evaluate the hydrodynamics of shallowly

submerged UVs moving with a constant advance velocity at nonzero incidence be-

neath the free suface is limited to only one study, which is carried out by GRIFFIN

[7]. In this study, a hybrid method (a combination of URANS coupled with the

isotropic two-equation turbulence model k − ω and potential flow solver) is used to

predict the hydrodynamics of two generic axisymmetric UV geometries operating

near the free surface. The URANS code calculates the flow field immediately sur-

rounding the bodies and the potential solver calculates the fluid flow in the far field,

including the free surface. In this research, the forces and moment in the vertical

plane are calculated at trim angles in a range of −2◦ 6 θ 6 2◦ over various submer-

gence depths and Froude numbers. It is shown that the forces and moments vary in

a nonlinear fashion with a change in submergence depth and Froude number.

Moreover, BROGLIA et al. [15] use URANS equations coupled with the one-

equation turbulence model of Spalart and Allmaras to investigate the interaction

between the free surface and a fully-appended generic UV. The simulations are

performed at one nominal Froude number for drift and trim angles in a range of

0◦ 6 β 6 4◦ and −5◦ 6 θ 6 5◦, respectively, over various submergence depths. The

obtained results show that although the presence of the free surface causes a signifi-

cant increase in the forces and moment in the vertical plane, its presence appears to

have a negligible influence on the lateral force and moment in the horizontal plane.

Finally, JAGADEESH e MURALI [11] investigate the free surface effect on the

drag, lift and pitch moment coefficients of an axisymmetric UV at different Froude

numbers for trim angles in a range of −15◦ 6 θ 6 15◦, using numerical simulations

based on URANS equations coupled with various isotropic two-equation based tur-
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bulence models. It is shown that a reduction in submergence depth results in an

increase in the wave-making resistance and thus increases the total drag, lift and

pitch moment coefficients. It is further demonstrated that the free surface effect is

negligible beyond the depth to diameter ratio of two.

Based on the studies presented above, it can be concluded that, contrary to

the UVs at zero incidence, few investigations have been carried out to evaluate the

free surface effect on the hydrodynamics of a shallowly submerged UV at nonzero

incidence, especially in the horizontal plane. Additionally, there is little research

in the literature that addresses the free surface effect on the hydrodynamics of a

shallowly submerged UV undergoing a rotational motion close to the free surface.

Accordingly, all these topics are covered in the present thesis.

Studies on the maneuverability of the shallowly submerged UVs

Very little attempt has been made toward the maneuverability evaluation of the

UVs with the presence of the free surface.

In this regard, the study conducted by SAOUT e ANANTHAKRISHNAN [8]

is among the few works to evaluate the dynamic stability of a UV traveling in the

horizontal plane both at infinite depth and close to the free surface at a submergence

depth equal to h = 1.5D (D: UV maximum diameter). In this study, the sway and

yaw hydrodynamic coefficients arising from the velocity and acceleration components

are calculated by conducting the corresponding planar motion mechanism (PMM)

tests using a potential solver. Thus, the viscosity effects are neglected. The results

indicate that the presence of the free surface increases the dynamic stability of UVs

in the horizontal plane due to an increase in the forces and moments generated by

the velocity components.

Moreover, CARRICA et al. [16] perform the free running self-propulsion experi-

ments and simulations of a generic UV operating over various submergence depths.

The simulations are carried out by using URANS equations coupled with k− ε and

k − ω turbulence models. The obtained results show that CFD is generally able to

predict the behavior of a UV traversing beneath the free surface. Additionally, the

numerical and experimental results of the free running self-propulsion tests near the

free surface demonstrate the presence of a strong upward lift force acting on the UV

aft part, which produces a bow-down moment over the hull.

Additionally, DUBBIOSO et al. [17] perform the free-running turning maneuvers

of a generic UV in the horizontal plane by using URANS equations with one-equation

turbulence model of Spalart and Allmaras both at infinite depth and close to the

free surface. The simulations are performed at one nominal Froude number and

submergence depths of h =∞, 1.75D (D:UV maximum diameter) for various rudder

deflections. The obtained results demonstrate that, for the depths considered, the
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presence of the free surface has negligible effect on the turning maneuver of a UV.

Finally, POLIS et al. [6] make an initial attempt to add some new terms to the

equations of motion of UVs in the vertical plane to account for the free surface

effects during the maneuvering simulations. In this regard, after calculation of the

resistance force, lift force, and pitch moment acting on a generic UV at zero in-

cidence over various submergence depths and Froude numbers by using numerical

simulations based on URANS with k − ω SST turbulence model, POLIS et al. [6]

propose a nonlinear function to represent these forces and moment in the maneu-

vering equations. This nonlinear function, which is defined over small ranges of

Froude numbers, uses a cubic polynomial fit to capture the variations with respect

to Froude number together with an exponential fit to capture the variations with

respect to submergence depth.

However, POLIS et al. [6] present no results related to the maneuvering sim-

ulations using this new approach. Additionally, as the resistance force, lift force,

and pitch moment acting on a shallowly submerged UV at zero incidence have an

oscillatory behavior with respect to Froude number (as opposed to the resistance

force acting on the totally submerged UV at zero incidence, which has a quadratic

behavior with respect to Froude number,) and undergo an exponential reduction

with an increase in submergence depth, the method proposed by POLIS et al. [6] is

not practical. Moreover, using this approach increases notably the regression prob-

lem with considerable identification effort, which increases even the possibility of

occurrence of error in the parameter identification process. Indeed, the forces and

moments arising from the axial velocity acting on a shallowly submerged UV can

be suitably stored in a tabular form over various submergence depths, and then a

proper interpolation method can be used to express these terms in the maneuvering

equations, SUTULO e GUEDES SOARES [36].

It is clear from the literature presented above that very little attempt has been

made toward the dynamic stability and maneuverability evaluation of the UVs with

the presence of the free surface. However, a good knowledge of the free surface effect

on the maneuverability is extremely useful especially in case of the AUVs in which

this knowledge can be effectively employed to fine-tune the motion controllers before

mission. Thus, this topic constitutes the main focus of the present thesis.

1.2 Objectives of the present thesis

The main objective of the present thesis is to evaluate the free surface effect on the

hydrodynamics and dynamics of a shallowly submerged generic UV traveling close

to the free surface in the horizontal plane.

Accordingly, the hydrodynamic captive tests, including the straight-ahead resis-
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tance tests, drift tests and rotating arm tests, are performed on the bare hull of a

generic UV model by using numerical simulations based on URANS equations with

a Reynolds stress turbulence model. These tests are carried out over various sub-

mergence depths and proper ranges of UV surge, sway and yaw velocity components.

The numerical simulations are conducted in the commercial code STARCCM+ [37],

which solves the integral forms of the URANS and continuity equations over unstruc-

tured grids by using the finite volume method [38]. Additionally, for the purpose of

free surface modeling the VOF method [37, 39] is used.

Herein, in order for dynamic stability evaluation of the UV in the horizontal

plane over various submergence depths, the forces and moments obtained from the

simulations of the drift and rotating arm tests are used to calculate the linear hy-

drodynamic coefficients over various submergence depths by using the linear least

squares method.

Furthermore, the maneuverability evaluation for various submergence depths is

performed by using the standard equations of motion proposed by GERTLER e HA-

GEN [1]. For this purpose, the forces and moments obtained from the simulations

of the straight-ahead resistance, drift and rotating arm tests over various submer-

gence depths are implemented in this model. In this regard, as the hydrodynamic

axial force acting on a shallowly submerged UV close to the free surface obtained

from the straight-ahead resistance tests has an oscillatory behavior with respect to

the axial velocity component (as opposed to the axial force acting on the totally

submerged one, which has a quadratic behavior), this force component is stored in a

one-dimensional tabular form over various submergence depths, and a cubic interpo-

lation is used to express this component in the maneuvering equations. Apart from

the axial force arising from the axial velocity component, the rest of the hydrody-

namic forces and moments obtained from the captive tests are implemented in the

maneuvering equations by fitting them to odd/even quadratic polynomial functions

in terms of the UV velocity components. Additionally, analytical equations are used

to calculate the forces and moments due to the UV accelerations, thrust and rudder,

which all are assumed to remain constant with respect to submergence depth.

In this work, a 1/1-scale of the bare hull axisymmetric SUBOFF geometry with

principal dimensions presented by GROVES et al. [40] is used as the generic UV to

fulfill the main objective of this thesis. This UV model was developed by David Tay-

lor Research Center (DTRC) to compare the numerical prediction of hydrodynamics

of an axisymmetric hull with experimental data. Various experiments were planned

and conducted for the model, such as ETEBARI et al. [41], WILSON-HAFFENDEN

et al. [35], LIU e HUANG [42], RODDY [43] and HUANG e LIU [44]. The data ob-

tained from these experiments are used for the purpose of validation of the numerical

hydrodynamic captive tests performed in the present study.
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1.2.1 Thesis organization

The present thesis is divided into the following chapters:

• Chapter 2 presents a brief description of the equations of motion of UVs for

various submergence depths and the methodology to obtain the external forces

and moments acting on the UVs. Furthermore, the procedure to solve the

equations of motion together with a brief description of the standard maneu-

vers are presented. This chapter also presents the numerical methodology,

including the numerical model, geometry, computational conditions, compu-

tational domains, boundary conditions and grid structures, used in this thesis.

• Chapter 3 deals with the verification and validation of the numerical model

used in this thesis to perform the hydrodynamic tests. In this chapter, the ver-

ification process encompasses a grid convergence study together with the eval-

uation of the support effect used in the experiments conducted by WILSON-

HAFFENDEN et al. [35] on the forces and moments exerted on the SUBOFF

UV. Furthermore, the validation includes the comparison of the calculated

forces and moments against the measured ones provided by ETEBARI et al.

[41], WILSON-HAFFENDEN et al. [35], LIU e HUANG [42], RODDY [43]

and HUANG e LIU [44].

• Chapter 4 presents the results regarding the hydrodynamic forces and moments

generated by the velocity components on the UV obtained from the numerical

simulations, together with the hydrodynamic coefficients over various submer-

gence depths. Additionally, this chapter provides a detailed analysis of the free

surface effect on the hydrodynamics of the SUBOFF axisymmetric UV under-

going steady motions in the horizontal plane. This chapter further presents

the results of the dynamic stability of the SUBOFF UV in the horizontal plane

along with the maneuvering simulations of the UV for various submergence

depths.

• Finally, Chapter 5 summarizes the main conclusions, findings and suggestions

for future works and a list of accepted/submitted publications derived from

the current thesis is presented in Appendix D.
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Chapter 2

Methodology

This chapter presents a brief description of the equations of motion of UVs for

various submergence depths and the methodology to obtain the external forces and

moments acting on the UVs in the horizontal plane. Furthermore, the procedure

to solve the equations of motion together with a brief description of the standard

maneuvers are presented. This chapter also presents the numerical methodology,

including the numerical model, geometry, computational conditions, computational

domains, boundary conditions and grid structures, used in this thesis.

2.1 Dynamics of underwater vehicles

The body-fixed sx0y0z0 and earth-fixed oxyz coordinate systems that are used in

this study to analyze the dynamics of the UVs are shown in Figure 2.1. Origin

o of the earth-fixed coordinate system coincides with the calm water free surface

level and positive z-axis points downward. Additionally, origin s of the body-fixed

frame is located at the axial location of 0.462L from the nose with positive x0-axis

points toward the bow and y0-axis points positively toward the starboard. Herein,

L denotes the UV overall length.
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Figure 2.1: Body-fixed sx0y0z0 and earth-fixed oxyz coordinate systems used to
express the dynamics of the UVs

The position and orientation vectors of the UV relative to the earth-fixed refer-

ence frame are expressed as η1 = [x, y, z] and η2 = [φ, θ, ψ], respectively (Figure 2.1)

[45, 46]. The orientations about x-axis, y-axis and z-axis are expressed using Euler

angles φ, θ and ψ, respectively (see Figure 2.1) [45]. u, v, w, p, q and r are utilized

to denote the velocity components with respect to the body-fixed frame (Figure

2.1) [45, 46]. In this regard, u, v and w are the linear axial, lateral and vertical

velocity components, respectively, while p, q and r are the angular roll, pitch and

yaw velocity components, respectively, of the UV. Additionally, X, Y, Z,K,M and

N are used to describe the forces and moments acting on the UV in the body-fixed

frame [45, 46]. In this regard, X indicates the axial force, Y the lateral force, Z the

vertical force, K the rolling moment, M the pitching moment and N the yawing

moment.

The linear velocity vector of the UV with respect to the earth-fixed coordinate

system, which is integrated with respect to time to calculate the UV trajectory, is

obtained as follows [45]:

η̇1 = J1(η2)v1, (2.1)

where v1 = [u, v, w]T and J1(η2) is calculated as:

J1(η2) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 , (2.2)

where c and s stand for the cosine and sine functions. In addition, the Euler rate

vector η̇2 =
[
φ̇, θ̇, ψ̇

]T
, which is integrated with respect to time to restore the UV
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orientation vector, is calculated in terms of the angular velocity vector v2 = [p, q, r]T

of the UV as follows [45]:

η̇2 = J2(η2)v2, (2.3)

where J2(η2) is calculated as:

J2(η2) =

 1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ

 . (2.4)

where t stands for the tangent functions. Note that J2(η2) is not defined for θ =

±90◦. This is not a problem here, as we are considering the motions solely in the

horizontal plane.

After a brief description of kinematics of the UVs, in the following section, the

standard equations of motion proposed by GERTLER e HAGEN [1] for maneuvering

predictions of totally submerged UVs in the horizontal plane are presented.

2.1.1 Maneuvering equations for totally submerged UVs in

the horizontal plane

The standard equations of motion in non-dimensional form proposed by GERTLER

e HAGEN [1] for maneuvering predictions of totally submerged UVs in the horizontal

plane can be written as follows:

Surge:

m′[u̇′ − v′r′ − x′Gr′
2
] =

X ′u̇u̇
′

+X ′u|u|u
′ |u′|+X ′vvv

′v′ +X ′rrr
′r′

+X ′δrδrδ
2
r

+ T ′(1− t),

(2.5)

Sway:

m′[v̇′ + u′r′ + x′Gṙ
′] =

Y ′v̇v̇
′ + Y ′ṙṙ

′

+ Y ′vv
′ + Y ′v|v|v

′ |v′|+ Y ′rr
′ + Y ′r|r|r

′ |r′|

+ Y ′δrδr,

(2.6)
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Yaw:

I ′z ṙ
′ +m′[x′G(v̇′ + u′r′)] =

N ′v̇v̇
′ +N ′ṙṙ

′

+N ′vv
′ +N ′v|v|v

′ |v′|+N ′rr
′ +N ′r|r|r

′ |r′|

+N ′δrδr,

(2.7)

where the primed symbols stand for the dimensionless variables. Note that the

nondimensionalisation is carried out based on LEWIS [3] and SNAME [47]. In this

regard, to obtain the nondimensional form, the force terms are divided by 1
2
ρU2L2

while the moment terms are divided by 1
2
ρU2L3, where U indicates the UV overall

speed in the horizontal plane, i.e., U =
√
u2 + v2 and L is the UV overall length. x′G

is the dimensionless x0 coordinate of the center of gravity, m′ is the dimensionless

UV mass and I ′z is the dimensionless moment of inertia about z0 axis. In Equations

2.5, 2.6 and 2.7 it is assumed that the axis through sx0y0z0 are the principal axes of

inertia, and y0 and z0 coordinates of the center of gravity are zero, i.e., y′G = z′G = 0.

Additionally, X ′u̇, Y
′
v̇ , Y

′
ṙ , N

′
v̇ and N ′ṙ are the dimensionless hydrodynamic added-mass

coefficients. Moreover, X ′u|u|, X
′
vv, Y

′
v , Y

′
v|v|, N

′
v, N

′
v|v|, X

′
rr, Y

′
r , Y

′
r|r|, N

′
r and N ′r|r| are

the dimensionless hydrodynamic coefficients arising from the velocity components.

Furthermore, X ′δrδr, Y
′
δr, N

′
δr are the dimensionless hydrodynamic coefficients of the

rudder and δr is the effective angle of deflection of rudder relative to the inflow

velocity. Also, t is the thrust deduction factor, and T ′ is the dimensionless thrust

force generated by the propeller.

As can be seen in Equations 2.5, 2.6 and 2.7, the external forces and moments

(right hand side of these equations) are considered as a superposition of several

forces and moments as follows:

• The hydrodynamic forces and moments exerted on a UV due to acceleration

or deceleration:

Axial force = X ′u̇u̇
′, (2.8)

Lateral force = Y ′v̇ v̇
′ + Y ′ṙ ṙ

′, (2.9)

Yaw moment = N ′v̇v̇
′ +N ′ṙṙ

′, (2.10)

• The hydrodynamic forces and moments acting on a UV due to the linear and

angular velocities of the UV:

Axial force = X ′u|u|u
′ |u′|+X ′vvv

′v′ +X ′rrr
′r′, (2.11)
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Lateral force = Y ′vv
′ + Y ′v|v|v

′ |v′|+ Y ′rr
′ + Y ′r|r|r

′ |r′| , (2.12)

Yaw moment = N ′vv
′ +N ′v|v|v

′ |v′|+N ′rr
′ +N ′r|r|r

′ |r′| , (2.13)

Equation 2.11 shows that the relationship between the X-force and u is ex-

pressed by a purely odd quadratic polynomial function. Since, if the vehicle

moves forward (u > 0) it experiences a force toward aft; conversely, if the

vehicle moves aftward (u < 0) it experiences a force toward bow. On the other

hand, the X-force in terms of v and r velocity components is approximated by

purely even quadratic polynomial functions. Since, for instance, a UV swaying

to the starboard (v > 0) or port (v < 0) will experience the same reaction in

x0 direction. The same argument is applicable for a UV with an angular yaw

velocity r.

Moreover, Equations 2.12 and 2.13 show that purely odd quadratic polyno-

mial functions are used to approximate the lateral force Y and yaw moment

N arising from the lateral velocity v and the angular yaw velocity r. Since, for

instance, if the UV sways to starboard (v > 0), it will experience a counter-

acting force toward the port (Y < 0); while, if a UV sways to port (v < 0), it

will experience a counteracting force toward the starboard (Y > 0). Also, as

the N -moment is generated by the Y -force about the z0-axis, the N -moment

follows the same behavior as that of the Y -force. The same argument is ap-

plicable for a UV with an angular yaw velocity r.

• Hydrodynamic forces and moments generated by control surfaces:

In the present study, it is assumed that the UV under consideration is merely

equipped with a vertical rudder in the aft region, which is used for maneuvering

in the horizontal plane (Figure 2.2).

Figure 2.2: The UV under consideration equipped with a vertical rudder in the stern
region

Additionally, the contribution of the rudder to the forces and moments in the

horizontal plane is as follows:

Axial force = X ′δrδrδ
2
r , (2.14)

Lateral force = Y ′δrδr, (2.15)
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Yaw moment = N ′δrδr, (2.16)

Equations 2.14, 2.15 and 2.16 demonstrate that the relationship between the

X-force and δr is purely even, while this relationship for the Y -force and N -

moment is purely odd.

The effective angle of deflection of rudder δr is equal to the sum of the user-

defined deflection (δr0) and the deflection formed due to the linear lateral and

angular yaw velocity components (δ′r) (Figure 2.3):

δr = δr0 + δ′r, (2.17)

where δ′r is defined as:

δ′r = atan
xrr − v

u
, (2.18)

where xr is the distance between the rudder’s location and the center of the

local coordinate system.

Figure 2.3: Definition of the δr0 and δ′r

• The hydrodynamic force generated by propeller:

Herein, it is assumed that the UV is equipped with a propeller in the stern

downstream the rudder, which produces the following axial force:

Axial force = T ′(1− t), (2.19)

Furthermore, Equations 2.5, 2.6 and 2.7 lack the hydrodynamic forces and mo-

ments related to the coupling effects between the sway and yaw degrees of freedom,

such as X ′vrv
′r′. Since the presence of these terms requires the dedication of much

significant time to determine the external forces and moments resulting from them

while yet, as shown by GAO et al. [48], these coupling terms show limited effect on

the total forces and moments and thus can be removed.
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2.1.2 Free surface effect on the hydrodynamics and dynam-

ics of a shallowly submerged UV

An immediate consequence of a UV traversing near the free surface is the creation

of surface gravity waves that are stationary with respect to the body. The creation

of this gravity wave system is attributed to the interaction between the dynamic

pressure distribution around the hull and the free surface.

In case of a shallowly submerged UV moving beneath the free surface in the

horizontal plane, there are three components of velocity, i.e., the axial (surge) u, the

lateral (sway) v and the angular yaw r, interacting with the flexible free surface,

which deforms the free surface in both lateral and longitudinal directions. In other

words, the wave system of a shallowly submerged UV traveling beneath the free

surface in the horizontal plane emanates from the interaction of the free surface

with both the longitudinal and circumferential dynamic pressure distributions, which

arise from the axial, lateral and angular yaw velocity components of a UV in the

horizontal plane.

This wave system is a combination of several wave systems created by the dy-

namic pressure distribution along the body and probably is a function of UV overall

length, body form and velocity components [49]. In this respect, the wave sys-

tem generated by a shallowly submerged UV traveling along a straight path in a

deep-water condition resempbles closely the classical Kelvin wave pattern [10].

Applying the dispersion relation of linear surface waves in a deep-water condition

to the stationary wave system generated by a UV traveling along a straight path

yields the following relationship between the wavelength and UV overal speed U [3]:

λ = 2π
U2

g
cos2Θ. (2.20)

Theta (Θ,−π
2
< Θ < π

2
) is the angle between the UV’s direction of travel and the

vector normal to the crest of the wave. Equation 2.20 can be rewritten as follows:

λ

L
= 2π

U2

gL
cos2Θ = 2πF 2

ncos2Θ, (2.21)

where Fn = U√
gL

is Froude number. This relation suggests that for Fn >
1√
2π
≈ 0.4

the wavelength exceeds the UV overall length L.

As is well known from NEWMAN [21], the energy required for the creation of

the surface wave system leads to an increase in the hydrodynamic forces generated

by the velocity components on a shallowly submerged UV. Likewise, as shown by

MAALI AMIRI et al. [19], the increase in the forces induced by the velocity com-

ponents with a decrease in submergence depth can also be explained through the

effect of the free surface deformations on the dynamic pressure distribution along

19



the length of the UV hull. In this regard, MAALI AMIRI et al. [19] show that

the crests and troughs of the self-induced wave system of a shallowly submerged

UV modify the dynamic pressure distribution around the UV hull by creating local

regions of high and low dynamic pressure, respectively, along the UV length.

Thus, it can be inferred that a crucial effect of the wave system generated by

a shallowly submerged UV is the modification that it introduces into the dynamic

pressure distribution around the submerged body. In this regard, the degree of

modification introduced into the dynamic pressure distribution around the UV hull

by the free surface deformations depends on submergence depth. The less the sub-

mergence depth the more will be the free surface deformations, which consequently

increases the free surface effect on the dynamic pressure distribution around the hull

[19].

Accordingly, the modification of the dynamic pressure distribution across the

length, width and depth of the hull affects all the external forces and moments

exerted on the UV hull and likely gives rise to the generation of the forces and

moments in the vertical plane [19].

As shown in section 2.1.1, the external forces and moments are considered as

a superposition of the hydrodynamic forces and moments arising from the velocity

and acceleration components, hydrodynamic forces and moment due to rudder and

the hydrodynamic axial force generated by the propeller. From a theoretical point

of view, all of these external forces and moments presented on the right hand side

of Equations 2.5, 2.6 and 2.7 are subject to change as a result of approaching the

free surface. However, for the sake of simplicity, in the present thesis, the free

surface effect is merely considered on the hydrodynamic forces and moments arising

from the velocity components. Therefore, the above discussion is continued for the

hydrodynamic forces and moments resulting from the velocity components of the

UV in the horizontal plane.

Free surface effect on the hydrodynamic forces and moments generated

by the velocity components

Generally, as a UV approaches the free surface, the axial hydrodynamic forces X

arising from the velocity components are prone to an increase. As is well known, this

is associated with the energy required for the creation of the surface wave system

generated by the UV as it approaches the free surface [21]. On the other hand,

as the submergence depth is reduced, the hydrodynamic lateral forces Y and yaw

moments N resulting from the lateral and yaw angular velocity components, are

bound to either an increase or decrease, depending on the behavior of the Y -force

distribution along the length of the UV.

Anyhow, due to the inevitable change in X, Y and N generated by the velocity
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components with respect to submergence depth, for a shallowly submerged UV, these

forces and moments are functions of both the velocity components and submergence

depth h.

As can be seen in Equations 2.5, 2.6 and 2.7, for a totally submerged UV, the

hydrodynamic forces and moments arising from the velocity components are ap-

proximated as quadratic polynomial functions in terms of the velocity components

of the UV.

On the other hand, to account for the free surface effect on the UV maneuverabil-

ity the question may come up that whether to maintain the equations of motion for

a totally submerged UV given in Equations 2.5, 2.6 and 2.7 with the hydrodynamic

forces and moments obtained for a specific submergence depth, or to formulate a

new set of equations of motion with the hydrodynamic forces and moments defined

explicitly in terms of both the velocity components and submergence depth.

In this regard, extending the quadratic polynomial functions, which approximate

the hydrodynamic forces and moments in terms of the UV velocities, to account

explicitly for the effect of the submergence depth increases notably the regression

problem with considerable identification effort. Since, as shown by MAALI AMIRI

et al. [19] and DAWSON [10], the free surface effect on the hydrodynamic forces

and moments induced by the velocity components increases exponentially with a

decrease in h.

Therefore, in the present research, for the sake of simplicity, and also to fulfill

the main purpose of this study, the maneuverability analysis is performed by using

Equations 2.5, 2.6 and 2.7 with the hydrodynamic forces and moments arising from

the velocity components obtained at several submergence depths beneath the free

surface.

Thus, herein, an attempt is made to propose appropriate functions that capture

the behavior of the hydrodynamic forces and moments acting on a shallowly sub-

merged UV in terms of each velocity component at a desired submergence depth

beneath the free surface. For this purpose, the forces and moments resulting from

each velocity component are closely examined as follows:

• Axial X-force generated by the axial velocity component u:

In case of a shallowly submerged UV traveling beneath the free surface, the axial

X-force has an oscillatory behavior with respect to the axial velocity component,

which emanates from the interference effects between the dominant wave systems

inside the submarine wake [19]. Therefore, the utilization of a quadratic polynomial

function in terms of u velocity component, as presented in Equation 2.5, may not

adequately represent the axial force as a function of u. Thus, the axial force exerted

on a shallowly submerged UV hull traveling beneath the free surface is stored in a

21



one-dimensional tabular form at various submergence depths as Xf(u,h), and a cubic

interpolation is used to express the axial force X as a function of axial velocity u in

the maneuvering equations.

• Hydrodynamic forces and moment arising from the lateral velocity component

v:

In this case, although the advent of the wave-making resistance modifies the

forces and moment arising from the lateral velocity v, as is shown later in the result

section, the forces and moment arising from the lateral velocity component v acting

on a shallowly submerged UV, the same as those acting on a totally submerged

one, are approximated reasonably well by using quadratic polynomial functions in

terms of sway velocity v. This is due to the negligible interference effects between

the wave systems generated by the sway velocity component v at points along the

body length, which unlike the axial force resulting from the u velocity component

does not provoke an oscillatory behavior in the forces and moment generated by the

lateral velocity v. Therefore, in this case, the hydrodynamic forces and moment are

expressed as follows:

Axial force = X ′vv,hv
′v′, (2.22)

Lateral force = Y ′v,hv
′ + Y ′v|v|,hv

′ |v′| , (2.23)

Yaw moment = N ′v,hv
′ +N ′v|v|,hv

′ |v′| , (2.24)

where coefficients X ′vv,h, Y
′
v,h, Y

′
v|v|,h, N

′
v,h and N ′v|v|,h are the dimensionless sway hy-

drodynamic coefficients as a function of submergence depth h, which are obtained

at several submergence depths in a range of hmin ≤ h ≤ ∞.

• Hydrodynamic forces and moment generated by the angular yaw velocity com-

ponent r:

In this case again, as is shown later in the result section, the forces and moment

generated by the angular yaw velocity component r on a shallowly submerged UV,

the same as those acting on a totally submerged one, are approximated reasonably

well using quadratic polynomial functions in terms of r. This is also due to the

negligible interference effects between the wave systems generated by the yaw veloc-

ity component r at points along the body length, which contrary to the axial force

resulting from the u velocity component does not provoke an oscillatory behavior in

the forces and moment caused by the angular yaw velocity. Therefore, in this case,

the hydrodynamic forces and moment are expressed as follows:

Axial force = X ′rr,hr
′r′, (2.25)
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Lateral force = Y ′r,hr
′ + Y ′r|r|,hr

′ |r′| , (2.26)

Yaw moment = N ′r,hr
′ +N ′r|r|,hr

′ |r′| , (2.27)

where coefficients X ′rr,h, Y
′
r,h, Y

′
r|r|,h, N

′
r,h and N ′r|r|,h are the dimensionless yaw hydro-

dynamic coefficients as a function of submergence depth h, which are obtained at

several submergence depths in a range of hmin ≤ h ≤ ∞.

Therefore, the maneuvering equations for a shallowly submerged UV in the hori-

zontal plane are closely similar to the maneuvering equations for a deeply submerged

one presented in Equations 2.5, 2.6 and 2.7. However, the forces and moments gen-

erated by the velocity components are obtained at several submergence depths in a

range of hmin ≤ h ≤ ∞ to reflect the effect of the presence of the free surface on the

maneuverability of the UV in the horizontal plane.

2.1.3 Parameter identification

The mathematical model presented in section 2.1.1 includes several unknown param-

eters, which analytical and numerical methods are used to identify them. In this

regard, this section deals with both the identification procedure of the forces and

moments arising from the acceleration components, rudder and thrust, based on the

existing analytical methods in the literature, and the identification procedure of the

forces and moments induced by the velocity components using the hydrodynamic

tests.

Hydrodynamic forces and moments arising from the acceleration compo-

nents

In this section, the hydrodynamic forces and moments arising because of the ac-

celeration components are estimated using the analytical equations proposed by

HUMPHREYS e WATKINSON [50], which are obtained for a prolate-spheroid mov-

ing through an infinite volume of stationary ideal fluid. In this regard, the UV is

considered as a prolate-spheroid with axes equal to the length and maximum diam-

eter of the UV as follows:

x2

a2
+
y2

b2
+
z2

c2
= 1, b = c, a > b, (2.28)

where a = L
2

and b = c = Maximum diamter of the UV
2

. Accordingly, the following ex-

pressions are given by HUMPHREYS e WATKINSON [50] to estimate the hydro-

dynamic added-mass coefficients of a prolate-spheroid in terms of its geometrical

characteristics:

X ′u̇ = −k1m
′, (2.29)
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Y ′v̇ = −k2m
′, (2.30)

N ′ṙ = −k′I ′z, (2.31)

Y ′ṙ = (x′B − x′G)Y ′v̇ , (2.32)

N ′v̇ = (x′B − x′G)Y ′v̇ , (2.33)

where x′B indicates the dimensionless x0 coordinate of the center of buoyancy. Fur-

thermore, the k-factors in Equations 2.29, 2.30 and 2.31 are defined as follows:

k1 =
α0

2− α0

, (2.34)

k2 =
β0

2− β0

, (2.35)

k′ =
e4(β0 − α0)

(2− e2) [2e2 − (2− e2)(β0 − α0)]
, (2.36)

where α0, β0 and e are calculated as follows:

α0 =
2(1− e2)

e3

(
1

2
ln

[
1 + e

1− e

]
− e
)
, (2.37)

β0 =
1

e2
− 1− e2

2e3
ln

[
1 + e

1− e

]
, (2.38)

e2 = 1−
(
b

a

)2

. (2.39)

Hydrodynamic forces and moments generated by the rudder

In this section, to calculate the hydrodynamic forces and moment generated by

the rudder at an effective angle of deflection δr, the semi-empirical formulations

presented by DE BARROS et al. [51] and FIELD [9] are used. According to FIELD

[9], to calculate the hydrodynamic forces and moment related to rudder, first the

lift coefficient CL of the rudder is estimated as:

CL =
1.8πARe

1.8 + cosγp

√
4 + AR2

e

(cosγp)4

, (2.40)

where ARe is the effective aspect ratio. ARe is defined as a function of the rudder

span and hull radius at the rudder location and is estimated from the curves pre-

sented by DE BARROS et al. [51] as a percentage of the geometrical aspect ratio

of the isolated rudder. Accordingly, based on DE BARROS et al. [51], the effective

aspect ratio of the rudder (ARe) in the presence of the body is estimated as follows:
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ARe = f(bv, r)AR, (2.41)

where AR is the geometrical aspect ratio of the isolated rudder, bv indicates the

rudder span and r is the hull radius at one-fourth of the root-chord length. The

function f(bv, r) is determined from the curves represented in Figure 2.4. In this

figure, λ = tip chord length
root chord length

is the taper ratio.

Figure 2.4: Ratio of ARe to AR [51]

Additionally, γp is the sweep angle at one-fourth of the chord length, as shown

in Figure 2.5. After the calculation of CL, the values of the hydrodynamic forces

and moment generated by rudder are quantified as, FIELD [9]:

Lateral force = 0.5ρSrudIRBCLU
2δr, (2.42)

Axial force = −0.5ρSrudIRB

{
1

0.9πARe

}
C2
LU

2δr
2, (2.43)

Yaw moment = −0.5ρSrudxrIRBCLU
2δr, (2.44)

where Srud is the rudder surface area. In Equations 2.42, 2.43 and 2.44, IRB is an

empirical coefficient proposed by DE BARROS et al. [51] to consider the interference

effect between the body and the rudder, which is determined in Figure 2.6.

Figure 2.5: Definition of the γp
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Figure 2.6: IRB is an empirical coefficient proposed by [51] to consider the interfer-
ence effect between the body and the rudder

The location of the forces generated by the rudder is assumed to be axially at

one-fourth of the chord length from the leading edge. Equations 2.42, 2.43 and 2.44

are applicable for δr < 25◦ (FIELD [9]).

Note that a positive deflection of rudder generates a negative moment about

z0-axis together with a positive force in y0 direction, while a negative deflection of

rudder imposes a positive moment about z0-axis along with a negative force in y0

direction. This explains the minus sign on the right hand side of Equation 2.44.

Thrust force

The thrust force T generated by the propeller (Equations 2.19) is obtained as follows:

T = KT (J)ρn2D4
p, (2.45)

where ρ indicates the fluid density, n the propeller rotation rate, Dp the propeller di-

ameter and KT (J) the normalized thrust coefficient, which is expressed as a function

of advance velocity ratio J . J is defined as:

J =
uA
nDp

, (2.46)

where uA indicates the mean flow velocity at the propeller plane, which is related

to u through the following equation:

uA = u(1− w), (2.47)

where w is referred to as the wake fraction.

Thrust coefficient KT (J) can be obtained from the open-water propeller perfor-

mance curves. In this regard, the following thrust coefficient KT (J) of the generic

seven bladed propeller E1619 with the general characteristics presented in Table 2.1

is used to estimate the thrust force:

KT = −0.1941J2 − 0.2437J + 0.5375. (2.48)
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The E1619 propeller is manufactured and tested in the INSEAN towing tank, as

reported by SEZEN et al. [52].

Table 2.1: General characteristics of the E1619 propeller [52]

Dp (m) 0.262

Z 7

P/Dp 1.15

Dh/Dp 0.226

Furthermore, to estimate the mean flow velocity at the propeller plane uA, a value

of 0.1 is considered for the wake fraction w, as suggested by TRIANTAFYLLOU e

HOVER [53]. Moreover, TRIANTAFYLLOU e HOVER [53] recommend to assign

a value of 0.2 to the thrust deduction factor t.

Hydrodynamic forces and moments arising from the velocity components

This section deals with the process of identification of the hydrodynamic forces and

moments arising from the velocity components acting on both totally submerged

and shallowly submerged UVs, based on a regression analysis.

• Hydrodynamic axial force due to the axial velocity component u

The axial force arising from the axial velocity component u can be obtained

through the straight-ahead resistance tests. In these tests, the model with no angle

of incidence is suspended from a carriage in a towing tank and is towed in several u

velocities [1, 3].

The axial hydrodynamic coefficient X ′u|u| given in Equation 2.11 for a totally

submerged UV is estimated by fitting the polynomial function to the axial forces

obtained from the straight-ahead tests via the linear least squares method.

Additionally, as mentioned earlier, in the maneuvering simulations with the pres-

ence of the free surface, a cubic interpolation is used to express the axial force Xf(u,h)

in the equations of motion. Since at this condition, due to its oscillatory behavior,

the axial force Xf(u,h) arising from the axial velocity is stored in a one-dimensional

tabular form.

• Hydrodynamic forces and moment generated by the lateral velocity component

v

The forces and moment resulting from the lateral velocity component v can be

obtained through the drift tests (Figure 2.7). In these tests, the model with a certain
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angle of drift (β) is mounted from a carriage in a towing tank and is towed in several

angles of drift, while keeping the speed U constant [1, 3].

The sway hydrodynamic coefficients X ′vv, Y
′
v , Y

′
v|v|, N

′
v and N ′v|v| given in Equa-

tions 2.11, 2.12 and 2.13 for a totally submerged UV and the coefficients

X ′vv,h, Y
′
v,h, Y

′
v|v|,h, N

′
v,h and N ′v|v|,h given in Equations 2.22, 2.23 and 2.24 for a shal-

lowly submerged one, are estimated by fitting the polynomials to the forces and

moments obtained from the drift tests via the linear least squares method.

Figure 2.7: A UV undergoing the drift tests

• Hydrodynamic forces and moment arising from the angular yaw velocity r

The forces and moment due to the yaw rate r, can be obtained by performing

the rotating arm tests (Figure 2.8). In these tests, while the axial velocity, which is

a product of the yaw rate and the radius of rotation, is kept constant the yaw rate

is changed through changing the radius of rotation. The tests are performed on a

model with zero incidence at a number of angular yaw velocities [2, 3].

The yaw hydrodynamic coefficients X ′rr, Y
′
r , Y

′
r|r|, N

′
r and N ′r|r| given in Equa-

tions 2.11, 2.12 and 2.13 for a totally submerged UV and the coefficients

X ′rr,h, Y
′
r,h, Y

′
r|r|,h, N

′
r,h and N ′r|r|,h given in Equations 2.25, 2.26 and 2.27 for a shal-

lowly submerged one, are estimated by fitting the polynomials to the forces and

moments obtained from the rotating arm tests via the linear least squares method.

2.1.4 Dynamic stability of UVs in the horizontal plane

To evaluate the dynamic stability of UVs in the horizontal plane, herein, the classical

criterion presented by LEWIS [3] is used. This criterion is written as follows:

N ′r −m′x′G
Y ′r −m′

− N ′v
Y ′v

> 0. (2.49)

Equation 2.49 is obtained from the linearized equations of motion in sway and

yaw directions. In this equation, the first term corresponds to the lever of the

hydrodynamic moment generated by the angular yaw velocity component (lr) and

the second term corresponds to the lever of the hydrodynamic moment generated
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Figure 2.8: A UV undergoing the rotating arm test

by the lateral velocity component (lv). Thus, the stability criterion states that for

a UV to be stable the lever of the hydrodynamic moment generated by the angular

yaw velocity component must be larger than the lever of the hydrodynamic moment

generated by the lateral velocity component. In other words:

lr − lv > 0. (2.50)

Additionally, taking into account the contribution of the rudder to the linear

hydrodynamic coefficients arising from the lateral velocity and yaw rate, as presented

by LEWIS [3], Equation 2.49 can be rewritten as follows:

N ′r −m′x′G + x′rN
′
δr

Y ′r −m′ + x′rY
′
δr

− N ′v −N ′δr
Y ′v − Y ′δr

> 0. (2.51)

Note that Nδr is always negative and Yδr is always positive [3]. Accordingly, as

mentioned by LEWIS [3], it can be inferred that the rudder always acts to stabilize

the UV, even when it has no deflection. In other words, based on Equation 2.51, it

can be clearly seen that the rudder contributes to the lever of the moment generated

by the yaw rate, while it diminishes the lever of the moment induced by the sway

velocity. Thus, in cases where the UVs are inherently unstable, a proper adjustment

of rudder size can stabilize the UVs to a desirable level.

More generally, the dynamic stability criterion (SC) presented in Equation 2.51

for a UV traveling in the horizontal plane at a submergence depth h is written as

follows:

SC =
N ′r,h −m′x′G + x′rN

′
δr

Y ′r,h −m′ + x′rY
′
δr

−
N ′v,h −N ′δr
Y ′v,h − Y ′δr

> 0, (2.52)
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where the coefficients N ′r,h, Y
′
r,h, N

′
v,h and Y ′v,h are obtained at several submergence

depths in a range of hmin ≤ h ≤ ∞ beneath the free surface to reflect the free surface

effect on the dynamic stability of UVs over various submergence depths.

2.1.5 Numerical implementation of the equations of motion

To solve the equations of motion represented in Equations 2.5-2.7 for a totally sub-

merged UV and a shallowly submerged one, it is convenient to separate the accel-

eration terms from the other terms. In this regard, the equations of motion for a

UV traveling in the horizontal plane at a submergence depth h can be written as

follows:

Surge:

(m′ −X ′u̇) u̇′ = {X ′}f(u,v,r,h) + {X ′}f(δr) + {T ′(1− t)} , (2.53)

Sway:

(m′ − Y ′v̇) v̇′ + (m′x′G − Y ′ṙ) ṙ′ = {Y ′}f(u,v,r,h) + {Y ′}f(δr) , (2.54)

Yaw:

(I ′z −N ′ṙ) ṙ′ + (m′x′G −N ′v̇) v̇′ = {N ′}f(u,v,r,h) + {N ′}f(δr) , (2.55)

where to avoid working with large equations, the right hand sides are given in

generic forms. From the above system of equations the acceleration components of

the UV in the horizontal plane (u̇, v̇, ṙ) are obtained. Subsequently, to calculate the

UV velocity, position and orientation, numerical integration based on the second-

order improved Euler method is used. The second-order improved Euler method

is significantly more accurate than the Euler method, since it uses the average of

the slopes of the lines tangent to the function at both the beginning and end of an

interval.

2.1.6 Evaluation of UV maneuverability

In order to assess the maneuvering capabilities of UVs, several standard maneuvers

are put forward [3]. In the present thesis, to evaluate the free surface effect on the

maneuverability of a UV, the turning and zigzag standard maneuvers are performed

for various submergence depths, which are explained as follows:

30



Turning maneuver

To analyze the turning capability of a UV, the turning maneuver is performed. In

this test, after achieving a steady advance velocity and a zero yaw rate, the rudder is

deflected to either port or starboard until the yaw rate reaches to a constant value.

Figure 2.9 shows a UV undergoing a turning maneuver under a command rudder

deflection of −δr0.

The information obtained from this test to analyze the turning ability are the

advance, transfer, tactical diameter, turning diameter and drift angle, as shown

in Figure 2.9 [3]. The advance and transfer are defined as the longitudinal and

lateral distances, respectively, traveled by the UV when the yaw angle ψ changes

90◦. Similarly, the tactical diameter is defined as the lateral distance traveled by

the UV when the yaw angle ψ changes 180◦.

Figure 2.9: Trajectory of a UV undergoing the turning maneuver

Zigzag maneuver

To analyze the capability of the rudder to control the UV, i.e., to evaluate the

course-keeping ability of the UV using the rudder, the zigzag test is performed. In

this regard, after achieving a steady advance velocity using a zero command rudder

deflection, the rudder is deflected δr0 to either port or starboard, and is held until

the yaw angle reaches the command rudder deflection δr0. In this moment, the

rudder is alternatively deflected to the other side with a command deflection angle

of δr0. Again, the rudder is held until the yaw angle reaches the command rudder

deflection δr0. Depending on the purpose of the test, this procedure is repeated for
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a number of runs.

For instance, Figure 2.10 shows a typical graph containing the time histories of

the command rudder deflection angle (δr0) and the yaw angle (ψ) during a zigzag

maneuver initiated at time zero. Note that a negative deflection of the rudder

(deflection toward starboard) gives rise to a positive yaw angle, and a positive rudder

deflection causes a negative heading angle. This explains the negative sign used to

represent the rudder deflection in Figure 2.10.

The information obtained from this test to analyze the course-keeping ability of

the UV are the first and second overshoot angles (ψos1, ψos2 (Figure 2.10)), together

with the times to execute the rudder for the n-th time, such as the second time tre2,

the third time tre3 and the fourth time tre4 (Figure 2.10)).

Figure 2.10: Time histories of the command rudder deflection angle (δr0) and the
yaw angle (ψ) of a UV undergoing the zigzag maneuver

2.2 Fluid flow characteristics around a totally

submerged axisymmetric UV

As mentioned earlier, herein to investigate the free surface effect on the hydro-

dynamics and dynamics of an axisymmetric UV in the horizontal plane, relevant

hydrodynamic captive tests are performed in this plane. In this regard, to have a

better understanding of the free surface effect on the UV hydrodynamics and dy-

namics, a good knowledge of the general fluid flow characteristics around the totally

submerged UV undergoing a steady drift and turning motion is extremely helpful.

Thus, in the following sections, a brief description of the fluid flow characteristics

around a totally submerged UV undergoing steady drift and turning motions is

presented.

2.2.1 Fluid flow characteristics around a UV at steady drift

As shown in Figure 2.7, a UV at a steady drift angle β has two components of

velocity, one parallel to the UV long axis (x0) u = U.cosβ and another one parallel
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to the y0 axis v = U.sinβ. The latter, which is also the lateral velocity component

of the UV, gives rise to the development of a three-dimensional separation called

the crossflow separation (WETZEL et al. [24], CHESNAKAS e SIMPSON [25],

PHILLIPS et al. [54] and KIM et al. [55]).

To explain the reason for the development of the crossflow separation around the

axisymmetric UVs at incidence, consider Figure 2.11 representing a two-dimensional

fluid domain in a cross-section plane perpendicular to the long axis of an axisym-

metric UV at a steady drift angle β. This fluid domain represents the behavior of

the streamlines of the fluid particles. In Figure 2.11, φ indicates the circumferential

location measured from the leading edge.

Figure 2.11: A two dimensional fluid domain in a cross-section plane perpendicular
to the long axis of an axisymmetric UV at a steady drift angle β

As is well known from the fluid flowing over a two dimensional circular cylinder,

a favorable pressure gradient is imposed over the fluid flowing from leading edge

toward φ = 90◦ (this region is called the windward side). The velocity reaches the

highest value at φ = 90◦. However, in the region from φ = 90◦ toward the trailing

edge (this region is called the leeward side) an adverse pressure gradient is imposed

over the fluid flow. Accordingly, since the fluid flowing inside the boundary layer is

unable to negotiate the resultant adverse circumferential pressure gradient, the flow

separates from the body surface. The separation region gives rise to the formation

and evolution of a vortical structure on the leeward side. For instance, Figure 2.12

shows the formation of the leeward vortical flow structure arising from the crossflow

separation over the totally submerged SUBOFF axisymmetric UV at β = 18.11◦

and Fn = 0.512. This figure through representing the vorticity magnitude at several

plane sections perpendicular to the long axis of the UV serves well to highlight

several important fluid flow characteristics around a UV at steady drift such as

the development of the crossflow separation and the formation and evolution of a

vortical flow structure over the leeward side.
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Figure 2.12: Crossflow separation pattern over the totally submerged SUBOFF at
β = 18.11◦ and Fn = 0.512

As can be inferred from Figure 2.12, the size of the vortical flow structure formed

on the leeward side undergoes an increase with an increase in the distance from the

UV nose. Additionally, based on CHESNAKAS e SIMPSON [25], PHILLIPS et al.

[54] and KIM et al. [55], the size of this vortical structure also increases with an

increase in drift angle, which is attributed to an increase in the lateral velocity

component v with respect to drift angle.

At low drift angles (β < 10◦), the separation region in the leeward side is small

and located merely at the downstream of body [24]. However, with an increase in

drift angle, the separation region moves both forward and windward. For β < 20◦,

which brackets the typical operating scenarios for UVs [56], in a totally submerged

condition, the leeward vortical structure is steady and symmetric with respect to a

plane passing through the leading edge and trailing edge (Figure 2.11) (WETZEL

et al. [24], CHESNAKAS e SIMPSON [25], PHILLIPS et al. [54] and KIM et al.

[55]).

The significance of the leeward vortical flow structure is its convective property,

which gives rise to an increase in the flow velocity in the leeward side. This, conse-

quently, reduces the local dynamic pressure in this region. As a result, the leeward

vortical flow structure exerts considerable forces and moments over the UV and,

accordingly, is largely responsible for the behavior of the Y -force and N -moment,

especially at large lateral velocities.

In this regard, as shown in several experimental and numerical studies such as

CHESNAKAS e SIMPSON [25], PHILLIPS et al. [54] and KIM et al. [55], the

correct numerical estimation of the forces and moments acting on an axisymmetric

UV at moderate drift relies highly upon the accurate prediction of the crossflow

separation and its resultant leeward vortical flow structure. Accordingly, as shown

by CHESNAKAS e SIMPSON [25], PHILLIPS et al. [54] and KIM et al. [55], the

utilization of sophisticated turbulence models, which are capable of representing the

complex three-dimensional anisotropic fluid flow developed over the axisymmetric
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UVs at moderate incidence, is necessary for a correct estimation of the forces and

moments acting on the body.

2.2.2 Fluid flow characteristics around a UV undergoing a

steady turning motion

When a UV is moving ahead with a linear velocity u and an angular yaw velocity

r is imposed on the body, a linear distribution of lateral velocity v is developed

along the length of the UV. For instance, Figure 2.13 shows the lateral velocity

distribution v(x0) = rx0 along the length of the SUBOFF UV undergoing a steady

turning motion performed in this thesis at an angular yaw velocity r′ = −0.4 about

the z0 axis. Accordingly, every point along the length of the SUBOFF experiences

a specific angle of drift defined as β(x0) = tan−1(−v(x0)
u

) [56].

Moreover, due to the lateral velocity reversal during a steady turning motion,

the starboard and port sides of an axisymmetric UV act as a combination of both

windward side and leeward side. To further clarify this, consider Figure 2.13. In

this case, the starboard side at the fore half part of the SUBOFF is the leeward

side, while it becomes the windward side at the aft half part. On the other hand,

the portside at the fore half part of the SUBOFF is the windward side while it turns

into the leeward side over the aft half part.

Thus, the fluid flow characteristics are different from those in steady drift motion

as the flow is subject to the lateral velocity reversal, which imposes different drift

angles along the UV length with the largest occurring at the extreme end of the

stern.

Figure 2.13: Lateral velocity distribution v(x0) along the length of the SUBOFF UV
undergoing a steady turning motion with an angular yaw velocity r′ = −0.4 about
the z0 axis
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2.3 Computational fluid dynamics

As mentioned in section 2.1, to evaluate the free surface effect on the hydrodynamics

and dynamics of a generic UV, the hydrodynamic captive tests, as explained in

section 2.1.3, are performed for various submergence depths and proper ranges of

UV velocity components. To perform these hydrodynamic tests, computational fluid

dynamics (CFD) is used. Herein, the numerical simulations of hydrodynamic tests

are carried out in the commercial code STARCCM+ [37]. Accordingly, this section

presents the methodology related to the CFD approach used in this thesis.

2.3.1 General governing equations

Incompressible fluid motion is governed by the Navier-Stokes and continuity equa-

tions. The Navier-Stokes equations for a Newtonian flow in an arbitrary control

volume Ω, which is bounded by the control surface S, is written as follows [37]:

∂

∂t

∫
Ω

ρ
−→
VdΩ +

∮
S

ρ
−→
V(
−→
V.d
−→
S )−

∮
S

τ.d
−→
S +

∮
S

pI.d
−→
S =

∫
Ω

ρ
−→
fedΩ. (2.56)

The first term on the left hand side shows the rate of variation of the momen-

tum within the volume Ω. The term ρ
−→
V(
−→
V.d
−→
S ) is the convection per unit volume

through the control surface S. The term pI represents the isotropic pressure com-

ponent and τ is the tensor of viscous shear stress, which is estimated as:

τ = 2µE, (2.57)

where E indicates the deformation tensor, whose components are:

E =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (2.58)

Finally, ρ
−→
fe indicates the body forces, which can be due to gravity and/or ro-

tation. In this regard, in the present study, to conduct the rotating arm tests

explained in section 2.1.3, a rotating coordinate system is adopted. Accordingly,

due to computation in a rotating reference frame, the Coriolis (−ρ
(

2−→ω ×
−→
V
)

) and

centrifugal (−ρ
(−→ω × (−→ω ×−→∆r))) forces are added to the momentum equations as

source terms as follows [37]:

ρ
−→
fe = −ρ

(
2−→ω ×

−→
V
)
− ρ

(−→ω × (−→ω ×−→∆r)) , (2.59)

where −→ω indicates the angular velocity and
−→
∆r the rotation radius.
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Additionally, the continuity equation, which states that within a fluid system

the mass is not disappeared or created, for the same control volume Ω is written as

follows:
∂

∂t

∫
Ω

ρdΩ +

∮
S

ρ
−→
V.d
−→
S = 0. (2.60)

The above forms of representation of Navier-Stokes and continuity equations are

the integral form of the conservation of momentum and mass, respectively.

2.3.2 Level of representation of reality

In order to solve the Navier-Stokes equations three main methods exist as follows

[57]:

• Direct Numerical Simulation (DNS)

• Large Eddy Simulation (LES)

• Unsteady Reynolds Averaged Navier-Stokes equations (URANS)

In DNS method, the Navier-Stokes equations are directly solved without using

any turbulence model. Hence, by using proper computational grids the whole range

of spatial and temporal turbulence scales are resolved. Accordingly, it can be shown

that the memory storage demand in a DNS grows very fast with Reynolds num-

ber. Considering the computational resources available, utilization of DNS is not

practicable.

Therefore, to reduce the computational cost of DNS, LES resolves large scales of

the turbulence and models the smaller scale ones, rather than resolving them as DNS

does. However, considering the computational resources, it is not still attainable to

use this method, neither.

On the other hand, URANS, which uses the averaging concept introduced by

Reynolds (1895), is currently the most common method used to approximate the

Navier-Stokes equations. Additionally, the average values of the forces, moments and

fluid flow characteristics suffice to fulfill the main objective of the present research.

Thus, it is decided to utilize a URANS solver to fulfill the main purpose of the

current research.

In URANS, all the properties of the fluid flow are expressed as the sum of a mean

and a fluctuating part. Accordingly, the instantaneous value of any quantity φ is

written as the sum of a time-averaged part, φ, and a part showing the fluctuations

about the average value, φ′:

φ = φ+ φ′, (2.61)
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where the average value φ is obtained as follows:

φ =
1

T

∫ T

0

φ(−→x , t)dt. (2.62)

Note that in practice the period T for averaging should be very large compared

to the time scale of the turbulent fluctuations and at the same time for unsteady

(non-stationary) fluid flows, it should be less than the time scale of the variations

of the mean flow.

After the averaging process is introduced into the governing equations, the con-

tinuity equation becomes:

∂

∂t

∫
Ω

ρdΩ +

∮
S

ρ
−→
V.d
−→
S = 0. (2.63)

Furthermore, the Navier-Stokes equations take the following form:

∂

∂t

∫
Ω

ρ
−→
VdΩ +

∮
S

ρ
−→
V(
−→
V.d
−→
S )−

∮
S

(τV + τR).d
−→
S +

∮
S

pI.d
−→
S =

∫
Ω

ρ
−→
fedΩ, (2.64)

where τV indicates the tensor of average viscous shear stress and τR is the Reynolds

stress tensor [37]. The Reynolds stress tensor, which appears in the momentum

equation due to the averaging process, is symmetric and therefore, there are six

unknown components that must be calculated. Interestingly, along with the three

unknown velocity components and the pressure, there are ten unknowns and only

four equations. Accordingly, to close this problem, various turbulence models have

been proposed to model the Reynolds stresses.

2.3.3 Selection of turbulence model

The selection of turbulence model can affect the accuracy of CFD results. In this

regard, there are two main types of turbulence models: turbulence models based

on the isotropic turbulent eddy viscosity assumption, which is first introduced by

Joseph Boussinesq (1877), and anisotropic Reynolds stress turbulence models.

In the eddy viscosity models, which may be algebraic or have one or two dif-

ferential equations such as k − ε and k − ω models, the Reynolds stresses u′iu
′
j are

coupled to the gradients of the mean velocity ( ∂ui
∂xj

+
∂uj
∂xi

) through an eddy viscosity

(µt) as follows:

− ρu′iu′j = µt(
∂ui
∂xj

+
∂uj
∂xi

). (2.65)

Therefore, the Reynolds stress tensor is treated in the same manner as the viscous
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stress tensor, where the viscous stresses are coupled to the mean deformation rate of

the flow (gradients of the average velocities) by using the isotropic dynamic viscosity

of the fluid µ (Equation 2.57). In other words, the Reynolds stresses are considered

aligned with the deformation rate of the flow. More precisely, it is assumed that the

angles of turbulent shear stress γτ :

γτ = atan

(
u′2u

′
3

u′1u
′
2

)
(2.66)

and the flow gradient γg:

γg = atan

(
∂u2

∂x3
+ ∂u3

∂x2

∂u1

∂x2
+ ∂u2

∂x1

)
(2.67)

are equal, CHESNAKAS e SIMPSON [25]. However, as mentioned in section 2.2.1,

several experimental and numerical studies such as CHESNAKAS e SIMPSON [25],

PHILLIPS et al. [54], KIM et al. [55] and HOLLOWAY et al. [58] demonstrate that

the eddy viscosity models are inadequate for the simulations of the fluid flow around

the axisymmetric bodies at incidence. In this regard, CHESNAKAS e SIMPSON

[25], PHILLIPS et al. [54], KIM et al. [55] and HOLLOWAY et al. [58] show that

the eddy viscosity models are incapable of representing adequately the complex

three dimensional anisotropic fluid flow developed over the axisymmetric UVs at

incidence. Later in Appendix B, it is also demonstrated that the eddy viscosity

models are inadequate for axisymmetric bodies at zero incidence, either.

Therefore, it is necessary to employ the Reynolds stress turbulence (RST) mod-

els to account for the anisotropy of the flow encountered in this research to avoid

erroneous prediction of fluid properties. Since, as mentioned earlier in section 2.2.1,

the correct prediction of the forces and moments acting on the axisymmetric UVs

at incidence relies largely upon the accurate prediction of the fluid flow charac-

teristics developed around the body. The RST model is the most sophisticated

turbulence model. The RST, by discarding the isotropic eddy-viscosity assumption,

closes the URANS equations by solving transport equations for each six component

of Reynolds stress tensor, together with an equation for the dissipation rate.

The transport equation for each Reynolds stress term (Rij = u′iu
′
j) is written as

follows [37]:

∂

∂t

∫
Ω

ρRijdΩ +

∮
S

ρRij(
−→
V.d
−→
S )−

∮
S

Dij.d
−→
S =

∫
Ω

(Pij −
2

3
ρεI + Πij)dΩ. (2.68)

The terms appear in this equation are defined as follows:

• D is the Reynolds-stress diffusion and is modeled by assuming that the rate
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of transport of Reynolds stresses through diffusion is proportional to the gra-

dients of the Reynolds stress terms. Accordingly, it is obtained as:

Dij = (µ+
µt
σk

)∇Rij, (2.69)

where σk = 0.82 and the isotropic turbulent eddy viscosity µt is calculated as:

µt = ρCµ
k2

ε
, (2.70)

where Cµ = 0.099.

• k is the kinetic energy of the turbulence and is calculated by adding the three

normal Reynolds stresses (i = j):

k =
1

2
tr(R). (2.71)

• Pij is turbulent production due to mean flow deformation and is obtained as

follows by retaining this term in its exact form:

Pij = −ρ(Rim
∂uj
∂xm

+Rjm
∂ui
∂xm

). (2.72)

• Πij indicates the turbulent pressure-strain interaction. In this regard, as

pointed out by VERSTEEG e MALALASEKERA [38], the turbulent pressure-

strain interaction although is the most difficult term in the transport equations

of Reynolds stresses to model, it is substantially important to be modeled cor-

rectly. This term takes into account the fluctuations in pressure due to two

types of interactions: first the interactions between two eddies and second the

interaction between an eddy and a fluid flow having a different mean velocity.

The pressure strain term has a role to make the normal stresses (i = j) more

isotropic by redistributing the turbulent kinetic energy over the three normal

stresses and reducing the shear stresses (i 6= j). This term in STARCCM+

is based on the work conducted by SPEZIALE et al. [59], and is modeled as

follows:

Πij = − [Cs1ρε+ Cr4tr(P )]Aij

+ Cs2ρε

(
AikAkj −

1

3
AmnAmnδij

)
+(

Cr3 − C∗r3
√
AijAij

)
ρkEij+

Cr1ρk

(
AikEjk + EikAjk −

2

3
AmnEmnδij

)
+ Cr2ρk (AikWjk +WikAjk) ,

(2.73)
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where the anisotropy tensor A, is defined as follows:

Aij =
Rij

k
− 2

3
I, (2.74)

where I is the identity matrix. Additionally, δij is the delta Kronecker function.

Moreover, W is the tensor of rotation:

Wij =
1

2
(
∂ui
∂xj
− ∂uj
∂xi

). (2.75)

In addition, the coefficients have the following values:

Cs1 = 1.7, Cs2 = 1.05,

Cr1 = 1.25, Cr2 = 0.2, Cr3 = 0.8,

C∗r3 = 0.65, Cr4 = 0.9.

(2.76)

• ε is the dissipation rate of the turbulent kinetic energy. To model this term, it

is assumed that only the normal Reynolds stresses (i = j) are affected equally

by the dissipation rate. Hence, it is obtained from a transport equation similar

to that of the standard k − ε model:

∂

∂t

∫
Ω

ρεdΩ +

∮
S

ρε(
−→
V.d
−→
S )−

∮
S

(µ+
µt
σk

)∇ε.d
−→
S

=

∫
Ω

(
ε

k

[
Cε1

(
1

2
tr(P )

)
− Cε2ρε

]
dΩ.

(2.77)

The coefficients are considered the same as those in the standard k− ε model as

follows:

Cε1 = 1.44, Cε2 = 1.83. (2.78)

Near wall treatment

To formulate the wall treatment, the following dimensionless parameters are used:

Y + =
yu∗

ϑ
, (2.79)

u+ =
vp
u∗
, (2.80)

where y indicates the distance from the wall to the centroid of the cell next to the

wall, u∗ is the reference velocity, ϑ is the kinematic viscosity, and vp is the component

of the velocity parallel to wall.
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Turbulence models use two common approaches to capture the boundary layer

near the surface of a body. The first approach is using a very fine mesh with a high

resolution to resolve the fluid characteristics within this region, and the second one

is using a coarser mesh to employ the standard wall function in this region.

For simulations without wall function, a target Y + of five or less is desirable,

while the target Y + range for using the wall function is typically from 30 to 100.

In other words, to use wall function the cell next to the wall should lay within the

logarithmic region of the boundary layer.

In the present research, the RST model uses the standard wall function to rep-

resent near-wall turbulence. For this purpose, therefore, a range of Y + from 30 to

100 is favorable. In this range of Y +, the reference velocity u∗, which is related to

the wall shear stress through u∗ =
√

τw
ρ

, is calculated as:

u∗ =

√
(Cµ)

1
2k. (2.81)

In addition, the velocity of the cell next to the wall is obtained as:

u+ =
1

0.42
ln(9Y +). (2.82)

Furthermore, the dissipation of the turbulent kinetic energy is estimated as:

ε =
(u∗)3

ky
, (2.83)

where k is the Von Karman constant, which is equal to 0.42.

The main advantage of using the wall function is the elimination of iterative

convergence problems and the excessive calculation time, as mentioned by EÇA

et al. [60]. Additionally, KIM et al. [55] have shown a good performance of RST

models in conjunction with wall function in capturing the crossflow features of a

6 : 1 prolate-spheroid at moderate incidence.

2.3.4 Modeling the free surface

The free surface exists between two immiscible flow phases, namely water and air,

which originates from the large difference in the densities of the flow phases. Due

to this difference in densities, the inertia of the air can generally be ignored in

comparison with water.

Thus modeling a free and moving surface brings some serious complications.

Especial approaches are required to define its properties along with the effect that

it introduces in flow.

On the free surface two conditions exist: the kinematic and the dynamic condi-

tions [61]. The kinematic condition considers that the particles of fluid never leave
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the free surface. In addition, the dynamic free surface condition states that the

pressure at free surface is constant and is equal to the atmospheric pressure. In this

respect, there are two main approaches to impose these conditions in CFD, interface

tracking and interface capturing methods [62].

Interface tracking methods, which is also called the Lagrangian grid methods,

uses a Lagrangian grid to define the free surface as an interface and follows its

evolution over time. Therefore, the free surface is regarded as a boundary and then

the kinematic and dynamic conditions are imposed directly upon this boundary.

However, where large amplitude surface motions exists the interface tracking

methods have difficulty to track the free surface without introducing remeshing

techniques with respect to the new position of free surface. The remeshing process

signifies that the field values from the old mesh must be projected to the new one.

This is computationally costly and can be a source for errors.

On the other hand, the interface capturing methods capture a volume inside a

fixed domain, which contains the free surface. The volume of fluid (VOF) approach,

which is one the interface capturing methods, requires reasonable computational

resources and is robust enough to handle the problems such as breaking waves,

droplets, and bubbles.

STARCCM+ uses the VOF method for handling the simulations with free surface

[37, 39]. The VOF uses the fraction of the cell occupied by water (αi) to locate the

free surface. This fraction is calculated by solving the following transport equation

for αi:

∂

∂t

∫
Ω

αidΩ +

∮
S

αi
−→
V.d
−→
S = 0. (2.84)

In this regard, the value of αi equal to one indicates the cells filled with water,

equal to zero indicates the cells filled with air, and cells where the value of αi lays

in a range from zero to one contain the free surface.

In this approach, both air and water phases are treated as a single phase that

share velocity and pressure fields, while their properties (density and viscosity) vary

according to αi as follows:

ρ =
∑
i

ρiαi, µ =
∑
i

µiαi, (2.85)

where ρi and µi denote the density and viscosity of the i−th phase.

To acquire a sharp interface, some special cares must be taken to discretize the

convection term in Equation 2.84, since the value of αi must be bounded in a range

from zero to one. In this regard, using the low order schemes such as the first-order

upwind scheme though fulfill the boundedness criterion, cause the surface to become

overly diffusive. While the higher order schemes, such as the second-order central
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differencing, cause the αi to take values that are physically impossible since they

violate the requirement of boundedness.

To obtain a sharp interface, STARCCM+ uses the High Resolution Interface

Capturing (HRIC) scheme [63], which is based on the normalized variable diagram

proposed by LEONARD [64], to discretize the convective term. In this scheme, first,

the normalized value of the volume fraction in a cell, say C represented in Figure

2.14, is defined based on the volume fraction values in cells U and D, as follows:

ζC =
αC − αU
αD − αU

. (2.86)

Similarly, the normalized face value is defined as:

ζf =
αf − αU
αD − αU

. (2.87)

Figure 2.14: Volume fractions in central (C), upwind (U) and downwind (D) cells

Accordingly, to avoid non-physical oscillations arising from the locally un-

bounded αC and consequently αf in the entire solution domain, the normalized

face value is estimated as follows based on the normalized cell value:

ζf =



ζC , if ζC < 0

2ζC , if 0 ≤ ζC ≤ 0.5

1, if 0.5 ≤ ζC ≤ 1

ζC , if 1 < ζC

(2.88)

The value of ζf is then corrected based on the local Courant number (Cu) to

account for the availability criterion, which states that in a time step the quantity

of a fluid convecting through a face is less than or equal to the quantity of the fluid

available in the donor cell, as follows:

ζ∗f =


ζf , if Cu < CuL

ζC + (ζf − ζC) CuU−Cu
CuU−CuL

, if CuL ≤ Cu ≤ CuU

ζC , if CuU < Cu

(2.89)

where, CuL and CuU are user-adjustable parameters to control the blending of HRIC

and the first-order upwind method. Therefore, based on this equation, where the

Courant number is less than CuL HRIC is used, and where the Courant number is in
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the range between CuL < Cu < CuU a combination of HRIC and upwind methods is

employed, and finally where the Courant number is larger than CuU only the upwind

method is used.

For problems with a steady state solution, in order to take advantage of the

features of HRIC scheme, it is recommended by STARCCM+ [37] to specify these

limits (CuL and CuU), values higher than the Courant number encountered in the

simulation. SPENCE [65] reported an improvement in the simulation results, by

increasing CuL and CuU . Accordingly, to use the HRIC method in the present

study, values of 5 and 5.5 are assigned to CuL and CuU , which are well above the

Courant numbers encountered in the simulations.

The final correction is introduced into the normalized face value ζf in accordance

with the angle θ enclosed by the vector normal to the interface (, which is defined

as the gradient of the volume fraction ∇αi,) and the vector normal to the surface

of the cell face as follows:

ζ∗∗f = ζ∗f (cosθ)Cθ + ζC(1− (cosθ)Cθ), (2.90)

where Cθ (angle factor) is a user-adjustable parameter with a default value of 0.05.

This value should be increased for simulations where the free surface does not follow

the grid lines. Herein, the default value of the angle factor is used. Note that the

reason to use this last correction is to prevent the alignment of the interface with

the numerical grid [63]. Finally, the value of αf on the face is calculated as:

αHRICf = ζ∗∗f (αD − αU) + αU . (2.91)

2.3.5 Discretization of the governing equations

After spatial discretization, the equations governing the physical problem, 2.63 and

2.64, are discretized. STARCCM+ uses the Finite Volume Method (FVM) to dis-

cretize directly the integral form of the governing equations over the finite volumes

representing the discretized form of the computational domain [37]. An immedi-

ate advantage of the FVM is the assurance of the conservation of the basic flow

quantities for each finite volume, by using the integral form of conservation laws

[38].

In this section, the procedure used by STARCCM+ [37] to discretize the conti-

nuity and the momentum equations is presented. Additionally, the discretized form

of each term in the momentum equation including the transient term, the convection

term, diffusion term and pressure term is presented.
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Continuity Equation

The continuity equation in the discretized form is written as follows:

∑
f

ṁf =
∑
f

(ṁ∗f + ṁ′f ) = 0, (2.92)

where f stands for face, ṁf is the mass rate in cell face, ṁ∗f is the uncorrected

mass rate (which is calculated by using the velocities obtained from solving the

discretized form of momentum equation with velocity and pressure values specified

from the initial or previous iteration) and ṁ′f is the mass rate correction. As is

well known from VERSTEEG e MALALASEKERA [38] and FERZIGER e PERIC

[57], the continuity equation is normally used to obtained an equation for pressure

correction, which is used to update the velocity and pressure fields. In this regard,

the value of ṁ∗f for an interior face is estimated in terms of the cell variables as

follows:

ṁ∗f = ρ

(−→
V∗0 +

−→
V∗1

2

)
.
−→
S −Qf (p

∗
0 − p∗1 −∇p∗f .∆

−→x ), (2.93)

where
−→
V∗0 and

−→
V∗1 are the velocities of the cell 0 and 1 that are obtained from

solving the discretized form of momentum equation with velocity and pressure values

specified from the initial or previous iteration. p∗0 and p∗1 indicate the pressure values

of the cell 0 and 1, respectively, at initial or previous iteration. The second term on

the right hand side of Equation 2.93 is called the Rhie-and-Chow dissipation at the

face. The term ∇p∗f is the average of the cell pressure gradients calculated using a

volume-weighted averaging interpolation scheme between the gradient values of the

cell 0 and 1. This term is especially important in non-orthogonal grids where the

angle between the cell face normal and the line connecting the centers of cell 0 and

1 on either side of the face f is nonzero. Additionally, ∆−→x = −→x 1 − −→x 0, with −→x 1

and −→x 0 being the position vector of cell 0 and 1, respectively, indicates the vector

connecting two cells 0 and 1 centroids. Furthermore, the parameter Qf is calculated

as follows:

Qf = ρ

(
Ω0

a0

+
Ω1

a1

)
−→α .
−→
S , (2.94)

where Ω0, Ω1 imply the volume, and a0, a1 the average of the coefficients of the

discretized momentum equations of finite volume controls 0 and 1, respectively.

The parameter −→α is the face metric quantity and is calculated as:

−→α =

−→
S

−→
S .∆−→x

. (2.95)
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After calculation of ṁ∗f , the mass rate correction ṁ′f is estimated from an equa-

tion similar to that proposed by VERSTEEG e MALALASEKERA [38] for the

calculation of the mass rate correction as follows:

ṁ′f = Qf (p
′
0 − p′1). (2.96)

Substituting equation 2.96 into equation 2.92 provides a system of equations to

obtain the pressure correction terms p′0 and p′1 as follows:

app
′
p +

∑
n

anp
′
n =

∑
f

ṁ∗f . (2.97)

From the above system of equations with linear coefficients, ap and an, the un-

known pressure correction terms p′ are obtained; consequently, this pressure cor-

rection is used to calculate the mass rate correction ṁ′f and mass rate ṁf from

Equations 2.96 and 2.92, respectively.

Momentum equation

The discretized form of the Navier-Stokes equations without the presence of the

external forces is written as follows:

∂

∂t
(ρ
−→
VΩ)0 +

∑
f

[
ρ
−→
V(
−→
V.
−→
S )
]
f

=
∑
f

τ.
−→
S −

∑
f

(
pI.
−→
S
)
f
. (2.98)

The first term on the left hand side is the transient term; the second term is

the convection term. Additionally, on the right hand side, the first term indicates

the diffusion term, while the second one is the pressure term. The discretization

procedure for each term is outlined as follows:

• Transient term:

This term is only included in time-dependent simulations, i.e., simulations with

the presence of the free surface. Note that, in the present thesis, the simulations in

which the UV is totally submerged are performed as steady. In this regard, in case

of the simulations with the presence of free surface, a first-order implicit scheme,

also called the Euler Implicit, is used to discretize the transient term as follows:

∂

∂t
(ρ
−→
VΩ)0 = ρ

−→
Vn+1 −

−→
Vn

∆t
Ω0, (2.99)

where n + 1 indicates the solution at the current time step, and n the solution at

the previous time step.

• Convection term:
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For a general scalar quantity φ, the convection term is discretized as follows:

[
ρφ
(−→

V.
−→
S
)]

= ṁfφf , (2.100)

where φf and ṁf are the value of the scalar quantity φ and the mass rate at the cell

face, respectively. To calculate φf a second-order upwind method is utilized as:

ṁfφf =

ṁf

[
φ0 + (−→x f −−→x 0) .

−→
∇φr,0

]
, if ṁ∗f ≥ 0

ṁf

[
φ1 + (−→x f −−→x 1) .

−→
∇φr,1

]
, if ṁ∗f < 0

(2.101)

where φ0 and φ1 are the values of the scalar quantity φ at cell-0 and cell-1. The

value (−→x f −−→x 0) .
−→
∇φr,0 and (−→x f −−→x 1) .

−→
∇φr,1 are the linear interpolations of the

values of the scalar quantity φ at cell centroids to the mutual face of these cells. The

terms
−→
∇φr,0 and

−→
∇φr,1 are the limited reconstruction gradients in cell-0 and cell-1,

respectively. In Equation 2.101 it is assumed that the centroids of cells 0 and 1 lie

on opposing sides of the face f .

• Pressure evaluation at faces:

The pressure at each face is estimated based on the interpolated pressure values

pf0 and pf1 from cell-0 and cell-1, as follows:

pf =
a0pf0 + a1pf1

a0 + a1

, (2.102)

where a0, a1 are the average of the coefficients of the discretized momentum equa-

tions of finite volume controls 0 and 1, respectively. Note that pf0 and pf1 are

interpolated from cell-0 and cell-1 using the limited reconstruction gradients
−→
∇pr,0

and
−→
∇pr,1 as follows:

pf0 = p0 + (−→x f −−→x 0) .
−→
∇pr,0, (2.103)

pf1 = p1 + (−→x f −−→x 1) .
−→
∇pr,1. (2.104)

• Diffusion term:

For a general scalar quantity φ, the diffusion term is written as Γ
−→
∇φ.
−→
S , where

Γ indicates the diffusivity. To obtain a second-order expression for diffusion value

at an interior face f in terms of cell values φ1 and φ0, the following second-order

scheme is used:
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Γf
−→
∇φf .

−→
S =

Γf

[
(φ1 − φ0)−→α .

−→
S +

(−→
∇φ0 +

−→
∇φ1

2

)
.
−→
S −

((−→
∇φ0 +

−→
∇φ1

2

)
.∆−→x

)
−→α .
−→
S

]
,

(2.105)

where ∆−→x = −→x 1 − −→x0 with −→x 1 and −→x0 being the position vector of cell 1 and 0,

respectively, indicates the vector connecting two cells 0 and 1 centroids. In Equation

2.105 it is assumed that the centroids of cells 0 and 1 lie on opposing sides of the

face f . Note that the second and third terms on the right hand side of Equation

2.105 are the secondary gradients, which are essential especially in non-orthogonal

grids.

Calculation of gradients

When using FVM on an unstructured grid, especial attention must be paid to calcu-

late the spatial derivatives (gradients). Calculation of gradients, which is called the

gradient reconstruction, consists of approximating the gradient vectors attributed

to the control volumes using a finite set of discrete scalar values. In STARCCM+

the gradients are used in the following places:

• To calculate the reconstructed field values at faces

• To calculate the diffusion terms

• Pressure gradients

• In turbulence models to calculate the strain and rotation rates

STARCCM+ uses two main steps to calculate the gradients:

1. In the first step, the unlimited reconstruction gradients are calculated. The

unlimited refers to the calculations of reconstruction gradients, where the avail-

ability criteria is not accounted for. In other words, the variables on faces can

exceed the values of the cells in vicinity.

2. The second step is limiting the reconstruction gradients calculated in the first

step. In this step, in order for the reconstructed face values not to fall outside

the range of the values in neighboring cells, the reconstruction gradients are

limited based on the minimum and maximum values found in the neighboring

cells. These limited reconstruction gradients are employed for the estimation

of the scalar values on faces, which are used to calculate flux integrals.
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In the present work, a hybrid Gauss Least-Square method is employed for the

purpose of calculation of reconstruction gradients.

2.3.6 Multiphase segregated flow solver

A multiphase segregated flow solver is used to control the overall solution. The

multiphase refers to the phases involved in the simulations, whose shares of the

computational domain are determined by the volume fraction (Equation 2.85). Ad-

ditionally, in the numerical simulations, a colocated variable arrangement proposed

by RHIE e CHOW [66] is used. Note that the segregated solver is another name

for a SIMPLE-type solver for pressure-velocity coupling, STARCCM+ [37]. The

SIMPLE algorithm, which controls the overall solution, can be described briefly as

follows:

1. The velocity and pressure fields are specified from initial or previous iteration.

Also, the boundary conditions are imposed.

2. The reconstruction gradients of pressure and velocity fields are computed.

3. The pressure and velocity gradients are limited.

4. Through solving the discretized form of momentum equation (Equation 2.98)

the intermediate velocity field
−→
V∗ is obtained.

5. The uncorrected mass rate ṁ∗f is computed from Equation 2.93.

6. The pressure correction equation (Equation 2.97) is solved to provide the cell

values of the pressure correction p′.

7. The pressure field is updated through pn+1 = pn + 0.3p′, where, 0.3 is the

under-relaxation factor for pressure.

8. The mass rates on faces are updated through ṁn+1
f = ṁ∗f + ṁ′f .

9. The velocity is corrected through
−→
Vn+1 =

−→
V∗− Ω∇p′

−→a Ω
p

where ∇p′ is the gradient

of the pressure corrections and −→a Ω
p is the vector of central coefficients of the

discrete linear system of equations expressing the velocity.

10. Set
−→
V∗ =

−→
V and p∗ = p.

2.3.7 Solution to the algebraic system of equations

The result of the discretization of the governing equations is a set of linear algebraic

equations as follows:
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Ax = B, (2.106)

where the matrix A represents the coefficients of the linear system, the vector x is

the unknowns and the vector B represents the boundary and initial conditions along

with the source terms. Since most of the elements in matrix A are zero this matrix

is typically a sparse matrix. Using direct methods, such as Gauss elimination can be

costly, especially on large grids. Therefore, STARCCM+ uses an iterative method

called the algebraic multigrid (AMG) method to solve this set of linear algebraic

equations [37]. This method has three major steps as follows:

1. Gathers the cells together in the fine grid to form a coarser grid level. The

reason for this is the faster convergence of the Gauss-Seidel’s method on coarse

grids. The coarse-grid equations are obtained from the arithmetic combina-

tions of the fine-grid coefficients.

2. The B matrix is transferred from the fine-grid level to the coarse-grid level.

3. The corrections are transferred back to the fine-grid level from the coarse-grid

level.

The main reason to use the AMG method is only to speed the convergence of

the Gauss-seidel’s iterative method. More information about this approach can be

found in STARCCM+ [37].

Generally, in iterative methods, a better approximation (xk+1) of the exact so-

lution x, at the iteration k + 1 is sought from the solution in previous iteration k,

xk. The error at the iteration k is defined as:

ek = x− xk. (2.107)

Additionally, the residual can be defined as:

rk = B − Axk. (2.108)

Multiplying both sides of Equation 2.107 by matrix A results in:

Aek = Ax− Axk. (2.109)

Equation 2.109 can be rewritten as:

Aek = B − Axk = rk. (2.110)

Accordingly, the iterations are continued to drive the residual to a small value,

which is equivalent to drive the error to a small and negligible value.
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In the present work, it is assumed that the convergence of the simulations achieve

once the mean values of the forces and moments converge to nearly-constant values

with oscillations of less than 2%-3% of the mean values. Accordingly, the conver-

gence of the simulations without the presence of the free surface achieve approxi-

mately after 1400 iterations. At the same time the root mean square of the absolute

residuals drop to values less than 10−4. Furthermore, the simulations with the pres-

ence of the free surface converge approximately within 25 seconds simulation time

and at the same time the root mean square of the absolute residuals drop to values

less than 10−3. Additionally, the number of inner iterations is considered as 5, which

is the default value proposed by STARCCM+ [37].

2.4 Geometry and computational conditions

In this work, a 1/1-scale of the bare hull axisymmetric SUBOFF geometry with

principal dimensions presented in Table 2.2 [40] is used. Figure 2.15 shows the bare

hull SUBOFF model along with the body-fixed coordinate system with positive x0

pointing toward the bow and negative z0 pointing toward the free surface. The

center of the body-fixed coordinate system coincides with the center of buoyancy of

the model, which is located at the location 0.462L from the nose. As can be seen

in Figure 2.15, the model possesses a bow part, a parallel middle part and a stern

part with lengths presented in Table 2.2. The model has a length to diameter ratio

equal to L/D = 8.575.

Table 2.2: Principal dimensions of the SUBOFF [40]

Length 4.356 m
Diameter 0.508 m

Bow-part length 1.016 m
Parallel Middle part length 2.229 m

Stern-part length 1.111 m

Figure 2.15: The axisymmetric SUBOFF bare hull model used in this thesis
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In the present thesis, to obtain the axial force acting on the SUBOFF, the

straight-ahead resistance tests are performed over Froude numbers and submergence

depths ranging from Fn = 0.205 to Fn = 0.512 and from h = 1.1D to h = ∞,

respectively. Additionally, to estimate the forces and moment arising from the lateral

velocity component, the drift tests are carried out at a constant advance velocity

based on Fn = 0.512 over submergence depths and drift angles ranging from h =

1.1D to h = ∞ and from β = 0 (v′ = 0) to β = 18.11◦ (v′ = −0.31), respectively.

Moreover, to calculate the forces and moment generated by the yaw rate, the rotating

arm tests are performed at a constant advance velocity based on Fn = 0.512 over

submergence depths and yaw angular velocities ranging from h = 1.1D to h = ∞
and from r′ = −0.05 to r′ = −0.4, respectively.

It can be demonstrated that, in the rotating arm tests, the dimensionless yaw

angular velocity has the following relation with the radius of rotation R:

r′ =
L

R
. (2.111)

Accordingly, the rotating arm tests are performed over the radius of rotations

ranging from R = 2.5L to R = 20L.

For the purpose of validation of the numerical simulations, several sets of avail-

able experimental data of the forces and moments acting on the bare hull SUBOFF

model are employed.

Accordingly, the validation of the straight-ahead resistance tests is performed

using the experimental resistance force data provided by LIU e HUANG [42] and

WILSON-HAFFENDEN et al. [35]. The experiments of LIU e HUANG [42] are

conducted on a 1/1-scale SUBOFF model at h = ∞ over Froude numbers ranging

from Fn = 0.438 to Fn = 1.416. Additionally, to support the SUBOFF model

during the experiments two NACA0015 struts are used. On the other hand, the

experiments of WILSON-HAFFENDEN et al. [35] are performed on a 1/2.8-scale

SUBOFF model over submergence depths and Froude numbers ranging from h =

1.1D to h = 3.3D and from Fn = 0.128 to Fn = 0.640, respectively. Moreover, to

support the SUBOFF model during the experiments a mounting device composed

of a vertical post and a horizontal sting is used.

Also, to validate the drift tests, the experimental data of the forces and moment

acting on a 1/1-scale SUBOFF model given by RODDY [43] is used. The experi-

ments are performed for h =∞ and a constant advance velocity based on Fn = 0.512

over drift angles ranging from β = 0 (v′ = 0) to β = 18.11◦ (v′ = −0.31). The model

was supported using the same technique as that used by LIU e HUANG [42].

Furthermore, the validation of the rotating arm tests is performed using the

experimental data of the forces and moment acting on a 1/1-scale SUBOFF model
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provided by ETEBARI et al. [41]. The experiments are carried out for h = ∞
and a constant advance velocity based on Fn = 0.236 over drift angles and yaw

angular velocities ranging from β = −3.8◦ to β = −16.5◦ and from r′ = −0.3577 to

r′ = −0.3702, respectively. During the experiments, while the SUBOFF is supported

using the same technique as that used by WILSON-HAFFENDEN et al. [35], it

undergoes a turning motion at different yaw angular velocities and drift angles.

Note that the utilization of the horizontal sting by ETEBARI et al. [41] and

WILSON-HAFFENDEN et al. [35] to support the SUBOFF during the experiments

requires the truncation of the model in the stern region. Therefore, the presence of

the sting, due to a reduction in the hull surface area together with the modification

that it introduces into the pressure distribution over the stern region, affects the

forces and moments acting on the UV.

Thus, in this study to validate the rotating arm tests using the data provided

by ETEBARI et al. [41], the simulations are performed with the presence of the

support, as shown in Figure 2.16. Furthermore, to identify the sting effect on the

resistance force data provided by WILSON-HAFFENDEN et al. [35], the simulation

for Fn = 0.462 and h = 1.1D is repeated with the presence of the support, as shown

in Figure 2.17.

Figure 2.16: The axisymmetric SUBOFF bare hull model with the support used by
ETEBARI et al. [41]

Figure 2.17: The axisymmetric SUBOFF bare hull model with the support used by
WILSON-HAFFENDEN et al. [35]

Note that, in the simulations, the submergence depth h is considered as the

distance between the x0sy0 plane and the calm water level (,i.e., the z coordinate of

the x0sy0 plane).

Finally, a general matrix of the simulations that are performed in this study is

presented in Table 2.3.
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Table 2.3: A general matrix of the simulations that are performed in this thesis.
The table contains the ranges of the variables where the hydrodynamic forces and
moments are obtained (RVFM), the ranges of the variables where the validations
are carried out (RVV) and the ranges of the variables where the effect of the support
used in the equivalent experiments is considered or investigated (SE).

Captive Test RVFM RVV SE

Straight-ahead
0.205 ≤ Fn ≤ 0.512

1.1D ≤ h ≤ ∞
0.205 ≤ Fn ≤ 0.512

1.1D ≤ h ≤ ∞
Fn = 0.462
h = 1.1D

drift

Fn = 0.512
0 ≤ β ≤ 18.11◦

1.1D ≤ h ≤ ∞

Fn = 0.512
0 ≤ β ≤ 18.11◦

h =∞
-

Rotating arm

Fn = 0.512
−0.05 ≤ r′ ≤ −0.4

1.1D ≤ h ≤ ∞

Fn = 0.236
−0.36 ≤ r′ ≤ −0.37
−3.8◦ ≤ β ≤ −16.5◦

h =∞

Fn = 0.236
−0.36 ≤ r′ ≤ −0.37
−3.8◦ ≤ β ≤ −16.5◦

h =∞

2.5 Computational domains and boundary condi-

tions

In the current thesis, to perform the straight-ahead resistance tests along with the

drift tests, the computational domain is considered as a rectangular box; while to

conduct the rotating arm tests, a computational domain in a circular form with a

rectangular cross section is used.

Figure 2.18 shows the computational domain used to perform the straight-ahead

resistance and drift tests for h = ∞. As can be seen, the computational domain

stretches two body lengths (2L) in the upstream direction, five body lengths (5L)

in the downstream direction and ten body diameters (10D) to the side, bottom and

top. Because of the symmetry of the fluid flowing over the SUBOFF, only half of

the UV is modeled.

The upstream boundary is considered as a velocity inlet, where a uniform velocity

is specified based on Froude number. Furthermore, by using the reconstruction

gradients the pressure on this boundary is extrapolated from the adjacent cells. In

the downstream boundary a pressure outlet is defined. In this boundary, a relative

pressure equal to zero is specified and the velocity is extrapolated from the interior

cells using the reconstruction gradients. Additionally, the side, bottom and top

boundaries are treated as symmetry walls, where the normal velocity along with

the normal gradients of all the variables (except for the normal velocity) is assumed

zero. Also, by using the reconstruction gradients the pressure on these boundaries

is extrapolated from the adjacent cells.

In addition, Figures 2.19 and 2.20 show the computational domain used to per-

55



form the straight-ahead resistance and drift tests, respectively, with the presence

of the free surface, i.e., for 1.1D ≤ h ≤ 3.3D. Note that in the presence of the

free surface the fluid flowing around the SUBOFF at a steady drift angle may not

be symmetric; therefore, in the drift tests with the presence of the free surface the

SUBOFF UV is fully simulated. On the other hand, in the straight-ahead resistance

tests, due to the symmetry of the problem with respect to x0sz0 plane, only half of

the UV is modeled. As can be seen in Figures 2.19 and 2.20, in both cases, the com-

putational domain stretches two body lengths (2L) in the upstream direction, five

body lengths (5L) plus a wavelength of the UV-generated waves in the downstream

direction and ten body diameters (10D) plus a wavelength to side(s). Furthermore,

in both cases, the box extends twenty body diameters (20D) above and below the

body.

In both cases, at the upstream, top and bottom boundaries a velocity inlet is

used, where a uniform velocity is specified based on Froude number. The use of

the velocity inlet condition at the top and bottom boundaries eliminates the fluid

reflection from these boundaries and also facilitates the modeling of an open sea,

which is defined as deep water and infinite air conditions. Furthermore, by using the

reconstruction gradients the pressure on these boundaries is extrapolated from the

adjacent cells. Also, the downstream boundary is considered as a pressure outlet,

where a hydrostatic pressure is specified and the velocity is extrapolated from the

interior cells using the reconstruction gradients. Moreover, a symmetry boundary

condition is used for the boundaries at two sides, where the normal velocity along

with the normal gradients of all the variables (except for the normal velocity) is

assumed zero. Also, by using the reconstruction gradients the pressure on these

boundaries is extrapolated from the adjacent cells.

In the simulations with the presence of the free surface, to eliminate the wave

reflections at the boundaries located at the downstream and (two) side(s), a damping

zone is established next to these boundaries, as can be seen in Figures 2.19 (a) and

2.20 (a). In this zone, a source term, which acts as a resistance force, is added to the

momentum equation of the vertical velocity component to cancel this component

over the damping zone. Although in STARCCM+ this source term is defined as a

combination of both linear and quadratic functions in terms of the vertical velocity

component [37], only the linear one is used in this thesis. Thus, the linear source

term with a coefficient defined as f1 = πω is added to the momentum equation of the

vertical velocity component over the damping zone, which has a thickness equal to

the length of the UV-generated wave system. This configuration for the source term

and the damping zone thickness is recommended by PERIĆ e ABDEL-MAKSOUD

[67] for simple flow phenomena and, as shown by MAALI AMIRI et al. [19], works

satisfactory in the present simulations.
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Finally, Figures 2.21 (a) and (b) depict the computational domains used to sim-

ulate the rotating arm tests for h =∞ and for 1.1D ≤ h ≤ 3.3D, respectively. For

h = ∞ due to the symmetry of the problem regarding the x0sy0 plane, only half

of the UV is modeled, while for 1.1D ≤ h ≤ 3.3D the SUBOFF UV is fully simu-

lated. Note that, in both cases, the distances of the boundaries from the SUBOFF

are considered the same as those used to perform the straight-ahead resistance and

drift tests. Additionally, the boundary conditions are predominantly the same as

those used to carry out the straight-ahead resistance and drift tests, except for the

boundaries located at two sides of the domain. In this regard, to prevent any fluid

reflection, a velocity inlet is also used at the two boundaries located at two sides,

which as a result facilitates the iterative convergence of the simulations related to

the rotating arm tests.

It is worthy to mention that, in this study, the rotational motion is implemented

by rotating the flow around the stationary SUBOFF UV, which is the same approach

used in the research conducted by TOXOPEUS et al. [68]. Therefore, as a rotating

coordinate system is adopted to perform the simulations of the rotating arm tests,

the Coriolis and centrifugal forces (Equation 2.59) resulting from the computation

in a rotating reference frame are added explicitly to the momentum equations as

source terms.

Note that, in all the simulations in this thesis, a no-slip boundary condition is

imposed over the SUBOFF model, which states that the relative velocity between

the body surface and the fluid immediately at the body surface is zero. Thus, from

the continuity equation it can be inferred that the normal gradient of the normal

velocity is also zero on this boundary. Also, by using the reconstruction gradients

the pressure on this boundary is extrapolated from the adjacent cells.

Additionally, the treatment of the Reynolds stresses on the boundaries is pre-

sented in Appendix C.

(a) Top View (b) Side View, for β = 0

Figure 2.18: Computational domain used to perform the straight-ahead resistance
and drift tests for h =∞
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(a) Top View (b) Side View

Figure 2.19: Computational domain used to perform the straight-ahead resistance
tests with the presence of the free surface, i.e., for 1.1D ≤ h ≤ 3.3D

(a) Top View (b) Side View, at β = 0

Figure 2.20: Computational domain used to perform the drift tests with the presence
of the free surface, i.e., for 1.1D ≤ h ≤ 3.3D

(a) Top View, at h =∞ (b) Top View, for 1.1D ≤ h ≤ 3.3D

Figure 2.21: Computational domains used to simulate the rotating arm tests for
h =∞ and for 1.1D ≤ h ≤ 3.3D

2.6 Grid generation

The grid in this study is generated automatically by STARCCM+ using two different

methods: prism layer and trimmer.
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The trimmer mesh is used to discretize almost the entire computational domain

except for the region close to the body surface. This mesh is mainly composed

of hexahedral cells with a small number of trimmed cells next to the UV hull to

accommodate the body.

Additionally, the prism layer mesh, which is constructed from orthogonal pris-

matic cells, is employed to resolve the turbulent boundary layer close to the body

surface. In this mesh, a geometric progression with an expansion factor of 1.1 is

used to increase progressively the thickness of the prismatic cells from the inner cell

immediately next to the UV hull to the outer cells. Furthermore, as the RST model

in this thesis employs the standard wall function to capture the near-wall turbu-

lence, the first cell immediately next to body surface resides within the logarithmic

region of the boundary layer. This corresponds to the Y + values in the range from

30 to 100.

Moreover, to capture properly the wave system generated by the UV together

with the pressure drop in the wake region and leeward side of the SUBOFF at drift,

appropriate local mesh refinements are utilized. For instance, as recommended by

SPENCE [65], approximately 100 to 160 cells in wavelength and 30 to 50 cells in

height discretize the free surface to resolve properly the generated wave system of the

UV. A detailed description of the grid generation process can be found in Appendix

A

In this regard, Figures 2.22, 2.23, 2.24 and 2.25 present the grids used to simu-

late the straight-ahead resistance tests, the straight-ahead resistance tests with the

presence of the support used by WILSON-HAFFENDEN et al. [35], the drift tests

and the rotating arm tests, respectively. Local mesh refinements used in the mesh

generation process can be clearly identified in these figures.

(a) The grid generated in x0sy0 plane for
Fn = 0.466 and h =∞

(b) The grid generated in x0sz0 plane for
Fn = 0.462 and h = 1.1D

Figure 2.22: Grids used to simulate the straight-ahead resistance tests
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Figure 2.23: Generated grid in x0sz0 plane, which is used to repeat the straight-
ahead resistance test for Fn = 0.462 and h = 1.1D with the presence of the support
used in the equivalent experiments of WILSON-HAFFENDEN et al. [35].

(a) The grid generated in x0sy0 plane for β =
18.11◦ (v′ = −0.31) and h =∞

(b) The grid generated in x0sz0 plane for β =
18.11◦ (v′ = −0.31) and h = 1.1D

Figure 2.24: Grids used to simulate the drift tests
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(a) The grid generated
in x0sy0 plane for β =
−14.3◦, r′ = −0.3681 and
h = ∞, which is used
to validate the simulations
of the rotating arm tests.
Note that the support used
in the equivalent experi-
ments conducted by ETE-
BARI et al. [41] is also
present.

(b) The grid generated in
x0sy0 plane for r′ = −0.4
and h =∞

(c) The grid generated in x0sz0

plane for r′ = −0.4 and h = 1.1D

Figure 2.25: Grids used to simulate the rotating arm tests
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Chapter 3

Verification and Validation

This chapter deals with the verification and validation of the numerical model used in

this thesis. Herein, the verification process encompasses the grid convergence study

together with the evaluation of the effect of the support used in the experiments

conducted by WILSON-HAFFENDEN et al. [35] on the forces and moment acting on

the SUBOFF. Additionally, the validation includes the comparison of the calculated

forces and moments with the available measured ones. As outlined in Table 2.3, the

validation is performed over the ranges of variables for which the experimental data

are available.

3.1 Grid convergence study

In this section, the sensitivity of the solutions to the grid resolution is determined

through performing a systematic grid convergence study over three grids, namely I,

II and III. This study is carried out for each hydrodynamic test at two different

computational conditions: without and with the presence of the free surface, i.e.,

for h =∞ and h = 1.1D.

In this research, to refine the grid systematically, all the mesh quantities in the

grid generation process are defined in terms of a reference value called BS. In this

regard, the grid is uniformly refined using a refinement factor equal to 1.2 in all the

dimensional directions.

Accordingly, the grid convergence study for the straight-ahead resistance tests is

carried out without the presence of the free surface for h =∞ and Fn = 0.466, and

with the presence of the free surface for h = 1.1D and Fn = 0.462. Tables 3.1 and

3.2 show the grids I, II and III used for grid convergence study in straight-ahead

tests.

Moreover, this study for the drift tests is carried out without the presence of

the free surface for h = ∞, Fn = 0.512 and v′ = −0.31 (β = 18.11◦), and with the

presence of the free surface for h = 1.1D, Fn = 0.512 and v′ = −0.31 (β = 18.11◦).
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Tables 3.3 and 3.4 show the grids I, II and III used for grid convergence study in

drift tests.

Furthermore, the grid convergence study for the rotating arm tests is performed

without the presence of the free surface for h = ∞, Fn = 0.236, r′ = −0.3702 and

β = −16.5◦, and with the presence of the free surface for h = 1.1D, Fn = 0.512

and r′ = −0.4. Note that, the simulation without the presence of the free surface is

performed with the presence of the support used in the experiments conducted by

ETEBARI et al. [41]. Tables 3.5 and 3.6 show the grids I, II and III used for grid

convergence study in rotating arm tests.

Table 3.1: Different grids used for grid convergence study in straight-ahead resis-
tance tests at h =∞

Mesh BS (m) Number of cells

I 1.22 1, 476, 570

II 1.2 2, 187, 240

III 1 3, 286, 182

Table 3.2: Different grids used for grid convergence study in straight-ahead resis-
tance tests at h = 1.1D

Mesh Time Step BS (m) Number of cells

I 1.22 × 0.02 1.22 4, 263, 986

II 0.02 1.2 7, 880, 477

III 0.02
1.22 1 12, 650, 388

Table 3.3: Different grids used for grid convergence study in drift tests at h =∞

Mesh BS (m) Number of cells

I 1.22 2,233,578

II 1.2 3, 412, 608

III 1 5, 065, 748

Table 3.4: Different grids used for grid convergence study in drift tests at h = 1.1D

Mesh Time Step BS (m) Number of cells

I 1.22 × 0.0288 1.22 4, 720, 191

II 0.0288 1.2 7, 676, 547

III 0.0288
1.22 1 11, 818, 224
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Table 3.5: Different grids used for grid convergence study in rotating arm tests at
h =∞

Mesh BS (m) Number of cells

I 1.22 2, 066, 039

II 1.2 3, 126, 058

III 1 4, 872, 519

Table 3.6: Different grids used for grid convergence study in rotating arm tests at
h = 1.1D

Mesh Time Step BS (m) Number of cells

I 1.22 × 0.0288 1.22 3, 540, 027

II 0.0288 1.2 5, 249, 496

III 0.0288
1.22 1 7, 779, 781

Figure 3.1 represents the Y + distribution over the SUBOFF hull using grid III

presented in Table 3.1, which is the finest grid utilized in this thesis. As can be

seen, the Y + values mostly fall in the range from 30 to 100 where the wall function

can be used.

Figure 3.1: Y + distribution over the SUBOFF hull using grid III presented in Table
3.1

The BS values used in the simulations are shown in Tables 3.1, 3.2, 3.3, 3.4,

3.5 and 3.6. Additionally, note that, in the simulations with the presence of the

free surface, the spatial grid refinement is accompanied by a temporal refinement.

However, since the orders of accuracy are different in space and time, the temporal

refinement factor is defined in such a manner so as to obtain the same order of

error reduction in both the temporal and spatial discretizations [69]. Accordingly,

as a second-order scheme is used for spatial discretization and a first-order one for

temporal discretization, temporal refinement factor is chosen as the square of the

spatial refinement factor [69].

In this regard, in the simulations with the presence of the free surface, the time-

step size for grid II is calculated as wave period
number of cells per wavelength

, which is recommended

by STARCCM+ [37], and then it is adjusted in the corresponding grids I and III,

based on the square of the spatial refinement factor, as mentioned above.
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Therefore, using the sets of grids presented in Tables 3.1, 3.2, 3.3, 3.4, 3.5 and

3.6, the simulations are performed to calculate the X-force from the straight-ahead

resistance tests for h =∞ together with the X-force, Z-force and M -moment from

the same tests for h = 1.1D. Additionally, from the drift tests for h = ∞ the

X-force, Y -force and N -moment and from the same tests for h = 1.1D the X-

force, Y -force, N -moment, Z-force and M -moment are calculated. Furthermore,

the simulations of the rotating arm tests are performed for h = ∞ to estimate the

X-force, Y -force and N -moment and the same tests are performed for h = 1.1D to

determine the X-force, Y -force, N -moment, Z-force and M -moment. Tables 3.7,

3.8, 3.9, 3.10, 3.11 and 3.12 show the normalized values of the forces and moments

obtained from the corresponding simulations.

Table 3.7: Normalized X-force obtained from the simulations of the straight-ahead
resistance tests for h =∞

Mesh X ′

I -0.00080838

II -0.00080364

III -0.00080154

Table 3.8: Normalized X-force, Z-force and M -moment obtained from the simula-
tions of the straight-ahead resistance tests for h = 1.1D

Mesh X ′ Z ′ M ′

I -0.0020631 -0.0008504 -0.000718

II -0.0020478 -0.0008556 -0.000722

III -0.0020392 -0.0008591 -0.000721

Table 3.9: Normalized X-force, Y -force and N -moment obtained from the simula-
tions of the drift tests for h =∞

Mesh X ′ Y ′ N ′

I -0.000700 0.0064293 0.0030451

II -0.000693 0.0064321 0.0030512

III -0.000688 0.0064339 0.0030549
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Table 3.10: Normalized X-force, Y -force, Z-force, N -moment and M -moment ob-
tained from the simulations of the drift tests for h = 1.1D

Mesh X ′ Y ′ N ′ Z ′ M ′

I -0.003043 0.010944 0.002646 0.002931 -0.0005344

II -0.003025 0.010915 0.002654 0.002882 -0.0005247

III -0.003011 0.010897 0.002659 0.002849 -0.0005183

Table 3.11: Normalized X-force, Y -force and N -moment obtained from the simula-
tions of the rotating arm tests for h =∞

Mesh X ′ Y ′ N ′

I -0.0023044 -0.007080661 -0.0018664

II -0.0022957 -0.007126781 -0.001854916

III -0.0022892 -0.007157779 -0.001848176

Table 3.12: Normalized X-force, Y -force, Z-force, N -moment and M -moment ob-
tained from the simulations of the rotating arm tests for h = 1.1D

Mesh X ′ Y ′ N ′ Z ′ M ′

I -0.00271 -0.00093638 0.00057401 -0.000009938 -0.000752194

II -0.0026985 -0.00094463 0.00057672 -0.000009659 -0.000752711

III -0.0027055 -0.00095071 0.00057841 -0.000009431 -0.000752304

Tables 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18 show the percentage of changes in the

corresponding forces and moments obtained from the simulations. As can be seen,

the changes in the forces and moments between grids II and III are consistently

smaller than the changes in the forces and moments between grids I and II. This

drop in the changes of the forces and moments indicates the convergence of the

solutions as the grid is refined.

Table 3.13: Percentage of changes in the variable between grids used in the straight-
ahead resistance tests at h =∞

% changes X ′

I to II -0.59

II to III -0.26
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Table 3.14: Percentage of changes in the variables between grids used in the straight-
ahead resistance tests at h = 1.1D

% changes X ′ Z ′ M ′

I to II -0.74 0.61 0.56

II to III -0.42 0.41 -0.14

Table 3.15: Percentage of changes in the variables between grids used in the drift
tests at h =∞

% changes X ′ Y ′ N ′

I to II -1.000 0.044 0.200

II to III -0.722 0.028 0.121

Table 3.16: Percentage of changes in the variables between grids used in the drift
tests at h = 1.1D

% changes X ′ Y ′ N ′ Z ′ M ′

I to II -0.592 -0.265 0.302 -1.672 -1.815

II to III -0.462 -0.165 0.188 -1.145 -1.220

Table 3.17: Percentage of changes in the variables between grids used in the rotating
arm tests at h =∞

% changes X ′ Y ′ N ′

I to II -0.378 0.651 -0.615

II to III -0.283 0.435 -0.363

Table 3.18: Percentage of changes in the variables between grids used in the rotating
arm tests at h = 1.1D

% changes X ′ Y ′ N ′ Z ′ M ′

I to II -0.424 0.881 0.472 -2.807 0.069

II to III 0.259 0.644 0.293 -2.360 -0.054

Based on the changes of the forces and moments between the grids, the con-

vergence ratio, which is required for the estimation of the order of discretization

together with the grid uncertainty, can be estimated as follows:

RG =
εG32

εG21

, (3.1)
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where εG32 = SIII−SII is the variation in the forces/moments between grids II and

III, and εG21 = SII−SI is the variation in the forces/moments between grids I and

II.

The values of RG indicate the following four conditions [70]:

1. 0 < RG < 1, monotonic convergence.

2. −1 < RG < 0, oscillatory convergence.

3. RG > 1, monotonic divergence.

4. RG < −1, oscillatory divergence.

For conditions 3 and 4, where the grid divergence occurs no order of discretization

and uncertainty can be calculated. For condition 2, only the uncertainty is calculated

as:

UG =
1

2
|SU − SL|, (3.2)

where SU and SL are the maximums and minimums of the oscillations of the forces

and moments [70]. For condition 1, where the grid convergence occurs and the forces

and moments show asymptotic monotonic convergence, the generalized Richardson

extrapolation [71] based on the procedure proposed by MCHALE e FRIEDMAN [72]

is used to calculate the order of discretization together with the grid uncertainty.

In this regard, first the refinement factors between grids I, II and III are de-

termined as:

r12 =
hI
hII

,

r23 =
hII
hIII

,

(3.3)

where hi is defined as a representative cell size and is calculated as follows:

hi =
3

√
Total Volume

Total Number of Cells in Grid i
. (3.4)

Then, one can calculate the observed order of discretization using the following

relation:

PG =
1

lnr23

[
ln

(
1

RG

)
+ ln

(
rPG23 − 1

rPG12 − 1

)]
. (3.5)
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Finally, the uncertainties associated with the forces and moments calculated from

grids II are predicted as follows:

UG = FS

∣∣∣∣ εG32

SII(r
PG
23 − 1)

∣∣∣∣ , (3.6)

where FS indicates the factor of safety, which is assigned a value of 1.25 for three-

grid studies. The value of UG is a measure of the distance between the values of the

forces and moments obtained from the simulations and their asymptotic values. In

other words, small values of UG demonstrate that the values of the solution results

are close to their asymptotic values.

The values of RG, PG and UG related to the forces and moments obtained from

the grids II are given in Tables 3.19, 3.20, 3.21, 3.22, 3.23 and 3.24.

Based on the values of RG, almost all the forces and moments show an asymp-

totic monotonic convergence behavior, except for the M -moment obtained from the

simulations of the straight-ahead resistance tests for h = 1.1D and the X-force

and M -moment both obtained from the simulations of the rotating arm tests for

h = 1.1D, which all show an oscillatory convergence behavior.

In Tables 3.19, 3.20, 3.21, 3.22, 3.23 and 3.24, deviations of the observed PG from

its theoretical value, which is 2, is observed. These deviations can be due to several

factors such as the boundary conditions, the existing non-linearities in the problem,

turbulence modeling and mesh quality, EÇA e HOEKSTRA [73]. Additionally, in

cases with super-convergence of the observed order of discretization, i.e., PG > 2,

the theoretical value of PG is used instead of the observed PG to calculate the grid

uncertainty, as recommended by EÇA e HOEKSTRA [73]. Since, according to EÇA

e HOEKSTRA [73], the super-convergence of the observed PG is unreliable and is

only the consequence of several factors such as the existing non-linearities in the

problem, turbulence modeling and mesh quality.

Generally, the small values of the UG presented in Tables 3.19, 3.20, 3.21, 3.22,

3.23 and 3.24 demonstrate the negligible sensitivity of the solutions to the grid

resolution.

Table 3.19: Calculated UG and the order of discretization of X-force obtained from
the simulation of the straight-ahead resistance tests for h =∞

Quantity RG PG UG%SII

X ′ 0.44 6.39 1.05
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Table 3.20: Calculated UG and the order of discretization of X-force, Z-force and
M -moment obtained from the simulation of the straight-ahead resistance tests for
h = 1.1D

Quantity RG PG UG%SII

X ′ 0.56 1.73 1.67

Z ′ 0.67 0.74 4.1

M ′ -0.25 - 0.28

Table 3.21: Calculated UG and the order of discretization of X-force, Y -force and
N -moment obtained from the simulation of the drift tests for h =∞

Quantity RG PG UG%SII

X ′ 0.71 1.94 3.09

Y ′ 0.64 2.71 0.12

N ′ 0.61 3.14 0.50

Table 3.22: Calculated UG and the order of discretization of X-force, Y -force, Z-
force, N -moment and M -moment obtained from the simulation of the drift tests for
h = 1.1D

Quantity RG PG UG%SII

X ′ 0.78 0.86 4.40

Y ′ 0.62 2.33 0.62

N ′ 0.63 2.28 0.71

Z ′ 0.67 1.79 4.85

M ′ 0.70 1.54 6.55

Table 3.23: Calculated UG and the order of discretization of X-force, Y -force and
N -moment obtained from the simulation of the rotating arm tests for h =∞

Quantity RG PG UG%SII

X ′ 0.75 2.53 1.03

Y ′ 0.67 3.27 1.58

N ′ 0.59 4.23 1.32
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Table 3.24: Calculated UG and the order of discretization of X-force, Y -force, Z-
force, N -moment and M -moment obtained from the simulation of the rotating arm
tests for h = 1.1D

Quantity RG PG UG%SII

X ′ -0.61 - 0.21

Y ′ 0.74 2.32 2.68

N ′ 0.62 3.59 1.22

Z ′ 0.82 1.90 10.41

M ′ -0.79 - 0.03

Finally, as the changes in the forces and moments between grids II and III are

indeed smaller than the changes in the forces and moments between grids I and II,

the grids II are chosen to perform the rest of the simulations in this thesis.

3.2 Validation

In this section, the validation of the numerical simulations for each captive test is

performed by comparing the calculated forces and moments against the available

experimental data. In this regard, based on TOXOPEUS et al. [68], it is assumed

that the numerical simulations are solely affected by the uncertainty associated with

the grid UG. Accordingly, the validation uncertainty Uval is calculated as:

Uval =
√
U2
G + U2

E (3.7)

where UE is the uncertainty in the experimental measurement. Accordingly, if the

comparative difference between the calculated and measured forces and moments is

smaller than the validation uncertainty Uval, it is said that the model is validated;

otherwise, the model is not validated.

3.2.1 Validation of the simulations of the straight-ahead re-

sistance tests

To validate the simulations of the straight-ahead resistance tests, the normalized

X-force obtained from these simulations is compared against the experimental data

given by LIU e HUANG [42] and WILSON-HAFFENDEN et al. [35] over Froude

numbers and submergence depths ranging from Fn = 0.205 to Fn = 0.512 and from

h = 1.1D to h = ∞, respectively. Note that the experiments of LIU e HUANG

[42] are performed for h = ∞ while the experiments of WILSON-HAFFENDEN

et al. [35] are carried out for submergence depths h = 1.1D through h = 3.3D.
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To the knowledge of the present author, no uncertainty has been reported by LIU e

HUANG [42] in the measurement of the X-force. On the other hand, the uncertainty

in the measurement of the X-force in the experiments conducted by WILSON-

HAFFENDEN et al. [35] is reported to be within UE = 3.1%. Note that the

uncertainty reported by WILSON-HAFFENDEN et al. [35] does not include the

contribution from the support used during the experiments.

Figure 3.2 depicts the normalized calculated and measured X-forces. The general

trends of the calculated X-force are similar to those of the measured one. The

numerical model has captured reasonably well the oscillatory behavior of the X-force

at the shallowest submergence depth. The average comparative difference between

the calculated and measured X-forces for h = ∞ is approximately 4.05%, while

for submergence depths h = 1.1D through h = 3.3D this value is about 10.27%.

The larger difference for the simulations with the presence of the free surface is

attributed to the presence of the support used in the experiments, which is further

evaluated in the next section. The validation uncertainty associated with the X-

force for submergence depths h = 1.1D through h = 3.3D is Uval =
√
U2
G + U2

E =√
1.672 + 3.12 = 3.52%. It will be shown that taking into account the support effect

reduces the difference between the calculated and measured X-forces to a point,

where it falls within the validation uncertainty Uval = 3.52%.

Figure 3.2: Normalized calculated and measured (LIU e HUANG [42] and WILSON-
HAFFENDEN et al. [35]) X-forces obtained from the straight-ahead resistance tests
for Froude numbers and submergence depths ranging from Fn = 0.205 to Fn = 0.512
and from h = 1.1D to h =∞, respectively

3.2.2 Validation of the simulations of the drift tests

To validate the simulations of the drift tests, the normalized X-force, Y -force and

N -moment obtained from these simulations are compared against the experimental

data given by RODDY [43] for h =∞ and Fn = 0.512 over lateral velocities ranging

from v′ = 0 (β = 0) to v′ = −0.311 (β = 18.11◦). The uncertainty in the measure-
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ments of the the X-force, Y -force and N -moment was reported to be UE = 10%,

which does not include the contribution from the mounting device.

Figures 3.3 (a), (b) and (c) depict the normalized calculated and measured X-

forces, Y -forces and N -moments. The calculated forces and moment are found to

be in a fairly good agreement with the measured ones. However, for |v′| < 0.035

(β < 2◦) an unexpected large difference between the calculated and measured Y -

forces and N -moments is observed. For instance, for v′ = −0.018 (β = 1.06◦) com-

parative differences between the calculated and measured Y -forces and N -moments

are roughly 50% and 27%, respectively. These large differences are unusual because,

as pointed out by CHESNAKAS e SIMPSON [25], KIM et al. [55] and PHILLIPS

et al. [54], the accurate prediction of the forces and moments acting on an axisym-

metric UV hull at incidence is particularly difficult at large angles of drift due to the

development of the complex three dimensional crossflow separation over the body at

this range. Therefore, the large discrepancies observed for |v′| < 0.035 (β < 2◦) are

likely due to either the resolution of the load cells used during the experiments, which

apparently was not adequate for the measurement of the small forces or a numerical

problem in the calculation of the forces and moments of very small values.

Aside from the large differences observed for |v′| < 0.035 (β < 2◦), the av-

erage comparative differences between the numerical and experimental X-forces,

Y -forces and N -moments are about 4.01%, 6.07% and 5.58%. Additionally, the

validation uncertainties associated with the X-force, Y -force and N -moment are

Uval =
√
U2
G + U2

E =
√

3.092 + 102 = 10.47%, Uval =
√
U2
G + U2

E =
√

0.122 + 102 =

10.00% and Uval =
√
U2
G + U2

E =
√

0.502 + 102 = 10.01%, respectively. There-

fore, the calculated X-force, Y -force and N -moment are well within their validation

uncertainties.
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(a) Normalized calculated and measured X-
forces obtained from the drift tests for Fn =
0.512 and h =∞ over lateral velocities rang-
ing from v′ = 0 to v′ = −0.311

(b) Normalized calculated and measured Y -
forces obtained from the drift tests for Fn =
0.512 and h =∞ over lateral velocities rang-
ing from v′ = 0 to v′ = −0.311

(c) Normalized calculated and measured N -
moments obtained from the drift tests for
Fn = 0.512 and h =∞ over lateral velocities
ranging from v′ = 0 to v′ = −0.311

Figure 3.3: Comparison of the calculated forces and moment against the experimen-
tal data presented by RODDY [43] in drift tests

3.2.3 Validation of the simulations of the rotating arm tests

To validate the simulations of the rotating arm tests the X-force, Y -force and N -

moment obtained from these simulations are compared against the experimental

data given by ETEBARI et al. [41] for h =∞ and Fn = 0.236 over drift angles and

angular yaw velocities ranging from β = −3.8◦ to β = −16.5◦ and from r′ = −0.3577

to r′ = −0.3702, respectively. As mentioned earlier, the simulations are performed

with the presence of the support shown in Figure 2.16. The experiments incorporate

two hydrodynamic tests, the rotating arm and drift tests, in a single test, which is

the case of a UV undergoing a steady turning maneuver shown in Figure 2.9. The

uncertainty in the measurements of the X-force, Y -force and N -moment in the

experiments conducted by ETEBARI et al. [41] is reported to be within UE = 8.1%,

UE = 4.9% and UE = 4.1%, respectively, which does not include the contribution

from the mounting device.

Figures 3.4 (a), (b) and (c) show the normalized calculated and measured X-

forces, Y -forces and N -moments. As can be seen, the numerical model captures
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reasonably well the general trend of the experimental data. The average com-

parative differences between the calculated and measured X-forces, Y -forces and

N -moments are approximately 4.32%, 4.78% and 4.04%. Additionally, the valida-

tion uncertainties associated with the X-force, Y -force and N -moment are Uval =√
U2
G + U2

E =
√

1.032 + 8.12 = 8.17%, Uval =
√
U2
G + U2

E =
√

1.582 + 4.92 = 5.15%

and Uval =
√
U2
G + U2

E =
√

1.322 + 4.12 = 4.31%, respectively. Thus, the calculated

X-force, Y -force and N -moment fall within their validation uncertainties.

(a) Normalized calculated and measured X-
forces obtained from the rotating arm tests
for Fn = 0.236 and h = ∞ over drift angles
and yaw angular velocities from β = −3.8◦

to β = −16.5◦ and from r′ = −0.3577 to
r′ = −0.3702, respectively

(b) Normalized calculated and measured Y -
forces obtained from the rotating arm tests
for Fn = 0.236 and h = ∞ over drift angles
and yaw angular velocities ranging from β =
−3.8◦ to β = −16.5◦ and from r′ = −0.3577
to r′ = −0.3702, respectively

(c) Normalized calculated and measured N -
moments obtained from the rotating arm
tests for Fn = 0.236 and h = ∞ over drift
angles and yaw angular velocities ranging
from β = −3.8◦ to β = −16.5◦ and from
r′ = −0.3577 to r′ = −0.3702, respectively

Figure 3.4: Comparison of the calculated forces and moment against the experimen-
tal data presented by ETEBARI et al. [41] in rotating arm tests

3.3 The effect of the support

In this section, the effect of the support used in the experiments conducted by

WILSON-HAFFENDEN et al. [35] on the X-force, Z-force and M -moment acting

on the SUBOFF for Fn = 0.462 and h = 1.1D is investigated. In this regard, the
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simulation is performed with the presence of the support, as shown in Figure 2.17.

The grid used for this simulation is represented in Figure 2.23.

Table 3.25 shows the normalized values of the experimental and numerical X-

forces with and without the presence of the support. As can be seen, the presence

of the support increases the X-force by approximately 9%, which indicates an im-

provement in the X-force prediction. Thus, as mentioned in section 3.2.1, it can be

inferred that by considering the support effect, the calculated values of the X-forces

presented in section 3.2.1 will fall within the validation uncertainty bound.

Notice that adding the support to the stern region causes a reduction in the

surface area of the SUBOFF, which consequently decreases the frictional component

of the X-force. However, for a UV traveling close to the free surface the pressure

component also contributes remarkably to the X-force. In this regard, the presence

of a sting in the stern region reduces the normal pressure acting on this region

and thus increases the pressure difference between the fore and aft parts. This,

accordingly, results in an increase in the X-force.

Table 3.25 further shows the normalized values of the Z-force and M -moment

with and without the presence of the support for Fn = 0.462 and h = 1.1D. It

can be inferred that, at this Froude number, the presence of the support causes the

nearly-negligible 2.5% and 2.1% increase in the Z-force and M -moment, respectively.

Table 3.25: Normalized X-force, Z-force and M -moment calculated for h = 1.1D
and Fn = 0.462 with the presence of the support (WS) and without the presence of
the support (WOS)

Quantity X ′ Z ′ M ′

(Exp.) -0.002211 - -

(Num.)(WOS) -0.002048 -0.000856 -0.000722

(Num.)(WS) -0.002252 -0.000877 -0.000737

Additionally, Figure 3.5 shows the wave system generated by the SUBOFF UV

with and without the presence of the support for Fn = 0.462 and h = 1.1D. In this

figure, ψmax is the SUBOFF wake angle, which is defined as the angle enclosed by

the line passing through the locations of the the highest peaks inside the UV wake

and the x0sz0 plane. It is observed that the support has a negligible influence on the

wavelength and wake angle since the wavelength and wake angle both are closely

related to the dispersion relation, as shown by NOBLESSE et al. [20]. It is further

observed that the wake angle of the SUBOFF at this condition is smaller than the

classical Kelvin wake angle ,i.e., ψK = 19.47◦, which based on NOBLESSE et al. [20]

is attributed to the interference effects between the dominant wave systems inside

the UV wake.
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Figure 3.5: SUBOFF-generated wave system for Fn = 0.462 and h = 1.1D for the
case without the presence of the support (left-hand side) and with the presence of
the support (right-hand side)

However, due to the destructive effect of the support on the free surface defor-

mations and local variables and also to evaluate correctly the hydrodynamic forces

and moments acting on the SUBOFF, all the simulations in the present study are

conducted without the presence of the support.
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Chapter 4

Results and Discussion

In this chapter, the results regarding the hydrodynamic forces and moments gener-

ated by the velocity components on the UV obtained from the numerical simulations,

together with the hydrodynamic coefficients over various submergence depths are

presented. Additionally, this chapter provides a detailed analysis of the free surface

effect on the hydrodynamics of the SUBOFF axisymmetric UV undergoing steady

motions in the horizontal plane. This chapter further presents the results of the

dynamic stability of the SUBOFF UV in the horizontal plane along with the ma-

neuvering simulations of the UV for various submergence depths.

4.1 Hydrodynamic forces and moments arising

from the velocity components

In this section, first the hydrodynamic forces and moments arising from the velocity

components of the UV acting on the SUBOFF in the horizontal plane are presented.

In this respect, Figure 4.1 shows the hydrodynamic forces and moments acting

on the SUBOFF in the horizontal plane for various UV velocity components and

submergence depths.

Figure 4.1 (a) presents the normalized hydrodynamic axial X-force for various

axial velocities and submergence depths. Significant increase is observed in the X-

force with a decrease in submergence depth, which as is well known arises from the

advent of the wave-making resistance component [21]. At the shallowest submer-

gence depth, the oscillatory behavior of the X-force has to do with the interference

effects between the dominant wave systems inside the UV wake on the free surface,

which is further investigated in the next section.

Additionally, Figures 4.1 (b), (c) and (d) show the normalized hydrodynamic

X-force, Y -force and N -moment, respectively, for various lateral velocities and sub-

mergence depths. As the UV approaches the free surface, a significant increase is
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observed in the hydrodynamic X-force and Y -force over the entire range of lat-

eral velocities. As mentioned earlier, this is due to the advent of the wave-making

resistance component [21]. At the shallowest submergence depth, an increase in

the lateral velocity gives rise to an increase in the X-force, whereas, at larger sub-

mergence depths, increase in this velocity component results in a reduction in the

X-force. Moreover, over the entire range of submergence depths, the Y -force in-

creases with respect to the lateral velocity, which is associated with an increase in

the pressure difference between the leeward side and windward side of the UV. On

the other hand, unlike the X-force and Y -force, a decrease in the submergence depth

appears to cause a decrease in the N -moment, especially at large lateral velocities.

Moreover, it is observed that unlike other variables, the free surface effect on the

N -moment vanishes more rapidly with respect to submergence depth.

In addition, Figures 4.1 (e), (f) and (g) present the normalized hydrodynamic

forces and moment for various angular yaw velocities and submergence depths. With

a decrease in submergence depth, a significant increase is observed in the values of the

X-force, Y -force and N -moment over the entire range of yaw velocities, which is due

to the advent of the wave-making resistance component [21]. Over the entire range

of submergence depths, while both the Y -force and N -moment increase with respect

to the yaw rate, the X-force appears to remain nearly constant with an increase in

the r velocity component. Additionally, it is observed that the N -moment arising

from the angular yaw velocity, contrary to the N -moment arising from the lateral

velocity v, experiences an increase with a decrease in submergence depth.

Note that due to the negligible interference effects between the wave systems

generated by the lateral velocity and yaw velocity at points along the SUBOFF

length, the hydrodynamic forces and moments arising from these velocity compo-

nents present no oscillatory behavior with respect to the lateral velocity and angular

yaw velocity components, as mentioned correctly in section 2.1.2.
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(a) Normalized X-force for various axial ve-
locities and submergence depths

(b) Normalized X-force for various lateral
velocities and submergence depths

(c) Normalized Y -force for various lateral
velocities and submergence depths

(d) Normalized N -moment for various lat-
eral velocities and submergence depths

(e) Normalized X-force for various angular
yaw velocities and submergence depths

(f) Normalized Y -force for various angular
yaw velocities and submergence depths

(g) Normalized N -moment for various
angular yaw velocities and submergence
depths

Figure 4.1: Normalized hydrodynamic forces and moments arising from the velocity
components of the UV acting on the SUBOFF in the horizontal plane. The figures
also depict the curves used to approximate the hydrodynamic forces and moments
in terms of the UV velocity components, i.e., u′, v′ and r′, for various submergence
depths.

Furthermore, as the UV travels close to the free surface, the asymmetric dynamic
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pressure distribution across the body depth provoked by the nearby self-induced

wave system gives rise to the generation of the forces and moments in the vertical

plane. In this regard, Figure 4.2 presents the hydrodynamic forces and moments

acting on the SUBOFF in the vertical plane for various UV velocity components

and submergence depths.

Figures 4.2 (a) and (b) show the normalized vertical Z-force and M -pitching

moment, respectively, for various axial velocities and submergence depths. As can

be seen, at the shallowest submergence depth, the UV experiences significant Z-

force and M -moment. At this depth, the oscillatory behavior of the Z-force and

M -moment is due mainly to the interaction between the bow wave and the low-

pressure aft shoulder region, as shown by MAALI AMIRI et al. [19]. Additionally,

over the entire range of axial velocities, the Z-force remains an upward force while

the M -moment changes from a bow-down moment to a bow-up one and vice-versa

several times. Moreover, for Fn > 0.4 the Z-force decreases rapidly and is expected

to change from a force acting to draw the UV toward the free surface to a force to

pull the hull away from the free surface. Moreover, with an increase in submergence

depth, a small upward Z-force, together with a small bow-down M -moment, is

exerted on the SUBOFF by the free surface at merely high Froude numbers.

Furthermore, Figures 4.2 (c) and (d) present the normalized vertical Z-force and

M -moment, respectively, as a function of sway velocity v′ for various submergence

depths. At the shallowest submergence depth, both the Z-force and M -moment

vary significantly with respect to the lateral velocity component. In this regard,

for |v′| > 0.15 the Z-force transitions from an upward force to a downward one.

In addition, for |v′| > 0.15 the M -moment undergoes a consistent decrease with

respect to v velocity. Moreover, as can be observed, at large submergence depths, a

small upward Z-force, together with a small and approximately constant bow-down

M -moment, is exerted on the UV for almost the entire range of v velocity.

Finally, Figures 4.2 (e) and (f) show the normalized vertical Z-force and M -

pitching moment, respectively, as a function of yaw velocity r′ for various sub-

mergence depths. At the shallowest submergence depth, both the Z-force and M -

moment undergo a slight decrease with an increase in the yaw rate. It is observed

that, at this depth, the Z-force and the M -moment both present a lower level of

dependency on the yaw rate compared to the lateral velocity component, as shown

in Figures 4.2 (c) and (d). However, at large submergence depths, the Z-force and

M -moment remain nearly-constant with respect to the angular yaw velocity com-

ponent, which is also observed in the behavior of the the Z-force and M -moment

with respect to the lateral velocity (see Figures 4.2 (c) and (d)).

Herein, noteworthy is the non-oscillatory behavior of the Z-force and M -moment

with respect to the lateral velocity v and the yaw rate r, which is associated with the
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negligible interference effects between the wave systems generated by these velocity

components at points along the SUBOFF length.

(a) Normalized Z-force for various axial ve-
locities and submergence depths

(b) Normalized M -moment for various axial
velocities and submergence depths

(c) Normalized Z-force for various lateral ve-
locities and submergence depths

(d) Normalized M -moment for various lateral
velocities and submergence depths

(e) Normalized Z-force for various yaw rates
and submergence depths

(f) Normalized M -moment for various yaw
rates and submergence depths

Figure 4.2: Normalized hydrodynamic forces and moments acting on the SUBOFF
in the vertical plane for various velocity components and submergence depths.

Based on Figures 4.1 and 4.2, significant interaction is observed between the UV

and the free surface at the shallowest submergence depth. Generally, a decrease in

the submergence depth gives rise to an increase in almost all the forces and moments

except for the N -moment arising from the lateral velocity, which unlike the other

forces and moments undergoes a reduction. Additionally, it is observed that the

free surface effect on the hydrodynamic forces and moments diminishes drastically

with an increase in submergence depth. In this regard, based on DAWSON [10],

the interaction between the free surface and the UV hull reduces exponentially with

respect to submergence depth. Accordingly, as mentioned by DAWSON [10], this
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interaction is negligible for h
D
> 3 and completely vanishes for h

D
> 5.

In the next section, the mechanism by which the free surface affects the hydrody-

namics of a shallowly submerged UV is addressed. In this respect, the origin of the

behavior of the forces and moments acting on the SUBOFF in the horizontal plane

with respect to the UV velocity components and submergence depth is investigated

in more detail.

4.2 A detailed analysis of the free surface effect

on the hydrodynamics of the SUBOFF UV

In the previous section, it is observed that generally the forces arising from the

velocity components of the UV undergo an increase with a decrease in submergence

depth. Based on NEWMAN [21], the increase in the hydrodynamic forces as the UV

approaches the free surface has to do with the advent of the wave-making resistance

component.

Likewise, as shown by MAALI AMIRI et al. [19], the increase in the hydrody-

namic forces as the UV approaches the free surface can also be associated with the

free surface effect on the dynamic pressure distribution around the UV. Accordingly,

the crests and troughs of the self-induced wave system of a shallowly submerged UV

modify the dynamic pressure distribution around the UV hull by creating local re-

gions of high and low dynamic pressure, respectively, along the UV hull. To further

explain this, consider Figures 4.3 (a) and (b), which show the dynamic pressure

distribution around the SUBOFF at Fn = 0.256 for two submergence depths h =∞
and h = 1.1D. As can be inferred from Figures 4.3 (a) and (b), the local regions of

high and low dynamic pressure associated with the crests and troughs of the gen-

erated wave system modify the dynamic pressure distribution around the UV hull.

This modification of the pressure distribution induced by the deformations of the

nearby flexible free surface is largely responsible for the behavior of the hydrody-

namic forces as the UV approaches the free surface.
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(a) h =∞

(b) h = 1.1D

Figure 4.3: Dynamic pressure distribution around the SUBOFF for Fn = 0.256 over
two different submergence depths h = 1.1D and h =∞

Thus, herein, to investigate how the free surface affects the hydrodynamics of

a UV performing steady motions in the horizontal plane, the dynamic pressure

distributions around the SUBOFF, together with the forces and moments acting on

the UV hull, are closely analyzed over various submergence depths and UV velocity

components.

However, before proceeding to investigate the free surface effect on the hydrody-

namics of the SUBOFF UV undergoing steady motions in the horizontal plane, it is

important to have an overview of several dominant features of the fluid flow around

the totally submerged SUBOFF UV at zero incidence traveling with a constant axial

speed along a straight path, as shown in Figure 4.3 (a).

The pressure at the bow is the well known stagnation pressure, which is the

highest local pressure value experienced by the UV. Moreover, due to the separation

of the fluid flowing over the stern, the pressure in this region is only partially recov-

ered. Furthermore, the dynamic pressure of the fluid flowing around the SUBOFF

undergoes a reduction in both aft and fore shoulders with more reduction occurring

over the aft shoulder region due to a larger hull curvature.

A good knowledge of these basic flow features around the totally submerged
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SUBOFF at zero incidence is extremely helpful for better understanding of the

hydrodynamic behavior of the shallowly submerged UV at steady drift or rotational

motion. Since the axial velocity component consistently has the largest magnitude

among the velocity components of the UV during the steady drift and rotational

motions in the horizontal plane.

4.2.1 Free surface effect on the hydrodynamics of the SUB-

OFF UV undergoing a straight-ahead steady motion

In this section, to evaluate the free surface effect on the hydrodynamics of the

SUBOFF UV undergoing a straight-ahead steady motion, a detailed analysis is

conducted to investigate the origin of the behavior of the X-force with respect to

the axial velocity u over various submergence depths, as shown in Figure 4.1 (a).

Further information on the origin of the behavior of the Z-force and M -moment

arising from the axial velocity acting on the SUBOFF UV in the vertical plane

(Figures 4.2 (a) and (b)) can be found in MAALI AMIRI et al. [19].

Origin of the behavior of the X-force with respect to the axial velocity u

As mentioned earlier, the increase in the X-force with a decrease in submergence

depth can also be explained through the effect of the free surface deformations on

the dynamic pressure distribution along the length of the UV hull.

In this regard, Figure 4.4 presents the contribution of two components, frictional

and pressure, to the total X-force at two submergence depths h = 1.1D and h =∞
for Froude numbers ranging from Fn = 0.205 to Fn = 0.512. As can be inferred

from this figure, while the free surface effect on the frictional component is nearly-

negligible, it has a remarkable effect on the pressure component of the X-force. The

small increase in the frictional component with a decrease in submergence depth,

as explained by MAALI AMIRI et al. [19], can be attributed to an increase in the

fluid flow velocity between the free surface and the body, as the submergence depth

decreases.

As shown in Figure 4.4, at h = 1.1D, due to interference between the dominant

wave systems inside the UV wake the curve of the pressure component exhibits

an oscillatory behavior with respect to Froude number, i.e., it exhibits humps and

hollows (NEWMAN [21], LEWIS [3] and MOLLAND et al. [49]). As is well-known,

hump occurs when the waves are in phase (reinforcement), while hollow occurs when

the waves are out of phase (cancellation). Based on Figure 4.4, the reinforcement

or cancellation of the wave systems are accompanied by an increase or decrease in

the pressure component of the X-force, respectively.

The reinforcement and cancellation of the wave systems at h = 1.1D can also be
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Figure 4.4: Contribution of two components, frictional and pressure, to the total X-
force of the SUBOFF at two submergence depths h = 1.1D, ∞ for Froude numbers
ranging from Fn = 0.205 to Fn = 0.512

observed in Figure 4.5, which represents the behavior of the normalized maximum

height of the SUBOFF-generated wave system for Froude numbers and submergence

depths ranging from Fn = 0.205 to Fn = 0.512, and from h = 1.1D to h = 3.3D,

respectively. The normalization of the maximum wave height is carried out using the

maximum diameter of the SUBOFF bare hull D. As can be inferred from Figures 4.1

(a) and 4.5, at the shallowest submergence depth, the reinforcement or cancellation

of the wave systems at hump or hollow leads to an increase or decrease in the wave

height, which is equivalent to an increase or decrease in the energy imparted by the

UV to the surrounding fluid (NEWMAN [21]).

Figure 4.5: Calculated normalized maximum wave height (H ′max) of the SUBOFF
wave system in a range of submergence depths and Froude numbers from h = 1.1D
to h = 3.3D and from Fn = 0.205 to Fn = 0.512, respectively

As is well known, the positive and negative dynamic pressure peaks around the

UV hull are the main contributors to the UV-generated wave system on the free

surface [49]. Accordingly, in case of the SUBOFF UV, the dominant wave systems

86



inside the UV wake are generated by the bow, stern and aft shoulder. This can be

inferred from Figure 4.6, which shows the pressure distribution along the length of

the totally submerged SUBOFF for Fn = 0.46 measured experimentally by HUANG

e LIU [44] and calculated numerically from the present simulations. The uncertainty

in the measurement of the pressure coefficients is estimated to be within ±0.015.

The bow and stern waves, due to a positive peak pressure, start with a crest; while,

the aft shoulder wave, due to a negative peak pressure, starts with a trough.

Figure 4.6: Pressure distribution along the length of the totally submerged SUBOFF
for Fn = 0.462 measured experimentally by HUANG e LIU [44] and calculated
numerically from the present simulations

In naval architecture, the analysis of interference between the dominant wave

systems for identifying the humps and hollows is typically conducted between a

bow wave crest and a stern wave trough (NOBLESSE et al. [20]). This originates

from the potential flow theory, where it has been a common practice, and indeed

a powerful approach, to represent a ship hull via distributions of sources and sinks

over the bow and stern regions, respectively (NEWMAN [21]).

However, in case of the UV hulls, as can be inferred from Figure 4.6, although

the local pressure value at the stern and aft shoulder regions are approximately

equal, the aft shoulder operates in a closer proximity to the free surface compared

to the stern; thus, it is surmised that interference between the bow and aft shoulder

waves may have a more dominant effect on the behavior of the X-force, compared

to interference between the bow and stern waves.

Herein, to investigate whether the interaction between the bow and aft shoulder

waves or the interaction between the bow and stern waves has a more dominant

effect on the behavior of the X-force, an elementary analysis of interference between

the dominant wave systems, i.e., bow, stern and aft shoulder waves, is carried out

at hump and hollow Froude numbers.

In this regard, as can be inferred from Figure 4.6, the negative peak pressure

in the aft shoulder region is located at the axial location of x0/L = −0.318 (at
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the distance of 0.78L from the nose); thus, it is considered as the origin of the aft

shoulder wave trough.

From Figure 4.4 it can be inferred that at h = 1.1D the hump in the pressure

component of the X-force occurs at Fn = 0.294. At this Froude number, based on

Equation 2.21 for Θ = 0, the bow generates a wave of normalized length equal to

λ/L = 0.54. Thus, the bow wave trough is nearly on the aft shoulder wave trough.

As a result, the hump in the curve of the pressure component of the X-force at this

Froude number may be a consequence of constructive interference between the bow

and aft shoulder waves.

To investigate further this hypothesis, Figure 4.7 demonstrates the centerline

free surface profiles and the dynamic pressure distributions along the top of the

SUBOFF at h = 1.1D for Froude numbers ranging from Fn = 0.269 to Fn = 0.332.

Figure 4.7: Centerline free surface profiles and the pressure distributions along the
top of the SUBOFF at h = 1.1D for Froude numbers ranging from Fn = 0.269 to
Fn = 0.332

As can be observed in Figure 4.7, at Fn = 0.269 the bow-generated wave has

a normalized length equal to λ/L = 0.46; thus, the bow wave crest is nearly on

the stern wave crest, and in spite of constructive interference between the bow and

stern waves, the hump has not occurred. This is due mainly to the increased pressure

exerted at the stern, which decreases the pressure differential between the fore and

aft parts of the UV.

On the other hand, based on Figure 4.7, at Fn = 0.294 the bow wave trough is

on the aft shoulder wave trough, which is accompanied by a decrease in the pressure

exerted on the aft region and, consequently, results in an increase in the pressure

difference between the fore and aft parts of the UV.

Finally, according to Figure 4.7, at Fn = 0.332, the bow-generated wave has a

normalized length equal to λ/L = 0.69. Thus, the bow wave crest is close to the

aft shoulder region and, as a consequence, the pressure in the aft region of the UV
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increases, which results in a decrease in the pressure differential between the fore

and aft parts of the UV.

Moreover, from Figure 4.4 it can be inferred that at h = 1.1D the hollow in the

pressure component of the X-force occurs at Fn = 0.359. At this Froude number,

the bow creates a wave of normalized length λ/L = 0.81. Thus, the bow wave crest

is approximately on the aft shoulder wave trough. Accordingly, the hollow in the

curve of the pressure component of the X-force at this Froude number may be a

consequence of destructive interference between the bow and aft shoulder waves.

In this respect, Figure 4.8 shows the centerline free surface profiles and the

dynamic pressure distributions along the top of the SUBOFF at h = 1.1D for

Froude numbers ranging from Fn = 0.319 to Fn = 0.411.

It can be clearly seen that at Fn = 0.359 the coincidence of the bow wave crest

with the aft shoulder wave trough leads to a considerable reduction in the free surface

deformation and is responsible for the increased pressure exerted at the aft region

of the UV; this, consequently, decreases the pressure differential between the fore

and aft parts of the UV.

Figure 4.8: Centerline free surface profiles and the pressure distributions along the
top of the SUBOFF at h = 1.1D for Froude numbers ranging from Fn = 0.319 to
Fn = 0.411

The discussion given above shows that, in case of the shallowly submerged UVs,

the humps and hollows in the curve of the X-force arising from the axial velocity

component (resistance force) are a consequence of the interference effects between

the bow and aft shoulder waves, rather than between the bow and stern waves,

which is usually considered in naval architecture. This is due mainly to the closer

proximity of the aft shoulder to the free surface, which consequently contributes

more to the UV-generated wave system, compared to the stern.
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4.2.2 Free surface effect on the hydrodynamics of the SUB-

OFF UV undergoing a steady drift motion

In this section, to evaluate the free surface effect on the hydrodynamics of the

SUBOFF UV undergoing a steady drift motion, a detailed analysis is conducted to

investigate the origin of the behavior of the X-force, Y -force and N -moment with

respect to the lateral velocity v acting on the SUBOFF over various submergence

depths, as shown in Figures 4.1 (b), (c) and (d).

Origin of the behavior of the X-force with respect to the lateral velocity

v

The X-force component acting on the UV at a steady drift angle β can be inter-

preted as the resistance force exerted on the SUBOFF hull due to the axial velocity

component u = U.cosβ in x0-direction.

In the totally submerged case, a reduction in the u velocity component (,i.e., an

increase in the lateral velocity v) gives rise to a reduction in the resistance force in

x0-direction, which is in agreement with the behavior of the X-force with respect to

the lateral velocity v in the totally submerged condition (Figure 4.1 (b)).

As is well known from NEWMAN [21], in the shallowly submerged case, the

wave-making resistance component emerges as an additional contributor to the re-

sistance force acting on the UV hull. The effect of the wave-making resistance can

be clearly identified at the shallowest submergence depth in Figure 4.1 (b), which

results in a significant increase in the X-force as the UV approaches the free surface.

Furthermore, as can be inferred from Figure 4.1 (b), at the shallowest submergence

depth, contrary to the totally submerged case, an increase in the lateral velocity v

leads to an almost consistent increase in the X-force.

To explain the increase in the X-force with respect to v at the shallowest submer-

gence depth, consider Figure 4.9 depicting the normalized maximum wave height of

the SUBOFF-generated wave system at Fn = 0.512 over lateral velocities and sub-

mergence depths ranging from v′ = 0 to v′ = −0.31 and from h = 1.1D to h = 3.3D,

respectively. The normalization of the wave height is carried out by using the max-

imum diameter of the UV. As can be inferred from Figures 4.9 and 4.1 (b), at the

shallowest submergence depth, a qualitative correlation exists between the behavior

of the X-force and the maximum wave height curves. Therefore, it is very likely

that the increase in the X-force with respect to lateral velocity is due to an increase

in the imparted energy by the UV to elevate more the free surface [21], which gives

rise to an increase in the wave-making resistance component.
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Figure 4.9: Normalized maximum wave height of the SUBOF-generated wave system
at Fn = 0.512 over lateral velocities and submergence depths ranging from v′ = 0
to v′ = −0.31 and from h = 1.1D to h = 3.3D

Although the overall speed U of the UV remains unchanged, the maximum wave

height shows a considerable degree of dependency on the lateral velocity. As can

be seen in Figure 4.9, the maximum wave height increases with an increase in the

lateral velocity, especially at the shallowest submergence depth.

The reason for the increase in the maximum wave height with respect to the

lateral velocity is associated with the effect of the leeward vortical flow structure.

In other words, due to a drop in the dynamic pressure in the core of the vortical

structure, the free surface above this vortical structure is subject to depress, which

can be a possible reason for the increase in the maximum wave height with respect

to the lateral velocity. In this regard, Figure 4.10 shows the SUBOFF-generated

wave system for h = 1.1D and Fn = 0.512 over two lateral velocities v′ = 0 and

v′ = −0.31. As can be seen in this figure, at v′ = −0.31, the maximum depression

of the free surface is nearly on the leeward stern region, where the vortical flow

structure is strongest.

(a) v′ = 0 (b) v′ = −0.31

Figure 4.10: SUBOFF-generated wave system at submergence depth h = 1.1D and
Fn = 0.512 over two lateral velocities v′ = 0 and v′ = −0.31
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The coincidence of the maximum depression of the free surface close to the

UV hull with the leeward vortical flow structure can be further observed in Figure

4.11. This figure depicts the free surface profile together with vorticity magnitude

around the SUBOFF at v′ = −0.31 over two axial locations x0 = −0.6006 m and

x0 = −1.9074 m for two submergence depths h = 1.1D and h = 2.2D.

(a) h = 1.1D

(b) h = 2.2D

Figure 4.11: Free surface profile and vorticity magnitude at v′ = −0.31 over two
axial locations x0 = −0.6006 m and x0 = −1.9074 m and two submergence depths
h = 1.1D and h = 2.2D

In this regard, the growth of the leeward vortical flow structure with respect

to the lateral velocity v ([25], [54] and [55]) gives rise to a more reduction in the

dynamic pressure in the leeward side, which accordingly results in a more depression

of the free surface. The more depression of the free surface signifies an increase in

the X-force due to an increase in the wave-making resistance component. However,

based on Figures 4.9, and 4.11, at large submergence depths, the influence of the

vortical structure on the free surface elevation diminishes drastically.
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Origin of the behavior of the Y -force and N-moment with respect to the

lateral velocity v

The Y -force arising from the lateral velocity component can be interpreted as the

resistance force exerted on the UV hull in y0 direction. This force component em-

anates from the asymmetric dynamic pressure distribution around the UV developed

from the windward side toward the leeward side at a drift angle. In addition, the

N -moment is the moment generated by the Y -force about z0-axis of the UV.

As can be seen in Figure 4.1 (c), in the totally submerged case, an increase in

the lateral velocity component results in an increase in the Y -force component. As

is well known, the increase in the Y -force component with respect to v is attributed

to a growing pressure differential between the windward and leeward sides. In

this regard, Figure 4.12 shows the dynamic pressure distribution around the totally

submerged SUBOFF UV at the axial location of x0 = −1.0362m for lateral velocities

ranging from v′ = 0 to v′ = −0.31. As can be inferred from this figure, a growing

pressure differential is developed from the windward side toward the leeward side

with respect to the lateral velocity, which has to do with the crossflow separation

getting stronger. In this vein, the core of the leeward vortical flow structure can be

clearly identified for |v′| > 0.17, which is the circles of negative pressure formed at

the leeward side.

Figure 4.12: Dynamic pressure distribution around the totally submerged SUBOFF
UV at the axial location of x0 = −1.0362 m for lateral velocities ranging from v′ = 0
to v′ = −0.31

Additionally, with a decrease in submergence depth the Y -force increases remark-
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ably, which is attributed to the advent of the wave-making resistance component.

To investigate more closely the behavior of the Y -force over various submergence

depths, Figure 4.13 shows the distribution of this force component along the SUB-

OFF length at v′ = −0.31 over various submergence depths.

Figure 4.13: Distribution of the Y -force resulting from the lateral velocity v along
the SUBOFF length at v′ = −0.31 over various submergence depths

As the SUBOFF has a negative lateral velocity v′ = −0.31, it is expected that all

the stations along the UV length generate a positive lateral force. However, it is seen

that a negative lateral force is generated at the stern region of the SUBOFF over

the entire range of submergence depths. To investigate the reason for this behavior,

Figure 4.14 shows the dynamic pressure distribution in x0sy0 plane around the

SUBOFF at v′ = −0.31 for various submergence depths.

(a) h = 1.1D (b) h = 2.2D

(c) h = 3.3D

Figure 4.14: Dynamic pressure distribution in x0sy0 plane around the SUBOFF at
v′ = −0.31 for various submergence depths
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From the pressure distributions presented in Figure 4.14, five common things

over the whole range of submergence depths stand out. First is the shift of the bow

stagnation point toward the windward side due to the lateral velocity component.

Secondly, this shift causes both an increase in the dynamic pressure at the wind-

ward forward shoulder and a decrease in the dynamic pressure at the leeward bow

region. Third is the drop in the dynamic pressure at the windward aft shoulder,

which is attributed to an increase in the velocity of the fluid flowing at this region.

Fourth is the leeward shift of the aft stagnation region, which is caused by the drop

in the dynamic pressure at the windward aft shoulder. Finally, fifth is the drop in

the dynamic pressure at the leeward aft region caused by the leeward vortical flow

structure. However, noteworthy is the departure of the low-pressure region associ-

ated with the leeward vortical flow structure from the body surface at the stern,

which indicates that this low-pressure region does not remain attached to the UV

surface downstream the aft shoulder. This is due mainly to the shape of the stern

of the SUBOFF, which is rapidly tapered at this region. Accordingly, as a result

of this tapering at the stern, the leeward low-pressure vortical flow structure, which

remains parallel to the UV centerline (PHILLIPS et al. [54]), departs from the body

surface at the stern region.

Therefore, as can be seen in Figure 4.14, the decrease in the pressure at the

windward aft shoulder region, together with the leeward shift of the aft stagnation

region is responsible for the windward suction Y -force exerted over the stern region

of the SUBOFF.

Another worthy to note consideration in Figure 4.14 is the concurrent decrease in

the dynamic pressure both at the leeward aft region and the stern region as the UV

approaches the free surface. This is attributed to the depression of the free surface

above these regions, as shown in Figure 4.10 (b), which consequently reduces the

dynamic pressure at these regions.

Aside from the stern region, based on Figure 4.13, the rest of the SUBOFF UV

hull experiences a positive lateral force. At large submergence depths, the largest

magnitude of the Y -force is generated by the bow region, where the stagnation pres-

sure is located. However, at the shallowest submergence depth, significant increase

is observed in the lateral force values, especially at the region between the fore and

aft shoulders. The increase in the Y -force in this region with a decrease in submer-

gence depth can be associated with an increase in the dynamic pressure difference

between the windward and leeward sides as the UV approaches the free surface.

This increase in the pressure differential can be clearly observed in Figure 4.14. To

further establish a relationship between the pressure distribution and the behavior

of the Y -force, Figure 4.15 presents the dynamic pressure distribution around the

SUBOFF at v′ = −0.31 over axial locations and submergence depths ranging from
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x0 = 1.5774 m to x0 = −1.9074 m and from h = 1.1D to h = 3.3D, respectively.

(a) h = 1.1D (b) h = 2.2D

(c) h = 3.3D

Figure 4.15: Dynamic pressure distribution around the SUBOFF at v′ = −0.31 over
axial locations and submergence depths ranging from x0 = 1.5774m to x0 = −1.9074
m and from h = 1.1D to h = 3.3D, respectively

As can be inferred from Figures 4.14 and 4.15, the rising of the free surface above

the windward stagnation point together with the depression of the free surface above

the leeward vortical flow structure causes more increase and decrease in the local

dynamic pressure values at the windward and leeward sides, respectively. This,

consequently, leads to an increase in the dynamic pressure difference between the

windward and leeward sides and, as a result, increases the Y -force. In other words,
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the less the submergence depth, the more will be the free surface deformations and

this, accordingly, gives rise to a more increase in the Y -force.

Note that, based on Figure 4.15, the pressure distribution at x0 = −1.9074 m

over various submergence depths sheds more light on the explanation given earlier

for the negative lateral force acting on the stern region.

On the other hand, the N -moment resulting from the lateral velocity component

is the only variable that reduces with a decrease in submergence depth. In order

to have a good understanding of the behavior of the N -moment, the distribution of

this variable along the length of the SUBOFF UV can provide useful information.

In this regard, Figure 4.16 shows the distribution of the N -moment along the length

of the SUBOFF at v′ = −0.31 over various submergence depths. Noteworthy is the

largest magnitude of the N -moment along the SUBOFF length, which is generated

by the negative Y -force at the stern. Significant contribution is also observed from

the bow region where the stagnation pressure is located.

Figure 4.16: Distribution of the N -moment generated by the lateral velocity v along
the SUBOFF length at v′ = −0.31 over various submergence depths

As can be inferred from Figure 4.16, the decrease in the N -moment as the UV

approaches the free surface is due mainly to an increase in the positive Y -force acting

on the aft region, which produces a negative N -moment. This, consequently, gives

rise to a decrease in the total N -moment, which is positive, as the submergence

depth is decreased.

The results presented in this section demonstrate the crucial effect of the stern

region on the Y -force and N -moment arising from the sway velocity v acting on the

SUBOFF over various submergence depths. It is observed that for the entire range

of submergence depths an unexpected Y -force in the opposite direction of the total

Y -force is generated over the stern of the SUBOFF, which gives rise to an increase

in the total N -moment acting on the UV.

The results further show that approaching the free surface has negligible effect on

the Y -force and N -moment generated by the stern and bow regions. In this regard,

with a decrease in submergence depth, the region between the UV midlength and
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the aft shoulder is mainly responsible for the concurrent increase in the Y -force

and decrease in the N -moment. This is attributed to a growing pressure difference

between the windward and leeward sides as the UV approaches the free surface.

Accordingly, in the region between the midlength and the aft shoulder, the rising of

the free surface above the windward stagnation point, together with the depression

of the free surface above the leeward low-pressure region created by the crossflow

gives rise to more increase and decrease in the local dynamic pressure values at

the windward and leeward sides, respectively. This, consequently, gives rise to an

increase in the pressure difference between the windward and leeward sides, which

results in an increase in the Y -force while a decrease in the N -moment as the UV

approaches the free surface. Since the region between the UV midlength and the

aft shoulder generates a Y -force in the same direction of the total Y -force while it

induces an N -moment in the opposite direction of the total N -moment.

The obtained results also show a significant interaction between the low-pressure

region created by the leeward vortical flow structure and the free surface. As a result

of this interaction, the leeward vortical flow structure affects remarkably the forces

and moments exerted on a shallowly submerged UV at moderate drift angles. Several

crucial effects of the leeward vortical flow structure can be summarized as follows:

• At the shallowest submergence depth, the growth of the leeward vortical flow

structure with an increase in the lateral velocity causes more depression in the

free surface, which consequently increases the X-force component due to an

increase in the wave-making resistance component.

• At the shallowest submergence depth, the depression of the free surface above

the leeward vortical flow structure causes a more decrease in the local dynamic

pressure value at the leeward side, which is partially responsible for the increase

in the Y -force. Additionally, as the increase in the Y -force occurs mainly in

the aft region, where the leeward vortical structure is formed, the N -moment

exerted on the hull undergoes a reduction with a decrease in submergence

depth.

4.2.3 Free surface effect on the hydrodynamics of the SUB-

OFF UV undergoing a steady turning motion

In this section, the origin of the behavior of the forces and moment arising from

the yaw angular velocity component acting on the shallowly submerged SUBOFF

over various submergence depths is investigated. It is worthy to mention that this

investigation is restricted to the Y -force and N -moment, as the behavior of the X-

force with respect to r and h can be explained in the same manner as that used to

explain the behavior of the X-force with respect to the lateral velocity v and h.
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Origin of the behavior of the Y -force and N-moment with respect to the

yaw angular velocity component r

As mentioned in section 2.2.2, when an angular yaw velocity r is imposed over the

SUBOFF UV, a linear distribution of lateral velocity v is developed along the body

length. As a result, every point along the length of the SUBOFF experiences a

specific drift angle with the largest local drift angle occurring at the extreme end

of the stern. In this regard, considering the maximum rotational velocity used in

the current study, the maximum local drift angle at the extreme end of the stern

is obtained at r′ = −0.4, which is −12.14◦ degrees. Accordingly, Figure 4.17 shows

the formation of a quite weak crossflow separation only at the stern of the totally

submerged SUBOFF for this rotational yaw velocity.

Figure 4.17: Formation of a quite weak crossflow separation over the stern of the
totally submerged SUBOFF undergoing a steady turning motion with an angular
velocity r′ = −0.4 about the z0 axis

Based on Figure 4.1 (f), in the totally submerged case, an increase in the yaw

angular velocity results in an increase in the Y -force component, which is attributed

to a growing pressure differential between the windward and leeward sides. Addi-

tionally, the increase in the Y -force with a decrease in submergence depth can be

associated with the advent of the wave-making resistance component [21].

To investigate more closely the behavior of the Y -force generated by the yaw

angular velocity r for various submergence depths, the distribution of this force

component along the length of the SUBOFF is used. In this regard, Figure 4.18

shows the distribution of the Y -force arising from the yaw rate r′ = −0.4 about z0

axis over various submergence depths.
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Figure 4.18: Distribution of the Y -force generated by the angular yaw velocity r
along the SUBOFF length at r′ = −0.4 over various submergence depths

Over the whole range of submergence depths, the largest magnitude of the Y -

force is produced by the bow region where the stagnation pressure is located. Note

that, based on the lateral velocity distribution along the SUBOFF length shown in

Figure 2.13, it is expected that a positive Y -force is induced on the fore half part

of the UV while a negative Y -force is produced by the aft half part. However, only

a small region close to the bow in the fore half part generates a positive Y -force

and surprisingly over a considerable region in the fore half part a negative Y -force

is induced. Similarly, the stern region, in spite of a positive lateral velocity over

the aft half part, also produces a positive Y -force. Thus, both the bow and stern

regions generate a positive Y -force, which is in the opposite direction of the total Y -

force exerted on the UV. Accordingly, the main contribution to the Y -force is from

the region between the fore and aft shoulders. In this region, a negative Y -force is

induced on the UV hull, which is in the same direction of the total Y -force acting

on the UV hull.

To establish a relationship between the dynamic pressure distribution and the

distribution of the Y -force along the UV, Figure 4.19 shows the dynamic pressure

distribution around the SUBOFF at x0sy0 plane and r′ = −0.4 over various submer-

gence depths. From Figure 4.19 several common important fluid flow characteristics

over the whole range of submergence depths can be highlighted.

First is the shift of the bow stagnation point toward the windward side due

to the negative lateral velocity. This shift gives rise to a decrease in the dynamic

pressure at the leeward bow region. Second, which is the most crucial feature and is

responsible for the total negative lateral force exerted on the SUBOFF, is the drop in

the dynamic pressure in the region between the windward fore shoulder and leeward

aft shoulder. Although the windward fore shoulder is expected to experience an

increase in the pressure, this value decreases, which is due mainly to the dominant

role of the axial velocity compared to the small negative lateral velocity at this

region (see Figure 2.13). Furthermore, the drop in the dynamic pressure at the

region between the midlength and the leeward aft shoulder is due to the crossflow
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direction in this region, which is in the opposite direction of y0. Third is the drop

in the dynamic pressure at the windward aft shoulder, which is attributed to an

increase in the fluid flow velocity at this region. Finally, fourth is the leeward shift

of the aft stagnation region, which is due to the drop in the dynamic pressure at the

windward aft shoulder.

Note that the third and fourth features mentioned above are largely responsible

for the positive Y -force exerted at the stern region of the SUBOFF UV over the

whole range of submergence depths.

(a) h = 1.1D (b) h = 2.2D

(c) h = 3.3D

Figure 4.19: Dynamic pressure distribution around the SUBOFF at x0sy0 plane and
r′ = −0.4 over various submergence depths

Additionally, as can be inferred from Figure 4.18, the increase in the total Y -

force exerted on the SUBOFF with a decrease in submergence depth is due to

both an increase in the negative Y -force exerted over the region between the UV

midlength and the aft shoulder and a decrease in the positive Y -force experienced

by the aft shoulder region. To explain further, consider Figure 4.20, which shows the

SUBOFF-generated wave system during a steady turning motion for a yaw angular

velocity r′ = −0.4 over submergence depth h = 1.1D. Based on this figure, the

reason for the concurrent increase in the negative Y -force exerted over the region

between the UV midlength and the aft shoulder and decrease in the positive Y -force

experienced by the aft shoulder region is the depression of the free surface above the

aft leeward low-pressure region created by the crossflow at this region. Accordingly,
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the depression of the free surface above the aft leeward low-pressure region created

by the crossflow is responsible for a more decrease in the dynamic pressure acting

on the aft leeward side. The decrease in the dynamic pressure at the aft of the

SUBOFF, especially at the aft leeward side, as the UV approaches the free surface

can be clearly seen in Figure 4.19.

Figure 4.20: SUBOFF-generated wave system during a steady turning motion at a
yaw angular velocity r′ = −0.4 over submergence depth h = 1.1D

To shed more light on the explanation given for the decrease in the dynamic

pressure at the aft leeward side, consider Figure 4.21, which shows the dynamic

pressure distribution at two axial locations x0 = −1.0362 m (, which is in the region

between the UV midlength and the aft shoulder,) and x0 = −1.4718 m (,which is in

the aft shoulder region,) for various submergence depths. This figure clearly shows

that with a decrease in submergence depth the free surface is depressed above the aft

leeward low-pressure region created by the crossflow. Accordingly, the depression of

the free surface above the aft leeward low-pressure region results in a more decrease

in the dynamic pressure at this region, which is largely responsible for both the

increase in the negative Y -force exerted over the region between the UV midlength

and the aft shoulder and the decrease in the positive Y -force experienced by the aft

shoulder region.
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(a) h = 1.1D

(b) h = 2.2D

(c) h = 3.3D

Figure 4.21: Dynamic pressure distribution around the SUBOFF at two axial loca-
tions x0 = −1.0362 m and x0 = −1.4718 m for various submergence depths

Moreover, Figure 4.22 presents the distribution of the N -moment arising from

the yaw angular velocity r along the length of the SUBOFF at r′ = −0.4 for various

submergence depths. Based on this figure, the increase in the totalN -moment, which

is positive, with a decrease in submergence depth can be associated with two reasons.

First is the increase in the negative Y -force exerted over the region between the UV

midlength and the aft shoulder, which produces a positive N -moment. Second is

the decrease in the positive Y -force experienced by the aft shoulder region, which

produces a negative N -moment.
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Figure 4.22: Distribution of the N -moment generated by the angular yaw velocity
r along the SUBOFF length for r′ = −0.4 over various submergence depths

Noteworthy in the results presented in this section is again the surprising effect of

the stern region on the Y -force and N -moment produced by the yaw angular velocity

on the SUBOFF for various submergence depths. In this regard, it is observed that

the stern region generates an unexpected Y -force in the opposite direction of the

total Y -force, which gives rise to a decrease in the total N -moment acting on the

SUBOFF.

The obtained results further demonstrate that the Y -force and N -moment gener-

ated by the bow and stern regions are remotely affected by a decrease in submergence

depth. In this regard, as the UV approaches the free surface, the region between the

UV midlength and the aft shoulder is largely responsible for an increase in both the

Y -force and the N -moment. This is attributed mainly to the depression of the free

surface above the aft leeward low-pressure region created by the crossflow. Accord-

ingly, the depression of the free surface above the aft leeward low-pressure region

created by the crossflow results in a more decrease in the dynamic pressure in this

region. This is largely responsible for both an increase in the Y -force exerted over

the region between the UV midlength and the aft shoulder, which acts in the same

direction of the total Y -force, and a decrease in the Y -force experienced by the aft

shoulder region, which acts in the opposite direction of the total Y -force. Addi-

tionally, note that the Y -force exerted over the region between the UV midlength

and the aft shoulder generates an N -moment in the same direction of the total N -

moment while the Y -force acting on the aft shoulder region induces an N -moment

in the opposite direction of the total N -moment. This, accordingly, largely explains

the reason for the concurrent increase in both the Y -force and N -moment with a

decrease in submergence depth.
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4.3 Hydrodynamic coefficients in the horizontal

plane for various submergence depths

This section presents the hydrodynamic coefficients used to express the external

forces and moments in the maneuvering equations without and with the presence of

the free surface (Equations 2.5-2.7).

Accordingly, the hydrodynamic coefficients due to velocity components are ob-

tained by fitting the polynomial functions given in Equations 2.11-2.13 and 2.22-2.27

to the hydrodynamic forces and moments represented in Figure 4.1 via the linear

least-squares method. Figure 4.1 presents the fitted polynomial functions to the

hydrodynamic forces and moments resulting from the UV velocity components. Ad-

ditionally, the hydrodynamic acceleration coefficients are estimated by using Equa-

tions 2.29-2.33. Furthermore, to calculate the hydrodynamic coefficients related to

the rudder, Equations 2.42-2.44 are used.

Table 4.1 presents the predicted hydrodynamic coefficients for various submer-

gence depths. Additionally, Figure 4.23 shows the behavior of the sway and yaw hy-

drodynamic coefficients with respect to submergence depth. In this figure, h = 5.5D

corresponds to h = ∞, since for h
D
> 5 the free surface effect completely vanishes

[10]. As can be inferred from Table 4.1 and Figure 4.23, a decrease in submergence

depth generally causes a nonlinear increase in the hydrodynamic coefficients, except

for N ′v, Y
′
r|r| and N ′r|r| which reduce as the UV approaches the free surface. It is

further observed in Figure 4.23 that with an increase in submergence depth the hy-

drodynamic coefficients appear to approach asymptotically their equivalent totally

submerged values.
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Table 4.1: The hydrodynamic coefficients (h.c.) for various submergence depths

h.c. h = 1.1D h = 2.2D h = 3.3D h =∞
X ′u̇ -0.00037 -0.00037 -0.00037 -0.00037

X ′u|u| - - - -0.00094

X ′vv 0.00436 -0.00129 -0.00239 -0.00265

X ′rr 0.00028 -0.00008 -0.00006 -0.00005

X ′δrδr -0.00207 -0.00207 -0.00207 0.00207

Y ′v̇ -0.01353 -0.01353 -0.01353 -0.01353

Y ′ṙ 0 0 0 0

Y ′v -0.01380 -0.00209 -0.00107 -0.00105

Y ′v|v| -0.07056 -0.06759 -0.06591 -0.06318

Y ′r 0.00206 0.00079 0.00067 0.00064

Y ′r|r| 0.00073 0.00094 0.00102 0.00101

Y ′δr 0.00658 0.00658 0.00658 0.00658

N ′v̇ 0 0 0 0

N ′ṙ -0.00062 -0.00062 -0.00062 -0.00062

N ′v -0.01281 -0.01334 -0.01324 -0.01332

N ′v|v| 0.01441 0.01198 0.01156 0.01176

N ′r -0.00130 -0.00093 -0.00086 -0.00084

N ′r|r| -0.00033 -0.00038 -0.00043 -0.00042

N ′δr -0.00260 -0.00260 -0.00260 -0.00260

Figure 4.23: Sway and yaw hydrodynamic coefficients over various submergence
depths
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4.4 Dynamic stability analysis of the SUBOFF

UV for various submergence depths

In the present section, the dynamic stability of the SUBOFF UV is examined over

various submergence depths by using Equation 2.52. Furthermore, to analyze the

contribution of the size of the rudder to the dynamic stability, the rudder span bv is

changed from zero to 2.378bv0, where bv0 is the initial rudder span.

In this regard, Figure 4.24 shows the stability criterion (SC) over various sub-

mergence depths and rudder spans. It can be inferred from this figure that without

the presence of the rudder ( bv
bv0

= 0) the SUBOFF UV is inherently unstable for

the entire range of submergence depths. However, at this condition, with a decrease

in submergence depth the stability increases remarkably. This is due mainly to a

decrease in the N -moment produced by the lateral velocity v and an increase in

the Y -force generated by the same velocity component, which results in a decrease

in the lever of the hydrodynamic moment generated by the lateral velocity lv. In

this regard, Figure 4.25 shows the values of lv and lr as defined in Equation 2.49

over various submergence depths. In this figure, h = 5.5D corresponds to h = ∞,

since for h
D
> 5 the free surface effect completely vanishes [10]. As can be inferred

from Figure 4.25, while lr slightly increases with a decrease in submergence depth,

lv undergoes a significant decrease as submergence depth is decreased. This largely

explains the increase in the dynamic stability as the UV approaches the free surface.

Further details about the dynamic stability of the bare hull axisymmetric SUBOFF

UV are presented in the next section.

Additionally, by adding the rudder ( bv
bv0

= 1) the dynamic stability of the SUB-

OFF UV is predicted to increase for all the submergence depths. However, despite

the inclusion of the rudder, the SUBOFF UV is still predicted to have a negative SC.

Based on Figure 4.24, fortunately it is observed that an increase in the rudder span

gives rise to an almost linear increase in SC values at the entire range of submergence

depths. Noteworthy in Figure 4.24 is the marginal difference between the values of

SC at various submerence depths for bv
bv0

> 1, which indicates the dominance of the

rudder in the dynamic stability of the UV.

The stability is achieved for bv
bv0

> 1.5 over the entire range of submergence

depths. Based on HUMPHREYS e WATKINSON [74], a value of SC close to 1.0

means that the UV is overly stable and, thus, has a poor maneuverability. As

recommended by HUMPHREYS e WATKINSON [74], a value of SC larger than 0.2

and smaller than 0.7 provides the UV with a reasonable level of stability. In this

regard, it is observed that a value of 1.79bv0 for the rudder span provides an SC

approximately equal to 0.56, 0.31, 0.29 and 0.28 for h = 1.1D, h = 2.2D, h = 3.3D

and h =∞, respectively. Although the SC values over various submergence depths
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appear to be within the range recommended by HUMPHREYS e WATKINSON [74],

at large depths the UV possesses a very low level of stability, which during the open-

loop maneuvering simulations leads to kinematic variables well outside the ranges

of the variables used to obtain the hydrodynamic forces and moments. Therefore,

herein, to simulate the maneuvering of the SUBOFF in the horizontal plane, a value

of 2.18bv0 was chosen for the rudder span, which is predicted to provide an SC

approximately equal to 0.78, 0.51, 0.48 and 0.47 for h = 1.1D, h = 2.2D, h = 3.3D

and h =∞, respectively.

Figure 4.24: Stability criterion (SC) for various submergence depths and rudder
spans bv

Figure 4.25: lv and lr for various submergence depths

4.4.1 A detailed analysis of the dynamic stability of the bare

hull SUBOFF UV for various submergence depths

In the previous section, it is observed that for h = ∞ the bare hull SUBOFF

axisymmetric UV is highly unstable. This high level of instability may be due to
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both a small magnitude of the lever of the hydrodynamic moment generated by

the yaw rate lr and a large magnitude of the lever of the hydrodynamic moment

produced by the lateral velocity lv. Herein, it is demonstrated that the stern region

of the SUBOFF gives rise to both an increase in the lv and a decrease in the lr.

First, the influence of the stern region on the lv is investigated. The large mag-

nitude of the lv emanates from either a large value of the N -moment or a small

value of the Y -force or even both of which. In this regard, consider Figures 4.13 and

4.16, which show the distributions of the Y -force and N -moment generated by the

v velocity along the length of the SUBOFF for various submergence depths. As can

be seen in Figure 4.13, the stern region over the whole range of submergence depths

generates consistently a large Y -force in the opposite direction of the total Y -force,

which results in a reduction in the total Y -force acting on the UV. Furthermore,

based on Figure 4.16, it is seen that, over the whole range of submergence depths,

the largest magnitude of the N -moment along the SUBOFF length is consistently

produced by the stern region. Thus, it is observed that for h =∞ the stern region

is predominantly responsible for the comparatively large value of the lv through

increasing the N -moment and reducing the Y -force.

Additionally, as can be inferred from Figures 4.13 and 4.16, approaching the

free surface has negligible effect on the Y -force and N -moment generated by the

stern and bow regions. In this regard, the reason for the reduction of the lv with

a decrease in submergence depth (see Figure 4.25), is mainly attributed to the

region located between the UV midlength and the aft shoulder. In this region,

as mentioned in section 4.2.2, the rising of the free surface above the windward

stagnation point together with the depression of the free surface above the leeward

low-pressure region created by the crossflow gives rise to a more increase and decrease

in the local dynamic pressure values at the windward and leeward sides, respectively.

This, consequently, gives rise to an increase in the Y -force, while a decrease in the

N -moment as the UV approaches the free surface, which is largely responsible for

the decrease in the lv.

Secondly, the influence of the stern region on the lr is evaluated. The small

magnitude of the lr over the whole range of submergence depths may be due to

either a small value of the N -moment or a large value of the Y -force or even both

of which. To shed more light on this, consider Figures 4.18 and 4.22, which show

the distributions of the Y -force and N -moment generated by the r velocity along

the length of the SUBOFF for various submergence depths. It is seen in Figure

4.18 that for the entire range of submergence depths the stern generates a Y -force

in the opposite direction of the total Y -force, which results in an increase in the lr.

On the other hand, as can be inferred from Figure 4.22, the N -moment generated

by the stern region at all the submergence depths acts in the opposite direction of
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the total N -moment, which consequently reduces this moment component. Thus, it

is seen that, for the whole range of submergence depths, although the stern region

causes an increase in the Y -force, it gives rise to a reduction in the N -moment.

Accordingly, the stern region is partially responsible for the relatively small value of

the lr through decreasing the N -moment.

In this case again, based on Figures 4.18 and 4.22, approaching the free surface

has negligible effect on the Y -force and N -moment generated by the yaw rate on the

stern and bow regions. Accordingly, as can be inferred from Figures 4.18 and 4.22,

the increase in both the total Y -force and N -moment exerted on the SUBOFF with

a decrease in submergence depth is due mainly to both an increase in the Y -force

exerted over the region between the UV midlength and the aft shoulder, which acts

in the same direction of the total Y -force, and a decrease in the Y -force experienced

by the aft shoulder region, which acts in the opposite direction of the total Y -force.

As explained in section 4.2.2, this is attributed to the depression of the free surface

above the aft leeward low-pressure region created by the crossflow. Accordingly, the

depression of the free surface above the aft leeward low-pressure region results in a

more decrease in the dynamic pressure in this region, which is largely responsible for

both an increase in the Y -force exerted over the region between the UV midlength

and the aft shoulder and a decrease in the Y -force experienced by the aft shoulder

region.

However, based on Figures 4.18 and 4.22, as a decrease in submergence depth

causes a concurrent increase in both the N -moment and Y -force generated by the

yaw rate, the lr undergoes merely a small increase as the UV approaches the free

surface.

Thus, the discussion given above demonstrates that the stern region plays a de-

cisive role in the dynamic stability of an axisymmetric UV in the horizontal plane.

Additionally, it is observed that the behavior of the Y -force and N -moment gener-

ated by the lateral and yaw velocities on the region located between the midlength

and the aft shoulder of the SUBOFF is largely responsible for the concurrent in-

crease in the lr and decrease in the lv as the UV approaches the free surface, which

gives rise to an increase in the UV dynamic stability.

4.5 Maneuverability analysis of the SUBOFF UV

for various submergence depths

In the present section, to evaluate the free surface effect on the maneuverability of

the SUBOFF UV in the horizontal plane, the turning and zigzag standard maneu-

vers are performed for various submergence depths, as explained in section 2.1.6.
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This evaluation is carried out by integrating numerically the Equations 2.5-2.7 for

maneuvering simulations for the totally submerged and shallowly submerged UVs,

as explained in section 2.1.5. The numerical integration is performed using the

second-order improved Euler method with a time-step size equal to 0.01 s. The nu-

merical computations demonstrate that this time-step size is small enough to give

sufficiently precise responses for the maneuvering analysis. The simulations rely

on the hydrodynamic coefficients presented in Table 4.1 for various submergence

depths. Additionally, as mentioned in section 2.1.2, in the maneuvering simulations

with the presence of the free surface, a cubic interpolation is used to express the

axial hydrodynamic force Xf(u,h) in the equations of motion, as this force component

is stored in a one-dimensional tabular form at various submergence depths. Further-

more, to model the thrust force, Equations 2.45 and 2.48 are used. However, as no

data of free-running maneuvering tests are available, merely qualitative conclusions

are drawn.

4.5.1 Turning Maneuver

The turning maneuvers are performed with a rudder deflection of δr0 = −10◦ at an

approach velocity of U0 = 3.344 m
s

, which is the underlying reference velocity used

to calculate the hydrodynamic forces and moments arising from the UV velocity

components. In this regard, the rudder was executed with a deflection rate equal to

10◦ 1
s

after the UV attains the steady approach velocity.

Figure 4.26 shows the trajectories of the SUBOFF UV over various submergence

depths. This figure reveals that advance, transfer, tactical diameter and turning di-

ameter all undergo an increase with a decrease in submergence depth. The increase

in these quantities with a decrease in submergence depth can be further observed in

Figure 4.27, which shows the advance, transfer, tactical diameter and turning diam-

eter of the SUBOFF in the turning maneuver for various submergence depths. The

increase in these quantities is attributed to an increase in the UV damping charac-

teristics, which is reflected in the behavior of the hydrodynamic forces and moments

generated by the UV velocity components as shown in Figure 4.1. Accordingly, the

increased damping characteristics of the UV with a decrease in submergence depth

in return decreases the maneuverability of the UV.

Figure 4.27 also represents the steady drift angle of the SUBOFF at various

submergence depths. As can be seen, the drift angle reduces with a decrease in

submergence depth. To explain the reason for the decrease in drift angle consider

Figure 4.28, which shows schematically the SUBOFF UV in the steady phase of a

turning maneuver at the rudder deflection of −δr0. As can be seen in this figure,

during a turning maneuver the N -moment generated by the lateral velocity v tends

111



to increase the drift angle, while the N -moment produced by the yaw rate r tends

to decrease this angle. Accordingly, based on Figure 4.1, as with a decrease in

submergence depth the N -moment generated by the v undergoes a reduction while

the N -moment induced by the r goes up, the drift angle decreases.

Additionally, Figure 4.29 presents the time histories of the rudder deflection

angle, drift angle, yaw rate and the UV speed. The increase in the N -moment

generated by the yaw rate r with a decrease in submergence depth is apparent in

the evolution of the yaw rate, which reduces with a decrease in submergence depth,

as shown in Figure 4.29 (c). Moreover, as mentioned earlier, both the decrease

in the N -moment produced by the lateral velocity v and the increase in the N -

moment generated by the yaw rate r are responsible for the decrease in drift angle

(Figure 4.29 (b)). Furthermore, the evolution of the UV speed U with respect to

the steady approach speed U0, as shown in Figure 4.29 (d), demonstrates that as

the UV approaches the free surface the speed loss reduces, which is associated with

a decrease in the drift angle (see Figure 4.29 (b)).

Figure 4.26: Trajectory of the SUBOFF UV in the turning maneuver over various
submergence depths
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Figure 4.27: Advance, transfer, tactical diameter, turning diameter and drift angle
of the SUBOFF in the turning maneuver over various submergence depths

Figure 4.28: The SUBOFF UV undergoing a turning maneuver at a rudder deflection
of −δr0
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(a) Evolution of the rudder deflection δr0 (b) Evolution of the drift angle β

(c) Evolution of the yaw rate r′
(d) Evolution of the UV speed U regarding
to the approach velocity U0

Figure 4.29: Time histories of the variables in turning maneuver over various sub-
mergence depths

4.5.2 Zigzag Maneuver

In this section, a 10/10 zigzag maneuver is performed at an approach velocity of

U0 = 3.344 m
s

, which is the underlying reference velocity used to calculate the

hydrodynamic forces and moments arising from the UV velocity components. In

this regard, the rudder was executed with a deflection rate equal to 10◦ 1
s

after the

UV attains the steady approach velocity.

Figure 4.30 shows the evolution of the rudder deflection angle δr0 and the yaw

angle ψ of the SUBOFF UV during the zigzag maneuver over various submergence

depths. This figure clearly emphasizes the overriding role of the increased damping

characteristics of the UV with a decrease in submergence depth. As can be seen

in this figure, the overshoot angles diminish with a decrease in submergence depth,

which is due to the improved course stability as the UV approaches the free surface.

The decrease in the first and second overshoot angles, along with the times to

execute the rudder for the third and fourth times can be inferred from Figure 4.31,

which shows these quantities during the zigzag maneuver over various submergence

depths. The decrease in these quantities is attributed to an increase in the damping

characteristics of the UV, which is reflected in the plots of the hydrodynamic forces

and moments in terms of the UV velocity components shown in Figure 4.1. This, in

return, increases the course stability of the SUBOFF with a decrease in submergence

114



depth.

Additionally, Figure 4.32 presents the time histories of the drift angle, yaw rate

and UV speed. As mentioned earlier, both the decrease in the N -moment produced

by the lateral velocity v and the increase in the N -moment induced by the yaw rate

r with a decrease in submergence depth are responsible for the reduction in drift

angle shown in Figure 4.32 (a). In this case again, the increase in the N -moment

generated by the yaw rate r with a decrease in submergence depth is apparent in the

evolution of the yaw rate, which undergoes a reduction, as shown in Figure 4.32 (b).

Furthermore, the evolution of the UV speed U with respect to the steady approach

speed U0, as shown in Figure 4.32 (c), demonstrates a reduction in speed loss as the

UV approaches the free surface, which is attributed to a decrease in the drift angle.

Moreover, Figure 4.33 shows the SUBOFF trajectory during the 10/10 zigzag

maneuver for various submergence depths. As can be expected, the increase in the

damping characteristics of the UV and consequently in the course stability of the

UV with a decrease in submergence depth gives rise to a decrease in the distance

traveled by the UV.

Figure 4.30: Evolution of the rudder deflection angle δr0 together with the yaw angle
ψ of the SUBOFF UV during the zigzag maneuver over various submergence depths

115



Figure 4.31: First overshoot angle, second overshoot angle, the time to execute the
rudder for the third time and for the fourth time during the zigzag maneuver over
various submergence depths

(a) Evolution of the drift angle β (b) Evolution of the yaw rate r′

(c) Evolution of the UV speed U regarding
to the approach velocity U0

Figure 4.32: Time histories of the variables in zigzag maneuver over various sub-
mergence depths
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Figure 4.33: Trajectory of the SUBOFF UV in the zigzag maneuver over various
submergence depths
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Chapter 5

Conclusions

The present thesis seeks to evaluate the free surface effect on the hydrodynamics and

dynamics of the shallowly submerged SUBOFF axisymmetric UV traveling close to

the free surface in the horizontal plane. In this regard, the hydrodynamic captive

tests, including the straight-ahead resistance tests, drift tests and rotating arm tests,

are performed on the bare hull SUBOFF UV model by using numerical simulations

based on URANS equations coupled with a Reynolds stress turbulence model. These

captive tests are carried out for various submergence depths and proper ranges of

UV axial, lateral and yaw velocity components. The numerical simulations are

conducted in the commercial code STARCCM+, which solves the integral forms of

the URANS and continuity equations over unstructured grids by using the finite

volume method.

Herein, to verify the solutions obtained from the numerical simulations, a sys-

tematic grid convergence study is performed over three grids. This study is carried

out on the forces and moments acting on the SUBOFF hull obtained from each

hydrodynamic test at two computational conditions: without and with the presence

of the free surface. Generally, relatively small values for grid uncertainties are ob-

tained from this study, which demonstrate the negligible sensitivity of the solutions

to the grid resolution. Furthermore, the validation of the numerical simulations

for each hydrodynamic test is performed by comparing the calculated forces and

moments against the available experimental measured ones. Accordingly, the com-

parison against the experimental data for the straight-ahead resistance simulations

is performed for both totally submerged and shallowly submerged cases, while for

the drift and rotating arm tests is performed merely for totally submerged cases.

This comparison shows that in most cases the calculated forces and moments are

within their validation uncertainties.

After the verification and validation process, the forces and moments acting

on the SUBOFF UV in both the vertical and horizontal planes obtained from the

captive tests are presented with respect to both submergence depth and UV velocity

118



components. Generally, a decrease in submergence depth gives rise to an increase

in almost all the forces and moments except for the N -moment arising from the

lateral velocity, which unlike the other forces and moments undergoes a reduction.

Additionally, it is observed that the free surface effect on the hydrodynamic forces

and moments diminishes drastically with an increase in submergence depth.

Subsequently, to investigate how the free surface affects the hydrodynamics of a

UV performing steady motions in the horizontal plane, the behavior of the forces

and moments acting on the UV hull are closely analyzed for various submergence

depths and UV velocity components. Several important results obtained from this

analysis can be summarized as follows:

• In case of the shallowly submerged UVs, the humps and hollows in the curve of

the X-force arising from the axial velocity component (resistance force) are a

consequence of the interference effects between the bow and aft shoulder waves,

rather than between the bow and stern waves, which is usually considered

in naval architecture. This is due mainly to the closer proximity of the aft

shoulder to the free surface, which consequently contributes more to the UV-

generated wave system, compared to the stern.

• The stern region of the SUBOFF UV has a crucial effect on the Y -force and

N -moment arising from the lateral and angular yaw velocity components for

various submergence depths. Accordingly, it is observed that at the entire

range of submergence depths over this region an unexpected Y -force in the

opposite direction of the total Y -force is induced by both the lateral and

angular yaw velocities, which gives rise to an increase in the total N -moment

arising from the lateral velocity while results in a decrease in the total N -

moment produced by the yaw rate.

• Approaching the free surface has a negligible effect on the Y -force and N -

moment generated by both the lateral and angular yaw velocity components

on the stern and bow regions. In this regard, with a decrease in submergence

depth, the region between the UV midlength and the aft shoulder is mainly

responsible for the increase or decrease in the total Y -force and N -moment.

With a decrease in submergence depth, the effect of this region on the Y -force

and N -moment generated by each velocity component is as follows:

– As the UV approaches the free surface, the increase in the Y -force and de-

crease in the N -moment both arising from the lateral velocity are mainly

attributed to a growing pressure difference between the windward and

leeward sides located in the region between the UV midlength and the

aft shoulder. Accordingly, in this region, the rising of the free surface
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above the windward stagnation point, together with the depression of

the free surface above the leeward low-pressure region created by the

crossflow, gives rise to a more increase and decrease in the local dynamic

pressure values at the windward and leeward sides, respectively. This,

consequently, causes an increase in the pressure difference between the

windward and leeward sides, which results in an increase in the Y -force

while a decrease in the N -moment as the UV approaches the free surface.

Since the Y -force generated by the region between the UV midlength and

the aft shoulder acts in the same direction of the total Y -force while it

generates an N -moment in the opposite direction of the total N -moment.

– With a decrease in submergence depth, the concurrent increase in the

Y -force and the N -moment both arising from the yaw rate is primarily

attributed to the depression of the free surface above the aft leeward

low-pressure region created by the crossflow. Accordingly, the depression

of the free surface above the aft leeward low-pressure region results in

a more decrease in the dynamic pressure in this region. This is largely

responsible for both an increase in the Y -force exerted over the region

between the UV midlength and the aft shoulder, which acts in the same

direction of the total Y -force, and a decrease in the Y -force experienced

by the aft shoulder region, which acts in the opposite direction of the

total Y -force. This, accordingly, gives rise to an increase in both the

total Y -force and the total N -moment; since the Y -force exerted over

the region between the UV midlength and the aft shoulder generates an

N -moment in the same direction of the total N -moment while the Y -

force exerted over the aft shoulder region generates an N -moment in the

opposite direction of the total N -moment.

• Significant interaction is observed between the free surface and the low-

pressure region created by the vortical flow structure developed on the lee-

ward side of the SUBOFF UV at moderate drift angles. As a result of this

interaction, the leeward vortical flow structure affects remarkably the forces

and moments exerted on the shallowly submerged SUBOFF. Several crucial

effects of the leeward vortical flow structure are as follows:

– At the shallowest submergence depth, the growth of the leeward vorti-

cal flow structure with an increase in the lateral velocity causes more

depression in the free surface, which consequently increases the X-force

component, due to an increase in the wave-making resistance component.

– At the shallowest submergence depth, the depression of the free surface

above the leeward vortical flow structure causes a more decrease in the
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local dynamic pressure value at the leeward side, which is partially re-

sponsible for the increase in the Y -force. Additionally, as the increase

in the Y -force occurs mainly in the aft region, where the leeward vorti-

cal structure is formed, the N -moment exerted on the hull undergoes a

reduction with a decrease in submergence depth.

After a detailed assessment of the free surface effect on the SUBOFF hydro-

dynamics, the dynamic stability of the UV in the horizontal plane over various

submergence depths is evaluated. It is seen that the totally submerged bare hull

SUBOFF axisymmetric UV is highly unstable. This high level of instability is at-

tributed to the stern region. In this regard, as mentioned earlier, an unexpected

Y -force in the opposite direction of the total Y -force is induced by both the lat-

eral and yaw velocities over the stern region. This, consequently, gives rise to an

increase in the total N -moment arising from the lateral velocity while results in a

decrease in the total N -moment produced by the yaw rate. This, accordingly, leads

to an increase in the lv while a decrease in the lr, which consequently results in an

extremely low level of dynamic stability for the SUBOFF UV.

Additionally, with a decrease in submergence depth the dynamic stability in-

creases remarkably. In this regard, as mentioned earlier, a decrease in submergence

depth has negligible effect on the Y -force and N -moment generated by both the

lateral and angular yaw velocity components on the stern and bow regions. Accord-

ingly, the increase in the dynamic stability as the UV approaches the free surface

is mainly associated with the behavior of the Y -force and N -moment generated by

the lateral and yaw velocities on the region located between the UV midlength and

the aft shoulder of the SUBOFF. As mentioned earlier, the behavior of the Y -force

and N -moment in this region gives rise to an increase in the Y -force while a de-

crease in the N -moment both arising from the lateral velocity. Additionally, the

behavior of the Y -force and N -moment in this region causes an increase in both

the Y -force and the N -moment induced by the yaw rate. Thus, the behavior of the

Y -force and N -moment generated by the lateral and yaw velocities on the region

located between the UV midlength and the aft shoulder is largely responsible for

the concurrent increase in the lr and decrease in the lv as the UV approaches the

free surface, which gives rise to an increase in the UV dynamic stability.

Finally, in the present research, to evaluate the free surface effect on the ma-

neuverability of the SUBOFF UV in the horizontal plane, the turning and zigzag

standard maneuvers are performed for various submergence depths. The maneuver-

ability evaluation for various submergence depths is performed by using the standard

equations of motion proposed for the maneuvering simulations of totally submerged

UVs. For this purpose, the forces and moments obtained from the simulations of
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the straight-ahead resistance, drift and rotating arm tests over various submergence

depths are implemented in this model. In this regard, as the hydrodynamic axial

force acting on a shallowly submerged UV close to the free surface obtained from the

straight-ahead resistance tests has a periodic behavior with respect to the axial ve-

locity component, this force component is stored in a one-dimensional tabular form

over various submergence depths, and a cubic interpolation is used to express this

component in the maneuvering equations. Apart from the axial force generated by

the axial velocity component on the shallowly submerged UV, the rest of the hydro-

dynamic forces and moments obtained from the captive tests are implemented in the

maneuvering equations by fitting them to odd/even quadratic polynomial functions

in terms of the UV velocity components. Additionally, analytical equations are used

to calculate the forces and moments due to the UV accelerations, thrust and rudder,

which all are assumed to remain constant with respect to the submergence depth.

During the turning maneuver advance, transfer, tactical diameter and turning

diameter all undergo an increase with a decrease in submergence depth. This is due

to an increase in the damping characteristics of the UV, which in return decreases

the maneuverability with a decrease in submergence depth.

Additionally, in zigzag maneuver, the overshoot angles undergo a reduction with

a decrease in submergence depth, which is attributed to the improved course stability

as the UV approaches the free surface.

Furthermore, the decrease in the N -moment produced by the lateral velocity

and the increase in the N -moment generated by the yaw rate with a decrease in

submergence depth lead to a decrease in the UV drift angle during the maneuvers,

which consequently causes a decrease in the UV speed loss. Besides, the increase

in the N -moment generated by the yaw rate with a decrease in submergence depth

gives rise to a reduction in the yaw rate during the SUBOFF maneuvers.

The present work can be extended by performing the dynamic PMM tests, along

with the rudder tests and open water propeller tests to evaluate and analyze the

free surface effect on the forces and moments resulting from the UV accelerations,

rudder and propeller, and consequently on the UV maneuverability. Furthermore,

by calculating the external forces and moments in the vertical plane degrees of

freedom, the UV maneuverability with the presence of the free surface can also be

assessed by performing maneuvering simulations in six degrees of freedom. In this

regard, to express the hydrodynamic forces and moments as a function of both the

submergence depth and the velocity/acceleration components, they can be stored

in a two-dimensional tabular form and a triangle-based cubic interpolation, which

has C2 continuity, can be used for the implementation of the forces and moments in

the equations of motion.

Another extension to the present work can be the evaluation of the underly-
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ing quasi-steady assumption of the equations of motion. This evaluation can be

performed by conducting the unsteady drift and straight-ahead tests over various

submergence depths. The analysis of the local and global variables acting on the

UV during these tests can be usefully employed for better understanding of the

free surface effect on the forces and moments arising from the unsteady and mem-

ory effects. Furthermore, these forces and moment generated by the unsteady and

memory effects can be included in the equations of motion to evaluate the role they

play in the UV maneuverability over various submergence depths.

Eventually, the same methodology used in this thesis can also be employed

to evaluate the hydrodynamics and maneuverability of another axisymmetric UV

model, such as the REMUS. The main difference between the REMUS and SUB-

OFF UVs is the shape of the stern region, which the SUBOFF has a rapidly tapered

stern, while the REMUS has a gradually tapered one. It is believed that this com-

parison can provide a valuable understanding of the influence of the different stern

shapes on the hydrodynamics and maneuverability of UVs.
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RESEARCH CENTER BETHESDA MD SHIP HYDROMECHANICS

DEPT, 1990.

[44] HUANG, T., LIU, H. “Measurements of flows over an axisymmetric body with

various appendages in a wind tunnel: the DARPA SUBOFF experimental

program”, 1994.

[45] FOSSEN, T. I. Guidance and control of ocean vehicles. John Wiley & Sons Inc,

1994.

[46] FOSSEN, T. I. Marine control systems: guidance, navigation and control of

ships, rigs and underwater vehicles. Marine Cybernetics, 2002.

[47] SNAME, S. H. “Nomenclature for Treating the Motion of a Submerged Body

through a Fluid”. In: American Towing Tank Conference, 1950.

[48] GAO, T., WANG, Y., PANG, Y., et al. “A time-efficient CFD approach for

hydrodynamic coefficient determination and model simplification of sub-

marine”, Ocean Engineering, v. 154, pp. 16–26, 2018.

[49] MOLLAND, A. F., TURNOCK, S. R., HUDSON, D. A. Ship resistance and

propulsion. Cambridge university press, 2017.

[50] HUMPHREYS, D., WATKINSON, K. Prediction of acceleration hydrodynamic

coefficients for underwater vehicles from geometric parameters. Relatório
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Appendix A

Procedure of grid generation

The most important aspect of the process of simulation configuration is undoubtedly

the mesh generation process, which requires remarkable attention in order to obtain

acceptable results. Generally, in areas of large gradients of variables, a mesh should

have a large number of cells. As mentioned in section 2.6, to capture properly the

wave system generated by the UV together with the pressure drop in the wake region

and leeward side of the SUBOFF at drift, appropriate local mesh refinements are

utilized. Herein, the general mesh setups used in captive tests are presented. These

setups include the mesh refinements used to capture the turbulent boundary layer,

the pressure drop in both the wake region and the leeward side of the UV at drift

and the UV-generated wave system.

A.1 Mesh setups used to capture the boundary

layer

As mentioned in section 2.6, for the region near the UV the prism layer mesh is

employed to capture the fluid flow characteristics in the boundary layer. The prism

layer mesh is comprised as a sequence of layers whose thicknesses increase based on

a geometric progression. The expansion factor is set 1.1. To specify the boundary

layer thickness δ by assuming a flat plate, the following equation is used, WHITE

[75]:

δ

L
= 1.5× 0.16

Re
1
7
L

(A.1)

where ReL is the Reynolds number defined based on the UV overall length. Addi-

tionally, the first layer thickness is estimated in such a manner that gives a Y + value

in the range from 30 to 100. Thus, having calculated both the first layer thickness

and the boundary layer thickness, one can determine the number of prism layers by
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using the formula to calculate the sum of the n terms (in this case n signifies the

number of prism layers) of a geometric series.

A.2 Mesh setups in domain boundaries, wake re-

gion and leeward side of the UV at drift

To capture the pressure drop in the wake region, a finer mesh is generated in a

block form region expanded from the fore of the UV to nearly one body-length

downstream. In this block form region a minimum cell size equal to 4% × BS is

generated. This region is also used to capture the pressure drop in the leeward side

of the UV at drift. The utilization of this block form region can be clearly identified

in Figures 2.22, 2.23, 2.24 and 2.25. Additionally, according to the initial simulations

conducted by the present author, it is also decided to use even a finer mesh in a

region close to the UV in the form of the body itself but with dimensions of 1.2 times

of that of the original one. In this region, a minimum cell size equal to 0.833%×BS,

which is the same size used for cells on the hull surface, is employed. Figure A.1

shows these regions along with their dimensions used in straight-ahead resistance

and drift tests. Moreover, the minimum cell size on the boundaries surrounding the

UV is considered as 100× BS.

(a) The regions around the UV where the mesh is refined in
straight-ahead tests

(b) The regions around the UV where the mesh is refined in
drift tests for β = 18.11◦

Figure A.1: Block form region and the region in the form of the UV itself used to
refine the grid around the UV

In the tests with the presence of the free surface, to simulate correctly the free

surface-UV interaction, the block form region is extended upward to cover the free

surface. The upward extension of the block form region can be clearly identified

in Figure A.2, which shows the grid generated at x0sz0 plane in straight ahead

resistance tests for Fn = 0.512 and h = 3.3D.
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Figure A.2: The grid generated in x0sz0 plane in straight ahead resistance tests for
Fn = 0.512 and h = 3.3D

A.3 Mesh setups in the free surface region

An important point in the tests with the presence of the free surface is to generate a

mesh of good quality to capture the free surface deformations resulting from the free

surface-UV interaction. In this regard, as mentioned in section 2.6, we follow the

recommendations provided by SPENCE [65]. Accordingly, the refinement normal to

the undisturbed free surface, which is applied in the entire computational domain,

is made by discretizing the free surface in this direction using nearly 30 to 50 cells

per wave height. The reason to use a constant refinement normal to the free surface

over the entire domain is to avoid any adverse effect resulting from a jump in the

refinement normal to the free surface. Additionally, as can be observed in Figures

2.22, 2.23, 2.24 and 2.25, to guarantee a smooth transition between the fine region

on the free surface and the coarse far field region in the normal direction to the

free surface, the mesh resolution is reduced to one-eighth inside a block form region

surrounding the free surface, which stretches one wave height to the top of the

deformed free surface and goes all the way down to the bottom of the UV and at

the same time extends throughout the entire domain in the direction parallel to the

free surface.

Moreover, the refinement parallel to the undisturbed free surface is applied by

discretizing the free surface in this direction using nearly 100 to 160 cells per wave-

length inside the block form region shown in Figure A.3, which is located right above

the UV. On the other hand, to decrease the number of cells in the computational

domain the resolution of the grid in the direction parallel to the undisturbed free

surface is reduced to half for the rest of the free surface region outside this block.

Figure A.4 shows the grid generated in xoy plane on the free surface in straight-

ahead tests for Fn = 0.462 and h = 1.1D. In this case again, to guarantee a smooth

transition between the fine region on the free surface to the coarse far field region in

the normal direction to the free surface, the mesh resolution is reduced to one-eighth
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inside the block form region mentioned earlier, which stretches one wave height to

the top of the deformed free surface and goes all the way down to the bottom of

the UV and at the same time extends throughout the entire domain in the direction

parallel to the free surface.

(a) Top view of the block form region on the free surface, where
the grid is refined for Fn = 0.462 and h = 1.1D

(b) Side view of the block form region on the free surface, where
the grid is refined for Fn = 0.462 and h = 1.1D

Figure A.3: Block form region used to refine the grid in the direction parallel to the
undisturbed free surface

Figure A.4: The grid generated in xoy plane on the free surface in straight-ahead
resistance tests for Fn = 0.462 and h = 1.1D

To determine the characteristics of the wave system, including the wavelength

and wave period, Equation 2.21 is used for Θ = 0. Thus, to approach the unknown

free surface pattern, the transverse wavelength is used to determine the basic wave

characteristics.
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Appendix B

Turbulence anisotropy

As mentioned earlier, in the eddy viscosity turbulence models the Reynolds stresses

are considered aligned with the strain rate of the flow, CHESNAKAS e SIMPSON

[25]. To evaluate the applicability of the eddy viscosity models to the present simu-

lations, the quantity |γg − γτ | (Equations 2.66 and 2.66) is plotted for the SUBOFF

in straight-ahead resistance tests for Fn = 0.462 and h = 1.1D at two normalized

axial locations x0

L
= −0.038,−0.338, in the boundary layer region (Figure B.1).

It can be inferred from Figure B.1 that the turbulent shear stress angle (γτ ) and

the flow gradient angle (γg) cannot be assumed aligned over the whole region of the

boundary layer. On the contrary, they are remarkably misaligned over a considerable

portion of this region, which implies that using the eddy viscosity models can lead

to erroneous results.

Figure B.1: |γg − γτ | over the SUBOFF at two normalized axial locations x0

L
=

−0.038,−0.338 from the nose and Fn = 0.462 and h = 1.1D. The figure clearly
shows that the turbulent shear stress angle (γτ ) and the flow gradient angle (γg)
are remarkably misaligned over a considerable portion of the boundary layer region,
which implies that using the eddy viscosity models may lead to erroneous results.
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Appendix C

Turbulent boundary conditions

Herein, the boundary conditions for Reynolds stress terms (R) that are employed in

the simulations of the current study are presented.

C.0.1 Wall boundary

The gradients of Reynolds stress terms normal to the wall is considered zero as

follows:

∂R

∂n
= 0 (C.1)

C.0.2 Velocity inlet

In this boundary, the Reynolds stress terms along with the turbulent dissipation

rate are derived from the specified turbulence intensity (TI), which is defined as the

ratio of the root-mean-square of the velocity fluctuations to the mean velocity, and

turbulent viscosity ratio (µt/µ) using the following equations:

R = (TI|
−→
V|)2I (C.2)

ε =
Cµ
[

1
2
tr(R)

]2
(µt/µ)µ

(C.3)

where |
−→
V| is the local velocity magnitude and I is the identity matrix. In this study,

the default values of TI = 0.01 and µt/µ = 10 are used.
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Journal Article No.1 (Status: Published Online)

Applied Ocean Research (2018), Volume 76, pages 34-50. DOI

10.1016/j.apor.2018.04.008

How does the free surface affect the hydrodynamics

of a shallowly submerged submarine?

Mojtaba Maali Amiri, Paulo T. Esperança, Marcelo A. Vitola, Sergio

H. Sphaier

Abstract

It has long been recognized that a shallowly submerged submarine traveling beneath

the free surface experiences a larger resistance force in conjunction with a lift force

and a pitch moment, which all vary periodically with respect to Froude number.

As is well known, the periodic behavior of the forces and moment mainly has to

do with the interference effects between the dominant wave systems inside the sub-

marine wake, which predominantly originate from the bow, stern and shoulders. In

naval architecture, the principal type of interference is typically considered between

the bow and stern waves, where the geometry undergoes abrupt changes. However,

as the aft shoulder of a shallowly submerged submarine operates in a closer proxim-

ity to the free surface compared to the stern, it is surmised that interference between

the bow and aft shoulder waves may have a more significant effect on the behavior

of the forces and moments. Accordingly, the main purpose of the present study is

to investigate whether the interaction between the bow and aft shoulder waves or

the interaction between the bow and stern waves has a more dominant effect on

the hydrodynamic behavior of a shallowly submerged submarine. In this regard,

the straight-ahead simulations of a generic submarine with constant forward veloc-

ities are performed in commercial code STARCCM+ using URANS equations with

a Reynolds stress turbulence model at submergence depths and Froude numbers

ranging from h = 1.1D to h = ∞ (D : submarine diameter) and from Fn = 0.205

to Fn = 0.512, respectively. The numerical model is partially validated against

the existing experimental resistance force data. The analysis of the obtained results

demonstrates that in case of the shallowly submerged submarines, the interaction

between the bow and aft shoulder waves has a dominant effect on the behavior of

the resistance force, lift force and pitch moment.
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Journal Article No.2 (Status: Accepted for Publication)

Journal of Hydrodynamics (2018).

RANS feasibility study of using roughness to

mimic transition strip effect on the crossflow

separation over a 6:1 prolate-spheroid

Mojtaba Maali Amiri, Marcelo A. Vitola, Sergio H. Sphaier, Paulo

T. Esperança

Abstract

An axisymmetric body at incidence experiences the three-dimensional crossflow sep-

aration. This separation is attributed to the adverse circumferential pressure gra-

dient. However, the separation pattern is also dependent upon the structure of the

boundary layer. In this regard, utilization of transition strip devices in experiments

on axisymmetric bodies may modify this structure, and consequently the crossflow

separation pattern. The main objective of the present research is to mimic numeri-

cally the transition strip effect on the crossflow separation over a 6:1 prolate-spheroid

up to α = 30◦ incidence and ReL = 4.2 × 106. However, to avoid direct modeling

of the strip, which would increase the computational cost, an attempt was made

to add roughness over the body surface. To estimate the roughness that simulates

closely the transition strip effect, three different roughness values were considered.

The numerical model is based on RANS and a Reynolds stress turbulence model

implemented in STARCCM+. The simulations have been evaluated based on the lo-

cal and global variables and validated against the available experimental data. The

results demonstrate the effectiveness of using a proper roughness value to mimic the

transition strip effect. They also show the importance of modeling the transition

strip effect, which is normally not considered, to capture the crossflow separation

pattern.
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Journal Article No.3 (Status: Under Third Review)

European Journal of Mechanics - B/Fluids (2018).

Investigation into the wave system of a generic

submarine moving along a straight path beneath

the free surface

Mojtaba Maali Amiri, Sergio H. Sphaier, Marcelo A. Vitola, Paulo

T. Esperança

Abstract

In a recent paper published by the present authors, it is shown that, in case of

the submarines traveling close to the free surface, the interaction between the bow

and aft shoulder waves has a more dominant effect on the hydrodynamics of the

submarines compared to the interaction between the bow and stern waves, which is

usually considered in naval architecture. This result is obtained through a detailed

assessment of the pressure distribution along a generic submarine together with a

detailed evaluation of the behavior of the global variables acting on the body over

various submergence depths and Froude numbers. Accordingly, herein, a detailed

investigation into the characteristics of the wave system generated by the same

submarine traveling along a straight path close to the free surface is performed

to figure out the role of the interaction between the bow and aft shoulder waves

in the submarine-generated wave system. Accordingly, the numerical simulations

are performed by using unsteady Reynolds-averaged Navier-Stokes equations with

a Reynolds stress turbulence model implemented in commercial code STARCCM+

over submergence depths and body length Froude numbers ranging from h = 1.1×D
to h = 3.3 × D (D : submarine diameter) and from Fn = 0.205 to Fn = 0.512,

respectively. The validation is performed using the existing experimental resistance

force data. In this study, the analysis of the obtained results including the maximum

wave height, wake angle and the centerline free surface profiles at hump and hollow

Froude numbers shows that the interaction between the bow and aft shoulder waves

indeed has a dominant effect on the submarine-generated wave system.
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Journal Article No.4 (Status: Under First Review)

Applied Ocean Research (2018).

URANS investigation of the interaction between

the free surface and a shallowly submerged

underwater vehicle at steady drift

Mojtaba Maali Amiri, Sergio H. Sphaier, Marcelo A. Vitola, Paulo

T. Esperança

Abstract

An axisymmetric underwater vehicle (UV) at a steady drift angle experiences the

complex three-dimensional crossflow separation. This separation arises from the

unfavorable circumferential pressure gradient developed from the windward side

toward the leeward side. As is well known, the separated flow in the leeward side

gives rise to the formation of a pair of vortices, which affects considerably the forces

and moments acting on the UV. In this regard, the main purpose of the present study

is to evaluate the role of the leeward vortical flow structure in the hydrodynamic

behavior of a shallowly submerged UV at a moderate drift angle traveling beneath

the free surface. Accordingly, the static drift tests are performed on the SUBOFF

UV model using URANS equations coupled with a Reynolds stress turbulence model.

The simulations are carried out in the commercial code STARCCM+ at a constant

advance velocity based on Froude number equal to Fn = 0.512 over submergence

depths and drift angles ranging from h = 1.1D to h = ∞ and from β = 0 to β =

18.11◦, respectively. The validation of the numerical model is partially conducted

by using the existing experimental data of the forces and moment acting on the

totally submerged bare hull model. Significant interaction between the low-pressure

region created by the leeward vortical flow structure and the free surface is observed.

As a result of this interaction, the leeward vortical flow structure appears to be

largely responsible for the behavior of the forces and moments exerted on a shallowly

submerged UV at steady drift.
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