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Orientadores: Frederico Wanderley Tavares

Let́ıcia Cotia dos Santos

Rio de Janeiro

Setembro de 2018



A COMPUTATIONAL TOOL FOR EOS PARAMETER ESTIMATION:

EVALUATION OF NEW METHODOLOGIES AND APPLICATION IN A

NATURAL GAS PROCESSING SIMULATION

Samir Silva Abunahman
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Nos reservatórios brasileiros do pré-sal são produzidas grandes quantidades

de óleo leve contendo altos teores de CO2 em altas pressões, caracterizando

um desafio na sua modelagem termodinâmica a partir de equações de estado

(EdEs) convencionais. Para realizar predições mais acuradas nessa região, há uma

necessidade frequente de se efetuar o procedimento de estimação de parâmetros.

Portanto, neste trabalho foi desenvolvida uma ferramenta computacional que

executa, de forma confiável, essa estimação de parâmetros, com interface interativa

e amigável ao usuário, permitindo a criação de gráficos de avaliação paramétrica

e da função objetivo em cada ponto da otimização. Foram sistematizadas novas

metodologias para a estimação de parâmetros utilizando esta ferramenta: uma

utilizando simultaneamente dados de equiĺıbrio ĺıquido-vapor e ĺıquido-ĺıquido e

outra utilizando dados de teor de água no ponto de orvalho. Utilizando a EdE

Cubic-Plus-Association (CPA), essas metodologias foram devidamente validadas

com dados de literatura. Foram obtidos novos parâmetros da CPA para a água,

que levam em conta o valor experimental da energia de ligações de hidrogênio, e

para a sua mistura binária com CO2, cujo desvio médio absoluto relativo ao teor

de água a pressões acima de 200 bar baixou de 27.3% para 3.3% em comparação

com publicações anteriores. Por fim, esse estudo foi aplicado em uma unidade

de processamento de gás natural, modelada com os parâmetros encontrados neste

trabalho.
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Brazilian pre-salt reservoirs represent the discovery of large amounts of light

oil, but at high pressures and containing high levels of CO2, being a challenge in

its thermodynamic modelling by conventional equations of state (EoS). In order

to perform more accurate predictions, it is necessary to execute the procedure of

parameter estimation. Therefore, in this work a computational tool was developed

that reliably carries out this parameter estimation with interactive and user-friendly

interface, allowing the creation of charts containing parametric and objective

function evaluations in each point of the optimization. New methodologies for

parameter estimation were systematized utilizing this tool: the first one by applying

simultaneously vapour-liquid and liquid-liquid equilibria and the other handling

water content in dew point condition. Utilizing the EoS Cubic-Plus-Association

(CPA), these methodologies were properly validated with literature data. New CPA

parameters for water, which take into account the experimental value of its hydrogen

bonds energy, and for its mixture with CO2 were obtained, whose average absolute

deviation in the water content at pressures higher than 200 bar fell from 23.7% to

3.3% compared to previous publications. Finally, this study has been applied into

a natural gas process unit, modelled with the parameters found here.
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Chapter 1

Introduction

1.1 Motivation

Petroleum is one of the most abundant natural resource in the world. Its refinery

products can fuel factories, industries, vehicles, as well as be raw material to develop

polymers such as plastic and rubber. It can also provide electric energy from the

coal burning.

For this reason, the discovery of large amounts of petroleum under a thick salt

layer in ultra-deep waters around Santos Basin, Brazil, is among the most important

in the world over the last decade. These so called pre-salt reservoirs contain high

quality light oil (over 25° API), with high commercial value.

However, it also involves a high gas-oil rate, high CO2 content, high pressure (up

to 1000 bar) and low temperature conditions (BELTRÃO et al., 2009). Therefore,

it is necessary to develop specific technologies adapted to this challenging scenario

in order to make this exploration feasible (SANTOS, 2015).

Firstly, a common issue in oil and gas exploring is the possibility of hydrate

formation, capable to clog entire oil lines. Figure 1.1 shows an example of its

potential damage. In order to prevent that, a typical course of action is to add

thermodynamic inhibitors (e.g. methanol) directly to the reservoir fluid. However,

it is an expensive procedure due to the solvent loss, and used only as a last

resource (LUNDSTRØM, 2005). These inhibitors change the chemical potential

of the phases, causing an increase of the hydrate formation pressure (or decreasing

its temperature).
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Figure 1.1: An example of a clogged line due to the hydrate formation. Image taken
from TECPETRO.

An alternative to methanol are glycols such as ethylene glycol (MEG). They

have the upside of being less volatile, avoiding inhibitor losses with its recovery.

However, when recovering the glycol aqueous solution, there is the possibility of

BTEX compounds (benzene, toluene, ethyl-benzene and xylenes) to be dragged

along the water removed. These components are extremely dangerous to health, and

most legislations around the world fix a tight limit for their emissions, in the order

of 1 ppm in water. Thus, it is essential to thermodynamically model precisely the

hydrate equilibria in the presence of inhibitors and the phase equilibria with water

to design or optimize the transport means, processing and production of natural

gas (HAGHIGHI, 2009).

When designing or simulating equipments it is important to calculate correctly

the thermodynamic properties of the fluids and solids involved. However,

experimental data are not always available, so it is desirable to hold a model

that has a high degree of data prediction or extrapolation. Some of the preferably

used models in the oil and gas industry are the cubic equations of state, such as

Soave-Redlich-Kwong - SRK (SOAVE, 1972) and Peng-Robinson - PR (PENG and

ROBINSON, 1976), both based on the van der Waals’ equation (VAN DER WAALS,

1873). They are relatively simple models, and the parameters for a vast quantity of

compounds have been already determined in the literature.

However, these equations generate better predictions for non-polar substances.

In the natural gas processing, some of the most central compounds are either highly

polar (water, alcohols, glycols) or have the possibility to form induced hydrogen

bonds (H2S, CO2, aromatic compounds). In this scenario, an improved model may
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be necessary to perform proper calculations.

Thermodynamic properties of these substances are determined by intermolecular

forces (PRAUSNITZ et al., 1999), particularly the hydrogen bonds. Numerous

equations of state (EoS) have been proposed along the years, in order to predict

these effects. Most of them belong to one of these theories: chemical, lattice

or perturbation. One of the most important EoS proposed is derived from the

Statistical Association Fluid Theory - SAFT (CHAPMAN et al., 1988). Several

variants of this EoS were proposed later.

From one of these variants, the Cubic Plus Association -

CPA (KONTOGEORGIS et al., 1996) was modelled, simpler but as efficient

as the former for aqueous systems. It can be considered as an alternative to predict

the behaviour of polar mixtures and uncomplicated enough to be implemented for

modelling complex industrial systems.

One particularity of these equations is that they must have their parameters

estimated from experimental data. However, KONTOGEORGIS et al. (2006a)

stated that, due to the complexity of non-cubic EoS, there are known issues in

this procedure such as multiple solution sets or correlations between the manipulated

parameters. Therefore, this procedure tends to be complicated and time-consuming.

Because of that, this work proposes the development and validation of a

computational tool to perform this procedure. The main idea is to offer a

user-friendly interface, a wide variety of options and analyses, with the possibility to

export the results to another application such as Excel. Besides, it will be possible

to generate charts such as:

� The behaviour of each manipulated parameter versus the respective objective

function in the search space of a stochastic method;

� The correlation effect between each pair of parameters in this same search

space;

� General phase equilibria results (deviations, equilibrium diagrams etc).

Because this is a visual, fast and applicable tool, it was included the cubic EoS

(SRK and PR) together with the CPA. Besides, it allows the user to flexibilize the

cubic EoS parameters instead of using the ones calculated by critical properties and

acentric factor, potentially improving their results. In the Oil and Gas industry, the

simplest approach is always the best, as long as it is effective.
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1.2 Objectives

In view of what has been exposed, the general objective of this dissertation is to

develop, validate and provide a thermodynamic parameter estimation tool, with a

user-friendly interface, and apply it to a natural gas processing plant simulation.

As for specific objectives, the following stand out:

� To develop a computational program for parameter estimation from

experimental data;

� To study metrics, numerical methods and optimization strategies for each

parameter estimation case;

� To re-estimate pure components’ parameters using the CPA equation of

state (KONTOGEORGIS et al., 1996) using systematic and fast procedures,

after validating the program outputs with experimental data available in the

literature for pure components and mixtures;

� To perform a parameter estimation of binary systems using data from mixtures

containing water and light gases. Validation is to be performed from

temperature, pressure and humidity of published data on multicomponent

acid gases;

� To simulate an industrial natural gas processing unit applying all previous

optimized parameters, comparing to commercial process simulators outputs.

1.3 Organization of the Text

In order to achieve the aforementioned objectives, this text is divided by chapters

referent to each relevant stage of the development of this dissertation.

In Chapter 2 a natural gas dehydration process unit with glycols is presented,

pointing out the importance of the right thermodynamic modelling. Besides, in this

chapter a bibliographic review of the main equations of state is presented, from cubic

equations to association models, arriving to the CPA equation of state. Thereon,

the main parameter estimation procedures published in the literature are stated.

In Chapter 3 the mathematical modelling behind the parameter estimation

applied to thermodynamics is detailed, along with the algorithms used in the

program. It starts from the thermodynamic functions, then describes the

optimization methods used in the calculations and finally presents the parameter

estimation metrics and procedures.
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Chapter 4 summarizes most of the main functions of the program proposed in

this work, the ThermOptimizer. It details not only each interface component that

is already designed, but also the features it offers.

In Chapter 5 some of the possible results achieved with the ThermOptimizer

are presented. Among them, there is a performance analysis of the program; a

penalization analysis related to the critical point behaviour of water using the

SRK EoS; pure parameter estimation for polar components with the CPA EoS,

validating the results with liquid-liquid equilibria data; a CPA EoS binary parameter

estimation using the metrics described in Chapter 3; and a dehydration plant

analysis, comparing the optimized results with commercial simulators.

Finally, in Chapter 6 the relevant conclusions are presented, as well as suggestions

to future works.
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Chapter 2

Bibliographic Review

2.1 Natural Gas Processing

In the natural gas processing, it is necessary to adequate the product to

commercial specifications, removing some compounds that would otherwise decrease

its sale value, or damage downstream equipments and lines. For example,

these impurities can be water, liquid heavy hydrocarbon fractions (C6+) or acid

gases (LUNDSTRØM, 2005).

The following is a set of specific compounds and what damage they would cause

if not removed from the natural gas (SANTOS, 2015):

� Hydrogen sulphate – toxic and corrosive;

� Carbon dioxide – corrosive and can crystallize in low temperature processes;

� Water – hydrate formation and corrosion;

� Heavy hydrocarbons – can condensate or form solids in transport lines.

Besides, the environmental legislation about atmospheric emissions are

increasingly tighter around the world, especially for benzene, toluene, ethyl-benzene

and xylenes (BTEX compounds). The health risk of exposure to these substances

in the downstream is extensively described and evaluated by authors such

as EDOKPOLO et al. (2015). Therefore, they must be extracted from the stream.

As there are several processes to purify the natural gas, this work will focus on

the dehydration processes. There are different approaches for them (BRASIL et al.,

2011):

� Absorption by a liquid solvent such as glycols;

� Adsorption by a solid such as silica gel, alumina or a molecular sieve;
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� Permeation by polymeric membranes.

For instance, in Brazilian platforms the most common process is the glycol

absorption.

2.1.1 Absorption Process in Dehydration

This process consists of inserting a substance capable to selectively solubilize

water from the gas stream (BRASIL et al., 2011). The choice of this solvent is

usually for economic reasons, such as:

� Ease of regeneration, normally related to the non-volatility of the solvent;

� Potential loss to evaporation;

� Solvent cost.

Although alcohols like methanol and ethanol have high affinity with water,

compounds of the glycol family (e.g. MEG – mono-ethylene glycol – or TEG

– tri-ethylene glycol) are used more often because their vapour pressure is lower,

facilitating the regeneration and avoiding evaporation losses.

Figure 2.1 shows an outline of this process. The main equipment is the absorption

tower. The gas (already without heavy hydrocarbons) flows in counter-current with

the regenerated TEG (or ’poor TEG’). The TEG solution, when it flows out of

the bottom of the tower, changes into a ’rich TEG’ solution, is heated and flows

into a three-phase separator to remove any hydrocarbons from the gas that may

have been solubilized. The TEG solution feeds the regenerator, being vaporized

at a temperature close to its degradation temperature. Consequently, the water

content of this solution is reduced when cooled back, becoming the ’poor TEG’ in

the bottom of the regenerator. After that it is further cooled and returns to the

absorption tower.
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Figure 2.1: A simplified flowchart of a TEG dehydration plant, adapted
from BRASIL et al. (2011)

2.1.2 BTEX Issues in Dehydration

In the separation stage just before the regeneration, utmost care must be taken

because the BTEX compounds are some of the possible liquid hydrocarbons to be

separated. If this stage is not done properly, some of these poisonous substances

may leave the regenerator dragged with the water vapour. Thus, the solubility of

aromatic components in solutions with water and glycols are of great academic and

industrial interest (FOLAS et al., 2006a).

Even though there is only partial solubility of BTEX compounds in aqueous

glycol solutions, most legislations specify roughly 1 ppm as the maximum limit

of these components in water, lower than the solubility in the conditions of the

regenerator. Therefore, the thermodynamic modelling of these complex mixtures

must be robust enough to predict how to avoid this limit. These phenomena are often

better modelled by equations of state, which will be described in the Section 2.2.

However, it is important to mention that different commercial process simulators

diverge greatly (often by orders of magnitude) when simulating streams containing

benzene. Therefore, one of the focus of this work, which will be detailed later,

is to perform a solid evaluation of these compounds and utilize an advanced

thermodynamic model that can take into account the association effects between

benzene and water and between benzene and glycols.
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2.2 Equations of State

2.2.1 Overview

In the Oil and Gas industry, thermodynamic models based on equations of state

are widely used, especially those of cubic format on the molar volume, for the

following reasons (KONTOGEORGIS and FOLAS, 2010):

� Suitable to be used in a wide range of pressure and temperature;

� Simple models with fast calculation and easy convergence;

� Can predict liquid and vapour properties;

� Most of cases there is no necessity to use more than one binary interaction

parameter (kij);

� Good VLE prediction for multicomponent mixtures containing hydrocarbons

and non-polar compounds;

� Extensive data bank and correlations available for the kij values.

Thus, cubic equations present a middle ground between applicability and

simplicity, being the simplest equations capable to represent the vapour-liquid

equilibrium behaviour (SMITH et al., 2005).

The first famous cubic equation of state was proposed by VAN DER WAALS

(1873), as can be seen in Equation (2.1):

P =
RT

V − b
− a

V 2
(2.1)

P is the pressure of the system, T its temperature, V the molar volume and

R ∼= 0.0831446 bar.L/mol.K the universal gas constant. This equation has two

parameters: a, related to the attraction energy between the molecules, and b, which

is the co-volume of the component. After his contribution, countless cubic equations

of state were published, usually by the format described by Equation (2.2):

P =
RT

V − b
− a(T )

(V + εb)(V + σb)
(2.2)

where the parameters ε and σ depend on the equation, and a and b can be

evaluated by an adjustment in the critical region. It is based on the fact that the

critical isotherm shows a horizontal inflection, resulting on the condition dictated

by Equation (2.3): (
∂P

∂V

)
T

∣∣∣∣
crit

=

(
∂2P

∂V 2

)
T

∣∣∣∣
crit

= 0 (2.3)
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Solving Equations (2.2) and (2.3) for a and b in the critical point, Equations (2.4)

and (2.5) are formed:

a(Tc) = ψ
R2T 2

c

Pc
≡ ψ

α(TR, ω)R2T 2
c

Pc
(2.4)

b = Ω
RTc
Pc

(2.5)

The parameters ψ and Ω also depend on the equation. Tc is the critical

temperature of the component, Pc its critical pressure, α(TR, ω) an auxiliary

function which must be equal to 1 in the critical point, with TR = T/Tc being

the reduced temperature and ω the Pitzer acentric factor (PITZER, 1995), defined

by Equation (2.6):

ω = −1.0− log (P sat
R )TR=0.7 (2.6)

P sat
R = P sat/Pc is the reduced saturation pressure of the component. These

equations of state are implicit to volume, which means that they must be solved

either analytically or numerically. Let q and B be defined by Equations (2.7)

and (2.8):

q =
a

bRT
(2.7)

B =
bP

RT
(2.8)

Rearranging Equation (2.2), Equations (2.9) and (2.10) are formed:

F (Z) = Z3 + [(ε+ σ − 1)B − 1]Z2 + [qB − (ε+ σ − εσ)B2 − (ε+ σ)B]Z

− εσB2(B + 1)− qB2 = 0
(2.9)

Z =
PV

RT
(2.10)

The compressibility factor Z is then calculated by solving Equation (2.9). Note

that there can be found three different roots of Z: the lowest is a liquid phase type

root; the highest is a vapour phase type root; and the intermediary does not have

any physical meaning.

For mixtures, the most common approach is the classic mixing rules (VAN DER

WAALS, 1873). In a compound with n components, it is possible to evaluate

parameters a and b of mixture, according to Equations (2.11) and (2.12):
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a =
n∑
i=1

n∑
j=1

xixj(aiaj)
0.5(1− kij) (2.11)

b =
n∑
i=1

xibi (2.12)

xi is the composition of the component i in the mixture, and the parameter kij

is called the binary interaction parameter, and it is calculated usually by estimation

from experimental data. Besides, it is common to introduce a temperature

dependent expression for this parameter (Equation (2.13)):

kij = kij,0 + kij,1T (2.13)

In order to improve the accuracy of these EoS when modelling polar mixtures,

it is also possible to apply more advanced mixing rules, based on activity coefficient

expressions such as Wilson, UNIQUAC or NRTL (PRAUSNITZ et al., 1999).

However, in this project the classical mixing rules will be focused. Therefore, a

suggestion for future works will be to insert one or more of these advanced rules into

the parameter estimation procedures, analysing their effectiveness.

Finally, as stated earlier, the parameters ε, σ, ψ and Ω change to each equation

of state, with two of the most notable being the Soave-Redlich-Kwong (SOAVE,

1972) and the Peng-Robinson (PENG and ROBINSON, 1976) equations of state.

2.2.2 The Soave-Redlich-Kwong (SRK) EoS

The SRK equation of state is defined when ε = 0 and σ = 1, forming

Equation (2.14):

P =
RT

V − b
− a(T )

V (V + b)
(2.14)

The parameter a is a function of T , given by Equations (2.15) and (2.16):

a(T ) = a0α(TR, ω) = a0[1 +m(1− T 0.5
R )]2 (2.15)

m = 0.480 + 1.57ω − 0.176ω2 (2.16)

a0 and b can then be defined by Equations (2.4) and (2.5), using ψ ∼= 0.42748

and Ω ∼= 0.08664.
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2.2.3 The Peng-Robinson (PR) EoS

For the PR equation of state, ε = 1−
√

2 and σ = 1+
√

2, forming Equation (2.17):

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)
(2.17)

The parameter a is calculated by the same Equation (2.15) as SRK, but with a

different expression for m, described in Equation (2.18):

m = 0.37464 + 1.54226ω − 0.26992ω2 (2.18)

a0 and b can also be defined by Equations (2.4) and (2.5), but using ψ ∼= 0.45724

and Ω ∼= 0.07780.

2.2.4 Modifications for Polar Components

Despite all aforementioned advantages of cubic equations of state, they still have

some downsides, especially when modelling polar compounds, such as water.

Therefore, various authors have proposed modifications for them, attempting to

improve the results on modelling mixtures with polar compounds, principally in the

α function of their attractive term (VALDERRAMA, 2003). Some notable functions

studied are:

Mathias-Copeman Modification (MATHIAS and COPEMAN, 1983)

These authors expanded the original α function, adding two more terms in it,

forming Equation (2.19):

α(TR, c) = [1 + c1(1− T 0.5
R ) + c2(1− T 0.5

R )2 + c3(1− T 0.5
R )3]2 (2.19)

The parameters c1, c2 and c3 are specific for each component. One disadvantage

of this function is that, although the results indeed improved for polar compounds,

the insertion of two more empirical parameters causes a super-parametrization of

the model: it needs more experimental data to become reliable.

Kabadi-Danner Modification (KABADI and DANNER, 1985)

This modification is exclusively applied to water in the SRK equation of state,

and it is defined by Equation (2.20):

α(TR, c1) = [1 + c1(1− T 0.8
R )]2 (2.20)
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The value of c1 = 0.662 is originally used for water. For all other substances,

Equation (2.15) applies.

Peng Modification (PENG et al., 1985)

This modification is also exclusively applied to water, but used only in the PR

equation of state, according to Equation (2.21):

α(TR, c1) =

{
[1.0085677 + c1(1− T 0.5

R )]2, T 0.5
R < 0.85

[1 +m(1− T 0.5
R )]2 , T 0.5

R ≥ 0.85
(2.21)

The value of c1 = 0.8215 is used for water, only when T 0.5
R < 0.85. For all other

substances, the second expression of Equation (2.21) applies, with m calculated by

Equation (2.18).

Extension to Parameter Estimation

For parameter estimation purposes, detailed in Chapter 3, it is preferable to

flexibilize all EoS specific parameters, when applicable: a0, b, c1, c2 and c3.

Therefore, Equations (2.4), (2.5), (2.16) and (2.18), as well as the definitions

of c1 in this Section, will be suppressed in these procedures. However, in order to

compare the optimized results with the literature parameters, these equations were

also implemented. Hereafter, when the parameters are defined by these equations

they will be called the original parameters of each equation of state or α function.

In the specific case of the Peng Modification to the α function, there is a

discontinuity when T 0.5
R = 0.85. In order to prevent that in the parameter estimation

procedure, the parameter c1 is recalculated through the temperature range according

to Equation (2.22):

c′1 = c1 +
1.0085677− 1

1− 0.85
(2.22)

where c′1 is the parameter c1 value calculated when T 0.5
R ≥ 0.85. No publication

in the literature with such implementation was found.

2.2.5 Association Theories

Standard cubic equations do not have a term that takes into account explicitly

chemical association and, because of that, their efficacy when modelling complex

mixtures is limited (AVLUND et al., 2011). In this context, it can be necessary to

modify them more deeply, from theoretic expressions rather than empirical. With

this background, the association theories became extensively studied.

Association theories can be assigned to three great subjects (SANTOS, 2015):
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� Chemical theories, based on the formation of new species. The extension of

association is defined by the number of oligomers formed;

� Lattice (quasi-chemical) theories, based on the formation of connections

between segments of different molecules that occupy adjacent sites of the

lattice. In this case, the extension of association is defined by the number

of connections;

� Perturbation theories, based on statistical mechanics. The extension of the

association is defined by the number of sites bonded per molecule.

When these theories are described in an equation of state, for instance, new

terms appear in the compressibility factor as contributions. Usually, in chemical

and lattice theories, these contributions are not completely separable (SANTOS,

2010), but, in perturbation theories, these terms are explicit and additive. Models

that follow these theories are called Association Models: with them, it is possible

to predict phase equilibrium of mixtures containing polar compounds or any other

capable to form hydrogen bonds.

Compounds that form complex mixtures to be studied in this work, such as water

and glycols, are called self-associating components because they are capable to form

hydrogen bonds. The formation of these bonds between two of the same molecule is

called self-association, such as pure water, while between two different molecules this

bond is called cross-association, such as water-ethanol mixture (SANTOS, 2015).

Although these theories have different origins, it is worth mentioning that

various authors (ECONOMOU and DONOHUE, 1991; HENDRIKS et al., 1997;

MICHELSEN and HENDRIKS, 2001) concluded independently that there are

mathematical similarities between them for the contribution of hydrogen bonds.

One of the most popular model based on association theories is the SAFT

equation of state (Statistical Associating Fluid Theory). This model was first

idealized by WERTHEIM (1984a,b, 1986a,b) when he presented a perturbation

theory that took explicitly into account hydrogen bonds. Then, CHAPMAN et al.

(1989, 1990) presented this theory in the form of an equation of state, named SAFT.

Its main feature is the consideration of the effects as additive terms of free energy.

Thus, these models based on perturbation theory are usually written as a

summation of terms of the Helmholtz function (A), as shown in Equation (2.23):

F ≡ A

RT
= Fid + Fsegm + Fchain + Fassoc (2.23)

The total dimensionless free energy F is then obtained from the contributions of

the reference fluid (ideal gas, Fid), attraction forces (Fsegm), chain formation (Fchain)

and association (Fassoc) free energies.
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The SAFT equation of state is referred by numerous authors as the Original

SAFT, because there have been countless modifications to this model throughout the

years. They differed basically in the reference fluid, the radial distribution function

and the dispersion term used. The chain formation and association contributions

are all similar to the Original SAFT (AVLUND, 2011).

2.2.6 The Cubic-Plus-Association (CPA) EoS

The downside of the SAFT family equations is their complexity and difficulty to

converge reliably. Thus, it is convenient to develop an equation that could be simple

enough to be applied to engineering processes.

Based on these concepts, KONTOGEORGIS et al. (1996) proposed the

Cubic-Plus-Association (CPA) equation of state. According to the authors,

it was developed to model complex mixtures with a mathematically simpler

approach. They wrote the Helmholtz function as a summation of two contributions

(Equation (2.24)):

F ≡ A

RT
= Fphys + Fassoc (2.24)

In this expression, the term Fphys is the contribution made by a cubic equation

of state, and Fassoc is a SAFT related association term. These authors chose the

SRK equation of state to represent the physical contribution. Applying this to

Equation (2.24) and deriving it, Equation (2.25) is formed (KONTOGEORGIS

et al., 1996):

P =
RT

V − b
− a(T )

V (V + b)
− 1

2

RT

V

(
1 + ρ

∂ ln g

∂ρ

)∑
i

xi
∑
Ai

(1−XAi
) (2.25)

with ρ = 1/V being the molar density of the mixture, XAi
the molar fraction

of type i molecules unbounded to type A sites and xi the molar fraction of the

component i. XAi
can be calculated using Equation (2.26):

XAi
=

1

1 + ρ
∑

j xj
∑

Bj
∆AiBj

(2.26)

where B represents a type of bonding site different to A, and j represents the

index of a molecule that may or may not be different to the molecule i. ∆AiBj is

the association strength between the type A site in molecule i and the type B site

in molecule j, described by Equation (2.27):

∆AiBj = g(V )ref
[
exp

εAiBj

RT
− 1

]
bijβ

AiBj (2.27)
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εAiBj and βAiBj are called, respectively, the association energy and the

association volume parameter; bij = (bi + bj)/2 is the mean value of co-volumes

of molecules i and j; and g(V )ref ≡ g is the radial distribution function, defined by

the Equation (2.28) (KONTOGEORGIS et al., 1999):

g =
1

1− 1.9η
, η =

bρ

4
(2.28)

It is important to mention that if εAiBj = βAiBj = 0 (i.e. there is no association

effect in the compound) then the CPA EoS automatically reduces to the SRK

EoS (KONTOGEORGIS and FOLAS, 2010).

The physical energy parameter a(T ) is calculated similarly to Equation(2.15),

adapted to Equation (2.29):

a(T ) = a0[1 + c1(1− T 0.5
R )]2 (2.29)

On the other hand, other authors such as LI and FIROOZABADI (2009) have

preferred to use the Peng-Robinson equation of state for the cubic term of the CPA,

forming the Equation (2.30) instead of Equation (2.25):

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)
− 1

2

RT

V

(
1 + ρ

∂ ln g

∂ρ

)∑
i

xi
∑
Ai

(1−XAi
)

(2.30)

In this work KONTOGEORGIS et al. (1996) model will be used for calculations

because of the extensive literature available to validate the program (DERAWI

et al., 2003; FOLAS et al., 2006a; SANTOS et al., 2015a; YAKOUMIS et al., 1998).

Besides, KONTOGEORGIS et al. (2006a,b) made a throughout revision of the

advances of the CPA (SRK based) equation of state in its ten first years of the

original publication, contributing with even more data to this work. Therefore, the

implementation of the Equation (2.30) is not in the scope of this dissertation. A

suggestion for future works would be the implementation of this equation of state.

Therefore, when applied to parameter estimation procedures, there are five

parameters to be manipulated in the CPA equation of state: three of them in the

physical term (a0, b and c1) and two in the association term (εAiBj and βAiBj).

For binary mixtures, the classical mixing rules in Equations (2.11), (2.12)

and (2.13) apply for the physical part of this EoS.

Besides, there can be a combination between two potential associating

compounds (e.g. water and TEG), resulting on a cross-association mixture. Thus,

the parameters εAiBj and βAiBj from the association term need combining rules (CR)

rather than mixing rules.

According to KONTOGEORGIS and FOLAS (2010), various CRs were
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suggested over the years, but only two of them kept generating promising and

satisfactory results: CR-1 rule (Equations (2.31) and (2.32)) and the Elliott’s

Combining Rule (ECR, Equation (2.33)):

εAiBj =
εAiBi + εAjBj

2
(2.31)

βAiBj =
√
βAiBiβAjBj (2.32)

∆AiBj =
√

∆AiBi∆AjBj (2.33)

Besides, the CPA equation of state can also be used in mixtures with a

self-associative component and an ’inert’ component, but with the possibility of an

induced cross-association between them. This is called solvating effect (SANTOS,

2015). In this case, a modified CR-1 rule is used, successfully applied to mixtures

with water or glycols and aromatic or olefinic hydrocarbons (FOLAS et al., 2006a).

In this case, βAiBj must be estimated from experimental data and εAiBj can still

be calculated from Equation (2.31), considering εAjBj = 0 (i.e. non self-associating

component).

For parameter estimation purposes, another possibility is to further modify the

CR-1 rule, estimating both the parameters εAiBj and βAiBj from experimental data,

as well as kij,0 and kij,1 from Equation (2.13), if convenient. Some results of this

approach will be discussed in Chapter 5.

In this work, the cubic equations of state were fully programmed by this

author. However, for the CPA it was decided to link the core of the program to a

pre-programmed Dynamic Link Library (or ’dll’, for short), developed by the Center

for Energy Resources Engineering (CERE), from Denmark Technical University

(DTU). The reason for this choice is that it is a well matured code, where all the

main thermodynamic properties are available as output, including stability analysis

for liquid-liquid equilibria, allowing this work to focus directly on its applications.

Moreover, this equation is more complex than pure cubic equations of state,

demanding more computational effort, and MICHELSEN (MICHELSEN, 2006;

MICHELSEN and HENDRIKS, 2001) proposed numerous modifications to its

solution methods and to the radial distribution function g in order to make it faster

to converge and thus applicable to engineering processes.

On the other side, outer thermodynamic calculations such as saturation pressure,

liquid-liquid flash and water content in dew point conditions, as well as optimization

methods, metric assembly and the interface objects, were also fully programmed by

this author.
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2.3 Parameter Estimation

In general, models are useful tools to describe physical processes. For practical

purposes, a process designer will choose the model that can better predict the system

over one that contemplates the most phenomena involved. Therefore, a simple model

with well-estimated parameters can be superior to a sophisticated model with poorly

estimated parameters (ALBERTON, 2010).

Thus, parameter estimation can be defined as an optimization procedure

where a model is used as a reference and the parameters are modified until the

values obtained by this model become as near as possible to the experimental

data (SCHWAAB and PINTO, 2007). In order to assure the attainment of

the best parameters, the objective function and optimization methods must be

chosen carefully. As a minimization method, all estimation procedures must follow

Equation (2.34):

minS(X), subject to h(X) = 0 (2.34)

The vector X is composed of the parameters to be manipulated, the restrictions

h(X) in this work are defined by the thermodynamic model and the objective

function S(X) is described in Equation (2.35):

S(X) = (Y e − Y ∗)TV −1(Y e − Y ∗) (2.35)

Considering that experimental measures of variable Y are not correlated, the

matrix V becomes diagonal (ALBERTON, 2010), and Equation (2.35) takes the

form of Equation (2.36):

S(X) =
nv∑
k

[
1

ne

ne∑
i

(yek,i − y∗k,i)2

σ2
k,i

]
(2.36)

ne is the number of experiments and nv is the number of calculated variables; the

superscript e means ’experimental’ and ∗ means ’calculated’; and σi,k is the variance

of the experimental variable.

Experimental data can be scarce and often there is no replica to them, so variance

values can be unavailable or unreliable; in these cases, σi,k is commonly equalled to

the experimental point yei,k itself for thermodynamic purposes (KONTOGEORGIS

et al., 2006a; SANTOS, 2015). The main advantage of this practice is that the

term becomes dimensionless. Also, when estimating pure components’ parameters,

it takes into account that measure errors are higher in regions of high pressure.

This assumption agrees with reality, even if not with the same proportions. For

instance, there are only a few equipments available to take precise measures at higher
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pressures. On the other hand, it is possible to apply statistical analysis techniques

to construct a critical evaluation to this approach and verify which simplifications

derive from it, since the development of a fast computational tool can allow advances

in this study that is non-usual in literature.

When applied to the CPA EoS pure parameter estimation, there are a wide

variety of possible solutions. That is, different parameters sets resulted in

similar deviations from experimental data (usually, saturation pressures and liquid

densities). Nevertheless, KONTOGEORGIS et al. (2006a) stated that the usual

variables alone are not enough to properly predict the thermodynamic properties.

For instance, when applied to mixtures with liquid-liquid equilibrium (LLE),

frequently the solution set of this optimization failed to predict the experimental

data (DERAWI et al., 2003). Therefore, in order to select the best parameters, they

used LLE experimental data to ’guide’ the optimal solution.

Originally, they did not recommend inserting LLE terms directly to the

Equation (2.36), using the compositions of each phase as variables, but instead

testing ’good’ sets of parameters (i.e. with low deviations of pure saturation pressure

and liquid density/volume) in some mixtures with LLE (for example, water +

n-hexane, or MEG + n-heptane) until a general solution is found.

Besides, SANTOS et al. (2015c) suggested that a combination of objective

functions of the VLE variables and LLE variables could be useful to facilitate this

selection, weighted by a user defined variable. Chapter 3 explains in details a slight

variation of this analysis applied to this work.

For binary parameters, they are usually estimated by bubble pressure or

composition in LLE, as in FOLAS et al. (2006a). Also, in Chapter 3 all these

procedures will be detailed.
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Chapter 3

Mathematical Modelling

3.1 Thermodynamic Equilibrium Calculations

Equilibrium properties are essential in chemical process studies and designs, thus

most commercial process simulators provide various thermodynamic models to be

selected by the user.

In order to foresee thermodynamic properties, the phase equilibrium fundamental

equation must be solved, which is the fugacity equality, described by Equation (3.1):

f̂αi = f̂βi = f̂γi = · · · , i = 1, 2, · · · , n (3.1)

where n is the number of components and α, β, γ,..., are the phases in

equilibrium.

Alternatively, fugacity can be written in the form of its coefficient, according to

Equation (3.2):

φ̂i =
f̂i
f 0
i

=
f̂i
yiP

(3.2)

where f 0
i is a fugacity of a component i in the ideal gas mixture, equal to the

partial pressure, where yi is its molar fraction and P the system pressure.

Fugacity coefficients can be calculated from volumetric data or from an equation

of state, which are often expressed as functions of P (T, V ) (Equation (3.3)) or

V (T, P ) (Equation (3.4)) (PRAUSNITZ et al., 1999).

RT ln φ̂i = RT ln
f̂i
yiP

=

∫ ∞
V

[(
∂P

∂ni

)
T,V,nj

− RT

V

]
dV −RT lnZ (3.3)

RT ln φ̂i = RT ln
f̂i
yiP

=

∫ P

0

(
V i −

RT

P

)
dP (3.4)
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R is the universal gas constant, V the molar volume, V i the partial volume of

the component i and Z is the compressibility factor, given by Equation (2.10).

Using the equations of state described in Chapter 2, it is possible to evaluate

Equations (3.3) and (3.4), and consequently all other properties can be calculated.

In this work, the main thermodynamic properties evaluated were saturation

pressure, compositions in liquid-liquid equilibrium (LLE) and water content in dew

point conditions.

3.1.1 Saturation, Bubble and Dew Pressures

Saturation pressure is defined here as the pressure of the system in vapour-liquid

equilibrium (VLE). When modelling mixtures, it may be called bubble pressure,

when the main phase is liquid (vapour is incipient), or dew pressure, when the

vapour phase prevails (liquid is incipient).

These calculations were implemented in a similar fashion as in Petrobras’s

Petroxr Process Simulator (NIEDERBERGER et al., 2009), based on a secant

method for converging composition and pressure simultaneously. The initial

estimative P0 derives from Wilson’s expression (Equation (3.5)):

P0 = Pc exp

[
5.373(ω + 1)

(
1− Tc

T

)]
(3.5)

where Pc is the critical pressure, Tc the critical temperature and ω the acentric

factor.

For pure components, this algorithm becomes slightly different, as there is no

necessity of an inner loop for composition. Therefore, it can be solved by a successive

substitution method, briefly described as follows:

1. Initialization:

(a) Read the component’s properties and parameters, the EoS model,

temperature T , maximum number of iterations imax and the tolerance

ε.

(b) IF P0 is not known THEN calculate it from Equation (3.5).

(c) Make P = P0, iter = 0, flag = 0.

2. Loop:

(a) iter = iter + 1.

(b) Calculate φL(T, P ) and φV (T, P ) from Equation (3.4) applied to pure

components.

(c) Keq = φL/φV ; errP = |1−Keq|.
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(d) P1 = P ; P = Keq × P1.

(e) IF |errP | > ε and iter < imax THEN return to Step 2a.

(f) IF |errP | ≤ ε THEN flag = 1. Exit Loop.

(g) IF iter ≥ imax THEN flag = −1. Exit Loop.

3. Solution:

(a) IF flag = 1 (i.e. convergence achieved) THEN RETURN P .

ELSE it did not converge. RETURN −1.

In order to illustrate this calculation, Table 3.1 presents a numerical example of

a pure component saturation pressure calculation. It is important to note that the

value of P1 in its first row was previously calculated from Equation (3.5).

Table 3.1: Numerical example for a pure water saturation pressure calculation (Tc =
647.13 K, Pc = 220.55 bar, w = 0.3449), at T = 350 K and using the CPA equation
of state parameters published by KONTOGEORGIS et al. (1999). Convergence
tolerance = 10−4.

iter Keq ≡ φL/φV errP P1 [bar] P [bar]

1 0.8658 1.342e-1 0.4929 0.4268
2 0.9971 2.884e-3 0.4268 0.4256
3 0.9999 5.375e-5 0.4256 0.4255

3.1.2 Liquid-liquid Equilibrium (LLE)

For this calculation, a liquid-liquid flash was solved using the Rachford-Rice

Equation (PRAUSNITZ et al., 1999). Firstly, it is important to check the necessary

variables to calculate the compositions at each phase and the respective degree of

freedom (Equation (3.6)).

F = C − P + 2 (3.6)

In the LLE calculations performed in this work, there are two components (C =

2) and two phases in equilibrium (P = 2). Therefore, Equation (3.6) shows that

only two specified variables are needed to solve the LLE calculations (F = 2), for

instance the temperature and pressure. That is, the compositions of each liquid

phase are independent of the feed global composition, as shown in Equations (3.7)

and (3.8):

x1(2) =
K2 − 1

K2 −K1

(3.7)
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x2(1) =
K2(1−K1)

K2 −K1

(3.8)

where xi(j) stands for the composition of i in phase rich in component j. In a

mixture water (1) with n-hexane (2), for example, x1(2) is the composition of water

in organic phase. Besides, Ki ≡ φ̂i(2)/φ̂i(1) is the liquid-liquid equilibrium constant,

function of T , P and xi(j).

When calculating equilibrium in mixtures, it is important to avoid ’false

solutions’, in which Ki ≈ 1.0 ∀ components. They are called trivial solutions and

they are a sign that the calculations did not converge. In all calculations containing

mixtures implemented in this work, an absolute tolerance of 0.01 was defined to

check if the system is in a trivial solution, summarized by Equation (3.9).

IF |Ki − 1.0| < 0.01 ∀ i = 1, · · · , nc THEN solution is trivial. (3.9)

Therefore, the algorithm implemented in this work can be summed up as follows:

1. Initialization:

(a) Read the components’ properties and parameters, the EoS model, the

temperature T , pressure P , initial guesses for the compositions xi(j),0,

maximum number of iterations imax and the tolerance ε.

(b) Initialize Ki = 1, errK = 1, iter = 0 and flag = 0.

2. Loop:

(a) iter = iter + 1, Ki,old = Ki for i = 1, 2.

(b) Calculate xi(j) from Equations (3.7) and (3.8).

(c) Calculate φ̂i(j)(T, P, xi(j)) for i = 1, 2 from Equation (3.4).

(d) Ki = φ̂i(2)/φ̂i(1) for i = 1, 2

(e) IF iter > 1 THEN make errK =
∑2

i
|Ki,old−Ki|

Ki
.

(f) IF errK > ε and iter < imax THEN return to Step 2a.

(g) IF |errK | ≤ ε THEN flag = 1. Exit Loop.

(h) IF iter ≥ imax THEN flag = −1. Exit Loop.

3. Solution:

(a) Check for trivial solution (Equation (3.9)). IF trivial THEN make flag =

−2. RETURN empty array.

ELSE IF flag = 1 (i.e. convergence achieved) THEN RETURN the

compositions xi(j).

ELSE it did not converge. RETURN empty array.
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Table 3.2 presents a numerical example of a LLE calculation for the binary

mixture water + n-hexane.

Table 3.2: Numerical example for a LLE calculation for the mixture water +
n-hexane, at T = 333.15K and CPA equation of state parameters modelled in the
literature for water (KONTOGEORGIS et al., 1999) and n-hexane (TSIVINTZELIS
et al., 2011), with kij = 0. Convergence tolerance = 10−4. The initial guesses to
the compositions are related to the respective experimental data informed in the
program interface.

iter K1 K2 K1,old K2,old x1(2) x2(1) errK

0 1.0000 1.0000 - - 1.800e-3 4.500e-6 1.000e0
1 507.103 5.218e-6 1.0000 1.0000 1.972e-3 5.207e-6 1.916e5
2 503.951 5.218e-6 507.103 5.218e-6 1.984e-3 5.208e-6 6.255e-3
3 503.726 5.218e-6 503.951 5.218e-6 1.985e-3 5.208e-6 4.467e-4
4 503.710 5.218e-6 503.726 5.218e-6 1.985e-3 5.208e-6 3.176e-5

3.1.3 Water Content of a Specified Gas

This calculation returns the water content of a known gas in order to allow

the system to be in the dew point at a specified temperature and pressure, based

on SHIGUEMATSU (2014), calculated according to Equation (3.10):

yH2O = yH2O

(
T, P, y

DG
, param

)
(3.10)

where T is the system temperature, P the system pressure and y
DG

stands for

the dry gas composition. Also, param stands for all EoS parameters related to the

system (from either pure components and each pair), including the manipulated

variables in the optimization. These variables are fixed throughout the algorithm.

This is an implicit calculation, solved by a numerical method, originally being

the bisection due to its sturdiness (SHIGUEMATSU, 2014). However, in this work,

this method was improved to a combination of bisection and secant mathematical

methods in order to accelerate it.

The function fdew, the objective function of this method, is calculated from the

vapour-liquid equilibrium of the system (Equation (3.11)).

fdew (nH2O) =
nc∑
i=1

xi − 1 (3.11)

where nH2O is the mole quantity of water in the gas in the current iteration

(manipulated variable in the numerical method) and xi the mole fraction of each of

the nc components in the liquid phase in equilibrium. Every time this function
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is evaluated, two other variables are calculated in its output: err, defined by

Equation (3.12), and a boolean trv, which informs whether the current system is or

not in trivial solution (Equation (3.9)).

err =

√√√√ nc∑
i=1

(yi − xi)2 (3.12)

where yi is the molar fraction of the vapour in equilibrium with the liquid with

molar composition xi.

The algorithm implemented for calculating fdew is described as follows:

1. Initialization:

(a) Read the components’ properties and parameters, the EoS model, nH2O,

T , P , y
DG

, as well as the maximum number of iterations imax and the

tolerance ε.

(b) For i = 1 · · ·nc: IF i 6= iH2O THEN yi = yDG,i/(1 + nH2O).

(c) yiH2O
= nH2O/(1 + nH2O).

(d) Calculate Ki = P sat
i /P , with P sat

i by Equation (3.5).

(e) Calculate xi = yi/Ki for i = 1 · · ·nc and normalize x.

(f) Make iter = 0, Sx1 = 1, errx = 1.

2. Loop:

(a) iter = iter + 1; Sx = 0.

(b) Calculate φ̂L,i(T, P, x) and φ̂V,i(T, P, y) for i = 1 · · ·nc from

Equation (3.4).

(c) Calculate Ki = φ̂L,i/φ̂V,i for i = 1 · · ·nc.

(d) Calculate xi = yi/Ki, Sx = Sx + xi for i = 1 · · ·nc.

(e) Sx2 = Sx1, Sx1 = Sx, errx = |Sx1 − Sx2|. Normalize x.

(f) IF errx > ε and iter < imax THEN return to Step 2a.

(g) IF |errx| ≤ ε THEN flag = 1. Exit Loop.

(h) IF iter ≥ imax THEN flag = −1. Exit Loop.

3. Solution:

(a) IF flag = −1 THEN make err = 0; F = 1; trv = true.

ELSE Check for trivial solution (Equation (3.9)). IF trivial then trv =

true and make err = F = 0;

ELSE trv = false, err =
√∑nc

i=1 (yi − xi)2, F = Sx1 − 1.
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(b) RETURN [F err trv].

Also, as in the work of SHIGUEMATSU (2014), it was decided to convert the

variable nH2O to another basis, in order to keep its limits between 0 and 1, as

presented in Equation (3.13).

ξ ≡ exp(−nH2O) (3.13)

This variable is originally limited in the interval [0, 1]. Nevertheless, trivial

solutions in this calculation mean that the current water content is too low (that

is, the respective value of ξ is too high). Therefore, whenever a trivial solution is

achieved in a fdew evaluation, the current value of ξ substitutes the upper limit of

this variable, ξmax, as in Equation (3.14):

ξmax = Min (ξtrivial, ξmax,old) (3.14)

As previously mentioned, in this work the numerical method related to this

calculation was implemented as a hybridization of bisection and secant methods.

These methods are described in the following algorithms:

� Bisection Step (B.S.), from known values of ξ1 and ξ2:

1. Make n1 = −ln(ξ1) and evaluate [F1, err1, trv1] = fdew (n1) if these

variables were not already obtained in previous iterations.

2. IF trv1 = false THEN

(a) IF F1 > 0 and F2 < 0 or F1 < 0 and F2 > 0 THEN dξ = ξ2 − ξ1.
ELSE dξ = ξ1 − ξ2.

(b) ξN = ξ1 + 0.5dξ.

ELSE ξ1 is already too high. Make ξN = 0.5ξ1.

3. nN = −ln(ξN).

4. Evaluate [FN , errN , trvN ] = fdew (nN).

� Secant Step (S.S.), from known values of water mole quantity n1 and n2 and

the respective values of F , err and trv calculated by fdew in prior iterations:

1. IF trv1 = true or trv2 = true THEN ξN = ξ1− 0.1 F1(ξ2− ξ1)/(F2−F1).

ELSE ξN = ξ1 − F1(ξ2 − ξ1)/(F2 − F1).

2. Protection to avoid reaching values out of bounds:

IF ξN ≥ ξmax THEN ξN = ξmax − 0.5 (ξmax −Max (ξ1, ξ2))

ELSE IF ξN ≤ 0 THEN ξN = 0.5Min (ξ1, ξ2)
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3. nN = −ln(ξN).

4. Evaluate [FN , errN , trvN ] = fdew (nN).

The main method is solved then as follows:

1. Initialization:

(a) Read the components’ parameters, EoS model, temperature T , pressure

P , dry gas composition y
DG

and the maximum percent to the water

content yH2O
max , as well as the maximum number of iterations imax and the

tolerance ε.

(b) Calculate n1 = yH2O
max /(100%− yH2O

max ).

(c) Define the auxiliary variable: ξ1 = exp(−n1).

(d) Make ξmax = 1, ξ2 = 1 and ξ10 = ξ1.

(e) Execute B.S., obtaining nN , ξN , FN , errN and trvN .

(f) Make ξ2 = ξN , F2 = FN , err2 = errN , trv2 = trvN .

(g) Execute S.S., obtaining new values for nN , ξN , FN , errN and trvN .

(h) Initialize iter = 0, flag = 0, bis = false (checker for case 02)

2. Loop:

(a) Make iter = iter + 1, errold = errN .

(b) Current solution lies on three possible cases:

� Case 01: IF trvN = true THEN reinitialize the method modifying

the value of ξ10:

i. ξ10 = 0.8 ξ10 + 0.2 ξmax, ξ1 = ξ10, ξ2 = 1.

ii. Execute B.S., obtaining nN , ξN , FN , errN and trvN .

iii. Make ξ2 = ξN , F2 = FN , err2 = errN , trv2 = trvN .

iv. Execute S.S., obtaining new values for nN , ξN , FN , errN and

trvN .

� Case 02: IF trvN = false and bis = true THEN execute B.S. with

current values of ξ1 and ξ2, obtaining nN , ξN , FN , errN and trvN .

� Case 03: IF trvN = false and bis = false THEN proceed with the

secant method as usual:

i. Make ξ1 = ξ2, F1 = F2, err1 = err2, ξ2 = ξN , F2 = FN , err2 =

errN .
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ii. Execute S.S., obtaining new values for nN , ξN , FN , errN and

trvN .

(c) IF |errold − errN | < |errold|, then bis = false.

ELSE bis = true, enabling the B.S. in the next iteration (Case 02).

(d) IF |FN | < ε and trvN = false THEN flag = 1. Exit Loop.

ELSE IF iter > imax THEN flag = −1. Exit loop.

ELSE return to Step 2a.

3. Solution:

(a) Make yH2O = 100%× nN/(1 + nN).

(b) IF flag = 1 THEN RETURN yH2O.

ELSE the method did not converge. RETURN 0.

In the Case 02, the equilibrium variables in previous iteration are too different

than in current iteration, even if it is not a trivial solution. It is a sign that a

trivial solution may be nearby and another secant step could attain this undesirable

result. This is the least common case, but it was still implemented in order to avoid

resetting the calculations unnecessarily (Case 01).

Table 3.3 presents a numerical example of this method in a binary mixture

water + CO2 using the CPA equation of state. It is important to mention that

iter = 0 means that the variables in this column were obtained before the loop.

Also, although the ξ2 value is always initialized with 1, this Table shows in this

column its value calculated from the first bisection step, cited in the item 1f of the

algorithm.

In this example, the first two iterations resulted in trivial solutions. In both

of them, the variable ξ0 was recalculated accordingly and the bisection and secant

steps were performed. Consequently, the value of ξN reduced in each iteration and

it eventually reached a value whose fdew calculation did not end in a trivial solution.

After that it was possible to perform successive secant steps until the convergence

was attained. There were 12 fdew evaluations in this procedure.

28



Table 3.3: Numerical example for a water content calculation for the mixture
water + CO2, at T = 298.15 K, P = 50.66 bar and CPA equation of state
parameters modelled in the literature for water (KONTOGEORGIS et al., 1999)
and CO2 (TSIVINTZELIS et al., 2010), with the binary parameters kij = 0
and βcrossij = βwater = 0.0692, considering the solvation effect between these
components (LI and FIROOZABADI, 2009). Convergence tolerance = 10−6. The
yH2O
max value was set at 0.5% (n1 ≈ 0.00502). ’BS’ and ’SS’ mean Bisection Step and

Secant Step, respectively, as previously described.

iter 0 1 2 3 4 5

Case
Initial:

BS + SS
Case 01:
BS + SS

Case 01:
BS + SS

Case 03:
SS only

Case 03:
SS only

Case 03:
SS only

ξ0 0.99499 0.99599 0.99679 0.99679 0.99679 0.99679
ξ1 0.99499 0.99599 0.99679 0.99840 0.99956 0.99943
F1 4.15188 3.30829 2.60364 1.09350 -0.13408 0.00796
ξ2 0.99749 0.99799 0.99840 0.99956 0.99943 0.99944
F2 1.96181 1.48627 1.09350 -0.13408 0.00796 3.08e-5
ξN 0.99974 0.99963 0.99956 0.99943 0.99944 0.99944
trvN true true false false false false
errN - - 0.81592 0.89984 0.89619 0.89618
FN - - -0.13408 0.00796 3.08e-5 -2.12e-8
NN 0.00026 0.00037 0.00044 0.00057 0.00056 0.00056
yH2O 0.0261% 0.0369% 0.0442% 0.0569% 0.0562% 0.0562%

3.2 Methods and Strategies of Optimization

Parameter estimation problem in Thermodynamics is a complex system, may

be highly sensitive to initial guesses and consequently may contain several possible

local minima. Hence, the optimization procedures executed in this work demanded

multi-variable search methods: a stochastic method to evaluate different local

minima and a deterministic method to refine the results.

The main advantage of using a stochastic method is that it does not need the

computation of derivative properties. Also, it performs a global optimization by

being possible to evaluate the objective function in any region of the search space

within a probability (SCHWAAB et al., 2008).

In this work, these methods were combined in two possible schemes, based

on DAS et al. (2006): direct and parallel. As a consequence, there is the possibility

of the optimization methods’ hybridization.
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3.2.1 Stochastic Method

The stochastic method implemented is the Particle Swarm Optimization -

PSO (KENNEDY and EBERHART, 1995), conveniently adapted to the calculations

performed in this work. It is based on the behaviour of a group of animals, such as

a swarm of bees. It takes into account each individual solution (particle) and the

global solution in each iteration. The particles move around the search region in an

iteration k according to Equations (3.15) and (3.16):

v
(k)
i,j = wv

(k−1)
i,j + c1rnd1(pi,j − u(k−1)i,j ) + c2rnd2(pi,ipg − u(k−1)i,j ) (3.15)

u
(k)
i,j = u

(k−1)
i,j + v

(k)
i,j (3.16)

rnd1 and rnd2 are random numbers with uniform distribution between 0 and

1, and vi,j is the velocity of the particle ui,j. i varies from 1 to the number of

manipulated variables, and j goes from 1 to the number of particles in the system.

pi,j is the set of best particles updated each iteration and the subscript ipg is the

position of its best point. w, c1 and c2 are internal parameters of PSO:

� w is called inertial weight, implemented by SHI and EBERHART (1998) in

order to increase the odds of attaining the optimal solution during the search.

It decreases linearly, from a given w0 to a given wf , so that in the beginning

there is an exploration phase and, in the end, an exploitation phase;

� c1 is called cognition parameter, related to the individual movement, and c2 is

called social parameter, related to the whole group movement.

In order to implement this method in this work, the following procedure was

conducted:

1. Initialization:

(a) Read w0, wf , c1, c2, imax, εA, εR, Npt, Nmax, x0, L0, U0.

(b) Initialize k = 0, Sotim = 1015, w = w0, NV = 0.

(c) For i = 1, · · · , Nx and j = 1, · · · , Npt do:

i. Initialize the normalized position u
(k)
i,j to random values between 0

and 1.

ii. Initialize the velocities to 0.

iii. Initialize the vectors y
(k)
i,j = pi,j = u

(k)
i,j .

iv. Evaluate the objective function f
(k)
j = Fobj(x

(k)), with x
(k)
i = L0i +

(U0i − L0i)u
(k)
i,j .
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v. After an objective function evaluation, save internally the

intermediary values: x(k), f
(k)
j → xint, Sint.

vi. IF f
(k)
j < Sotim THEN make x(k), f

(k)
j → xotim, Sotim and ipg = j.

vii. Make fpj = f
(k)
j .

2. Loop:

(a) optB = false, optN = false, k = k + 1.

(b) For i = 1, · · · , Nx and j = 1, · · · , Npt do:

i. Evaluate the new positions and velocities according to

Equations (3.15) and (3.16).

ii. Evaluate the objective function, just as Step 1(c)iv.

iii. IF f
(k)
j < fpj THEN fpj = f

(k)
j and pi,j = u

(k)
i,j . ELSE go to

Step 2(b)vii.

iv. IF fpj <= Sotim THEN make optN = true. ELSE go to

Step 2(b)vii.

v. IF (Sotim − fpj) >= (εRSotim + εA) THEN make optB = true and

NV = 0.

vi. Make x(k), f
(k)
j → xotim, Sotim and ipg = j.

vii. Evaluate yj according to Equations (3.17) and (3.18):

f̂pj =
fpj − fpj,min

fpj,max − fpj,min
(3.17)

yj = [uj|f̂pj] (3.18)

(c) IF optN = false or (optN = true and optB = false) (i.e. if no new best

solution was found or new best solution found is closer to the previous

one than the tolerance ε) THEN NV = NV + 1.

(d) Update the inertial factor (Equation (3.19)):

w = w0 + (wf − w0)
NV

Nmax +NV

(3.19)

(e) Evaluate Equations (3.20) to (3.22), as recommended by MORAES et al.

(2015).

yi =

Npt∑
j=1;j 6=ipg

ωjyi,j (3.20)
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ωj =

1
‖yj−yipg‖∑Npt

k=1;k 6=ipg
1

‖yk−yipg‖

(3.21)

‖y‖ ≡

[
1

n

n∑
i=1

y2i

] 1
2

(3.22)

(f) Evaluate the stop criterion: ‖y − yold‖ < εA. IF this expression is false

or NV < Nmax THEN go to Step 2a. ELSE go to Step 3.

3. Optimal point achieved. RETURN xotim and Sotim.

It is important to note that there were some adaptations included to the PSO

in this work:

� In order to ensure the reached solution is the best one, it has been decided to

modify the convergence test: the optimal solution has to be inside the tolerance

for a number of consecutive times (defined by the user in the interface) in order

to be checked for stop criterion. Because of the random feature of PSO, it is

noted that sometimes when the method is going to a local minimum and

suddenly a better minimum is found far from the previous value. It happened

specially if c1 >> c2.

� Whenever there is a computation of the objective function, its value is saved

on an array Sint, and respective parameters on an array xint. This practice

is essential to generate scatter plots and parameter analysis charts detailed in

Chapter 4.

3.2.2 Deterministic Method

The deterministic method implemented is the Flexible Polyhedra Method, also

known as Simplex (NELDER and MEAD, 1965). It has been chosen mainly because

it does not need computation of the derivatives of the objective function. Also, its

implementation is relatively simple and it is efficient to find the optimal solution

near the initial guess.

From a set of (n + 1) points forming a simplex in a n-dimensional plane, new

simplexes would be formed by reflecting one of the points and/or expanding or

contracting it according to the objective function value. Considering P0, P1, · · · , Pn
sets of n variables each forming points of a known simplex, and y0, y1, · · · , yn their

respective objective functions, Equation (3.23) defines its centroid, discarding the

highest value of y, yhigh:
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Pci =
1

n

n+1∑
j=1,j 6=high

Pi,j, i = 1, · · · , n (3.23)

There are then three possible movements in this method: reflection, contraction

and expansion, defined, respectively, in Equations (3.24), (3.25) and (3.26):

Pi,α = (1 + α)Pci − αPi,high (3.24)

Pi,β = βPi,high + (1− β)Pci (3.25)

Pi,γ = γPi,α + (1− γ)Pci (3.26)

α is the reflection parameter, β the contraction parameter (must be lower than

1) and γ the expansion parameter (must be greater than 1). All these movements

were implemented as NELDER and MEAD (1965) described, thus the focus of this

work is to point out the differences in how these points were initially obtained.

Firstly, these authors suggested to initialize the simplex from its vertices.

However, as the EoS parameters are correlated with each other, not all sets of

parameters result in convergence in the calculations. Therefore, it was decided in

this work to generate a cluster around the initial guess, implemented according to

Figure 3.1.

Read 𝑥 0 , 𝛼, 𝛽, 𝛾, 𝑖𝑚𝑎𝑥, 𝜖, 𝐿
0 , 𝑈 0

Initialize 𝑛𝑝𝑡 = 𝑛𝑣𝑎𝑟 + 1, 𝑥𝑜𝑡𝑖𝑚 = 𝑥 0 , 𝑆𝑜𝑡𝑖𝑚 = 𝐹𝑜𝑏𝑗 𝑥 0

Save intermediary values: 𝑥 0 → 𝑥𝑖𝑛𝑡; 𝑆𝑜𝑡𝑖𝑚 → 𝑆𝑖𝑛𝑡

Random cluster generation 𝑃𝑖,𝑗 : 𝑗 = 2, 𝑖𝑙𝑖𝑚 = 0

Yes

𝑃𝑖,1
𝑋 = 𝑥𝑖

0
, 𝑦1 = 𝑆𝑜𝑡𝑖𝑚

𝑃𝑖,𝑗
𝑋 = 𝐿𝑖

0
+ 𝑟𝑛𝑑 𝑈𝑖

0
− 𝐿𝑖

0

𝑦𝑗 = 𝐹𝑜𝑏𝑗 𝑃𝑋

𝐹𝑜𝑏𝑗 converged?

𝑗 = 𝑗 + 1
𝑖𝑙𝑖𝑚 = 0
𝑗 > 𝑛𝑝𝑡?

𝑖𝑙𝑖𝑚 = 𝑖𝑙𝑖𝑚 + 1
𝑖𝑙𝑖𝑚 = 𝑖𝑙𝑚𝑎𝑥?

Yes

Yes

No

No

No

Cluster 𝑷𝒊,𝒋 formed.

Figure 3.1: Random cluster formation for Simplex method.

Another adaptation implemented was due the fact that despite the simplex’s
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points originally have no bounds, thermodynamic variables must be bounded to

avoid major convergence problems. NELDER and MEAD (1965) suggested in their

work to apply logarithm to a non-negative variable. Based on this affirmation,

Equation (3.27) and its inverse, Equation (3.28), are proposed and implemented in

this work.

Pi,j = τ ln

(
xi,j − Li + ε

Ui − xi,j + ε

)
(3.27)

xi,j =
(Li − ε) + (Ui + ε) exp

(
Pi,j

τ

)
1 + exp

(
Pi,j

τ

) (3.28)

ε is a low value (order of 10−9) inserted to avoid division by zero or logarithm

of zero; τ ≡ 1 is a possible tuning factor to the expression; and Li and Ui are the

lower and upper bounds of xi,j, respectively. Consequently, Pi,j is limitless while

Li < xi,j < Ui.

Specifically in this stage, there is an option in the developed software to tighten

the bounds of the manipulated variables in order to accelerate the cluster formation.

It is called Initial Cluster Size and will be further described in Chapter 4. These

new bounds substitute the variables L
(0)
i and U

(0)
i in Figure 3.1 to the variables Li

and Ui.

Once the cluster is formed, the algorithm is described as follows:

1. Initialization: Make iter = 0.

2. Loop:

(a) iter = iter + 1.

(b) Reflection, expansion and contraction tests implemented according to

Equations (3.24), (3.26) and (3.25), respectively.

(c) Each time y = Fobj(x) is evaluated, save intermediary values: x → xint;

y → Sint.

(d) Re-evaluate the new positions of the lowest value (ylow) and highest value

(yhigh) of y.

(e) Evaluate the convergence criterion, calculating Err = ‖y − ymean‖
using the norm defined by Equation (3.22), and ymean defined by

Equation (3.29):

ymean =
1

npt

npt∑
j=1

yj (3.29)
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(f) Calculate ErrP =
∑npt

j=1 ‖Pj − Plow‖ using the norm defined by

Equation (3.22). Plow stands for the point whose objective function

results in ylow.

(g) IF ErrP < Err THEN Err = ErrP .

(h) IF ylow < 1 THEN Err = Err/ylow.

(i) IF ylow >= Sint,0 THEN Err = Err + εA.

(j) IF Err > εA and iter < imax THEN go to Step 2a.

3. Solution:

(a) xotim is calculated from Equation (3.28), with Pi,j = Pi,low, and Sotim =

ylow.

(b) Optimal point achieved. RETURN xotim and Sotim.

As it can be seen in the algorithm, another modification implemented was

related to the convergence criteria. Even though the variable Err is calculated

as proposed by NELDER and MEAD (1965), some modifications were included in

the implementation:

� If the lowest value of y is lower than 1, then Err was divided by ylow.

This modification tightens the tolerance, ensuring the attainment of the best

solution;

� If no new minimum value of y is found yet, than add the given tolerance to

Err. This forces the optimizer to find a new solution at least once during the

loop.

� ErrP is a variable calculated analogously to Err, but with respect to the size

of the simplex. If it is smaller than the variable Err at any iteration (i.e. after

successive failed contractions) then ErrP becomes the new criterion.

3.2.3 Hybridization

It is commonly seen in the literature - e.g. SANTOS (2015) - a serial combination

of a stochastic and a deterministic method in order to perform a global optimization

of the desired system. The former method searches for all possible local minima in

the region and the latter acts as a refinement of its result, as can be seen in the

following scheme:

� Run PSO Method as previously described.
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� Make x
(0)
SIMPLEX = xotim,PSO and S

(0)
SIMPLEX = Sotim,PSO.

� Run Simplex with a random cluster around its initial guess.

� Optimal point of the Simplex execution is the final solution. RETURN xotim

and Sotim.

Nevertheless, DAS et al. (2006) proposed a combination between these methods

inside the same loop in order to achieve the optimal solution most efficiently. Based

on this approach, this work also proposes a combination between the implemented

PSO and Simplex methods in parallel, further hybridizing them. The algorithm for

this purpose is shown below.

1. Initialization: Initialize PSO method as previously described.

2. Loop:

(a) Execute one iteration of PSO.

(b) Make x
(0)
simplex = xotim,PSO and S

(0)
simplex = Sotim,PSO. Generate a random

cluster according to Figure 3.1 around this point.

(c) Run Simplex method.

(d) errS = εRSotim,simplex + εA. IF |Sotim,PSO − Sotim,simplex| >= errS THEN

NV = 0. ELSE NV = NV + 1.

(e) Update xotim,PSO = xotim,simplex and Sotim,PSO = Sotim,simplex.

(f) Replace the worst point of the swarm (i.e. the point whose objective

function value is the highest) by the Simplex solution. Make ipg equal to

its position.

(g) Update the inertial factor and evaluate the tolerance of PSO just as

previously described.

(h) Evaluate the stop criterion: ‖y − yold‖ < εA. IF this expression is false

or NV < Nmax THEN go to Step 2a. ELSE go to Step 3.

3. Optimal point achieved. RETURN xotim,PSO and Sotim,PSO.

It is important to state that, although the implementation is based on the work

of DAS et al. (2006), they are not equal. Their ’tandem’ approach consists of

creating several simplex clusters in each iteration, solving them simultaneously. In

this work, after each iteration of PSO only one cluster is formed around the current

PSO’s best point (i.e. the point with the lowest value of objective function). Then

it is solved by the Simplex method and its solution substitutes the former PSO’s
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worst point (i.e. the point with the highest value of objective function), making it

the new best point of the stochastic method.

Despite the fact that the combination of the optimization methods in parallel

allows to reach the optimal value faster than the usual linear ’PSO - Simplex’

approach, both calculations were implemented in this work, and the user will be

able to select them freely in the interface. The advantage of the serial approach is

that it allows the generation of proper parametric and statistical analysis, as well

as scatter points evaluations.

3.3 Parameter Estimation

For the purposes of this work there will be five different approaches to the

objective function:

� Parameter estimation of a pure compound using vapour pressure and liquid

density data.

� Binary parameter estimation using compositions in liquid-liquid equilibrium.

� Parameter estimation of a pure compound using simultaneously vapour

pressure, liquid density and liquid-liquid equilibrium compositions (binary

mixture between an associating and a non-associating compound).

� Binary parameter estimation using pressure calculation (for vapour-liquid

equilibrium).

� Binary parameter estimation using water content calculation in a

multicomponent mixture (containing obligatorily water and at least one more

compound).

3.3.1 Pure Components

In this case, the calculated variables studied are the saturation vapour pressure

(P ) and the liquid density (ρ) of a pure component. Thus, the objective function

becomes (Equations (3.30) and (3.31)):

S(XP ) =
1

ne

[
ne∑
i=1

(P e
i − P ∗i )2

σ2
P,i

+
ne∑
i=1

(ρei − ρ∗i )2

σ2
ρ,i

]
+ FW (W,XP ) (3.30)

XP =

{
[a0 b c1 c2 c3]

T IF not CPA

[a0 b c1 ε/R β]T IF CPA
(3.31)
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In addition to the original expression in Equation (2.35), in this work an extra

restriction FW (W,XP ), related to the critical region behaviour of the system, are

implemented, with W being the weights defined by the user. Therefore, this

restriction takes the form of a penalization function.

The original values of a0 and b of the cubic equations of state (Equations (2.4)

and (2.5)) were calculated based on the restrictions dictated by Equation (2.3).

However, when these parameters become freely manipulated, such restrictions

are violated, so they were inserted in the objective function as can be seen in

Equation (3.32), transforming them into dimensionless terms and squaring them

to avoid negative values.

FW (W,XP ) = w1

[
Vc
Pc

(
∂P

∂V

)
T=Tc

]2
+ w2

[
V 2
c

Pc

(
∂2P

∂V 2

)
T=Tc

]2
(3.32)

The weights W = [w1 w2]
T are specified by the user. It is important to

emphasize that no relevant publication has been found regarding this parameter

estimation procedure as described in this work. Therefore, adding the critical region

penalization effect term in the metric is a potential contribution of this work to the

academic community.

The general algorithm can be seen on Figure 3.2.

Read 𝑃𝑒 , 𝜌𝑒 , 𝑋, 𝐸𝑜𝑆, 𝐶𝑜𝑚𝑝, 𝜎𝑖 , 𝜎𝑖
′, 𝑤1, 𝑤2, initialize 𝑆 = 0

Evaluate 𝑃𝑖
∗, 𝑍𝑙𝑖𝑞 = 𝑃𝑆𝐴𝑇 𝐶𝑜𝑚𝑝, 𝑇𝑖 , 𝐸𝑜𝑆, 𝑋

Did it converge?

For 

𝑖 = 1,… , 𝑛𝑒

𝜌𝑖
∗ = Τ𝑃𝑖

∗ 𝑅𝑇𝑖𝑍𝑙𝑖𝑞
𝑖𝑓 𝜎𝑖 = 0 𝑡ℎ𝑒𝑛 𝜎𝑖 = 𝑃𝑖

𝑒

𝑖𝑓 𝜎𝑖
′ = 0 𝑡ℎ𝑒𝑛 𝜎𝑖

′ = 𝜌𝑖
𝑒

𝐹𝑃 = Τ𝑃𝑖
𝑒 − 𝑃𝑖

∗ 𝜎𝑖
2

𝐹𝑅 = Τ𝜌𝑖
𝑒 − 𝜌𝑖

∗ 𝜎𝑖
′ 2

𝑆 = 𝑆 + 𝐹𝑃 + 𝐹𝑅

𝑉𝑐 = Τ𝑅𝑇𝑐𝑍𝑐 𝐶𝑜𝑚𝑝, 𝐸𝑜𝑆, 𝑋 𝑃𝑐
Τ𝑑𝑃 𝑑𝑉 𝑇=𝑇𝑐 , Τ𝑑2𝑃 𝑑𝑉2 𝑇=𝑇𝑐 = 𝐷𝑃𝐷𝑉𝐶 𝐶𝑜𝑚𝑝, 𝐸𝑜𝑆, 𝑋

𝑑𝑃1 = Τ𝑉𝑐 𝑃𝑐 Τ𝑑𝑃 𝑑𝑉 𝑇=𝑇𝑐

2
;𝑑𝑃2 = Τ𝑉𝑐

2 𝑃𝑐 Τ𝑑2𝑃 𝑑𝑉2 𝑇=𝑇𝑐

2

𝐹𝑊 = 𝑤1𝑑𝑃1 + 𝑤2𝑑𝑃2

Yes No

𝑆 = 1𝑒15
Exit subroutine

𝑆 = 𝑆/𝑛𝑒 + 𝐹𝑊
Exit subroutine

Penalizations?

Yes 𝑆 = 𝑆/𝑛𝑒
Exit subroutine

No

Figure 3.2: Algorithm to evaluate objective function of pure component case.
’PSAT’ and ’DPDVC’ are internal functions, dependent to the temperature
(T), thermodynamic model (EoS), component critical properties (Comp) and
manipulated variables.

This approach needs the following data to accomplish the parameter estimation:

� Critical properties (Tc, Pc and ω);
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� Experimental temperature data (T );

� Experimental pressure data (P e) and their variances (σP ), if available;

� Experimental liquid density data (ρe) and their variances (σρ), if available

(optional).

If there is no liquid density data available, calculations may proceed using only

pressure as calculated variable. Also, the penalization effect is optional and the

user is able to add or remove it in the interface, as will be explained in details in

Chapter 4.

The experimental variances are not obligatory data either. If the user does not

wish to enter their values, there will be an option to allow that σP,i = P e
i and

σρ,i = ρei (i.e. the respective experimental variables). This applies to all metrics

described here.

Thus, with these data, the saturation pressure is calculated in order to satisfy

Equation (3.1), where the phases α and β are, respectively, liquid and vapour.

Density can be calculated as the inverse of the molar volume.

Also, if the user activated the penalization effect, the program will then

calculate the critical volume and the necessary derivative properties, according to

Equation (3.32), adding them to the objective function.

If the pressure calculation does not converge, the program will automatically

return a very high value to the objective function (currently it is equal to 1015).

3.3.2 Binary Mixtures by Liquid-liquid Equilibrium

Calculation

This case is similar to the previous metric, with the main difference being the

calculated variables in the objective function, related to the liquid-liquid equilibrium

(LLE) of the system, calculated by the algorithm described in the Section 3.1.2.

Also, there is no penalization function, i.e. FW (W,XP ) = 0. Therefore, the

objection function is calculated by Equation (3.33) and, with the estimable variables

indicated in Equation (3.34). Among the available EoS in the program, only the

CPA can perform this calculation.

S(XP ) =
1

ne

[
ne∑
i=1

(xeI−II,i − x∗I−II,i)2

σ2
xI−II ,i

+
ne∑
i=1

(xeII−I,i − x∗II−I,i)2

σ2
xII−I ,i

]
(3.33)

XP = [k12,0 k12,1 εcross12 /R βcross12 ]T (3.34)
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As stated in the Section 3.1.2, the LLE calculations do not depend on the global

composition of the liquid. Then, with these data, the compositions of each liquid

phase in equilibrium can be calculated according to Equations (3.7) and (3.8).

The algorithm is shown in Figure 3.3.

Read 𝒙𝐼−𝐼𝐼
𝑒 , 𝒙𝐼𝐼−𝐼

𝑒 , 𝑿, 𝐸𝑜𝑆, 𝐶𝑜𝑚𝑝𝑠, 𝝈𝑥𝐼−𝐼𝐼 , 𝝈𝑥𝐼𝐼−𝐼 , 𝑻, 𝑷, initialize 𝑆 = 0

𝑃𝑖 = 𝑃𝐵𝑈𝐵 𝐶𝑜𝑚𝑝𝑠, 𝑇𝑖 , 𝐸𝑜𝑆, 𝑋

Did it converge?

For 

𝑖 = 1,… , 𝑛𝑒

𝑖𝑓𝜎𝑥𝐼−𝐼𝐼,𝑖 = 0 𝑡ℎ𝑒𝑛 𝜎𝑥𝐼−𝐼𝐼,𝑖 = 𝒙𝐼−𝐼𝐼
𝑒

𝑖𝑓𝜎𝑥𝐼𝐼−𝐼,𝑖 = 0 𝑡ℎ𝑒𝑛 𝜎𝑥𝐼𝐼−𝐼,𝑖 = 𝒙𝐼𝐼−𝐼
𝑒

𝐹𝐼−𝐼𝐼 = ൗ𝒙𝐼−𝐼𝐼,𝑖
𝑒 − 𝒙𝐼−𝐼𝐼,𝑖

∗ 𝜎𝑥𝐼−𝐼𝐼,𝑖
2

𝐹𝐼𝐼−𝐼 = ൗ𝒙𝐼𝐼−𝐼,𝑖
𝑒 − 𝒙𝐼𝐼−𝐼,𝑖

∗ 𝜎𝑥𝐼𝐼−𝐼,𝑖
2

𝐹𝑜𝑏𝑗 = 𝐹𝑜𝑏𝑗 + 𝐹𝐼−𝐼𝐼 + 𝐹𝐼𝐼−𝐼

Yes

No

𝑆 = 1𝑒15
Exit subroutine

𝑆 = 𝑆/𝑛𝑒
Exit subroutine

𝑃𝑖 > 0 ?
Yes No

𝑃𝑖 = max
𝑗

𝑃𝑆𝐴𝑇 𝐶𝑜𝑚𝑝𝑗 , 𝑇𝑖 , 𝐸𝑜𝑆
𝑥𝐼−𝐼𝐼,𝑖
∗ , 𝑥𝐼𝐼−𝐼,𝑖

∗ = 𝐿𝐿𝐸 𝐶𝑜𝑚𝑝𝑠, 𝑃𝑖 , 𝑇𝑖 , 𝐸𝑜𝑆, 𝑋

Did it converge?

Yes No

Figure 3.3: Algorithm of the objective function calculation of the binary mixture
case in LLE. ’PBUB’ calculates bubble pressure of the system and ’PSAT’ calculates
the saturation pressure of a pure component.

It is not uncommon that experimental data on LLE do not explicit the pressure

of the system. In these cases, the program may calculate the bubble pressure of

an equimolar mixture of the compounds. If this calculation does not converge

either, then the highest pure component’s saturation pressure will be applied in the

calculation of the liquid compositions. Thus, the required data for this approach

are:

� Components 1 and 2’s pure parameters and critical data.

� Experimental temperatures (T ).

� Experimental pressures (P e
i , optional).

� Experimental composition data of component 1 in phase rich in component

2 (xeI−II) and vice-versa (xeII−I), as well as their variances (σxI−II
and σxII−I

,

respectively), if available.
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3.3.3 Validating Pure Component Parameters with LLE

Data

As described in the Section 2.3, several authors recommended to use LLE

calculations with specific compounds to select the best parameters for pure

components. This work proposes an improvement to this analysis, in order

to automate it. It consists in unifying both previous objective functions into

Equation (3.35).

S(XP ) = Spure(XP1) + ωSLLE(XP2) (3.35)

Spure is the objective function defined by Equation (3.30), SLLE is the objective

function defined by Equation (3.33) and ω is a user-defined weight. All pure (XP1)

and binary (XP2) parameters can be manipulated at once in this approach, i.e.

XP = [XP1 XP2]. The methodology proposed is as follows:

1. Select the range of temperatures of the experimental points to calculate Spure.

2. Generate a set of pure parameters using the approach in the Section 3.3.1.

Both optimization methods PSO and Simplex are required.

3. Choose a second component to calculate SLLE. Usually aliphatic hydrocarbons

are chosen (e.g. n-hexane or n-heptane), provided there are available

experimental data.

4. Generate a set of binary parameters using the approach in the Section 3.1.2,

with the parameters obtained in Step 2. Both optimization methods PSO

and Simplex are required.

5. Select the initial weight ω0 (it is recommended to be << 1), the final weight

ωF and the number of calculations n.

6. Make ∆ω ≡ (ωF − ω0)/n.

7. Generate a new set of parameters using Equation (3.35) for ω = ω0, using only

the method Simplex with the parameters found in Steps 2 and 4 as an initial

guess.

8. Make ω = ω0 + ∆ω

9. Generate a new set of parameters using Equation (3.35) for ω, using only the

method Simplex. Use the set of parameters obtained in the previous step as

an initial guess to this step.

10. Return to Step 8 until ω = ωF .
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From this method, it is possible to analyse the behaviour of Spure and SLLE for

various values of weight, enabling the generation of Pareto analyses. Also, once there

is an initial guess relatively close to the solution, the Simplex method can be used

without a previous global search, greatly accelerating the calculations. Thus, this

can be considered a major contribution of this work to the academic community.

In Chapter 5 the VLE-LLE Methodology will be properly validated and results for

some components will be shown and discussed.

3.3.4 Binary Mixtures by Bubble or Dew Pressure

Calculation

As for the case with the LLE metric, FW (W,XP ) = 0. Also, there is only

one calculated variable, which is the pressure of the system, as can be seen on

Equations (3.36) and (3.37):

S(XP ) =
1

ne

ne∑
i=1

(P e
i − P ∗i )2

σ2
P,i

(3.36)

XP =

{
[k12,0 k12,1]

T IF not CPA

[k12,0 k12,1 εcross12 /R βcross12 ]T IF CPA
(3.37)

The pressure can be calculated as bubble or dew, depending on the available

composition data, whether they are from liquid phase or vapour phase. If both are

available, the user can choose the type of calculation in the interface. The algorithm

is similar to the pure component case, as shown in Figure 3.4.

Read 𝑦1
𝑒 , 𝑋, 𝐸𝑜𝑆, 𝐶𝑜𝑚𝑝𝑠, 𝜎𝑖, initialize 𝑆 = 0

Evaluate 𝑃𝑖
∗ = 𝑃𝐵𝑈𝐵−𝐷𝐸𝑊 𝐶𝑜𝑚𝑝𝑠, 𝑇𝑖 , 𝐸𝑜𝑆, 𝑋

Did it converge?

For 

𝑖 = 1,… , 𝑛𝑒
𝑖𝑓 𝜎𝑖 = 0 𝑡ℎ𝑒𝑛 𝜎𝑖 = 𝑃𝑖

𝑒

𝐹𝑃 = Τ𝑃𝑖
𝑒 − 𝑃𝑖

∗ 𝜎𝑖
2

𝐹𝑜𝑏𝑗 = 𝐹𝑜𝑏𝑗 + 𝐹𝑃

Yes No

𝑆 = 1𝑒15
Exit subroutine

𝑆 = 𝑆/𝑛𝑒
Exit subroutine

Figure 3.4: Algorithm of the objective function calculation of the binary mixture
case from the bubble or dew pressure of the system (Section 3.1.1). ’Comps’ contains
the components’ critical properties and EoS parameters.
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Therefore, the data required in this approach are:

� Components 1 and 2’s pure parameters and critical data;

� Experimental temperature data (T );

� Experimental pressure data (P e
i ) and their variances (σP ), if available;

� Experimental composition data of component 1 (if x1, bubble calculations are

performed; if y1, dew calculations are performed; if both, the user decides the

type of pressure calculation).

With these data, bubble or dew pressures are also calculated in order to satisfy

Equation (3.1), where the phases α and β are, respectively, liquid and vapour.

3.3.5 Multicomponent Mixtures by Water Content

Calculation

In this case there is also only one calculated variable, which is water content in

dew point, as previously described in the Section 3.1.3. As in the binary calculations,

the penalization function FW (W,XP ) = 0.

Hence, the objective function is given by Equation (3.38), with the estimable

variables by Equation (3.39).

S(XP ) =
1

ne

ne∑
i=1

(yeH2O − y∗H2O)2

σ2
y,i

(3.38)

XP =

{
[ki−water,0 ki−water,1]

T IF not CPA

[ki−water,0 ki−water,1 εcrossi−water/R βcrossi−water]
T IF CPA

(3.39)

The user is allowed to choose which pair(s) whose parameters are desired to be

estimated, as long as one of the components of the pair is water. Figure 3.5 shows

how this objective function is implemented.

The input data required in this approach are:

� All components’ pure parameters and critical data.

� All non-estimated binary parameters.

� Binary parameters to be estimated.

� Experimental temperature data (T ).

� Experimental pressure data (P ).
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Read 𝑦𝐻2𝑂
𝑒 , 𝑋, 𝐸𝑜𝑆, 𝐶𝑜𝑚𝑝𝑠, 𝜎𝑖, initialize 𝑆 = 0

𝑦𝐻2𝑂
𝑀𝑎𝑥[%] = max 2𝑦𝐻2𝑂,𝑖

𝑒𝑥𝑝
, 1 ; 𝑦𝐻2𝑂

𝑀𝑖𝑛 = 10−6[%]

Evaluate 𝑦𝐻2𝑂,𝑖
∗ [%] = 𝑋𝐻2𝑂 𝐶𝑜𝑚𝑝𝑠, 𝐸𝑜𝑆, 𝑇, 𝑃, 𝑦𝑑𝑔, 𝑋, 𝑦𝐻2𝑂

𝑀𝑎𝑥 , 𝑦𝐻2𝑂
𝑀𝑖𝑛

Did it converge?

For 

𝑖 = 1,… , 𝑛𝑒

𝑖𝑓 𝜎𝑖 = 0 𝑡ℎ𝑒𝑛 𝜎𝑖 = 𝑦𝐻2𝑂,𝑖
𝑒

𝐹𝑌 = Τ𝑦𝐻2𝑂,𝑖
𝑒 − 𝑦𝐻2𝑂,𝑖

∗ 𝜎𝑖
2

𝑆 = 𝑆 + 𝐹𝑌

Yes No

𝑆 = 1𝑒15
Exit subroutine

𝑆 = 𝑆/𝑛𝑒
Exit subroutine

Figure 3.5: Algorithm of objective function calculation of multicomponent mixture
case using gas humidity data. ’XH2O’ is an internal function of the program,
described in the Section 3.1.3. ’Comps’ is an object containing the components’
specifications, such as critical variables and EoS parameters.

� Composition of the dry gas in each point (y
DG

).

� Experimental water content data (yH2O) and their variances (σy,i), if available.

All binary parameters not filled by the user will be considered equal to zero. Also,

as only the Simplex method is executed with this metric, an initial guess is necessary.

That is why the binary parameters values to be estimated are required to this

calculation. Section 3.4 presents an example of how to initialize these parameters.

3.4 Procedure to Parameter Estimation from

Pure to Mixtures

When modelling water saturation points of natural gas streams containing high

levels of CO2 (60%) and H2S at high pressures, a proposed procedure (providing

that experimental data is available in all cases) is:

� If the pure component parameters are not available, estimate them by

Section 3.3.1, solving by PSO and Simplex, or by Section 3.3.3;

� Estimate the binary parameters of each pair by Section 3.3.2 or Section 3.3.4,

depending on the availability of the experimental data, solving by PSO and

Simplex;
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� From an initial guess composed of the previous results, re-estimate the binary

parameters of pairs containing water using Section 3.3.5, solving by only

Simplex.
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Chapter 4

Computational Aspects

This Chapter will address the details of the program written to perform the

necessary calculations to this work, showing its features, interfaces and advantages

of modelling and calculating thermodynamic properties.

4.1 Software Basis

The program developed in this work is called ThermOptimizer, or ThermOpt for

short. It has been written in two computational languages: C# and Fortran, both

using the Visual Studio environment.

Firstly, C# is an object-oriented language, most commonly used to create forms

and interface items in general. Its advantages are:

� It shows all possible methods and properties of a variable while writing it on

a code;

� Excellent error feedback, being able to track errors at real time;

� Automatic garbage memory handler, avoiding memory leakage;

� Open libraries available for free on the Internet (e.g. matrix calculations);

� Can establish connections with many other languages by .dll files, such as

Fortran.

Therefore, it was chosen to be the main interface language. The thermodynamic

calculations, however, have been written in a sturdier language such as Fortran. Its

main benefit is the management of arrays, which is faster than C#’s.

Currently, ThermOpt ’s interface is divided in three tabs: Pure Component,

Binary Mixture and Multicomponent Mixture, inside two major tabs: Input and

Output. All tabs have their own features, implemented in user-friendly interfaces.
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Besides, there are some components present in all tabs, henceforth called the

General Features of ThermOpt. In the next topics, these features will detailed.

4.2 Input Features

4.2.1 Pure Component Tab

Figure 4.1 shows the interface of this tab. It contains the following traits: Input

Data, Thermodynamic Model, Parameters to be Estimated and Objective Function.

Each feature will be detailed further in this Section.

Figure 4.1: Main features of Pure Component tab. 1) Input and experimental data.
2) Thermodynamic model used in this execution. 3) Parameters to be estimated.
4) Button to calculate objective function of a specific set of parameters, without
optimizing. 5) Objective function to be minimized. 6) Diagnostics box, progress
bar and ’abort’ button (General Features). 7) Miscellaneous functions (General
Features).

Input Data

In this field the user must insert the following information:

� Name of component. It does not have to be the real name of component.
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It acts as a means to differentiate from other components when calculating

mixtures.

� ’Is Water’ check-box. If checked, ThermOpt will consider that this component

is water, regardless of what the user named it. Some internal calculations are

specific to water, for instance some α functions described in Chapter 2.

� Critical temperature, critical pressure and acentric factor. It is important to

mind the units of measure in each field: temperatures are always shown in

Kelvin, pressures in bar and densities in kmol/m3.

� Experimental Data: list of experimental temperatures, pressures, densities and

their variances. Depending on the objective function details, some columns

will be hidden making it easy to the user visualize which inserted data is

actually used on each execution of the program.

Thermodynamic Model

In this region the user will select the thermodynamic model (equation of state

+ α function, when applicable) which will suit the parameter estimation procedure.

Currently there are three equations of state inserted: SRK (Equation (2.14)), PR

(Equation (2.17)) and CPA (Equation (2.25)). For each cubic equation, the available

α functions are: original (Equation (2.15)), Mathias-Copeman (Equation (2.19)) and

modifications specially made for water (SRK: Equation (2.20); PR: Equation (2.21)).

As for the CPA EoS, the only option available is a modified Mathias-Copeman

equation with c2 = c3 = 0.

Each time the user changes the equation of state or the α function, the interface

will change dynamically in order to help the visualization of the system. Figures 4.2

and 4.3 show these interfaces.

Another option available only for cubic equations is to fix the parameters a0

and b to their original values, calculated by critical properties. This option does

not appear for CPA because it does not have ’original parameters’, they have to be

estimated instead. When this option is checked, Figure 4.4 is shown.
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Peng-Robinson

Equation of State

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎0𝛼 𝑐1, 𝑇𝑟
𝑉 𝑉 + 𝑏 + 𝑏 𝑉 − 𝑏

Soave-Redlich-Kwong

Equation of State

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−
𝑎0𝛼 𝑐1, 𝑇𝑟
𝑉 𝑉 + 𝑏

Cubic-Plus-Association

Equation of State

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−
𝑎0𝛼 𝑐1, 𝑇𝑟
𝑉 𝑉 + 𝑏

−
𝑅𝑇𝑔𝑋𝐴
2𝑉

𝑋𝐴 ≡

𝐴𝑖

1 − 𝑋𝐴𝑖 = 𝑓 Δ, 𝑉

Δ = 𝑏𝛽𝑔 𝑉 exp
𝜀

𝑅𝑇
− 1

Figure 4.2: Interfaces of each Equation of State implemented in ThermOpt.

Original

Alpha Function

𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1 1 − 𝑇𝑟
0.5 2

𝑐1 = 0.37464 + 1.54226𝑤 − 0.26992𝑤2

Peng et al Modification

Alpha Function

𝐼𝑓 𝑊𝑎𝑡𝑒𝑟:

𝑇𝑟
0.5 < 0.85:

𝛼 𝑐1, 𝑇𝑟 = 1.0085677 + 𝑐1 1 − 𝑇𝑟
0.5 2

−
𝑇𝑟
0.5 ≥ 0.85:

𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1
′ 1 − 𝑇𝑟

0.5 2

𝑐1
′ = 𝑐1 +

1.0085677 − 1

1 − 0.85

𝐸𝑙𝑠𝑒: 𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1 1 − 𝑇𝑟
0.5 2

Original

Alpha Function

𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1 1 − 𝑇𝑟
0.5 2

𝑐1 = 0.480 + 1.57𝑤 − 0.176𝑤2

Kabadi-Danner

Alpha Function

𝐼𝑓 𝑊𝑎𝑡𝑒𝑟: 𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1 1 − 𝑇𝑟
0.8 2

𝐸𝑙𝑠𝑒: 𝛼 𝑐1, 𝑇𝑟 = 1 + 𝑐1 1 − 𝑇𝑟
0.5 2

All Equations of State

Mathias-Copeman

Alpha Function

𝛼 𝑐, 𝑇𝑟 = [1 + 𝑐1 1 − 𝑇𝑟
0.5 + 𝑐2 1 − 𝑇𝑟

0.5 2

ሿ+𝑐3 1 − 𝑇𝑟
0.5 3 2

Peng-Robinson 

Equation of State Only

Soave-Redlich-Kwong

Equation of State Only

Figure 4.3: All α functions currently implemented into ThermOpt.

Fix a0 / b Parameters

𝑎0 =
Ω𝑎𝑅

2𝑇𝑐
2

𝑃𝑐
, 𝑏 =

Ω𝑏𝑅𝑇𝑐
𝑃𝑐

Figure 4.4: Interface shown when the option ’Fix a0 / b Parameters’ is checked.
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Parameters to be Estimated

This field is extremely important to a user-friendly interface, because it changes

dynamically as the thermodynamic model is modified. Figure 4.5 shows some

possible combinations.

Figure 4.5: Combinations of parameters to be estimated. 1) SRK or PR +
original α function; 2) SRK or PR + water-specific α functions, or CPA without
self-association; 3) SRK or PR + Mathias-Copeman α function; 4) CPA with
self-association; 5) SRK or PR + Mathias-Copeman AND a0 and b fixed; 6) SRK
or PR + water-specific α functions AND a0 and b fixed.

Besides, if the user specifies the upper and lower bounds of a variable to the same

value, it will also disappear from this interface, because this variable will become

specified instead of manipulated.

Objective Function

For the Pure Component tab, this region consists of three dynamic images,

each one referring to a term of the objective function defined on Equations (3.30)

and (3.32). The Density and Critical Region Penalization options can be turned on

or off just by clicking on them, as shown on Figure 4.6.
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1

𝑁𝑒𝑥𝑝


𝑖=1

𝑁𝑒𝑥𝑝
𝜌𝑖
𝑐𝑎𝑙𝑐 − 𝜌𝑖

𝑒𝑥𝑝 2

𝜎𝑖
2

Density Density (press to activate)

𝑤1
Vc
Pc

𝜕𝑃

𝜕𝑉
𝑇𝑐

2

+𝑤2
Vc
2

Pc

𝜕2𝑃

𝜕𝑉2
𝑇𝑐

2

Critical Region Penalization Critical Region Penalization (press to activate)

Figure 4.6: Interface appearances of Density and Critical Region Penalization terms
when turned off.

In addition to that, as detailed in Chapter 3, it is not common to have

experimental variances available on the literature, so there is the possibility to

use the own experimental points as denominators of the objective function. To

perform that, the user should click the option correspondent inside the box labelled

’Variances’: either fixed values or the experimental variables. Figure 4.7 shows how

these selections will appear in the interface.

1

𝑁𝑒𝑥𝑝


𝑖=1

𝑁𝑒𝑥𝑝
𝜌𝑖
𝑐𝑎𝑙𝑐 − 𝜌𝑖

𝑒𝑥𝑝 2

𝜎𝑖
2

Density

Pressure

1

𝑁𝑒𝑥𝑝


𝑖=1

𝑁𝑒𝑥𝑝
𝑃𝑖
𝑐𝑎𝑙𝑐 − 𝑃𝑖

𝑒𝑥𝑝 2

𝜎𝑖
2

1

𝑁𝑒𝑥𝑝


𝑖=1

𝑁𝑒𝑥𝑝
𝜌𝑖
𝑐𝑎𝑙𝑐 − 𝜌𝑖

𝑒𝑥𝑝 2

𝜌𝑖
𝑒𝑥𝑝 2

Density

Pressure

1

𝑁𝑒𝑥𝑝


𝑖=1

𝑁𝑒𝑥𝑝
𝑃𝑖
𝑐𝑎𝑙𝑐 − 𝑃𝑖

𝑒𝑥𝑝 2

𝑃𝑖
𝑒𝑥𝑝 2

Figure 4.7: Interface appearance when the user clicks on ’Experimental Point’ option
in ’Variances’ box, from the ’Fixed’ option.

4.2.2 Binary Mixture Tab

Figure 4.8 shows the interface to this tab. It also contains the features Input

Data, Thermodynamic Model, Parameters to be Estimated and Objective Function.

Each of them will be detailed further in this Section.
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Figure 4.8: Main features of Binary Mixture tab. 1) Input, experimental data
and phase equilibrium selector. 2) Thermodynamic model used in this execution,
focused on mixture and combination rules. 3) Parameters to be estimated - depend
on the EoS, combination rule and bounds given by the user. 4) Button to calculate
objective function of a specific set of parameters, without optimizing. 5) Objective
function to be minimized. 6) Diagnostics box, progress bar and ’abort’ button
(General Features). 7) Miscellaneous functions (General Features).

Input Data

In this field, the user must input the following data:

� Name and specifications of both components. If these components are available

in the Component Data Bank, then just entering their names is enough to fill

the remaining fields of this table (critical properties, EoS parameters, ...).

� Aqueous component. Select which component is water (regardless of its name):

Component I, Component II or neither.

� Phase equilibria. Select whether VLE or LLE calculations are to be conducted.

Note that LLE calculations are available only for CPA EoS.

� Experimental data. List of the experimental temperature, pressure,

compositions data and their variances, if needed. Analogously to the Pure
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Component Tab, some columns will be hidden depending on the format of

the objective function. The intention is to facilitate the visualization which

inserted data is actually used on each execution of the program.

Thermodynamic Model

In this region, the user can select the EoS and the α function which will suit the

parameter estimation procedure, in the same way as in the Pure Component Tab.

The difference lies on the combining rules for CPA model, where the user can select

depending on the mixture to be studied:

� Elliott/CR-1. Uses the CR-1 Combination Rule (Equations (2.31) and (2.32)).

Used on mixtures of two self-associating components where this rule can

be used without great deviations, or on mixtures where at least one of

the components is non-associating at all (e.g. water + ethanol, or water

+ n-hexane). The Elliott Combining Rule (ECR, Equation (2.33)) is an

implementation for future versions of ThermOpt.

� Solvating Effect. Makes use of Equation (2.31) and manipulates the parameter

βAiBj . Used on mixtures with a self-associating and a non self-associating

compound that performs cross association in this mixture (e.g. water +

benzene).

� Modified CR-1. Manipulates both cross association parameters εAiBj and

βAiBj . Used on mixtures of two self-associating components or mixtures

described on Solvating Effect item, in order to improve predictions by adding

parameters to the optimization.

Each time the user changes the EoS or the combining rule, the interface will also

be modified dynamically in order to facilitate the visualization.

Parameters to be Estimated

As in the Section 4.2.1, this field changes dynamically as the thermodynamic

model’s options are adjusted. Figure 4.9 shows some possible combinations.
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Figure 4.9: Possible combinations of parameters to be estimated in the Binary
Mixture tab. 1) CPA EoS + Modified CR-1 option; 2) CPA EoS + Solvation Effect
option; 3) CPA EoS + ECR/CR-1 option or PR/SRK EoS; 4) Same as (3), but
with both limits of variable kij,1 equal to zero, forcing kij to be constant.

Objective Function

For the Binary Mixture tab, it consists on one dynamic image for VLE option

or another dynamic image for LLE option (see Figures 4.10 and 4.11).

Figure 4.10: Objective function interface for VLE case in Binary Mixture tab. The
user can select the type of pressure calculation - bubble or dew.

Figure 4.11: Objective function interface for LLE case in Binary Mixture tab.

As for the variances, there are three options available:

� Experimental Point. The objective function is normalized by own experimental

points.
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� Provided manually. The user will insert the variances.

� None. All variances will be equal to 1.

4.2.3 Multicomponent Mixture Tab

Figure 4.12 shows the interface to this tab. Analogously to the previous tabs,

it contains Input Data, Thermodynamic Model and Objective Function, but the

parameters to be estimated are shown in a separate interface, inside the ’Binary

Parameters...’ button. Each feature will be detailed further in this Section.

Figure 4.12: Main features of Multicomponent Mixture tab. 1) Input data for each
component. 2) Experimental data needed. 3) Thermodynamic model used in this
execution. 4) Button that adds manually a new component to the system. 5) Select
parameters and check the objective function of a specific set of parameters, without
optimizing. 6) Objective function to be minimized. 7) Diagnostics box, progress
bar and ’abort’ button (General Features). 8) Miscellaneous functions (General
Features).

Input Data & Thermodynamic Model

In this field, the user must input the following data:

� Name and parameters of all components in the mixture, with the first one

obligatorily being the water. As in the Binary Mixture tab, if these components
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are available in the Component Data Bank, then just entering their names is

enough to fill the remaining fields of this table. The ’Add Component...’

button can be used to add as many components as the user needs.

� All available experimental temperatures, pressures, water content and dry

gas compositions. As already stated, the variance of the water content is

an optional variable;

� The binary parameters matrix and combination rule of each pair, accessed

when pressing the ’Binary Parameters...’ button. Figure 4.13 shows an

example of this interface.

Figure 4.13: Interface formed when pressing the button ’Binary Parameters...’ in
the Multicomponent Mixture tab. It is important to notice that, although the
parameters of all pairs are editable, only the ones containing water can be selected
to manipulate in the optimization. Also, the user can check the objective function,
the deviations and the graphs formed by the parameters to be input in this screen.

Finally, the thermodynamic model region in this tab has the sole purpose of

showing the EoS to the user, depending on the model chosen. The combining rules

are selected in the ’Binary Parameters...’ screen, as stated previously. Besides, the

details of the water content calculations are not shown in the interface due to its

complexity, as described in Section 3.1.3.

Objective Function

In this tab, the objective function has the most simple interface, consisting of

only one dynamic image, related to the Equation (3.38).
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Analogously to the previous tabs, the variances can be inserted manually in the

input data or they can be equal to the respective experimental value of yh2O.

4.3 Output Features

These features are divided in three main groups: output results, plots and tables.

4.3.1 Output Results

These results consist of grids containing the main results of an estimation.

Depending on the case, there are some possible combinations, as shown in

Figures 4.14 to 4.18.

Figure 4.14: Result’s grid of a pure component estimation of water using CPA
equation of state without penalization, showing parameters, objective function,
average deviation of each variable and number of iterations of each method. The
first line contains results for bank component parameters, if present. As there is
no ’Water’ component in the bank, it contains the original parameters instead,
calculated by critical properties and acentric factor (no association). The second line
contains PSO calculated parameters and the third line contains Simplex calculated
parameters.

Figure 4.15: Result’s grid of a pure component estimation of water using SRK
equation of state + Kabadi-Danner α function. In this case, there is no ’Water0’
component in the bank, so the first line is also calculated using original parameters.
The First and Second Penalization Term columns refer to Equation (3.32) before
multiplying them to the weights.
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Figure 4.16: Result’s grid of a binary parameter estimation of pair CO2-Water by
pressure using CPA equation of state. In this case there are only the PSO and
Simplex results’ lines. It is important to notice that the column with values in bold
means that this parameter was not estimated, but calculated by a combining rule.

Figure 4.17: Result’s grid of a binary parameter estimation of the pair
n-Hexane-Water by liquid-liquid compositions metric using the CPA equation of
state.

Figure 4.18: Result’s grid of a binary parameter estimation of a gas composed by
water, CO2, H2S and methane by the water content metric using the CPA equation
of state. This consists of a Simplex optimization procedure from a predefined initial
guess.

It is important to mention that the results presented in Figures 4.14 to 4.18 are

merely explicative. The recommended procedure is detailed in Section 3.4. The

binary parameters’ initial guesses are the results of estimation using the respective

binary mixtures, calculated by pressure, if their values are not available in the

literature.
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4.3.2 Plots and Reports

ThermOpt contains various graphic analyses to help the user visualize the results.

Although many of the following examples have been taken from pure component

cases, most of them can also be applied to mixtures.

PSO Results

In Chapter 3 it was shown that all of the intermediary values of the objective

function are saved in arrays xint and Sint. These values allow ThermOpt to generate

scatter plots of each manipulated parameter, such as in Figure 4.19. Thus, the user

can check if there are multiple local minima and adjust the bounds to execute a

more efficient optimization. Also, these plots are coloured by a heat map, varying

from red (highest objective function values) to blue and then black (lowest objective

function values).

Figure 4.19: Example of scatter plot. Parameter a0 versus objective function
evaluations calculated for water using CPA equation of state. All graphics can
be zoomed freely to analyse local minima region. The maximum objective function
value can be fixed, manipulating the heat color map to make the visualization easier.

Another possible PSO result plot is the parametric analysis, which is similar to

the scatter plot. The difference lies on the fact that, in this case, both x-axis and

y-axis are composed of manipulated parameters. Figure 4.20 shows an example from

the same calculation as Figure 4.19.

The parametric analysis is useful to perform statistical studies. The maximum

value of the objective function, to be used as a criterion to select the parameter sets

calculated from the PSO, can be specified or calculated from statistical tests such

as chi-square or t-student.
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Figure 4.20: Example of parameter analysis. Parameter a0 versus b, calculated for
water using CPA equation of state. This plot shows clearly that possible solutions for
the parameter b lie on a narrow range, being in agreement with KONTOGEORGIS
et al. (2006a).

Statistical Report

As mentioned earlier in this Section, statistical analyses can be performed from

the values stored in xint and Sint. From them it is possible to predict bounds for the

estimable parameters inside which the optimized value would probably be. Thus,

the following calculations were implemented for the Pure Component Tab regarding

the statistical report:

� A confidence interval analysis, in which the chi-square test (SCHWAAB and

PINTO, 2007) was implemented. The user inputs the desired confidence

interval CI, and the program calculates the maximum value of the objective

function Smax, as in Equation (4.1):

Smax =
χ2(Prob)

ne
(4.1)

Where χ2(Prob) is the value of the chi-square expression which results in a

probability Prob = 0.5(1 +CI), and ne is the number of experimental points.

This analysis can only be done when the objective function contains only one

term (saturation pressure) and all variances are equal. The program searches

in the PSO intermediate values with S <= Smax and reports the parameters’

limits and deviations.

� A maximum error analysis, when both terms of the objective functions

are active. This analysis takes advantage of the fact that pure parameter
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estimations in the literature usually consider correlated data such as

DIPPr (DIADEM, 2004), all of which reporting maximum deviations for each

expression. SANTOS et al. (2015c) discussed in their work an expression for

the objective function when the user knows the maximum errors for each

variable. Applying them to the Equation (3.30), Equation (4.2) is formed:

Smax = Err2max,P + Err2max,ρ (4.2)

where Errmax,P and Errmax,ρ are the maximum deviations for saturation

pressure and liquid density, respectively. Thus, it has been made possible

to generate a similar report for this generalized case.

Figure 4.21 presents the layouts of both reports.

(a) (b)

Figure 4.21: Examples of statistical reports generated by ThermOpt regarding
a parameter estimation of water using the SRK EoS with the Kabadi-Danner α
function. (a) Chi-square test with confidence interval equal to 95%. (b) Maximum
error analysis with Errmax,P = Errmax,ρ = 1.0%.

Simplex Results

Saving intermediary values of the objective function into xint and Sint also made

it possible to generate analogous graphics for the Simplex method (Figure 4.22).

Also, even though this is a result of a ’refining’ of the PSO method, it is possible

the final solution to be far from the initial guess, depending on the expansion factor

of the Simplex selected by the user.
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Figure 4.22: Parameter a0 values versus the objective function, calculated for water
using CPA EoS, in a Simplex method executed just after the PSO from figures 4.19
and 4.20.

General Results

Besides intermediary results, it is possible to view graphics regarding the final

solution, such as phase equilibrium variable deviations [%], saturation curves and

experimental versus calculated variables. Figures 4.23 to 4.27 show examples of each

case.

(a) (b)

Figure 4.23: Pressure (a) and density (b) deviations [%] for water calculated by
CPA equation of state. Experimental data from DIPPr (DIADEM, 2004).
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(a) (b)

Figure 4.24: Experimental versus calculated values of pressure (a) and density
(b) calculated for water using CPA equation of state. Experimental data from
DIPPr (DIADEM, 2004).

Figure 4.25: Saturation curve – reduced temperature versus pressure – calculated
for water using CPA equation of state. Experimental data from DIPPr (DIADEM,
2004).
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Figure 4.26: Chart reporting liquid-liquid equilibria compositions versus
temperature of the binary mixture n-Hexane-Water, calculated by CPA equation
of state with kij = 0 and water parameters from KONTOGEORGIS et al. (1999),
comparing to experimental data (TSONOPOULOS and WILSON, 1983).

Figure 4.27: Chart reporting dew pressures versus water content of the mixture
CO2-Water, calculated by CPA equation of state using kij = 0 and βAiBj =
βwater = 0.0692, with water parameters from KONTOGEORGIS et al. (1999) and
T = 348.15K. Experimental data are from VALTZ et al. (2004).
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4.3.3 Tables

For each case described in Section 4.3.2 there is a table with all values used

or calculated. They can be promptly copied to an Excel sheet, for example.

Figure 4.28 to 4.30 show the tables corresponding to aforementioned cases for the

pure component.

Figure 4.28: Variables table for the PSO results case mentioned on Section 4.3.2.
Number of ’Total Function Evaluations’ stands for the number of converged objective
function evaluations.

Figure 4.29: Variables table for the Simplex results case mentioned on Section 4.3.2.
Again, number of ’Total Function Evaluations’ stands for the number of converged
objective function evaluations.
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Figure 4.30: Variables table for general results (phase equilibrium variables) case
described in the Section 4.3.2.

4.4 General Features

4.4.1 Diagnostics Region

It consists of the following components:

� A rich text-box containing messages about the calculation progress, or

intermediate values of the objective function if selected on ’Options’ window;

� Progress bars exhibiting in which iteration the program is compared to total;

� An ’Abort Calculations’ button for emergencies. It is possible to click on this

button to stop the execution and input the right data if a mistake is identified.

This region is visible in all tabs, either pure or mixtures, input or output.

4.4.2 Miscellaneous Region

This menu consists of general commands. It appears in all tabs of the program.

They are:

Load/Save

With commands, one can load or save the input data from or to a .txt file. In the

current version, these files have specific formats, with words separated by tabulation

(’Tab’ button of keyboard), as can be seen below. Also, Figures 4.31 to 4.34 show

examples of the input files for each case.
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� For a pure component (the created file will be saved in ’Pure’ folder):

Name [Component name]

unitT [Temperature units – C, F, K or R. Default: K]

unitP [Pressure units – kPa, Pa, atm or bar. Default: bar]

Tc [Critical temperature value in unitT ]

Pc [Critical pressure value in unitP ]

w [Acentric factor value]

Texp Pexp Rhoexp

[Experimental temperatures] [Experimental pressures] [Experimental densities

(currently fixed in kmol/m3)]

Figure 4.31: Example of input .txt file of a pure component. Note that experimental
values can be copied directly from an Excel sheet, and any text written after the
character ’%’ will not be read, being used to comment the data.

� For binary pairs with VLE calculations (the created file will be saved in

’Binary’ folder):

Component1 [name of component 1 – if it is water then it must end with ’*’]
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Component2 [name of component 2 – if it is water then it must end with ’*’]

unitT [Temperature units – C, F, K or R. Default: K]

unitP [Pressure units – kPa, Pa, atm or bar. Default: bar]

VLE

Texp Pexp x1 y1

[experimental temperatures] [experimental pressures] [experimental liquid

composition of component 1] [experimental vapour composition of component

1]

Figure 4.32: Input .txt file to a binary pair CO2 - water with VLE data. Note that
any text written after the character ’%’ will not be read, being used to comment
the data.

� For binary pairs with LLE calculations (the created file will be saved in ’Binary’

folder):

Component1 [name of component 1 – if it is water then it must end with ’*’]

Component2 [name of component 2 – if it is water then it must end with ’*’]

unitT [Temperature units – C, F, K or R. Default: K]

unitP [Pressure units – kPa, Pa, atm or bar. Default: bar]
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LLE

Texp Pexp xI-II xII-I

[experimental temperatures] [experimental pressures] [experimental

composition of component 1 in phase rich in component 2] [experimental

composition of component 2 in phase rich in component 1]

There is no need to insert each pure component’s parameters because

ThermOpt will look for it inside the Component Data Bank, if available.

Figure 4.33: Input .txt file to a binary pair water - n-hexane with LLE data. Also,
as pressure is not an obligatory variable, it is acceptable to have gaps in this field.

� For multicomponent mixtures (the program created file will also be saved in

’Multicomponent’ folder):

Components [Name of water component – it must end with ’*’] [Name of dry

gas component 1] [Name of dry gas component 2] [...]

unitT [Temperature units – C, F, K or R. Default: K]

unitP [Pressure units – kPa, Pa, atm or bar. Default: bar]

Texp Pexp yH2O% mol-frac-drygas

[Experimental temperatures] [Experimental pressures] [% of water in gas]

[Composition of dry gas in the same order as above]
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Figure 4.34: Input .txt file for a multicomponent mixture of water, CO2, H2S and
methane.

As a suggestion for future works, new and more efficient ways of saving input

data can be implemented.

Options

This button contains general options of the optimization solver and bounds

to all estimable parameters. Figures 4.35 shows the current visualization of the

optimization methods’ internal parameters, as explained in Chapter 3.

However, the Simplex method needed a new option, which is the size of the

initial cluster formed, in order to minimize the chances of non converging the

thermodynamic calculations, as well as to set a degree of refining related to the

initial guess (which was the solution of a PSO method). In order to find a solution

obligatorily next to the initial point, the option ’Do not go past Initial Cluster’

was implemented, substituting the previous bounds of all variables when checked.

On the other hand, when unchecked, the initial cluster formed cannot violate these

bounds.
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(a) (b)

(c)

Figure 4.35: Solvers in the ’Options’ interface of ThermOpt. (a) PSO method
solver options. (b) Simplex method solver options. (c) General options, such as
thermodynamic tolerances.

As for the option ’Show Intermediate ObjF Evaluations on Screen’, it is useful

to check in real time the progress of the optimization, and ’Estimate Using Only

Half Experimental Data’ can be used in cases where there is a vast quantity

of experimental data. In these cases, it is interesting to calculate half of the

experimental points, alternating which will be calculated or ignored, and in the

end calculate the deviations with all of the points to check whether or not the EoS

is predicting them correctly.

In addition to that, Figure 4.36 shows the visualization of all the estimable

parameter bounds of the program. In the current version, for multicomponent

mixtures, all estimating binary pairs have the same bounds, defined in this tab.
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Figure 4.36: Estimable parameter bounds inside the ThermOpt options.

Run...

This button contains all the main execution commands:

� Pure component estimation.

� Binary parameter estimation by pressure or liquid composition.

� Binary parameter estimation by water content (multicomponent mixture).

� Pure component + Binary parameter estimation by VLE + LLE methodology.

� Pure component penalization analysis.

� Pure component PSO histogram generator.

The former three commands are just direct estimation calculations, but the latter

three commands are special analyses implemented to improve the results of the pure

component parameter estimation procedure.

The combined pure component + binary parameter estimation by VLE + LLE

methodology executes the calculation according to the Section 3.3.3. There is

no dedicated interface to this procedure yet, so after the calculations ThermOpt

automatically opens a table with all the results.

Penalization analysis is a set of ’Pure component estimation’ executions with

penalization turned on, varying the weights in a mesh. See Chapter 5 for results of

this analysis.
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PSO histogram generator is a feature where, for a specified input data, a number

of independent PSO executions are performed in order to check if the solutions are

tending to the same region. It is an efficient way to check if its internal parameters

(c1, c2, w0, wf ) are well calibrated and if the method is stable. Figure 4.37 shows

an example of histogram.

Figure 4.37: Example of histogram generated, analysing the parameter a0 of water
calculated by SRK equation of state and Kabadi-Danner α function. The optimal
solution in this case lies on a0 ≈ 4.587 bar.L2/mol2.

Component Data Bank

The last feature of ThermOpt to be described in this work is a window

containing all estimated parameters for pure components by the user. When saving

pure component data, there is a sub-button called ’Output’ inside the menu (see

Figure 4.38).

Figure 4.38: Option to save results into the data bank.

This command saves estimated parameters and the equation of state used in a

.txt file in the folder named ’Bank’, with the following format:

[Name of the component – if it is water then it must end with ’*’]

[Critical temperature in K]

[Critical pressure in bar]
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[Acentric factor]

[Parameter a0 in bar.L2/mol2]

[Parameter b in L/mol]

[Parameter c1]

[Parameter ε/R in K if CPA, or parameter c2 if cubic]

[Parameter 1000β if CPA, or parameter c3 if cubic]

[CPA association scheme, if needed]

The name of the file will be ’[Name of the component - does not need to be the

same as the file] [Equation of State used].txt’. An example is shown in Figure 4.39,

by the file named ’Water CPA.txt’.

Figure 4.39: .txt file to the data bank, named ’Water CPA.txt’.
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Chapter 5

Results and Discussion

In this Chapter, the results obtained in this work will be discussed: a PSO

performance analysis; penalization analysis related to the critical point behaviour

of water using the SRK EoS; pure parameter estimation of polar components from

saturation pressure and liquid density, with subsequent validation using liquid-liquid

equilibria data to select a parameter set for water; a binary parameter estimation

using the metrics described in Chapter 3; and finally the application to a dehydration

unit using MEG, comparing the optimized results with commercial simulators.

5.1 PSO Performance Analysis

Before applying the ThermOpt to real systems, it is necessary to perform a

series of procedures to evaluate it. The first study conducted in this work was

the evaluation of the thermodynamic calculations’ speed. After each execution, the

diagnostics text-box displays the time elapsed, as shown in Figure 5.1.

Figure 5.1: Diagnostics text-box showing a result for a parameter estimation
procedure by the PSO method.

In order to perform such study, a PSO method was executed with specific options

to certify that it would use up a certain amount of iterations, so that tolerance values
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and internal factors can be ignored in all of the executions. As a consequence,

the program performs a fixed number of thermodynamic calculations, allowing this

analysis to be carried out. An example of these options in the interface is presented

by Figure 5.2.

Figure 5.2: PSO options used for performance analysis for a case with 100 max
iterations and 1 particle per iteration. The minimum number of iteration in optimum
permanence must be the same as the maximum number of iterations in order to make
the solver ignore the tolerances.

The pure component used to perform this analysis was water, whose experimental

data was taken from DIPPr correlated data (DIADEM, 2004), using 100 points from

its triple point to the critical point. The objective function used was the on defined

by the Equation (3.30), with the pressure term only and without the penalization

effect (FW = 0), using the CPA EoS.

In this Section, as the optimized parameters’ values are not relevant, the focus

was on the time elapsed. For each case in Table 5.1, the execution time presented

was calculated using the mean of three successive executions. Also, the computer

used in this test has the following features:

� Processor: Intel Core i7 2.90 GHz

� RAM Memory: 8 Gb

� Operational System: Windows 7 64 bits

It is important to notice that the calculations using the CPA EoS include a

internally implemented stability analysis in order to check if the desired phase is

found, contributing to the time consumed.
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Table 5.1: PSO performance analysis results. Each objective function (ObjF)
evaluation contains 100 saturation pressure (PSAT) calculations due to the number
of experimental data inserted.

#Iterations
#Particles
/ Iteration

#ObjF
Evaluations

#PSAT
Evaluations

Time [s]

10 1 10 1.0× 103 0.26
10 10 100 1.0× 104 2.17
50 10 500 5.0× 104 8.72
100 10 1000 1.0× 105 16.88
50 50 2500 2.5× 105 44.19
100 50 5000 5.0× 105 83.46
100 100 1.0e4 1.0× 106 169.27
200 100 2.0e4 2.0× 106 315.76
500 100 5.0e4 5.0× 106 742.72

Thus, the results from the Table 5.1 show that ThermOpt can do about 5000

thermodynamic calculations per second in the tested computer (#PSAT Evaluations

/ Time), which is a potential to do long studies such as the calculations described

in the following sections.

5.2 Pure Parameter Estimation

In this Section results for pure parameter estimation will be presented for: water

(with and without penalization effect), ethylene glycol (MEG), diethylene glycol

(DEG), triethylene glycol (TEG) and 1,2-propylene glycol (PG).

5.2.1 Penalization Analysis for Water (SRK EoS +

Kabadi-Danner α Function)

As explained in Chapter 3, it was decided to insert an optional penalization term

to the objective function described in Section 3.3.1. The goal of this implementation

was to check the tendencies of the parameter sets obtained and to select the one

that resulted in the lowest deviations from the low temperature desired up to the

critical point.

In this work, the penalization analysis was performed as a series of executions

of the parameter estimation procedure according to Equations (3.30) and (3.32)

varying the weights w1 and w2, forming a mesh. Each solution is then stored into

an array in order to show their plots after these executions.

To illustrate this study, this analysis was conducted for water. The main purpose

was to investigate the behaviour of this component using the SRK equation of state,
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along with the Kabadi-Danner α function to improve the results. Also, only the

pressure term was applied in the objective function, besides the penalty term itself,

as can be seen in Figure 5.3. Moreover, Figures 5.4 to 5.6 show the solver options

and Table 5.2 the variables’ bounds applied. Table 5.3 summarizes the experimental

data used and Table 5.4 the weights’ values.

Figure 5.3: Input interface in the case studied in the Section 5.2.1.

Figure 5.4: Thermodynamic options for the case studied in the Section 5.2.1.
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Figure 5.5: PSO options for the case studied in the Section 5.2.1.

Figure 5.6: Simplex options for the case studied in the Section 5.2.1.

Table 5.2: Parameter bounds for the case studied in the Section 5.2.1. These values
were obtained by trial and error in order to select bounds that contain all of the
possible solutions achieved in this Section.

Parameter Lower Bounds Upper Bounds

a0 [bar.L2/mol2] 4.0000 8.0000
b [L/mol] 0.01500 0.03500

c1 0.5000 1.0000

79



Table 5.3: Input summary for the case studied in the Section 5.2.1.

Data Type Saturation Pressure
Penalization Yes

Source DIPPr Correlation (DIADEM, 2004)
Variance Experimental Points
TR Range 0.42 - 1.00

∆TR 0.01

Table 5.4: Minimum and maximum weights’ values used in the Section 5.2.1, as well
as their variation between each execution (∆w).

Weight Minimum Value Maximum Value ∆w

w1 0.000 1.000e-3 2.500e-5
w2 0.000 1.000e-3 2.500e-5

For each value of w2, w1 was varied by a fraction of its range as follows: [w1, w2] =

[0, 0], [w1, w2] = [2.5e-5, 0], [w1, w2] = [5.0e-5, 0], ..., [w1, w2] = [1.0e-3,1.0e-3],

generating a total of 1681 executions.

Table 5.5 shows some of the results obtained with these values. AAP is the

average absolute deviation of the pressures, defined by Equation (5.1):

AAP =
100%

ne

ne∑
i=1

|P e
i − P ∗i |
P e
i

(5.1)

where P is the saturation pressure, ne the number of experimental points, the

superscript e means experimental data and ∗ means calculated value.

Table 5.5: Penalization analysis’ results obtained from different values of weights.
SRK-KD original parameters: calculated from critical properties and c1 proposed
by KABADI and DANNER (1985).

w1 w2
a0

[bar.L2/mol2]
b [L/mol] c1 S AAP [%]

0.0 0.0 7.4815 0.0327 0.8186 9.135e-6 0.2281
1.0e-4 0.0 6.7759 0.0280 0.7577 4.145e-5 0.3522
5.0e-4 0.0 5.9958 0.0233 0.6904 7.456e-5 0.6105

0.0 1.0e-4 5.7278 0.0218 0.6701 9.397e-5 0.8317
0.0 5.0e-4 5.6749 0.0215 0.6655 9.583e-5 0.8551

5.0e-4 5.0e-4 5.6667 0.0215 0.6647 9.624e-5 0.8543
1.0e-3 1.0e-3 5.6581 0.0214 0.6639 9.661e-5 0.8547

SRK-KD Original
Parameters

5.6113 0.0211 0.6620 2.111e-4 1.2129

When comparing to the pressure term of the metric, the penalization effect is
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strong (Table 5.5). This occurs especially for the second derivatives of the pressure,

weighted by w2. When values in order of 10−4 are applied for w2, the parameters’

values change abruptly, and the objective function values tend to increase together

with the respective deviations.

It is also important to mention that a higher value of the weights implies in an

increase of the penalization effect, and the parameter set calculated gets closer to the

SRK-KD original parameters. This is expected because, as detailed in Chapter 2,

these original parameters are the analytical solution for Equation (2.3), which is the

foundation of the penalization function FW described in Equation (3.30), showing

consistency in the results obtained.

When plotting individual pressure deviations for each case, as shown in

Figure 5.7, this effect becomes clear. Even though the AAP% when w1 = w2 = 0

(0.23 %) is lower than when w1 > 0 and w2 > 0 (up to 0.85%), the restrictions

presented in Equation (2.3) are violated (critical point region). On the other side,

when w1 > 0 and w2 > 0 the critical region is better adjusted at the cost of losing

accuracy for the other regions.

Figure 5.7: Pressure deviations for two of the cases listed in Table 5.5. Left:
w1 = w2 = 0 (AAP = 0.2281%). Right: w1 = w2 = 0.001 (AAP = 0.8547%).
Experimental data: DIPPr correlations (DIADEM, 2004). Critical temperature
used for water = 647.13 K. Images taken directly from ThermOpt.

In conclusion, there should be a compromise between the AAP% and the

accuracy near the critical point region. In ThermOpt the user can decide the

temperature range to be focused in, and whether the penalization should be applied

or not. Also, there is the possibility of performing Pareto analyses when varying w1

and w2 simultaneously, correlating them into a single weight w. We consider that

this can be a contribution from this work, since the parameters can be adjusted

specifically for each engineering application.

This study could be extended to other equations of state, specially the CPA,

for which there is no analytic solution to the critical region restrictions. Besides, a
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common limitation to this thermodynamic model is the difficulty to correctly predict

its properties near the critical point. Therefore, a set of parameters that could

satisfactorily calculate in this region without losing the overall accuracy would be

absolutely sought by the researchers.

However, due to high interactions between its parameters, this analysis becomes

particularly complex, which is out of the scope of this dissertation. With the

availability of the tool developed in this work to the academic community, a

suggestion for future works is to perform this penalization analysis for polar

components using the CPA equation of state.

5.2.2 Parameter Estimation for Polar Components Without

Penalization (CPA EoS)

The second case studied in this work is the CPA equation of state parameter

estimation of polar components. The metric used is composed of saturation

pressure and liquid density, with no penalization effects. The components selected

were ethylene glycol (MEG), diethylene glycol (DEG), triethylene glycol (TEG),

1,2-propylene glycol (PG) and water. The 4C association scheme (HUANG and

RADOSZ, 1990) was applied to all self-associating compounds, and the Table 5.6

resumes the general data used.

Table 5.6: Summary of the general data used for the parameter estimation procedure
of MEG, DEG, TEG, PG and water (CPA EoS).

Data Type Saturation Pressure and Liquid Density
Penalization No

Source DIPPr Correlations (DIADEM, 2004)
Variance Experimental Points

∆TR 0.01

The goal of this analysis was to find the optimal solution of each case, regardless

of analysing the parameter search space. Therefore, it was decided to execute the

parallel PSO + Simplex optimization (described in Chapter 3) for all the results

presented in this Section.

Figures 5.8 to 5.10 show the parameters used in the ’Options’ visualization for

each optimization method, as well as the thermodynamic specifications for these

calculations.
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Figure 5.8: PSO options used in the parameter estimation procedures executed in
the Section 5.2.2.

Figure 5.9: Simplex options used in the parameter estimation procedures executed
in the Section 5.2.2.

83



Figure 5.10: Thermodynamic options used in the parameter estimation procedures
executed in the Section 5.2.2.

Validating the Results: MEG

In the specific case of MEG, DERAWI et al. (2003) selected results using

saturation pressure and liquid density as well. Therefore, this component was used

to validate the optimization capabilities of ThermOpt. The parameters’ bounds used

are shown in Table 5.7.

Table 5.7: Parameters’ bounds used for MEG parameter estimation (CPA EoS),
obtained by a previous trial and error method.

Parameter Lower Bounds Upper Bounds

a0 [bar.L2/mol2] 5.0000 20.000
b [L/mol] 0.0300 0.0700

c1 1.0000 2.0000
ε/R [K] 1000.0 3000.0
1000β 1.0000 100.00

Table 5.8 shows the comparison between literature and calculated parameters

using the same reduced temperature range for the experimental data in each set.

AAP is calculated by Equation (5.1) and AAρ, the average absolute deviation of

the liquid densities, is defined by Equation (5.2):

AAρ =
100%

ne

ne∑
i=1

|ρei − ρ∗i |
ρei

(5.2)

where ρ is the liquid density, ne the number of experimental points, the

superscript e means experimental data and ∗ means calculated values.
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Table 5.8: Comparison between the literature parameters for MEG (DERAWI et al.,
2003) and the calculated ones from ThermOpt. The difference between ’Set 01’ and
’Set 02’ lies on the TR range of the experimental data used in each case.

Set 01 Set 02
Literature Calculated Literature Calculated

a0 [bar.L2/mol2] 7.1420 7.1404 14.697 14.691
b [mol/L] 0.0510 0.0510 0.0525 0.0525

c1 1.7333 1.7360 1.1099 1.1104
ε/R [K] 1662.7 1660.2 1215.1 1214.2
1000β 83.900 84.216 18.400 18.473
TR range 0.40 - 0.90 0.45 - 0.99
AAP [%] 1.069 1.067 1.153 1.153
AAρ [%] 0.502 0.506 0.716 0.715

Slight differences are expected between the literature and calculated parameters

due to specificities of the implementation of the saturation pressure calculation such

as tolerances, convergence criteria etc. Hence, it can be inferred that ThermOpt ’s

calculations for pure components are performed properly.

Applying to the Other Compounds (DEG, TEG, PG and water)

The same optimization approach was executed for the remaining components

studied. Table 5.9 contains the respective bounds included in the optimizer and

table 5.10 shows the results obtained by ThermOpt.

Table 5.9: Bounds for the parameters to be estimated for DEG, TEG, PG and water,
as well as their temperature range for the experimental data (DIADEM, 2004).

DEG TEG PG Water

a0 [bar.L2/mol2] 20.00 - 40.00 30.00 - 60.00 1.000 - 20.00 1.000 - 2.000
b [mol/L] 0.050 - 0.100 0.100 - 0.150 0.050 - 0.100 0.010 - 0.020

c1 0.500 - 1.500 0.500 - 1.500 0.500 - 3.500 0.500 - 1.500
ε/R [K] 1000 - 3000 1000 - 3000 1000 - 3000 1000 - 3000
1000β 0.100 - 50.00 0.100 - 50.00 10.00 - 150.0 50.00 - 150.0
TR range 0.49 - 0.86 0.49 - 0.82 0.44 - 0.77 0.42 - 0.95
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Table 5.10: Parameters estimated by ThermOpt, using saturation pressure and liquid
density, for DEG, TEG, PG and water.

DEG TEG PG Water

a0 [bar.L2/mol2] 30.499 47.480 4.4228 1.1534
b [mol/L] 0.0918 0.1312 0.0647 0.0147

c1 1.0108 1.0864 3.1473 1.2323
ε/R [K] 2274.1 2463.3 1904.5 1758.1
1000β 1.0939 0.4381 108.71 108.66

AAP [%] 0.549 0.504 1.890 0.305
AAρ [%] 0.596 0.891 1.508 1.147

As mentioned in Chapter 2, using only saturation pressure and liquid density in

the objective function are not enough to attain a set of parameters that is capable to

correctly predict the behaviour of mixtures, specially when they are in liquid-liquid

equilibrium (LLE). When applied to these mixtures, frequently the optimized set

failed to predict the experimental data (DERAWI et al., 2003). SANTOS et al.

(2015c) proposed in their publication a combination of objective functions using

VLE and LLE variables to guide this selection, weighted by a user defined number.

A slight variation of this methodology was implemented in ThermOpt to be applied

in this work, explained in details in Chapter 3.

Therefore, the parameters obtained in the Table 5.10 were used as initial guesses

to define the optimal parameters presented in the Section 5.3.

5.3 VLE + LLE Methodology for CPA EoS

Parameter Estimation

Table 5.8 evidences the steep difference between the parameters in Set 01 and Set

02 for MEG, with both of them providing low deviations from DIPPr correlations.

The reason for this lies on the large uncertainty of the DIPPr correlations (DERAWI

et al., 2003).

Hence, it is common to add LLE restrictions to the sets of parameters previously

generated (KONTOGEORGIS et al., 2006a,b). However, this ’selection’ may be

a very time consuming process. Therefore, the henceforth called the VLE + LLE

Methodology was implemented in this work to improve the effectiveness of this

procedure.

Firstly, the glycols were analysed in order to validate this procedure, and after

that this methodology was applied to water in order to select a new set of parameters

using specific criteria, besides further validating the calculations.
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The common options for all of the components studied in this Section are shown

in Figure 5.11.

Figure 5.11: Simplex options used in the parameter estimation procedures executed
in the Section 5.3.

The parameters’ bounds were also the same for all cases. In this case,

the optimization procedure consists of solely one method (Simplex) executed

repeatedly with well-defined initial guesses (Table 5.10). Consequently, large bounds

(Table 5.11) are adequate in order to limit the maximum size of the Simplex.

Table 5.11: Parameter bounds for the case studied in the Section 5.3.

Parameter Lower Bounds Upper Bounds

a0 [bar.L2/mol2] 1.0000 80.000
b [L/mol] 0.0010 1.0000

c1 0.1000 4.0000
ε/R [K] 100.00 4000.0
1000β 0.1000 200.00
kij -1.0000 1.0000

The objective function term SLLE was calculated from Equation (3.33). The

variances were considered to be the own experimental points in order to ensure that

the optimized solutions would generate the lowest possible deviations.

When applying the algorithm recommended in the Section 3.3.3, it was noted

that, in all cases, the curve formed by the objective function of the LLE term

(SLLE) versus the objective function of the pure VLE term (Spure) took the form

of rational-type functions in the positive quadrant. That is, Spure and SLLE were

inversely proportional.
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Therefore, it was possible to determine a better set of parameters by choosing

the point placed on an intermediate position, where an increase of Spure would result

in a lower decrease of SLLE and vice-versa.

5.3.1 Glycols

The selected alkane to evaluate LLE with all glycols studied in this Section was

the n-heptane (DERAWI et al., 2002).

For each compound, the following sets of parameters were chosen to the analysis:

� Set of Parameters 01 (’Set 01’). Generated by only saturation pressure and

liquid density (VLE variables). Its weight w on Equation (3.35) is equal to

zero.

� Set of Parameters 02 (’Set 02’). Obtained graphically, from an intermediate

position of the curve.

� Set of parameters 03 (’Set 03’). Calculated from the maximum allowed value of

Spure. It is obtained from the maximum errors reported by the corresponding

DIPPr correlation (DIADEM, 2004), according to Equation (5.3). These

maximum error values can be seen in Table 5.12.

Smax,pure = Err2max,P + Err2max,ρ (5.3)

Table 5.12: Maximum errors in DIPPr correlations (DIADEM, 2004) for each
studied component in the Section 5.3.1.

MEG DEG TEG PG

Error % in P SAT 3.00 10.0 10.0 5.00
Error % in ρSAT 1.00 3.00 3.00 3.00

Smax,pure 1.00e-3 1.09e-2 1.09e-2 3.40e-3

MEG

Figures 5.12 and 5.13 show the corresponding objective functions curve obtained

for MEG. The former shows the whole region analysed, from the solution of

Equation (3.35) with w = 0 (’Set 01’) to the solution where Spure = Spure,max

(’Set 03’), and the latter focus on the region where the Set of Parameters 02 was

chosen, comparing to where would be situated the literature data (DERAWI et al.,

2003).
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Figure 5.12: Pareto analysis containing both objective function terms of
Equation (3.35) for MEG, as seen throughout the studied region, showing the ’Set
01’, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al. (2003).
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Figure 5.13: Pareto analysis containing both objective function terms of
Equation (3.35) for MEG, focusing on the region where the ’Set 02’ was selected
(diamond), comparing to the actual location of the Literature Set (DERAWI et al.,
2003), marked as a square.

Also, Table 5.13 summarizes the selected sets, comparing them to the one found

in the literature. Furthermore, another set of parameters was inserted in this table,
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’Set 00’, which is the calculated set with Spure closest to the literature set, in order

to validate the methodology proposed in this work.

Table 5.13: Parameters chosen using the VLE + LLE Methodology for MEG
(Smax,pure = 1.0e − 3), comparing to the parameters from the literature (DERAWI
et al., 2003). w consists of the weight inserted on Equation (3.35).

Literature Set 00 Set 01 Set 02 Set 03

w - 0.143 0.000 0.129 0.611
a0 [bar.L2/mol2] 10.819 10.834 7.1404 10.771 11.738

b [mol/L] 0.0514 0.0514 0.0510 0.0514 0.0512
c1 0.6744 0.6730 1.7360 0.6834 0.5155

ε/R [K] 2375.8 2376.8 1660.2 2369.2 2498.6
1000β 14.100 14.054 84.216 14.381 9.8107
Spure 4.35e-4 4.33e-4 1.91e-4 4.15e-4 9.99e-4

AAP [%] 0.906 0.906 1.067 0.848 1.929
AAρ [%] 1.581 1.582 0.506 1.569 1.948

Besides, the sets presented in the Table 5.13 were compared to literature

parameters when applying to various LLE binary mixtures, as stated in Tables 5.14

to 5.17. The ’Set 00’ was excluded from these tables because their results are similar

to the literature set of parameters. In these tables, AAX∗,HC and AAXHC,∗, which

are the average absolute deviations for the compositions in LLE, are defined by

Equations (5.4) and (5.5).

AAX∗,HC =
100%

ne

ne∑
i=1

|xe∗,HC − x∗∗,HC |
xe∗,HC

(5.4)

AAXHC,∗ =
100%

ne

ne∑
i=1

|xeHC,∗ − x∗HC,∗|
xeHC,∗

(5.5)

In the subscripts, ’HC’ stands for ’hydrocarbon’ and ’*’ is the polar component,

which is MEG in this case. Also, it is important to point out that all of the binary

parameters were optimized in ThermOpt, even when they were available in the

literature, in order to standardize the comparisons.
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Table 5.14: Results for the binary mixture MEG + n-heptane (DERAWI et al.,
2002). AAXMEG,HC and AAXHC,MEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0471 0.0488 0.0471 0.0458
Sotim 4.58e-3 4.03e-1 4.71e-3 2.69e-3

AAXMEG,HC [%] 1.172 40.18 1.245 0.642
AAXHC,MEG [%] 5.351 46.04 5.415 4.030

Table 5.15: Results for the binary mixture MEG + n-hexane (DERAWI et al., 2002).
AAXMEG,HC and AAXHC,MEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0592 0.0609 0.0592 0.0586
Sotim 1.98e-2 4.02e-1 1.97e-2 2.54e-2

AAXMEG,HC [%] 11.65 38.60 11.57 13.95
AAXHC,MEG [%] 5.815 49.09 5.854 5.529

Table 5.16: Results for the binary mixture MEG + benzene (FOLAS et al., 2006b).
AAXMEG,HC and AAXHC,MEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0480 0.0251 0.0479 0.0484
βcrossij 0.0387 0.0517 0.0390 0.0331
Sotim 2.75e-2 5.75e-2 2.77e-2 2.39e-2

AAXMEG,HC [%] 3.692 11.00 3.798 2.553
AAXHC,MEG [%] 14.52 19.08 14.56 13.63

Table 5.17: Results for the binary mixture MEG + toluene (FOLAS et al., 2006b).
AAXMEG,HC and AAXHC,MEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0470 0.0244 0.0470 0.0468
βcrossij 0.0384 0.0547 0.0388 0.0324
Sotim 1.85e-2 5.12e-2 1.87e-2 1.53e-2

AAXMEG,HC [%] 4.798 6.908 4.777 5.176
AAXHC,MEG [%] 10.20 16.88 10.26 8.896

DEG

Figures 5.14 and 5.15 present the corresponding objective functions curve for

DEG, in the same way as it was shown for MEG. Also, the results of the selected
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sets, as well as the LLE binary mixture evaluation with n-heptane, can be seen in

Tables 5.18 and 5.19.
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Figure 5.14: Pareto analysis containing both objective function terms of
Equation (3.35) for DEG, as seen throughout the studied region, showing the ’Set
01’, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al. (2003)
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Table 5.18: Parameter sets chosen using the VLE + LLE Methodology for DEG
(Smax,pure = 1.09e − 2), comparing to the parameters from literature (DERAWI
et al., 2003). w consists of the weight inserted on Equation (3.35).

Literature Set 00 Set 01 Set 02 Set 03

w - 0.135 0.000 0.177 4.680
a0 [bar.L2/mol2] 26.408 26.405 30.499 25.910 22.538

b [mol/L] 0.0921 0.0921 0.0918 0.0920 0.0862
c1 0.7991 0.7985 1.0108 0.8288 0.8974

ε/R [K] 2367.4 2368.5 2274.1 2320.0 2092.9
1000β 6.4000 6.3719 1.0939 7.3901 16.990
Spure 7.80e-4 7.51e-4 8.95e-5 9.15e-4 1.08e-2

AAP [%] 1.855 1.773 0.547 2.081 6.192
AAρ [%] 1.590 1.582 0.596 1.598 7.140

Table 5.19: Results for the binary mixture DEG + n-heptane (DERAWI et al.,
2002). AAXDEG,HC and AAXHC,DEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0656 0.1585 0.0660 0.0538
Sotim 1.45e-2 9.44e-1 1.35e-2 6.60e-3

AAXDEG,HC [%] 7.100 10.42 6.416 2.518
AAXHC,DEG [%] 7.712 96.33 2.518 6.820

TEG

Figure 5.16 shows the corresponding objective functions curve for TEG

throughout the analysis, from the solution of the pure VLE case (’Set 01’) to the

solution with Spure = Spure,max (’Set 03’), and Figure 5.17 focus on the region where

the ’Set 02’ was selected in this work.

The results of the chosen sets and the LLE binary mixtures evaluations can be

seen in Tables 5.20 and 5.23. These tables present the LLE in the following mixtures:

TEG + n-heptane, TEG + benzene and TEG + toluene.

93



0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.000 0.002 0.004 0.006 0.008 0.010 0.012

O
b

je
ct

iv
e 

F
u

n
ct

io
n
 -

L
L

E

Objective Function - VLE

TEG Analysis

Calculated Sets

Literature Set

Set 01 (This Work)

Set 02 (This Work)

Set 03 (This Work)

Figure 5.16: Pareto analysis containing both objective function terms of
Equation (3.35) for TEG, as seen throughout the studied region, showing the ’Set
01’, with w = 0 (red circle). Literature Set of parameters was taken from DERAWI
et al. (2003)
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Table 5.20: Parameter sets chosen using the VLE + LLE Methodology for TEG
(Smax,pure = 1.09e − 2), comparing to the parameters from literature (DERAWI
et al., 2003). The weight w is taken from Equation (3.35).

Literature Set 00 Set 01 Set 02 Set 03

w - 0.173 0.000 0.187 11.60
a0 [bar.L2/mol2] 39.126 39.124 47.480 39.004 34.320

b [mol/L] 0.1321 0.1321 0.1312 0.1320 0.1239
c1 1.1692 1.1688 1.0864 1.1740 1.2303

ε/R [K] 1724.3 1725.1 2463.3 1717.7 1509.9
1000β 18.800 18.802 0.4381 19.256 44.659
Spure 1.56e-3 1.56e-3 1.41e-4 1.58e-3 1.09e-2

AAP [%] 3.018 3.042 0.504 3.068 6.464
AAρ [%] 1.607 1.611 0.891 1.614 6.850

Table 5.21: Results for the binary mixture TEG + n-heptane (DERAWI et al.,
2002). AAXTEG,HC and AAXHC,TEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0939 0.1339 0.0937 0.0829
Sotim 6.12e-3 6.41e-1 5.99e-3 1.96e-3

AAXTEG,HC [%] 4.542 19.58 4.490 1.233
AAXHC,TEG [%] 4.497 76.06 4.452 3.390

Table 5.22: Results for the binary mixture TEG + benzene (FOLAS et al., 2006b).
AAXTEG,HC and AAXHC,TEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0362 0.2102 0.0362 0.0323
βcrossij 0.0987 0.3191 0.0999 0.1502
Sotim 2.54e-3 4.15e-2 2.54e-3 2.91e-3

AAXTEG,HC [%] 4.459 7.906 4.467 4.731
AAXHC,TEG [%] 1.308 17.22 1.300 1.026

95



Table 5.23: Results for the binary mixture TEG + toluene (FOLAS et al., 2006b).
AAXTEG,HC and AAXHC,TEG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0374 0.0357 0.0374 0.0324
βcrossij 0.0465 0.0012 0.0471 0.0751
Sotim 8.01e-3 2.16e-1 7.85e-3 7.75e-3

AAXTEG,HC [%] 2.381 25.97 2.226 5.241
AAXHC,TEG [%] 7.279 32.21 7.260 5.807

PG

Figures 5.18 and 5.19, as well as Tables 5.24 and 5.25, show the results for PG,

attained as the former studied glycols. The only available alkane to analyse the LLE

with propylene glycol was the n-heptane.
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Equation (3.35) for PG, as seen throughout the studied region, showing the ’Set
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et al. (2003)
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Figure 5.19: Pareto analysis containing both objective function terms of
Equation (3.35) for PG, focusing on the region where the ’Set 02’ was selected
(diamond), comparing to the location of the literature set (DERAWI et al., 2003),
marked as a square.

Table 5.24: Parameters chosen using the VLE + LLE Methodology for PG
(Smax,pure = 3.40 × 10−3), comparing to the parameters from literature (DERAWI
et al., 2003). The weight w is taken from Equation (3.35).

Literature Set 00 Set 01 Set 02 Set 03

w - 11.10 0.000 0.216 238.25
a0 [bar.L2/mol2] 13.836 14.258 4.4228 13.816 14.977

b [mol/L] 0.0675 0.0687 0.0647 0.0676 0.0711
c1 0.9372 0.9288 3.1473 0.9526 0.9129

ε/R [K] 2097.8 2145.3 1904.5 2112.0 2149.1
1000β 19.000 15.870 108.72 18.067 14.818
Spure 1.32e-3 1.32e-3 2.47e-4 7.88e-4 3.40e-3

AAP [%] 1.890 2.423 1.349 1.869 2.299
AAρ [%] 1.508 2.019 0.118 1.490 4.971
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Table 5.25: Results for the binary mixture PG + n-heptane (DERAWI et al., 2002).
AAXPG,HC and AAXHC,PG are calculated from Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0320 0.0549 0.0318 0.0448
Sotim 5.72e-3 7.03e-1 5.53e-3 5.31e-3

AAXPG,HC [%] 3.288 83.39 2.959 2.470
AAXHC,PG [%] 6.133 6.480 6.112 5.983

Discussion

Based on the results obtained, it is possible to infer that the VLE + LLE

Methodology implemented in ThermOpt succeeded in systematically finding a wide

range of CPA sets of parameters which fit satisfactorily the DIPPr correlations as

well as LLE experimental data with n-heptane.

Moreover, for MEG, DEG and TEG one of the sets (’Set 00’) obtained was similar

to the literature counterpart. It has been presented in the results to emphasize that

using the methodology proposed in this work it was possible to find, among others,

the parameter set presented in the literature depending only on the user’s selection

criteria.

The only exception lied on the propylene glycol, whose ’Set 00’ turned out to be

different from the literature set. The most probable reason to this discrepancy was

the fact that the temperatures range used by DERAWI et al. (2003) had started

with low values of pressure of PG (order of 1 Pa = 10−5 bar), which had greatly

affected its calculation, depending on the tolerances used. For instance, these

authors reported the pressure and density deviations for PG equal to 4.88% and

1.50%, respectively. ThermOpt found 1.89% and 1.51% for the same variables, as

seen in Table 5.24. On the other hand, the parameters in ’Set 02’ were quite close to

the literature counterparts, further validating the methodology even with the prior

discrepancies in the pressure calculations.

In addition to that, it is not clear how to define specific criteria with

the methodology proposed in this work in order to replicate the parameters

obtained by the respective authors (DERAWI et al., 2003; FOLAS et al., 2006a;

KONTOGEORGIS et al., 1999), defined by the ’Set 00’ presented previously. Thus,

in this study the ’Set 02’ for each component was suggested as an independent

method to find parameters with potential of predicting LLE with hydrocarbons. As

seen specially in the tables of MEG and TEG, which contained results for mixtures

of these compounds with other hydrocarbons, the ’Set 02’ provided results with

deviations as low as in the authors’ papers.
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Moreover, the ’Set 03’ was proposed to demonstrate the limits to this

methodology, where the objective function attained the maximum value allowed by

the DIPPr correlations’ errors. While their deviations in the binary mixtures with

n-heptane were lower than the other sets, this trend was not necessarily repeated

in the mixtures with other hydrocarbons, when applicable. Therefore, their LLE

results do not compensate the higher deviations in the VLE term.

Lastly, it is of crucial importance to point out that ’Set 02’ and ’Set 03’ were

mere examples of possible approaches to select the most suitable parameters. The

main goal of this study is to present a tool that provides a systematic methodology

to generate a wide range of parameters which corresponds satisfactorily to both VLE

and LLE data, thus facilitating the user’s decision-making.

5.3.2 Water

For water the same analysis was conducted with specific differences:

� The selected hydrocarbon for such study was the n-hexane (TSONOPOULOS

and WILSON, 1983), as also stated by KONTOGEORGIS et al. (1999).

� TSONOPOULOS and WILSON (1983) presented, in their work, temperature

dependent correlations to calculate the liquid compositions of each phase of the

mixture water + n-hexane. In order to explore the whole valid temperature

region, this correlation was used instead of the actual experimental data. The

temperature region selected is from T = 273.15 K to T = 473.15 K.

� The DIPPr correlations errors for water is exceedingly lower than the glycols,

as seen in Table 5.26. Were the original ’Set 03’ was applied for this case, no

solution would be found.

Table 5.26: Maximum errors in DIPPr correlations (DIADEM, 2004) for water.

Water

Error % in P SAT 0.200
Error % in ρSAT 1.00

Smax,pure 1.04e-4

� Therefore, a new Set of Parameters 03 was proposed for water, due to the

availability of the experimental measure of its hydrogen bonds energy (KOH

et al., 1993). This property was found to be EH/R = 1813 K, which can be

compared to the parameter ε/R (KONTOGEORGIS et al., 1996).
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When specifying the parameters for this new ’Set 03’, it was found that the

variable ε/R also decreases when SLLE increases, as seen in Figure 5.20. If the set

containing the value of ε/R exactly equal to the experimental findings of KOH et al.

(1993) (circle) were the selected one, there would be a possibility of crudely predict

the behaviour of LLE in aqueous solutions of hydrocarbons.
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Figure 5.20: Chart containing the values of association energy for water versus
SLLE, comparing with the literature values and the chosen ’Set 03’ in this work.
Ref. A: KONTOGEORGIS et al. (1999). Ref B: KOH et al. (1993).

Therefore, the water’s new ’Set 03’ was selected as an intermediary value between

the experimental and the one reported by KONTOGEORGIS et al. (1999), being

arbitrated with ε/R roughly equal to 1900 K.

Figure 5.21 shows the behaviour of all of the solutions in this methodology

applied to water, analogously to the glycols, and Table 5.27 presents the main results

with the selected sets.
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Figure 5.21: Pareto analysis containing both objective function terms of
Equation (3.35) for water, showing the ’Set 01’, with w = 0 (red circle). Literature
Set was taken from KONTOGEORGIS et al. (1999).

Table 5.27: Parameter sets chosen using the VLE + LLE Methodology for water,
comparing to the parameters from literature (KONTOGEORGIS et al., 1999). w
consists of the weight inserted on Equation (3.35).

Literature Set 00 Set 01 Set 02 Set 03

1000w - 8.77 0.00 5.02 1.15
a0 [bar.L2/mol2] 1.2278 1.2224 1.1534 1.1631 1.0978

b [mol/L] 0.0145 0.0145 0.0147 0.0145 0.0145
c1 0.6736 0.6650 1.2323 0.7865 1.0120

ε/R [K] 2003.2 2008.8 1758.1 1974.3 1897.9
1000β 69.200 68.897 108.66 75.517 89.078
Spure 3.45e-4 3.44e-4 1.95e-4 2.86e-4 2.28e-4

AAP [%] 0.784 0.777 0.305 0.755 0.625
AAρ [%] 1.205 1.223 1.147 1.145 1.108

Also, Tables 5.28 to 5.31 show the results regarding mixtures with the

following hydrocarbons: n-octane, benzene and toluene. For the mixture with

n-octane, HEIDMAN and TSONOPOULOS (1985) also generated correlations for

their experimental data. Therefore, they were also adopted in this work, within the

range [297− 522 K].
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Table 5.28: Results for the binary mixture water + n-hexane (TSONOPOULOS
and WILSON, 1983). AAXW,HC and AAXHC,W are calculated from Equations (5.4)
and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0376 0.0108 0.0391 0.0321
Sotim 2.13e-1 3.97e-1 2.21e-1 2.44e-1

AAXW,HC [%] 12.28 33.36 11.05 10.99
AAXHC,W [%] 34.95 39.91 35.67 37.28

Table 5.29: Results for the binary mixture water + n-octane (HEIDMAN
and TSONOPOULOS, 1985). AAXW,HC and AAXHC,W are calculated from
Equations (5.4) and (5.5).

Literature Set 01 Set 02 Set 03

kij -0.0002 -0.0282 0.0015 -0.0051
Sotim 1.37e-1 2.54e-1 1.48e-1 1.65e-1

AAXW,HC [%] 9.190 18.83 9.818 5.424
AAXHC,W [%] 29.64 35.46 30.44 32.44

Table 5.30: Results for the binary mixture water + benzene (ANDERSON and
PRAUSNITZ, 1986). AAXW,HC and AAXHC,W are calculated from Equations (5.4)
and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0439 0.0214 0.0461 0.0420
βcrossij 0.0770 0.0746 0.0830 0.0874
Sotim 4.06e-3 3.64e-3 3.67e-3 3.37e-3

AAXW,HC [%] 2.045 2.545 2.420 2.821
AAXHC,W [%] 4.381 4.240 4.228 4.153

Table 5.31: Results for the binary mixture water + toluene (ANDERSON and
PRAUSNITZ, 1986). AAXW,HC and AAXHC,W are calculated from Equations (5.4)
and (5.5).

Literature Set 01 Set 02 Set 03

kij 0.0194 -0.0061 0.0214 0.0166
βcrossij 0.0619 0.0548 0.0669 0.0696
Sotim 8.38e-3 7.29e-3 7.28e-3 6.27e-3

AAXW,HC [%] 1.156 1.084 1.090 1.135
AAXHC,W [%] 5.952 7.007 5.251 5.728
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Discussion

The ’Set 00’ was selected as the parameter set with the Spure closest to the

literature set. It has been seen that the selected set was similar to the one presented

by KONTOGEORGIS et al. (1999), confirming the consistency of the proposed

methodology.

All sets, with the exception of ’Set 01’ in aqueous solutions with the alkanes,

were able to satisfactorily predict the LLE data.

The selection of ’Set 02’ depends on a series of factors, such as the limits of the

objective functions in the chart where the user can select the best position for each

specific application. These limits are defined by the user tolerance on where could be

the maximum allowed values of Spure and SLLE in each case. The rigorous approach

would be to test all sets in a predetermined region for LLE with other components

until an optimal set is found. With the methodology presented (VLE + LLE), this

analysis may become simpler than what KONTOGEORGIS et al. (2006b) published

in their paper due to its systematic feature. Consequently, we consider that this is

a contribution of this work to the literature.

Nevertheless, we considered the ’Set 03’ as the main parameter set to be

evaluated and compared against the published binary parameters and experimental

data. The main reason for that is the higher theoretical background, with the

variable ε/R nearer the value reported by KOH et al. (1993), without losing accuracy

in the LLE predictions.

Finally, as already stated in the Section 5.3.1, it is necessary to state that the

objective of this analysis is to provide a systematic guide to facilitate the selection of

the best parameters. Hence, a suggestion to future works may be to use this rigorous

approach to find the most proper parameters in a specific application. Eventually,

the final decision must be taken by the user.

5.4 CPA Binary Parameter Estimation Using

Water Dew Point

Having validated, optimized and selected parameters for pure components, this

Section will present a study of parameter estimation procedures for mixtures using

dew point experimental data. It is specifically applied to the natural gas production

process.
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5.4.1 Analysis of the Binary Mixture H2O + CO2

One of the most studied compounds of the natural gas is the carbon dioxide

(CO2) due to its particular characteristics, specially its capability to do cross

association when mixed with water according to KONTOGEORGIS et al. (2006b);

LI and FIROOZABADI (2009). The parameter estimation procedure followed the

steps listed in the Section 3.4.

� For the pure components, literature parameters (KONTOGEORGIS et al.,

1999) and the ’Set 03’ from the Section 5.3.2 were used for water, and the

parameters from TSIVINTZELIS et al. (2010) were set for CO2. They are

listed in Table 5.32.

� Parameter Estimation A: binary parameters were estimated from dew pressure

calculation optimized by PSO+Simplex. This work considers that there

is a solvation effect between CO2 and water, even if the former does not

self-associate. The parameters to be optimized are then kij and βcrossij .

� Parameter Estimation B: Estimation A’s results were used as an initial

estimative to re-estimate these parameters using the water content metric

(Equation 3.38) by the Simplex method.

Table 5.32: Pure component parameters used in the Section 5.4.1.

Water (Literature)a Water (’Set 03’)b COc
2

a0 [bar.L2/mol2] 1.2278 1.0978 3.5081
b [mol/L] 0.0145 0.0145 0.0272

c1 0.6736 1.0120 0.7602
ε/R [K] 2003.2 1897.9 -
1000β 69.200 89.078 -

aKONTOGEORGIS et al. (1999)
bThis work
cTSIVINTZELIS et al. (2010)

Table 5.33 summarizes the experimental data used, and Table 5.34 presents

the estimable variables’ bounds. The options used are the same as reported in

Figures 5.8 to 5.10.

Because of the high pressure values in the work of WIEBE and GADDY (1941),

whose values reached up to 700 bar, the Estimation A did not give reliable results.

Therefore, only the data of VALTZ et al. (2004) could be used in this stage of the

calculation. On the other hand, for Estimation B all experimental data could be

satisfactorily applied.
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Table 5.33: Summary of the data of the mixture studied in this Section.

Estimation A Estimation B

Data Type Dew Pressure Water Content

Source VALTZ et al. (2004)
VALTZ et al. (2004)

WIEBE and GADDY (1941)
Variance Experimental Points

# of Points 24 67

Table 5.34: Bounds for the water + CO2 parameter estimation in this Section. These
values were obtained by trial and error.

Parameter Lower Bounds Upper Bounds

kij -0.5000 0.5000
βcrossij 0.0100 0.5000

Tables 5.35 and 5.36 display the results of this procedure. SP is the objective

function calculated by Equation (3.36), and Sy calculated by Equation (3.38).

AAPdew and AAY are calculated according to Equations (5.6) and (5.7).

AAPdew =
100%

ne

ne∑
i=1

|P e
i − P ∗i |
P e
i

(5.6)

AAY =
100%

ne

ne∑
i=1

|yei − y∗i |
yei

(5.7)

Table 5.35: Estimation results for water (KONTOGEORGIS et al., 1999) + CO2

mixture studied in this Section.

Case kij βcrossij SP Sy AAPdew [%] AAY [%]

Estimation A -0.2324 0.0677 2.65e-2 3.37e-2 13.02 15.41
Estimation B 0.1542 0.1765 4.98e-2 2.15e-2 18.46 10.81

Literature Dataa 0.1145 0.1836 5.20e-2 4.01e-2 18.92 16.13

aTSIVINTZELIS et al. (2011)

Table 5.36: Estimation results for water (Set 03) + CO2 mixture studied in this
Section.

Case kij βcrossij SP Sy AAPdew [%] AAY [%]

Estimation A -0.2408 0.0718 2.60e-2 3.39e-2 12.88 15.57
Estimation B 0.1701 0.2093 4.86e-2 2.11e-2 18.28 10.71

Based on the results presented in Tables 5.35 and 5.36, it is possible to infer

that the dew pressure calculations lead to different parameters when compared with
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those obtained by the water content because of its restrictions. In higher pressures,

dew pressure calculations become exceedingly complex, affecting its convergence.

The work of WIEBE and GADDY (1941) focus on these extreme regions, therefore

changing the search space.

However, this issue did not occur in the optimization based on water content,

showing the success of the metric proposed (Equation 3.38). According to Table 5.35,

the Estimation B’s parameters are close to the set published by TSIVINTZELIS

et al. (2011), but resulting in reduced deviations.

In addition to that, the ’Set 03’ obtained for water succeeded to predict the water

content with slightly lower deviations than the set selected by KONTOGEORGIS

et al. (1999). Figures 5.22 to 5.25 illustrate these results with isotherms.
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Figure 5.22: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO2 in an isotherm at T = 298.15 K. Experimental
data: WIEBE and GADDY (1941). Literature parameters: KONTOGEORGIS
et al. (1999) (pure water) and TSIVINTZELIS et al. (2011) (binary parameters).
Optimized parameters: this work (’Set 03’ for pure water).
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Figure 5.23: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO2 in an isotherm at T = 304.15 K. Experimental
data: WIEBE and GADDY (1941). Literature parameters: KONTOGEORGIS
et al. (1999) (pure water) and TSIVINTZELIS et al. (2011) (binary parameters).
Optimized parameters: this work (’Set 03’ for pure water).
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Figure 5.24: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO2 in an isotherm at T = 323.15 K. Experimental
data: WIEBE and GADDY (1941). Literature parameters: KONTOGEORGIS
et al. (1999) (pure water) and TSIVINTZELIS et al. (2011) (binary parameters).
Optimized parameters: this work (’Set 03’ for pure water).
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Figure 5.25: Chart containing values of pressure versus water content in dew point
for the mixture Water + CO2 in an isotherm at T = 348.15 K. Experimental
data: WIEBE and GADDY (1941). Literature parameters: KONTOGEORGIS
et al. (1999) (pure water) and TSIVINTZELIS et al. (2011) (binary parameters).
Optimized parameters: this work (’Set 03’ for pure water).

Analysing these charts (Figures 5.22 to 5.25), it is concluded that even though

all sets of parameters predict the inversion effect of water content when the pressure

increases, the potential results of this study seem to be superior than the literature

parameters (KONTOGEORGIS et al., 1999; TSIVINTZELIS et al., 2011). Besides,

in higher pressures (above 200 bar) the differences between each optimized case

and the calculations performed by the set modelled by the literature become more

prominent, as presented in Table 5.37. Therefore, it is possible to check if these

positive results persist when predicting the water content in multicomponent natural

gases.

Table 5.37: Estimation results for water + CO2 mixture studied in this Section for
P > 200 bar.

Case AAY [%]

Literature Data (TSIVINTZELIS et al., 2011) 23.70
Optimized from water (KONTOGEORGIS et al., 1999) 3.43

Optimized from water (Set 03) 3.34

Also, the metric selected for the water content calculation was particularly

important to the attainment of the lowest deviations. For instance, if the selected

variances were equal to 1 for all points, it was observed that the values of the
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objective function had had little variation throughout extensive ranges of kij and

βcrossij . Figures 5.26 and 5.27 illustrate this issue in PSO scatters generated from the

optimization for this mixture, using the parameter set 03 for water.

According to these figures, this modified objective function S
′
y varies from 0.58

to 0.61 in the range of kij ≈ [−0.5, 0.3] and βcrossij ≈ [0.02, 0.35]. However, the actual

deviations can present a large variation in this region, from lower than 11% to higher

than 30%, with the best solution of this specific metric resulting in AAY = 22.97%,

as presented in Table 5.38.

Figure 5.26: Scatter plot of parameter kij versus objective function evaluations
calculated for the mixture water (’Set 03’) + CO2 using all σy,i = 1 in
Equation (3.38). Image taken directly from ThermOpt.

Table 5.38: Estimation results for water (Set 03) + CO2 mixture studied in this
Section with S

′
y defined by Equation (3.38) with all variances equal to 1.

Case kij βcrossij Sy S
′
y AAY [%]

Minimization of S
′
y -0.4902 0.0406 1.00e-1 5.90e-1 22.97

Minimization of Sy 0.1701 0.2093 2.11e-2 6.08e-1 10.71

Thus, these discrepancies corroborates the choice to weigh the objective function

with the experimental data values as variances in this work (AAPdew = 18.28% and

AAY = 10.71%).
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Figure 5.27: Scatter plot of parameter βcrossij versus objective function evaluations
calculated for the mixture water (’Set 03’) + CO2 using all σy,i = 1 in
Equation (3.38). Image taken directly from ThermOpt.

5.4.2 Validation through Multicomponent Dew Point

Calculations

The same analysis performed in the Section 5.4.1 was replicated for the following

compounds: H2S, methane, ethane, propane and n-butane, in order to predict the

water content in dew point condition of multicomponent mixtures containing these

substances. Even though all of these components are not self-associating, H2S was

considered to perform cross-association with water, as in the case of CO2 (SANTOS

et al., 2015a).

Table 5.39 presents the parameters obtained for these mixtures, compared to the

published values in the literature (SANTOS et al., 2015b).

Thereon, they were validated with various multicomponent systems studied in

the literature. In this work four mixtures have been studied, with the following

compositions in dry basis:

� Natural Gas (NG): 94% methane + 4% ethane + 2% n-butane.

Reference: CHAPOY et al. (2005).

� Natural Acid Gas 01 (NAG-1): 75% methane + 8% ethane + 4% propane +

13% CO2. Reference: MADDOX et al. (1988).

� Natural Acid Gas 02 (NAG-2): methane + CO2 + H2S (various compositions).

References: GPSA (1998); HUANG et al. (1985).
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Table 5.39: Estimation results for each aqueous binary mixture studied in this
work. All interaction parameters presented within the literature sets were taken
from SANTOS et al. (2015b), and the ’Set 03’ for water was used in the optimized
sets from this work. ’mCR-1’ means that εcrossij was calculated according to
Equation (2.31).

Mixture Parameters kij βcrossij εcrossij /R Sy AAY [%]

Water + H2S
a Literature 0.1913 0.0624 1308.3 2.20e-2 11.83

This Work 0.4093 0.2550 mCR-1 1.39e-2 7.795

Water + Methaneb
Literature 0.0098 - - 6.15e-3 5.582
This Work 0.0449 - - 5.40e-3 4.765

Water + Ethanec
Literature 0.1162 - - 2.35e-2 10.18
This Work 0.0721 - - 1.39e-2 7.980

Water + Propaned
Literature 0.1135 - - 2.96e-2 9.731
This Work 0.0661 - - 2.88e-2 10.12

Water + n-Butanee
Literature 0.0875 - - 1.98e-2 11.66
This Work 0.4522 - - 1.24e-3 1.954

aSELLECK et al. (1952)
bFOLAS et al. (2007); MOHAMMADI et al. (2004); OLDS et al. (1942)
cMOHAMMADI et al. (2004); REAMER et al. (1943); SONG and KOBAYASHI (1994);

ANTHONY and MCKETTA (1967)
dKOBAYASHI and KATZ (1953); SONG and KOBAYASHI (1994)
eREAMER et al. (1944)

� Natural Acid Gas 03 (NAG-3): methane + propane + CO2 + H2S (various

compositions). Reference: NG et al. (2001).

Table 5.40 shows the deviations in the water content in each case, using the

literature and optimized parameters previously described in Table 5.39.

Table 5.40: Mean absolute deviations for water content (AAY [%]) calculated for
each of the mixtures studied in this Section. Literature parameters were taken
from SANTOS et al. (2015b).

AAY [%] NG NAG-1 NAG-2 NAG-3

Lit. Parameters 2.578 23.34 9.011 12.18
This Work 1.448 14.50 8.328 18.26

With the exception of NAG-3, it can be inferred that the optimized parameters

obtained for binary mixtures have a high potential of predicting the water content

of multicomponent mixtures. Also, it is important to emphasize that one of the

pairs (water + H2S) is calculated in the literature with three parameters (kij, β
cross
ij

and εcrossij ), but in this work it was decided to use only the two former variables to

optimize, calculating the latter by Equation (2.31). That is, it was made possible

to improve most of the results manipulating less parameters.
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The probable reason for the higher deviations in the case of NAG-3 may be the

harsher conditions of the experiments (NG et al., 2001), where the pressures reached

values up to 690 bar. Simultaneously, for example, the conditions of the experimental

data available for water + methane (FOLAS et al., 2007; MOHAMMADI et al.,

2004; OLDS et al., 1942) did not surpass 30 bar.

However, if the user wishes to analyse specifically this mixture, it is possible

to re-estimate one or all water-containing binary parameters for these conditions.

For instance, if the water + H2S and water + methane parameters were to be

re-estimated using the experimental data on NAG-3 NG et al. (2001), keeping the

remaining values equal to the ones found in this work, the Simplex procedure of

ThermOpt would reach the following values: kwater−C1 = 0.1470, kwater−H2S = 0.5265

and βcrosswater−H2S
= 0.2012, with AAY = 11.60%. Thus, this deviation is lower than

the 12.18% calculated using the literature parameters. This further corroborates the

importance of a flexible optimizing tool rather than overall optimized parameters.

5.5 Application to an Industrial Dehydration

Unit

Having validated the CPA EoS parameters obtained and presented in the

previous sections, it is possible to apply directly to a fictitious industrial dehydration

unit to check if the results follow the expected tendencies of its key variables, such

as the dehydrated gas composition.

5.5.1 Generating New Parameters for Binary Mixtures

With Water

In this unit, the streams’ components are water, ethylene glycol (MEG), benzene,

CO2, N2 and alkanes up to C8. The experimental data of each aqueous pair were

taken from the following references:

� Water + MEG: CHIAVONE-FILHO et al. (2004)

� Water + Benzene: ANDERSON and PRAUSNITZ (1986); GÓRAL et al.

(2004)

� Water + CO2: VALTZ et al. (2004); WIEBE and GADDY (1941)

� Water + N2: FOLAS et al. (2007)

� Water + Methane: FOLAS et al. (2007); MOHAMMADI et al. (2004); OLDS

et al. (1942)
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� Water + Ethane: ANTHONY and MCKETTA (1967); MOHAMMADI et al.

(2004); REAMER et al. (1943); SONG and KOBAYASHI (1994)

� Water + Propane: KOBAYASHI and KATZ (1953); SONG and KOBAYASHI

(1994)

� Water + n-Butane: REAMER et al. (1944)

� Water + n-Pentane: ARLT et al. (1979); MACZYNSKI et al. (2004)

� Water + n-Hexane: TSONOPOULOS and WILSON (1983) (correlation)

� Water + n-Heptane: MACZYNSKI et al. (2004)

� Water + n-Octane: HEIDMAN and TSONOPOULOS (1985) (correlation)

Therefore, all binary parameters between water and each of these components

were estimated in this work to be applied in the referred simulation. Table 5.41

presents the metrics and the calculated parameters for each pair.

Table 5.41: All binary CPA EoS parameters obtained for the ’Set 03’ parameters of
water (’component i’) with the components present in the simulation of the MEG
unit. All calculations were performed in ThermOpt.

Component j kij Combining Rule βcrossij Metric

MEG -0.0221 CR-1 - Bubble Pressure, Eq. (3.36)
Benzene 0.0183 Solvation 0.0797 LLE Compositions, Eq. (3.33)

CO2 0.1701 Solvation 0.2093 Water Dew Content, Eq. (3.38)
N2 0.0186 None - Water Dew Content, Eq. (3.38)

Methane 0.0449 None - Water Dew Content, Eq. (3.38)
Ethane 0.0721 None - Water Dew Content, Eq. (3.38)
Propane 0.0661 None - Water Dew Content, Eq. (3.38)
n-Butane 0.4522 None - Water Dew Content, Eq. (3.38)
n-Pentane 0.0364 None - LLE Compositions, Eq. (3.33)
n-Hexane 0.0339 None - LLE Compositions, Eq. (3.33)
n-Heptane 0.0258 None - LLE Compositions, Eq. (3.33)
n-Octane -0.0051 None - LLE Compositions, Eq. (3.33)

5.5.2 The MEG Dehydration Unit

Figure 5.28 presents the scheme of the unit studied in this work.

The feed stream ’HC01’ is arbitrated using a standard composition, as well as

various conditions in the simulation. Appendix A lists all of them.
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Figure 5.28: Abstract scheme of the dehydration unit studied in the Section 5.5.2.
The inhibitor agent used is ethylene glycol (MEG).

5.5.3 Comparison with Commercial Process Simulators

The simulation, as mentioned before, is based on artificial conditions. Therefore,

a means to validate any modification is comparing them to well known commercial

simulators: HYSYSr (ASPEN), ProMaxr (BRE) and Petro-SIMr (KBC).

This unit has also been simulated using the Petrobras’ Simulation Process,

Petroxr (NIEDERBERGER et al., 2009), in two situations: using the literature

parameters (SANTOS et al., 2015b) and the ones from this work.

Each of the process simulators used a specific thermodynamic model to perform

the necessary calculations. In the HYSYSr their glycol package, which consists

of the TST (Twu-Sim-Tassone) EoS with the advanced excess Helmholtz mixing

rule (ASPEN), was applied; the ProMaxr used a modified Peng-Robinson EoS

with translated volume and an internally implemented mixing rule (BRE); and

Petro-SIMr and Petroxr used the CPA EoS as presented in this work.

The main variables analysed in this Section were:

� Streams HC02 (dehydrated gas) and VENT (outlet vapour of the regenerator):

temperature [°C], pressure [kgf/cm2g], flows [kgmol/h] and composition:
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water, benzene, methane and/or C2+;

� Three-phase vessel V-03 temperature [°C] and outlet flows [kgmol/h];

� Reboiler duty (P-02 and P-03) and regenerator condenser duty (P-01) [Gcal/h];

� Pump B-01 power [HP].

Tables 5.42 to 5.44 present the results from the simulators using own internal EoS

and parameters. Tables 5.45 to 5.47 show the explicit comparison when executing

this simulation with Petroxr using its internal parameters (SANTOS et al., 2015b)

and the parameters generated in this work.

Table 5.42: Dehydrated gas (’HC02’) results for the MEG unit. Simulated at:
Hysysr, Petro-SIMr, ProMaxr and Petroxr.

Variable Unit Hysysr Petro-SIMr ProMaxr Petroxr

Molar Flow kgmol/h 7578 7988 7731 7901
Temperature °C 17.53 15.70 18.38 18.97

Water Content ppm 2.08 7.28 3.78 8.33
Benzene Content ppm 0.99 5.16 1.47 4.15

Table 5.43: Regenerator top outlet conditions (’VENT’) results for the MEG unit.
Simulated at: Hysysr, Petro-SIMr, ProMaxr and Petroxr.

Variable Unit Hysysr Petro-SIMr ProMaxr Petroxr

Molar Flow kgmol/h 25.26 24.70 24.43 24.87
Temperature °C 102.0 101.0 101.0 101.0

Benzene Content ppm 87.10 590.8 130.4 55.95
C1 Content % 0.07 0.43 0.34 1.66

C2+ Content % 3.55 1.14 0.05 0.67

5.5.4 Discussion of the Results

There are few reliable experimental data available in the literature for the unit

studied. For the standard feed current characterized in Table A.1 and the conditions

in Tables A.2 to A.5, the dehydrated stream was expected to contain up to 10 ppm

of water and 5 ppm of benzene, at a temperature between 15 to 20°C, based on

engineering expertise. Also, the vessel V-03 is expected to be around -25°C and the

difference between the duties of the regenerator reboiler and condenser at roughly

0.5 Gcal/h. There is no detailed data on the real conditions of the VENT stream,

but due to environmental restrictions the benzene content ought to be the lowest

achievable.
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Table 5.44: General results for the the MEG unit equipments. Simulated at:
Hysysr, Petro-SIMr, ProMaxr and Petroxr.

Variable Unit Hysysr Petro-SIMr ProMaxr Petroxr

Vessel V-03
Temperature °C -26.76 -23.24 -24.93 -21.40
Vapour Flow kgmol/h 167.8 354.3 158.8 370.8
Condensate Flow kgmol/h 1584 987.1 1441 1059
G21 Flow kgmol/h 170.5 170.7 170.0 170.1

Duties [Gcal/h]
Regenerator Condenser (P-01) 0.131 0.065 0.239 0.073
Regenerator Reboiler (P-02) 0.704 0.568 0.742 0.563
Regenerator Reboiler (P-03) 0.348 0.399 0.213 0.314

Pump B-01 Power HP 22.23 22.11 16.78 26.06

Table 5.45: Dehydrated gas (’HC02’) results for the MEG unit. Executed by the
Petroxr process simulator.

Variable Unit SANTOS et al. (2015b) This Work’s Parameters

Molar Flow kgmol/h 7901 7892
Temperature °C 18.97 18.84

Water Content ppm 8.33 9.96
Benzene Content ppm 4.15 4.11

Table 5.46: Regenerator top outlet conditions (’VENT’) results for the MEG unit.
Executed by the Petroxr process simulator.

Variable Unit SANTOS et al. (2015b) This Work’s Parameters

Molar Flow kgmol/h 24.87 24.93
Temperature °C 101.0 101.0

Benzene Content ppm 55.95 98.91
C1 Content % 1.66 1.83

C2+ Content % 0.67 0.74

According to Tables 5.42 to 5.44, it can be inferred that all process simulators

analysed generated similar results, considering the complexity level of the model

(high number of recycles, a vessel with vapour-liquid-liquid equilibrium, among

others). It is important to inform that each of them used their own calculation

methods, then it is natural to expect discrepancies up to a certain level among

them.

Nevertheless, all of them attained the expected values for the dehydrated gas

stream and the equipments. The only major difference lied on the VENT stream,

whose hydrocarbons’ contents (including the benzene) varied considerably. For

instance, the benzene content in this stream went from 56 ppm (Petroxr) to 591
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Table 5.47: General results for the the MEG unit equipments. Executed by the
Petroxr process simulator.

Variable Unit SANTOS et al. (2015b) This Work’s Parameters

Vessel V-03
Temperature °C -21.40 -21.53
Vapour Flow kgmol/h 370.8 373.4
Condensate Flow kgmol/h 1059 1064
G21 Flow kgmol/h 170.1 170.1

Duties [Gcal/h]
Regenerator Condenser (P-01) 0.073 0.055
Regenerator Reboiler (P-02) 0.563 0.534
Regenerator Reboiler (P-03) 0.314 0.327

Pump B-01 Power HP 26.06 25.98

ppm (Petro-SIMr), resuming what was discussed in the Section 2.1.2.

As the Petroxr process simulator predicted the lowest benzene content in the

VENT, it can be assumed that its simulation is properly modelled, being selected

for the comparison with the CPA EoS parameters estimated in this work, presented

in the Tables 5.45 to 5.47. In this case, as the entire simulation was set up in the

exact same way, except changing the CPA parameters described previously, it is

expected that all divergences in the results come from these parameters.

Therefore, when changing the water parameters published by SANTOS et al.

(2015b) to the ’Set 03’ obtained in this work, the only notable difference between

the respective results lied on the benzene content of the VENT stream, which rose

to almost 100 ppm, but still lower than most of the analysed commercial simulators.

This discrepancy in the benzene composition is one of the major obstacles in

modelling an industrial unit that should meet its environmental restrictions. Because

of that, it was decided to carry out one more analysis using the Petroxr (CPA

parameters from this work): the effect of withdrawing the solvation effect of benzene

with water and MEG in this simulation. The corresponding binary parameters kij

were re-estimated: kbenzene−water = −0.0229 (ANDERSON and PRAUSNITZ, 1986)

and kbenzene−MEG = 0.0181 (FOLAS et al., 2006b).

The resulting simulation proved to be practically the same as the original, except

of the benzene content in the VENT, which rose from 98.9 ppm to 133.8 ppm. As

a consequence, it can be assumed that the solvation effect plays an essential role to

lower the contents predicted, approaching the required values. The fact that this

solvation effect is supported by the literature (KONTOGEORGIS et al., 2006a,b)

corroborates the results obtained.

In addition to that, one of the issues regarding the lack of experimental data on
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benzene content in solutions containing MEG is the high toxicity of this solvent,

hindering possible experimental analyses with them. Thus, an alternative solvent

with potential dehydrating effects would be preferable. For example, the propylene

glycol (PG) isomers are widely used in the food and drug industries and are much

more harmless than the former glycol (CSEM, 2007). Therefore, PG was also briefly

analysed in this work. Unfortunately, the experimental data for binary mixtures with

PG available in the literature is also scarce. The data found for mixtures contain:

1,2-PG with n-heptane and 1,2-PG with water, as shown in Table 5.48.

Table 5.48: Binary parameters obtained (1,2-propylene glycol: component i). All
calculations were performed in ThermOpt.

Component j kij βcrossij εcrossij /R [K] Metric

n-Heptanea 0.0320 - - LLE Compositions (Eq. (3.33))
Waterb -0.1806 0.0307 2021.15 Bubble Pressure (Eq. (3.36))

aExperimental data: DERAWI et al. (2002)
bExperimental data: LANCIA et al. (1996)

Due to the notorious importance of the benzene effect in the simulation, it

was necessary to estimate the parameters of the binary mixture PG-benzene even

without available experimental data. To perform such evaluation, two assumptions

were made:

� The propylene glycol has a larger structure than the ethylene glycol (MEG)

but smaller than the tri-ethylene glycol (TEG). Therefore, the kij value of the

binary PG + benzene was arbitrated in the mean value of the kij of the other

glycols + benzene: kPG−Benzene ≡ (0.048 + 0.036)/2 = 0.042.

� It is expected a solvation effect between PG and benzene. It is assumed, then,

that βcrossij ≡ βPG = 0.019.

Even though that specific studies should have been carried out to decide the

optimal conditions of the new simulations, they were kept the same for this

preliminary analysis in order to evaluate the effect of changing the solvents in

the dehydration results. Therefore, the main goal of this analysis is to check the

dehydration potential of PG, as presented by Table 5.49.

According to the results presented in the Table 5.49, the change of solvents

impacted slightly the water content in the simulation output, demonstrating a

potential of using this solvent in the industry. Hence, another suggestion for future

works is to model a PG dehydration unit as follows:

� Generate experimental data for binary mixtures in LLE with PG and

hydrocarbons from C1 to at least C6, specially benzene and toluene.
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Table 5.49: Dehydrated gas (’HC02’) results for the MEG unit. Executed by the
Petroxr process simulator using MEG and PG as solvents, respectively. All pure
components’ parameters were taken from the literature (SANTOS et al., 2015b).

Variable Unit MEG Solvent PG Solvent

HC02
Molar Flow kgmol/h 7901 7895
Temperature °C 18.97 18.92
Water Content ppm 8.33 8.42
Benzene Content ppm 4.15 4.07

� Use ThermOpt to properly estimate the corresponding binary parameters.

� Analyse the expected behaviour of solutions containing water, PG and

hydrocarbons in the possible vent conditions.

� Study thoroughly the optimal conditions using PG, varying particularly the

duties of the heat exchangers and the regeneration tower conditions in order

to attain similar results to the dehydration unit when using MEG for other

streams such as ’VENT’.
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Chapter 6

Conclusions

The tool developed here, named ThermOpt, presents good potential to be a

tool for estimating the equation of state (EoS) parameters for several processes,

with applications to chemical processes such as the natural gas production and

processing. This work succeeded in proposing two new methodologies for parameter

estimation in a systematic way: one based on pure (VLE) and LLE properties

and the other based on water content in dew point conditions, based on the work

of SHIGUEMATSU (2014).

Firstly, in Section 5.1 the calculation speed of the program was evaluated.

Considering the complexity of solving the CPA EoS (MICHELSEN, 2006), the

results presented were promising, enabling long calculations such as penalization

analyses or the VLE-LLE Methodology to be executed in a relatively short time.

Section 5.2 presented an example of penalization analysis using the SRK equation

of state, showing that high weights lead to solutions close to the original one, with a0

and b calculated using critical properties by Equations (2.4) and (2.5), and c1 defined

by the Kabadi-Danner modification. Thus, it can be considered that ThermOpt is

well validated, once the results presented by the Table 5.5 tended to the analytical

solution to the Equation (2.3) with this EoS. Also, the CPA EoS was used to estimate

the parameters of several polar substances by saturation pressure and liquid density,

comparing to available literature data.

Thereon, in the Section 5.3 the VLE-LLE Methodology proposed in this work

was applied for 4 different glycols, comparing the calculated sets to the literature

parameters, showing good agreement using predetermined criteria. After that, the

same evaluation was performed for water, selecting among the possible sets one with

the parameter ε/R relatively close to the hydrogen bond energy for water (KOH

et al., 1993).

Section 5.4 applied the proposed methodology for parameter estimation by water

content in dew point condition to several aqueous mixtures, from binaries with

CO2, H2S or light alkanes to multicomponent natural gas mixtures. The results
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obtained indicated smaller deviations than the ones calculated by the literature

parameters reported by TSIVINTZELIS et al. (2012)(Tables 5.35, 5.36, 5.39

and 5.40). Consequently, the metric proposed in this work, based on water content

calculation, can enable further evaluations at extreme conditions such as high

pressures, which is limited in the metric based on bubble or dew pressure.

Finally, Section 5.5 shows an industrial application of all the previous procedures,

simulating a part of a dehydration unit using MEG as inhibitor. Comparisons

were conducted among various commercial process simulators, pointing out their

similarities and limits. Afterwards, the analysis was focused on the Petroxr Process

Simulator, by testing the effect of the water parameters obtained in this work. It

was shown that the only visible difference was in the benzene content of the VENT

stream. The new set of parameters reported higher values for this content, but still

at the same level of most of the other simulator’s results. Moreover, the utilisation

of 1,2-propylene glycol instead of MEG was briefly studied and it was found out

that its dehydration potential is similar as the ethylene glycol, needing a thorough

study to reach more detailed outcomes.

In addition to the conclusions and contributions highlighted in this work, there

are numerous possible paths and challenges suggested as future works, such as:

� Implement parallelism calculations (MORAES et al., 2015). As the optimizing

procedures require a vast quantity of independent calculations of the objective

function, this implementation will increase the speed of the thermodynamic

calculations inside ThermOpt, enabling even more complex analysis.

� Implement flexible EoS based on the separate Helmholtz energy terms.

Currently the EoS options in ThermOpt are considered as independent models.

An idea to loosen the limits of the program would be to implement the

EoS as Helmholtz energy terms selected by the user in the interface. For

example, there would be a term related to a cubic EoS (Peng-Robinson or

SRK), an association term (as in the CPA), and other types of terms, such

as the Born-Solvation Contribution, the Debye-Huckel expression or the Mean

Spherical Approximation (MSA) term. The work of MYERS (2005) shows

how these terms can be connected to a single thermodynamic model.

� Generate detailed PSO histograms in order to select its best internal

parameters. Essentially all of the PSO calculations performed in this work

used the same values of internal parameters (cognition parameter c1, social

parameter c2, and the inertial weights w0 and wf ). In thermodynamic

calculations, there is a high level of dependency among the manipulated

variables, and not all sets of them lead to converged solutions. Therefore,
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the right selection of these PSO parameters is important to effectively guide

the ’particles’ to the global minimum area. Chapter 4 briefly describes the

execution of hundreds of PSO calculations in a row in ThermOpt, storing each

result, generating a histogram-type chart. If the PSO parameters are well

chosen, the majority of the solutions attained will be in the region of the

global minimum. Thus, the recommended study is to perform this analysis for

a multitude of combinations of these parameters, using a specific component

and the CPA EoS, until an optimal set is found, which the histogram region

would be the narrowest.

� Execute the penalization analysis using the CPA equation of state for polar

compounds. As explained in Section 5.2, one of the downsides of the

CPA equation of state for pure components is its lower accuracy in the

critical region, because its association term violate the restrictions imposed

in Equation (2.3). On the other hand, the penalization analysis tool may

allow the program to find a different set of parameters which results in lower

deviations in this region, even at a cost of an increase of the overall deviation,

as in a ’short blanket’. The challenge of this study is to find out how far this

improvement in the critical region would be worth the global loss of accuracy.

� Execute the VLE-LLE Methodology with other hydrocarbons as auxiliary

compounds. Section 5.3 studied this approach using the same alkanes as the

respective authors used in their works in order to validate this procedure.

However, an interesting analysis would be redoing the VLE-LLE Methodology

to polar compounds in LLE with other hydrocarbons, including benzene, and

drawing for each case an own optimal parameter search space. Eventually, all

of these regions would be compared to each other to narrow them until a single

set of parameters is found. For example, one would apply this methodology

to water + n-pentane, n-heptane, n-octane, n-decane, benzene and toluene.

From each case there would be a region of optimal sets, as they are Pareto

analyses. The intersection of all these regions would provide a narrower region,

facilitating the selection of the optimal parameters.

� Study the use of propylene glycol isomers as hydrate inhibitors instead of MEG

or TEG. As discussed in Section 5.5, MEG, DEG and TEG are compounds that

are toxic to humans, which makes it difficult to carry out experimental analyses

of mixtures containing these glycols. On the other hand, the propylene glycol

- PG - is practically harmless to the human being (CSEM, 2007), being

more appropriate if its dehydration potential would be similar to the previous

glycols. In this work it was shown that there is actually such potential, but the

process unit was originally modelled to use the MEG as the inhibitor. Besides,
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the lack of experimental data for binaries with PG is another obstacle to this

current study. Therefore, the last suggestion to future works is to perform this

investigation, following the steps detailed in the end of the Section 5.5.

Hence, it can be concluded that there are a variety of research possibilities

beyond the contributions described in this dissertation, from the development of

ThermOpt. With its further implementing and future availability to the academic

community, there will be a tool that shows numerous paths, enabling the user to

select the equation of state and calculate the best parameter sets for modelling

complex mixtures according to specific applications.
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BRASIL, N. I. D., ARAÚJO, M. A. S., SOUSA, E. C. M., et al.,
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via Equaçâo de Estado Baseada em Modelo de Rede. Tese de D.Sc.,

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

SANTOS, L. C., 2015, Desenvolvimento de um Modelo de Associação para
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Appendix A

The MEG Dehydration Unit

In this Appendix, the main variables of the MEG dehydration unit studied in

this work are summarized.

Table A.1 presents the condition and composition of the feed stream ’HC01’.

Tables A.2 to A.5 present the remaining conditions adopted in this system. Also, it

is important to inform that the pump efficiency was set to 75%.

Table A.1: Condition of the fictitious feed stream of the MEG unit, labelled as
’HC01’.

Variable Unit Value

Molar Flow kgmol/h 9355
Pressure kgf/cm2g 78

Temperature °C 37

Molar Composition

Benzene ppm 80
H2O % 0.26
CO2 % 0.02
N2 % 0.59

Methane % 80.82
Ethane % 9.25
Propane % 5.94
i-Butane % 0.84
n-Butane % 1.43
i-Pentane % 0.24
n-Pentane % 0.30
n-Hexane % 0.11
n-Heptane % 0.03
n-Octane % 0.01
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Table A.2: Conditions of the vessels in the MEG unit simulated in this work.

Variable Unit Value

Pressure in V-06 kgf/cm2g 9
Pressure in V-03 kgf/cm2g 55

Table A.3: Conditions of the Regenerator in the MEG unit simulated in this work.

Variable Unit Value

Temperature of feed stream G22 °C 72
Top tray pressure kgf/cm2g 0.040
∆P in the column kgf/cm2 0.035

Bottom temperature Celsius 127

Table A.4: Conditions of the glycol injection points in the MEG unit simulated in
this work.

Variable Unit Value

Flow of G16 kgmol/h 27
Flow of G17 kgmol/h 27
Flow of G18 kgmol/h 27
Flow of G19 kgmol/h 36
Flow of G20 kgmol/h 27

Table A.5: Conditions of the heat exchangers in the MEG unit simulated in this
work.

Variable Unit Value

Duty of P-04 Gcal/h 2.33
Duty of P-05 Gcal/h 1.77
Duty of P-06 Gcal/h 2.72
Duty of P-07 Gcal/h 3.65

Pressure Drops kgf/cm2 0.30
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