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EM CIÊNCIAS EM ENGENHARIA QUÍMICA.
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Os métodos de ”Lattice”Boltzmann (LBM) são potentes ferrementas numéricas

para simular problemas de transferência de massa e calor. Ao invés de integrar dire-

tamente as equações de Navier-Stokes, o método LBM resolve, de forma discretizada,

a equação de transporte de Boltzmann, acompanhando a descrição microscópica dos

sistemas. O método LBM pode solucionar fluxo de fluidos com grande estabilidade

e eficiência computacional, especialmente fluxos em geometrias complexas. Para

fluxos térmicos, o esquema LBM de dupla função de distribuição (DDF) é a abor-

dagem mais popular e bem sucedida. Mas é evidente, a partir da literatura, que

as abordagens LBM de dupla função de distribuição (DDF), as quais utilizam dois

operadores de colisão, envolvem esquemas de colisão que violam a invariância de

Galileu, produzindo instabilidades para fluxos com números Re e Ra altos. Nesta

tese, o método de ”Lattice”Boltzmann em cascata de dupla população em cascata

é desenvolvido para corrigir o esquema DDF LBM. O método proposto reduz o

grau de violação da invariância de Galileu, aumentando a estabilidade e acurácia

do método LBM. O método foi implementado para simular problemas de advecção-

difusão, convecções natural e forçada t́ıpicos de transferências de calor. O esquema

proposto foi também bem sucedido em regimes de fluxo turbulento e em escoamen-

tos 3-D em meios porosos. Os resultados obtidos neste trabalho estão fortemente de

acordo com experimentos e métodos numéricos dispońıveis na literatura.
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Lattice Boltzmann Methods (LBM) are powerful numerical tools to simulate heat

and mass transfer problems. Instead of directly integrating the N-S equations, LBM

solves the discretized form of the Boltzmann Transport Equation (BTE), keeping

track of the microscopic description of the systems. Therefore, LBM can solve fluid

flows with great stability and computational efficiency, especially complex geometry

fluid flows. For thermal flows, double distribution function (DDF) LBM scheme is

the most popular and successful approach. But it is evident from the literature that

existing double distribution function (DDF) LBM approaches, which use two colli-

sion operators, involve collision schemes which violate Galilean invariance, therefore

producing instabilities for flows with high Re and Ra numbers. In this thesis, a

double population cascaded lattice Boltzmann method is developed to improve the

DDF LBM scheme from this drawback. The proposed method reduces the degree

of violation of Galilean invariance, increasing the stability and accuracy of the LBM

scheme. The scheme was implemented to simulate advection-diffusion, forced con-

vection and natural convection heat transfer problems. The proposed scheme was

also successfully tested for turbulent flow regimes and 3-D fluid flow in porous media.

The results obtained from this work are in strong agreement with those available in

the literature obtained through other numerical methods and experiments.
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Caṕıtulo 1

Introduction

Computational Fluid Dynamics (CFD) is the stream in which physical and physico-

chemical systems with heat and mass transfer are studied. Conventional numerical

approaches such as finite difference methods (FDM), finite volume methods (FVM)

and finite element methods (FEM) have been frequently and successfully used to nu-

merically solve heat and mass transfer problems for many decades. These techniques

directly solve the conservation equations governing a thermal (energy conservation

along with mass and momentum conservation) and athermal (mass and momentum

conservation) systems. This approach known as Navier-Stokes model (system of N-S

equations, i.e. mass, momentum, and energy conservation), which considers fluid

as a continuum, solves the hydrodynamic (macroscopic) description of the systems.

Microscopic developments, i.e. molecule-molecule interactions are generally overlo-

oked in such a model. Therefore, the N-S approach struggle in solving phenomena

which are dictated by fluid-fluid, fluid-solid interactions, i.e. with interfacial pheno-

mena and phase transition and produce unstable and inaccurate numerical results.

These direct approach N-S model solve the Poisson equation to determine pressure,

which is exhaustive and difficult. As a result, the data communication is global

making it difficult to parallelize the codes, directly increasing the computation cost.

Another drawback of these numerical solvers using N-S models is their inefficiency

in dealing with complex boundary conditions and pore-scale analysis of fluid flow in

rocks. Flows through porous media is an example of complex geometry fluid flows,

and an effort to solve such flows using N-S models requires an enormous amount of

grid-refining which makes the computation very expensive. Wettability, a phenome-

non present in such flows, poses serious challenges in these models.

Lattice Boltzmann Methods (LBM) considers fluid as an ensemble of virtual par-

ticles which follow the dynamics of an ideal gas. Boltzmann Transport Equation

(BTE) describes the kinetic behavior of these particles. The collisions in the LBM

scheme also obey mass, momentum, and energy conservation. BTE describes the

mesoscopic and microscopic nature of the system. Therefore, the LBM approach
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efficiently captures the microscopic developments and molecule interactions taking

place in the system. Particle collisions, responsible for mass, momentum and energy

conservation, are local. The pressure can be calculated using an equation of state,

instead of solving the Poisson equation. The local nature of particle collisions makes

the data communication local, what makes LBM a better candidate for code paralle-

lization. The dynamics of the virtual particles in LBM is governed by the probability

distribution function. The local nature of these particles makes LBM naturally fit

to deal with complex boundary conditions. Therefore, the LBM approach can solve

efficiently the flow problems with phase separation, phase transition, fluid-fluid and

fluid-solid interactions, reactive flows and flows through porous media.

LBM is an indirect approach, in which solving BTE on a lattice model which has a

finite number of degree of freedom, leads to the lattice Boltzmann equations (LBE).

The LBE consists of advection and collision terms. There exist many collision sche-

mes such as single relaxation time-Bhatnagar-Gross-Krook (SRT-BGK), Multiple

Relaxation Times (MRT), Cascaded scheme, etc. BGK produces errors in fluid

flows with very low viscosity and is unstable in complex problems. BGK also does

not preserve the Galilean invariance which is required to fulfill the closure relation in

solving Navier-Stokes equations in its hydrodynamic limits and produces numerical

artifacts as a result. To increase the stability and accuracy of the LBM schemes

multiple relaxation times (MRT) method was developed. MRT showed better per-

formance compared to BGK providing higher stability and accuracy. But MRT, as

well as BGK, do not preserve the Galilean invariance, as a result, numerical artifacts

and errors are present especially for turbulent flows. In order to correct the pro-

blem regarding Galilean invariance central moment, the LBM scheme also known as

cascaded LBM was proposed. This scheme not only corrected the Galilean invari-

ance problem up to a great extent but also introduced a unique relaxation scheme,

making the collision scheme semi-implicit. This scheme presented results with even

higher stability and accuracy compared to SRT-BGK and MRT methods and easily

solved the turbulent fluid flows.

In LBM, there exist three approaches to solve heat transfer problems e.g. Multis-

peed approach, double distribution function (DDF) approach, and hybrid approach.

For incompressible conjugate heat transfer, the multispeed approach is not suitable

because the Prandtl number is fixed and it produces erroneous viscosity value. A

hybrid approach is an efficient approach which solve fluid flow by LBM and use a

conventional CFD method to solve the energy equation. This usage of conventio-

nal CFD method poses a serious challenge in the parallelization of the codes, and

become computationally expensive and unattractive. The third one is the DDF

approach, which uses LBM methods to solve both the fluid flow and energy equa-

tion simultaneously. Due to its purity, DDF approach is the most successful LBM
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tool to solve thermal flows and is ideal for parallelization. Double population BGK

schemes, double population MRT schemes, Cascaded-MRT, and BGK-MRT LBM

schemes have been developed by different groups to address thermal problems. To

cure the existing DDF schemes from the violation of Galilean invariance and nume-

rical instabilities for complex and turbulent flows, we propose a double population

Cascaded LBM model.

In the proposed double population cascaded LBM, flow field equations (mass and

momentum) are solved on one lattice model using cascaded collision scheme and

energy equation or temperature equation is solved on another lattice again using

cascaded collision scheme. In Chapter 2, evolutionary advancement of the ther-

mal LBM schemes are presented. In this chapter major thermal LBM schemes and

their implementations are reviewed. Chapter 3 provides an insight into the recovery

of hydrodynamic (N-S) equations recovered using different collision schemes. The

approach of Equivalent Partial Differential Equation and its application in LBM

have been reviewed extensively and detailed recovery of equivalent N-S equations

and thermal Fourier-Kirchhoff equations are presented. Double population casca-

ded LBM scheme is developed in Chapter 4 for problems of advection-diffusion and

forced convective heat transfer. The consistency, stability, and accuracy of the pro-

posed LBM scheme are tested against others LBM methods and many benchmarking

problems existing in the literature. Chapter 5 extends the proposed double popula-

tion cascaded LBM to solve natural convection heat transfer in a square cavity. To

solve natural convection, an extra force term is introduced to the LBE and a large

range of Rayleigh numbers have been considered. In chapter 6 we simulate forced

and natural convection heat transfer through an array of hot tube banks. Chapter 7

presents the implementation of cascaded LBM to study fluid flows in porous media

with microscopic alterations. The main conclusions drawn from this work have been

presented in Chapter 8, along with suggestions for future extension of the developed

double population cascaded LBM.

Appendix section consists of additional research works also developed during the

D.Sc. Appendix A presents the accuracy analysis of the cascaded lattice Boltz-

mann method. Extending the work presented in Chapter 7, wettability analysis of

laser-treated limestone rocks is presented in Appendix B. Appendix C presents the

imaging methodology of limestone rocks and provides quantitative analysis to define

a reliable representative elementary volume (REV) for future fluid flow simulations

using cascaded LBM.

The analysis and results presented here clearly show that the proposed double po-

pulation cascaded LBM scheme produces reliable numerical results for complex flow

conditions, i.e. turbulent flows. The numerical results showed good agreement

with results obtained by Direct Numerical Solvers (DNS) and experiments by other
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authors. The proposed scheme can now be implemented to solve complex thermal

flows such as multicomponent, multiphase flows with temperature variations.
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Caṕıtulo 2

Evolutionary Advancement of

Thermal Lattice Boltzmann

Methods

2.1 Abstract

Here, we present a comprehensive review of the evolutionary advancement of the

thermal lattice Boltzmann methods along with detailed implementations. We deve-

lop a comparative study of various LBM frameworks, methodologies, and thermal

boundary conditions since the time of Lattice Gas Automata (LGA) to recently

developed advanced LBM methods used to model numerous simple and complex

thermal flow problems.

The material of this chapter has been submitted for publication as a review paper

in Progress in Aerospace Sciences

2.2 Introduction

Lattice Boltzmann Methods (LBM) have been important and successful numeri-

cal tools for solving various fluid flow and heat transfer problems for the last two

decades [30, 44, 154, 159, 168, 169, 194, 195]. Initially, LBM was used to solve

fluid flow problems, and based on the success it achieved, was used to deal with

thermal problems but with many challenges [41, 156, 190, 273, 285]. But prior to

the development of statistical lattice Boltzmann equation approaches fully based on

Boltzmann Transport Equation (BTE) and their implementation in thermal-fluid

flow problems, Lattice Gas Automata (LGA) was used to solve fluid flow and ther-

mal problems [22, 49, 91, 108, 315]. Numerical simulations by direct integration of

the partial differential equations, known as direct numerical simulations mostly solve
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the macroscopic description of the fluid flow. LGA can be considered as the indirect

approach which solves the microscopic and mesoscopic description of the systems.

The Lattice Gas Automata (LGA) was developed to solve fluid flow problems at the

microscopic level using the Boolean approach [91].

The first alternative to the LGA was described by McNamara, where the author

used Boltzmann equation [201]. The very first effort to use LGA to solve the thermal

problem was made by Chen et al. [47]. But due to its Boolean nature, this approach

was neither free from statistical noise and instability nor it could be used to simulate

large regions. The LGA was also computationally costly and extending it to the

hydrodynamic limit posed serious problems. Remarkable efforts were then adopted

to cure the LGA of these drawbacks [42, 47, 131, 201]. Further improvements in

the performance of LGA were carried out by Chen et al., where they derived the

Navier-Stokes equation using an improved Lattice Gas Boltzmann approach [42].

The lattice-gas Boltzmann method removed the numerical artifacts due to the non-

Galilean invariance and velocity dependent equation of state. The lattice Boltzmann

equation used real numbers and Maxwell equilibrium distribution function unlike

LGA which uses Boolean numbers and Fermi-Dirac equilibrium distribution function

rule which cause the statistical noise and non-Galilean invariance [42, 48, 163]. In

1993, Alexander et al. [8], Bartolini et al. [17], and Qian et al. [235] made the

earliest contributions to solve thermohydrodynamics using the lattice Boltzmann

equations. Afterward, numerous lattice Boltzmann schemes and frameworks have

been developed over the years which can provide efficient numerical solutions for

complex thermal-fluid flow problems.

To address a thermal flow, the system of equations must contain mass, momen-

tum, and energy conservation equations. These equations can be recovered suc-

cessfully by using Chapman-Enskog (C-E) expansion of the continuous Boltzmann

equations using appropriate collision rules. In LBM, there are three frameworks

which deal with the fluid flow with heat transfer, which is (1) Multispeed model,

(2) Hybrid model and (3) Double Distribution Function (DDF) model or Multi-

Distribution Function (MDF) model. In LBM, fluid is treated as an ensemble of

fictitious particles. The state of the particles in certain space and time is defined by

the local velocity distribution functions [44]. These particles exist on a Cartesian

grid, a finite set of admissible speeds which particles can take. The streaming of

the particles from one node to another is possible via links connecting these nodes.

The collisions among the particles take place at lattice nodes only and conserve the

quantities such as mass, momentum, and energy. In LBM, there exist numerous

schemes such as Bhatnagar-Gross-Krook (BGK) (also known as single relaxation

time; SRT), Multiple Relaxation Times (MRT), Cascaded collision operator, En-
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tropic LBM, Cumulant LBM and Karlin-Bosch-Chikatamarala (KBC), which have

been frequently used to define these collisions. These collision operators have been

studied in great depth and their advantages and relevance in dealing with specific

problems have also been well established in the literature. Therefore, in-depth com-

parisons among these collision schemes are not necessary here because the scope of

the present work is to study thermal LBM approaches.

Multispeed (MS) model deals with single distribution function. Mass, momen-

tum, and energy conservation rules are defined using velocity distribution function

f . These models consider energy (or temperature) as an additional velocity com-

ponent. Some most notable implementations of MS models to solve thermal flows

can be found in Refs. [8, 31, 51, 149, 202, 235, 253, 280, 297, 298, 316]. Hybrid

thermal lattice Boltzmann models, as clearly suggested by the name, use a hybrid

approach to treat thermal flows. The mass and momentum equations are solved

by using athermal lattice Boltzmann methods and temperature equation (or energy

equation) is solved by the conventional computational fluid dynamics methods such

as finite volume method (FVM) and finite difference method (FDM). These mo-

dels perform efficiently and are accurate and stable in solving the thermal flows.

The major drawback with such models is that this approach deviates from the very

essence of using LBM in the first place. LBM is well known for easy and effici-

ent parallelization of the algorithms due to the fact that the data communication

are local. Some notable implementations of hybrid models can be found in Refs.

[33, 88, 146, 172, 173, 187, 203, 209, 211, 272, 279].

The double distribution function (DDF) models are considered to be the most

successful LBM framework to solve thermal problems. In this model, two distribu-

tion functions have been used, one distribution function to address mass and mo-

mentum conservation and another to address energy conservation (temperature).

Inside DDF framework itself, there exist two approaches, one approach is when the

temperature is considered as a passive scalar, in which the compressive work and

heat dissipation are considered to be negligible [17, 81, 256]. And another approach

is internal energy approach, which simulates the evolution of internal energy and

allows incorporation of compressive work and heat dissipation. The lattice Boltz-

mann equation (LBE) is derived by discretizing the continuous Boltzmann equation

in time, space and velocity spaces [127]. The internal energy DDF approach is si-

milar to the passive scalar DDF approach in the sense that in both cases separated

distribution functions are used to simulate temperature evolution. The DDF mo-

dels improve the stability and accuracy of the LB schemes significantly and due to

their better performance compared to Multispeed methods, the DDF models have

drawn much attention of various research groups [29, 39, 40, 50, 74–76, 82, 97, 112–
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114, 127, 141, 147, 148, 155, 160, 167, 204, 214, 216, 221, 225, 228, 229, 259, 262,

277, 278, 283, 291].

A large variety of thermal problems have been solved using the LBM frameworks

and schemes described earlier. Chen et al. made the first attempt to apply a lattice

gas model to study thermal flow. The authors implemented lattice gas automata

to solve thermal Poiseuille flow and heat conduction [47]. Bartoloni et al. used

the enhanced collision scheme of the LGA and solved Rayleigh-Bénard convection

[17]. Alexander et al. and Qian et al. presented the first implementations of the

BGK collision operators to solve Rayleigh-Bénard convection [8, 235]. Massaioli et

al. presented the exponential tails in two-dimensional Rayleigh-Bénard convection

using LGA [197]. Chen et al. presented one of the first implementations of the

MRT collision scheme for variable Prandtl number flow [52]. In BGK thermal LBM

schemes, the ratio of viscosity and thermal conductivity depends only on one rela-

xation parameter which fixes the Prandtl number limiting the performance of the

numerical scheme. MRT collision scheme deals with more than one relaxation pa-

rameter giving birth to variable Prandtl number thermal flows. Soe et al. provided

an improved BGK collision scheme and extended the application of variable Prandtl

number flows to turbulent thermal flows [263]. Shan et al. implemented the DDF

BGK thermal LBM scheme to solve Rayleigh-Bénard convection, in which the tem-

perature was solved using the passive scalar approach, i.e. in incompressible limit

without heat dissipation and compressive work [256]. He et al. adopted a different

DDF LBM approach to deal with temperature, using internal energy distribution

function instead of using passive scalar approach [127]. Ihle et al. adopted the DDF

LBM scheme using BGK operators to simulate non-ideal gases with potential energy

[141]. Palmer et al. implemented the DDF framework for compressible fluids, in

which the authors considered the internal energy to be passive scalar [225].

Multispeed models are generally unstable due to insufficient Galilean Invariance

[225, 280]. And due to fixed Prandtl number, they are also inadequate when solving

flows with large temperature variations. Therefore MS model was not suitable for

solving non-ideal gas flows. Teixeira et al. identified the temperature dependent

term in the equilibrium distribution function leading to the Galilean invariance

violation and improved the performance of the MS model by introducing under-

relaxed collision scheme [280]. Jiaung et al. incorporated the enthalpy formation into

the thermal LBM scheme to solve heat conduction with phase change [149]. Guo et

al. demonstrated the first implementation of DDF LBM scheme where two separate

lattice models were adopted to solve mass and momentum, and temperature [113].

LBM for the mixture of two immiscible fluids was developed by Inamuro et al. and

used to solve Rayleigh-Bénard convection [144]. Heat transfer in the multi-layered
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structure using dual phase lag heat conduction model was studied using BGK-LBM

[134]. For flows with considerable density variation and temperature dependent

transport coefficient, Lallemand et al. proposed the use of a hybrid scheme, where

finite difference method (FDM) was used to solve temperature and MRT-LBM was

used to solve flow field [172]. Therefore, the stability of the LBM scheme was

improved significantly. For thermal flows, the coupling between shear and energy

modes is extremely important, for energy conservation approach. Lallemand et

al. suggested that spurious algebraic coupling between shear and energy modes

plagued the energy conserving LBM. The authors proposed an improved coupling

in Ref. [173]. Ansumali and Karlin suggested that thermal LBM models did not

fully conserve the energy thus giving rise to absurdly high bulk viscosity values.

The authors proposed the “Consistent Lattice Boltzmann Method”to solve energy

conservation [10].

Convective heat transfer in porous media was also solved by using DDF LBM

schemes [29, 112, 254]. Gao et al. implemented local thermal non-equilibrium con-

ditions into the LBM scheme to model natural convection in porous media [93].

Phenomena such as interfacial tension and its dependence on temperature were stu-

died by Chang et al. and two-phase Rayleigh-Bénard convection with a deformable

interface was solved using BGK-LBM [37]. Zhang et al. developed the LBM scheme

for simulations of liquid-vapor thermal flows using BGK-LBM under MS model fra-

mework [316]. The similar MS LBM formulation was applied to solve liquid-gas

two-phase flow in 2D by Seta et al. [253]. Enthalpy based hybrid LBM was pro-

posed by Chakraborty et al. to simulate solid-liquid phase transition in presence

of convective transport using BGK-LBM to solve the flow field [33]. Safari et al.

presented an extended version of the LBM to study phase change for two-phase fluid

flow [247]. The authors provide a great in-depth insight into efficient modeling of

phase interface, and the impact of evaporation, boiling, and condensation. Huang

and Wu adopted the DDF framework to develop immersed boundary thermal LBM

to simulate solid-liquid phase change [139]. Gonnela et al. solved the non-ideal fluid

flows using finite difference LBM approach for application in phase separation [103].

Enthalpy based DDF-LBM scheme was developed by Chatterjee et al., in which

the authors replaced the internal energy distribution function by enthalpy distribu-

tion function and simulated phase transition [39]. LBM has also been used to solve

backward facing steps flows using the BGK collision scheme under DDF framework

[40]. Escobar et al. simulated multi-length and multi-time scale heat transfer in

crystalline semiconductor [82]. The authors adopted the DDF BGK approach to

solving the Boltzmann transport equation for phonons. Radiative and conductive

heat transfer simulations using hybrid LBM were studied by Mishra et al. and
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Gupta et al. [115, 209, 211]. Combustion simulations for low Mach number were

performed by Chen et al. using a coupled LBM [50]. Microfluidic analysis of bubble

dynamics of CO2 was simulated by Fei et al. using thermal BGK LBM scheme [83].

Watari used the BGK-FDLBM scheme to simulate temperature jump and velocity

slip in 3D [296]. Thermal fluctuations were introduced by Gross et al. to the LBM

scheme for non-ideal gas flows to increase the numerical accuracy for thermal flows

[106]. The LBM scheme with Langmuir slip model to solve thermal microflows was

developed by Chen et al. [45]. Compressible Rayleigh-Taylor fluid flows were solved

by Scagliarini et al. [250]. Natural convection heat transfer in closed enclosures

and square cavity have been studied extensively using thermal LBM frameworks by

many groups [74, 114, 160, 172, 187, 203, 204, 214, 216, 228, 229]. Delouei et al.

presented DDF thermal LBM scheme using direct forcing immersed boundary to

simulate non-Newtonian fluid flow [69].

In the next Sections, we discuss and describe various thermal LBM models se-

parated based on MS, Hybrid and DDF approaches, followed by a presentation of

various types of thermal boundary conditions. And finally, we show diverse applica-

tions of thermal LBM schemes in solving thermal fluid flows, e.g. natural convection,

forced convection, phase transition and separation, thermal flows in porous media

and in micro and nano-channels.

2.3 Lattice Gas Automata

Lattice Gas (LGA) approach with discrete Boolean elements was applied to solve

Navier-Stokes equations by Frisch et al. [91]. Due to the local nature of the particle

collision, these LGA models were suitable for massively parallel computing machi-

nes. In LGA models, the fluid is described as an ensemble of Boolean particles,

signifying a complete discrete phase space and discrete time. The model by Hardy,

de Pazzis and Pomeau (HPP model) [119–121] can simulate these Boolean nature

particles flow on an underlying regular square 2D lattice. The thermodynamic equi-

libria of the HPP model have free continuous parameters, e.g. average density and

momentum. It should be noted that each particle which is not in rest must follow

a pre-determined path called link and it must reach the equilibrium state after col-

liding with other particles at the resting nodes. For these models, the macroscopic

equation, recovered by slowly varying density and momentum in space and time,

deviate from the non-linear N-S equation due to lack of Galilean invariance, lack of

isotropy and crossover dimension problem [91]. HPP model is invariant under π/2

rotation (square lattice) and unable to guarantee the isotropy. The momentum flux
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tensor, for the HPP model is given by

Pαβ = pαβ + Tαβγεuγuε +O(u4),

where p is pressure, T is a tensor. The momentum flux tensor is different from

the N-S equation due to the lack of isotropy. Using Hexagonal Lattice Gas (HLG)

model, which is invariant under π/3 rotation, one recovers the isotropy of the tensor

T and provides correct momentum flux tensor

Pαβ ∼ (p+ u2) + uαuβ +O(u4)

for the N-S equation at low Mach numbers. The corrected HLG model suffers from

statistical noise and serious stability problems due to the Boolean approach and

Fermi-Dirac distribution rules for equilibrium. The fact that very small subregion

can be used for simulations in LGA models, contribute heavily to the numerical inac-

curacy and instability when the microscopic details are extended to their macrosco-

pic description. Therefore, it is necessary to average the microscopic quantities over

large subregions, for longer times and different initial conditions [201]. McNamara

and Zanetti, therefore, suggested transferring the LGA into a Boltzmann model.

The Boolean site populations were replaced by real numbers and the Boltzmann

equation was adopted to govern the time evolution of those particles. Higuera et

al. proposed a scheme with enhanced collision along with lattice gas Boltzmann

equation, migrating from LGA’s Boolean numbers towards probability distribution

functions [131]. The lattice gas Boltzmann equation reads

Ni(x+ ci, t+ 1) = Ni(x, t)− Ω(Ni −N eq
i ), (2.1)

where Ni is the lattice gas particle distribution function, ci is the lattice gas parti-

cle velocity in ith direction, Ω is the collision operator and N eq
i is the equilibrium

distribution function. The conservation rules, i.e. mass and momentum are given

by

ρ =
∑
i

Ni

and

ρu =
∑
i

ciNi,

respectively. The equation of state of the LGA models differs from the equation

of state of ideal gases, p = p(n, T ). In LGA models, pressure depends on the

macroscopic velocity

p = p0(n, T )− p1(n, T )nu2,
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which causes spurious currents [47]. The relation between pressure and density for

LGA can be written as p0 = c2
sρ, where cs is the sound velocity and can be given by

c2/D, D is the lattice model dimension [42, 47]. Therefore,

p0(n, T ) = ρc2
s

and

p1(n, T ) = ρC(ρ)u2/D,

where C(ρ) is the convection coefficient. The insufficient degree of Galilean invari-

ance is due to the fact that convection coefficient depends on the density, strictly

limiting the LGA to an incompressible scenario. And the term p1(n, T ) is the root

cause of the kinetic energy fluctuations in LGA simulations due to the direct velocity

dependence of pressure [46, 62]. Dealing with thermal flows using LGA models had

been a serious issue, as there was no theoretical development to study temperature

gradient in LGA models. Chen et al. suggested that multi-speed particles could

conserve the energy [47]. But the authors again retained the root cause of numerical

instabilities and inaccuracy, i.e. Fermi-Dirac equilibrium rules.

2.4 Lattice Boltzmann Equations

Lattice Boltzmann Equations (LBE) were emerged from the lattice gas Boltzmann

equation with some much needed improvements [42, 201]. Boltzmann transport

equation (BTE) reads

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) = Ω(f, f), (2.2)

where f is the velocity distribution function, ξ is the microscopic velocity and Ω is

the collision operator. Discretization of BTE on a lattice model leads to the lattice

Boltzmann equation (LBE). The basic kinetic equation (LBE) reads

fi(x+ ci4 t, t+4t)− fi(x, t) = Ωi, (2.3)

where fi is the one particle distribution function, ci is the microscopic (characteristic)

velocity of fluid particle in ith direction, and Ωi is the collision operator, proportional

to (f eqi −fi). A particle in LBE approach can be considered as an ensemble of infinite

subparticles which are infinitely separable, thus giving freedom to define collisions in

infinite ways satisfying conservation rules. The Fermi-Dirac distribution equilibrium

rule is no longer required in LBE [42]. The Galilean invariance problem can be
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corrected by adopting the following equilibrium distribution function defined by

f eqi =
ρ

b
+

ρ

c2
sb
ĉi · u+ ρ

(
1

2c4
sb

+
1

c4
sDb

)
Qiαβuαuβ, (2.4)

where Qiαβ = ĉiαĉiβ − (1/D)δαβ, ciα and ciβ are microscopic velocities in α and β

directions, uα, uβ are macroscopic velocities. Eq. (2.4) removes the dependency of

convection coefficient C on density ρ, recovering Galilean invariance. Therefore, at

this stage, the LBE is with improved Galilean invariance and is valid for any particle

density distribution. But one speed LBE is not enough to correct the direct relation

between pressure and velocity. By introducing the rest particles, new general form

of equilibrium distribution function for moving particles can be given such that

f eqi = d+
ρ

c2
sb
ĉi · u+ ρ

(
1

2c4
sb

+
1

c4
sDb

)
ĉiαĉiβuαuβ + γu2, (2.5)

The coefficient d, γ, and those derived from equilibrium expression of rest particles

can be assigned appropriate values to attain the correct ideal gas equation of state,

p = c2
sρ, which does not explicitly depends on velocity. In the LBE model, the fluid

is considered as a collection of fictitious particles and their evolution in space and

time can be described by the velocity distribution function. Maxwell Boltzmann

distribution function is the most popular to define the equlibrium distribution. The

Maxwellian equilibrium for velocity distribution function f eqi reads

f eqi = ρwi

(
1 +

~u · ~ci
c2
s

+
(~u · ~ci)2

2c4
s

− ~u · ~u
2c2
s

)
, (2.6)

where wi is the weight for characteristic velocity for ith lattice node. Use of square

lattice models in 2D and 3D has been a common practice in LBM. There exist nume-

rous square lattice models, the most popular ones are D2Q5, D2Q9, D3Q15, D3Q19,

and D3Q27. The subscript of Q denotes the number of velocities, i.e. number of

lattice nodes existing in a unit lattice cell. The LBEs are discretized on a chosen

lattice model, and their implementation and properties are available in the literature

[165].

Here we discuss two 2D lattice models which can be used for successfull thermal

simulations in 2D. For D2Q9 lattice model ci = (ci,x, ci,y) (i = 1, . . . , 9) are

{(0, 0), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 1)}.

The weight factors for D2Q9 lattice model are

[w1, . . . , w9] =
(

4
9
, 1

36
, 1

9
, 1

36
, 1

9
, 1

36
, 1

9
, 1

36
, 1

9

)
.
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~c1

~c2

~c3

~c4 ~c5 ~c6

~c7

~c8~c9

~c1 ~c4

~c5

~c2

~c3

Figura 2.1: D2Q9 lattice model(left) and D2Q5 lattice model (right).

For D2Q5 lattice model ci = (ci,x, ci,y) (i = 1, . . . , 5) are

{(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1)}.

The weight factors for D2Q5 lattice model are

[w1, . . . , w5] =
(

1
3
, 1

6
, 1

6
, 1

6
, 1

6

)
.

The conservation rules are obeyed at the lattice models, and conserved and non-

conserved moments are defined for each lattice before proceeding with the numerical

simulations. These moments are of the form of Hermite polynomials which satisfy

the isotropy conditions to recover correct macroscopic equations [165]. For D2Q9

model, nine moments must be defined, and for D2Q5 model five moments must be

defined. Therefore, the total number of moments defined on a lattice model is equal

to the total number of velocities of the lattice model.

2.5 Thermal Lattice Boltzmann Methods

The initial approaches to solve thermal hydrodynamics involved LGA models [48].

But the use of Fermi-Dirac equilibrium distribution prevented from recovering the

correct form of energy equation. The LBM approach adopts Maxwellian equili-

brium distribution and solve mass, momentum and energy conservation equations.

The system of mass, momentum and energy conservation equations with viscous,

compressible and heat conducting flows reads [8]

∂ρ

∂t
+
∂
(
ρuα
)

∂x
= 0, (2.7)
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ρ
∂uα
∂t

+ ρuβ
∂uα
∂xβ

= − ∂p

∂xα
+

∂

∂xα

[
λ
∂uγ
∂xγ

]
+

∂

∂xβ

[
µ

[
∂uβ
∂xα

+
∂uα
∂xβ

]]
,

(2.8)

ρ
∂E

∂t
+ ρuα

∂E

∂xα
= −p∂uγ

∂xγ
+

∂

∂xβ

[
κ
∂T

∂xβ

]
+µ

[
∂uβ
∂xα

+
∂uα
∂xβ

]
∂uβ
∂xα

+ λ

[
∂uγ
∂xγ

]2

,

(2.9)

where E is the internal energy per unit mass, u is the macroscopic velocity, λ is the

bulk viscosity, µ is the dynamic viscosity, and κ is the thermal conductivity. The

macroscopic conserved quantities can be calculated from the LBE Eq. (2.3), such

that,

ρ =
∑
i

fi,

ρu =
∑
i

cifi,

and

ρE =
∑
i

fi
(
ci − u

)2
/2.

Some initial approaches considered internal energy as a moment of velocity distribu-

tion function [8, 17, 235]. The single relaxation time collision operator, also known

as the BGK collision operator was used, where

Ω = −1

τ

(
fi − f eqi

)
, (2.10)

where τ is the relaxation time for fi to reach its local equilibrium state f eqi . Since in

these approaches, the flow and thermal coefficients depend on single parameter τ ,

the Prandtl number is fixed and therefore induces limitations and instabilities in the

numerical scheme. These initial approaches can be classified under the multi-speed

thermal LBM framework, which we will discuss in next Section. Therefore, to deal

with the thermal flows with high accuracy and stability, different frameworks and

approaches were adopted, and as discussed in the introduction, are classified into

three framework categories. Different collision schemes have been implemented to

obtain variable Prandtl number to increase the stability of the LBM scheme.
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2.6 Multi-Speed Thermal LBM

Initially, LGA and LBE were used to solve athermal fluid flow problems. The

extension of these LB techniques was then made to simulate thermal problems [8,

17, 47, 51, 235]. These approaches were called Multi-speed models in which the

energy was considered as an additional moment of the velocity. As described in the

previous section, only one set of distribution functions is needed to describe mass,

momentum and energy conservation. From Eq. (2.3 and 2.10), BGK-LBE reads

fi(x+ ci4 t, t+4t)− fi(x, t) = −1

τ

(
fi − f eqi

)
. (2.11)

There are two important steps in LBM numerical approach, one is advection (the

propagation of fluid particles along the links connecting nodes), and second is the

collision, which is local and occur only at nodes. The term

fi(x+ ci4 t, t+4t)

is the advection (or streaming) step, and

fi(x, t)−
1

τ

(
fi − f eqi

)
is the collision step. In order to recover the N-S equations from the LBE scheme,

f eq taken as the Maxwellian equilibrium distribution depends only on the conserved

quantities ρ, u and E. The equilibrium distribution also depends on the lattice

structure models. But the general form of the equilibrium distribution can be given

by [8, 51]

f eqi = A+Bci · u+ C
(
ci · u

)2
+Du2

+E
(
ci · u

)3
+ F

(
ci · u

)
u2,

(2.12)

A,B,C,D,E and F are coefficients, which are functions of ρ and internal energy

E. These coefficients depend on the lattice structure. Now to recover the hydrody-

namic equations, we Taylor expand the LBE; Eq. (2.11) to second order. Now the

Chapman-Enskog (C-E) multiscale expansion is adopted, where time derivative and

distribution functions are expanded and used in the Taylor expanded LBE. Then,

continuity, momentum, and energy equations are recovered [8]. The correct form of

Euler and N-S equations are then identified from the three equations after fulfilling

few conditions, described in the paper [8]. The above described LBM is the multi-

speed approach. This LBM can now be implemented on a 2D or 3D lattice geometry.

The isotropy of the momentum flux tensor directly depends on the lattice structure
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and the coefficients from the equilibrium distribution Eq. (2.12) can be determined

by fulfilling these conditions. A direct identification of the transport coefficients is

done by comparing the corrected N-S equations recovered through C-E expansion

with the real continuity, moment and energy equations, Eq. (2.7, 2.8, 2.9). The

shear viscosity

µ = ρE
(
τ − 1

2

)
and thermal conductivity

κ = 2ρE
(
τ − 1

2

)
.

Transport coefficient depend on a single parameter τ , which results in a fixed Prandtl

number.

2.6.1 Improvements in Multi-Speed Models

The M-S model described earlier was used by many groups to simulate thermal

flows [17, 51, 81, 235]. But these implementations were not very stable and accurate

[202]. The one way to remove the dependency of transport coefficients on a single

relaxation parameter is to introduce two relaxation parameters collision operator.

In this way, the problem of fixed Prandtl number can also be solved. The LBE

Eq.(2.11) can be rewritten after modifying the collision operator such that [52]

fi(x+ ci4 t, t+4t)− fi(x, t) = − 1

τ1

(
fi − f eqi

)
− 1

τ2

(
fi′ − f eqi′

)
, (2.13)

where τ1 and τ2 are two relaxation parameters, and i′ = i + Q/2. To recover N-S

equations, C-E expansion is required where first the distribution function should be

expanded such that

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ....,

similar expansion is applied for fi′ , where ε is a small parameter proportional to

Knudsen number. It should be noted that f (0) = f eq, since the contributions from

high order distribution functions f 1,2,3... are considered negligible in the local ma-

croscopic mass density, momentum and energy density. Therefore the conservation

equations are

ρ =
∑
i

fi =
∑
i

f eqi

ρu =
∑
i

cifi =
∑
i

cif
eq
i

ρE =
∑
i

fi(ci − u)2/2 =
∑
i

f eqi (ci − u)2/2,

(2.14)
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and ∑
i

f
(1)
i = 0∑

i

cif
(1)
i = 0∑

i

f
(1)
i (ci − u)2/2 = 0,

(2.15)

similarly, conservation rules can be established for fi′ , where the contributions from

f
(1)
i′ and so on, would be negligible, where

∑
i f

(1)
i =

∑
i f

(1)
i′ = 0. In a real physical

dynamic system, different phenomena occur at different time scales, therefore to

recover correct dynamics of the system the time derivative is also expanded, ∂t =

∂t(1)+ε∂t(2). Now the LBE for the two relaxation parameters can be Taylor expanded

and using the expansion of f and ∂t, different equations for the various order of ε

can be recovered [52]. After following typical C-E procedure, continuity, momentum,

and energy equations are recovered, see Eq. (2.10), Eq. (2.11) and Eq. (2.12) in

[52]. After a direct comparison between these equations and the set of equations

Eq. (2.7, 2.8 and 2.9), the transport coefficients values are determined. For two

relaxation BGK LB scheme, an inconsistency was observed since two type of viscosity

is defined unlike the case of single relaxation BGK LBM. The momentum and energy

equation provide different viscosity, see [52]. The momentum equation is considered

to determine fluid flow related transport coefficients, the shear viscosity

µ =
2

D
ρE
( τ2τ1

τ2 + τ1

− 1

2

)
and bulk viscosity

λ = − 4

D2
ρE
( τ2τ1

τ2 + τ1

− 1

2

)
.

Thermal conductivity κ can be evaluated from the energy equation as the coefficient

of the heat conductive term in the energy equation. It reads,

κ =
D + 2

D
ρE
( τ2τ1

τ2 − τ1

− 1

2

)
.

The Prandtl number Pr, the ratio of viscous diffusion rate and thermal diffusion

rate, reads

Pr =
2

D + 2
.
2 τ2τ1
τ2+τ1

− 1

2 τ2τ1
τ2−τ1 − 1

.

Therefore, it is evident that two relaxation BGK LB scheme eliminates the single
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relaxation parameter dependence of Prandtl number. This improves the stability

of the LBM scheme for large temperature variations. But it must be noted as well

that this two-parameter scheme suffers from the inconsistency in defining viscous

dissipation correctly. The BGK single relaxation parameter scheme can define the

viscous dissipation better as it does not generate different viscosity in momentum

and energy equations. But due to fixed Prandtl number in this LB scheme, it can

only be used to simulate thermal flows with small temperature variations. Chen et al.

and Texeira et al. proposed a new improved definition for the collision operator that

can lead to flexible Prandtl number [43, 280]. The equilibrium distribution was then

computed by minimizing the local H- function [43]. The equilibrium distribution

for the small number of degrees of freedom contributes to the numerical instability

in continuum dynamics. The authors suggested increasing the degree of freedom by

increasing speed.

Teixeira et al. [280] proposed an under-relaxed equilibrium which slowed down

the evolution of a temperature dependent term present in the equilibrium distribu-

tion. In this work the authors provide the development of this equilibrium under

relaxation approach and an in-depth analysis of the stability enhancement of the

M-S LBM model. Zhang et al. [316] extended the M-S model to simulate liquid-

vapor thermal flows but with a single relaxation parameter BGK scheme. Watari

et al. [297] proposed the use of finite difference LBM (FDLBM) [31] to increase

the accuracy of the M-S model. The correct form of fluid and energy equations

can be recovered by retaining higher order velocity terms (up to 4th order) in the

equilibrium distribution and by increasing the degree of freedom by increasing the

rank of the isotropic velocity tensors (up to 7th rank). The accuracy of the M-S

model was further improved by introducing global coefficients in the local equili-

brium distribution [298]. In Ref. [298], Watari et al. presented an in-depth analysis

of appropriate lattice models to produce high-rank isotropy for deriving the correct

form of N-S equations.

2.7 Hybrid Thermal LBM

Hybrid thermal LBM model consists of combining two different numerical approa-

ches to deal with thermal flows. Generally, such models solve continuity and mo-

mentum equations using LBM approach and solve temperature evolution by directly

solving the macroscopic temperature equation using a conventional computational

fluid dynamics approach such as finite volume methods (FVM) or finite difference

methods (FDM) [172]. Contrary to the M-S models, in hybrid models, there exists

decoupling between LBE simulation and finite difference type simulation to solve the
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temperature. It was believed that an inefficient coupling between flow and energy

modes is the source of the numerical instabilities in all LBM thermal methods. The-

refore, to avoid such inefficient coupling, hybrid models were developed [172, 173].

To further increase the stability of the LBM scheme, an improved collision operator

called multiple relaxation times (MRT) was developed [70, 71, 171]. In MRT opera-

tor, streaming is described in velocity space, but the collision operator is defined in

moment space. The problems such as fixed Prandtl number and fixed kinematic and

bulk viscosities can be removed by using MRT collision scheme. The two relaxation

parameter scheme used in some of the M-S thermal models is also a form of MRT

collision scheme [71, 202]. The MRT LBE reads

fi(~x+ ~ci4 t, t+4t)− fi(~x, t)

= −M−1R
(
mi(~x, t)−meq

i (~x, t)

)
,

(2.16)

where R is a diagonal matrix with different relaxation times for non-conserved quan-

tities, M is the transformation matrix ~m = M~f . Raw moment m and velocity distri-

bution function f are related through the microscopic velocity of the lattice model,

such that mxmyn =
∑

i c
m
i,xc

n
i,yfi. See [70, 71] for an in-depth discussion on MRT

collision scheme. And advection-diffusion equation can be solved for temperature

evolution using a finite difference scheme [172],

Ti(~x, t+4t)− Ti(~x, t) = −j · ∇hT + κ∆hT

+q2(γ − 1)c2
s0
∇h · j,

(2.17)

where T is the temperature, ∇h and ∆h are finite difference gradient and finite

difference operator, respectively, q2 is a coefficient. Then the coupling between

temperature and momentum is established by adopting the proper definition of

equilibrium distribution. As an equilibrium depends on conserved quantities ρ,

j · j and T (specific internal energy proportional to T), therefore, the coefficients

of conserved quantities can be determined by first order solution of the dispersion

equation. One of the benefits of using the hybrid model is that this model does not

use Boussinesq approximation explicitly, therefore, can be a good numerical tool to

study thermal flows like combustions, compressible flows, etc. See Ref. [172] for

detailed implementation.

For convective heat transfer where Boussinesq approximation stands valid, i.e.

low Ma number flows, flows with a very small variation in density with respect to

temperature, the coupling between T and velocity field is done through the bu-

oyancy force [203]. The buoyancy force gβT (where g is gravitational constant, β

is linear isobaric thermal expansion coefficient) can be added to the R.H.S. of Eq.
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(2.16). In such flows, it is generally considered that velocity field does not depend

on the temperature, that means that the flow is incompressible with negligible heat

dissipation, and an advection-diffusion temperature equation

∂T

∂t
+ u · ∇T = α∇2T

is solved directly using FDM. The macroscopic velocity u in the advection-diffusion

equation is determined by the relation ρu =
∑

i cifi.

Problems with conductive and radiative heat transfer can also be solved using

LBM and FVM methods [208, 211]. A benchmark problem for transient conduction

and radiation heat transfer in 2-D enclosed geometry filled with absorbing, emitting

and scattering medium is presented in [208, 303, 314]. The energy equation was

solved by BGK-LBM scheme. For radiative heat transfer, the source term added in

the energy equation can be addressed by various methods such as discrete ordinate

method, the discrete transfer method, finite volume method, and the collapsed di-

mension method [161, 208, 210]. The heat flow equation for the present problem

with zero advection is (
∂T/∂t

)
= α∇2T + Q,

α is the thermal diffusivity, Q is the radiative heat source, which can be calculated

from any of the four techniques described earlier to solve radiation transfer equation.

An appropriate lattice model must be chosen to solve the problem in 2D or 3D. The

generalized discretized BGK-LBE for radiative heat conduction,

fi(x+ ci4 t, t+4t)− fi(x, t) = −1

τ

(
fi − f eqi

)
+ Q

is extended to hydrodynamic limit using C-E expansion and transport coefficients

are determined by comparing the original heat flow equation given earlier, with

the recovered heat equation. Temperature is defined such that, T =
∑

i fi. The

hybrid LBM model can also be extended to simulate phase transition problems [66,

205–207]. In these implementations of LBM, the phase field approach was used to

determine the evolution of each phase fraction. But there exists drawback with this

technique which makes modeling of solidifications with small undercooling effects

difficult. This problem can be addressed by using adaptive mesh refinement, which

again increases the computation cost, rendering the phase field model ineffective.

Therefore to make phase transition LBM approach more effective, an enthalpy based,

thermodynamically consistent, hybrid LBM model was constructed to model solid-

liquid phase transition in the presence of advection transport [33]. As previously

for mass and momentum conservation, a simple athermal LBM approach can be

adopted to address flow equations (mass and momentum), and a fixed-grid enthalpy-
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porosity approach [28, 287] is used to couple the fluid moments with macroscopic

temperature field which is obtained by directly solving coupled scalar transport

equations. The term ”enthalpy-porosity”means that in such models, the morphology

of the phase-changing domain can be considered as a porous medium creating a

frictional resistance towards fluid flow in phase interface regions [33, 287]. The

macroscopic conservation equation for mass for each phase remains similar to Eq.

(2.7). But momentum and energy equation for each phase for incompressible and

laminar flows are

ρ
∂uα
∂t

+ ρuβ
∂uα
∂xβ

= − ∂p

∂xα
+

∂

∂xβ

[
µ

[
∂uβ
∂xα

+
∂uα
∂xβ

]]
+ρG+ ρS,

(2.18)

∂
(
CpT

)
∂t

+ u · ∇CpT = κ∆T + Q, (2.19)

where G and S are the external body force gβ(T−Tref ) (Boussinesq approximation)

and equivalent frictional resistance force, respectively. The term Q in Eq.(2.19)

describes the latent-heat evolution,

Q = −∂∆H

∂t
−∇ · (u∆H),

for pure material phase change ∇· (u∆H) = 0. For phase changing system, an addi-

tional forcing term Fi (consisting of body force G, frictional force S and interaction

force F int) is added to the collision operator in a BGK-LBE,

fi(x+ ci4 t, t+4t)− fi(x, t) = −1

τ

(
fi − f eqi

)
+ Fi.

Mass and momentum conservation rules are given by

ρ =
∑
i

fi

and

ρu =
∑
i

cifi +
1

2

∑
i

Fi,

respectively. The interaction force can be calculated by using Shan-Chen type inte-

raction potential V ,

F int = −∇V

[257]. The similar steps must be followed to recover macroscopic equations using C-

E expansion and identify the transport coefficients. Heat transfer in a differentially
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heated square enclosure with a conducting cylindrical body inside (see Fig.1 in

Ref. [146]) was also solved by using hybrid models. MRT collision operator was

used to solve the fluid flow fields and temperature equation was solved using a

finite difference method [146]. In many body problems like this, implementation of

accurate boundary conditions are essential to maintain the stability and accuracy

of the numerical schemes, which we shall discuss in Section 2.9, devoted to the

boundary conditions.

2.8 Double Distribution Function (DDF) LBM

The last and most successful LBM framework to deal with thermal flows is the dou-

ble distribution function (DDF) thermal LBM. In which, two separate distribution

functions are used, one to address mass and momentum, and another to solve energy

(temperature field). Generally, as always, velocity distribution function to describe

macroscopic density and momentum, and an internal energy distribution function to

describe the evolution of temperature field. Thermal flows can be classified into two

categories for convenience, first is when the temperature is considered as a passive

scalar (flows with negligible heat dissipation and compressive work; incompressi-

ble thermal flows), and second is when velocity profile depends on the temperature

(flows with heat dissipation and compressive work; compressible thermal flows).

In the first case, temperature field obeys the advection-diffusion equation, and in

second case temperature field is drawn by tracking the internal energy evolution;

energy equation. DDF LBM scheme to address the first case type of flows consists

of two distribution function, one to address flow field (like in all athermal LBM

discussed earlier), and another distribution function to define temperature which is

independent of the density ρ [17, 256]. For the second type of thermal flows, fluid

flow approach is the same but the temperature is not independent of the density

anymore.

One of the plus points of using DDF scheme is that it is easy to implement and

highly parallelizable as other pure LBM schemes and due to the liberty of choosing

two separate collision operators, Prandtl number is not fixed (allowing simulations

of a higher range of temperature compared to M-S model). It also provides the

liberty to choose two different (or the same) collision operators to address flow field

and thermal field. The passive scalar DDF approach has been tested against the

M-S models and showed better stability compared to the latter [17, 127, 256]. The

accuracy of the passive scalar DDF LBM was proven to be better than the M-S

models as well [81]. It should be noted here that the passive scalar approach is

stable and accurate only for small Mach number flows (incompressible limits). The
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LBE for flow field is

fi(x+ ci4 t, t+4t)− fi(x, t) = Ωi(fi, fi), (2.20)

and LBE for temperature is

gi(x+ ci4 t, t+4t)− gi(x, t) = Ωi(gi, gi), (2.21)

where fi and gi are velocity and temperature (or energy) distribution function,

respectively, and Ωi(f, f) and Ωi(g, g) are collision operators used for fluid flow

and temperature evolution, respectively. The macroscopic conserved quantities are

given by ρ =
∑

i fi, ρu =
∑

i cifi and temperature T =
∑

i gi. It must be noted that

temperature is not the conserved quantity, internal specific energy is the conserved

quantity and is proportional to temperature. These two LBEs can be implemented

on two separate lattice models, simultaneously. For 2-D, D2Q9 is very popular to

solve mass and momentum conservation, and D2Q5 to solve for temperature field

[147, 204, 259, 262].

The lattice models’ properties are widely available in the literature. Since DDF

passive scalar approach is stable and accurate in solving incompressible thermal

flows (low Mach number), therefore, the equilibrium distribution contains terms

just up to the second order in velocity, see Eq. (2.6). The equilibrium distribution

for temperature can be left with second order terms only due to just one conser-

ved quantity. It requires less number of velocities to produce correct temperature

equation, therefore

geqi = Twi

(
1 +

~u · ~ci
c2
s

)
,

wi is the weight factor for the D2Q5 lattice model. Now similarly as all previous LBM

cases, the C-E expansion can be performed to the two LBEs to separately recover

N-S and Fourier-Kirchhoff (temperature equation), respectively. The relaxation of

non-conserved fluid moments and temperature moments must occur at different

times, therefore even if the BGK collision scheme is adopted for both LBEs, they

must have different relaxation parameters. Say,

Ωi(fi, fi) = − 1

τf

(
fi − f eqi

)
and

Ωi(gi, gi) = − 1

τg

(
gi − geqi

)
,

where τf and τg are relaxation times for non-conserved flow moments and thermal
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moments, respectively. The kinematic viscosity (ν = µ/ρ) is

ν = c2
sf

(
τf −

1

2

)
and thermal diffusivity (α = κ/ρ); for ideal gas like situation,

α = c2
sg

(
τg −

1

2

)
,

where csf is the speed of sound for the lattice model used to solve flow field and csg is

the speed of sound for lattice model used for temperature. The DDF model produces

flexible Prandtl number. The limitation of the passive scalar DDF approach is that

it is unstable and inaccurate when heat dissipation and compressive work are taken

into account [113, 127].

2.8.1 DDF LBM with heat dissipation and compressive

work

Based on the studies [2, 123], in which it was shown that isothermal LBM models can

be directly derived from continuous Boltzmann equation with velocity distribution

function, in the similar manner an isothermal LBM model can also be derived from

the continuous Boltzmann equation with internal energy distribution function [127,

171]. Therefore, to increase the scope of DDF LBM approach, the focus has been

shifted from temperature evolution to internal energy evolution, which naturally

incorporates heat dissipation and compressive work. He et al. [127] extended their

previous work [123] and introduced a forcing scheme to address compressibility and

develop a model for arbitrary Prandtl numbers. The used external force is,

F =
G · (ci − u)

RT
f eq

[128]. In one important paper on the stability of LBM schemes [267], Sterling and

Chen showed that considering the collision operator in BGK-LBE constant in each

time step leads towards second order truncation error. This error is non-destructive

in solving for mass and momentum flow equations, but it creates a discrepancy

in the viscosity terms present in momentum and energy equations while solving a

thermal fluid flow model (also seen in our discussions on M-S models). The viscous

heat dissipation comes from the first order C-E expansion, therefore is not affected

by the second order truncation error. The discrepancy in viscous terms in heat

dissipation and momentum equation is persistent and He et al. proposed a second

order strategy to integrate the Boltzmann transport equation (which is discretized
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to attain LBE). The second order LBE reads

fi(x+ ci4 t, t+4t)− fi(x, t) =
1

2
Ωi(f(x+ ci4 t, t+4t)

+
1

2
Ωi(f(x, t)) +

1

2
F (x+ ci4 t, t+4t) +

1

2
F (x, t),

(2.22)

where Ω is any collision operator. For a simple BGK collision scheme,

Ωi(f(x+ ci4 t, t+4t) = − 1

τf

(
fi(x+ ci4 t, t+4t)

−f eqi (x+ ci4 t, t+4t)
)
.

Any lattice model with sufficient velocities to preserve isotropy of moment stress

tensors can be used to solve for mass and momentum conservation such that

ρ =
∑
i

(
fi −

1

2
Ωi(f(x, t))− 1

2
F
)
,

ρu =
∑
i

ci
(
fi +

1

2
Ω(f(x, t))− 1

2
F
)

+
ρG

2
.

The similar second-order temporal integration approach can be adopted for the

internal energy distribution function, let’s say g.

gi(x+ ci4 t, t+4t)− gi(x, t) =
1

2
Ωi(g(x+ ci4 t, t+4t)

+
1

2
Ωi(g(x, t)) +

1

2
f(x+ ci4 t, t+4t)Q(x+ ci4 t, t+4t)

+
1

2
f(x, t)Q(x, t),

(2.23)

where internal energy is given by

ρE =
∑
i

(
gi −

1

2
Ω(g(x, t))

)
.

The proper definitions for the equilibrium of velocity distribution and internal energy

distribution functions are provided with in-depth details in the papers [75, 127]. The

coupling between the flow field and energy field is done through the definition of in-

ternal energy. Though the internal energy distribution DDF scheme discussed above

was designed to address compressive work and heat dissipation, but in practice, it

delivered stability only in incompressible limit. Incorporating compressive work and

dissipation terms, it still produced some errors. Guo et al. identified and discussed

few of the drawbacks in their paper [114]. One of the serious concerns was about

the term fQ appearing in Eq. (2.23), causing density and velocity derivatives ap-
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pearing in the final LBE. These derivatives induce numerical instability and make

the computation difficult and costly [114, 228].

In order to improve the stability of the DDF scheme with compressive work and

dissipation term included, the authors adopted total energy to be the conserved

quantity instead of internal energy. Therefore, a total energy distribution function

was proposed. The detailed procedure for developing the total energy DDF scheme

has been provided in the paper [114]. Due to the decoupling between momentum

and energy equations caused by the definition of the equilibrium distribution, the

model was implemented only for thermal flows with small temperature variations.

Chatterjee proposed an enthalpy based thermal LBM to address strongly coupled

momentum and energy equations system, e.g. phase transition or solidification [39].

The author replaced the internal energy distribution function by He et al. with an

enthalpy distribution function because the previous was inefficient in addressing the

source terms. And the author also pressed upon the fact that enthalpy represented

energy equation escapes from the source terms explicitly appearing in the LBM

model.

2.8.2 Further Implementations of thermal DDF LBM

Palmer et al. [225] adopted similar internal energy distribution-DDF LBM approach

used in [127] to study compressible flows. Ihle and Kroll extended the idea of double

distribution function to even three distribution functions to simulate thermal flows

for non-ideal gas with potential energy [141]. The authors introduced a distribution

function to define the non-ideal part of the pressure, and a distribution function

to define potential energy evolution along with a distribution to define mass and

momentum evolution. The scheme above for compressible flows by He et al. [127]

can be simplified for incompressible flows by simply dropping out the viscous heat

dissipation and compressive work term fQ [228]. The authors present the imple-

mentation of the two LBEs on 2-D nine velocities (D2Q9) lattice model. The C-E

expansion performed for the two LBEs recovers correct incompressible N-S, energy

equation and transport coefficients [137]. It should be noted that the LBE for fluid

flow (with f) and LBE for temperature field can be solved on same lattice model

or two separate and different lattice models can be chosen to solve flow field and

temperature. One another plus point of using DDF thermal LBM schemes is that

implementation of pressure and temperature boundary conditions is very straight-

forward [75, 76, 277].

Simulating fluid flow in complex porous media has been a very hot topic for

long and continue to be so. These types of simulations become even more tricky
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when fluid flow is accompanied by heat transfer. The initial applications of lattice

Boltzmann method to simulate fluid flow in porous media go back to the time

of LGA [15, 245]. Later on, after the development of LBM, they were instantly

applied to solve fluid flow in porous media by many groups [3, 271]. In LBM, there

exist two approaches to simulate porous media fluid flow, (1) pore scale approach

and (2) representative elementary volume (REV) approach [112, 113]. The easy

and natural implementation of the boundary conditions (bounce-back or no-slip

boundary conditions) in complex geometry made the LBM an ideal numerical tool

to simulate fluid flows in porous media.

For flows in porous media, there might exist phenomena which are strongly

dictated by the microscopic fluid-rock interactions and fluid-fluid interactions. Re-

active flows, multiphase flows, flows in tight capillaries or channels are some of the

examples where these microscopic phenomena occur. The conventional approaches

(FDM, FVM, FEM) solve macroscopic description of the system and often lack the

microscopic details of the flows in porous media such as wettability, interface effects,

etc. [53, 220, 284]. Therefore, to take into consideration these microscopic effects,

LBM serves as a perfect tool to predict these kinds of flows with better micro-meso

scale understandings of the system. At the pore scale, the implementation of LBM is

simpler as the effect of porosity are only implemented into the LBM formulation for

REV scale modeling. The Darcy and Brinkmann model have been used frequently

to address porosity in LBM simulations in the past [63, 266]. These models suffer

from some intrinsic limitations [112]. An N-S model based on generalized porosity

model proposed in [220] was then used with the generalized lattice Boltzmann equa-

tion for fluid flow in porous media [111] to better address the porosity and further

improve the LBM numerical scheme initially marred by the limitations of Darcy and

Brinkmann models. Therefore, to simulate heat transfer in the porous medium in

the incompressible limit, we need to have an efficient athermal LBM (with porosity

included in the equilibrium distribution and a force term to address the linear and

non-linear drag) and a thermal LBM approach. The macroscopic equation

∂u

∂t
+
(
u · ∇

)(u
φ

)
= −1

ρ
∇(φp) + ν∇2u+ F (2.24)

governs the incompressible fluid flow in porous media, where φ is the porosity, ν is

the effective viscosity and F is the force term. In order to solve the above macros-

copic system, a LBE with a force term is needed to address flow field conservation

equations,

fi(x+ ci4 t, t+4t)− fi(x, t) = Ωi(f, f) +4tFi.

The simplest approach is to use BGK as the collision operator as done in [111, 112].
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The force term must address efficiently the force exerted by the porous medium and

any other existing force. It is quite essential as well to define the porosity factor’s

contribution to the equilibrium of the fluid particles after collisions. Guo et al.

defined the force term (for a BGK single relaxation parameter τ),

Fi = wiρ

(
1− 1

2τ

)[
~ci · ~F
c2
sf

+
(~ci · ~u)(~ci · ~F )

φc4
sf

+
~u · ~F
φc4

sf

]
and equilibrium distribution with porosity φ is,

f eqi = ρwi

(
1 +

~u · ~ci
c2
sf

+
(~u · ~ci)2

2φc4
sf

− ~u · ~u
2φc2

sf

)
.

The values of weight factors wi, the speed of sound for flow field csf are the cha-

racteristics of a particular lattice model and can be defined once the lattice model

has been chosen to solve fluid flow LBE. As a normal practice, C-E expansion of

the LBE above can be performed to recover generalized N-S equations and effective

viscosity. Next, the temperature field is solved. The temperature equation for heat

transfer in porous media [112] reads

σ
∂T

∂t
+ u · ∇T = ∇ ·

(
αm∇T

)
, (2.25)

where

σ = φ+
(
1− φ

)ρscps
ρcp

,

ρs is the density of porous solid, αm is the effective thermal diffusivity, cp and cps

are the specific heat of fluid and porous solid, respectively. The Eq. (2.21) can be

solved further using an appropriate collision scheme and one can use C-E expansion

to recover the temperature equation using the standard procedure. The conservation

rule now will have the form σT =
∑

i gi and geqi as defined earlier in the text. The

D2Q9 and D2Q5 lattice models can be used to solve the flow field and temperature

field, respectively.

Thermal flows such as natural convection and Rayleigh-Bénard convection have

also been solved by many groups using LBM scheme for small/moderate Ra num-

bers (laminar flows) [8, 75, 81, 197, 214, 229, 256]. Turbulent flows simulations

generally need special turbulence models and are computationally costly due to

large grid requirement. Dixit and Babu developed the first implementation of the

DDF scheme to study turbulent (Ra > 108) thermal flows. The authors used inter-

polation supplemented lattice Boltzmann method [125] with non-uniform grids to

simulate turbulent flows [74]. The authors simulated the natural convection heat

29



transfer in a square cavity for Ra up to 1010 using BGK collision scheme for flow

field and temperature field, using internal energy distribution function. Kuznik et

al. used Taylor expansion-Least square LBM to simulate natural convection in a

differentially heated cavity on non-uniform grid [167]. But the simulations were

kept limited to the transitional limit of the Rayleigh number (106 < Ra < 108).

Mohamad et al. simulated natural convection in an open-ended cavity for laminar

flow limit but used D2Q4 lattice model to simulate temperature field [214]. The

same system of lattice models was used to simulate natural convection in an open

enclosure filled with nanofluid [160]. Mezrhab et al. used MRT collision schemes

for fluid flow on a D2Q9 lattice model and temperature field on D2Q5 [204]. Je-

ong et al. [148] combined immersed boundary conditions with DDF thermal LBM

scheme using equilibrium velocity approach proposed in [257]. This approach is very

useful to simulate heat flows with immersed boundary problems, i.e. the problem

with different body shapes. Ghazanfarian and Abbassi implemented internal energy

distribution DDF thermal LBM ( by He et al. [127]) to simulate heat transfer in

micro and mini-channels [97]. Dubois et al. implemented MRT collision operator

on two D2Q9 lattice models to simulate anisotropic heat transfer in a square cavity

for different lattice resolutions [80].

Cascaded collision operator, developed to enhance the stability and accuracy of

the BGK and MRT LBM scheme [94, 95], was first applied to simulate thermal

flows by the authors in recent publications [259, 262, 269]. Straka has previously

used cascaded collision scheme to solve the flow field and MRT collision scheme to

solve temperature field [268]. In cascaded LBM scheme streaming step is defined

in velocity space like BGK and MRT schemes, and collision is defined in central

moment space. The central moments κ are given by

κxmyn =
∑
i

(cix − ciy)m(cix − ciy)nfi.

The cascaded LBE is given by

fi(x+ ci4 t, t+4t)− fi(x, t) = K · ~k,

where K is the transformation matrix and ~k is the collision vector. A similar LBE

can be written for the temperature field, using temperature distribution function.

The authors simulated a variety of heat transfer problems, e.g. forced convection,

advection-diffusion, rotational flows and natural convection in the square cavity

using a passive scalar cascaded DDF scheme. Advection-diffusion of the sine wave

was simulated using CTLBM [259] and the results were compared with MRT collision

schemes developed by Mezrhab et al. and Yoshida et al. [204, 309]. The performance
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of the CTLBM for natural convection simulations in square cavity for a large range

of Rayleigh numbers [262] was compared against various other LBM works [58, 75,

167, 292], DNS works from Lé Quéré [238], Markatos and Pericleous [193], Barakos

et al. [16], and experimental works from Tian and Karayiannis [282] and King

[162]. The results obtained by CTLBM for a large range of Ra number (103− 1010)

presented in [262] were found to be in strong agreement with those obtained by

DNS and experiments. Fei et al. also implemented cascaded collision scheme in

the same year to address thermal flows [84, 85]. It can be seen from the previous

implementations that cascaded collision scheme enhanced numerical stability by

reducing the degree of Galilean invariance insufficiency. Conjugate heat transfer

simulations depend on the material properties, which affect the fluid-solid interface

properties differently [150]. Numerical implementation of interface boundaries is

crucial for efficient numerical stability and accuracy for fluid-solid heat transfer.

There exists an LBM numerical scheme called as “half lattice division scheme”by

Wang et al. [291] which develop boundary implementation of an interface and

characterizes the properties of solid materials [278, 293]. Cai and Huai used passive

scalar DDF approach to simulate fluid-solid conjugate heat transfer in a fractal

porous medium and presented the qualitative comparison between FVM and LBM

approach [29].

2.9 Thermal Boundary Conditions

The implementation of boundary conditions is very problem specific and there exist

some standard frameworks in LBM to address various types of problems. No-slip

boundary conditions, also known as bounce-back boundary conditions of the non-

linear distributions are the most used in LBM applications [126, 256, 264, 321].

The bounce-back boundary conditions are first order accurate, and initial imple-

mentations of no-slip conditions were found to be the source of error [126, 175, 256].

Athermal boundary conditions applied in LBM can be classified as periodic, velo-

city and pressure boundary conditions. Maier et al. presented a detailed overview

of the boundary conditions and their implementation for simulations of different

fluid flow problems using different lattice models [191]. Improved no-slip and local

second-order velocity boundary methods improved the accuracy of the LBM sche-

mes [98, 142]. Isothermal no-slip boundary conditions ensure zero velocity at the

boundary for fluid flow components and fixed density for the temperature compo-

nent [256]. Further improvements in isothermal boundary conditions were made

by Chang et al. where the authors proposed a scheme called consistent boundary

condition in which unknown components become functions of the known compo-

nents [36]. The heat flux must be permitted through the boundaries. D’Orazio and
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Succi [75] presented in-depth analyses of the counter-slip approach proposed by Ina-

muro et al. [142] applied to the internal energy and its implementations for thermal

Couette flow and thermal Poiseuille flow. D’Orazio further extended the counter

slip approach used in thermal Poiseuille and Couette flows previously, to general

purpose boundary conditions to simulate imposed wall temperature and imposed

wall heat fluxes [76]. The authors present a quantitative analysis of internal energy

DDF scheme using Dirichlet and Neumann type thermal boundary conditions for

simulations of natural convection in a square cavity and compared the results with

the literature. Simulations’ accuracy of thermal flows with extremely high velocity

and sharp fluctuations in temperature strongly depends on the boundary conditions.

Simple no-slip boundary conditions are inefficient in addressing such problems due

to the fact that unknown components of the fluid and temperature are computed at

the boundary itself as in such cases the solid nodes exist on the wall itself, imposing

the fluid and solid to have similar velocity and temperature at the boundary. Due to

this fact temperature jump and velocity slip, phenomena that often occur in rarefied

aerodynamics cases and in micro and nanodevices cannot be addressed.

Sofonea and Sekerka suggested the application of diffuse-reflection thermal boun-

dary conditions for such high Knudsen number (Kn) flow [264]. This approach as-

sumes the existence of the wall (solid nodes) half lattice cell spacing outside the

physical wall. The detailed implementation of this diffuse-reflection boundary con-

ditions approach has been provided in the paper and the authors simulated thermal

flows in microchannels and flow with temperature jumps using a finite difference

LBM (FDLBM) approach. Liu et al. extended the consistent boundary condi-

tion by Chang et al. to thermal flow problems. The authors made the unknown

components of the energy distribution function of the known energy distribution

components and correctors [186]. Li et al. noted that the previously used consistent

boundary condition by Liu et al., Chang et al., He et al. were defined for specified

boundary conditions and Neumann boundary conditions were transformed into the

specified or fixed boundary conditions by using finite difference schemes [180]. In

the case of flows with mixed boundaries where previous approaches are inadequate,

Li et al. recommended the use of a direct boundary condition with specified deriva-

tives. Li et al. developed a second-order accurate boundary condition approach for

Dirichlet (specified boundary) and Neumann (specified derivative) conditions [180].

2.10 Critical Summary of Thermal LBM

The overall motivation of using LBM to solve thermal problems was completely ba-

sed upon the success it achieved in solving athermal problems. It is quite evident
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from the review that initial implementations of LGA (which were LGA) to simu-

late thermal problems were full of inaccuracies and instabilities due to the Boolean

nature of the fluid and pressure explicitly depending on velocity. LGA were re-

placed with improved lattice Boltzmann equation models which used real numbers

and a statistical average over a large region. The overall accuracy and stability

of athermal LBM were improved heavily due to the development of more sophisti-

cated collision schemes such as MRT along with the appropriate definition of the

equilibrium distribution. The “as it is”extension of the athermal model to solve

isothermal or non-isothermal problems was full of inaccuracy, instabilities and other

challenges such that how to address compressible or other non-linear behaviors of

energy equations. It can be understood that the most popular collision scheme

“Single Relaxation Time (BGK)”was initially used to deal with thermal problems

altogether. This application was unstable due to the fact that all non-conserved

quantities were depending on just one relaxation parameter, which in true sense

must be relaxing towards their equilibrium at different time scales. This approach

fixed the Prandtl number, limiting the use of LBM just for problems with a very

narrow temperature variation range. In order to make LBM free from this disease,

MRT collision schemes were used and a variable Prandtl number was achieved, and

also different non-conserved quantities of flow field and energy could be relaxed on

different time scales.

The source of numerical error and instabilities were not only limited to the col-

lision schemes, considering energy as an additional moment or component of the

velocity (see MS models) was also problematic, as it required up to fourth order

velocity terms appearing in the equilibrium distribution, though it increased the

potential of LBM to deal with compressible problems through its ability to incor-

porate compressive work, it still produced great instability and low accuracy, and

fixed Prandtl number. Though some improved versions of the MS model have been

developed, with a tremendously high number of extra velocities. Therefore to es-

tablish LBM as a credible tool to simulate incompressible flows with high stability,

temperature fields were solved by assigning a separate LBE for temperature dis-

tribution function, internal energy distribution function or total energy distribution

function. This approach was called DDF approach, with its two subordinates, one is

a passive scalar approach which was developed to simulate thermal flows where the

temperature is advected by the velocity but it does not affect it anyway, therefore

for temperature, solving the advection-diffusion equation (obeyed by temperature)

was sufficient. The second subordinate was proposed and developed by He et al. in

which internal energy was considered to be the conserved quantity directly derived

from the continuous Boltzmann equation, which also could incorporate compressive
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work and heat dissipation conveniently, in the incompressible limit. These terms

cannot be included in the passive scalar DDF framework. The equilibrium distribu-

tion was simply Maxwellian and its Taylor expansion could be truncated at second

order of velocity to produce stable results with this DDF schemes. Hybrid LBM

models exploit the benefits of already well established conventional CFD techniques

to simulate advection-diffusion equations or radiative heat transfer problems. Re-

cently, a trend has been seen in which various groups have used advanced collision

schemes such as cascaded LBM and have achieved greater stability and robustness.

2.11 Conclusion

This paper works as an ensemble of existing thermal LBM frameworks and a large

number of LBM approaches by different groups dealing with numerous thermal flow

problems such as natural convection, forced convection, phase transition, radiative

heat transfer, thermal flows through porous media, conductive heat transfer, etc.

Instead of flying by various important steps in thermal LBM such as theoretical

development, choosing collision schemes, discretization and numerical results super-

ficially (as it was not possible to account all parts with numerous notable works

done by different groups in the last three decades in just one article), we have focu-

sed intensively on an evolutionary advancement of thermal LBM. We have studied

and analyzed different approaches adopted by different groups falling under three

categories of thermal LBM frameworks and have left the reader with all the free-

dom to select the collision schemes, lattice models and other important stuff such

as boundary condition, for efficient simulations of the problems of their interest.

It can be understood from the discussions that stability and accuracy of LBM

scheme mostly depend on the structure of the collision operator and applied boun-

dary conditions. Cascaded collision scheme, gradually becoming more popular, can

produce better stability and accuracy. Recent trends shows that cascaded-cascaded

DDF scheme, with sophisticated boundary conditions can be a powerful numerical

tool to simulate a diverse range of thermal flow problems.

We do believe that the present study is a rich source of information that can

be of great interest to the scientists and engineers dealing with heat and mass

transfer simulation using LBM and conventional CFD tools for diverse industrial

and academic applications.
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Caṕıtulo 3

Recovering Equivalent Partial

Differential Equations from the

BGK, MRT, and Cascaded Lattice

Boltzmann Methods

3.1 Abstract

Recovery of Navier-Stokes equations from Lattice Boltzmann Methods is an essen-

tial practice to evidence the consistency and stability of numerical schemes. Here,

we discuss and show techniques for recovery of the Navier-Stokes (N-S) and Fourier-

Kirchhoff (F-K) equations from various lattice Boltzmann methods in a rather sim-

ple and systematic manner. Originating from the concept of the modified equation

and non-centered schemes for equivalent non-linear equation used to recover Navier-

Stokes equations, the Equivalent Partial Differential Equation (EPDE) approach is

adopted here to recover these macroscopic equations. Bhatnagar-Gross-Krook; Sin-

gle Relaxation Time (BGK-SRT), Multiple Relaxation Times (MRT), and Cascaded

collision schemes have been discussed in details and the corresponding lattice Boltz-

mann equations are taken to their hydrodynamic limit using Taylor expansion and

diffusive scaling to recover macroscopic Navier-Stokes and Fourier-Kirchhoff equati-

ons in the incompressible limit.

The content of this chapter has been submitted for publication as a review paper in

Physical Review E
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3.2 Introduction

Lattice Boltzmann Methods (LBM) are recent but very reliable and powerful to-

ols for solving complex computational fluid dynamics problems. It is proven

that LBM can solve complicated fluid flow and heat transfer problems efficien-

tly with great stability and accuracy [19, 95, 123, 171, 317]. It has been also

shown that complex fluid flow problem e.g., turbulence flows, flows in porous

media, phase transitions, and many other phenomena can be solved by LBM

[12, 18, 68, 89, 95, 113, 164, 172, 182, 199, 217]. But LBM has been subjected

to extensive scrutiny and put under intensive investigations. The one thing beyond

stability and accuracy that interests the most is the consistency of the LBM sche-

mes. The consistency of the LBM can be established by recovering the Navier-

Stokes and Fourier-Kirchhoff equations by rescaling and Taylor expansion of the

lattice Boltzmann equation. Chapman-Enskog expansion and asymptotic analysis

techniques have been the most popular way to recover the macroscopic equations

[12, 152, 171, 234, 304]. But there exist methods like (1) Hilbert expansion, (2)

Equivalent Partial Differential Equations (EPDE), and very recently reported (3)

Maxwell iteration method that can also recover the hydrodynamic limits of the lat-

tice Boltzmann schemes [79, 80, 153, 308, 319].

In 1986, Frisch et. al. presented the lattice gas automata for the Navier-Stokes

equations [91]. The N-S equations obey the conservation rules. The motivation

behind this work was to provide a model which could efficiently solve fluid flow with

high Reynolds number with massively parallel algorithms. It can be argued that

the authors followed the similar concept as of the modified equations to approxi-

mate various field equations governing different fluid flow systems by using cellular

automata instead of difference schemes [91] but with an intention of extending the

microscopic description to its macroscopic description (the continuum level). In

lattice gas automata the fluid particles are described at the kinetic level with the

irreversible low-density Boltzmann approximation. In order to describe the beha-

vior of this kinetic level lattice gas system at the macroscopic level in the continuum

approximation Chapman-Enskog (C-E) expansion technique was used. The authors

used the lattice gas models with complete discrete phase space and time describing

the fluid as it was made of Boolean molecules. The term lattice is a model which

dictates the propagation and existence of fluid particles distributed over the spatial

domain of interest or simply grid. Similar to the approximated equations in the case

of partial differential equations using finite difference schemes, macroscopic equati-

ons recovered by the Chapman-Enskog expansion technique are N-S equations. A

direct comparison between the original N-S equation and the lattice gas approxi-

mated N-S equation reflects the stability, consistency, and accuracy of the lattice
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gas scheme. The HPP model named after authors Hardy, de Pazzis and Pomeau

was implemented on a two-dimensional square grid to constrain the propagation of

Boolean fluid particles [119–121]. But the N-S equation recovered by this scheme

did not possess dissipative terms and nonlinear terms of the N-S equation. This was

attributed to the lack of isotropy of the lattice model used by HPP. This drawback

associated with the HPP scheme was removed by Frisch et al. as they used a hexa-

gonal lattice model preserving the symmetry of the lattice [91]. Modified collision

rule by Harris was incorporated with discrete Boltzmann model fulfilling Fermi dis-

tribution rule [122].

The special features, importance and various applications of the lattice gas models

have been described in great detail in the literature [22, 42, 48, 90, 108, 315]. The

lattice gas models possess some statistical noise due to the Boolean nature of the

system variables. This statistical noise was because of the average over a very small

space-time region of the considered system. Therefore, to remove the statistical

noise, the concept of the lattice Boltzmann equation was proposed. A very syste-

matic study of the journey from Boolean microdynamics to the lattice Boltzmann

equation has been presented by Benzi et al. [19]. Qian et al. used the BGK collision

scheme [21] to recover the 2nd order approximated N-S equation using Chapman-

Enskog expansion technique [236]. In the new formulation of the lattice Boltzmann

equation, the velocity distribution function was used to describe the probabilistic

population of the fluid particles in larger space-time region, the collision rules were

improved using Maxwell-Boltzmann distributions and the symmetry of the lattice

was assured. Therefore, the recovered N-S equations possessed non-linear terms

and dissipative terms. It should be noted that the collision scheme must obey the

mass, momentum, and energy conservation rules. The derivation of the macroscopic

equations from the generalized lattice Boltzmann equations is given in Ref.[72]. The

author showed that using Chapman-Enskog expansion and BGK collision scheme

on a generalized lattice Boltzmann equations one can recover macroscopic equation

containing more complex information compared to the lattice gas equations. BGK

collision scheme states that all non-conserved quantities associated with the fluid

flow reach to the equilibrium state with identical relaxation frequency. He and Luo

stated that Lattice Boltzmann equation is used to recover the N-S equation for low

Mach number only, i.e. for incompressible limit [123, 126]. The authors showed that

removing the terms of higher order Mach number can provide an accurate solution

for the incompressible limit. The authors used the two dimensional nine velocity

lattice model and BGK collision scheme to describe the lattice Boltzmann equation

and afterward used the Chapman-Enskog expansion to recover the N-S equation.

The lattice Boltzmann equations studied by various authors above were defi-
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ned in discrete velocity space. In 2000, Lallemand and Luo proposed a new form

of lattice Boltzmann equation defined in moment space [171]. Dellar proposed a

modified lattice Boltzmann scheme with BGK collision operator to recover com-

pressible Navier-Stokes equations. The motivation behind this work was to control

bulk viscosity [68]. Tuning bulk viscosity can provide accurate solutions for the

compressible flows. It should be noted that LBE’s inherently designed to solve com-

pressible flows. Truncation of the equilibrium distribution function to second order

limits the performance of LBM making it suitable for small Mach number flows only.

The authors redefined the equilibrium distribution function by inducing new bulk

viscosity coefficient to attain N-S equations with adjustable bulk viscosity. Later,

Guo et al. incorporated forcing term in the lattice Boltzmann equation [113]. The

forcing term can be simply added to the LBE. The inclusion of forcing terms beco-

mes essential when solving multiphase or multicomponent flows, and the problems

which involve external or internal forces. The authors added the forcing terms into

the lattice Boltzmann equation and used the BGK collision scheme and Chapman

Enskog expansion technique to derive the N-S equation. In 2003, Lallemand and

Luo developed a hybrid thermal lattice Boltzmann scheme called HTLBE which

was used to study the acoustic and thermal properties of the system with energy

conservation [172]. Interestingly, instead of BGK, the authors adopted a special

collision scheme called Multiple relaxation times (MRT) by d’Humieres, well known

for increasing the stability of the LBM scheme, to solve the flow field equations.

The energy equation in terms of temperature equation was solved separately using

a finite difference scheme. Again, the Chapman-Enskog technique was used to de-

rive the hydrodynamic equations and analyze the numerical stability of the HTLBE

scheme.

Therefore, it can be understood that the Chapman-Enskog (C-E) expansion te-

chnique was the most used technique to recover the N-S equations to study the

consistency, stability, and accuracy of the various lattice Boltzmann schemes. The

one important characteristic of the C-E expansion techniques is that it considers

convective scaling in which the spatial and temporal steps are considered to be ap-

proximately equal combined with two-time-scale expansion [188, 310]. As discussed

earlier, the N-S equation recovered using C-E expansion represents a compressible

system and the incompressible limit of these N-S equations can be achieved by set-

ting Mach number low [101, 102, 151, 185, 196]. To free the LBM schemes from this

drawback, Junk et al. proposed use of asymptotic analysis with diffusive scaling to

study the consistency and stability of the purely incompressible N-S equations [152].

McCracken and Abraham derived the hydrodynamic equations for multiphase flows

using C-E expansion for the MRT collision schemes [199]. As it is well established
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that MRT improves the stability of the LBM schemes, N-S equations recovered by

the C-E expansion contain terms which establish the improved consistency and sta-

bility of the method and shows how to adjust the bulk viscosity to zero for small

Mach number cases.

Actually, LBM is known to solve ideal fluids leading to an ideal-gas equation of

state. But LBM simulations of multiphase fluid flows, e.g. non-ideal cases caused

by the forcing term such as phase transition or separation, fail to sufficiently main-

tain the thermodynamic equilibrium. Wagner investigated this problem by studying

the equilibrium behavior of the original N-S equation for non-ideal gas [288], and

afterward, the authors formulated the lattice Boltzmann equation with the forcing

term inducing non-ideal terms to recover the N-S equation by means of the Tay-

lor expansion. Matching the original N-S equation for non-ideal gas with the N-S

equation recovered by the lattice Boltzmann approach with forcing term for non-

ideal gas can help in identifying the terms which can later be incorporated into

the LBM formulation [182]. In 2007, Li and Abraham developed the lattice Boltz-

mann formulation for a multicomponent system with free energy with application

in the formation of polymer membranes through immersion precipitation [182]. In

LBM, there exist few kinds of approaches to solve multicomponent and multiphase

systems: (1) Rothman Keller approach, (2) Shan-Chen method and (3) free energy

approach [11, 34, 35, 107, 129, 138, 143, 182, 194, 320]. We already discussed the role

of N-S equations for the multiphase system above with thermodynamic inefficiency.

When the thermodynamic equilibrium of non-ideal gases is of interest, free energy

approach seems to be the favorite choice [182, 288]. The chemical potential of each

component and pressure of the system were incorporated in the multicomponent

lattice Boltzmann model [182]. The authors then followed the standard procedure

as discussed above, the N-S equation (hydrodynamic limits) governing the overall

system was recovered using the Taylor expansion techniques (similar concept as of

equivalent equation which is described in next sections). The authors also provided

numerical solutions for binary and ternary systems deriving a convection-diffusion

equation for each component. Li et al. later in the same year obtained compressi-

ble N-S equations using C-E expansion technique for double distribution function

(DDF) LBM scheme with BGK collision operator [183].

In 2008, P. Asinari published a paper which provided the detailed asymptotic

analysis of MRT LBM scheme for systems of ideal mixture [12]. The analysis of

the recovered macroscopic equation for MRT collision schemes showed that MRT

schemes can tune the diffusivity conveniently. Asymptotic analysis by the diffusive

scaling, the Euler integration rule, and the modified mid-point integration rule was

derived in detail. The authors showed that asymptotic analysis has an edge over
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the classical C-E expansion technique due to its ability to deal with high order non-

Maxwellian terms. Finally, Francois Dubois published papers in which he derived

the equivalent partial differential equations of lattice Boltzmann scheme [79, 80]. It

was the first time that the method of equivalent equations was applied to lattice

Boltzmann equations. The benefit of this scheme is that two-time multiple scaling is

not necessary here to recover N-S equations from the lattice Boltzmann equations.

The equivalent equations provided by the author could be generalized for BGK or

MRT collision operator. Premnath and Banerjee incorporated the forcing term in

the cascaded lattice Boltzmann method and recovered the hydrodynamic equations

using C-E expansion techniques [234]. In 2015, Yand and Yong presented a magni-

ficent analysis of the C-E expansion technique for a class of hyperbolic relaxation

systems. Actually, the authors studied the validity of using C-E expansion techni-

que to describe the viscous characteristics of the hyperbolic relaxation systems [304].

In 2016, entropic lattice Boltzmann method, based on double distribution function

framework, was developed for turbulent and conjugate heat transfer flows. The

authors incorporated entropic MRT collision operator and recovered hydrodynamic

equations for turbulent flows and flow with complex boundaries [226]. In 2017, a

new class of recovery scheme, Maxwell iteration method was developed to recover

macroscopic equations. The proposed technique is a single parameter expansion and

does not require multiscale expansion and Hilbert expansion which are required in

C-E expansion and asymptotic analysis techniques, respectively [308, 319].

As we have seen so far from the literature, techniques such as C-E expansion and

asymptotic analysis have been used quite significantly to recover the hydrodynamic

equations from various LBM schemes. The Maxwell iteration method is a relati-

vely new method, especially for LBM framework. The equivalent partial differential

equation method has been used in the LBM framework by a small number of authors

[79, 80, 96, 147]. C-E expansion and asymptotic analyses are multiscale expansion

techniques and rather complicated compared to the equivalent PDE method which

is simply the Taylor expansion method. Due to its simplicity and straightforward-

ness, we have adopted the equivalent PDE method and have presented the recovery

process of the N-S equations for BGK, MRT, and Cascaded collision schemes. We

have used the double distribution function framework to solve fluid flow and heat

transfer simultaneously. For flow field, the mass and momentum conservation rules

are obeyed, while for temperature field internal energy conservation was conside-

red without taking into consideration the viscous dissipation and compressive work.

Therefore temperature can be considered as a passive scalar. The present study

solves the incompressible fluid flow problems and the Navier-Stokes equations are

recovered by rescaling the LB equations in the incompressible limit. Mass and mo-
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mentum conservation rules are implemented on the D2Q9 lattice model for the fluid

flow, the specific internal energy of the fluid is considered as the conserved quantity

and has been solved using a D2Q5 lattice model.

3.3 Origin and Methodology of Equivalent Equa-

tions

Most of the real world physical systems are governed by non-linear equations or

equations with nonconstant coefficients [133]. The Fourier method proposed by Von

Neuman in 1950 was fit for linear difference equations with constant coefficients.

In 1960, Lax and Wendroff presented a very detailed study of a broad range of a

class of difference equation to approximate discontinuous time-dependent solutions

of hyperbolic systems of nonlinear conservation laws. The authors suggested that

the best class of difference equations were to have the smallest truncation error

with narrowly confined discontinuities [177]. Strang suggested that the convergence

of such approximations depend on the stability of the linearized difference equa-

tion [270], where he studied the scheme proposed by Lax and Wendroff [178] and

the Runge-Kutta method. For non-linear equations or equations with nonconstant

coefficients, in 1968, Hirt proposed a heuristic method called the truncation-error

method to study the computational stability of the finite difference schemes [133].

In this scheme, the author proposed to reduce a finite difference equation into a

differential equation by Taylor expansion. The author claimed that stability of a

difference scheme can be determined by investigating the truncation error terms

which are nothing but the higher-order terms generated in the Taylor expansion.

A one-dimensional compressible fluid flow problem was solved using the truncation

error method to estimate the numerical instabilities, that was not possible with the

Fourier stability analysis. In 1973, McGuire and Morris [200] derived the two-step

Richtmyer method [242, 243] to solve first-order systems of conservation laws. The

authors considered the generalized two-step Richtmyer form of the previously men-

tioned Lax-Wendroff method. The second order correct, Taylor series expansion of

um+1
i = u(ih, (m+ 1)K) reads

um+1
i = umi +K∂tu

m
i +

K2

2
∂ttu

m
i +O(K3). (3.1)

Conservation laws, i.e. ∂tu+∂xf = 0, can be used to replace the time derivatives

by space derivatives in different manners giving birth to different schemes. The

generalized two-step Richtmyer scheme was defined by choosing an intermediate

approximation um+1
i = u(ih, (m+ 2a)K), and with Taylor series expansion
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um+1
i = umi +K

(
1− 1

4a

)
∂tu

m
i +

K

4a
∂tu

m+2a
i +O(K3). (3.2)

From the conservation rule, replacing time derivatives by space derivatives gives

um+1
i = umi −K

(
1− 1

4a

)
∂xf

m
i −

K

4a
∂xf

m+2a
i +O(K3). (3.3)

The space derivatives in the above equations are replaced by differences to achieve

the finite difference scheme, i.e. approximation to umi and u(ih, (m+2a)K). Authors

also showed that different difference schemes can be recovered by assigning different

values to a. In the same year, Lerat and Peyret studied theoretically Mac Cormack’s

noncentered difference scheme to solve the gas dynamics equations [179]. This study

was an extension of a scheme developed by Mac Cormack in 1969, in which the

author replaced the spatial derivatives by noncentered differences, giving birth to

the so-called ”noncentered scheme”. The scheme was proven to be second-order

correct in space. It was claimed by the authors that noncentered schemes were easy

to implement computationally, moreover, these schemes dealt with non-linearities

present in the system more efficiently. The choice of direction of the noncentered

difference has a direct influence on spurious effects. Therefore, at this stage, there

were schemes developed by Lax Wendroff, Mac Cormack, Richtmyer, which could

solve the non-linear problems, conservative form of the gas dynamics equations, i.e.

shock propagation. The most importantly, in the same paper, Lerat and Peyret

elaborated more on the idea of Equivalent Equation for the case of a linear system.

The scheme ’equivalent equations’ were used to study the discretized differential

equations to describe the properties, e.g. stability, accuracy, consistency of a scheme

[133, 305]. The stability and the dissipative properties of the schemes were studied

using the concept of first differential approximation. The viscosity which appears

due to the approximation of the hyperbolic systems was also studied. Lerat and

Peyret described equivalent equation formulations for linear and non-linear systems

[179]. The hyperbolic linear system reads

∂tf + A∂xf = 0. (3.4)

Using the Mac Cormack scheme for the linear system, the equivalent equation

can be written as

∂tf + A∂xf + A3∂x3f + A4∂x4f = 0, (3.5)

where A3, A4 are matrix polynomials such that A3 = P3(A) = O(4x2), A4 =

P4(A) = O(4x3). From Eq.(3.4, 3.5), the dispersive and dissipative error can

be characterized. The polynomials P3, P4, for the Mac Cormack’s scheme, can be
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written as function of the eigenvalue of A, spatial step 4x and temporal step 4t.
Therefore, the stability conditions, dispersive error, dissipative error of the scheme

can be set in relation to the polynomials characteristics. If λ is the eigenvalues

of the matrix A, the scheme is stable for P4(λ) > 0, the dispersive error arises

when P3(λ) 6= 0 and the dispersive error can contribute to the dissipative error if

P4(λ) > 0.

To attain higher stability of the equivalent equation of linear systems, the authors

suggested condition η = max|λ|4t4x ≤ 1. The origin of spurious oscillations is attri-

buted to the condition when η < 1, which suggests that the magnitude of dispersive

errors are greater than the dissipative errors. Next, the author presented [179] the

equivalent equation for the nonlinear system

∂tf + ∂xg(f) = 0, g(f) =
1

2
f 2 (3.6)

The Mac Cormack scheme was then used to discretize the above system of equa-

tion followed by Taylor expansion to replace time derivatives by spatial derivatives.

The third order equivalent equation was derived. The analysis of the equivalent

equation resulted in the conclusion that the numerical stability of the scheme is gre-

atly influenced by the choice of the direction of differences. Unsteady shock profiles

were then solved numerically using the equivalent equation. Warming and Hyett

(1974) presented a very detailed analysis of the accuracy and stability of the modi-

fied equations using finite difference scheme [295]. A critical analysis of this scheme

has been presented by Chang [38]. The authors carried out a stability analysis on

the truncated partial differential equation. The stability analysis of error terms pre-

sent in the modified equation was named ’Heuristic’. The authors also studied the

connection between the Von Neumann method and the modified equation method.

It was already established by Richtmyer’s version of the Lax-Wendroff method that

large wave number Fourier components were dampened. Phase error analysis was

presented for convective flows using the modified equations. We present here one

example presented by the authors to closely understand the concept. The partial

differential equation chosen by the authors was a scalar convection equation:

∂tũ+ c∂xũ = 0, (3.7)

where c is a real constant and ũ is obviously the exact solution of the original

differential equation. To describe the difference analog of the original equation, a

difference scheme along with Taylor expansion is necessary which will transform the

above equation into a modified one. The second-order difference scheme algorithm
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for un+1
i proposed by Crowley was analyzed [60]. The explicit algorithm reads:

un+1
i = uni − ν(µδ)uni +

ν2

2
(µ2δ2)uni −

1

8
ν3(µδ3)uni , (3.8)

where ν = c4t4x , µ and δ are difference operators such that µui =
un
i+1/2

+un
i−1/2

2
and

δui = uni+1/2 − uni−1/2. Using the above-mentioned difference scheme and Taylor

expansion, the corresponding modified or equivalent equation of Eq.(3.7) reads

∂tu+ c∂xu = −C(3)∂x3u− C(4)∂x4u− C(5)∂x5u+ ...... (3.9)

where C(t) is the coefficient of tth order spatial derivative and u is the solution

of the difference analog. To perform a detailed analysis of the truncated partial

differential equation (modified equation) one needs to closely examine the coeffici-

ents (C) of the spatial derivatives of a different order. One should note that new

terms appearing in the equivalent or modified equations are the error terms. For

example, all the terms on the right-hand side of the above-mentioned equation are

error terms, and conclusion regarding the dissipative error, dispersive error, consis-

tency, and accuracy can be drawn by carefully analyzing these terms. The lowest

order error term is dictated by C(3), which is, C(3) = c4x2
24

(4 − ν2). In temporal

and spatial steps, C(3) = c
24

(44 x2 − c2 4 t2) . The quadratic terms 4x and 4t
appearing in the error term renders the scheme second-order correct in space and

time. To ascertain the consistency of the scheme with the convective equation, the

terms C(t) must be zero when spatial and temporal spacing approach zero. The

authors stated that C(3), C(4), .... tend to zero when 4x and 4t tends to zero

which established the consistency of the difference scheme adopted with the scalar

convective equation. The further analysis of the stability of the Crowley scheme

was also discussed in great detail by the authors and can be found in the paper

[295]. It is very clear that the principal objective of the studies we discussed is

to solve different type of partial differential equations using various difference ap-

proximations and schemes. The original partial differential equation is transformed

into a truncated equivalent partial differential equation having infinite numbers of

error terms using finite difference schemes. The basic process is very simple, (1) the

partial differential equation is discretized by using an appropriate difference scheme;

(2) the time derivatives are eliminated using the Taylor expansion and conservation

rules; (3) various orders of error terms (i.e. higher order derivatives) in the modified

or equivalent partial differential equation are then recovered. Finally, the stability

and accuracy analysis of these difference schemes can be made on these truncated

equivalents or modified equations [105] by carefully examining the coefficient of the

high order spatial derivatives. The similar equivalent equation methodology was ap-
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plied to the Boltzmann transport equation by Francois Dubois [79, 80]. Boltzmann

transport equation (BTE), which is, of course, a conditionally linear partial diffe-

rential equation, can be written as the difference equation by adopting a suitable

difference scheme. Using Taylor expansion, the BTE can be approximated as the

equivalent partial differential equation which can be used to study the characteris-

tics and behavior of the physical systems governed by the original BTE equation.

In the next section, we introduce and discuss the lattice models used in the present

study, definitions of moments, lattice Boltzmann equation, detailed collision sche-

mes, lattice Boltzmann difference schemes, and finally the recovery of equivalent

partial differential equations.

3.4 Lattice Models and Moments Definition

3.4.1 D2Q9 Lattice model for the velocity field

In LBM, fluid is considered as the fictitious particles. Probability distribution func-

tion f contains the information regarding the positions of the particles at certain

time in the flow domain on the lattice, see Fig. (2.1). The D2Q9 lattice model is

called the nine velocity model, this model contains nine nodes, and on this lattice

model we define three conserved quantities e.g, mass conservation and momentum

conservation in x and y directions respectively, and six non-conserved moments or

quantities. The speed of sound cs is such that c2
s = 1/3 for all lattice models used

here. The nine fluid flow moments defined on this lattice model read m00, mx, my,

mxx, myy, mxy, mxxy, mxyy, mxxyy, where m00, mx, my are the conserved quantities.

For the sake of simplicity we denote the previous moments such as m00, m10, m01,

m20, m02, m11, m21, m12, m22. The characteristic velocities ci = (ci,x, ci,y) for D2Q9

lattice (i = 0, . . . , 8) are

{(0, 0), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1), (0, 1)},

The conserved fluid flow moments reads

m00 =
∑
i

fi = ρ

m10 =
∑
i

cixfi = ρux

m01 =
∑
i

ciyfi = ρuy,

(3.10)
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where ρ is the macroscopic density, ux and uy are the macroscopic velocities of the

fluid in x and y directions.

Other six non-conserved fluid flow moments are given as follows

mxx = m20 =
∑
i

c2
ixfi

myy = m02 =
∑
i

c2
iyfi

mxy = m11 =
∑
i

cixciyfi

mxxy = m21 =
∑
i

c2
ixciyfi

mxyy = m12 =
∑
i

cixc
2
iyfi

mxxyy = m22 =
∑
i

c2
ixc

2
iyfi

(3.11)

3.4.2 D2Q5 Lattice model for energy balance

As discussed earlier, specific internal energy conservation is implemented on the

D2Q5 lattice model to solve the temperature field. This lattice model contains five

nodes thus five sets of characteristic velocities cix, ciy where i = 1...5 are given by

{(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1)}.

For the thermal case, we have one conservation rule to be obliged which is the

specific internal energy. For this lattice we have one conserved moment and four

non-conserved moments. Temperature distribution function is denoted by g and the

five moments valid on this lattice model are m00, m10, m01, m20, m02. The specific

internal energy conservation rule for incompressible fluids

m00 =
∑
i

gi = T. (3.12)
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The non-conserved moments

m10 =
∑
i

cixgi

m01 =
∑
i

ciygi

m20 =
∑
i

c2
ixgi

m02 =
∑
i

c2
iygi.

(3.13)

3.5 Lattice Boltzmann Equation

The general discretized form of the lattice Boltzmann equation reads

fi(x+ cix4 t, y + ciy 4 t, t+4t)− fi(x, y, t) = Ωi(f, f) + Fi(x, y), (3.14)

where Ω(f, f) is the non-linear integral term that can also be understood as the

generalized form of the collision operator, and Fi(x, y) is the forcing term. The

streaming step reads

fi(x+ cix4 t, y + ciy 4 t, t+4t),

and the collision term reads

fi(x, y, t) + Ωi(f, f) + Fi(x, y).

In present study Fi(x, y) = 0. The collision step can also be assigned to the post

collision distribution function f c.

f ci = fi(x, y, t) + Ωi(f, f). (3.15)

From above equations we can write down the following form of the lattice Boltzmann

equation

fi(x+ cix4 t, y + ciy 4 t, t+4t)− f ci (x, y, t) = 0. (3.16)

3.6 Bhatnagar-Gross-Krook (BGK) LBM

BGK collision scheme is the simplest and the most used scheme to solve lattice

Boltzmann equations [8, 50, 111, 114, 124, 144, 149, 189, 209, 214, 235, 263, 290].

In BGK the highly non-linear integral collision operator Ω(f, f) is linearized and
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simplified such that

Ωi(BGK)(f, f) = −ω
(
fi − f eqi

)
, (3.17)

where f eq is the equilibrium distribution function, ω is the relaxation frequency

with which a distribution function of the ith node fi relaxes to its equilibria f eqi .

In BGK, all non-conserved quantities relax to their equilibria with an identical

relaxation frequency. Therefore the lattice Boltzmann equation Eq. (3.14) for the

BGK collision operator reads

fi(x+ cix4 t, y + ciy 4 t, t+4t)− fi(x, y, t) =

−ω
(
fi(x, y, t)− f eqi (x, y, t)

)
.

(3.18)

From Eq. (3.16), (3.18), we have

f ci (x, y, t) = fi(x, y, t)− ω
(
fi(x, y, t)− f eqi (x, y, t)

)
. (3.19)

It is evident from the above equations that streaming and collision steps are perfor-

med in the velocity space. Eq. (3.19) will be used in future to calculate the post

collision distribution function f c and corresponding moments mxαyβ . The time and

space shifted form of the lattice Boltzmann equation, Eq. (3.16) reads

f(x+ cix4 t/2, y + ciy 4 t/2, t+4t/2)

−f c(x− cix4 t/2, y − ciy 4 t/2, t−4t/2) = 0.
(3.20)

To recover the Navier-Stokes equations, the very first step to be taken is the Taylor

expansion of the lattice Boltzmann equation, Eq. (3.20). Afterwards we will apply

the diffusive scaling to the asymptotic expansion of the moments m. The diffusive

scaling for the LBM reads 4x2/4 t = ε. The asymptotic expansion of the moments

m reads

mxmyn =
∞∑
l=0

εlm
(l)
xmyn . (3.21)

Now by definitions provided in Eq. (3.11), fi can be transformed into the moments

generally such that

mxmyn =
∑
i

cmixc
n
iyfi. (3.22)

Using above relation Eq. (3.22), transforming thef into m in Eq. (3.20), and later

on applying the asymptotic expansion provided in Eq. (4.29), The Taylor expansion
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of the lattice Boltzmann equation reads

∞∑
p=0

ε2p

p!
∂pt

( ∞∑
q=0

εqm
(q)
αβ

)

=
∞∑

m,n=0

−ε(m+n)

m!n!
∂xmyn

( ∞∑
q=0

m
(c)
(α+m)(β+n)

)
.

(3.23)

Now our next objective will be to expand the above expression for various orders of

ε. For ε0, we have

m
(0)
αβ = m

c(0)
αβ = m

(eq)
αβ . (3.24)

For ε1, we have

m
(1)
αβ = m

(c)(1)
αβ − ∂xm(c)(0)

(α+1)β − ∂ym
(c)(0)
α(β+1). (3.25)

For ε2, we have

m
(2)
αβ + ∂tm

(eq)(0)
αβ = m

(c)(2)
αβ − ∂xm(c)(1)

(α+1)β − ∂ym
(c)(1)
α(β+1)

+∂xym
(c)(0)
(α+1)(β+1) +

1

2

(
∂xxm

(c)(0)
(α+2)β + ∂yym

(c)(0)
α(β+2)

)
.

(3.26)

For ε3,

m
(3)
αβ + ∂tm

(1)
αβ = m

(c)(3)
αβ − ∂xm(c)(2)

(α+1)β − ∂ym
(c)(2)
α(β+1)

+∂xym
(c)(1)
(α+1)(β+1) +

1

2

(
∂xxm

(c)(1)
(α+2)β + ∂yym

(c)(1)
α(β+2)

−∂x2ym(c)(0)
(α+2)(β+1) − ∂xy2m

(c)(0)
(α+1)(β+2)

)
− 1

6

(
∂x3m

(c)(0)
(α+3)β

+∂y3m
(c)(0)
α(β+3)

)
.

(3.27)

We must now set some conditions for the conserved moments in terms of moments

and their post collision values. As mentioned earlier we have three conserved

moments, one mass conservation rule and two momentum conservation rules to be

obeyed on the D2Q9 lattice model. The terms m00, m10, m01 are the conserved

moments, therefore they also obey the collisional invariance. That means that for

these moments their post collision values are equal to their equilibrium values,

therefore m
c()
00 = m00 = meq

00, m
c()
10 = m10 = meq

10, m
c()
01 = m01 = meq

01. From relation

for ε0, it is evident that all the post collision moments of zeroth order elevation;

c(0), are equal to the equilibria of that corresponding moment. For example, for
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any valid values of α, β, lets say α = (1, 2), β = (1, 2), m
c(0)
(1or2)(1or2) = m

eq(0)
(1or2)(1or2).

3.6.1 Navier-Stokes Equations Recovery for Fluid Flow

from BGK-LBM

The very first macroscopic equation we choose to recover is the continuity equation or

the divergence free condition for the incompressible flows. To recover the continuity

equation or the divergence free condition for the fluid flow we choose the equivalent

partial differential equation for ε1. We set α = 0, β = 0, Eq. (3.25) reads

m
(1)
00 = m

(c)(1)
00 − ∂xm(c)(0)

10 − ∂ym(c)(0)
01 . (3.28)

From the conservation rule and collisional invariance for the mass conservation rule,

we have m
(1)
00 = m

c(1)
00 , therefore

∂xm
(c)(0)
10 + ∂ym

(c)(0)
01 = 0. (3.29)

As discussed above, m10, m01 are collisional invariant, we have m
(c)(0)
01 = meq

01 and

m
(c)(0)
10 = meq

10, therefore

∂xm
eq
10 + ∂ym

eq
01 = 0. (3.30)

In LBM, the equilibrium values of the moments are calculated by the second or-

der truncation of the Taylor expansion of the Maxwell-Boltzmann distributions. In

future we shall apply this theory to calculate the equilibria for the non-conserved

moments. But m10, m01 are the conserved moments, momentum in x and y direc-

tions respectively, therefore meq
10 = ρux, m

eq
01 = ρuy. Substituting these equilibrium

values of the moments in the above equation

∂x(ρux) + ∂y(ρuy) = 0, (3.31)

this equation is the well known divergence free condition for the fluid flow.

The Navier-Stokes momentum equations for the velocities ux, uy contain terms of

variations of momentum ρux, ρuy with respect to time and space. Therefore after

having a look at the Eq. (3.27), to end up with a terms such that ∂(ρux)
∂t

we need to
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assign α = 1, β = 0 in Eq. (3.26). For α = 1, β = 0 the ε2 equation reads

m
(2)
10 + ∂tm

(eq)(0)
10 = m

(c)(2)
10 − ∂xm(c)(1)

20 − ∂ym(c)(1)
11

+∂xym
(c)(0)
21 +

1

2

(
∂xxm

(c)(0)
30 + ∂yym

(c)(0)
12

)
.

(3.32)

The contribution of the moments which are not defined on the lattice model we

are working with is null and void given the condition that these moments are not

subjected to aliasing. Due to aliasing we can write m30 = m10,m13 = m11,m31 =

m11. Therefore after applying aliasing for moment m30

m
(2)
10 + ∂tm

(eq)(0)
10 = m

(c)(2)
10 − ∂xm(c)(1)

20 − ∂ym(c)(1)
11

+∂xym
(c)(0)
21 +

1

2

(
∂xxm

(c)(0)
10 + ∂yym

(c)(0)
12

)
.

(3.33)

From the relations for ε0 and collisional invariance of the conserved moments, for

the above equation we already can write that m
(1)
10 = m

(c)(1)
10 = meq

10. The forcing

term in the x direction Fx = m
(2)
10 − m

(c)(2)
10 . In the present study Fx = 0. The

unknown moments are m
(c)(1)
20 ,m

(c)(1)
11 . To calculate first order post collision moments

m
(c)(1)
20 ,m

(c)(1)
11 we need ε1 equation and the BGK collision scheme to calculate the

post collision moments (unknown) in all equilibrium (known) terms. To calculate

the post collision moment m
c(1)
20 , first we assign α = 2, β = 0 in Eq. (3.25) and use

aliasing for the moment m30 = m10

m
(1)
20 = m

(c)(1)
20 − ∂xm(c)(0)

10 − ∂ym(c)(0)
21 . (3.34)

We have m
(c)(0)
10 = meq

10,m
(c)(0)
21 = meq

21, therefore m
(1)
20 reads

m
(1)
20 = m

(c)(1)
20 − ∂xmeq

10 − ∂ym
eq
21. (3.35)

It is evident from the above equation that there exists one unknown m
(1)
20 . Now

transforming the distribution function f into moments m
(1)
20 in the collision scheme

Eq. (3.19), we multiply both sides by
∑

i c
2
ix because m

(1)
20 =

∑
i c

2
ixf

(1)
i . Moment

transformed form of the Eq. (3.19) reads

m
(c)(1)
20 = m

(1)
20 − ω

(
m

(1)
20 −m

eq(1)
20

)
. (3.36)

Solving Eq. (3.35) and Eq. (3.36),

m
(c)(1)
20 = m

eq(1)
20 +

(
1− 1

ω

)
∂xm

eq(0)
10 +

(
1− 1

ω

)
∂ym

eq(0)
21 . (3.37)
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Now to calculate the term m
(c)(1)
11 , we put α = 1, β = 1 in Eq. (3.25) and transform

f into m11 in the collision scheme by multiplying both sides by
∑

i cixciy, the ε1

equation reads

m
(1)
11 = m

(c)(1)
11 − ∂xm(c)(0)

21 − ∂ym(c)(0)
12 . (3.38)

The moment transformed collision scheme reads

m
(c)(1)
11 = m

(1)
11 − ω

(
m

(1)
11 −m

eq(1)
11

)
. (3.39)

From above equations we have the final expression for the moment m
(c)(1)
11

m
(c)(1)
11 = m

eq(1)
11 +

(
1− 1

ω

)
∂xm

eq(0)
21 +

(
1− 1

ω

)
∂ym

eq(0)
12 . (3.40)

Now substituting m
(c)(1)
20 ,m

(c)(1)
11 into Eq. (3.33) and using relations m

(c)(0)
αβ = m

eq(0)
αβ ,

for F
(2)
x = 0

∂tm
eq(0)
10 + ∂xm

eq(1)
20 + ∂ym

eq(1)
11

=

(
1

ω
− 1

2

)(
∂xxm

eq(0)
10 + ∂yym

eq(0)
12 + 2∂xym

eq(0)
21

)
.

(3.41)

All the non-conserved moment terms in the above equation are in their equilibria,

these moments are known and reads (up to required order)

meq
20 = ρc2

s + ρu2
x

meq
02 = ρc2

s + ρu2
y

meq
11 = ρuxuy

meq
12 = ρc2

sux

meq
21 = ρc2

suy.

(3.42)

Now substituting the equilibria of the moments we have

∂t
(
ρux
)

+ ∂x
(
ρc2

s + ρu2
x

)
+ ∂y

(
ρuxuy

)
=

(
1

ω
− 1

2

)(
∂xx
(
ρux
)

+ ∂yy
(
ρc2

sux
)

+ 2∂xy
(
ρc2

suy
))
.

(3.43)

Pressure is given by p = ρc2
s, therefore the much resolved equation reads

∂t
(
ρux
)

+ ∂x
(
p+ ρu2

x

)
+ ∂y

(
ρuxuy

)
=

(
1

ω
− 1

2

)(
∂xx
(
ρux
)

+ c2
s∂yy

(
ρux
)

+ 2c2
s∂xy

(
ρuy
))
.

(3.44)
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The above equation is the well known Navier-Stokes moment equation for ux reco-

vered from the BGK-LBM scheme.

Recovery of N-S equations using Taylor expansion method by Wagner

The Taylor expansion method was adopted by Wagner to achieve the generalized

N-S equations for BGK collision scheme [288]. The lattice Boltzmann equation for

a non-ideal fluid used by Wagner reads

fi(x+ vi4 t, t+ 1) = fi(x, t) + Fi(x, t)

+
1

τ

[
f 0
i (x, t) + A(x, t)− fi(x, t)

]
,

(3.45)

where F is the forcing term giving birth to the non-ideal behavior, τ is the relaxation

time used in the BGK collision scheme and A is the non-ideal contribution in the

pressure tensor [276]. Please see the mass and momentum conservation conditions

for f, A and F , which are defined in details in the paper. Wagner defined the Taylor

expansion of the advection step of the LBE, which reads

fi(x+ vi4 t, t+4t) =
∑
k

(4t)k

k!
Dkfi(x, t), (3.46)

where vi is equivalent to ci in our case; the microscopic velocity, D = ∂
∂t

+ vi
∂
∂x

is

the convective derivative. The second order Taylor expansion of the above equation

reads

Difi +
1

2
D2
i fi + Fi +O(D3) =

1

τ
(f 0
i + A− fi), (3.47)

where τ(= 1/ω) is the relaxation time. To attain the lattice Boltzmann difference

equation in all known variables, the unknown variable, e.g. distribution function fi

can be expressed as the known (equilibrium distribution function f 0) such that

fi = f 0
i + A− τFi − τDifi +O(∂2)

= f 0
i + A− τFi − τDi(f

0
i + A− τFi) +O(∂2).

(3.48)

Substituting fi into Eq. (3.47), the difference equation for the BGK lattice Boltz-

mann equation reads

Fi +Di(f
0
i + A− τFi)−

(
τ − 1

2

)
D2
i (f

0
i + A− τFi)

=
1

τ
(f 0
i + A− fi) +O(∂3).

(3.49)

Now applying the conservation rules for mass
∑

i f
0
i = ρ on the above equation, the

zeroth order moment
∑

i of the above equation leads to the continuity equation,
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which reads

∂tρ+ ∂x(ρu)− 1

2
∂xF = O(∂3). (3.50)

For an ideal fluid case, where A = 0, F = 0, the standard continuity, i.e. Euler

equation is recovered. The first order moment of the Eq. (3.49)
∑

i vi leads to the

momentum N-S equation

ρ∂t

(
u− 1

2ρ

)
+ ρ

(
u− 1

2ρ

)
· 5
(
u− 1

2ρ

)
= −5 (ρθ + A)

+F +5νρ
[
5
(
u− 1

2ρ

)
+5

(
u− 1

2ρ

)T]
+5R +O(∂3),

(3.51)

where kinematic viscosity ν =
(
τ− 1

2

)
θ, and θ = c2

s. The term5R is the collection of

the nonphysical contributions arising due to the difference scheme. Wagner studied

the forcing and pressure methods for non-ideal gas and extended this analysis to

the higher orders. Li and Wagner, a year later, derived the N-S equations for

a free energy based multi-component system. The detailed derivations of multi

component N-S equations using Taylor expansion method can be found in Ref. [182].

In 2012 Kaehler and Wagner developed the moment based methodology to recover

the hydrodynamic equations by using MRT scheme with BGK collision operator.

That means that the non-conserved moments relax to the equilibrium with different

relaxation time but collision operator is written in velocity space. The moment

based approach can be found in the Ref. [153]

Recovery of equivalent partial differential equations by Dubois

Francois Dubois was the first to apply the equivalent equation methodology to the

LBM framework to recover hydrodynamic equations, e.g. N-S equations. The deve-

loped methodology is applicable to the linear collision schemes, e.g. BGK and MRT

collision operator. We have extended that and applied it to non-linear semi implicit

collision operator, e.g. cascaded LBM, presented in Cascaded LBM section. The

advection step, i.e. streaming step of any general LBM scheme reads

f(x+ vi4 t, t+4t), (3.52)

where vi is the microscopic velocity of the fluid particles, which is equivalent to the

characteristic velocity ci used in previous sections. Dubois rewrote the advection

step considering the fact that the distribution function at (x+vi4 t, t+4t) is equal

to the distribution function after collision at (x, t). That reads fi(x+vi4t, t+4t) =

f ci (x, t). The equivalent difference equation of the previous equation reads

fi(x, t+4t) = f ci (x− vi4 t, t). (3.53)
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The above equation is the explicit upwind scheme for the advection equation

∂tfi + vi · 5fi = 0 (3.54)

From the first order Taylor expansions of both sides of Eq. (3.53), the post collision

derivative reads

∂xαf
c
i = ∂xαf

eq
i

−4 t

J∑
k

(
1

τk
− 1

)
M−1i

k∂xα

J∑
i=0

Mk
i (∂tf

eq
i + vαi ∂xαf

eq
i )

+O(4t2).

(3.55)

From the the second order Taylor expansion of the Eq. (3.53) and using the conser-

vation rules we can write the equivalent equation

∂tm
l +

d∑
α=1

J∑
i=0

M l
iv
α
i ∂xαf

eq
i =

4t
d∑

α=1

J∑
i=0

∑
k≤d+1

M l
iv
α
i

(
1

τk
− 1

)
M−1i

k

×∂xα
J∑
i=0

Mk
i (∂tf

eq
i + vαi ∂xαf

eq
i ) +

4t
2

(
− ∂ttml

+
d∑

α=1

J∑
i=0

M l
iv
α
i v

β
i ∂xαxβf

eq
i

)
+O(4t2)

(3.56)

where d is the lattice model dimension, i.e. for two dimensional lattice, d = 2,

m is the raw moment, M is the transformation matrix which transforms velocity

distribution function f into raw moment m, and τk is the relaxation frequency

for the kth non-conserved moment. The mass conservation equation, i.e. the

continuity equation can be recovered by assigning l = 0. As from the defini-

tion of the raw moment m given in the moment section, for conserved quanti-

ties, m0 = ρ,m10 = meq
10 = ρux,m01 = meq

01 = ρuy. Here in Dubois notations,

m0 = m0,m
1 = m10,m

2 = m01. The principal attraction of the previous steps was

to eliminate the post collision terms by solving the first and second order Taylor

expansion and applying the collision scheme. The momentum equations can be

recovered for conditions l = γ, 1 ≤ γ ≤ d. For two dimensional model, d = 2,

γ = 1, 2, the N-S equations for ρux and ρuy can be obtained after some complex

algebra. Dubois et al. presented a paper in which the authors have used MRT

DDF LBM scheme, in which the N-S equations were derived for mass and mo-

mentum conservation laws and thermal hydrodynamic equations were recovered for
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advection-diffusion and total energy conservation rules [80]. The thermal equations

have been presented in the sections dedicated to thermal flows.

3.6.2 Equivalent Thermal Macroscopic Equations (Fourier-

Kirchhoff Equations) Recovery from BGK-LBM

To recover macroscopic equations for the thermal field, we use the D2Q5 lattice

model and moments described in section 2.2. This is a one conservation rule problem,

where only one moment is the conserved quantity and rest four moments are the

non-conserved quantities. These non-conserved thermal moments do relax to their

equilibria with an identical relaxation frequency ωg. To recover the Fourier-Kirchhoff

equations, there must exist terms such as ∂T
∂t

and temperature T variations in x, y

directions. Therefore, we assign α = 0, β = 0 in Eq. (3.26)

m
(2)
00 + ∂tm

(eq)(0)
00 = m

(c)(2)
00 − ∂xm(c)(1)

10 − ∂ym(c)(1)
01

+∂xym
(c)(0)
11 +

1

2

(
∂xxm

(c)(0)
20 + ∂yym

(c)(0)
02

)
.

(3.57)

The forcing term F
(2)
00 = m

(2)
00 −m

(c)(2)
00 = 0. It should be noted that moment m11

is non-existent on the D2Q5 lattice model. Therefore m11 will be dropped out from

all the equations. In above equation non-conserved thermal moments m
(c)(1)
10 ,m

(c)(1)
01

are unknowns and must be calculated from ε1 equation. Now, to calculate m
(c)(1)
10 ,

we assign α = 1, β = 0 in Eq. (3.25) and drop the non-existent moment m11

m
(1)
10 = m

(c)(1)
10 − ∂xm(c)(0)

20 . (3.58)

From the BGK collision scheme for temperature distribution function g, from

mxαyβ =
∑

i c
α
ixc

β
iygi, we have the moment transformed form

m
(c)(1)
10 = m

(1)
10 − ωg

(
m

(1)
10 −m

eq(1)
10

)
. (3.59)

From the above equations we have

m
(c)(1)
10 = m

eq(1)
10 +

(
1− 1

ωg

)
∂xm

eq(0)
20 . (3.60)

Now calculating moment m
(c)(1)
01

m
(1)
01 = m

(c)(1)
01 − ∂ym(c)(0)

02 . (3.61)
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From the BGK collision scheme, moment transforming it for m
(c)(1)
01

m
(c)(1)
01 = m

(1)
01 − ωg

(
m

(1)
01 −m

eq(1)
01

)
. (3.62)

From the above equations we have

m
(c)(1)
01 = m

eq(1)
01 +

(
1− 1

ωg

)
∂ym

eq(0)
02 . (3.63)

Substituting the above calculated post collision thermal moments in Eq. (3.57), and

using relation m
(c)(0)
αβ = m

eq(0)
αβ

∂tm
(eq)(0)
00 + ∂xm

eq(1)
10 + ∂ym

eq(1)
01

=

(
1

ωg
− 1

2

)(
∂xxm

eq(0)
20 + ∂yym

eq(0)
02

)
.

(3.64)

For thermal case, the equilibrium values for the non-conserved higher order thermal

moments are defined with a free parameter a, used to tune the thermal diffusivity.

The equilibria for the non-conserved thermal moments reads

meq
10 = Tux,

meq
01 = Tuy,

meq
20 =

a

2
T,

meq
02 =

a

2
T.

(3.65)

Substituting the value of the conserved thermal moment and equilibria of the non-

conserved thermal moments given above into the Eq. (3.64)

∂tT + ∂x
(
Tux

)
+ ∂y

(
Tuy

)
=
a

2

(
1

ωg
− 1

2

)(
∂xxT + ∂yyT

)
. (3.66)

The above equation is the well known and desired thermal macroscopic equation also

known as the Fourier-Kirchhoff equation recovered from the BGK LBM. The term

a
2

(
1
ωg
− 1

2

)
is the thermal diffusivity. Therefore in this section we have established the

consistency of the BGK LBM by successfully recovering Navier-Stokes and Fourier-

Kirchhoff equations.

3.7 Multiple Relaxation Times (MRT)- LBM

Multiple relaxation times lattice Boltzmann methods (MRT-LBM) contrary to BGK

LBM use multiple relaxation times for the relaxation of the non-conserved moments.
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Each non-conserved moment can be relaxed to its equilibrium with a unique relaxa-

tion time. Sometimes some specific non-conserved moments have been chosen to be

relaxed with different relaxation times while rest of the moments can be relaxed with

different or identical relaxation time [52, 73, 110, 146, 147, 172–174, 180, 204, 309].

Another principal difference between BGK and MRT LBM scheme is that the col-

lision operation is performed in the moment space. As earlier section, the lattice

Boltzmann equation for the MRT LBM reads

f(x+ cix4 t, y + ciy 4 t, t+4t)− f(x, y, t)

= ΩMRT (m,m) + F (x, y),
(3.67)

again F (x, y) = 0. The MRT collision operator reads

Ωi(MRT )(m,m) = −A
(
mi −meq

i

)
, (3.68)

where A is the collision matrix. Therefore the MRT lattice Boltzmann equation

reads

mi(x+ cix4 t, y + ciy 4 t, t+4t)−mi(x, y, t) =

−A
(
mi(x, y, t)−meq

i (x, y, t)
)
.

(3.69)

For the D2Q9 lattice model for our fluid flow case, we have three conserved mo-

ments and six non-conserved moments which relax to their equilibria with a unique

relaxation time, therefore A = diag
(
0, 0, 0, ω1, ω2, ω3, ω4, ω5, ω6

)
. We define

m
(c)
i = mi(x, y, t)− A

(
mi(x, y, t)−meq

i (x, y, t)
)
, (3.70)

The lattice Boltzmann equation for MRT reads

mi(x+ cix4 t, y + ciy 4 t, t+4t)−m(c)
i (x, y, t) = 0. (3.71)

The above equation can be written in time and space shifted form and similarly

as before Taylor expansion and diffusive scaling is applied to it. The only thing

that will distinct MRT from BGK is the relaxation scheme of the non-conserved

moments. The moments relations, collision invariance, conservation rules, and ge-

neralized EPDE Eq. (3.25, 3.26, 3.27) recovered in previous section for ε0, ε1, ε2, ε3

stand valid for the MRT LBM study as well.
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3.7.1 Equivalent Navier-Stokes Equations Recovery for

Fluid Flow from MRT-LBM

The conserved moments m00,m10,m01 do not associate with the collision scheme

as they are collisional invariant, therefore relations and equality of these conserved

quantities remain identical for both BGK and MRT LBM. As a result, divergence

free condition remains identical and can be proven as earlier. The Navier-Stokes

equations for the momentum can be recovered in the similar manner as before. We

assign α = 1, β = 0 in Eq. (3.26), the ε2 equation reads

m
(2)
10 + ∂tm

(eq)(0)
10 = m

(c)(2)
10 − ∂xm(c)(1)

20 − ∂ym(c)(1)
11

+∂xym
(c)(0)
21 +

1

2

(
∂xxm

(c)(0)
30 + ∂yym

(c)(0)
12

)
.

(3.72)

Due to aliasing, m30 = m10,

m
(2)
10 + ∂tm

(eq)(0)
10 = m

(c)(2)
10 − ∂xm(c)(1)

20 − ∂ym(c)(1)
11

+∂xym
(c)(0)
21 +

1

2

(
∂xxm

(c)(0)
10 + ∂yym

(c)(0)
12

)
.

(3.73)

The forcing term F
(2)
x = m

(2)
10 −m

(c)(2)
10 = 0. Now we need to calculate the unknowns

non-conserved post collision moments m
(c)(1)
20 ,m

(c)(1)
11 from Eq. (3.25) and the MRT

collision scheme. For m
(c)(1)
20 , we assign α = 2, β = 0 in Eq. (3.25) and due to

aliasing m30 = m10,

m
(1)
20 = m

(c)(1)
20 − ∂xmeq

10 − ∂ym
eq
21. (3.74)

From the collision matrix A it is evident that moment m20 relaxes to its equilibria

with ω1 relaxation frequency. Therefore the collision scheme for the moment m
(1)
20

reads

m
(c)(1)
20 = m

(1)
20 − ω1

(
m

(1)
20 −m

eq(1)
20

)
. (3.75)

Solving above equations for m
(c)(1)
20

m
(c)(1)
20 = m

eq(1)
20 +

(
1− 1

ω1

)
∂xm

eq(0)
10 +

(
1− 1

ω1

)
∂ym

eq(0)
21 . (3.76)

Similarly for the moment m
(c)(1)
11 ,

m
(1)
11 = m

(c)(1)
11 − ∂xm(c)(0)

21 − ∂ym(c)(0)
12 . (3.77)
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From collision matrix A, moment m11 relaxes to its equilibria with frequency ω3.

The collision scheme for m11 reads

m
(c)(1)
11 = m

(1)
11 − ω3

(
m

(1)
11 −m

eq(1)
11

)
. (3.78)

The final expression for the m
(c)(1)
11 reads

m
(c)(1)
11 = m

eq(1)
11 +

(
1− 1

ω3

)
∂xm

eq(0)
21 +

(
1− 1

ω3

)
∂ym

eq(0)
12 . (3.79)

Now substituting moments m
(c)(1)
20 ,m

(c)(1)
11 into Eq. (3.73) and using relations

m
(c)(0)
12 = m

eq(0)
12 ,m

(c)(0)
21 = m

eq(0)
21 ,

∂tm
eq(0)
10 + ∂xm

eq(1)
20 + ∂ym

eq(1)
11 =

(
1

ω1

− 1

2

)
∂xxm

eq(0)
10

+

(
1

ω3

− 1

2

)
∂yym

eq(0)
12 +

(
1

ω1

− 1

2
+

1

ω3

− 1

2

)
∂xym

eq(0)
21 .

(3.80)

Using Eq. (3.42) we have,

∂t
(
ρux
)

+ ∂x
(
ρc2

s + ρu2
x

)
+ ∂y

(
ρuxuy

)
=

(
1

ω1

− 1

2

)
∂xx
(
ρux
)

+

(
1

ω3

− 1

2

)
∂yy
(
ρc2

sux
)

+

(
1

ω1

− 1

2
+

1

ω3

− 1

2

)
∂xy
(
ρc2

suy
)
.

(3.81)

The above equation is the Navier-Stokes momentum equation for ux recovered from

the MRT LBM. It must be noted that N-S equations recovered from the BGK LBM

is the special case of the N-S equation recovered from the MRT. If only one relaxation

frequency is considered for the MRT case i.e. (ω1 = ω3 = ω) the recovered equation

is the N-S equation of the BGK Eq. (3.44).

3.7.2 Equivalent Thermal Macroscopic Equations (Fourier-

Kirchhoff Equations) Recovery from MRT-LBM

Recovering of the Fourier-Kirchhoff equation from MRT LBM is done in the similar

manner in Section 4.2 for the BGK. Again, the D2Q5 lattice model have been used

for a one conservation rule problem. The conserved and non-conserved moments

remain identical to that of BGK. The ε2 equation is selected where α = 0, β = 0,

we have

m
(2)
00 + ∂tm

(eq)(0)
00 = m

(c)(2)
00 − ∂xm(c)(1)

10 − ∂ym(c)(1)
01

+∂xym
(c)(0)
11 +

1

2

(
∂xxm

(c)(0)
20 + ∂yym

(c)(0)
02

)
.

(3.82)
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Adopting similar steps as before, we calculate the unknowns m
(c)(1)
01 ,m

(c)(1)
10 . For

one conservation rule, in our case, the collision matrix for the thermal moments

m00,m10,m01,m20,m02 is A = diag

(
0, ωg1 , ωg2 , ωg3 , ωg4

)
. From ε1 equation, Eq.

(3.25), for α = 1, β = 0

m
(1)
10 = m

(c)(1)
10 − ∂xm(c)(0)

20 . (3.83)

The MRT collision scheme for the thermal moment m10 reads

m
(c)(1)
10 = m

(1)
10 − ωg1

(
m

(1)
10 −m

eq(1)
10

)
. (3.84)

From above equations

m
(c)(1)
10 = m

eq(1)
10 +

(
1− 1

ωg1

)
∂xm

eq(0)
20 . (3.85)

For the moment m
(c)(1)
01 , setting α = 0, β = 1 in Eq. (3.25)

m
(1)
01 = m

(c)(1)
01 − ∂ym(c)(0)

02 . (3.86)

From the MRT collision scheme for m01

m
(c)(1)
01 = m

(1)
01 − ωg2

(
m

(1)
01 −m

eq(1)
01

)
. (3.87)

From the above equations we have

m
(c)(1)
01 = m

eq(1)
01 +

(
1− 1

ωg2

)
∂ym

eq(0)
02 . (3.88)

Substituting m
(c)(1)
10 ,m

(c)(1)
01 into the Eq. (3.82)

∂tm
(eq)(0)
00 + ∂xm

eq(1)
10 + ∂ym

eq(1)
01

=

(
1

ωg1
− 1

2

)
∂xxm

eq(0)
20 +

(
1

ωg2
− 1

2

)
∂yym

eq(0)
02 .

(3.89)

Substituting equilibria of the thermal moments from Eq. (3.65), the final form of

the thermal macroscopic equation reads

∂tT + ∂x
(
Tux

)
+ ∂y

(
Tuy

)
=
a

2

(
1

ωg1
− 1

2

)
∂xxT +

a

2

(
1

ωg2
− 1

2

)
∂yyT.

(3.90)
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The above equation is the Fourier-Kirchhoff equation recovered from the MRT LBM.

The multiples of the double derivatives terms on the right hand side a
2

(
1
ωg1
− 1

2

)
and a

2

(
1
ωg2
− 1

2

)
can be recognized as the thermal diffusivities in x and y direction.

The F-K equation for the BGK case can be recovered from the above F-K equation

once we set ωg1 = ωg2 .

Equivalent thermal macroscopic equation by Dubois et al.

In 2016, Dubois et al. developed the Taylor expansion methodology to recover vari-

ous thermal macroscopic equations [80]. The authors solved the advection-diffusion

equation with an MRT collision scheme on a one-dimensional lattice D1Q3. In such

models, as described above, the temperature is considered as a passive scalar and it

follows the similar procedure as ours for thermal flows. To solve for energy equation,

a coupling has been made between the mass and momentum conservation and vo-

lumic energy conservation on different lattice model of the DDF scheme. The total

energy distribution function is denoted by ”g”, the conservation rule reads

∑
gi =

∑
geqi = ρE = ρ

(
e+

1

2
u2

)
, (3.91)

where e is the internal energy, 1
2
u2 is the specific kinetic energy. The recovered

thermal equation for total energy reads

∂tρE + ∂x
(
ρEu+ pu

)
− ∂x

(
ρνu∂xu

)
− ∂x

(
κ∂xT

)
= 0, (3.92)

where κ = 4t
(

1
τk
− 1

2

)(
2+α

3
λ2 − u2

0

)
, p =

( cp
cv
− 1
)
ρi, Pr = ρνcp

κ

Equivalent advection-diffusion equations by Jami et al.

Jami et al. proposed a modified DDF MRT LBM scheme to solve convective flows

[147]. The authors solved mass and momentum conservation on a standard D2Q9

lattice model and the internal energy conservation for thermal flows on a cross D2Q5

lattice model. As a standard procedure of the DDF scheme, velocity distribution

function f was used to solve mass and momentum conservation rules and thermal

distribution function g to solve the temperature. The thermal LBE reads

gi(xi + ciδt, t+ δt) = g∗i , (3.93)

g∗i is the post-collision distribution function. MRT collision scheme has been used

which follows the similar collision scheme as defined in the previous section. For

D2Q5 lattice model, Jami et al. defined the equilibrium moments such that m0 =
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meq
0 = T,meq

1 = 0,meq
2 = 0,meq

3 = aT,meq
4 = bT . The difference between the present

and the scheme described in Section 6.2 are the definition of the equilibrium moments

and the cross lattice model. The authors applied the same Taylor expansion method

to derive the equivalent anisotropic diffusion equation up to order three in δt, using

the MRT collision scheme, which reads

∂tT −
c2δt

5
(4 + a)

(
1

τ1

− 1

2

)
∂xxT

−c2δtb

(
1

τ1

+
1

τ2

− 1

2

)
∂xyT

−c
2δt

5
(4 + a)

(
1

τ2

− 1

2

)
∂yyT = O(δt3).

(3.94)

For the standard isotropic diffusion equation, b = 0, τ1 = τ2 = τ, δx = δt = 1, a =

−2.

3.8 Cascaded Lattice Boltzmann Method

(CLBM)

To attain higher stability and accuracy for the lattice Boltzmann schemes beyond

BGK and MRT for fluid flow and thermal transport problems, cascaded lattice

Boltzmann method was formulated [13, 84, 94, 95, 116, 234, 244, 259, 262]. For

CLBM, collision are performed in the central moment space, which are simply raw

moment shifted by the macroscopic velocity components of the fluid flow system

under consideration. This central moment approach helps reducing the Galilean in-

variancy violation caused by adopting the limited velocity lattice models. Putting a

constraint of finite velocity set induces this Galilean invariancy. The term cascaded

implies the cascaded operation implemented in the relaxation process. This repre-

sents the semi implicitness of the collision operator. The lower order non-conserved

moments effect the relaxation process of the higher order non-conserved moments.

For a two dimensional lattice system central moment can be defined as follows

κxmyn =
∑
i

(
cix − ux

)m(
ciy − uy

)n
fi, (3.95)

where κ is the central moment, fi is the velocity distribution function, ux, uy are

the component of the macroscopic velocity, cix, ciy are the characteristic lattice ve-

locities in x and y directions, respectively. There exist two ways to deal with the

raw moments, using non-orthogonal moments and using orthogonal raw moments.

The Gram-Schmidt orthogonalization process is used to orthogonalize these raw
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moments. Similarly, dealing with the central moment cascaded lattice Boltzmann

scheme, non-orthogonal or orthogonal processes can be chosen. In our case we

chose orthogonalised central moments, giving birth to an orthogonal transformation

matrix which transform velocity distribution functions into orthogonalized raw mo-

ments. The streaming step of cascaded LB scheme is performed in central moment

space. The collision step of cascaded LB differs severely from the BGK and MRT

collision schemes. For CLBM, collisions are performed in central moment space and

moreover there exists the semi-implicitness. The lattice Boltzmann equation for the

cascaded case reads

fi(x+ cix4 t, y + ciy 4 t, t+4t)− fi(x, y, t) = K · k (3.96)

Therefore from Eq. (3.95) and (3.96), we have

κxmyn(x+ cix4 t, y + ciy 4 t, t+4t)− κxmyn(x, y, t)

=

(∑
i

(
cix − ux

)m(
ciy − uy

)n)K · k. (3.97)

For simplicity let us denote the term κxmyn(x + cix 4 t, y + ciy 4 t, t + 4t) =

κ
(c)
xmyn(x, y, t), which represents the post collision in central moment space. The-

refore the cascaded lattice Boltzmann equation in complete central moment space

that we will be dealing with all along the study reads

κ
(c)
xmyn(x, y, t)− κxmyn(x, y, t)

=

(∑
i

(
cix − ux

)m(
ciy − uy

)n)K · k. (3.98)

3.8.1 Navier-Stokes Equations Recovery for Fluid Flow

from Central Moment CLBM

It is essential here to describe the central moment cascaded collision scheme as

it is drastically different from the previously stated BGK, MRT collision schemes.

Unlike BGK and MRT collision schemes, the cascaded collision vector k is relaxed

towards its equilibrium. k0, k1 and k2 = 0 because they correspond to the conserved

quantities. Similarly as raw moments, the central moments corresponding to these

conserved quantities are collisional invariant as well, that means

κ00 = κeq00 = κ
(c)
00

κ10 = κeq10 = κ
(c)
10

κ01 = κeq01 = κ
(c)
01

(3.99)
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To recover the N-S equation for momentum, we need to assign α and β to 1 and

0, respectively in Eq. (3.26). The ε2 equation for negligible forcing term and after

aliasing reads

∂tm
(eq)(0)
10 = −∂xm(c)(1)

20 − ∂ym(c)(1)
11 + ∂xym

(c)(0)
21

+
1

2

(
∂xxm

(c)(0)
10 + ∂yym

(c)(0)
12

)
.

(3.100)

The unknown post collision moments in the above equations are m
(c)(1)
20 and m

(c)(1)
11 .

To calculate these post collision moments we need to define the cascaded collision

scheme. The cascaded collision scheme reads

k3 =
ω3

12

(
ρ(u2

x + u2
y)− f6 − f8 − f4 − f2

−2(f5 + f3 + f7 + f1 − ρc2
s)
) (3.101)

k4 =
ω4

4

[
f8 + f4 − f6 − f2 + ρ(u2

x − u2
y)
]

(3.102)

k5 =
ω5

4
(f7 + f3 − f1 − f5 − uxuyρ) (3.103)

k6 = −ω6

((
f5 + f3 − f7 − f1 − 2u2

xuyρ

+uy(ρ− f8 − f4 − f0)
)
/4 +

ux
2

(f7 − f1 − f5 + f3)
)

+
uy
2

(−3k4 − k5) + 2uxk6

(3.104)

k7 = −ω7

((
f3 + f1 − f5 − f7 − 2u2

yuxρ

+ux(ρ− f2 − f6 − f0)
)
/4 +

uy
2

(f7 − f1 − f5 + f3)
)

+
ux
2

(−3k4 + k5) + 2uyk6

(3.105)

k8 =
1

4

[
ω8

(
ρc4

s − κ22

)
− 8k4 − 6k5(u2

x + u2
y)

−2k5(u2
y − u2

x) + 16k6uxuy − 8k7uy − 8k8ux

]
,

(3.106)
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where ω4....ω9 are the relaxation frequencies of the moments corresponding to

(xx, yy, xy, xxy, xyy, xxyy), respectively. The relations between the collision vec-

tor k and central moments κxmyn can be obtained by solving Eq. (3.98)) on the

D2Q9 lattice model. Central moments κxx, κyy, κxy reads

κ
(c)
20 − κ20 = 6k3 + 2k4

κ
(c)
02 − κ02 = 6k3 − k4

κ
(c)
11 − κ11 = −4k5.

(3.107)

The momentum N-S equation shown above contains terms in raw moment space.

But the above system of equations is in the central moment space and cascaded

collision scheme clearly expresses the semi-implicitness of the collision operator.

Therefore, for the sake of simplicity and comparability, we intend to recover the

N-S equation from cascaded central moment scheme in raw moment space as done

in previous cases. In order to do that we need to first calculate κxx, κyy, κxy by

replacing the k values in Eq. (3.107). Thereafter we will transform κ and node-

specific velocity distribution functions fi appearing in the collision scheme into raw

moments m using Eq. (3.11, 3.95). From Eq. (3.107, 3.106), for κxx we have

κ
(c)
20 − κ20 =

ω3

2

(
ρ(u2

x + u2
y)− f6 − f8 − f4 − f2

−2(f5 + f3 + f7 + f1 − ρc2
s)
)

+
ω4

2

(
f8 + f4 − f6 − f2

+ρ(u2
x − u2

y)
) (3.108)

κ
(c)
02 − κ02 =

ω3

2

(
ρ(u2

x + u2
y)− f6 − f8 − f4 − f2

−2(f5 + f3 + f7 + f1 − ρc2
s)
)
− ω4

2

(
f8 + f4 − f6 − f2

+ρ(u2
x − u2

y)
) (3.109)

κ
(c)
11 − κ11 =

ω5

4
(f7 + f3 − f1 − f5 − uxuyρ) (3.110)

The raw moment m20 =
∑

i c
2
ixfi calculated on the D2Q9 lattice model reads

m20 = f1 + f2 + f3 + f5 + f6 + f7, (3.111)

where f1 is the velocity distribution function of the particle at node 1, f2 at node 2
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and so on. Similarly, m02 =
∑

i c
2
iyfi and m11 =

∑
i cixciyfi reads

m02 = f1 + f3 + f4 + f5 + f7 + f8,

m11 = −f1 + f3 − f5 + f7.
(3.112)

Solving Eq. (3.11) and Eq. (3.95), and applying the conservation laws for mass

and momentum, the relations between the central moment and raw moment can be

established.

κ
(c)
20 − κ20 = m

(c)
20 −m20,

κ
(c)
02 − κ02 = m

(c)
02 −m02,

κ
(c)
11 − κ11 = m

(c)
11 −m11.

(3.113)

From Eq. (3.108, 3.111, 3.112, 3.113) we have

m
(c)
20 −m20 =

ω3

2

[
ρ(u2

x + u2
y)− (mxx +myy) + 2ρc2

s)
]

+
ω4

2

[
myy −mxx + ρ(u2

x − u2
y)
]
.

m
(c)
02 −m02 =

ω3

2

[
ρ(u2

x + u2
y)− (mxx +myy) + 2ρc2

s)
]

−ω4

2

[
myy −mxx + ρ(u2

x − u2
y)
]
.

m
(c)
11 −m11 = −ω5(mxy − ρuxuy).

(3.114)

After defining the cascaded collision scheme, we must turn our attention back

to the equivalent partial differential equations; Eq. (3.24, 3.25, 3.26) to recover the

desired N-S equations. From Eq. (3.24), we can write that m
(c)(0)
21 = m

eq(0)
21 ,m

(c)(0)
10 =

m
eq(0)
10 and m

(c)(0)
12 = m

eq(0)
12 . These equilibria moments can directly be put in Eq.

(3.100) replacing the post collision moments. The two post collision moments in the

equivalent PDE must be expressed in equilibria moments. As it can be seen in Eq.

(3.114), there exist unknown moments such as m20,m02 and m11. In order to have

expression for post collision moments completely in equilibria moments we will need

to perform some algebra using Eq. (3.25) and Eq. (3.114). From Eq. (3.25), we

have

m
(1)
20 = m

(c)(1)
20 − ∂xm(c)(0)

10 − ∂ym(c)(0)
21 .

m
(1)
02 = m

(c)(1)
20 − ∂xm(c)(0)

12 − ∂ym(c)(0)
01 .

m
(1)
11 = m

(c)(1)
11 − ∂xm(c)(0)

21 − ∂ym(c)(0)
12 .

(3.115)

From above system of equations (3.114) and (3.115), calculating m(c) in terms of
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meq, and substituting the value of equlibria moments (from Eq. (3.42)) in (3.100),

we have

∂t
(
ρux
)

+ ∂x

(
ρ
(
u2
x + χω3c

2
s

))
+ ∂y

(
ρuxuy

)
−∂xx

((1

2
+ χω1

)
ρux − χω2ρc

2
sux

)
− ∂yy

(( 1

ω5

− 1

2

)
ρc2

sux

)
−∂xy

(( 1

ω5

+ χω1

)
ρc2

suy − χω2ρuy

)
= 0,

(3.116)

where

χω1 =
1− ω3

2
− ω4

2
+
(
ω3

2
− ω4

2

)2 2
(ω3+ω4)

ω3

2
+ ω4

2
−
(
ω3

2
− ω4

2

)2 2
(ω3+ω4)

(3.117)

χω2 =

(
ω3

2
− ω4

2

)
2

(ω3+ω4)

ω3

2
+ ω4

2
−
(
ω3

2
− ω4

2

)2 2
(ω3+ω4)

(3.118)

χω3 =
ω3

(
1−

(
ω3

2
− ω4

2

)
2

(ω3+ω4)

)
ω3

2
+ ω4

2
−
(
ω3

2
− ω4

2

)2 2
(ω3+ω4)

(3.119)

The Eq. (3.116) is the desired Navier-Stokes momentum equation for ρux recovered

by pure central moment based cascaded lattice Boltzmann method. It can be easily

verified that N-S equation for a two relaxation times (TRT) collision scheme can be

recovered from the cascaded scheme by assigning ω3 = ω4. The BGK N-S scheme can

be recovered when all the non-conserved moments are assigned identical relaxation

frequency such as; ω3 = ω4 = ω5. Now, similar steps with appropriate choice of

moment for ∂m01

∂t
term in the equivalent partial differential equation must be taken

to recover the N-S equation for the y component of the momentum.
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3.8.2 Thermal Macroscopic Equations (Fourier-Kirchhoff

Equations) Recovery from Central Moment CLBM

The thermal macroscopic equations from cascaded LBM was recently derived in the

paper by the authors in Ref. [259]. The EPDE reads

m
(3)
0 −m

c(3)
0 = −∂tmeq(1)

0 − ∂xmeq(2)
x − ∂ymeq(2)

y

+

(
1

ω2

+
1

ω3

− 1

)
∂xym

eq(1)
xy

+

(
1

ω2

− 1

2

)
∂xxm

eq(1)
xx +

(
1

ω3

− 1

2

)
∂yym

eq(1)
yy .

(3.120)

For negligible forcing term, and after inserting the equilibrium values of the moments

we attain the following

∂tT + ∂xTux + ∂yTuy =
a

2

(
1

ω2

− 1

2

)
∂xxT

+
a

2

(
1

ω3

− 1

2

)
∂yyT +O(∆t3).

(3.121)

The above equation is the desired F-K equations for incompressible fluids.

3.9 Conclusion

A comprehensive study discussing LBM consistency and stability has been presented

in a simple and systematic manner with complete derivations of hydrodynamic equa-

tions for mass, momentum and energy conservation. The method of equivalent (or

modified) partial differential equation was used to recover the hydrodynamic limits,

i.e. Navier-Stokes and Fourier-Kirchhoff equations, for various lattice Boltzmann

schemes. It was shown that Taylor expansion method can be used to accurately

study the consistency and stability of various lattice Boltzmann methods. Multi-

scale expansion technique, i.e. Chapman-Enskog expansion and asymptotic analysis

technique are rather complex techniques compared to equivalent partial differential

equation method. We believe that the present study will be very useful for new

readers willing to use LBM for research and applications.
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Caṕıtulo 4

Double Population Cascaded

Lattice Boltzmann Method for

Convective Heat Transfer

4.1 Abstract

A Cascaded Thermal Lattice Boltzmann Method (CTLBM) is presented for efficient

simulations of fluid flow and heat transfer problems. Contrary to the Bhatnagar-

Gross-Krook Single Relaxation Time (BGK-SRT or just BGK) and Multiple Rela-

xation Times (MRT) methods of the LBM used for thermal problems, the proposed

CTLBM improves Galilean invariancy of the method. The cascaded collision scheme

was proved to increase the stability of the LBM in the case of fluid flow. Here

we prove the enhanced stability and accuracy of the CTLBM scheme for thermal

problems by comparing our results to traditional thermal MRT lattice Boltzmann

methods. The proposed numerical scheme employs cascaded D2Q9 model for fluid

flow and cascaded D2Q5 model for the temperature to study advection diffusion

of sine wave and forced convection phenomena in forced cooling of a cylinder with

heated core. To validate the proposed scheme, we compare our numerical results

to the exact solutions of the sine wave advection-diffusion in 1D system for Peclet

numbers between 102 and 106. We also present comparisons of our CTLBM with

BGK and two widely used MRT lattice Boltzmann methods for several lattice reso-

lutions. For 2D case, we present numerical validation of forced cooling of a cylinder

with heated core. To show the stability of the proposed CTLBM even for moderate

lattice resolutions, we also present numerical simulations of forced convection across

the row of hot tubes and double shear layer flow. The numerical simulations are

faster and numerical results are in strong agreements with those available in the

literature. The enhanced stability and accuracy of the cascaded scheme are clearly
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evident in the numerical results. Therefore, we show that the proposed CTLBM

possesses higher stability and good accuracy with faster computation speed when

compared to the other thermal MRT LBMs.

This work has been published in the International Journal of Thermal Sci-

ences as an original research paper [259].

4.2 Introduction

Heat and mass transfer is one of the most occurring natural phenomenon in our

daily lives. We see conjugate heat transfer taking place between solids and fluids in

various domestic appliances, engineering, medical, and scientific applications such

as furnaces [246], electronic circuitry devices, heat exchangers, nuclear reactors, sur-

geries, chemical reactions, etc. [32]. There are various numerical methods to tackle

heat transfer problems. Computational fluid dynamics (CFD) is one of the most

conventional framework used to solve heat transfer and fluid flow problems [56, 226].

Conventional solvers for the Navier-Stokes equations (based on e.g., finite difference

method, finite element method or finite volume method) may have problems when

it comes to dealing with fluid flow or heat and mass transfer problems in complex

geometries [54] like e.g., fluid flow in porous media [44] or turbulent flows, mixing

and combustion [312]. These conventional algorithms are usually computationally

expensive and are hard to implement all along the complex fluid-solid interfaces

which leaves us to search for an efficient alternative to conventional CFD solvers

[181, 226, 310].

Numerical solvers for heat transfer problems are based on microscopic approaches

(Molecular Dynamics methods - MD), mesoscopic approaches (LBM) and macros-

copic approaches (Navier-Stokes-Fourier equations). Different kind of problem in

heat transfer is the inverse problem [192] when one want to determine heat transfer

coefficients from known temperature fields. Molecular dynamics has its own limi-

tations due to its lack of capacity to simulate large number of molecules for long

timescale [281]. Therefore, a significant quantity of fluid can not be simulated and

the bigger picture regarding the fluid flow on large scales always remains uncertain.

On the other hand, Navier-Stokes-Fourier solvers are macroscopic in nature and

often lack information regarding microscopic developments occurring in the system

during the fluid flow and heat transfer. Therefore the natural approach in LBM is to

incorporate microscopic properties of the system to its mesoscopic description and

then examine the hydrodynamic limit, or in other words to check if it can reproduce

governing equations (in case of incompressible flow – the Navier Stokes equations).

This is carried out here by the Lattice Boltzmann Method. LBM numerical sche-

mes, kinetic in nature, incorporate microscopic laws of the flow characteristics and
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solve Lattice Boltzmann Equations. Navier-Stokes equations can be recovered from

the Lattice Boltzmann Equation e.g. by Chapman-Enskog expansion [44]. A wide

range of research has been performed establishing the fact that LBM functions as

a kinetic link between microscopic and macroscopic approaches. A physical system

is described at a mesoscopic level through the LBM. The dynamics of the fluid is

described by “virtual“ fluid particles obeying the Boltzmann’s Transport Equation

(BTE). Using BTE we can describe the dynamics of the system by the particle den-

sity distribution functions (DF). These DFs contain a microscopic level information

on particles’ position and momentum together with collisions between the particles

or particles and solid walls [302]. Due to this virtue of the LBM, complex boundary

conditions, wettability, phase separation, etc. can be naturally incorporated into

the numerical schemes. Therefore we state that LBM is deemed as one of the most

reliable and viable alternative as the numerical solver among the microscopic and

macroscopic methods.

Massive efforts have been made by the scientists and engineers to solve thermal

problems utilizing LBM in the last two decades [226, 230]. There exist three principal

categories to solve thermal flows using LBM [110], named as Multi-Speed methods

(MS) [8], Double Distribution Function methods (DDF) [268], and hybrid methods

[212]. Hybrid methods use LBM as a solver for the fluid flow and some other

conventional numerical method for the heat transfer. Due to the fact that they

are sandwich models, they could be more computationally costly compared to DDF

models. DDF models have gained tremendous popularity among researchers due to

their simplicity and higher stability compared to the other mentioned methods. First

MS methods have Prandtl number fixed when using the simple collision operator

[8] and the viscosity is erroneous in the viscous dissipation in the energy equation

[202]. These shortcomings were later improved but MS methods still suffer from

instabilities. These shortcomings are very well removed in the DDF models [157]

and numerical stability is enhanced drastically.

In DDF models, two DF sets are used, one to define velocity and pressure fields

and the other to define a temperature field. Two separate lattices are used to

simulate fluid flow and temperature fields respectively. On the first lattice, the

mass and momentum are the conserved quantities and on the second lattice, the

temperature1 field is solved2. Any standard lattice topology model can be chosen

to simulate these fields according to one’s convenience and they do not need to be

the same. For example in 2D, the fluid flow field can be simulated on a D2Q9 lattice

and the temperature field can be simulated on D2Q5 lattice simultaneously (where

1The conserved quantity here is the specific internal energy of the fluid.
2Obviously it is possible to use this approach for any scalar quantity that obeys advection-

diffusion-reaction equation.
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D2 means 2D and Q9 and Q5 stand for nine and five speeds model respectively).

BGK-SRT3 collision operator is the most used collision scheme in the LBM. The

reason behind this is because this collision operator can simulate simple isother-

mal and incompressible flows. The simplicity of the SRT lies in the fact that all

non-conserved quantities are relaxed with identical relaxation frequency or relaxa-

tion time. Numerical schemes based on the SRT operator are generally unstable

for large Reynolds number and small lattice resolution. To solve this stability pro-

blem and also to increase the accuracy of the LBM, MRT collision schemes were

constructed, in which DF are transformed to appropriate moments and the relaxa-

tion is done in this moment space with different relaxation times for each of the

moments [73]. MRT schemes are mostly unstable for high Reynolds number flows.

The reason behind this instability is related to violations of the Galilean invariancy

[96]. This insufficient degree of preserving Galilean invariancy in MRT schemes was

corrected by relaxing the central moments (i.e. shifted by the macroscopic velocity)

in the moving frame rather than relaxing raw moments in a stationary frame as

done in MRT [13, 94]. Another improvement was cascaded collision scheme cance-

ling the influence between different orders of moments. This LBM scheme is known

as the Cascaded Lattice Boltzmann Method (CLBM) [94, 95]. Cascaded schemes

are more stable compared to raw moment MRT schemes and can simulate high

Reynolds number flows in complex geometries with higher stability than MRT sche-

mes. Apart from SRT, MRT and CLBM a class of Entropic Lattice Boltzmann

Method (ELBM) emerged [156]. Both CLBM and ELBM were further developed

and recently Cumulant method [96] and KBC method [23] appeared. In Cumulant

method, a new statistically independent observable quantity of the distribution is

defined called cumulants. In this model, cumulants are relaxed unlike in cascaded

and MRT models where central and raw moments are relaxed respectively. Cumu-

lants claim to eliminate numerical error unlike MRT methods in the hyper viscosity

problems[96]. Cumulant method is claimed to be as numerically stable as cascaded

LBM method[96]. KBC method is applied to only fluid flow problems, while the

thermal problems are solved by quasi-equilibrium approach using SRT-BGK. KBC

method is still being improved in various LBM aspects and was successfully applied

in different fluid flow simulations and thermal problems [77, 226]. KBC and Cumu-

lant methods are very recent methods that have been used to solve only fluid flow

field(2015, 2016 respectively), and are under investigation by the LBM community.

Since the main aim of this article is to compare DDF cascaded and MRT ther-

mal schemes, these methods were mentioned here for the sake of completeness. We

suggest that the interested readers will check the references [77, 96, 156, 226], and

citations within these references for more information on these methods. Recently,

3Abbreviated simply as SRT or BGK in LBM literature.
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the cascaded model for the fluid flow and the SRT-BGK model for the temperature

field appeared [86]. In this model, a total energy approach is used to determine

the temperature field, which is then incorporated into the flow field through the

forcing term. Viscous dissipation and compression work are also modeled by this

approach. Our approach described in this article is different in the sense that we

have two cascaded collisional operators, one for the fluid flow (derived for the first

time by Geier [94]) and one for the temperature field (derived for the first time by

the authors and presented here).

A very important ingredient of the LBM is the definition of the equilibrium

distribution function (EDF). Application of the Taylor expansion to the Maxwell-

Boltzmann DF for ideal gases yields the required expression for the EDF [302].

Navier-Stokes equations could be recovered as a hydrodynamic limit of the system

employing the Chapman-Enskog expansion applied to BGK-SRT lattice Boltzmann

equation [302]. Actually, Chapman-Enskog expansion or Hilbert expansion techni-

ques [132] are frequently applied to LBE to recover Navier-Stokes equations from

LBE for fluid flow and the Fourier-Kirchhoff equation from LBE for temperature

field. Other possibility to recover hydrodynamic limits of LBE is the method of

equivalent partial differential equations (EPDEs) [79]. These expansion techniques

also serve to establish a relation between diffusivity coefficients (i.e. viscosity or

thermal diffusivity) and the relaxation time.

The previously mentioned SRT LBM suffers from severe numerical instability

for flows with small kinematic viscosity or thermal diffusivity and moderate lattice

resolution (i.e. when relaxation time is close to 0.5). In order to improve the

performance of the LBM schemes, MRT schemes were proposed in which moments

of velocity and temperature DFs are relaxed with different relaxation times. In

MRT LBM schemes, collisions are performed in moment space while streaming is

performed in the velocity space. The MRT is the LBM method with general collision

matrix and the SRT is the special case of MRT. Cascaded LBM goes further and

can be seen as LBM with general collision matrix and modified EDF [13].

In this article, we will present the 2D implementation of our cascaded scheme for

one conservation law with the D2Q5 lattice model. To our best knowledge, this is the

first time the cascaded scheme is used to simulate the temperature field. In Sec. 4.3

we develop the Cascaded Double Distribution Function Lattice Boltzmann Method

for problems with one conservation law, i.e., in our case we consider temperature as

the passive scalar. In Sec. 4.3.1 and 4.3.2 we develop theory of the CTLBM and

CLBM for thermal and fluid flows, respectively. In Sec. 4.3.3 we discuss implemen-

tation of boundary conditions applied in our cases and in 4.3.4 we show physical

and lattice units conversions. In Sec. 4.4 the theory which is developed in Sec. 2

is validated numerically. In Sec. 4.4.1 we numerically solve 1D advection-diffusion
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equation using sine wave as an initial condition. In Sec. 4.4.2 we solve 2D forced

convection problem of cooling a cylinder with heated core. In Sec. 4.4.3 we show the

stability of the CTLBM using the forced convection across the row of hot tubes as

a benchmark. In Sec. 4.4.4 the numerical stability of BGK and CTLBM are further

investigated for the double shear layer flow. Sec. 4.5 contains discussion and Sec.

4.6 conclusions.

4.3 Cascaded lattice Boltzmann method for heat

transfer and fluid flow

The fluid in LBM is considered as collection of fictitious particles living on the lattice

and their behavior is described by the density DFs. These particles do stream with

their respective characteristic velocity along the fixed links and collide on the nodes.

Here we show the characteristics of lattice models which will be used in this

article. Here we use D2Q9 model for the fluid flow and D2Q5 model for heat transfer

(Fig. 2.1). For the D2Q9 lattice, the characteristic velocities and weight factors are

[~c1, . . . , ~c9] =

(
0 1 −1 −1 0 −1 1 1 0

0 −1 0 −1 −1 1 0 1 1

)
,

[w1, . . . , w9] =
(

4
9
, 1

36
, 1

9
, 1

36
, 1

9
, 1

36
, 1

9
, 1

36
, 1

9

)
.

The speed of sound cs for the D2Q9 model is c2
s = 1

3
. For the D2Q5 lattice, the

characteristic velocities and weight factors are

[~c1, . . . , ~c5] =

(
0 −1 0 1 0

0 0 −1 0 1

)
,

[w1, . . . , w5] =
(

1
3
, 1

6
, 1

6
, 1

6
, 1

6

)
.

For D2Q5 lattice model the speed of sound cs,g is the same as for the D2Q9 model.

The Lattice Boltzmann Equation for DdQq model, which is solved by LBM, in its

simplest form (BGK-SRT) reads

fi(~x+ ~ci, t+ 1) = f c
i (~x, t) = fi(~x, t) +

1

τf
[f eq
i (~x, t)− fi(~x, t)], (4.1)

where ~x = (x1, . . . , xd) is a position vector, t is time, i ∈ [1, q], fi is the i-th

distribution function, f c
i (~x, t) is the post-collision distribution function, τf is the

relaxation time (1/τf = ωf where ωf is called relaxation frequency), f eqi is the i-th

equilibrium distribution function and ~ci is the i-th characteristic velocity. Note that
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all quantities here are in lattice units so the appropriate scaling must be done in

order to simulate equivalent phenomena in physical units. The ”streaming step”and

”collision step”are defined as fi(~x + ~ci, t + 1) = f c
i (~x, t) and f c

i (~x, t) = fi(~x, t) +
1
τf

[f eq
i (~x, t)− fi(~x, t)] respectively. In case of DDF LBM we have another set of DFs

gi obeying the same equation but with different τg and possibly different vectors ~ci

gi(~x+ ~ci, t+ 1) = gc
i (~x, t) = gi(~x, t) +

1

τg
[geq
i (~x, t)− gi(~x, t)], (4.2)

Navier Stokes equations could be recovered as a hydrodynamic limit of the system

employing the Chapman-Enskog expansion applied to (4.1) [302]. The Chapman-

Enskog expansion or Hilbert expansion techniques [132] can be applied to LBE to

recover Navier-Stokes equations and the Fourier-Kirchhoff equation from (4.2). In

Eq. (4.1) we can see that collisions are performed in velocity space (i.e. we relax fi

towards f eq
i ).

The previously mentioned SRT LBM suffers from severe numerical instability for

flows with small kinematic viscosity or thermal diffusivity (i.e. when τ is close to

0.5 [267]) and moderate lattice resolution. In order to improve the performance of

the LBM schemes, MRT schemes were proposed in which moments of fi or gi are

relaxed with different relaxation times τi [174]. In MRT LBM schemes, collisions are

performed in the moment space while streaming is performed in the velocity space.

The MRT LBM reads

fi(~x+ ~ci, t+ 1) = fi(~x, t) + M−1R(meq
i (~x, t)−mi(~x, t)), (4.3)

where R = diag( 1
τ1
, . . . , 1

τq
) is a diagonal matrix with relaxation times τi, M is the

moment transformation matrix ~m = M~f . It is possible to write the Eq. (4.3) in the

following form

fi(~x+ ~ci, t+ 1) = fi(~x, t) + M−1RM(f eq
i (~x, t)− fi(~x, t)), (4.4)

so the MRT is the LBM method with general collision matrix A = M−1RM and the

SRT is the special case with A = R = diag( 1
τ
, . . . , 1

τ
).

The LBM algorithm itself consists of several steps. The first step is to calculate

f eqi from the known initial conserved macroscopic quantities i.e. density ρ, velocity

~u and the scalar quantity φ (e.g. temperature) and initialize every lattice node

with EDFs, then streaming is performed along the fixed links between the lattice

nodes, then boundary conditions are applied. Next we calculate the new macroscopic
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quantities from [110]

ρ =
∑
i

fi, ρ~u =
∑
i

fi~ci, φ = T =
∑
i

gi, (4.5)

where fi is the velocity DF for ith lattice node. At this stage collision is performed

and the algorithm is repeated from the streaming step until convergence of solution

occurs or desired time step is reached. The EDFs for fluid flow (f eqi ) on D2Q9 lattice

model and for temperature (geqi ) on D2Q5 lattice model reads

f eqi = ρwi

(
1 +

~u · ~ci
c2
s

+
(~u · ~ci)2

2c4
s

− ~u · ~u
2c2
s

)
geqi = Twi

(
1 +

~u · ~ci
c2
s

) (4.6)

where ρ is the density, wi is the weight factor, and cs is the speed of sound, and

T is the temperature. From the Chapman-Enskog expansion we have the following

relation for the kinematic viscosity (or the thermal diffusivity) and the relaxation

time in the case of SRT LBM [110, 302]

ν = c2
s

(
τf −

1

2

)
, (4.7)

α = c2
s,g

(
τg −

1

2

)
, (4.8)

where cs, cs,g are the speeds of sound and depend on the lattice model used.

In order to improve the stability of the thermal SRT and MRT schemes we apply

the cascaded technique to the LBM with one conservation law. It is important and

necessary to mention here that cascaded schemes perform collision in central moment

space, unlike MRT where raw moments are relaxed, and both could use different

relaxation times.

4.3.1 Cascaded Thermal Lattice Boltzmann Method

(CTLBM) for Heat Transfer

In this section, the cascaded version of LBM for D2Q5 and one conservation law is

derived with temperature being the scalar quantity obeying the conservation law.

The LBM is a method which solves the velocity-spatial discretized Boltzmann’s

Transport Equation on a regular lattice. Here the discretized Boltzmann equation

governing temperature field reads

gi(~x+ ~ci, t+ 1) = ~g + K · ~k(~g,~geq, ω1, . . . , ω5), (4.9)
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where g is the temperature DF, ~ci is the characteristic lattice velocity, and K · ~k is

the cascaded collision scheme depending on the relaxation frequencies ω.

In order to transform the temperature DF gi into the moment mi we need a

transformation matrix M such that ~m = M~g. This transformation matrix is not

unique and is chosen considering the condition that M must involve proper combi-

nations of lattice characteristic velocities in all dimensions [13]. In our case we have

chosen our non-orthogonal transformation matrix M such that

M =
[
~M0, ~Mx, ~My, ~Mxx+yy, ~Myy−xx

]
,

where ~M0 = [1, 1, 1, 1, 1]T, Mx,i = ci,x, My,i = ci,y, Mxx+yy,i = c2
i,x + c2

i,y, Myy−xx,i =

c2
i,y − c2

i,x, where cix, ciy are ith characteristic lattice velocities’ components in x and

y directions respectively. Afterward, we calculate the transformation matrix K by

performing the Gram-Schmidt orthogonalization process on M. The matrix K reads

KT =


1 1 1 1 1

0 −1 0 1 0

0 0 −1 0 1

4 −1 −1 −1 −1

0 −1 1 −1 1

 . (4.10)

The collision step for our CTLBM reads

~gc = ~g + K · ~k(~g,~geq, ω1, . . . , ω5), (4.11)

where ~gc is the vector of post collision temperature DFs, ~geq is the EDFs for tem-

perature, ω’s are the relaxation frequencies of the non-conserved moments, ~k is the

special collision vector that should be determined [13]. The streaming step is

gi(~x+ ~ci, t+ 1) = ~gc. (4.12)

The collisions are performed in moment space, therefore let us define the raw moment

mxmyn and central moment κxmyn of order m+ n

mxmyn =
∑
i

cmi,xc
n
i,ygi, meq

xmyn =
∑
i

cmi,xc
n
i,yg

eq
i (4.13)

κxmyn =
∑
i

(ci,x−ux)m(ci,y−uy)ngi, κeq
xmyn =

∑
i

(ci,x−ux)m(ci,y−uy)ngeq
i , (4.14)

where ux and uy are the macroscopic velocity components in x and y direc-

tions, respectively. The new set of moments for central moment space reads
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[~κ0, ~κx, ~κy, ~κxx+yy, ~κyy−xx]. The first moment is the conserved quantity, here T , i.e.

T =
5∑
i=1

gi =
5∑
i=1

geqi . From the above we can see that

T = m0 = meq
0 = κ0 = κeq

0 .

In order to obtain the shift matrix S, we take central moments from both sides

of the (4.11) and assume that the post-collision state is in the equilibrium, we get

[13]

S


k1

k2

k3

k4

k5

 =


0

κeqx − κx
κeqy − κy

κeqxx+yy − κxx+yy

κeqyy−xx − κyy−xx

 . (4.15)

The shift matrix S is as follows

S =


0 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 −4ux 0 −2 −2

0 0 −4uy −2 2

 . (4.16)

It is to be noted here that k1 is zero as it corresponds to the conserved quantity

(collisional invariant) i.e. (κeq
0 −κ0) = 0. Now we can solve (4.15) to obtain following

relations for the vector ~k


k1

k2

k3

k4

k5

 =


0

1
2
(κeqx − κx)

1
2
(κeqy − κy)

−1
4
(κeqxx+yy − κxx+yy + κeqyy−xx − κyy−xx)− uxk2 − uyk3

1
4
(κeqxx+yy − κxx+yy − κeqyy−xx + κyy−xx) + uxk2 − uyk3

 . (4.17)

At this stage we will apply the relaxation mechanism for all the non-conserved

moments. In (4.17) we represent k for pre-collision stage. Here we relax these

moments to achieve expressions for post collision stage, such that the higher order

moments (k4, k5) relax towards their equilibrium without effecting relaxations of

lower order moments (k2, k3) but lower order moments relax towards equilibrium

effecting the relaxations of higher order moments. Therefore we relax k such that
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k1

k2

k3

k4

k5

 =


0

ω2

2
(κeqx − κx)

ω3

2
(κeqy − κy)

−ω4

4
(κeqxx+yy − κxx+yy + κeqyy−xx − κyy−xx)− uxω2

2
(κeqx − κx)−

uyω3

2
(κeqy − κy)

ω5

4
(κeqxx+yy − κxx+yy − κeqyy−xx + κyy−xx) + uxω2

2
(κeqx − κx)−

uyω3

2
(κeqy − κy)

 ,
(4.18)

where ω2, . . . , ω5 are the relaxation frequencies for respective moments. It should be

noted that the relaxation scheme adopted here is the cascaded one, which is evident

from the (4.18). The equilibrium moments for the conserved and non-conserved

moments are as follows 
meq

0

meq
x

meq
y

meq
xx+yy

meq
yy−xx

 =


T

Tux

Tuy

aT

0

 . (4.19)

The equilibrium moments above are defined in form of raw moments. Here, by using

(4.13) and (4.14) we transform (4.18) from central moments κ to raw moments m



k1

k2

k3

k4

k5


=



0
ω2

2
(meq

x −mx)
ω3

2
(meq

y −my)

−ω4

4
(meq

xx+yy −mxx+yy +meq
yy−xx −myy−xx) + (ω4

2
− ω2

2
)ux(m

eq
x −mx)+

+(ω4

2
− ω3

2
)uy(m

eq
y −my)

−ω5

4
(meq

xx+yy −mxx+yy −meq
yy−xx +myy−xx) + (ω5

2
− ω2

2
)ux(m

eq
x −mx)+

+(ω3

2
− ω5

2
)uy(m

eq
y −my)


.

(4.20)

The above equation can be expressed in matrix notation such that

~k = M̃(~meq − ~m). (4.21)

From (4.11) and (4.21) we have

~gc = ~g + K · M̃(~meq − ~m). (4.22)

Multiplying above equation by non-orthogonal transformation matrix M and using
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relation m = Mg we define the new lattice Boltzmann equation for moments

~mc = ~m+ M ·K · M̃(~meq − ~m). (4.23)

The term M ·K · M̃ reads

M ·K · M̃ =


0 0 0 0 0

0 ω2 0 0 0

0 0 ω3 0 0

0 (ω2 − ω4)2ux (ω3 − ω4)2uy ω4 0

0 (ω2 − ω5)2ux (ω3 − ω5)2uy 0 ω5

 . (4.24)

From (4.13) and (4.19) we have the temperature EDF for each node
geq1

geq2

geq3

geq4

geq5

 =


(1− a)T

(a− 2ux)
T
4

(a− 2uy)
T
4

(a+ 2ux)
T
4

(a+ 2uy)
T
4

 , (4.25)

where a is a free parameter.

Now we adopt the method of EPDEs using technique described in [79]. This

technique enables one to recover macroscopic equations, when the lattice Boltzmann

equation is rescaled and the Taylor expansion is applied. The Lattice Boltzmann

Equation for temperature DF can be written as follows [96]

gi(x+ ci,x∆t, y + ci,y∆t, t+ ∆t) = gi(x, y, t) + Ωi = gci (x, y, t), (4.26)

where Ω is the collision operator, in our case K ·~k. The time and space shifted form

of the above equation reads

gi(x+ ci,x∆t/2, y+ ci,y∆t/2, t+ ∆t/2)− gci (x− ci,x∆t/2, y− ci,y∆t/2, t−∆t/2) = 0.

(4.27)

The Taylor expansion of the above equation can be written as

∞∑
a,b,n=0

(∆t/2)a+b+n

a! b! n!
caixc

b
iy∂

a
x∂

b
y∂

n
t (gi − gci (−1)a+b+n) = 0. (4.28)

From (4.13), we first transform gi into raw moments in the above equation and

using diffusive scaling ∆x2

∆t
= const = ε we define the asymptotic expansion of a raw
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moment

mxmyn =
∞∑
l=0

εlm
(l)
xmyn , (4.29)

which inserted into (4.28) yields

∞∑
a,b,n=0

(ε)a+b+2n+l

a! b! n!
∂ax∂

b
y∂

n
t

(
m

(l)

x(α+a)y(β+b)
−mc(l)

x(α+a)y(β+b)
(−1)a+b+n

)
= 0. (4.30)

Next we equate the terms of equal orders of ε in (4.30), to recover macroscopic

equations. We are interested in ε3 order (a+ b+ 2n+ l = 3, α = β = 0)

m
(3)
0 −m

c(3)
0 = −∂tm̄eq(1)

0 − ∂xm̄(2)
x − ∂ym̄(2)

y , (4.31)

where we use the following abbreviation

m̄xmyn =
1

2

(
mxmyn +mc

xmyn

)
.

From (4.23) and (4.24), m
(2)
x m

(2)
y are calculated such that

m̄(2)
x = meq(2)

x +

(
1

2
− 1

ω2

)(
∂xm̄

(1)
xx + ∂ym̄

(1)
xy

)
m̄(2)
y = meq(2)

y +

(
1

2
− 1

ω3

)(
∂xm̄

(1)
xy + ∂ym̄

(1)
yy

) (4.32)

Substituting (4.32) into (4.31) together with equalities m(0) = mc(0) = meq(0), m(1) =

mc(1) = meq(1) (not proved here) yields

m
(3)
0 −m

c(3)
0 = −∂tmeq(1)

0 − ∂xmeq(2)
x − ∂ymeq(2)

y +

(
1

ω2

+
1

ω3

− 1

)
∂xym

eq(1)
xy +(

1

ω2

− 1

2

)
∂xxm

eq(1)
xx +

(
1

ω3

− 1

2

)
∂yym

eq(1)
yy .

(4.33)

For D2Q5 lattice model mxy = meq
xy = 0. From (4.19), substituting m0 = meq

0 = T ,

meq
x = Tux, m

eq
y = Tuy, m

eq
xx = meq

yy = T a
2

we can write the final partial differential

equation

∂T

∂t
+
∂Tux
∂x

+
∂Tuy
∂y

=
a

2

(
1

ω2

− 1

2

)
∂2T

∂x2
+
a

2

(
1

ω3

− 1

2

)
∂2T

∂y2
+O(∆t3). (4.34)

The above equation can be understood as Fourier-Kirchhoff equation for anisotropic
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diffusion with thermal diffusivities in x and y directions defined by

αx =
a

2

(
1

ω2

− 1

2

)
αy =

a

2

(
1

ω3

− 1

2

)
(4.35)

In the next section we adopt the strictly similar procedure for the fluid flow problem.

4.3.2 Cascaded Lattice Boltzmann Method for Fluid Flow

Here we briefly describe the derivation of the CLBM for the fluid flow on D2Q9

lattice model where mass and momentum conservation rules are obliged. The non-

orthogonal transformation matrix is defined as [94]

M =
[
~M0, ~Mx, ~My, ~Mxx+yy, ~Mxx−yy, ~Mxy, ~Mxxy, ~Mxyy, ~Mxxyy

]
.

The orthogonalized transformation matrix K for the D2Q9 reads

KT =



1 1 1 1 1 1 1 1 1

0 −1 −1 −1 0 1 1 1 0

0 1 0 −1 −1 −1 0 1 1

−4 2 −1 2 −1 2 −1 2 −1

0 0 1 0 −1 0 1 0 −1

0 1 0 −1 0 1 0 −1 0

0 −1 0 1 −2 1 0 −1 2

0 1 −2 1 0 −1 2 −1 0

4 1 −2 1 −2 1 −2 1 −2


. (4.36)

The collision and streaming steps can be defined respectively as

~f c = ~f + K · ~k(~f, ~f eq, τ1, . . . , τ9), (4.37)

fi(~x+ ~ci, t+ 1) = f ci . (4.38)

We know that the first three moments are conserved quantities (mass and momentum

in x and y directions), therefore k1, k2, k3 are equal to zero. Equations for the shift

matrix S now read (skipping the first three k’s)

S



k4

k5

k6

k7

k8

k9


=



κeqxx − κxx
κeqyy − κyy
κeqxy − κxy
κeqxxy − κxxy
κeqxyy − κxyy
κeqxxyy − κxxyy


. (4.39)
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The shift matrix for CLBM reads

S =



6 2 0 0 0 0

6 −2 0 0 0 0

0 0 −4 0 0 0

−6uy −2uy 8ux −4 0 0

−6ux −2ux 8uy 0 −4 0

8 + 6(u2
x + u2

y) 2(u2
y − u2

x) −16uxuy 8uy 8ux 4


. (4.40)

The equilibrium central moments ~κeq are

κeqxx

κeqyy

κeqxy

κeqxxy

κeqxyy

κeqxxyy


=



ρc2
s

ρc2
s

0

0

0

ρc4
s


. (4.41)

Solving the (4.39) one can now obtain relations for the ~k



k4

k5

k6

k7

k8

k9


=



1
12τ3

[
ρ(u2

x + u2
y)− f6 − f8 − f4 − f2 − 2(f5 + f3 + f7 + f1 − ρc2

s)
]

1
4τ4

[
f8 + f4 − f6 − f2 + ρ(u2

x − u2
y)
]

1
4τ5

(f7 + f3 − f1 − f5 − uxuyρ)
−1
τ6

{
[f5 + f3 − f7 − f1 − 2u2

xuyρ+ uy(ρ− f8 − f4 − f0)] /4+

+ux
2

(f7 − f1 − f5 + f3)
}

+ uy
2

(−3k3 − k4) + 2uxk5

−1
τ7

{ [
f3 + f1 − f5 − f7 − 2u2

yuxρ+ ux(ρ− f2 − f6 − f0)
]
/4+

+uy
2

(f7 − f1 − f5 + f3)
}

+ ux
2

(−3k3 + k4) + 2uyk5

1
4

[
1
τ8

(ρc4
s − κxxyy)− 8k3 − 6k4(u2

x + u2
y)− 2k4(u2

y − u2
x)+

+16k5uxuy − 8k6uy − 8k7ux

]


(4.42)

and use them in the relaxation step (4.37). The reader is referred to [13, 94, 268] for

the detailed derivation and implementation details of the CLBM for the fluid flow.

In order to recover the Navier-Stokes equations for fluid flow, we adopt the

similar methodology of EPDEs as in the previous section. The Cascaded Lattice

Boltzmann Equation for the fluid flow reads

fi(x+ ci,x∆t, y + ci,y∆t, t+ ∆t) = fi(x, y, t) + Ωi = f ci (x, y, t), (4.43)

where Ωi is the collision scheme for flow field. The time and space shifted form of
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the above equation reads

fi(x+ ci,x∆t/2, y+ ci,y∆t/2, t+ ∆t/2)− f ci (x− ci,x∆t/2, y− ci,y∆t/2, t−∆t/2) = 0.

(4.44)

The Taylor expansion of the above equation reads

∞∑
a,b,n=0

(∆t/2)a+b+n

a! b! n!
caixc

b
iy∂

a
x∂

b
y∂

n
t (fi − f ci (−1)a+b+n) = 0. (4.45)

Transforming f into raw moments m and applying diffusive scaling, the Taylor

expansion in moment space reads

∞∑
a,b,n=0

(ε)a+b+2n+l

a! b! n!
∂ax∂

b
y∂

n
t

(
m

(l)

x(α+a)y(β+b)
−mc(l)

x(α+a)y(β+b)
(−1)a+b+n

)
= 0. (4.46)

From the conditions a+ b+ 2n+ l = 0 and a+ b+ 2n+ l = 1 one can prove [96]

m
(0)

xαyβ
= m

c(0)

xαyβ
, m

(1)

xαyβ
= m

c(1)

xαyβ
, (4.47)

i.e. for any moment the zeroth (scale invariant part) and first orders are collision

invariant (they are equal to their equilibrium).

To recover the divergence free condition we put a+ b+ 2n+ l = 2 and α = β = 0

to obtain

∂xm̄
(1)
x + ∂ym̄

(1)
y = 0

and after inserting appropriate equilibria meq
x = ρux, m

eq
y = ρuy we have

∂ρux
∂x

+
∂ρuy
∂y

= 0.

The Navier-Stokes momentum equations are obtained at ε3 order (a+b+2n+l =

3) and below we derive the equation for ux only (α = 1, β = 0)

m(3)
x −mc(3)

x = −∂tm̄(1)
x − ∂xm̄(2)

xx − ∂ym̄(2)
xy ,

where we neglected third order derivatives and second order derivates drop out

because of (4.47). The terms m̄
(2)
xx , m̄

(2)
xy can be recovered from the lower order

expansion and collision scheme

m̄(2)
xx = meq(2)

xx −
(
τ − 1

2

)
(∂xm̄

(1)
x + ∂ym̄

(1)
xxy)
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m̄(2)
xy = meq(2)

xy −
(
τ − 1

2

)
(∂xm̄

(1)
xxy + ∂ym̄

(1)
xyy)

where τ = τ4 = τ5 and the final form of the EPDE is

−F (3)
x = m(3)

x −mc(3)
x = −∂tmeq(1)

x − ∂xmeq(2)
x − ∂ymeq(2)

xy +

+

(
τ − 1

2

)(
∂xxm

eq(1)
x + ∂yym

eq(1)
xyy + 2∂xym

eq(1)
xxy

)
.

where Fx is a forcing term. Now after inserting equilibria

meq(1)
x = ρux, m

eq(2)
xx = ρc2

s + ρu2
x, m

eq(2)
xy = ρuxuy, m

eq(1)
xxy = ρc2

suy, m
eq(1)
xyy = ρc2

sux

the final result is

∂(ρux)

∂t
+
∂(ρu2

x + p)

∂x
+
∂(ρuxuy)

∂y
=(

τ − 1

2

)(
∂2(ρux)

∂x2
+ c2

s

∂2(ρux)

∂y2
+ 2c2

s

∂2(ρuy)

∂x∂y

) (4.48)

The above equation is the incompressible Navier-Stokes equation for ux and similarly

we can obtain the equation for uy.

4.3.3 Boundary Conditions

For different problems, different boundary conditions are needed. Basic boundary

conditions for fluid flow are inlet, outlet, wall, symmetry and periodic. There are

many different techniques how to implement these types of boundary conditions for

the fluid flow [110, 274, 302]. For thermal problems we can have boundary conditions

of first kind (Dirichlet type i.e. given temperature), second kind (Neumann type i.e.

the normal derivative of temperature is given) and third kind (equal temperatures

and heat fluxes on the both sides of interfaces).

In the present work, solid walls are treated with bounce-back boundary conditi-

ons located half-way, that results in no-slip conditions for velocity field and adiabatic

conditions for the heat transfer

fī(~xb, t+ 1) = f ci (~xb, t), gī(~xb, t+ 1) = gci (~xb, t),

where ~xb is wall adjacent fluid site, fī and gī correspond to DFs which characteristic

velocity points in reflected direction i.e. ~cī = −~ci. In the case of a non-adiabatic

fluid-solid interface (third kind boundary condition), no bounce-back is applied to

the gi in order to allow heat flowing through this interface.

For inlet and first kind thermal boundary conditions we use the equilibrium both
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for velocity and temperature fields i.e.

fi(~xin/d, t) = f eq
i (ρin, ~uin) gi(~xin/d, t) = geq

i (Tin/d),

where ~xin/d is the location of inlet or Dirichlet temperature boundary condition.

Outlet is modeled by first-order extrapolation

fi(~xout, t+ 1) = f ci (~xout − ~n, t), gi(~xout, t+ 1) = gci (~xout − ~n, t)

where ~xout is location of the outlet, ~n is outer normal and i is equal to directions

that are pointing to the inside of the domain.

Periodic boundaries are easy to implement because the outgoing DFs are directly

shifted to the appropriate incoming DFs and symmetry boundary conditions are

realized through mirroring the DFs with respect to the symmetry axis [274].

4.3.4 Physical and Lattice Units Conversions

All previous equations contain parameters and quantities expressed in lattice units.

In order to relate obtained numerical results to physical units (here denoted with

subscript p), we need to establish relationships between lattice and physical units.

Analysis is based on dimensionless numbers appropriate for the problem solved. In

our case we need Reynolds (Re), Prandtl (Pr) or Peclet (Pe) numbers to setup LBM

and extract useful information from the simulations. From the previous theory we

see that we have only two4 parameters which directly occur in the equations

• ωf - relaxation frequency for the fluid field lattice related to lattice viscosity

ν.

• ωg - relaxation frequency for the temperature field lattice related to thermal

diffusivity α.

Another parameter is the number of lattice sites N used to resolve characteristic

length L, which also defines the lattice step size dx = L
N

. Now by knowing Re

(given or computed based on characteristic velocity U and length L or time tC and

kinematic viscosity νp) we can compute the lattice viscosity from

UL

νp
=

L2

tCνp
= Rep = Relb =

UlbN

ν
=

N2

tC,lbν
, (4.49)

where Ulb is characteristic velocity in lattice units which is related to the time step for

the non-stationary problems and must be kept below certain value (usually equals

4Parameter a from the expressions for the geqi has no relation to the physics and is pure numerical
parameter like e.g. Courant-Friedrichs-Lewy (CFL) number.
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to 0.3cs i.e. subsonic flow regime for which LBM was derived) to maintain stability

of the solver. tC,lb is the number of iterations needed for LBM to reach the physical

characteristic time. The time step (i.e. physical time simulated by one iteration of

the LBM algorithm) can be evaluated based on given parameters as e.g.

dt =
tC
tC,lb

=
UlbL

UN
=

ν

νp
dx2.

For thermal problems with forced convection we can use Prandtl number to relate

thermal diffusivity in physical and lattice units

νp
αp

= Prp = Prlb =
ν

α

and thermal diffusivity for solids are then defined by known ratios of fluid and solids’

diffusivities.

Other quantities like velocity and temperature are then nondimensionalized

ulb =
Ulb
U
u,

Tlb =
T − Tc
Th − Tc

,

where Th and Tc are ”hot“ and ”cold“ temperatures.

4.4 Numerical Simulations

Results presented in the following text were obtained from the C code implemen-

tation of the BGK, MRT, CLBM and CTLBM using CUDA framework [59, 268]

and simulations were performed with double precision on NVIDIA Geforce TITAN

Z cards. Square D2Q5 and D2Q9 lattices were used. In all simulations ω4 = ω5 = 1.

All values in the following text is expressed in lattice or non-dimensional units.

4.4.1 Advection and Diffusion of Sine Wave

First problem used to validate the proposed CTLBM is 1D advection and diffusion

of the sine wave on the unit periodic domain with given advection velocity U and

diffusion coefficient D. Initial condition is described by

φ(x, 0) =
1

2
[1 + sin (2πKx)] x ∈ [0, 1],
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where K is the wave mode. PDE governing the evolution of φ is

∂φ

∂t
+
∂φU

∂x
= D

∂2φ

∂x2
.

The analytical solution to the above problem is known and reads

φa(x, t) =
1

2

[
1 + exp

(
−D(2πK)2t

)
sin (2πK (x− Ut))

]
.

Numerical solutions φn(x, t) are computed for K = 1, U = 1, L = 1 and Peclet

numbers between 102 and 106. Lattice size starts with resolution of N = 64 and

is doubled up to N = 1024. The solution is computed until the initial amplitude

of the sine wave decrease to one half or until tstop = 100s of physical time for Pe

> 104. In all simulations the time step was equal to dx2. BGK and three different

MRT methods are compared, our proposed CTLBM, the Yoshida et al. [309] and

the Mezrhab et al. [204]. Errors in L∞, L1 and L2 norms together with measured

experimental order of convergence (EOC) are given in Tables. 4.1, 4.2 and 4.3.

Errors are computed as follows

E∞ = maxx∈{0,...,N−1}|φa(x, tstop)− φn(x, tstop)|,

E1 =
N−1∑
x=0

|φa(x, tstop)− φn(x, tstop)|,

E2 =

√√√√N−1∑
x=0

|φa(x, tstop)− φn(x, tstop)|2.

The EOC is then computed as

EOC =
ln
(
E(Nh)
E(Nl)

)
ln
(
Nl
Nh

) ,

where Nh > Nl are the consecutive lattice sizes.

Lattice thermal diffusivity was setup using Peclet number

UL

αp
= Pep = Pelb =

UlbN

α
,

where Ulb was set to fulfill the diffusive scaling dt = dx2, parameter a from (4.35) is

set equal to 0.66657 to improve numerical results. Plot with CTLBM and analytical

solutions are presented in Fig. 4.1. In Fig. 4.2 E∞ error for one case of the CTLBM

simulation is depicted. From the obtained results we can conclude that all methods

are of second order regard to the L∞ norm and a spatial step.
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N E∞ BGK EOC E∞ CTLBM EOC E∞ Mezrhab et al. [204] EOC E∞ Yoshida et al. [309] EOC

Pe = 102

64 2.12·10−4 1.96·10−4 3.87·10−4 3.16·10−4

128 5.29·10−5 1.9992 4.90·10−5 1.999 9.68·10−5 1.9975 7.93·10−5 1.9941

256 1.32·10−5 1.9997 1.23·10−5 1.9997 2.42·10−5 1.9996 1.98·10−5 1.9984

512 3.31·10−6 2.0000 3.06·10−6 1.9999 6.05·10−6 1.9998 4.96·10−6 1.9996

102 4 8.27·10−7 2.0000 7.66·10−7 2.0 1.51·10−6 2.0 1.24·10−6 1.9999

Pe = 103

64 2.13·10−4 2.11·10−4 8.33·10−3 3.21·10−4

128 5.33·10−5 1.9984 5.28·10−5 1.999 2.08·10−3 1.9992 8.34·10−5 1.9445

256 1.33·10−5 1.9998 1.32·10−5 1.9996 5.21·10−4 2.0001 2.11·10−5 1.9851

512 3.33·10−6 1.9999 3.30·10−6 1.9999 1.30·10−4 2.0 5.28·10−6 1.9963

1024 8.32·10−7 2.0000 8.26·10−7 2.0 3.25·10−5 2.0 1.32·10−6 1.9991

Pe = 104

64 2.16·10−4 2.12·10−4 unstable 3.26·10−4

128 5.33·10−5 2.0163 5.35·10−5 1.9887 2.20·10−2 7.56·10−5 2.1056

256 1.33·10−5 2.0010 1.34·10−5 1.9944 5.50·10−3 1.9998 2.06·10−5 1.8778

512 3.33·10−6 1.9994 3.36·10−6 1.9984 1.38·10−3 1.9999 5.27·10−6 1.9643

1024 8.32·10−7 2.0005 8.41·10−7 1.9996 3.44·10−4 2.0 1.33·10−6 1.9907

Pe = 105

64 3.89·10−4 3.87·10−4 unstable unstable

128 9.69·10−5 2.0047 9.70·10−5 1.9954 unstable unstable

256 2.42·10−5 2.0004 2.43·10−5 1.998 6.06·10−3 2.28·10−5

512 6.05·10−6 1.9998 6.08·10−6 1.9994 1.52·10−3 2.0 5.98·10−6 1.9335

1024 1.51·10−6 2.0002 1.52·10−6 1.9998 3.79·10−4 2.0 1.51·10−6 1.9838

Pe = 106

64 3.99·10−4 4.0·10−4 unstable unstable

128 1.00·10−4 1.9969 1.0·10−4 1.9954 unstable unstable

256 2.50·10−5 2.0004 2.51·10−5 1.998 unstable unstable

512 6.25·10−6 1.9998 6.28·10−6 1.9994 unstable 6.16·10−6

1024 1.56·10−6 2.0002 1.57·10−6 1.9998 3.93·10−4 1.56·10−6 1.9835

Tabela 4.1: E∞ and EOC for the advection and diffusion of the sine wave.

N E1 BGK EOC E1 CTLBM EOC E1 Mezrhab et al. [204] EOC E1 Yoshida et al. [309] EOC

Pe = 102

64 8.62·10−3 7.98·10−3 1.58·10−2 1.29·10−2

128 4.31·10−3 0.9987 3.99·10−3 0.9987 7.89·10−3 0.999 6.46·10−3 0.994

256 2.16·10−3 0.9999 2.00·10−3 0.9998 3.95·10−3 0.9994 3.23·10−3 0.9986

512 1.08·10−3 0.9999 9.99·10−4 0.9999 1.97·10−3 0.9999 1.62·10−3 0.9996

1024 5.39·10−4 1.0000 4.99·10−4 1.0 9.86·10−4 1.0 8.09·10−4 0.9999

Pe = 103

64 8.68·10−3 8.6·10−3 0.340 1.31·10−2

128 4.34·10−3 1.0001 4.31·10−3 0.9989 0.17 1.0011 6.8·10−3 0.9444

256 2.17·10−3 0.9996 2.15·10−3 0.9998 8.49·10−2 1.0001 3.43·10−3 0.9857

512 1.09·10−3 1.0000 1.08·10−3 1.0 4.24·10−2 1.0001 1.72·10−3 0.9963

1024 5.43·10−4 1.0000 5.38·10−4 1.0 2.12·10−2 1.0 8.61·10−4 0.9991

Pe = 104

64 8.78·10−3 8.67·10−3 unstable 1.33·10−2

128 4.34·10−3 1.0153 4.36·10−3 0.9911 1.79 6.17·10−3 1.1073

256 2.17·10−3 1.0007 2.19·10−3 0.9941 0.897 0.9997 3.35·10−3 0.8781

512 1.09·10−3 0.9999 1.1·10−3 0.9984 0.449 1.0001 1.72·10−3 0.9643

1024 5.43·10−4 1.0002 5.48·10−4 0.9996 0.224 1.0 8.65·10−4 0.9908

Pe = 105

64 1.59·10−2 1.58·10−2 unstable unstable

128 7.89·10−3 1.0071 7.91·10−3 0.9973 unstable unstable

256 3.95·10−3 1.0001 3.96·10−3 0.998 0.988 3.72·10−3

512 1.97·10−3 0.9999 1.98·10−3 0.9994 0.494 1.0 1.95·10−3 0.9335

1024 9.86·10−4 1.0001 9.9·10−4 0.9998 0.247 1.0 9.86·10−4 0.9838

Pe = 106

64 1.63·10−2 1.63·10−2 unstable unstable

128 8.15·10−3 0.9994 8.17·10−3 0.9974 unstable unstable

256 4.08·10−3 1.0001 4.09·10−3 0.998 unstable unstable

512 2.04·10−3 0.9999 2.05·10−3 0.9994 unstable 2.01·10−3

1024 1.02·10−3 1.0001 1.02·10−3 0.9999 0.256 1.02·10−3 0.9835

Tabela 4.2: E1 and EOC for the advection and diffusion of the sine wave.
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N E2 BGK EOC E2 CTLBM EOC E2 Mezrhab et al. [204] EOC E2 Yoshida et al. [309] EOC

Pe = 102

64 1.20·10−3 1.11·10−3 2.19·10−3 1.79·10−3

128 4.24·10−4 1.4992 3.92·10−4 1.499 7.74·10−4 1.4984 6.34·10−4 1.4942

256 1.50·10−4 1.4998 1.39·10−4 1.4998 2.74·10−4 1.4996 2.25·10−4 1.4985

512 5.30·10−5 1.4999 4.9·10−5 1.4999 9.68·10−5 1.4999 7.94·10−5 1.4996

1024 1.87·10−5 1.5000 1.73·10−5 1.5 3.42·10−5 1.5 2.81·10−5 1.4999

Pe = 103

64 1.20·10−3 1.19·10−3 4.72·10−2 1.82·10−3

128 4.26·10−4 1.4994 4.23·10−4 1.4991 1.67·10−2 1.5006 6.68·10−4 1.4445

256 1.51·10−4 1.4998 1.49·10−4 1.4997 5.89·10−3 1.5001 2.38·10−4 1.4855

512 5.33·10−5 1.4999 5.28·10−5 1.4999 2.08·10−3 1.5 8.45·10−5 1.4963

1024 1.88·10−5 1.5000 1.87·10−5 1.5 7.36·10−4 1.5 2.99·10−5 1.4991

Pe = 104

64 1.22·10−3 1.20·10−3 unstable 1.84·10−3

128 4.26·10−4 1.5163 4.28·10−4 1.4902 0.176 6.05·10−4 1.6068

256 1.51·10−4 1.5009 1.52·10−4 1.4944 6.23·10−2 1.4998 2.33·10−4 1.378

512 5.33·10−5 1.4998 5.38·10−5 1.4984 2.2·10−2 1.5 8.44·10−5 1.4643

1024 1.88·10−5 1.5002 1.9·10−5 1.4996 7.78·10−3 1.5 3.0·10−5 1.4908

Pe = 105

64 2.20·10−3 2.19·10−3 unstable unstable

128 7.75·10−4 1.5063 7.76·10−4 1.4967 unstable unstable

256 2.74·10−4 1.5004 2.75·10−4 1.498 6.86·10−2 2.58·10−4

512 9.69·10−5 1.4999 9.72·10−5 1.4994 2.42·10−2 1.5 9.57·10−5 1.4335

1024 3.42·10−5 1.5001 3.44·10−5 1.4999 8.57·10−3 1.5 3.42·10−5 1.4838

Pe = 106

64 2.26·10−3 2.26·10−3 unstable unstable

128 8.01·10−4 1.4985 8.02·10−4 1.4967 unstable unstable

256 2.83·10−4 1.5004 2.84·10−4 1.498 unstable unstable

512 1.00·10−4 1.4999 1.0·10−4 1.4994 unstable 9.85·10−5

1024 3.54·10−5 1.5001 3.55·10−5 1.4999 8.89·10−3 3.52·10−5 1.4835

Tabela 4.3: E2 and EOC for the advection and diffusion of the sine wave.
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Figura 4.1: Comparison of analytical and numerical solutions (CTLBM) of
advection-diffusion of sine wave for N = 256, U = 1, K = 1.
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Figura 4.2: Errors of numerical solutions (CTLBM) of advection-diffusion of sine
wave for Pe =102, U = 1, K = 1, N = 128− 1024.

4.4.2 Forced Cooling of Cylinder with Heated Core

Next problem we want to solve is the forced convective cooling of a cylinder with

a heated core. The problem involves curved boundary and we are aware that sim-

ple staircase approximation of the fluid-solid interface may produce inaccuracies,

however the point here is to show performance of the CTLBM. Geometry of the

problem is presented in Fig. 4.3. Core of the cylinder is kept at constant tempera-

ture Th = 1. At inlet, uniform flow at U0 = 0.05 and Tc = 1/3 is maintained. For

inlet, equilibrium boundary conditions for fi and gi are used, outlet is modeled by

extrapolation and top and bottom boundaries are periodic. For all simulations we

keep Re = 40 and Pr = 0.72. Lattice viscosity is then computed from Re as

ν =
U0D

Re
,

where D is the number of lattice sites used to resolve the diameter of the cylinder. In

our simulations we used D = 128. Ratios of thermal diffusivities used in simulations

are αs/αf ∈ {0.5, 1, 4, 20}. CTLBM parameter was set to a = 2
3
. The simulations

were run until the change in the center-line temperature was less than 10−6 (reached
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Figura 4.3: Geometry of the problem with forced cooling of the cylinder with a
heated core [275].

steady-state condition). In Fig. 4.4 velocity contours and the temperature profile for

the case αs/αf = 20 are shown. In Fig. 4.5 the interface temperature computed by

the CTLBM is compared with those from literature [275]. To validate the velocity

profile, normalized wake length was measured and found to be L̄ = L
D

= 2.28 which

is consistent with the experimental values from the literature [27].
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Figura 4.4: Computed temperature field around the cylinder for the αs/αf = 20
case, U0 = 0.05, D = 128, Re = 40, Pr = 0.72, Th = 1 and Tc = 1/3. Contours of
the velocity magnitude are also rendered.
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Figura 4.5: Comparison of temperature profile along the fluid-solid interface of the
cylinder from the upstream stagnation point (φ ∈ [0, 180]) with that given in [275].
Four different ratios of αs and αf are shown. Errors for the αs/αf = 20 case are
less than 5%.

4.4.3 Forced Cooling of Hot Tubes

Next problem we show here is the forced convective cooling of hot tubes arranged in

a row. We simulate subcritical flow regime i.e. laminar but with vortex street ins-

tabilities in order to check the numerical stability of the BGK and MRT algorithms

and compare them to the proposed CTLBM. Cylinders are kept at the constant tem-

perature Th = 1 and at inlet the temperature Tc = 1/3 is also fixed. The Reynolds

and Prandtl numbers are set to Re = 16005, Pr = 0.72, lattice resolution of the

cylinder diameter is D = 32 and computational domain has resolution of Nx = 640

and Ny = 128 lattice sites per x and y directions respectively. Geometry of the

problem is shown in Fig. 4.6.

5Reynolds number is defined based on D and U0 in lattice units as in the previous section.
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Figura 4.6: Geometry of the problem with hot tubes in a row.

Boundary conditions are the same as in the previous section, we have inlet at the

left side, outlet at the right side and periodic conditions on the top and bottom of

the domain. Parameter a for the CTLBM is set to a = 1
2
. We want to find maximal

U0 (i.e. time step) for which the computations stay numerically stable while keeping

fixed lattice resolution. We started with U0 = 0.05 and performed simulations down

to U0 = 0.001 with following results: BGK & CTLBM are numerically stable for

U0 ≤ 0.056, Yoshida et al. [309] algorithm is numerically stable for U0 ≤ 0.01 and

Mezrhab et al. [204] algorithm is numerically stable for U0 ≤ 0.005. For the case

of Yoshida et al. and Mezrhab et al. algorithms, severe oscillatory artifacts (strong

under- and over-shoots in the temperature field) occur during the simulations but

the simulation can survive them. These oscillations emerged in vortexes and at

the solid-fluid boundary and are related to the boundary approximations used in

this work. Instant temperature fields for the case with U0 = 0.001 at lattice time

tlb = 6.4 · 105 are presented in Fig. 4.7. Time averaged temperature profiles for the

same number of iterations are presented in Fig. 4.8 (physical times reached by the

last iteration differ, and is the biggest for the BGK & CTLBM) and time averaged

profiles for the same physical time of the last iteration are presented in Fig. 4.9

(numbers of iterations performed by the solver differ and is the lowest for the BGK

& CTLBM). The characteristic time tC,lb is computed from (4.49) and when the

physical viscosity is known (e.g. set to νp = 1.568 · 10−5 m/s2 which means that

we use the air to cool the cylinders) one can also compute the physical time and

characteristic time in seconds from (4.49). The U0 in two latter cases is set to the

maximal value which ensures the numerical stability for the given solver and four

algorithms are compared in those figures.

As the numerical stability regarding the time step of the BGK & CTLBM in

this case is the same (and limited by numerical stability of the fluid flow solver)

we performed another numerical test for the case of higher Prandtl number. The

following different values of parameters were used: Pr = 7.2, U0,lb = 0.01, tlb = 8·104,

6Which is the limit for the numerical stability of the fluid flow solver.
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the rest of the parameters is the same as in previous simulations. The results are

depicted in Fig. 4.10.

Figura 4.7: Comparison of instant temperature profiles for the different LBM algo-
rithms. Results from left to right: BGK, CTLBM, Mezrhab et al. [204], Yoshida
et al. [309]. Parameters setup: U0 = 0.001, D = 32, Re= 1600, Pr= 0.72, a = 0.5,
tlb = 6.4 · 105
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Figura 4.8: Comparison of time averaged temperature profiles for the different LBM
algorithms and the same number of iterations. Results from left to right: BGK,
CTLBM, Mezrhab et al. [204], Yoshida et al. [309]. Parameters setup: D = 32,
Re= 1600, Pr= 0.72, a = 0.5, tlb = 6.4 · 105
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Figura 4.9: Comparison of time averaged temperature profiles for the different LBM
algorithms and the same physical time of the last iteration. Results from left to
right: BGK, CTLBM, Mezrhab et al. [204], Yoshida et al. [309]. Parameters setup:
D = 32, Re= 1600, Pr= 0.72, a = 0.5, tlb = 100tC,lb.
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Figura 4.10: Comparison of instant temperature profiles for the BGK (top) &
CTLBM (bottom) algorithms for higher Prandtl number. Parameters setup: D =
32, Re= 1600, Pr= 7.2, a = 0.5, tlb = 8 · 108.

4.4.4 Double shear layer flow

Motivated by the numerical stability limits of the LBM schemes from the previ-

ous subsection, we also investigated their numerical behavior in rotating flows. For

this purpose the flow field is obtained by solving the well known double shear layer

problem in the square domain with periodic boundary conditions. The initial con-

ditions for lattice variables in lattice units are as follows (Ulb and Vlb are x and y

components of the lattice velocity vector)

Ulb(x, y, 0) =

U0 tanh(80(y/(N − 1)− 0.25)) y/(N − 1) ≤ 0.5

U0 tanh(80(0.75− y/(N − 1))) y/(N − 1) > 0.5

100



Vlb(x, y, 0) = 0.05U0 sin(2π(x/(N − 1) + .25))

Tlb(x, y, 0) =

1 1
4
≤ y/(N − 1) < 3

4

0 elsewhere

where x ∈ [0, N − 1], y ∈ [0, N − 1], U0 = 0.01, N = 256, L = 1 m, νp = 1.568 · 10−5

m/s−2 and Re = 16000 together with Pr = 72. Simulations were performed for

tlb = 2.6 · 104 iterations which is equal to the physical time t = 4.058 s. Results for

all LBM schemes are depicted in Fig. 4.11.

Figura 4.11: Comparison of temperature profiles for the different LBM algorithms
for double shear layer flow setup. BGK (top left), CTLBM (top right), Mezrhab
et al. [204] (bottom left), Yoshida et al. [309] (bottom right). Parameters setup:
N = 256, Re= 16000, Pr= 72, a = 0.5, tlb = 2.6 · 104
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4.5 Discussion

Properties of the developed CTLBM that can be drawn from the presented data

for 1D simulation of advection and diffusion of the sine wave are that it can handle

advective and diffusive problems on moderately resolved meshes with great accuracy

even for the high Peclet number i.e. more advective than diffusive problems. Two

other MRT methods studied here needed very fine resolution to become stable for

Pe ≥ 105, in that case the Yoshida et al. scheme were slightly better (as soon as

the resolution of the lattice was fine enough to render the method stable) in terms

of errors but when looking at the EOC the CTLBM achieved better results in every

case studied in the Sec. 3.1. From the comparison of BGK and CTLBM one can

see that for lower Pe, the CTLBM performs better than BGK and for higher Pe

they perform comparable regarding the errors and EOC. From the values of E∞ one

can clearly see that all methods are of second order regard to the spatial step of the

lattice. This is visualized in the Fig. 4.2 where it could be easily seen that doubling

of the lattice resolution makes the maximal error four times smaller as indicated by

the computed EOC.

Validation of the CTLBM for forced convection flow in 2D was performed and

compared to the reference values in Sec. 3.2. Strong agreement between reference

and our method is obtained even for simple staircase type of curved boundary con-

dition and no special treatment of the conjugate fluid-solid heat transfer at the

boundary of the outer cylinder as done in [226]. Nevertheless the errors in our solu-

tions are visible only for the case of αs/αf = 20 and are generally less than 5%, for

the case of αs/αf = 4 slight inconsistency in the second half of the curve is observed.

The trend of the errors is mirrored when comparing the two latter cases.

Next set of simulations performed, aimed to determine the numerical stability

of the methods regarding the time step for moderate Reynolds number. Performed

simulations have shown enhanced stability of the method when compared to the

others, thus BGK and CTLBM allows for faster simulation of convective thermal

problems i.e. with less iterations we can obtain qualitatively comparable results as

can be seen from the averaged temperature fields. To judge which of the BGK and

CTLBM is more stable, we further increase the Prandtl number. The result is that

however both methods are numerically stable, BGK amplifies more the numerical

artifacts originating from the fluid solver and produce more numerical instabilities

in the temperature field than the proposed CTLBM. CTLBM tends to dampen the

artifacts without loosing the fine structures of the temperature field.

To show this nice property of the CTLBM for the complicated, swirling flows, we

applied LBM to the double shear layer flow and investigated numerical oscillations

near the hot-cold temperature interface. From the results one can see superior
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property of the CTLBM, when only few oscillations are presents in the solutions,

much less than in the solutions obtained by the other methods. Moreover, the

solution obtained by the CTLBM has nice sharp interfaces and other fine structures

are also undisturbed.

On the other hand, the CTLBM algorithm can be further enhanced by adding

more accurate boundary conditions and by comprehensive analysis of a parameter

influence on stability and accuracy by means of higher order equivalent PDE deriva-

tion and examination. To simulate turbulent flows, incorporation of the LES model

is also possible [67]. Another enhancement can be made towards moving boundaries

and more accurate boundary conditions at walls via mesh refinement [78].

4.6 Conclusion

The proposed CTLBM method was successfully tested numerically and compared

to the other Lattice Boltzmann Methods for selected problems in 1D and 2D. It was

shown that our CTLBM possesses higher stability and accuracy, better or compara-

ble to the other methods widely used in LBM application in thermal problems. The

proposed CTLBM also proven to be able to obtain results much faster (with less

iterations) when compared to other methods. The proposed CTLBM can be very

useful in a wide range of conjugate heat transfer problems and problems with phase

change. Therefore our CTLBM is strongly recommended for faster and efficient

simulations of heat and mass transfer problems.
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Caṕıtulo 5

Double Population Cascaded

Lattice Boltzmann Method for

Natural Convection Heat Transfer

5.1 Abstract

In this article, we present application of the Cascaded Thermal Lattice Boltz-

mann Method (CTLBM) in simulations of natural convection in differentially heated

square cavity with adiabatic top and bottom walls. This classical benchmark pro-

blem is solved for wide range of Rayleigh numbers (106–1010) and compared with

data from the literature. For high Rayleigh numbers we present comparison of Nus-

selt number and wall shear stress distributions along hot wall with experimental and

direct numerical simulation (DNS) data. Results for Rayleigh numbers up to 106 are

also compared with previous results obtained by MRT-LBM simulations of Wang et

al. The results are in good agreement with the existing ones obtained numerically

and experimentally.

The material presented in this chapter has been published in the International

Journal of Thermal Sciences as an original research paper [262].

5.2 Introduction

Lattice Boltzmann methods have established themselves as the viable alternative

among numerical methods used in CFD. LBM solves the discretized Boltzmann

Transport Equation (BTE) to obtain set of distribution functions (DFs), from which

macroscopic quantities (density, pressure, velocity, temperature) are then obtained.

The physics solved by the LBM is controlled by the form of the collision operator

and chosen equilibria for the DFs. Several types of realization of collision opera-
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tors have emerged [72, 77, 95, 274]. The simplest collision operator is the Single

Relaxation Time (SRT) sometimes called BGK in the LBM community, after the

authors Bhatnagar, Gross and Krook [21]. A large number of heat transfer and

fluid flow problems solved by SRT LBM are reported in the literature [5, 230, 311].

In the SRT approach, all nonconserved moments relax to their equilibrium with

the same relaxation time (due to the construction of the collision operator). SRT

is based on the BGK approach [274], which could produce numerical instabilities,

when the lattice resolution is insufficient [165] and also the truncation error control

is limited [55, 135]. In order to increase the stability and accuracy of the LBM

schemes, Multiple Relaxation Times (MRT) methods were proposed [72]. In MRT

schemes collisions are performed in moment space and different moments could be

relaxed with different relaxation times. MRT methods performed reasonably well

and showed greater stability and accuracy compared to SRT LBM. Unfortunately

the MRT methods are unstable for high Re flows and have other problems mentioned

in [96]. The CLBM are methods where central moments are relaxed in a “cascaded

manner“ [13, 94]. CLBM was successfully used for high Re fluid flow and general

heat transfer problems [84, 86, 95, 234, 244, 259, 268].

Some authors use MRT methods for the fluid flow and e.g. finite differences to

solve energy equation independently [222, 286]. This approach is known as Hybrid

LBM. Other approach known as Double Distribution Function (DDF) scheme was

proposed by [256], here two sets of DFs are used, one for the Navier-Stokes equations

and another for the energy equation. A large number of research articles appeared,

which describe DDF LBM approach with SRT and MRT LBM (see e.g. [110, 165]

and references therein). Recently, D3Q27 DDF cascaded LBM was used for steady

velocity field and solute transport in porous medium [306]. Another article describe

CLBM scheme for the fluid flow and SRT LBM for the energy equation [86]. The

double cascaded DDF LBM scheme for thermal problems was recently presented

by the authors in [259], where CLBM-CTLBM approach was derived and applied

to solve forced convection, meanwhile Fei et al. published somehow similar DDF

CLBM approach applied to heat transfer [84].

In the present article we solve natural convection in a differentially heated cavity

by the cascaded DDF LBM. We compare results obtained from our CTLBM code

with data from literature. Flow and heat transfer in the square cavity for wide range

of Rayleigh numbers have been studied by various groups and substantial research

has been carried out. Various authors used finite differences, finite volumes, finite

elements and pseudo-spectral methods [65, 136, 193, 198, 237, 239, 289], and also

LBM [9, 74, 76, 80, 167, 184, 292]. Some of the researchers have adopted Hybrid

LBM and DDF LBM [167]. The SRT [74, 76] and MRT LBM were used for laminar

flow regime [9, 80, 184, 292]. Dixit et al. [74] used DDF LBM for solving internal
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energy equation along with counter-slip boundary conditions together with mesh

refinement and simulated high Rayleigh number flows (up to Ra = 1010) with SRT.

Recently, Jami et al. [147] published a paper where two MRT DDF LBM schemes

have been used to solve natural convection up to Ra = 108. Allen and Reis derived

moment based boundary conditions and incorporated them in the MRT LBM in

order to solve natural convection in a square cavity [9]. Ren et al. [241] presented

the CUDA implementation of DDF LBM scheme with a SRT collision operator to

solve natural convection in a square cavity with solid obstacles. Wang et al. [292]

used MRT LBM to qualitatively examine natural convection in square cavity up to

Ra = 106 and also Rayleigh-Bénard convection. High Ra number flows in cavities

with aspect ratio close or equal to 1 were studied mainly by LES and DNS e.g.

[24, 251, 252].

5.2.1 Cascaded LBM for the flow field

The fluid behavior at mesoscopic scale is described by fluid particles in the framework

of the Boltzmann’s work and their properties at certain space and time are defined

by moments mαβ of velocity distribution functions (DFs) f(x, ξ, t). The evolution

of such DFs obeys Boltzmann Transport Equation which reads

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) = Ω(f, f), (5.1)

where ξ is the microscopic velocity, Ω is the collision operator. The spatial and

temporal derivatives in BTE (5.1) are discretized, the velocity distribution functions

are reduced to finite given by the desired lattice model, in our case the D2Q9 and

D2Q5. Then by choosing the cascaded form of collision operator and incorporating

forcing term F̃i we end up with the cascaded lattice Boltzmann equation (CLBE),

which in lattice units reads

fi(x + ci, t+ 1) = f(x, t) + K · k + F̃i, (5.2)

where fi is the ”velocity“ distribution function linked to the ith characteristic ve-

locity, K is transformation matrix, k is a vector of moments of fi resulting from

the cascaded collision operator. The equilibrium distribution function f eqi is defined

based on the Maxwell-Boltzmann equilibrium distribution function by

f eqi = ρwi

(
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
2c2
s

)
, (5.3)

where ρ is density, cs is the speed of sound and u = (u, v) is macroscopic velocity

vector. For the lattice model D2Q9 we have cs = 1/
√

3. The body force can be
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modeled by different approaches, those are compared in [213] for the problem of a

natural convection. We use the forcing scheme proposed by [234]. First the velocity

field is modified by known force Γ = (Γx,Γy) (which is defined later),

u =
1

2ρ
Γx v =

1

2ρ
Γy (5.4)

then expressions for the components to be included in cascaded collisions are

F4 = −(Γxu+ Γyv)

F5 = −(Γxu− Γyv)

F6 =
1

2
(Γxv + Γyu)

F7 = −1

2
(u2Γy − Γxuv)

F8 = −1

2
(v2Γx − Γyuv)

F9 = −(Γxuv
2 + Γyu

2v)

(5.5)

and the components which are added directly to the distribution functions are

F̃1 =
1

9
(−γ3 + γ8)

F̃2 =
1

36
(−6γ1 + 6γ2 + 2γ3 − 9γ5 − 3γ6 + 3γ7 + γ8)

F̃3 =
1

36
(−6γ1 − γ3 + 9γ4 − 6γ7 − 2γ8)

F̃4 =
1

36
(−6γ1 − 6γ2 + 2γ3 + 9γ5 + 3γ6 + 3γ7 + γ8)

F̃5 =
1

36
(−6γ2 − γ3 − 9γ4 − 6γ6 − 2γ8)

F̃6 =
1

36
(6γ1 − 6γ2 + 2γ3 − 9γ5 + 3γ6 − 3γ7 + γ8)

F̃7 =
1

36
(6γ1 − γ3 + 9γ4 + 6γ7 − 2γ8)

F̃8 =
1

36
(6γ1 + 6γ2 + 2γ3 + 9γ5 − 3γ6 − 3γ7 + γ8)

F̃9 =
1

36
(6γ2 − γ3 − 9γ4 + 6γ6 − 2γ8)

(5.6)
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where γi are defined as

γ1 = Γx

γ2 = Γy

γ3 = 6(Γxu+ Γyv)

γ4 = 2(Γxu− Γxu)

γ5 = Γxv + Γyu

γ6 = (2− 3u2)Γy − 6Γxuv

γ7 = (2− 3v2)Γx − 6Γyuv

γ8 = 6((3v2 − 2)Γxu+ (3u2 − 2)Γyv)

(5.7)

The macroscopic density ρ and macroscopic velocity u can be obtained as first

two moments of fi

ρ =
∑
i

fi,

ρu =
∑
i

cifi.
(5.8)

We define raw moments mαβ and central moments καβ of order α + β as

mαβ =
∑
i

cαi,xc
β
i,yfi, (5.9)

καβ =
∑
i

(ci,x − u)α(ci,y − v)βfi. (5.10)

From the above one can readily see that

ρ = m00 = κ00, ρu = m10, ρv = m01, κ10 = κ01 = 0. (5.11)

To perform cascaded collision we need the transformation matrix K and the

collision vector k. We choose following non-orthogonal moments for the flow field

on the D2Q9 lattice (we use Einstein summation here){∑
i

fi, ci,xfi, ci,yfi,
(
c2
i,x + c2

i,y

)
fi,
(
c2
i,x − c2

i,y

)
fi, ci,xci,yfi, c

2
i,xci,yfi, c

2
i,yci,xfi, c

2
i,xc

2
i,yfi

}
.

The first three moments are the conserved quantities (ρ and ρu). To obtain orthogo-

nal transformation matrix [94] we use use Gram-Schmidt orthogonalization process
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and eventually get

KT =



1 1 1 1 1 1 1 1 1

0 −1 −1 −1 0 1 1 1 0

0 1 0 −1 −1 −1 0 1 1

−4 2 −1 2 −1 2 −1 2 −1

0 0 1 0 −1 0 1 0 −1

0 1 0 −1 0 1 0 −1 0

0 −1 0 1 −2 1 0 −1 2

0 1 −2 1 0 −1 2 −1 0

4 1 −2 1 −2 1 −2 1 −2


. (5.12)

The streaming step is defined by

fi(x + ci, t+ 1) = f
′

i (x, t), (5.13)

and collision step by

f
′

i (x, t) = fi(x, t) + K · k + Fi, (5.14)

where f
′
i is the so-called post-collision velocity distribution function. The collision

vector k, has nine components k1, . . . , k9, where k1, k2, k3 vanish due to the conser-

vation of density and momenta.

k =
[
0, 0, 0, k4, k5, k6, k7, k8, k9

]T
. (5.15)

The equilibrium central moments for the fluid flow are defined as

κ00 = κeq00 = ρ,

κeq10 = κ10 = 0,

κeq01 = κ01 = 0,

κeq20 = ρc2
s,

κeq02 = ρc2
s,

κeq11 = 0,

κeq21 = 0,

κeq12 = 0,

κeq22 = ρc4
s.

(5.16)

Cascaded collision scheme is given by the following equations for components of the

k
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k4 =
1

12τ4

[
ρ(u2 + v2)− f6 − f8 − f4 − f2 − 2(f5 + f3 + f7 + f1 − ρc2

s) + F4

]
,

k5 =
1

4τ5

[
f8 + f4 − f6 − f2 + ρ(u2 − v2) + F5

]
,

k6 =
1

4τ6

(f7 + f3 − f1 − f5 − uvρ+ F6),

k7 = − 1

4τ7

{ [
f5 + f3 − f7 − f1 − 2u2vρ+ v(ρ− f8 − f4 − f0)

]
+

+ 2u(f7 − f1 − f5 + f3) + F7

}
+
v

2
(−3k4 − k5) + 2uk6,

k8 = − 1

4τ8

{ [
f3 + f1 − f5 − f7 − 2v2uρ+ u(ρ− f2 − f6 − f0)

]
+

+ 2v(f7 − f1 − f5 + f3) + F8

}
+
u

2
(−3k4 + k5) + 2vk6,

k9 =
1

4

[
1

τ9

(
ρc4

s − κxxyy
)
− 8k4 − 6k5(u2 + v2)− 2k5(v2 − u2)+

+ 16k6uv − 8k7v − 8k8u+ F9

]
(5.17)

where τ4,5,6,...,9 are the relaxation times for non-conserved moments. Relations

between relaxation times and a kinematic viscosity of the fluid are following

τ5 = τ6 =
ν

c2
s

+
1

2
. (5.18)

To achieve zero-slip at walls for half-way bounce back, we also set [84]

τ7 = τ8 =
8τ5 − 1

16τ5 − 8
, (5.19)

two last relaxation times are set to τ4 = τ9 = 1. Two principal differences between

the cascaded scheme and other MRT schemes [72] are that central moments are

relaxed in the cascaded manner [13] and the cross talking among different moments

are corrected [94, 96]. In order to recover the Navier-Stokes equations from the

LBE, Chapmann-Enskog expansion [44], Hilbert expansion [152], Equivalent Par-

tial Differential Equations [79] or recently emerged Maxwell iteration method [319]

techniques could be used.

In every case we do Taylor expansion of the LBE, apply diffusive scaling and

after lengthy algebra we eventually end up with [96, 234, 259] (with Ma being the
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Mach number)

∂u

∂x
+
∂v

∂y
= O(Ma2)

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+ Γx +O(Ma3)

∂v

∂t
+
∂v2

∂y
+
∂vu

∂x
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ Γy +O(Ma3).

(5.20)

5.2.2 Cascaded LBM for the temperature field

Temperature is considered as a passive scalar obeying the advection-diffusion equa-

tion. Viscous heat dissipation and compressive work have not been considered here

as their contribution in natural convection can be neglected in the cases we studied.

The CTLBM is used with the D2Q5 lattice model. The evolution of temperature is

defined by ”temperature“ distribution functions gi. The discretized cascaded ther-

mal lattice Boltzmann equation in lattice units reads

g(x + ci, t+ 1) = g(x, t) + Q · q, (5.21)

where Q·q is the cascaded collision scheme for the temperature field, which is similar

to the collision scheme used for fluid flow but applied to temperature DFs on the

separate lattice. Q is the orthogonal transformation matrix, and q is the collision

vector. The streaming and collision processes are similar as before with streaming

along the links and collision at nodes. The equilibrium DFs for temperature reads
geq1

geq2

geq3

geq4

geq5

 =


(1− a)T

(a− 2u)T
4

(a− 2v)T
4

(a+ 2u)T
4

(a+ 2v)T
4

 , (5.22)

where T is the temperature and a is free parameter related to the ”speed of sound“

(not the real one but linked to the lattice). We set a =
√

2/5 [84]. The moments

for the temperature field for the D2Q5 lattice are{∑
i

gi, ci,xgi, ci,ygi,
(
c2
i,x + c2

i,y

)
gi,
(
c2
i,y − c2

i,x

)
gi

}
.

The first moment T =
∑

i gi is the only conserved quantity (collisional invariant).

As in previous section, we apply Gram-Schmidt orthogonalization process to obtain
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the orthogonal transformation matrix Q

QT =


1 1 1 1 1

0 −1 0 1 0

0 0 −1 0 1

4 −1 −1 −1 −1

0 −1 1 −1 1

 . (5.23)

The collision step is given by

g
′

i(x, t) = gi(x, t) + Q · q, (5.24)

and streaming step for CTLBM reads

gi(x + ci, t+ 1) = g
′

i(x, t), (5.25)

where g
′
i are post collision DFs.

The cascaded relaxation scheme for the temperature DFs reads

q1 = 0,

q2 =
1

2τg,2
(κeq10 − κ10),

q3 =
1

2τg,3
(κeq01 − κ01),

q4 = − 1

4τg,4
(κeq20 − κ20 + κeq02 − κ02)− uq2 − vq3,

q5 =
1

4τg,5
(κ20 − κeq20 + κeq02 − κ02)− uq2 + vq3,

(5.26)

where τg,2, τg,3, τg,4, τg,5 are relaxation times for non-conserved thermal moments and

again q1 = 0 as it is collisional invariant and corresponds to the conserved quantity.

In the cascaded scheme, lower order moments do affect the evolution of the higher

order moments as can be seen from (5.26). The above scheme can be expressed in

DFs and known macroscopic quantities as
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q2 =
1

2τg,2
(Tu− g3 + g1),

q3 =
1

2τg,3
(Tv − g4 + g2),

q4 = − 1

4τg,4
(aT − g1 − g2 − g3 − g4) +

(
1

2τg,4
− 1

2τg,2

)
u(Tu− g3 + g1)+

+

(
1

2τg,4
− 1

2τg,3

)
v(Tv − g4 + g2),

q5 =
1

4τg,5
(g1 + g3 − g2 − g4) +

(
1

2τg,5
− 1

2τg,2

)
u(Tu− g3 + g1)+

+

(
1

2τg,3
− 1

2τg,5

)
v(Tv − g4 + g2).

(5.27)

Advection-diffusion equation for the temperature can be recovered by adopting same

steps as in previous section and reads

∂T

∂t
+
∂Tu

∂x
+
∂Tv

∂y
=
a

2

(
τg,2 −

1

2

)
∂2T

∂x2
+
a

2

(
τg,3 −

1

2

)
∂2T

∂y2
+O(∆t3). (5.28)

The thermal diffusivities can be identified once the above equation is compared with

the Fourier-Kirchhoff equation

αx =
a

2

(
τg,2 −

1

2

)
, αy =

a

2

(
τg,3 −

1

2

)
. (5.29)

Two other relaxation times are set to

τg,4 = τg,5 = 12
1− 2τg,2
1− 12τg,2

(5.30)

in order to eliminate numerical slip [61].

5.2.3 Governing macroscopic equations

In present paper we study application of CTLBM in simulations of natural con-

vection flows, which can be described by Navier-Stokes equations together with

Fourier-Kirchhoff equation. The coupling between thermal and flow fields is due to

the buoyancy force term added to the momentum equations. The Boussinesq appro-

ximation is employed, i.e., we have linear dependency of density on the temperature

ρ = ρ0 [1 + β (T − Tref)] , (5.31)
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where ρ0 is the reference density (at the reference temperature Tref) and β is the

linear isobaric thermal expansion coefficient defined by

β = −1

ρ

(
∂ρ

∂T

)
p

. (5.32)

The problem is then described by the following system of PDEs

∇ · u = 0,

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+ ν∆u + Γ,

∂T

∂t
+ u · ∇T = α∆T,

(5.33)

where force term Γ is given by

Γ = gβ(T − Tref), (5.34)

with g being the vector of gravitational acceleration. In order to compare and cha-

racterize natural convection in different systems, we need two dimensionless num-

bers, the Prandtl number (Pr) and Rayleigh (Ra) or Grashof (Gr) number

Pr =
ν

α
, Ra =

β|g|∆TL3

να
, Gr =

Ra

Pr
, (5.35)

where L is characteristic length of the system and ∆T is temperature difference (e.g.

between hot and cold walls). The characteristic velocity for natural convection flows

can be defined as

U =
√
β|g|∆TL =

√
Ra

Pr

ν

L
. (5.36)

During the computations, the Nusselt number (Nu) is also determined in order to

compare our results with other authors. Two Nusselt numbers are computed

Nu =
1

∆TlbLx,lb

Lx,lb∑
0

Ly,lb∑
0

qx(x, y)dxdy, (5.37)

Nu1/2 =
1

∆Tlb

Ly,lb∑
0

qx

(
Lx,lb

2
, y

)
dy, (5.38)

here Lx/y,lb are number of lattice sites in x and y direction, qx is the local heat flux

in the horizontal direction, i.e.

qx =
ulbTlb

αlb

− ∂Tlb

∂x
(5.39)
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and the temperature derivative is approximated by the finite differences.

In order to determine all parameters needed to perform LBM simulations, we

need one more dimensionless number, namely the Mach number (Ma)

Ma =
U

cs
. (5.40)

The above system of equations can be rescaled using the following

x+ =
x

L
, t+ =

tα

L2
, u+ =

uL

α
, p+ =

pL2

ρ0α2
, T+ =

T − Tref

∆T
(5.41)

which results in (“+” superscripts are dropped in the following)

∇ · u = 0,

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+ Pr∆u + RaPrTg0,

∂T

∂t
+ u · ∇T = ∆T,

(5.42)

where g0 is unit vector in the direction of the gravitational field. To setup parameters

in lattice units, needed during the simulations, we use dimensionless numbers defined

above to obtain (we can setup either the desired Ma number i.e. the time step and

compute lattice viscosity or setup the lattice viscosity directly providing the resulting

Ma number is small enough, say less than 0.3)

νlb =
Macs
Llb

√
Pr

Ra
, αlb =

νlb

Pr
(5.43)

where Llb is the number of lattices used for characteristic length L. The last para-

meter which must be expressed in lattice units is the β|g|

(β|g|)lb =
Raνlbαlb

L3
lb∆Tlb

. (5.44)

Some of the results (especially for Ra numbers greater than 109 [238]) are far away

from being steady, for such flows the instant values are meaningless as the flow is

chaotic. In the theory of turbulent boundary layer, the dimensionless quantities y+,

U+ and T+ are used in order to express the so called law of the wall [233]. These

quantities are computed from the normal distance from the wall y and velocity

parallel to wall v scaled by the friction velocity vτ

y+ =
yvτ
ν
, U+ =

v

vτ
, T+ =

Twall − T
qw/vτ

, vτ =

√
ν

(
∂v

∂y

)
y=0

, qw = −α
(
∂T

∂y

)
y=0

,

(5.45)
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The derivatives of v and T are obtained by fitting of the third order polynomial

applied to values in the vicinity of the wall.

5.2.4 Initial and boundary conditions

As the LBM solver is a transitional solver, we need to provide not only the boundary

conditions but also initial conditions. The initial conditions are given by zero velocity

and reference temperature

fi(x, 0) = f eq
i (ρini,lb,uini,lb), gi(x, 0) = geq

i (Tini,lb,uini,lb)∀x ∈ [0, Lx,lb]× [0, Ly,lb],

ρini,lb = 1, uini,lb = (0, 0), Tini,lb = 0.5,

(5.46)

where Lx,lb and Ly,lb are lattice dimensions of the computational domain.

Boundary conditions needed during the simulations are no-slip conditions for the

velocity at walls, Dirichlet and adiabatic conditions for the temperature at walls.

The no-slip and adiabatic conditions can be simulated by the bounce-back approach

[165]

fī(xbb, t+ 1) = f ′i(xbb, t), gī(xbb, t+ 1) = g′i(xbb, t), (5.47)

where xbb is the wall adjacent fluid site, fī and gī correspond to DFs which charac-

teristic velocity points in the reflected direction i.e. cī = −ci. This results in no-slip

and/or adiabatic wall.

In the case of Dirichlet conditions (i.e. for wall with given temperature) we use

“anti-bounce-back” conditions to setup the temperature of the walls

gī(xw, t+ 1) = −gi(xw, t) +
a

2
T. (5.48)

5.3 Differentially heated square cavity

The test case for the CTLBM is the well known and well studied differentially heated

square cavity. The cavity’s top and bottom walls are insulated, left and right walls

are kept at different temperatures (the left wall is the hot wall, see Fig. 5.1). The

fluid inside the cavity is heated up by the hot wall and rise due to buoyancy forces,

while it is cooled down by the cold wall and descends which produces various flow

patterns inside the cavity. To compare our results with other authors’ results we

will measure the maximal horizontal and vertical velocity (umax and vmax) at mid-

cross-sections (vertical and horizontal ones) together with their positions along that

cross-section (ymax and xmax) and two Nusselt numbers defined earlier. This problem

was extensively studied by many authors [65, 74, 76, 80, 167, 184, 193, 237, 289, 292]
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∂n = 0, u = 0, v = 0

∂T
∂n = 0, u = 0, v = 0

T = 0
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T = 1
u = 0
v = 0

~g

Figura 5.1: Differentially heated cavity geometry and boundary conditions.

and data provided by them will be used for comparison for the Rayleigh numbers

up to 1010.

5.3.1 Numerical simulations setup

The natural convection in a square cavity of height H was simulated for the range

of Ra = 103–1010. The flow in 2D is laminar up to Ra ∼ 1.82 · 108 [238], for Ra

numbers above Ra = 109 the flow is fully chaotic. To setup the LBM solver, we

have to choose the Prandtl number (equal to 0.71 in all simulations, i.e. the air

filled cavity), the Rayleigh number, and the Mach number. Temperature difference

in lattice units was equal to 1 with Thot,lb = 1 and Tcold,lb = 0. Initial temperature

was set to Tini,lb = 0.5. Initial velocity field is set to zero uini,lb = (0, 0). The number

of lattice size in x and y direction Lx,lb = Ly,lb = N were varied from 64 to 1024

(or 2048 for Ra= 107 − 108). We also performed simulations with different Mach

numbers (Ma=0.01, 0.05, 0.1, 0.15) to examine behavior of quantities under study,

when the time step is increased.

For Ra= 103, . . . , 108, the computations were performed until the following con-
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ditions were met: ∑
x,y |u(x, y, t+ 1000)− u(x, y, t)|L2∑

x,y |u(x, y, t)|L2

< 10−10

maxx,y|T(x, y, t + 1000)− T(x, y, t)| < 10−6

(5.49)

i.e. we seek steady state by checking L2 norm of velocity and L∞ norm of tempera-

ture fields.

5.3.2 Grid convergence of the solutions

First we check the grid convergence of the solutions for different Ra numbers and

Mach numbers. Ma number is related to the time step of the simulations and also to

the compressibility error [68]. To measure the errors we compare solutions on several

grids with reference solution (grid with N = 1024 or in case of Ra= 107 and Ra= 108

with N = 2048). To compute L2-velocity and L∞-density/temperature norms we

interpolate values from fine grid to the coarse grids using cubic interpolation. Results

are summarized in Tabs. 5.1-5.4, where n denotes order of the convergence. From the

tables one can observe that for small Mach number the orders are close or above 2.0

except for the pressure field for the two smallest Ra numbers. With increasing Mach

number the order of convergence for pressure field becomes lower, with lowest values

for low Ra numbers. The errors are also increasing with increased Ra numbers.

5.3.3 Convergence of hydrodynamical quantities and Nus-

selt numbers

Next we study behavior of averaged Nusselt numbers N1/2 and Nu, maximal ve-

locities in x and y directions umax and vmax at vertical and horizontal mid-lines,

together with their locations. The values and positions are obtained by first fitting

velocity to the quadratic function in the vicinity of node with maximal value and

then this function is used to compute maximal values and their positions. Results

are summarized in Tabs. 5.5-5.8. Asymptotic values (denoted by “N = ∞”) are

obtained by least-square fit of the 3rd order polynomial function as done in [292].

Comparison of asymptotic values for different Ma numbers are summarized in Tab.

5.9. The most sensitive are components of maximal horizontal and vertical velocity,

while their positions are not very sensitive the the increasing time step. With incre-

asing Ma, the maximal velocities tend to be over predicted while Nu numbers have

opposite trend and are under predicted in the most cases. Asymptotic quantities for

the Ma= 0.01 will be compared with results from the literature in the next section.
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Tabela 5.1: Natural convection in a square cavity: grid convergence for Ma = 0.01.

N |T |L∞ |P |L∞ |u|L2

Ra= 103

64 1.745·10−4 1.101·10−2 1.670·10−3

128 4.437·10−5 2.730·10−3 4.110·10−4

256 1.120·10−5 9.000·10−4 9.663·10−5

512 2.578·10−6 2.768·10−4 1.957·10−5

768 9.201·10−7 9.085·10−5 5.593·10−6

n 2.0908 1.8583 2.2587

Ra= 104

64 6.730·10−4 3.645·10−2 2.529·10−3

128 1.608·10−4 8.018·10−3 6.418·10−4

256 3.710·10−5 2.478·10−3 1.528·10−4

512 7.464·10−6 7.429·10−4 3.113·10−5

768 2.272·10−6 2.421·10−4 8.474·10−6

n 2.2627 1.9425 2.2536

Ra= 105

64 2.597·10−3 9.753·10−2 6.796·10−3

128 6.448·10−4 1.837·10−2 1.803·10−3

256 1.501·10−4 3.910·10−3 4.338·10−4

512 2.974·10−5 9.645·10−4 8.784·10−5

768 7.796·10−6 2.987·10−4 2.289·10−5

n 2.2954 2.2787 2.2494

Ra= 106

64 7.983·10−3 2.202·10−1 2.400·10−2

128 2.131·10−3 4.806·10−2 6.172·10−3

256 5.182·10−4 8.384·10−3 1.498·10−3

512 1.034·10−4 1.460·10−3 3.004·10−4

768 2.683·10−5 3.945·10−4 7.718·10−5

n 2.2502 2.5284 2.2639

Ra= 107

64 2.987·10−2 4.308·10−1 1.200·10−1

128 7.133·10−3 1.247·10−1 3.080·10−2

256 1.861·10−3 2.255·10−2 7.688·10−3

512 4.551·10−4 3.888·10−3 1.827·10−3

768 1.864·10−4 1.431·10−3 7.374·10−4

1024 9.227·10−5 6.943·10−4 3.577·10−4

n 2.0606 2.3642 2.0824
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Tabela 5.2: Natural convection in a square cavity: grid convergence for Ma = 0.05.

N |T |L∞ |P |L∞ |u|L2

Ra= 103

64 2.125·10−4 5.645·10−3 1.724·10−3

128 6.274·10−5 2.035·10−3 4.221·10−4

256 1.932·10−5 8.196·10−4 1.011·10−4

512 5.579·10−6 2.725·10−4 2.118·10−5

768 1.912·10−6 9.070·10−5 6.096·10−6

n 1.8515 1.5992 2.2336

Ra= 104

64 6.592·10−4 1.533·10−2 2.730·10−3

128 1.618·10−4 5.414·10−3 6.898·10−4

256 4.130·10−5 2.155·10−3 1.746·10−4

512 9.769·10−6 7.073·10−4 3.976·10−5

768 2.925·10−6 2.354·10−4 1.152·10−5

n 2.134 1.6176 2.1557

Ra= 105

64 2.660·10−3 3.368·10−2 7.557·10−3

128 6.305·10−4 7.985·10−3 1.930·10−3

256 1.449·10−4 2.653·10−3 4.813·10−4

512 2.893·10−5 8.254·10−4 1.061·10−4

768 7.650·10−6 2.715·10−4 2.947·10−5

n 2.3107 1.8631 2.1866

Ra=106

64 8.858·10−3 8.786·10−2 2.468·10−2

128 2.208·10−3 1.667·10−2 6.323·10−3

256 5.195·10−4 3.695·10−3 1.523·10−3

512 1.034·10−4 9.342·10−4 3.202·10−4

768 2.686·10−5 2.939·10−4 8.654·10−5

n 2.2894 2.2408 2.2322

Ra=108

64 1.228·10−1 6.947·10−1 5.363·10−1

128 2.744·10−2 1.408·10−1 2.152·10−1

256 6.816·10−3 2.539·10−2 7.045·10−2

512 1.632·10−3 5.084·10−3 1.722·10−2

1024 3.254·10−4 9.575·10−4 3.411·10−3

n 2.1191 2.3797 1.8236
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Tabela 5.3: Natural convection in a square cavity: grid convergence for Ma = 0.1.

N |T |L∞ |P |L∞ |u|L2

Ra= 103

64 2.640·10−4 4.990·10−3 1.757·10−3

128 8.756·10−5 1.986·10−3 4.363·10−4

256 3.225·10−5 8.263·10−4 1.080·10−4

512 1.029·10−5 2.750·10−4 2.380·10−5

768 3.456·10−6 9.134·10−5 6.943·10−6

n 1.6862 1.5513 2.1856

Ra= 104

64 6.759·10−4 1.277·10−2 2.877·10−3

128 1.817·10−4 5.118·10−3 7.626·10−4

256 5.275·10−5 2.127·10−3 2.133·10−4

512 1.585·10−5 7.069·10−4 5.494·10−5

768 5.378·10−6 2.355·10−4 1.679·10−5

n 1.8947 1.5493 2.0191

Ra= 105

64 2.634·10−3 2.332·10−2 7.966·10−3

128 6.203·10−4 6.706·10−3 2.088·10−3

256 1.464·10−4 2.505·10−3 5.606·10−4

512 3.120·10−5 8.100·10−4 1.364·10−4

768 8.611·10−6 2.685·10−4 4.017·10−5

n 2.2573 1.7234 2.0797

Ra=106

64 9.132·10−3 5.989·10−2 2.515·10−2

128 2.222·10−3 1.202·10−2 6.493·10−3

256 5.219·10−4 3.089·10−3 1.660·10−3

512 1.048·10−4 8.712·10−4 3.844·10−4

768 2.741·10−5 2.818·10−4 1.104·10−4

n 2.2921 2.0921 2.1386
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Tabela 5.4: Natural convection in a square cavity: grid convergence for Ma = 0.15.*-
the reference solution for Ra= 103 is the one with N = 768.

N |T |L∞ |P |L∞ |u|L2

Ra= 103∗
64 3.118·10−4 4.744·10−3 1.782·10−3

128 1.127·10−4 1.908·10−3 4.453·10−4

256 4.163·10−5 7.462·10−4 1.086·10−4

512 1.017·10−5 1.853·10−4 1.928·10−5

n 1.6251 1.5390 2.1626

Ra= 104

64 7.154·10−4 1.198·10−2 3.035·10−3

128 2.079·10−4 5.040·10−3 8.515·10−4

256 7.111·10−5 2.126·10−3 2.595·10−4

512 2.421·10−5 7.073·10−4 7.165·10−5

768 8.196·10−6 2.357·10−4 2.247·10−5

n 1.7324 1.5258 1.9194

Ra= 105

64 2.613·10−3 1.967·10−2 8.344·10−3

128 6.219·10−4 6.295·10−3 2.274·10−3

256 1.533·10−4 2.460·10−3 6.525·10−4

512 3.485·10−5 8.047·10−4 1.703·10−4

768 1.023·10−5 2.678·10−4 5.202·10−5

n 2.1851 1.6602 1.9917

Ra= 106

64 9.262·10−3 4.934·10−2 2.566·10−2

128 2.232·10−3 1.046·10−2 6.821·10−3

256 5.260·10−4 2.888·10−3 1.858·10−3

512 1.072·10−4 8.506·10−4 4.635·10−4

768 2.845·10−5 2.780·10−4 1.387·10−4

n 2.2825 2.0163 2.0520
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Tabela 5.5: Natural convection in a square cavity: convergence of Nusselt numbers
and maximal velocities and their positions for Ma = 0.01.*- values omitted from the
fit.

N umax y vmax x Nu Nu1/2

Ra= 103

64 3.65629 0.81329 3.69244 0.17875 1.10912 1.11825
128 3.65234 0.81330 3.69499 0.17856 1.11344 1.11790
256 3.65076 0.81327 3.69623 0.17846 1.11561 1.11782
512 3.65008 0.81326 3.69684 0.17840 1.11670 1.11780
768 3.64986 0.81325 3.69704 0.17837 1.11706 1.11779
1024 3.64975 0.81325 3.69714 0.17836 1.11724 1.11779

∞ 3.64945 0.81324 3.69744 0.17832 1.11778 1.11778

Ra= 104

64 16.17183 0.82244 19.59757 0.11966 2.23155 2.25000
128 16.17603 0.82292 19.61129 0.11930 2.23710 2.24609
256 16.17919 0.82309 19.61943 0.11909 2.24069 2.24513
512 16.18114 0.82316 19.62376 0.11898 2.24269 2.24489
768 16.18185 0.82318 19.62524 0.11894 2.24338 2.24485
1024 16.18222 0.82320 19.62601 0.11892 2.24373 2.24483

∞ 16.18340 0.82323 19.62830 0.11886 2.24481 2.24481

Ra= 105

64 34.43644 0.85271 68.82944 0.06626 4.52089∗ 4.55751
128 34.56981 0.85370 68.67551 0.06604 4.51241 4.53036
256 34.65174 0.85419 68.64584 0.06597 4.51489 4.52379
512 34.69525 0.85441 68.63845 0.06592 4.51774 4.52217
768 34.71022 0.85448 68.63699 0.06590 4.51892 4.52187
1024 34.71780 0.85451 68.63646 0.06589 4.51955 4.52177

∞ 34.74050 0.85461 68.63500 0.06585 4.52160 4.52160

Ra= 106

64 66.31031 0.85079 222.45383 0.03807 8.82095 8.82671
128 65.10217 0.84961 220.82891 0.03775 8.97848 9.05081
256 64.87421 0.84966 220.58087 0.03778 8.84599 8.88117
512 64.83188 0.84976 220.55092 0.03778 8.82159 8.83898
768 64.82778 0.84981 220.55138 0.03777 8.81996 8.82861
1024 64.82770 0.84983 220.55338 0.03777 8.82173 8.82605

∞ 64.83190 0.84990 220.56600 0.03775 8.82522 8.82522

Ra= 107

64 166.86413∗ 0.86819 659.33366∗ 0.02152 17.68625 17.82338
128 154.37172 0.87314 704.65400∗ 0.02125 16.78495 16.85144
256 149.84663 0.87812 700.20230 0.02128 16.57263 16.60530
512 148.84643 0.87921 699.45001 0.02130 16.52722 16.54344
768 148.68581 0.87934 699.36131 0.02131 16.52130 16.53209
1024 148.63414 0.87937 699.33808 0.02130 16.52006 16.52814
2048 148.59562 0.87937 699.33198 0.02130 16.52031 16.52435

∞ 148.58000 0.87940 699.32400 0.02130 16.52310 16.52320
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Tabela 5.6: Natural convection in a square cavity: convergence of Nusselt numbers
and maximal velocities and their positions for Ma = 0.05.

N umax y vmax x Nu Nu1/2

Ra= 103

64 3.65665 0.81328 3.69282 0.17875 1.10913 1.11822
128 3.65250 0.81329 3.69526 0.17856 1.11343 1.11789
256 3.65087 0.81327 3.69648 0.17846 1.11559 1.11782
512 3.65016 0.81325 3.69708 0.17840 1.11668 1.11780
768 3.64994 0.81324 3.69729 0.17838 1.11704 1.11780
1024 3.64983 0.81324 3.69739 0.17837 1.11722 1.11780

∞ 3.64952 0.81322 3.69769 0.17834 1.11776 1.11780

Ra= 104

64 16.17599 0.82239 19.60140 0.11965 2.23160 2.25005
128 16.17785 0.82289 19.61313 0.11930 2.23709 2.24608
256 16.18028 0.82307 19.62094 0.11909 2.24066 2.24510
512 16.18190 0.82315 19.62516 0.11898 2.24265 2.24485
768 16.18250 0.82318 19.62661 0.11894 2.24334 2.24480
1024 16.18281 0.82319 19.62734 0.11892 2.24369 2.24479

∞ 16.18380 0.82323 19.62950 0.11886 2.44760 2.24476

Ra= 105

64 34.41572 0.85241 68.82834 0.06623 4.52098 4.55757
128 34.56839 0.85362 68.67820 0.06604 4.51233 4.53026
256 34.65212 0.85415 68.64821 0.06596 4.51480 4.52369
512 34.69677 0.85439 68.64098 0.06591 4.51764 4.52207
768 34.71213 0.85447 68.63961 0.06590 4.51882 4.52177
1024 34.71990 0.85451 68.63911 0.06589 4.51946 4.52167

∞ 34.74360 0.85462 68.63800 0.06586 4.52153 4.52153

Ra= 106

64 66.04260 0.84973 222.11650 0.03804 8.98358 9.05594
128 65.08150 0.84926 220.81599 0.03774 8.84599 8.88116
256 64.87265 0.84952 220.59140 0.03778 8.82147 8.83886
512 64.83385 0.84971 220.56106 0.03778 8.81984 8.82849
768 64.83106 0.84979 220.56111 0.03777 8.82083 8.82658
1024 64.83161 0.84983 220.56288 0.03777 8.82160 8.82592

∞ 64.83940 0.84994 220.57600 0.03774 8.82508 8.82509

Ra= 108

256 364.92262 0.93898 2236.44327 0.01201 30.64091 30.70105
512 329.87857 0.93039 2224.82989 0.01199 30.31308 30.34281
1024 323.67959 0.92808 2222.93528 0.01200 30.23916 30.25396
2048 322.47709 0.92791 2222.57050 0.01200 30.22461 30.23200

∞ 321.61300 0.92790 2222.48000 0.01200 30.22360 30.22460
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Tabela 5.7: Natural convection in a square cavity: convergence of Nusselt numbers
and maximal velocities and their positions for Ma = 0.1.

N umax y vmax x Nu Nu1/2

Ra= 103

64 3.65710 0.81326 3.69364 0.17875 1.10908 1.11821
128 3.65281 0.81326 3.69604 0.17857 1.11336 1.11790
256 3.65113 0.81324 3.69724 0.17847 1.11552 1.11784
512 3.65039 0.81323 3.69784 0.17840 1.11660 1.11783
768 3.65016 0.81322 3.69803 0.17838 1.11696 1.11783
1024 3.65004 0.81322 3.69813 0.17837 1.11714 1.11783

∞ 3.64971 0.81321 3.69842 0.17833 1.11768 1.11783

Ra= 104

64 16.18093 0.82231 19.60712 0.11964 2.23155 2.24998
128 16.18089 0.82285 19.61779 0.11930 2.23698 2.24596
256 16.18246 0.82305 19.62528 0.11909 2.24052 2.24496
512 16.18365 0.82314 19.62936 0.11897 2.24249 2.24470
768 16.18411 0.82317 19.63077 0.11894 2.24318 2.24465
1024 16.18435 0.82318 19.63148 0.11892 2.24353 2.24463

∞ 16.18510 0.82322 19.63360 0.11886 2.44600 2.24460

Ra= 105

64 34.41215 0.85219 68.83653 0.06622 4.52068 4.55722
128 34.57100 0.85354 68.68623 0.06603 4.51203 4.52995
256 34.65772 0.85413 68.65651 0.06596 4.51449 4.52338
512 34.70392 0.85440 68.64961 0.06591 4.51734 4.52177
768 34.71980 0.85449 68.64833 0.06589 4.51852 4.52147
1024 34.72782 0.85453 68.64791 0.06588 4.51915 4.52137

∞ 34.75230 0.85466 68.64700 0.06584 4.52123 4.52123

Ra= 106

64 65.95183 0.84877 222.06853 0.03802 8.98417 9.05652
128 65.08016 0.84901 220.84664 0.03773 8.84559 8.88075
256 64.88160 0.84941 220.62340 0.03778 8.82108 8.83846
512 64.84803 0.84971 220.59182 0.03777 8.81942 8.82807
768 64.84712 0.84983 220.59150 0.03777 8.82039 8.82615
1024 64.84854 0.84989 220.59309 0.03776 8.82116 8.82548

∞ 64.86070 0.85009 220.60600 0.03773 8.82460 8.82460
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Tabela 5.8: Natural convection in a square cavity: convergence of Nusselt numbers
and maximal velocities and their positions for Ma = 0.15.

N umax y vmax x Nu Nu1/2

Ra= 103

64 3.65770 0.81322 3.69494 0.17876 1.10898 1.11822
128 3.65327 0.81323 3.69730 0.17858 1.11324 1.11794
256 3.65152 0.81321 3.69849 0.17848 1.11539 1.11788
512 3.65075 0.81319 3.69908 0.17842 1.11647 1.11788
768 3.65051 0.81318 3.69928 0.17839 1.11683 1.11788

∞ 3.65005 0.81316 3.69967 0.17834 1.11755 1.11789

Ra= 104

64 16.18671 0.82223 19.61542 0.11963 2.23138 2.24981
128 16.18484 0.82280 19.62520 0.11930 2.23675 2.24574
256 16.18555 0.82302 19.63237 0.11909 2.24027 2.24472
512 16.18630 0.82312 19.63629 0.11897 2.24224 2.24445
768 16.18662 0.82316 19.63765 0.11893 2.24292 2.24440
1024 16.18678 0.82317 19.63833 0.11892 2.24327 2.24438

∞ 16.18730 0.82322 19.64040 0.11886 2.24433 2.24434

Ra= 105

64 34.41439 0.85201 68.85101 0.06620 4.52017 4.55667
128 34.57930 0.85348 68.70022 0.06601 4.51153 4.52943
256 34.66913 0.85414 68.67088 0.06595 4.51399 4.52287
512 34.71688 0.85444 68.66425 0.06590 4.51683 4.52126
768 34.73329 0.85453 68.66309 0.06588 4.51801 4.52097
1024 34.74155 0.85458 68.66270 0.06587 4.51865 4.52087

∞ 34.76680 0.85471 68.66200 0.06583 4.52100 4.52100

Ra= 106

64 65.91483 0.84796 222.09400 0.03801 8.98376 9.05609
128 65.09141 0.84874 220.90094 0.03773 8.84490 8.88005
256 64.90330 0.84938 220.67544 0.03777 8.82039 8.83776
512 64.87526 0.84979 220.64249 0.03777 8.81870 8.82735
768 64.87624 0.84994 220.64178 0.03776 8.81966 8.82542
1024 64.87871 0.85002 220.64318 0.03776 8.82043 8.82475

∞ 64.89440 0.85027 220.65600 0.03773 8.82380 8.82380
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Tabela 5.9: Natural convection in a square cavity: Mach number influence on Nu
and umax.

Ma umax y vmax x Nu Nu1/2

Ra= 103

0.01 3.64945 0.81324 3.69744 0.17832 1.11778 1.11778
0.05 3.64952 0.81322 3.69769 0.17834 1.11776 1.11780
0.1 3.64971 0.81321 3.69842 0.17833 1.11768 1.11783
0.15 3.65005 0.81316 3.69967 0.17834 1.11755 1.11789

Ra= 104

0.01 16.1834 0.823230 19.6283 0.118860 2.24481 2.24481
0.05 16.1838 0.823231 19.6295 0.118862 2.44760 2.24476
0.1 16.1851 0.823223 19.6336 0.118862 2.44600 2.24460
0.15 16.1873 0.823223 19.6404 0.118856 2.24433 2.24434

Ra= 105

0.01 34.7405 0.854610 68.635 0.0658500 4.52160 4.52160
0.05 34.7436 0.854621 68.638 0.0658644 4.52153 4.52153
0.1 34.7523 0.854656 68.647 0.0658441 4.52123 4.52123
0.15 34.7668 0.854712 68.662 0.0658313 4.52100 4.52100

Ra= 106

0.01 64.8319 0.849900 220.566 0.0377500 8.82522 8.82522
0.05 64.8394 0.849944 220.576 0.0377445 8.82508 8.82509
0.1 64.8607 0.850091 220.606 0.0377313 8.82460 8.82460
0.15 64.8944 0.850268 220.656 0.0377349 8.82380 8.82380

5.3.4 Comparison with benchmark solutions and other nu-

merical methods

The asymptotic values computed with Ma= 0.01 are compared with literature values

by different authors and methods in Tabs. 5.11-5.12. Up to Ra= 106 we can

observe excellent agreement with precise values by Le Quéré [237–239] obtained

by the pseudo spectral method and also with Wang et al. [292] obtained by the

incompressible version of MRT LBM. For the Rayleigh numbers above 106 our results

are still the same or very close to the ones obtained by Le Queré and other authors.

In Tab. 5.13 are averaged values for high Ra numbers, obtained in the following way:

we performed 108 iterations with Ma= 0.05, the results in the table are averaged

values from the last 5 · 107 iterations. We obtained different values of velocity

components for Ra= 109 while their positions and Nusselt numbers are consistent

with other authors. For the case of Ra= 1010 the situation is the same, except

position of the vmax reported by Dixit [74] (but this could be typo in the original

text). The Nusselt numbers obtained from CTLBM simulation is very close to the

values given by Le Quéré and Dixit.

From the computation point of view, the number of iterations needed to achieve

steady state prescribed earlier is also of interest. The summary is given in the Tab.

5.10 and it can be seen from the values there that increasing resolution twice also
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Tabela 5.10: Natural convection in a square cavity: number of iterations needed to
reach steady state.

N Ra= 103 Ra= 104 Ra= 105 Ra= 106 Ra= 107

Ma= 0.01
64 663000 1406000 1961000 3570000 7193000
128 1296000 2780000 3810000 6965000 14265000
256 2528000 5410000 7325000 13388000 27631000
512 4910000 10513000 14000000 25557000 53103000
768 7238000 15483000 20408000 37222000 58791000
1024 9522000 13483000 26643000 48564000 76547000

Ma= 0.05 Ra= 108

64 141000 302000 602000 1116000 unstable
128 278000 595000 1189000 2198000 4663000
256 542000 1163000 2322000 4293000 9481000
512 1056000 2264000 4520000 8348000 17884000
768 1557000 3339000 6664000 12304000 25987000
1024 2051000 4396000 8773000 16193000 33887000

Ma= 0.1
64 73000 156000 310000 570000 -
128 143000 307000 612000 1130000 -
256 279000 599000 1196000 2211000 -
512 544000 1167000 2331000 4305000 -
768 803000 1722000 3438000 6350000 -
1024 1057000 2268000 4528000 8361000 -

Ma= 0.15
64 50000 106000 210000 387000 -
128 97000 208000 415000 766000 -
256 190000 407000 812000 1500000 -
512 369000 792000 1582000 2922000 -
768 544000 1169000 2334000 4310000 -
1024 unstable 1540000 3074000 5677000 -
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approximately doubles the iterations count. Situation is the same with increasing

Ra number, where increasing Ra by one order causes double increase in iterations.

The numerical code was implemented in NVIDIA CUDA framework [59] and ran

on different GPUs. The highest MLUPS (Million Lattice Updates Per Second) was

achieved on NVIDIA TESLA K40 and NVIDIA GEFORCE TITAN Z cards; 1056

MLUPS and 869 MLUPS respectively are the average performance of the GPUs.

5.3.5 Results for high Rayleigh numbers

Averaged vertical velocities and temperature profiles at different vertical positions

are compared in Fig. 5.2. From the figures one can clearly see formation of the thin

boundary layers, with steep gradients of velocity and temperature.

The local Nusselt number at hot wall and the wall shear stress distributions for

Ra= 108–1010 are presented in Fig. 5.3. The comparison of experimental data by

Tian et al. [282] and King [162] are presented in Fig. 5.4 together with data from Le

Quéré and Behnia [238]. We can observe good agreement for both Nusselt number

and shear stress values along hot wall.

In Fig. 5.5 dimensionless velocities and temperatures are reported in wall units

defined earlier, we can observe a clue of the universal profile up to y+ = 5 for the

vertical velocities and up to y+ = 11 for the temperature within the near-wall region.

Temperature stratification for different Ra numbers is plotted in Fig. 5.6 and

also reported in Tab. 5.14, where we give its numerical values defined as

ST =
∂T

∂y
(0.5, 0.5)

where T and y are dimensionless.
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Tabela 5.11: Natural convection in a square cavity: comparison with literature.

ref. umax y vmax x Nu1/2 Nu/Nu0

Ra= 103

CTLBM 3.64945 0.81324 3.69744 0.17832 1.11778 1.11778
Le Quéré [239] 3.6494 0.813 3.6974 0.178 1.1178 1.1178†

Wang [292] 3.6494 0.8132 3.6974 0.1783 1.1178 1.1178
Dixit [74] 3.6529 0.8125 3.682 0.17183 1.118 1.121
Kuznik [167] 3.636 0.809 3.686 0.174 - -
Mezrhab [204] 3.667 - 3.714 - - 1.112
Dubois [80] 3.649 0.814 3.697 0.176 - 1.117
Li [184] 3.664 0.81 3.699 0.18 - 1.207
D’Orazio [76] 3.6532 0.8125 3.7006 0.1797 - 1.117
VahlDavis1983 [65] 3.649 0.813 3.697 0.178 1.118 1.118

Ra= 104

CTLBM 16.1834 0.82323 19.6283 0.11886 2.24481 2.24481
Le Quéré [239] 16.183 0.823 19.629 0.119 2.245 2.245†

Wang [292] 16.1834 0.8232 19.6278 0.1189 2.2447 2.2447
Dixit [74] 16.163 0.828 19.569 0.125 2.256 2.286
Kuznik [167] 16.167 0.821 19.597 0.12 - -
Mezrhab [204] 16.202 - 19.644 - - 2.241
Dubois [80] 16.188 0.822 19.632 0.119 - 2.243
Li [184] 16.351 0.82 19.589 0.12 - 2.2528
D’Orazio [76] 16.237 0.8203 19.6803 0.1172 - 2.235
VahlDavis [65] 16.178 0.823 19.617 0.119 2.243 2.243

Ra= 105

CTLBM 34.7405 0.85461 68.635 0.06585 4.5216 4.52160
Le Quéré [239] 34.75 0.855 68.64 0.066 4.523 4.522†

Wang [292] 34.743 0.8546 68.6318 0.06588 4.5214 4.5213
Dixit [74] 35.521 0.8554 68.655 0.0664 4.519 4.5463
Kuznik [167] 34.962 0.854 68.578 0.067 - -
Mezrhab [204] 34.805 - 68.63 - - 4.519
Dubois [80] 34.748 0.856 68.652 0.065 - 4.517
Li [184] 35.703 0.855 68.536 0.065 - 4.535
D’Orazio [76] 34.8225 0.8529 68.7122 0.0637 - 4.504
VahlDavis [65] 34.73 0.855 68.59 0.066 4.519 4.519

Ra= 106

CTLBM 64.8319 0.8499 220.566 0.03775 8.8252 8.8252
Le Quéré [237] 64.83 0.85 220.6 0.038 8.825 8.825†

Wang [292] 64.8277 0.8498 220.5506 0.03779 8.8256 8.8247
Contrino [58] 64.8334 0.8499 220.5644 0.0378 8.8252 8.8252
Dixit [74] 64.186 0.8496 219.866 0.0371 8.5074 8.805
Kuznik [167] 64.133 0.86 220.537 0.038 - -
Mezrhab [204] 64.793 - 219.663 - - 8.817
Dubois [80] 64.842 0.849 220.669 0.037 - 8.806
D’Orazio [76] 64.8679 0.8529 221.1869 0.0392 - 8.767
VahlDavis1983 [65] 64.63 0.85 219.36 0.0379 8.799 8.8
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Tabela 5.12: Natural convection in a square cavity: comparison with literature cont.

ref. umax y vmax x Nu1/2 Nu/Nu0

Ra= 107

CTLBM 148.58 0.8794 699.324 0.0213 16.5231 16.5232
Le Quéré [237] 148.58 0.879 699.236 0.021 16.523 16.523†

Contrino [58] 148.5852 0.8793 699.3224 0.0213 16.5231 16.5231
Dixit [74] 164.236 0.851 701.922 0.02 16.79† -
Kuznik [167] 148.768 0.881 702.029 0.02 16.408 -
Mezrhab [204] 148.4 - 998.3 - - 16.51
Mayne [198] 145.2666 0.8845 703.2526 0.0215 16.3869† -
Wan [289] 143.56 0.922 714.48 0.022 - 16.656

Ra= 108

CTLBM 321.613 0.9279 2222.48 0.012 30.2236 30.2246
Le Quéré [237] 321.9 0.928 2222.0 0.012 30.225 30.225†

Contrino [58] 321.9063 0.9279 2222.3279 0.012 30.2251 30.2251
Dixit [74] 389.877 0.937 2241.374 0.0112 30.506† -
Kuznik [167] 321.457 0.94 2243.36 0.121 28.819† -
Mezrhab [204] 305.332 - 2169.562 - - 30.033
Mayne [198] 283.0689 0.9455 2223.4424 0.013 29.6256† -
Wan [289] 296.71 0.93 2259.08 0.012 - 31.486
Markatos [193] 514.3 0.941 1812 0.0135 - 32.045

Tabela 5.13: Natural convection in a square cavity: comparison with literature cont.

ref. umax y vmax x Nu1/2 Nu/Nu0

Ra= 109

CTLBM 491.56 0.911 7040.9422 0.0064 54.8217 54.7531
Le Quéré [238] - - - - 54.6 -
Dixit [74] 503.24 0.966 6820.07 0.0064 57.35† -
Barakos [16] - - - - - 60.1
Henkes1991 [130] - - - - - 59.5
Ra= 1010

CTLBM 1252 0.97 22290 0.0034 99.836 100.2
Le Quéré [238] - - - - 100 -
Dixit [74] 2323 0.940233 21463 0.49072 103.663† -
Markatos [193] 2323 0.9625 16890 0.0055 - 156.85
Barakos [16] - - - - - 134.6
Henkes1991 [130] - - - - - 133.4
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Figura 5.2: Averaged temperature (left) and vertical velocity (right) profiles at
different positions y = 0.1, 0.3, 0.5, 0.7, 0.9 and Ra=108, 109, 1010.
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Tabela 5.14: Averaged temperature stratification for Ra=108, 109, 1010.

Ra 108 109 1010

ST 0.9872 0.9996 1.0123
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Figura 5.3: Local Nusselt number along hot wall (top) and dimensionless wall shear
stress (bottom) profiles.

5.4 Conclusions

The CTLBM was applied to natural convection in differentially heated cavity. From

the presented results it is clear that CTLBM can deliver accurate solutions. The

performed grid convergence tests showed that the method is of second order. It tur-

ned out that CTLBM gives results which agree with benchmark solutions computed

by other authors. For the high Ra regime, the Nusselt number and wall shear stress

distributions along the hot wall are in good agreement with experimental and DNS

data.
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red to experimental data of Tian et al. [282] and King [162] (top & bottom) and wall
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Caṕıtulo 6

Cascaded Lattice Boltzmann

Method Application in Forced and

Natural Convection From Hot

Tube Banks

Robert Straka, Keerti Vardhan Sharma and Frederico Wanderley Tavares

6.1 Abstract

Lattice Boltzmann Method is applied to forced and natural convection heat transfer

from the tube banks. Hot tubes are cooled by flowing or passive air. Two Reynolds

numbers (Re=80 and Re=1600) and two Rayleigh numbers (Ra=103 and Ra=105)

of the corresponding heat transfer regime are studied. The method itself is based

on the recently derived cascaded collision operator not only for the fluid flow but

also for the temperature field. Using this method and moderate space resolution of

the lattice we were able to obtain stable and bounded simulations for the non-trivial

geometry.

This work has been Published in Journal of Physics Conference Series as an

original research paper [269]. The full text of the paper can be downloaded from

http://iopscience.iop.org/article/10.1088/1742-6596/1101/1/012040/meta.
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Figura 6.1: Geometry of the channel with hot tube banks for forced convection (left)
and adiabatic enclosure with hot tube banks for natural convection (right)

6.2 Forced Convection

Figura 6.2: Instant velocity magnitude for forced cooling of hot tube banks in the
channel at Re=80, Pr=0.71 at lattice time t+ = 25.104 (left), Instant temperature
for forced cooling of hot tube banks in the channel at Re=80, Pr=0.71 at lattice
time t+ = 25.104 (left).
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Figura 6.3: Instant velocity magnitude for forced cooling of hot tube banks in the
channel at Re=1600, Pr=0.71 at lattice time t+ = 25.104 (left), Instant temperature
for forced cooling of hot tube banks in the channel at Re=1600, Pr=0.71 at lattice
time t+ = 25.104 (left).

6.3 Natural Convection

Figura 6.4: Instant velocity magnitude for natural convection from hot tube banks
in the channel at Ra=103, Pr=0.71 at lattice time t+ = 25.104 (left), Instant tem-
perature for natural convection from hot tube banks in the channel at Ra=103,
Pr=0.71 at lattice time t+ = 25.104 (left).
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Figura 6.5: Instant velocity magnitude for natural convection from hot tube banks
in the channel at Ra=105, Pr=0.71 at lattice time t+ = 25.104 (left), Instant tem-
perature for natural convection from hot tube banks in the channel at Ra=105,
Pr=0.71 at lattice time t+ = 25.104 (left).
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Caṕıtulo 7

Application of Lattice Boltzmann

Method in Pore Scale Modeling

7.1 Motivation

After successfully achieving the main goal of the PhD (development and imple-

mentations of the Double Population Cascaded LBM scheme), we intended to start

working in the direction of its applications in porous media fluid flow. Therefore,

we selected a real world porous rocks with industrial importance to simulate flux

through porous media. We developed a systematic study in which we first studied

the imaging techniques using micro-CT of porous rocks for reliable simulations of

fluid flow. Motivated by the idea of manipulating microscopic properties that could

be captured by LBM, we decided to alter the microstructural properties of porous

rocks using lasers and performed pore scale modeling in the laser-treated rocks sam-

ples using cascaded lattice Boltzmann method. It was for the first time that lasers

were used to induce microscopic changes in porous rocks. The obtained results are

promising and clearly show that lasers can be used to alter microstructural and mi-

croscopic transport behavior of micro-nanodevices used in microfluidics, electronics,

etc. Lattice Boltzmann simulations suggested that pulsed laser beams can open new

pores and enhace pore connectivity enhancing the permeability, i.e. making it easier

for the fluid to flow through the improved pore-network.
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7.2 Laser-Induced Alteration of Microstructural

and Microscopic Transport Properties in Po-

rous Materials: Experiment, Modeling and

Analysis

7.2.1 Abstract

Porous materials are of great importance in various industrial applications. Mi-

croscopic modifications in the pore structures of these materials can change their

functional behavior. We treat Indiana limestone by lasers to modify its pore structu-

res microscopically. Microcomputed tomography (micro-CT) of the treated samples

reveal that pulsed Nd:YAG laser with energy 330 mJ increases open porosity of

limestone by 15% and almost doubles the total porosity. This laser increases the

limestone pore connectivity by 460%. High power CO2 laser increases the open

porosity by 20% but it reduces the pore connectivity of limestone. Our findings

show that pulsed laser beams induce high increase in porosity and connectivity. 3D

pore scale modeling using Cascaded lattice Boltzmann method (CLBM) on a D3Q27

model shows that regions treated by pulsed Nd:YAG lasers exhibit enhanced fluid

transport efficiency compared to untreated regions. The obtained results success-

fully demonstrate that lasers can be used to induce a well controlled heat transfer

in porous materials directly enhancing their morphometric characteristics and mi-

croscopic fluid transport behavior.

The material presented in this work has been published in Materials & Design

as an original research paper [260].

7.2.2 Introduction

Porous materials are complex arrangement of grains (matrix) with voids (pores).

The behavior of fluid flow in the complex structures depends strongly on the pore

connectivity and porosity. Fluid transport efficiency of these materials is directly re-

lated to the degree of complexity of the pore structures. Tuning of macroscopic fluid

transport efficiency can be achieved by modifying the rock pore structure on a large

scale. This has become a common practice to stimulate, control and enhance the

fluid flow efficiency in many large scale applications [14]. Rock drilling, acidification,

formation fracturing are some of the methods used to modify the pore structure of

the porous rocks for various field scale applications [109, 166]. The drawback with

such techniques is that they are harmful to the environment and ecosystems [57].

The techniques used for field scale applications are not appropriate to induce changes
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in the morphometric properties of micro-sizes porous materials supporting micros-

cale fluid flows, i.e. fluid flows through micro devices such as filters, catalysts,

microfluidics and biological flows. This is supported by the fact that micro devices

contain very small porous volume which require microscopic changes in order to

increase microscopic transport efficiency. In microfluidic devices, where polymers

are used due to their porous structure [300, 301], the performance of such micro

devices can be tuned by modifying polymer’s pore structure. Therefore, to cause

microscopic modifications in pore structures we need to look for techniques which

can manipulate the pore geometry microscopically without destroying, damaging

and changing the functional prospects of the structures.

In this article, we propose to manipulate the pore structures microscopically with

lasers. As far as we know, this is the first time that lasers have been used to modify

rock’s surface pore structures microscopically. Very interestingly, laser is the most

environment friendly and well behaved heat source with well controlled intensity and

power. The core motivation of this paper is to study microscale laser beam-rock in-

teraction (in terms of morphometric properties and permeability) for lasers with

different wavelengths and energy. We perform quantitative morphometric analysis

using micro-CT and pore scale fluid flow simulations using CLBM to study the mi-

croscopic impact of lasers on rocks. In a separate study, the authors have studied

the alteration of wettability in limestone using lasers [261].

Pore scale modeling is the most reliable way to characterize the microscopic fluid

flow behavior in porous media [255, 313]. Thanks to the micro-CT imaging of the

porous rock, exact and accurate pore structures’ 3D images can be generated by the

X-Ray tomography. Lattice Boltzmann method (LBM) is the favourite choice to

simulate fluid flow in porous media at the pore scale. This claim is supported by the

fact that complex boundary conditions associated with porous materials are natu-

rally incorporated in the LBM using bounce-back boundary condition formulation

[117, 227]. The overall structure of this paper is as follows: A homogeneous Indi-

ana limestone core sample was cut into small pieces. Three samples’s surfaces were

treated by sweeps from three lasers of different wavelengths and power. Some area

was left untreated on each of the three samples. Afterwards, micro-CT scans were

performed to characterize the local pore structure properties of each sample. 3D

tomographic images were generated for all samples. Next, many Volume of Interest

(VOIs) were selected from the treated and untreated regions of all samples to study

the microscopic modifications in morphometric properties of the rock. Finally, pore

scale modeling of fluid flow was performed using LBM in the selected VOIs from

untreated and treated regions.

This study is first of its kind which investigates the effect of laser induced tempera-

ture on porosity and microscopic fluid flow efficiency in porous materials. The results
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obtained from this study possess great implications for applications which involve

microscopic fluid flow in complex geometry, e.g. biological flows, water treatment

processes, catalysis, etc. The impact of this research can be extended to macroscale

applications. On macroscale, the proposed technique may be used to open clogged

pores, e.g reducing Skin effect and enhance the fluid flow in the vicinity of the well-

bore of oil wells. Depending on the thermal conductivity of the porous material,

microfractures can be created by well controlled laser power without weakening the

strength of wellbore formation. It should be noted that present study focuses on

inducing microscopic changes instead of using lasers for rock drilling.

7.2.3 Materials and methods

Materials

The present study employed an Indiana Limestone core plug of 37 mm diameter

with porosity 13.33% and permeability 244 mD. The chemical composition of In-

diana limestone has been provided in Tab. 7.1. It is a well known real world

porous material with a huge scope in industrial applications. Indiana limestone are

inexpensive, readily available, homogeneous and outcrops of a large number of oil

producing fields. Moreover, several carbonate rocks are used by the petroleum in-

dustry as standard porous media for laboratory experiments. The another benefit

of the present study is that the findings of this study can be compared with data

derived from experiments conducted using real oil reservoir cores.

Tabela 7.1: Chemical composition of Indiana Limestone [26].

CaCO3 MgCO3 Al2O3 SiO2

97.3% 0.4% 0.5% 1.7%

Microcomputed tomography experiment

Microcomputed tomography imaging of the limestone samples have been conducted

for an intensive morphometric analysis. The system used in this work is X-Ray

micro-CT Skyscan model 1173 (Bruker, Belgium). The equipment has X-ray source

operating in a range of 40 to 130 kV and its detection system consists of a flat-panel

sensor operating with a maximum matrix of 2240x2240. For acquisition process of

sample, the 18 µm pixel size has been used, voltage was set at 130 kV with a current

of 61 µA, and an additional copper filter of 0.5 mm thickness was used. To perform

an analysis on the structure of the pores connected before and after laser treatment,

digital rock analysis of the regions of interest were performed with software CT

analyzer v1.15.4. It allows the analysis of different parameters in micro-CT dataset.

143



A size distribution is calculated from the pore network. For morphometric analysis,

we need binarized image in which each pixel needs to become either black or white,

this is called segmentation.

We chose to use the global segmentation for a range from 0 to 255. Global seg-

mentation is the simplest method to separate the image into two categories (back-

ground and object). This separation is carried out by scanning the image point by

point, and identifying them as points of the object or of the background according

to a threshold. The Fig. 7.9 has been provided to demonstrate the binarization

process and the threshold histogram for value 60 applied in this study for Indiana

limestone. A closed pore in a 3D analysis is the empty space which is totally sur-

rounded on all sides by solid matrix. An open pore is defined as any space located

between solid objects, which has any 3D connection with the space outside. On the

other hand, total porosity is the volume of all open and closed pores, as a percent of

the total volume. Euler analysis provides a measure of connectivity density, indica-

ting the number of redundant connections between rock-matrix structures per unit

volume. Rock-matrix connectivity can contribute significantly to structure strength

[223]. The connectivity and connectivity density is calculated by CTanalyzer soft-

ware using Euler number correlation. With 3D image analysis by micro-CT a true

3D thickness of minerals can be measured which is model-independent. Local thick-

ness for a point in solid is defined as the diameter of the largest sphere which fulfills

two conditions: (1) the sphere encloses the point (but the point is not necessarily the

center of the sphere); (2) the sphere is entirely bounded within the solid surfaces.

The illustration of rock-matrix thickness and separation has been shown in Fig. 7.1.

3D distances calculated by adjusting spheres within the structure facilitate evalu-

ation of thickness and the average separation. The mean diameter of the spheres

represent the thickness of the object, and the standard deviation of the diameter

represents the variability in the thickness of the object. The method for these cal-

culations begins with “skeletonization”identifying the medial axes of all structures.

Then, the “ball-adjusted”local thickness measurement is made for all voxels located

along this axis [240]. Any region of a binarized object can be characterized by the

thickness distribution, which is an important tool in the characterization of complex

structures.
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Figura 7.1: Schematic representation of algorithm used for direct 3D method for
calculating rock-matrix thickness (figure A) and separation (figure B). The distances
are computed by fitting spheres inside the structure or inside the background. TbTh
represent the trabecular (rock-matrix) thickness and TbSp trabecular (rock-matrix)
separation [25].

Homogeneity analysis of Indiana limestone core plug

We carried out microcomputed tomography imaging of the whole core plug to study

its homogeneity beforehand. The core plug is 60 mm high with 37 mm diameter.

To ascertain homogeneity of the core plug we have adopted two strategies. One is

quantitative analysis of the tomographic images of whole sample. In this method,

we check for pore distribution of each tomographic slice. Grayscale pore distribution

of slices from top, middle and bottom region of the core sample are shown in Fig.

7.2(d). Second approach is quantitatively more intensive.
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Figura 7.2: (a): Average pore diameter of the slices of original sample obtained by
micro-CT (b): Porosity comparison of all VOIs chosen from various locations in the
original core plug. (c): Degree of anisotropy (DA) comparison of all 10 VOIs chosen
from Indiana limestone core plug (d): Locations of the VOIs selected from the core
sample, and 3D representation of pore distribution network of one VOI of 5 mm
diameter.

146



Figura 7.3: Separation distribution of untreated samples A, B and C, respectively,
after cutting the core plug. The x-axis represents the mid-range in mm and y-axis
represents the structure separation distribution as percent volume. It is evident that
rock-matrix separation of larger portion of the total volume have smaller range and
are approximately the same for samples A, B and C.

Detailed tomographic analysis was carried out for 10 VOIs distributed all over

the core plug, see Fig. 7.2(d). Average pore diameter, total porosity and degree

of anisotropy were determined for all marked VOIs by using CT analyzer. The

CTanalyzer software computes the degree of anisotropy using the mean intersection

length (MIL). It is calculated by laying a line through the 3D volume containing

binarized objects and dividing the length of that line by the number of times it

intercepts the solid phase. Test lines should cross the center of the binarized spheres

in the image and the length distribution should cover all randomly distributed 3D

angles. Any asymmetry in the MILs in relation to the 3D angle will represent the

anisotropy of the sample. The results are shown in Fig. 7.2 (a), (b) and (c). The

results (a) show that all slices demonstrated approximately similar average pore

diameter signaling a trend towards homogeneity. Advancing further for porosity

evaluation, it is evident from plot (b) that all VOIs have approximately the same

porosity value. The third plot (c) represents the degree of anisotropy (DA) of the
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core plug. A rock is considered to be isotropic for DA < 1 [249]. All VOIs show DA

values between 0.1 − 0.2, which still is very small and can be approximated to 0.

Therefore, the results obtained by quantitative tomographic analysis ascertain the

homogeneity and isotropicity of the core plug. After cutting the core plug into few

pieces, we chose three samples; A, B, and C. The rock-matrix separation distribution

of each untreated sample (after cutting) have been shown in Fig. 7.3.

Figura 7.4: Pore size distribution of Indiana limestone core plug.

The Fig. 7.4 shows the pore size distribution of the original Indiana limestone

core plug. Which is in great agreement with the average pore diameter values

calculated slice per slice in Fig. 7.2(a).

Laser treatment of Indiana limestone surfaces

The homogeneity analysis presented in Section 2.3 shows that Indiana limestone

core plug is a homogeneous and isotropic porous rock. This analysis helped us in

making an important decision regarding laser treatments which is described later in

the text. We cut the core plug into some pieces. Then the samples were mounted

on a mobile sample holder platform and were exposed to laser beams one by one.

The rock holder platform moved horizontally from one end to another and after

one horizontal sweep the laser was turned off. The platform height was changed

(upwards or downwards) by the size of the beam spot diameter. Afterwards, the next

horizontal sweep was made in the direction opposite of the first scan. We followed

this process until the desired area was treated. Since in the present study we are

interested in microscopic modifications only, thanks to the homogeneity of the rock,
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we decided to treat some area of the samples with laser, deliberately leaving some

area untreated for comparison purposes. Laser specifications and other important

parameters are provided in Tab. 7.2.

Tabela 7.2: Laser treatment specifications for Sample A, B and C.

Specifications Sample A Sample B Sample C

Laser Type Nd:YAG Nd:YAG CO2

Wavelength 266 nm 532 nm 10.6 µm

Radiation Type Pulsed Pulsed Continuous

Pulse Duration 43 ns 43 ns NA

Power Used 27 mJ/Pulse 330 mJ/Pulse 4 W

Beam Spot Diameter 12 mm 12 mm 6 mm

Repetition Rate 10 Hz 10 Hz NA

Fluence (Deposited Energy) 0.023 J/cm2 0.291 J/cm2 14.154 J/cm2

Penetration Depth 0.4 mm 0.75 mm 0.7 mm, 0.8 5 mm (hole)

Exposure Period 2 s 2 s 2 s, 3-4 s (hole)

Figura 7.5: Image of untreated and laser treated limestone samples. The area within
dotted boundaries represent laser treated region. The diameter of each sample is 37
mm.

Volume of Interest (VOI) preparation

To perceive microscopic changes in morphometric quantities and fluid transport pro-

perties in top surface of samples it is unnecessary to analyse the whole volume of the
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samples. Quantitative analysis of tomographic data for large samples is extremely

memory demanding and require very sophisticated computational resources. VOIs

and representative element volumes help in reducing the computational cost of the

morphometric analysis and pore scale numerical schemes [215, 255, 313]. Various

VOIs were selected from each of the untreated and laser treated region co-existing on

samples A, B and C, respectively. In order to quantify and perceive the differences

caused by laser treatment, 3D tomographic images will be used for morphometric

and fluid transport efficiency analysis. Therefore, for best visualization of micros-

copic changes in surfaces we selected top 50 slices of samples’ tomographic images

forming these VOIs. We assured the fact that the physical thickness of 50 slices

is larger than the laser-rock interaction depth (see Tab. 7.2) for all three cases.

In total, 8 VOIs were selected from untreated and treated regions (see Fig. 7.6),

respectively, from all three samples.
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Figura 7.6: Locations of VOIs in laser treated and untreated region for samples A,
B and C. Each VOI is circular, 1 mm thick and has diameter of 5 mm.

7.2.4 Cascaded Lattice Boltzmann Method for Fluid Flow

Fluid are treated as fictitious particles in lattice Boltzmann simulations (LBM).

These particle move on a spatial arrangement called lattice model. The particles’
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evolution in the space is defined by velocity distribution function f . In this study

to solve fluid flow through porous media we have used a 3D LBM with cascaded

collision operator [95, 96, 259]. The D3Q27 model for the fluid flow which stands for

3 dimensions and 27 characteristic velocities is depicted in Fig. 7.7.

Figura 7.7: Characteristic velocities for the D3Q27 lattice model used in the 3D
simulations.

Mass and momentum are conserved quantities and can be computed from dis-

tribution functions through the two first moments as

ρ =
∑
i

fi, ρ~u =
∑
i

fi~ci, (7.1)

where ρ is the macroscopic density, ~ci is the i-th lattice characteristic velocity and

~u is the macroscopic velocity. The evolution equation for the distribution function

is called Lattice Boltzmann Equation, which written in dimensionless form reads

fi(~x+ ~ci, t+ 1) = f ci = fi(~x, t) + K · (~f eq − ~f), (7.2)

where K is the general collision matrix, super-script c denotes so called post-

collisional state, f eq is the equilibrium distribution function vector. The right hand

side of the equation is called “collision” and the left hand side describes the update

rule “called streaming”. The matrix K determines the collision model used. The
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equilibrium distribution function f eqi is function of macroscopic conserved quantities

ρ and ~u. In the cascaded LBM, the collision is performed in the space of central

moments, i.e. raw moments shifted by the macroscopic velocity ~u = (u, v, w). The

raw moments mαβγ and central moments καβγ of order α + β + γ are defined by

mαβγ =
∑
i

cαi,xc
β
i,yc

γ
izfi,

καβγ =
∑
i

(ci,x − u)α(ci,y − v)β(ci,z − w)γfi,
(7.3)

By definition we have following identities

m000 = ρ, m100 = ρu, m010 = ρv, m001 = ρw

κ000 = ρ, κ100 = κ010 = κ001 = 0
(7.4)

i.e. first raw moments are conserved quantities (they are also collisional invariants

i.e., they do not change in collisions).

In every iteration of the LBM, we have to compute macroscopic variables, central

moments, perform collision, convert central moments back to distribution functions

and perform streaming step together with application of the boundary conditions.

The cascaded collision scheme in central moment space reads [96]

κc200 − κc020 =

(
1− 1

τ1

)(
κ200 − κ020

)
− 3ρ

(
1− 1

2τ1

)(
u2Dxu− v2Dyv

)
(7.5)

κc200 − κc002 =

(
1− 1

τ1

)(
κ200 − κ002

)
− 3ρ

(
1− 1

2τ1

)(
u2Dxu− w2Dzw

)
(7.6)

κc200 + κc002 + κc002 =
ρ

τ2

+

(
1− 1

τ2

)(
κ200 + κ020 + κ002

)
−3ρ

(
1− 1

2τ2

)(
u2Dxu+ v2Dyv + w2Dzw

) (7.7)

κc120 + κc102 =

(
1− 1

τ3

)(
κ120 + κ102

)
(7.8)

κc120 − κc102 =

(
1− 1

τ4

)(
κ120 − κ102

)
(7.9)

κc201 =

(
1− 1

τ5

)
κ111 (7.10)

κc220 − 2κc202 + κc022 =

(
1− 1

τ6

)(
κ220 − 2κ202 + κ022

)
(7.11)
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κc220 + κc202 − 2κc022 =

(
1− 1

τ6

)(
κ220 + κ202 − 2κ022

)
(7.12)

κc220 + κc202 + κc022 =

(
1− 1

τ7

)(
κ220 + κ202 + κ022

)
+

ρ

3τ7

(7.13)

κc211 =

(
1− 1

τ8

)
κ211 (7.14)

κc221 =

(
1− 1

τ9

)
κ221 (7.15)

κc222 =

(
1− 1

τ10

)
κ222 +

ρ

27τ10

(7.16)

The moments not shown here can be obtained from the above formulas by permuting

the indices. The spatial derivatives Dxu,Dyv,Dzw included in the collisions decrease

numerical artifacts originating from the finiteness of the velocity set and can be

obtained locally as [96]

Dxu = − 1

2ρτ1

(
2κ200 − κ020 − κ002

)
− 1

2ρτ2

(
κ200 + κ020 + κ002 − ρ

)
(7.17)

Dyv = Dxu+
3

2ρτ1

(
κ200 − κ020

)
(7.18)

Dzw = Dxu+
3

2ρτ1

(
κ200 − κ002

)
(7.19)

The parameters present in the equations are relaxation times τ1, . . . , τ10, only

the τ1 is related to the only physical parameter describing the simulated fluid i.e.,

the kinematic viscosity, the relation between τ1 and kinematic viscosity in lattice

units is following

ν =
1

3

(
τ1 −

1

2

)
. (7.20)

Other τ ’s has no influence on the leading order of the solution, but has some influence

on the accuracy and stability of the method [96] and we set them to unity in our

numerical simulations. The conserved quantities are collisional invariants and thus

have relaxation times equal to zero.

7.2.5 LBM boundary conditions for porous media

Bounce back boundary conditions have been used at the solid surfaces of the porous

media to fulfill no-slip condition. Bounce back can be realized by following collision
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step at boundary nodes

fī(~xb, t+ 1) = f ci (~xb, t), (7.21)

where bar over the index i means opposite direction i.e. ~cī = −~ci [147]. From

microscopic point of view this means that when a fluid particle coming from a

lattice node approaches a solid node of the wall, it is reflected on a halfway between

the lattice sites back to the same lattice node it originally came from.

For the inlet and outlet, pressure boundary conditions (anti-bounce back appro-

ach [99, 100]) were used, where pressure is related to the density by lattice equation

of state

ρ = 3p (7.22)

and the conditions for the unknown distributions at the boundary sites read

fī(~xb, t+ 1) = −f ci (~xb, t) + 2ωiρin/out

[
1 +

9
(
~ci · ~uin/out

)2

2
−

3~u2
in/out

2

]
, (7.23)

where ~xb is the position vector of the boundary lattice site, ωi are weights for the

links [96], ρin/out are densities at inlet and outlet, readily computed from the known

pressure difference as

ρin = 1 +
3∆p

2
, ρout = 1− 3∆p

2
(7.24)

and ~uin/out are lattice velocities at inlet and outled, computed by extrapolation [145]

~uin/out = ~u(~xb) +
1

2
[~u(~xb)− ~u(~xb+1)] , (7.25)

where ~xb+1 is the interior site next to the boundary site in the inward normal direc-

tion.

For more details on boundary conditions and their implementation we point the

reader to the excellent monograph [165].

Values used in LBM simulations are as follows; the kinematic viscosity of water

ν = 10−6m2/s, pressure difference ∆p = 120kPa, dimensions of the REV sample

were D = 5mm (diameter) and H = 1mm (height) with spatial step ∆x = 2·10−6m.

It should be noted that we perform pore scale fluid flow by solving Navier-Stokes

equations to check for non-zero velocity field in the connected pores. In order to

simulate pore scale fluid flow in our samples we have used a 3D LBM with cascaded

collision operator [96, 259].
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7.3 Results and discussions

7.3.1 Laser beam-rock interaction

Laser can be considered as a heat source with controlled power and intensities.

When a laser beam is incident on the rock surface it induces high temperature zone

in the rock, especially in the exposed region depending on the thermal conductivity

of the rock. Heat affected zone in a rock with lower thermal conductivity such

as limestone is always limited to the laser exposure area [92, 104, 265]. It has

been shown that rock with higher thermal conductivity such as berea sandstone has

larger heat affected zone, and this wide range of temperature distribution weakens

the rock which is not desirable either for microscale applications or in the wellbore

region [104]. Due to the low thermal conductivity of limestone rock, laser treatment

induces high temperature in a very limited zone modifying the pore structures by

melting solid grains, vaporizing cementation, without weakening the rock so much.

This is evident in Fig. 7.5, for Nd:YAG laser (266 nm) which has very low fluence,

the treated surface does not show much visible changes. When we treat the surface

with another laser (Nd:YAG 532 nm) with high fluence, the solid grains of limestone

are heated inducing a notable change in the color of the surface. But for the CO2

laser, due to its very high continuous fluence, the laser beam caused melting and

then vaporization of the rock grains creating a small hole. In Fig. 7.5, for sample C,

one hole with white lime powder (CaCO) can be noticed in the right bottom corner

of the closed dotted region. This white lime powder hole was created when CO2

laser beam was incident at this point for longer time period (3 s) inducing chemical

changes and rock vaporization. Limestones do have very low amounts of clay and

quartz present. Laser induced temperature can cause quartz crystals to expand and

clay to dehydrate. This expansion of quartz crystals can induce microfractures, and

water released during dehydration increases the volume and pressure inside pores

prompting those pores to break [104, 265]. Therefore, the porosity and permeability

in limestones can be changed by heating, vaporization and inducing micro-fractures

in limestone rocks.

7.3.2 Surface pore network properties of laser treated li-

mestone

The 3D reconstruction of samples’ surfaces obtained by micro-CT are shown in Fig.

7.8. Area within the dotted boundary represents laser treated region. The impact

of lasers on the surfaces are clearly visible. Sample B, which was treated by high

fluence Nd:YAG laser, shows more pores present on the surface. For sample C, holes

can be seen in the region treated by CO2 laser. This is because CO2 laser (due to its
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very high fluence) induced very high temperature which created holes and pores. To

establish clear microscopic impact of lasers on morphometric properties of samples

A, B and C, we chose a threshold value of 60 for segmentation. Considering the pore

size distribution of Indiana limestone and our tomographic setup specifications, e.g.

pixel size, etc., this value of threshold is appropriate to capture smaller pores, which

is our principal objective in the present study. In this way, new smaller or micro-

pores induced by lasers would be identified efficiently. The histogram and pore

distribution for a fixed threshold value have been shown in Fig. 7.9. It is clearly

evident that pore distribution for all VOI from untreated regions of samples A, B

and C are approximately the same which proves the homogeneity of our sample.

VOIs chosen from laser treated regions of sample A, B, and C show enhanced pore

distribution. And it is also evident that laser with higher fluence creates more new

pores compare to a laser with lower fluence. The impact of laser treatments on rock-

matrix thickness and separation is shown in Fig. 7.10. In case of sample A, low

fluence Nd:YAG laser caused minute changes in thickness distribution of the rock

but the rock matrix separation was increased slightly enhancing the porosity. For

sample B, treated by high fluence Nd:YAG laser, thickness distribution was shifted

towards larger range. The volume of rock-matrix with small separation were reduced

and separation with a wider range were induced increasing the porosity significantly.
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Figura 7.8: 3D reconstruction of surfaces (grayscale, top view) of samples by to-
mography. Original sample and samples treated by Nd:YAG laser (A) 266 nm,
Nd:YAG laser 532 nm (B), CO2 laser (C), with laser treated area enclosed by dot-
ted boundary. It is evident that low fluence laser (sample A) does not create visible
changes compared to original. High fluence pulsed laser (sample B) shows more
pores compared to sample A and original sample. On the other hand, for CO2 laser
(sample C), hole and big pores can be seen.

That also suggests that this laser increased the pore diameter along with cre-

ation of new wide pores. The continuous wave CO2 laser increased the thickness

distribution and separation significantly for larger range. This is evident in Fig. 7.5

where holes can be noticed. The results for sample C show that the rock matrix

became thicker. The hole with lime powder created by CO2 laser contribute to the

high separation distribution peak (after treatment) for sample C.
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Figura 7.9: Binarized pore distribution network (2D cuts from 3D volume) of VOIs
from samples A, B and C, and respective histograms (obtained from 3D volume) for
the threshold value of 60.
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Figura 7.10: Rock-matrix thickness and separation distribution for original and
laser treated region of sample A, B and C. Red color represents rock matrix data
for untreated (original) region and gray color represents laser treated region.

The quantitative morphometric analysis for samples A, B and C is shown in

Fig. 7.11. The results represent the average of morphometric quantities of all VOI’s

chosen from the laser treated and untreated region, respectively. We can observe

in the results that the total porosity was increased after laser treatment for all ca-

ses. The trends show that lasers with higher fluence generate more pores. Nd:YAG

laser with 266 nm (sample A) did not induce temperature high enough to cause
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significant heating of the rock grains and cementation. It only caused some heating

of rock which resulted in the slight increase in the porosity possibly due to some

microfractures caused by thermal shocks. High fluence Nd:YAG laser operating at

532 nm (sample B) induced temperature high enough to cause thermal shocks and

ablation of the rock grains and cementation. It increased the porosity quite signi-

ficantly. The pulsed irradiation of high fluence Nd:YAG laser can deliver very high

energy instantly to the rock grains facilitating ablation of the grains and cementa-

tion. For CO2 laser, the temperature induced by very high fluence caused a large

scale evaporation of rock grains and cementation. Continuous irradiation from this

laser gradually increased the temperature resulting in the melting of the cementation

and evaporation. This higher degree of evaporation is the reason behind creation of

holes contributing significantly in the porosity of sample C. Connectivity density is a

3-D connectivity index, it is a measure of the degree to which a structure is multiply

connected. The Euler number is a characteristic of a three-dimensional structure

that is topologically invariant. It is calculated based on the maximum number of

branches that can be cut without separating the structure from its surroundings in

3D. Sample A, which was treated by low fluence Nd:YAG laser, showed a minute

increase in the connectivity.
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Figura 7.11: Morphological modifications caused by the laser in the total pore-
network structures and their comparisons with the original (untreated) ones. A, B
and C represent the samples treated by laser A, B and C, respectively.

Treatment from high fluence Nd:YAG laser (Sample B) induced a phenomenal

increase in the pore connectivity and connectivity density. Surprisingly, continuous

wave CO2 laser which has very high fluence reduced the pore connectivity and

connectivity density quite significantly. CO2 laser increased porosity remarkably but

a significant decrease in connectivity suggests that melting caused by laser increased

the rock-matrix thickness reducing the connectivity (excluding the hole region). But

on the contrary, pulsed Nd:YAG lasers caused ablation, opening of more pores,

microfractures and no holes. It is clearly evident from the results that a moderately

powered Nd:YAG laser (sample B) is more appropriate to modify the microscopic

surface properties. 3D pore distribution network of untreated and treated VOIs

have been provided in Fig. 7.12. The pink contours (bubble like shapes) are pores.
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Figura 7.12: Tomographic pore network of VOIs chosen from samples A, B, and C
(see Fig. 7.6 for VOI locations). All VOIs have been produced with an identical
binarization process with a threshold of 60, as described in earlier section. Each
VOI has a diameter of 5 mm and is 1 mm thick. Laser treated VOIs clearly show
enhanced porosity.

7.3.3 Pore scale water flow simulations by CLBM

Pore scale fluid flow simulations were carried out to visualize the improvements

in the microscopic fluid transport efficiency induced by lasers. Non-zero flow field

was calculated using cascaded lattice Boltzmann method. 3D plots of flow field

in untreated and laser treated regions have been shown in Fig. 7.13. VOIs were

selected from untreated and laser treated region of each sample, see Fig. 7.6. We

have shown the results for few VOIs in Fig. 7.13 which represent the common trend

followed by majority of the VOIs. VOIs representing untreated regions of all samples

demonstrated zero velocity field (no flow) for the pixel resolution (18 µm) and
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threshold (60) used in the X-ray tomographic setup. Laser treated region of sample A

(treated by a low fluence Nd:YAG 266 nm laser) showed few connected pore regions

supporting non-zero velocity. The non-zero velocity has been represented by blue

(online/ color print) or in black (black and white print). The results indicate that the

low fluence laser created some new and wider pores with some degree of connectivity.

Laser treated region of sample B, which was treated by high fluence Nd:YAG 532

nm laser, demonstrated big clusters of connected and widened pores supporting

the fluid flow. This laser treatment significantly enhanced the microscopic fluid

transport efficiency. The widened pores may consist of new connected pores which

can support the fluid flow and old pores with increased diameter due to temperature

effect. On the other hand, laser treated region of sample C, treated by continuous

wave CO2 laser, showed zero velocity field. That suggets that CO2 laser did improve

the porosity but it did not stimulate the occurence of pores wide enough to support

the fluid flow.
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Figura 7.13: Pore scale fluid flow simulations to determine pore regions supporting
non-zero velocity field in untreated and laser treated region of samples A, B and C
using CLBM.

This is why no blue spot is present for laser treated sample C. CO2 laser tre-

ated region also showed very poor pore connectivity. It can be understood that

an increase in porosity does not always mean an increase in the permeability. To

increase permeability along with porosity one have to (1) induce more new pores,

(2) create micro-fractures connecting those new and old pores and (3) increase the

pore diameter of the old and new pores.

7.4 Conclusions

We successfully demonstrated that lasers can be used to induce microscopic changes

in pore structures of porous materials directly influencing their microscopic fluid

transport efficiency. To assure the importance of the present study we chose a real

world porous material (Indiana limestone) which has a wide range of industrial ap-
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plications. We showed that temperature induced by the lasers changed the porosity

by instant thermal shocks and ablation in the cases of pulsed Nd:YAG lasers, and

by melting and evaporation in the case of continuous wave CO2 laser. Our fin-

dings show that the higher the fluence, the higher the induced porosity. Another

important finding is that an increase in porosity does not always mean an increase

in pore connectivity or permeability. Thermal shocks and ablation by short pulses

proves to be the most efficient mechanism in increasing the porosity, pore size and

pore connectivity. On the contrary, continuous heating of Indiana limestone by very

high fluence CO2 laser reduces the pore connectivity. Therefore, we can conclude

that degree of microscopic changes in morphometry and fluid transport efficiency

of porous material depend on thermal properties such as thermal conductivity and

diffusivity, fluence of the laser and most importantly operating mode of laser (pulsed

or continuous irradiation). We recommend the use of ultra-short pulse lasers of high

fluence to achieve large penetration depth in near wellbore regions to increase the

fluid transport efficiency microscopically.
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Caṕıtulo 8

General Conclusions and

Suggestions for Future Research

An efficient and stable double population cascaded lattice Boltzmann scheme (na-

med as CTLBM) was developed and tested. The literature review presented in

Chapter 2 shows that previous DDF LBM schemes consisted of BGK and MRT

collision operators, which in some cases such as complex flows, i.e. turbulent flows,

produced numerical instabilities. Therefore, to correct the DDF LBM schemes from

this defect, CTLBM was proposed. In this approach, other collision schemes were

replaced by cascaded collision schemes and implemented on two separate lattice

models, simultaneously. Preserving Galilean invariance, the developed scheme in-

creased the stability of the LBM schemes and produced results in agreement with

the literature, and in some cases even better. Some important conclusions of this

work are listed below.

8.1 Consistency

Consistency analysis is highly important to make sure that the proposed LBM

scheme is second order correct in space and first-order correct in time. In Chap-

ter 3, the method of equivalent partial differential equations (EPDE) was applied

to the cascaded lattice Boltzmann equations (LBE) to recover N-S equations. De-

tailed derivation of recovery of N-S and F-K equations are presented for various

collision operators. Results showed that double population cascaded LBM scheme

successfully recovered the N-S equations, second-order correct in space and first-

order correct in time. Therefore, the proposed method is consistent with the N-S

equations.
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8.2 Numerical Stability and Accuracy

The theoretical development of the double population cascaded LBM scheme has

been presented in Chapter 4. The flow field equations were solved on a D2Q9 lattice

model and temperature equation was solved on a D2Q5 lattice model. The scheme

was applied to solve advection-diffusion of the sine wave. It is evident from the

results that CTLBM produced accurate results when compared with the analytical

solution of the advection-diffusion equation. The CTLBM was also compared against

other collision LBM schemes such as BGK and MRT developed by other authors.

The CTLBM produced stable and accurate results for high Peclet (Pe) number

cases where BGK and MRT schemes were unstable. The proposed method was then

applied to simulate forced convection and rotating flows. CTLBM produced stable

and bounded numerical results for flow past heated cylinder and forced cooling of an

array of heated tubes. For rotating flows (double shear layer flow) CTLBM showed

better stability compared to two different MRT collision schemes and simple BGK

scheme.

In Chapter 5, a force term was added to the CTLBM to simulate natural con-

vection heat transfer. A systematic theoretical development has been presented in

the chapter prior to the numerical implementation. The method was used to si-

mulate natural convection in a differentially heated square cavity with adiabatic

top and bottom walls. The results obtained were compared with the benchmarking

solutions available in the literature. CTLBM performed well and produced accu-

rate and stable results in various flow regimes. Laminar (Ra< 106), transitional

(106 < Ra < 108) and turbulent flows (Ra> 108) were successfully simulated and

results were compared with experimental and numerical data available in the litera-

ture. It can be noticed from the literature that very few groups have implemented

simple LBM approaches to simulate turbulent flows. Therefore, one of the highlights

of this work is that CTLBM, unlike other LBM approaches, does not require any

special treatment such as mesh refinement, non-uniform meshing, turbulence mo-

deling, etc. to produce stable and accurate solutions. To improve the accuracy of

the proposed method to fourth-order, high order accuracy analysis of the cascaded

LBM has been presented in Appendix A. The initial results are promising and the

work has been submitted for publication.

8.3 Porous Media Fluid Flow Applications

In LBM, fluid flow through porous media can be studied in two different ways, (1)

pore scale approach and (2) REV approach. In Chapter 7, the pore scale appro-
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ach has been adopted to simulate fluid flow in limestone porous rocks. 3-D images

of limestone rocks were generated using micro-CT imaging technique followed by

segmentation and binarization. Cascaded LBM was then successfully applied to si-

mulate fluid flow in the 3-D geometry.

During the course of the application, some interesting findings were discovered. It

was found that pulsed irradiation from lasers can induce porosity and pore connec-

tivity enhancement in porous rocks (presented in Chapter 7). The work developed

in Chapter 7 was then extended to study the physicochemical (fluid-rock interac-

tion) properties of porous rocks, which is of great interest. It was concluded that

laser irradiation induces alteration of wettability properties in porous rocks (pre-

sented in Appendix B). In Appendix C, representative elementary volume analysis

has been presented for reliable numerical simulations in porous media. To simulate

fluid flows of industrial interests, it is necessary to first characterize the REV which

could represent the whole sample. Since our future research plans are to implement

cascaded collision scheme to study thermal multiphase flows in porous media, we

have developed a procedure to define REV for efficient and accurate simulations,

which is presented in Appendix C.

8.4 Future Research Suggestions

It is evident from the literature that due to the simplicity of BGK and MRT collision

operators they have been used quite extensively to simulate complex fluid flows. Use

of advanced collision operators such as cascaded, entropic and cumulants is very

scarce in the literature. Therefore, there exists a great potential to study complex

fluid flows using advanced collision schemes for further increase in the accuracy of the

existing numerical schemes and better prediction of flow properties. Thermal flow

problems with phase transition, separation, and multiphase multicomponent flow

problems can be solved using double population cascaded LBM scheme. One needs

a separate LBE for each component and an appropriate phase interaction scheme.

The scheme by Shan-Chen [258] is the most popular multiphase multicomponent

approach which can be incorporated into the CTLBM through a correct definition

of forcing term.
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[237] P. Le Quéré. Accurate solutions to the square thermally driven cavity at

high Rayleigh number. Computers & Fluids, 20(1):29–41, 1991. doi:

10.1016/0045-7930(91)90025-d.
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Apêndice A

Accuracy Analysis of the Cascaded

Lattice Boltzmann Method

(Robert Straka, Keerti Vardhan Sharma and Frederico Wanderley Tavares)

A.1 Abstract

We analyze higher order error terms (greater than second order) in the cascaded lat-

tice Boltzmann method (CLBM) for one conservation law – the advection-diffusion

equation. To inspect behavior of the error terms we derived an equivalent finite

difference equation (EFDE). The EFDE is obtained from the recurrence formulas

of the lattice Boltzmann equations for the CLBM and is subsequently analyzed by

standard analytical techniques. We have found relations of the relaxation times

which could cancel some of the higher order terms, making the method more ac-

curate. The detailed derivation of the EFDE and higher order terms’ pre-factors

are the main results of this paper. Despite the fact that our approach is different

from the other techniques used in the LBM community (i.e. the Chapman-Engskog

expansion, equivalent partial differential equations or the Maxwell iteration), we

believe that it is highly related to what is really being solved by the numerical pro-

grams run by computers.

This work has been submitted to Physical Review E.
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Apêndice B

Laser-Induced Wettability

Alteration in Limestone Rocks

Keerti Vardhan Sharma, J. V. Nicolini, O. M. O. de Araujo, R. Straka, H. C.

Ferraz, R. T. Lopes, F. W. Tavares

B.1 Abstract

Alteration of wettability is pre-eminent in improving the efficiency of various indus-

trial applications related to the materials such as metals, polymers, and rocks. We

demonstrate wettability alteration in limestone porous rocks using different lasers

with different wavelengths and energy. In addition to the chemical changes induced

in rocks, laser treatments with different fluence modify the surface roughness of li-

mestone differently. Pulsed Nd:YAG laser (330 mJ/pulse) reduced the surface rough-

ness of limestone from 12.22 µm to 10.10 µm. For ultrapure water/air interface, all

laser treated limestone surfaces exhibited increased contact angle. Especially, for

seawater/air, pulsed Nd:YAG laser increased the contact angle substantially, from

56.75◦ to 106.6◦, changing the surface from hydrophilic to hydrophobic. For crude

oil/ultrapure water interface, increase in contact angles were reported for all laser

treated limestone samples. But for crude oil/seawater interface, limestone treated

with pulsed Nd:YAG laser exhibited a reduced contact angle of oil/limestone, from

29.4◦ to 13.3◦, making the surface even more oleophobic.

This work has been Published in Materials Today Communications as an

original research paper [261].
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B.2 Introduction

Materials such as minerals (porous rocks), metals, polymers, biological tissues, etc.

are of great importance to many industrial applications and processes. The charac-

teristic behavior of these materials, from the physico-chemical point of view, can

be readily understood by analyzing the dynamics of their interaction with different

fluids or chemicals. The characteristics of fluid-solid interactions can be efficiently

understood by determining wetting behavior of the materials involved [158, 294].

Alteration of wettability by changing chemical composition and surface topology of

the materials is a common practice which is used to modify the performance effici-

ency of these materials [307, 318].

The surface topology can be modified by creating micro-structures or patterns on

these materials [232, 307]. And chemical composition can be changed by exposing

these surfaces to chemicals, heat, etc [7, 218]. Isotropic and anisotropic wettability

was induced on azopolymeric micro-structures and polystyrene surfaces using laser

[231, 232]. The anisotropic wettability means that wettability is different in different

direction. And when wetting behavior of the material is independent of spatial po-

sitions or directions, the wettability is called isotropic. Wettability characteristics of

titanium alloy were altered using Nd:YAG laser [176]. Femtosecond pulsed laser was

used to control wettability of solid surfaces [307]. Microwave-induced argon plasma

was used to change the surface properties of polycarbonate (PC), polypropylene

(PP), polyethylene (PET) [170]. Atomic oxygen using ECR plasma was used to

modify the surface properties of polymers such as polymide and flourinated ethy-

lene propylene [1]. Therefore, it is quite evident from the literature that lasers have

been frequently used to modify the surface structures and alter wettability of metals,

various polymers, and other solid surfaces.

For hydrocarbon reservoirs, or minerals such as limestone, sandstone, no scientific

study shows the application of lasers to tune the wettability. Ion-adsorption and

surfactant injection techniques have been frequently used to alter the wettability in

rocks and in naturally fractured reservoir [4, 6, 118, 218, 248]. Dynamic laboratory

wettability alteration was performed for outcrop chalk using aging method, in which

dynamic aging was carried out with continuous injection of crude oil [87]. Thermal

methods have also been used to tune the wetting behavior of fractured reservoir. In

this technique, hot water was injected into the reservoir to cause chemical changes

and to increase the oil recovery [7]. The wettability altering techniques used in hy-

drocarbon industry applications are motivated by the increased oil recovery (IOR)

and are harmful to the environment [224]. Lasers can only induce changes in wet-

tability in the regions of exposure, e.g. near wellbore region, microfluidic devices,

particular surfaces in core plugs used in laboratory evaluation of reservoirs etc.
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In this article, we propose use of lasers to alter the wettability of porous rocks. To

the best of our knowledge, the only application of lasers related to porous rock is to

increase the permeability by drilling holes through rocks for IOR purpose [14, 104].

We propose much elaborated use of lasers which changes the microscopic and macros-

copic wetting behavior by changing surface topography of porous rocks. We recently

showed that laser can be used to cause microscopic changes in the morphometric

properties of porous rocks [260]. In present work, we present surface treatment of

three limestone samples by means of three types of laser irradiation with different

wavelength and potential. Pulsed Nd:YAG (532 nm), pulsed Nd:YAG with second

harmonic generation (266 nm), and continuous wave carbon dioxide laser (10.6 µm)

have been used to treat the limestone surface. We perform Surface profilometry

experiment and confocal laser scanning microscopy experiments to study the sur-

face roughness of the laser processed limestone rock samples. After quantifying the

surface’s topological modifications caused by lasers, we move to characterize the

fluid-solid interaction to quantify the altered wettability. We measure contact an-

gles in the laser treated area with black oil, seawater and ultrapure water by drop

shape analysis for each sample, and compare them with the contact angles measured

in untreated regions. In section 2, we present the limestone‘s chemical composition

and zeta potential, the detailed specifications of lasers used in this study, the details

regarding laser treatment, specifications of equipments used, and methodology to

measure surface roughness and contact angle. In section 3, we discuss the impact of

lasers on surface roughness, and contact angles for air/water, air/seawater, oil/water

and oil/seawater systems.

B.3 Materials and Methods

B.3.1 Limestone’s surface roughness characterization

To characterize the limestone surfaces morphologically we performed surface profi-

lometry experiment on each laser treated and non-treated area of samples A, B and

C. DektakXT Stylus profilometer Vision64 from BRUKER was used to measure

the average roughness. This equipment works on the principal of registering hills

and valleys to measure the roughness of the surface. We place samples on the plat-

form and take measurements by scanning the sample by the probe horizontally. The

procedure of cutting and polishing rock samples can cause different roughness in dif-

ferent directions. Therefore, to enhance the accuracy and reliability of our roughness

estimation experiment, we measure roughness in three different directions.
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B.3.2 3D imaging and topography characterization

ZEISS LSM 800, the confocal laser scanning microscope (CLSM), was used to

analyze the surfaces of the original and laser treated limestone samples. 3D sur-

face topography and surface pore structures were analyzed for all samples by using

this experiment. CLSM provides the precise three dimensional imaging and analysis

of materials’ surface.

B.3.3 Wettability (contact angle) measurements

The contact angle measurement was performed in order to observe the wetting beha-

vior of laser treated surfaces. Static contact angle of ultrapure water and seawater

was assessed by the sessile drop method using a goniometer (Dataphisics OCA 15).

A droplet of each liquid (1µL) was delivered onto limestone surface and a static

image of the droplet was taken. SCA software (Dataphisics) was used to calcu-

late the contact angle, see Fig. B.1(a). Contact angle measurement of crude oil

onto limestone surface under water was performed in the same equipment, using the

pendant-drop method, as shown in Fig. B.1(b). A droplet of crude oil was deli-

vered through the U shaped needle, being collected at the surface of the limestone

rock. After reaching the equilibrium configuration, a static image of the droplet was

taken and the equipment software calculated the contact angle. All the analysis,

the measurements were performed at three different points of the rock surface to

obtain the average contact angle value. All the experiments were performed at room

temperature.

Figura B.1: Schematic diagram of contact angle measurements: (a) air/water system
and (b) oil/water system.
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B.4 Results and discussions

B.4.1 Laser treated limestone‘s properties

To manipulate the wettability properties of the limestone rock, a process was needed

which could change the surface roughness. The benefit of using laser is that its

power can be tuned according to our interest therefore giving us the total control

over up to what degree we want to change the surface properties physically. When

parameters such as power, energy density are not set and monitored properly, lasers

can cause irreparable damages to the rock sample e.g., burning, breaking, creating

holes etc. [104]. The performance and consequences of the laser processing of

limestone depends on the thermal diffusivity and conductivity of the material.

For sample A, see Fig. 7.5A, for which the energy density is very low, there were

no major visible changes on the surface. That shows that laser A irradiation was

not able to heat up the matrix grains sufficiently to cause visible topological and

chemical changes. Laser B, which has higher fluence, see Fig. 7.5B, induces visible

changes on the limestone surface. Limestone which initially had brighter white

surface turned dark gray due to the laser exposure. Laser C, which is the highest

continuous power and longest wavelength used in the present study, caused greater

changes on the surface and some matrix burning was noticed, see Fig. 7.5C. Where

CO2 laser irradiation was incident for longer period holes with white CaCO powder

were created as a result [260].

B.4.2 Surface roughness

Wenzel studied the relationship between surface roughness and wettability in 1936

and concluded that changes in surface roughness might enhance the wettability

caused by the chemistry of the surface [299]. Wenzel statement can be described by:

cosθm = r(cosθY ) (B.1)

where θm is the measured contact angle, θY is the Young contact angle and

r is the roughness factor. Roughness factor is the ratio between the actual and

treated solid surface area. Roughness measurements for original and laser treated

limestone samples are provided in Fig. B.2. Roughness was measured in three

different directions, as can be seen in left part of Fig. B.2. It is evident from

the results that Nd:YAG 266nm (laser A) increases the surface roughness of the

limestone and r factor according to Eq.(B.1). For each scan the roughness was

increased for laser treated regions. Results also show that surface roughness is

different in different directions of the measurements. The very interesting finding

206



of this experimental study is that treatment by Nd:YAG 532nm (laser B) reduces

the surface roughness of the limestone. Quantitatively, the reduction in contact

angle values after Nd:YAG 532nm laser indicates a reduction of the roughness factor,

towards the smoother surface. CO2 laser increases the limestone’s roughness slightly,

mostly due to the holes. Fig. B.2 represents the comparison charts of surface

roughness in different directions for all samples. One may ask about the different y

scale (roughness) for sample A. Roughness of original (untreated) regions for sample

B and C are almost identical. But for sample A, untreated regions demonstrate

higher roughness compared to the untreated ones of samples B and C. This can

be supported by the fact that sample B and C were better polished compared to

sample A. This difference does not make any unwanted impact on the findings

related to lasers‘ effect on surface roughness because all untreated regions in each

sample demonstrate equal roughness. Roughness were measured at four different

locations in treated and untreated regions, respectively. Measurement performed at

one location is expressed as one scan, see Fig. B.2. The average surface roughness

of laser treated sample A measured by surface profilometry is 18.14 µm and surface

roughness of the laser treated sample B is 10.10 µm.
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Figura B.2: Limestone surface roughness comparisons for samples A, B and C.
Roughness was measured in laser treated and untreated regions at four different
locations, respectively (4 scans) in three different directions as shown in the left.
One scan means one particular location in treated or untreated regions

B.4.3 Limestone’s 3D imaging and topographical analysis

Surface roughness test by means of the surface profilometry is done by a probe

which touches the surface and notes the valleys and hills. The probe can touch the

surface and move in a straight line. Therefore, to characterize the topography of

the surfaces, we choose the method of CLSM. By means of CLSM, we are able to

perform 3D imaging of a relatively bigger area compared to a point in one go, and

moreover, with clear roughness distribution of the surface. The topography imaging

of all the samples are presented in Fig. B.3.
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Figura B.3: Topographical images of untreated and laser treated samples A, B and
C, obtained by confocal laser scanning microscopy. It is evident that laser treated
sample A demonstrates highly rough topographical profile, while laser treated sam-
ple B shows smoother roughness profile. Leaving the holes aside (seen as red-yellow
valleys in sample C), the roughness profile of original sample is approximately iden-
tical to the roughness profile of sample C. Laser A increses the surface roughness,
while laser B reduces the roughness, and laser C did not have significant effect on
roughness in mildly treated areas.

For sample A, clusters of green peaks (400-450 µm) surrounding green-blue pe-

aks (350-400 µm) are evident. The high roughness of the surface can be easily seen

in Fig. B.3. For sample B, which is treated by higher potential 532 nm pulsed

Nd:YAG laser, the microscopic analysis shows that the peak heights are decreased,

reducing the roughness. For sample B, the peaks are of the order of 250 µm - 350

µm. The red zigzag lines superimposed on the images are the average surface rough-

ness profiles, and it is clearly evident that the surface roughness profile of sample A

is more turbulent compared to the red-line profile for sample B. It is seen that laser

processing of limestone with the pulsed wavelength of 532 nm and 330 mJ power

reduces the roughness of the limestone surface. Sample C, which is treated by the

CO2 laser, demonstrates more valleys created by the high continuous power of the

laser irradiation. After analysing the results one may notice that surface roughness

of sample A‘s untreated regions is higher than the surface roughness of untreated
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regions of samples B and C. While the roughness of untreated regions of samples B

and C is approximately the same. This difference could be caused by the polishing

procedure of the samples. Laser A, delivered shocks to the already rough surface

increasing the roughness even further. Laser A can induce porosity enhancement

but without significant connectivity among those surface pores [260]. For sample

B, pulsed laser B induced great increase in porosity and surface pore connectivity

through ablation and stronger thermal shocks creating a huge connected network

of surface pores, see Ref. [260]. This development could justify the decrease in the

surface roughness. While for sample C, laser C caused heating and evaporation of

the surface rock grains without any severe impact on the surface roughness. The

one important outcome that can be drawn from above results is that pulsed lasers

induce notable changes in the surface roughness compared to continuous wave la-

ser. Moreover, there seem to exist one inverse relation between surface roughness

and pore connectivity such that the greater the surface pore connectivity the lower

will be the roughness. This is evident in the Fig. B.3, for sample C, where large

area is homogeneously covered in blue (connected pore network) with lower surface

roughness.

B.4.4 Aqueous Solution/Air Interface Wettability

The contact angle measurement was performed in order to observe the wetting

behavior of laser treated limestone surface. The variation of contact angle is listed

in Table B.1. Fig. B.4 and B.5 represent the contact angle of ultrapure water and

seawater solution onto original and laser treated samples with pulsed Nd:YAG –

266 nm (sample A), pulsed Nd:YAG – 532 nm (sample B) and CO2 laser– 10.6 µm

(sample C). It can be observed that different types of laser processing affects the

contact angles differently. For ultrapure water, the contact angle was increased for

all laser treatment cases. For Nd:YAG – 532 nm (sample B), the higher variation

was observed for both ultrapure water and for seawater. Contact angle in seawater

solution was higher compared to the contact angle of ultrapure water. Seawater

solution consists of several ions. These ions could play a role through interaction

with charged surface of limestone. According to the results of contact angle, original

surface is hydrophilic. For sample treated by pulsed Nd:YAG – 532 nm (sample B),

the surface has become hydrophobic. From Fig. B.6, the relationship between

surface roughness and wettability is evident for the sample treated with laser B

(sample B), because the reduction of the roughness caused by the laser led to the

increase of the observed contact angle. Surface treated by pulsed Nd:YAG-532

nm laser demonstrates the lowest roughness and great increase in contact angle

compared to the original value for both ultrapure water and seawater. Fig.B.7
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shows a schematic and possible hypothesis for these changes in hydrophilicity. In

the original limestone surface, with the roughness, and later deposition of liquid

(water or seawater), there is the formation of microvoids that imprison air. With

treatment by pulsed Nd:YAG 532 nm, the surface became less rough, and without

the presence of microvoids with air, the water molecules are more strongly structured

at the interface. This improving the ability of water molecules to form hydrogen

bonds [140], and in turn, produce stronger interactions between water and the solid

surface. With seawater, these interactions are weakened at the interface, because

cations interact with the negatively charged surface, and water molecules change

orientation close to the interface.

Tabela B.1: Contact angle measurements for original and laser treated limestone
surfaces for Air/Aqueous solution interface.

Ultra-Pure Water Seawater Solution

Contact Angle◦ Error Contact Angle◦ Error

Original 31.35 3.89 56.75 2.3

Sample A 54.25 4.03 48.05 0.78

Sample B 99.55 0.64 106.6 0.85

Sample C 72.45 1.1 77.6 0.99
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Figura B.4: Contact angle for aqueous solution/air interface for original and laser
treated samples A, B and C.
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Figura B.5: Contact angle comparison for aqueous solution/air interface for original
and laser treated samples A, B and C.

Figura B.6: Relation between contact angle and surface roughness for original and
laser treated samples A, B and C for ultrapure water/air interface (left) and Seawa-
ter/air interface (right).
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Figura B.7: Schematic representation of interfacial interaction at interface water/-
limestone in original surface and after treatment from pulsed Nd:YAG 532 nm laser
(sample B).

B.4.5 Oil/Aqueous Solution Interface Wettability

The effect of laser processing on limestone wettability was also evaluated through

the measurement of the contact angle of the crude oil at limestone surface immersed

in ultrapure water and seawater. The results are shown in Table B.2 and Fig. B.8

and B.9. According to the results, ultrapure water in the original regions promotes

low contact angles, which implies higher oil recoveries. These results are related

to the effect of low salinity water, increasing the repulsion forces between the oil

and the limestone surface, resulting in the expansion of the electric double layer

[219]. In this way, adhesion strength points become fractions and the contact angle

decreases towards a water-wet surface. The opposite effect is observed for the contact

angle of the original surface in seawater, where the attraction forces between the

oil and sea water are strong, given the contraction of the double electric layer, as

a result of the high ionic strength [20]. Fig. B.10 represents this phenomenon.

With the laser treatment, changes in the contact angle are observed. All treatment

promoted increased contact angle of oil in ultrapure water, indicating a more oil-

wet surface. For seawater, treatment B was efficient in increasing the contact angle

of oil, suggesting changes towards higher oil recovery. These results may well be

related to the inter connectivity of limestone pores after laser treatments. It is

proven that 532 nm Nd:YAG laser promoted enhanced pore connectivity as well as
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porosity in limestone [260]. The results of the contact angle in seawater indicate

higher recoveries, possibly due to the increase of the pore imbibition by the water

given active capillary forces and subsequent thickening of the water film. This result

is of great importance, because in limestone reservoirs, the injection of seawater is

a common practice, and a treatment with laser B would improve the wettability of

the rock by the seawater and further improve the efficiency of enhanced oil recovery.

Tabela B.2: Contact angle measurements for original and laser treated limestone
surface for Oil/Aqueous solution interface.

Ultra-Pure Water Seawater Solution

Contact Angle◦ Error Contact Angle◦ Error

Original Sample 12.5 0.1 29.4 1.10

Sample A 30.4 0.5 30 0.90

Sample B 24.2 0.70 13.3 0.40

Sample C 34.7 0.07 29.85 0.07
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Figura B.8: Contact angle for oil/aqueous solution interface for original and laser
treated samples A, B and C.
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Figura B.9: Contact angle comparison for Oil/aqueous solution interface for original
and laser treated samples A, B and C.

Figura B.10: Schematic representation of crude oil wettability onto limestone for
ultrapure water and seawater imbibition.

B.5 Conclusions

We successfully used lasers to alter the wettability of limestone porous rocks. The

results show that pulsed lasers cause notable effects on the limestone rocks‘ physical

properties. The surface roughness of limestone is reduced by the pulsed Nd:YAG 532
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nm laser treatment by 2 µm. For aqueous solutions/air wettability, laser treatment

of limestone transform the surface from hydrophilic to strongly hydrophobic. Pulsed

Nd:YAG 532 nm laser induced the maximum hydrophobicity. For crude oil/ultra-

pure water system, all laser treatments induce higher contact angle for crude oil, i.e.

the surface became more oil-wet after laser treatment. The results obtained for laser

treated limestone for crude oil/seawater wettability are eminently interesting from

EOR point of view. The results show that treatment by pulsed Nd:YAG laser re-

duced the contact angle on seawater side, i.e., the surface became highly oleophobic

after treatment. It clearly suggests that laser treated limestone assists in increasing

the sweeping efficiency of oil for seawater injection. We strongly believe that the

proposed technique can be used to alter the wettability in the near wellbore region

and in microfluidic devices.
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Apêndice C

Representative Elementary

Volume in Limestone Sample

O. M. O. de Araujo, Keerti Vardhan Sharma, A. S. Machado, T. M. P. Santos,

C. G. Ferreira, R. Straka, F. W. Tavares, and R. T. Lopes.

C.1 Abstract

The study of fluid flow through porous media with complex characteristics is of

great relevance in applications related to exploration of oil and gas reserves. With

growth of computer simulation combined with the use of reconstructed images it

became increasingly common to use a representative volume, popularly known as

REV. The use of a REV is necessary since the total volume of reconstructed image

is too heavy to be loaded into simulation software, increasing data processing time

and in some cases making total volume simulation impracticable. However, when

investigating different rocks types, some main issues are addressed related to REV,

such as how reliable is representative volume compared to the total sample volume.

Quantitative and qualitative results such as porosity and permeability vary with the

region chosen for the REV as well as configuration of pore connected vary depending

on region, showing the importance in choosing a region so that REV represents total

results of the sample.

This work has been Published in Journal of Instrumentation as an origi-

nal research paper [64]. The full text of the paper can be downloaded from

https://doi.org/10.1088/1748-0221/13/10/C10003
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