
 
 

  

 

 

 

OPTIMAL FITTING AND VALIDATION OF COMPUTER SIMULATED 

PROBABILITY OF DETECTION CURVES FROM ULTRASONIC INSPECTION 

 

 

Mariana Burrowes Moreira Guimarães 

 

 

 

 

Dissertação de Mestrado apresentada ao Programa de 

Pós-graduação em Engenharia Metalúrgica e de 

Materiais, COPPE, da Universidade Federal do Rio 

de Janeiro, como parte dos requisitos necessários à 

obtenção do título de Mestre em Engenharia 

Metalúrgica e de Materiais.  

 

Orientadores: Gabriela Ribeiro Pereira  

                       Luís Marcelo Marques Tavares 

                                               

 
Rio de Janeiro 

Julho de 2018



 
 

OPTIMAL FITTING AND VALIDATION OF COMPUTER SIMULATED 

PROBABILITY OF DETECTION CURVES FROM ULTRASONIC INSPECTION 

 

 

Mariana Burrowes Moreira Guimarães 

 

 

 

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO 

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) 

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS 

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM 

CIÊNCIAS EM ENGENHARIA METALÚRGICA E DE MATERIAIS. 

 

 

Examinada por: 

 

________________________________________________ 

                                                   Profa. Gabriela Ribeiro Pereira, D.Sc. 

 

 

________________________________________________ 

Prof. Luís Marcelo Marques Tavares, Ph.D. 

 

 

________________________________________________ 

                                             Prof. Daniel Alves Castello, D.Sc. 

                                

 

________________________________________________ 

                                               Dr. Romeu Ricardo da Silva, D.Sc. 

 

 

 

RIO DE JANEIRO, RJ – BRASIL 

JULHO DE 2018



iii 
 

 

 

 

          Guimarães, Mariana Burrowes Moreira  

Optimal Fitting and Validation of Computer 

Simulated Probability of Detection Curves from 

Ultrasonic Inspection / Mariana Burrowes Moreira 

Guimarães. – Rio de Janeiro: UFRJ/COPPE, 2018. 

XV, 101 p.: il.; 29,7 cm 

Orientadores: Gabriela Ribeiro Pereira  

                       Luís Marcelo Marques Tavares 

Dissertação (mestrado) – UFRJ/ COPPE/ Programa 

de Engenharia Metalúrgica e de Materiais, 2018. 

Referências Bibliográficas: p. 98-101. 

1. Reliability 2. Computer Simulated POD Curves 

3. NDT. I. Pereira, Gabriela Ribeiro et al. II. 

Universidade Federal do Rio de Janeiro, COPPE, 

Programa de Engenharia Metalúrgica e de Materiais. 

III. Título. 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

The most common way people give up their power is by thinking they don’t have any. 

Alice Walker 

 

Here’s to strong women. 

May we know them. 

May we be them. 

May we raise them. 

Unknown 

 

 



v 
 

AGRADECIMENTOS 

Gostaria de agradecer acima de tudo aos meus orientadores, os professores Luís Marcelo 

Tavares e Gabriela Ribeiro Pereira.  

 

Ao Professor Luís Marcelo pela sua incansável ajuda, incentivo e orientação não só na 

metodologia científica do presente trabalho de pesquisa, mas em todos os tópicos que 

abordam questões de análises estatísticas e design de experimentos. Sem sua sabedoria e 

altruísmo em compartilhar conhecimento, esse trabalho científico seria impossível de ser 

concluído; ou sequer começado... 

 

À Professora Gabriela pela sua amizade, encorajamento e por suas palavras de esperança 

todas as vezes que foram necessárias, pela oportunidade que me deu de desenvolver o 

trabalho que meu coração e mente me ordenavam e pela liberdade de fazê-lo sem amarras ou 

preceitos. 

 

À colega de trabalho e amiga Priscila Duarte de Almeida pelo seu apoio não só cedendo seu 

ombro quando foi preciso, mas por toda a sua assessoria de especialista em ensaios 

ultrassônicos. Sem seus conselhos e sem sua consultoria, nada faria sentido. Literalmente. 

 

Ao meu avô Leon Algamis que me fez acreditar, ainda criança, que eu era minimamente 

capaz e que me ajudou a soprar as nuvens e fazê-las caminharem no céu.  

 

 

 

 

 

 

 

 

 

 



vi 
 

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários 

para a obtenção do grau de Mestre em Ciências (M.Sc.) 

 

CALIBRAÇÃO E VALIDAÇÃO DE CURVAS DE PROBABILIDADE DE DETECÇÃO 

SIMULADAS DERIVADAS DE INSPEÇÃO POR ULTRASSOM 

 

Mariana Burrowes Moreira Guimarães 

 

 

Julho/2018 

 

Orientadores: Gabriela Ribeiro Pereira 

            Luís Marcelo Marques Tavares 

 

Programa: Engenharia Metalúrgica e de Materiais 

 

 

Com o objetivo de verificar e assegurar a integridade estrutural de componentes 

industriais, curvas de probabilidade de detecção (POD) são usualmente utilizadas para 

quantificar a confiabilidade de um ensaio não destrutivo (END). Dada sua natureza 

estocástica, curvas POD são dependentes do fenômeno físico que rege a técnica de END e 

de fatores probabilísticos como os parâmetros de incerteza, que requerem a um intervalo de 

confiança específico. Para tanto, é necessário grande número de dados experimentais, além 

de um sofisticado controle de tamanho de defeitos e suas localizações em um corpo de prova, 

o que pode ser um processo dispendioso. Curvas POD simuladas têm o potencial para reduzir 

esses custos e reduzem a necessidade de tantos dados experimentais. A dissertação valida 

curvas POD simuladas usando o software CIVA comparando-as com curvas experimentais 

provenientes de inspeções por técnicas ultrassônicas automatizadas em tubos do tipo API 5L 

X-65. Além disso, mostra como calibrar as simulações computacionais revelando os 

parâmetros virtuais mais significantes. Concluindo, a dissertação ainda testa a calibração 

anterior em um subconjunto de dados experimentais de diferente configuração de inspeção, 

demonstrando que tal transferência quando feita por simulação necessita de estudos 

complementares para ser melhor compreendida. 
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 In order to verify and ensure the structural integrity of industrial components, 

probability of detection curves (POD) are often used to quantify the reliability of a particular 

nondestructive testing (NDT) technique. Given their stochastic nature, POD curves are 

dependent not only on the physical phenomena that governs the NDT technique but also on 

other factors, known as uncertainty parameters (UP), which leads to a normally requested 

95% confidence level. Therefore, to satisfy a 95% confidence level, it is necessary to gather 

a large number volume of experimental data, besides a sophisticated control of sizing and 

location of defects in a test piece, which is very costly. It is already well stablished that 

Model-Assisted POD (MAPOD) have the potential to reduce those costs by generating data 

through numerical modelling, leading to a prediction of the POD curve using, many times, 

computer simulation in the process. This study demonstrates how simulations can be 

optimized, shedding light on the most significant parameters that result in better agreement 

between simulated and real POD curves. Further, it validates simulated POD curves using 

the software CIVA by comparing them to industrial ultrasonic inspections on API 5L X-65 

pipes. Finally, using a different subset of experimental data, demonstrates the difficulty on 

transferring optimized fitting. 
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1 INTRODUCTION 
 

The constant efforts to prevent failure on equipment and industrial components resulted in a 

variety of methodologies to assess structural integrity. The set of procedures and techniques 

that guarantee structural integrity without damaging the component is known as 

nondestructive evaluation (NDE) or nondestructive techniques (NDT). Nondestructive 

techniques are responsible to characterize the materials nature under many aspects (acoustic 

properties, magnetic properties, microstructure components, among others). Besides, NDT 

can detect, locate and size possible defects on the structure.  

Normally NDT is carried on according to a certain procedure, using one or more piece of 

equipment and conducted by a human being, either directly or not. Therefore, it is only 

logical to infer that, with so many variables, these techniques present some unreliability. In 

fact, there are two major aspects to consider about NDT in order to assure structural integrity 

(CHAPIUS et al., 2018): reliability and accuracy. Reliability can be understood as “the 

ability of the technique to detect defects under realistic conditions of application” and 

accuracy as “the effectiveness of the technique to size the defect”. 

According to MÜLLER et al. (2013), reliability (R) can be expressed in a modular model 

that states the following: 

           𝑅 = 𝑓(𝐼𝐶, 𝐴𝑃, 𝑂𝐻𝐹)                                             (1) 

The initials IC stand for the intrinsic capability of the inspection system while AP refers to 

application parameters used to perform the inspection. The OHF initials stands for human 

and organization factors. With the intention of evaluate the reliability of a certain inspection 

scenario, these three factors must be taken into account. As can be seen, reliability brings 

with itself physical aspects of the technique and defects (IC), procedures variability (AP) and 

a part that is almost subjective (OHF). Having said that, it is natural to realize that reliability 

is part ruled by deterministic aspects and probabilistic factors.  

The efforts made to build a quantification approach for reliability culminated on a stochastic 

method that involves predicting the Probability of Detection (POD) Curves. If a certain NDT 

is defined, the inspection procedure is carried on by one defined operator on a certain 
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component with defined characteristics and that contains necessarily a defect with size a, 

what is the probability of detecting, under these circumstances, this particular defect? This is 

the question that a reliability study through POD curves intents to answer. In other words: 

the probability of detecting a crack in a given size group under the inspection conditions and 

procedures specified – GEORGIOU (2006). This statement declares clearly that POD is 

specific to a certain scenario and if any essential parameter changes, the original modeled 

POD cannot be transferred, at first, to a new scenario.   

Historically, the first POD curves traced to quantify NDT reliability were only based on 

experimental data following the binomial approach and in order to associate POD with a 

suitable confidence level, which is often required 95%, many inspections must be carried out 

by several inspectors on a coupon carefully design to present a minimum number of defects 

with different ranges of size defects, locations and types. This kind of campaign is extremely 

sophisticated, time consuming and expensive, which makes reliability studies through POD 

curves sometimes prohibitive. For example, designing the experiment in order to perform a 

reliability study involves answering key-questions such as those described by GEORGIOU 

(2006): 

 What geometrical aspect of the flaw will be used? Length, height, projection area? 

 How to establish the range of sizes that will be investigated? 

 How many flaw size ranges are necessary? 

The advances on forecasting POD through Model-Assisted POD (MAPOD) brought a new 

possibility on quantifying reliability, according to THOMPSON and SCHMERR (1993). 

Using mathematical models, POD curves could be predicted with less experimental data, 

lowering the costs of the campaign. There are many definitions regarding MAPOD concepts, 

but the most accurate can be found in MIL-HDBK-1823A (2009): 

“Methods for improving the effectiveness of POD models that need little or no further 

specimen testing” 

The most important model was designed by BERENS (1989) where he presented two 

different modeling approaches: Hit/Miss and a vs â. The Hit/Miss approach is mostly applied 

on NDT that provides binary results, meaning that the possible existing defect is detected or 
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not detected. Usually, this approach is used when NDT like radiography, visual inspection, 

liquid penetrant testing, magnetic particle testing among others, are considered. The a vs â 

approach takes into account the signal response and correlates it with the defect size a. It is 

a continuous distribution of results and is typically applied for NDT that provides inspection 

results in a signal form such as ultrasonic testing (UT) and eddy current testing (ET). More 

detailed information on Berens approaches will be presented in the course of this dissertation. 

Although MAPOD made quantification of reliability more accessible, there is still need to 

further reduce the demand for experimental data in developing POD curves for a particular 

application. Therefore, the ultimate improvement would be that POD curves could be 

simulated and only based on virtual data, provide the reliability forecast with agreement with 

experimental campaigns. However, the present efforts still did not reach that goal (CHAPIUS 

et al., 2018). Instead, simulated POD curves have already been developed and, along with 

some experimental data, can predict reliability behavior. Simulation of POD curves could be 

used in several possible ways such as (CHAPIOUS, 2018): 

 NDT performances assessment at feasibility stage 

 Optimization of the design of experiment 

 Quantification of the effect of the variability of additional parameters 

 Identification of parameters for improvement POD results 

 Complement experimental data by simulated one to compute a full POD curve with 

better reliability 

 Provide technical justifications when minor changes of the procedure occur 

 Design an inspection procedure with an objective in terms of POD 

 Worst case identification 

 Training and evaluation of operators’ performance. 

Nevertheless, there are many difficulties concerning simulating POD curves and it is a 

process that requires great deal of expertise. Regarding the modular model for reliability 

evaluation, the simplest term is the intrinsic capability (IC). Several NDT physics-based 

models are well stablished and validated due to the deterministic behavior of each phenomena 

that rules most NDT. The AP term involves the variability of parameters that are unknown 

or not specified during inspection such as defect orientation or its positioning. The term that 
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involves human and organizational is just not taken into account in simulated POD curves. 

Having said that, it is clear that properly simulating a POD curve is not an easy task.  

It is important to shade light on the term simulated POD in order to correctly understand the 

presented scenario. The POD curve is considered to be simulated when the data used to build 

the POD curve come from virtual inspections. The POD curve may or may not be built by 

the same software that was used to generate simulated inspection data. 

The present study uses 2016 CIVA version as the software that simulates not only the virtual 

inspections but also it is the software that predicts POD curve. CIVA is a closed semi-

analytical NDT software that was developed by CEA LIST along with partners and it is 

distributed worldwide by EXTENDE since 2010. Regarding the experimental data, a large 

set of data from automated ultrasonic (AUT) inspections on API 5L X-65 tubes will be used, 

including a calibration one that presents several ranges of defect locations, sizes and types, 

which were inserted artificially. The fact that the inspections were automated reduces 

drastically the human and organizational effect on the inspection, which leads to most 

realistic POD curve simulations. Being the experimental data coming from ultrasonic 

inspections and allied with the fact that CIVA’s UT module is very well stablished, these are 

the reasons that explain why ultrasonic testing is used as the principal technique in this 

dissertation. 

One of the main goals of the present study is to perform a sensitivity analysis on CIVA 

software to stablish, in a systematic way, the most relevant parameters that effect simulated 

POD curve behavior. Based on these results, the next step is to optimize the fitting of a 

simulated POD curve regarding a specific inspection configuration in order to enhance 

agreement between the resulting simulated POD and experimental POD. The final approach 

is to verify the simulated POD curve behavior when the same set of parameters used in the 

optimizing step is transferred to a different inspection configuration. Usually, the efforts on 

transferring a specific reliability study based on a particular set of data to a different 

inspection configuration are carried on using transfer functions, as shown in Figure 1. 

Therefore, the proposal of this final approach is to verify the suitability on transferring virtual 

parameters to a different configuration through CIVA. 
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Figure 1: Description diagram on the process of transferring reliability to a different configuration 
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2 LITERATURE REVIEW 
 

In order to present the state of art on simulation of POD curves, it is at least worthwhile to 

mention the pioneers that first developed the basics on model-assisted POD (MAPOD), 

followed by the late productions on the matter. Hence, since the present dissertation 

approaches mainly simulated POD curves, this particular topic will be predominant in the 

following literature review reaching specifically efforts on POD curves that were obtained 

by computational simulation.  

Starting with a little bit of history of model assisted POD curves, FERTIG and 

RICHARDSON (1983) made part of the preliminary efforts on the topic of computer 

simulations of POD curves. While working for the Rockwell International Science Center, 

they developed an integrated model that was able to evaluate the performance of a certain 

ultrasonic inspection (UT) on detecting internal flaws. Of course, their work was based on a 

number of other works that described the wave propagation phenomena as well as the noise 

mechanisms but they were able to consider all that background and develop a routine that 

enhanced the inspection performance by designing the experiment. Attempting to design the 

best performance transducer, the authors set up an ultrasonic simulation code that presented 

four different types of approaches: Energy transfer, flaw state, noise process and decision 

algorithm. FERTIG and RICHARDSON were also able to describe their mathematical model 

precisely and proposed a different way of determining POD curves: through modeling with 

some experimental data confirmation. 

It is impossible to discuss modeling of POD curves without mentioning the work of BERENS 

et al. (1989). In his paper, Berens presented two approaches intending to formulate a POD(a) 

function: Hit/Miss and a vs â. Prior of choosing which approach could be used in a certain 

data set of results, the paper stated three indications that would influence all future work in 

this particular field: 

 The chances of detection are correlated with crack sizes a 

 Different cracks of the same size can significantly present different crack detection 

probabilities, as can be seen in Figure 2 

 Factors other than size are affecting the chances of detection. 
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Figure 2: Probability of detection distribution considering a fixed size of defect (Berens, 1989) 

They also stated that, depending on the nature of the prior inspections, it is more efficient to 

use one approach instead of other. NDE techniques that provide results in the detected/not 

detected form, that is, binary NDE responses, may require a Hit/Miss analysis and, the data 

set of the inspection would be a set of 0 (not detected) and 1 (detected). In order to draw an 

S-shaped curve that quantifies the reliability, Berens proposed, for Hit/Miss approach, the 

following logistic function: 

𝑃𝑂𝐷(𝑎) =
1

1+exp(−𝛽1−𝛽2𝑎)
=

exp(𝛽1+𝛽2𝑎)

1+exp(𝛽1+𝛽2𝑎)
                                   (2) 

Equation 2 involves two parameters, β1 and β2, that are not related to the physical model of 

the used NDE. These parameters are often assessed through maximum likelihood estimation 

(MLE) from fitting the curve to empirical data. Figure 3 shows the difference of a log odds 

plot and a cumulative log normal model, both presenting mean = 0 and standard deviation = 

1. 
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Figure 3: Probability of detection curves – log odds vs cumulative log normal distribution functions 

(Berens, 1989) 

On the other hand, if the NDE results come out as a continuous distribution of signal 

responses, such as the ones from UT or ET inspections, then an a vs â approach is needed 

and the POD is given by: 

𝑃𝑂𝐷(𝑎) = Φ(
ln(𝑎)−[ln(â𝑡ℎ)−𝛽0]/𝛽1

𝜎𝛿
𝛽1
⁄

)                                          (3) 

The function above is a cumulative log normal distribution with mean and standard deviation 

of log crack length as following: 

𝜇 =
ln(â𝑡ℎ)−𝛽0

𝛽1
                                                        (4) 

𝜎 =
𝜎𝛿

𝛽1
                                                             (5) 

The term â𝑡ℎ refers to the signal response of a certain flaw size a that correspond to the 

threshold or decision value. Any signal major than â𝑡ℎ is considered a real inspection 
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indication; otherwise, it is treated as noise. The terms 𝛽0, 𝛽1 and 𝜎𝛿 are also determined by 

maximum likelihood methods.  

Just one year later, NAKAGAWA et al. (1990) described a model to determine the reliability 

of an automated eddy current system. Basically, they turned the inspection automated and 

based on measures of inspectability, ROC (Receiver Operating Characteristic) curves (which 

allows the characterization on the sensitivity of an inspection system) and POD curves were 

plotted. They were able to produce an amount of data that was satisfactory to develop a 

reliability study. However, in addition to that, what can be seen in NAKAGAWA work is 

that there was no prediction of reliability based on routines or computational simulations. 

Instead, the POD curves were mathematically modelled. 

In the early 1990s, RAJESH et al. (1993) also modelled POD from eddy current inspections 

in order to detect surface cracks. In this particularly case, they used a finite element routine 

to reconstruct the eddy current technique (ET) inspection, which was successful. However, 

being a deterministic model, it could not take into account perturbations of the inspections 

system and, therefore, the POD curve associated to this inspection procedure could not be 

experimentally validated.  

Later on, THOMPSON and SCHMERR (1993) pointed out that model-based probability of 

detection curves were being rapidly improved not only by computing advances but also by 

the capability of describing and modelling the physical phenomena that runs NDE 

techniques. Besides, they stated many uses for model-based POD curves such as optimizing 

procedures and designing of a variety of NDE techniques, defining its system performance 

capabilities, developing standards and calibrations for NDE systems, among others.  

Meanwhile, in the Harwell Laboratory in Oxford, OGILVY (1993) were also interested in 

predicting POD curves behavior through modeling. Based on ultrasonic pulse-echo 

inspection on planar buried defects, the team were able to predict a theoretical POD through 

a mathematical routine. The main idea was to build a physically-based model to describe the 

scattering from UT combined with noise theory model in a numerical evaluation package to 

leave the deterministic scenario and try to predict POD. Adding uncertainty to the physical 

modeling, he could study some parameters that were capable of increasing uncertainty to the 

inspection such as roughness, orientation of the defects or flaw depths.  The unique aspect of 
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OGILVY’s work was that he not only quantified the uncertainties, but he also put some effort 

to take false alarm in consideration in his model.  

Still in the matter of probability of false alarm (PFA) and at the same institution, Harwell, 

WALL and WEDGWOOD (1994) presented a review were the authors call for attention on 

the costs involving PFA and that this type of probability of detection required attention. In 

addition to that, the authors claimed that PFA could be linked to human factors and that this 

kind of subjective factor was, in that point, impossible to be modeled. The most important 

conclusion of their work was that models and databases must be developed in order to 

increase performance on sensitivity, speed and reliability of NDE inspections.  

The following year, CHIOU et al. (1995) reported on a model that could predict POD from 

UT inspection of flat-bottom holes in Ti alloy engine billet material. The parts were 

characterized not only by physical modeling but also experimentally. As for the modelling 

part, the authors combined the method of optimal truncation as a plane wave scattering 

solution with the high-frequency Kirchhoff approximation along numerical integration and a 

simplified reciprocity relationship for special cases. The Kirchhoff model is useful for the 

modelling of echoes due to specular reflections. Since the UT theory is not the main topic of 

the present review, further reading can be found on BO LU et al. (2012). In 1996, CHIOU, 

et al. (1996) enhanced the developed model by modeling volumetric defects UT inspection 

besides flat-bottom holes.  

In the following year, WALL (1997) reviewed in detail the state-of-the-art in NDE modeling, 

but this time he was able to approach human factors as well. According to MATZKANIN et 

al. (2001), Wall listed seven different approaches available to predict POD curves: 

 Physical models for POD and PFA; 

 Signal/noise models; 

 Image classification model (visual POD); 

 Inspection simulations; 

 Statistical Models (curve fitting); 

 Human reliability models and 

 Expert judgment. 
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It is important to say that the corrections proposed by Wall regarding human factors were 

based on experimental observations and, in that point, Wall himself stated that the modeling 

of such source of uncertainty was very complex and not available. Wall concluded that 

modeled POD should definitely be a part of industrial and research day-by-day because: 

 Modelling POD would reduce the number of experimental samples required; 

 It would gain acceptance and familiarity for the modeling approach in general; 

 It could provide validation and improve database for corrections and predictions 

methods for understanding external factors as humans and environmental. 

At the same year, SCHMERR and THOMPSON (1997) presented a paper enlightening the 

importance of modeling in NDE Standards and made recommendations that, from that point 

on, any future work regarding modeling of NDE data should comprehend (MATZKANIN et 

al., 2001): 

 The use of models to design, validate and extend the measurements process; 

 The use of models to calibrate and quantify the capability of NDE hardware; 

 The use of model to train and educate NDE personnel; 

 The validation of models themselves. 

In that way, it was inaugurated the beginning of the mature modeling era. From this moment 

on, sophisticated statistical tools sometimes combined with computational tools, became 

more actively used. 

MEEKER et al. (1998) proposed a new methodology in their paper on how to improve 

modeling to determine the reliability on UT inspections that were designed to detect hard 

alpha inclusions in Ti engine billet materials. They were able to describe the effects that 

changes in UT scanning velocity and gate width have on the probability of detection. The 

team calculated the POD for several flaw sizes as a function of threshold values to stablish 

the effect of scan speed and gate width. Nevertheless, the conclusion was that they needed to 

investigate this scenario with real hard alpha inclusions, since they used synthetic ones.  

Still on titanium engine components, THOMPSON (1999) also presented updates on his 

previous research and obtained what he thought were the three main sources of variability 

during automated Ti aircraft billet inspections: microstructural parameters, instrumentation 
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& scanning procedures and flaw morphology variability. Based on each parameter role, the 

paper describes a POD/PFA modeling methodology.   

TOW and REUTER (1998) were also facing this quite philosophical question: how to take 

into account real inspection results in a probabilistic model of reliability of a certain structure. 

They proposed the use of a probabilistic fracture mechanics (PFM) model for pressure vessels 

reliability and considered the applied stress as the variability source maintaining all others 

parameters deterministic. The stunning outcome is that they were able to use inspection 

results and POD curves to determine the probability distribution function (PDF) for the flaws 

as well as the distribution of flaws among the various size ranges. Along with the PFM model, 

the PDF were used to stablish the probability of failure (POF) of the component in which 

flaws has been detected by NDE. They concluded that whenever the inspection performance 

increased, the probability of failure decreased.  

Also in 1998, SIMOLA and PULKKINEN (1998) added a great contribution on POD 

modeling by examining models for flaws sizing on the basis of statistical logarithmic or logit 

transformations. That was the moment that POD was modelled as a function of flaw depth 

and length based on statistical logarithmic or logit transformations of flaw sizes along with 

models for Bayesian for updating of flaw size distributions. The Bayesian approach enables 

to take into account prior information of the flaw size and combine it with measured results. 

Thus, several efforts have been made on modeling POD curves since the early years and a 

huge progress on this specific area of reliability studies came out as a result. However, it was 

in the beginning of the 2000s that the term MAPOD was spread through the scientific 

community. Researchers of the Iowa State University and the National NDT Centre in 

Harwell Laboratory in Oxford formed the Model Assisted POD (MAPOD) working group 

with collaboration of the US Air Force, the Federal Aviation Administration and NASA. The 

main goal was to explore computational POD opportunities and so it did.  

THOMPSON et al. (2009), enlightened that MAPOD approaches were initially categorized 

as Transfer Function (XFM) and Full Model Assisted (FMA). In the XFM approach, the idea 

is to leverage a prior POD curve based on a certain scenario and then, change only one 

significant controlling parameter and understand how that change affects the resulting POD. 

That procedure could be carried out experimentally under restricted and controlled 
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circumstances or through physics-based computer simulation. Regarding FMA approach, the 

factors that disturb variability control are tested in a systematic way. Using physics-based 

models the signal response is estimated as well as the variability due to well-understood 

physical phenomena. All the variability that comes from unknown sources have to be 

determined empirically. Having said that, Thompson defined what is understood nowadays 

as “unified approach” which is a merge of XFM and FMA, such that all factors that governs 

variability on an inspection scenario can be divided in two groups: 

 Those that must be assessed empirically 

 Those that are governed by well-understood physical phenomena. 

Several authors, while describing their efforts on building MAPOD, don’t specify exactly 

how they combined the information used for estimating POD under MAPOD concepts. 

MEYER et al. (2014) suggested a simple categorization between Non-Bayesian and 

Bayesian Approaches in order to review MAPOD literature. This present dissertation focuses 

on simulated POD curves, which are built on CIVA. CIVA code probability of detection 

mode is based on the parametric functional form of Berens approach (BERENS, 1989) and 

does not take into account either prior and posterior information in order to predict POD 

curves, which is the main characteristic of Bayesian approach: “posterior information equals 

prior information plus new evidence” (KENZLER, 2015). Bayesian approaches usually 

requires many rounds of calculations allowing that the studied scenario learns more 

information in each round. Since the Bayesian approach is not applicable to the present 

dissertation, it will be left out from this literature review. 

Regarding Non-Bayesian (NBA) and FMA approaches, SMITH et al. (2007) and 

THOMPSON et al. (2009) studied MAPOD as a tool for estimating POD applied on fatigue 

cracks that growth from aircraft wings fastener holes inspected by ET. The modeling part in 

this case was used to determine the influence of fatigue cracks growing outwards from the 

mentioned holes under ET inspection while the influence of variability due to geometry was 

determined empirically. THOMPSON et al. (2009) also presented a study on the effect of 

microstructural variability on POD in various alloys for engine disks. In this case, the effect 

of grain size on NDE noise level was evaluated through computational simulation while 

system variability was assessed empirically.  
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Still regarding the XFM approach, the work by THOMPSON et al. (2009) discussed 

application of MAPOD on ET for detection of fatigue crack on complex engine component. 

Due to the difficulty on growing fatigue cracks on that kind of geometry, the POD for electro-

discharged machined notches was determined and used as the baseline POD curve. 

Meanwhile, physics-based model was used to study the influence of fatigue cracks versus 

notches on this baseline curve.  

HARDING et al. (2009) carried out another very interesting work following the XFM 

approach. The group studied estimation of POD for fatigue crack around fastener holes in 

aircraft wings by UT. Their model used data from field and laboratory experiments taking 

into account the effects caused by: structural geometry, natural variability in fatigue cracks 

and human factors during inspection. Since they used three sets of experimental data, they 

opted for the XFM in order to put all the sets of data together and estimate POD. These three 

sets came from fabricated flaws in the real structure, real flaws in a simplified structure and 

fabricated flaws in a simplified structure. The authors used a linear regression model to take 

the parameters from the three data sets to the target scenario and called this “quadrant” 

approach. 

Several studies were carried out on MAPOD applications using the non-Bayesian 

approaches. From this point on, this literature review will focus on papers that uses CIVA in 

the process of POD evaluation, starting from the year of 2010, which was the year in which 

CIVA software was released to the international market. 

REBOUD et al. (2010) highlighted on their paper the difficulty on inspection on riveted 

structures and its consequent effort on stablishing the reliability of the used NDT. The team 

concluded that ET was the best NDT for this kind of structures, when there is no magnetic 

limitation due to the nature of the material. The paper brings the possibility of using CIVA 

to improve the inspection procedure through design of experiments (DOE) techniques. In the 

second part of the paper, the authors presented two POD curves: one based on Hit/Miss 

approach and the other based on a vs â approach, but that did not carried out validation based 

of experimental data was done. All POD curves were based strictly on simulated data from 

the virtual ET inspection. 
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The year of 2012 was a busy one concerning MAPOD application to forecast POD. 

CARBONI and CANTINI (2012) applied MAPOD to UT inspection of defects located in 

railway axles. In their work, both approaches were used to evaluate POD: FMA and XFM. 

They used CIVA to simulate the UT inspections performed by first and second legs methods. 

The first leg corresponds to the signal response coming from the incident beam while the 

second leg corresponds to the signal coming from the reflection beam. The FMA approach 

was used to simulate the experimental variability such as probe location, while the FMA 

approach was applied to compare the second leg results to experimental data from the first 

leg. It is important to mention that CIVA was used only to simulate the inspection. No POD 

curve was simulated by CIVA and no experimental validation of the results were presented.  

DEMEYER et al. (2012) used the XFM approach to study POD regarding the inspection by 

UT on Ti plates to detect fatigue cracks. CIVA was used to generate inspection data results 

for notches on titanium and aluminum plates. Based on these simulation results along with 

experimental results from inspection on Ti plates, the data gathered was extrapolated to 

estimate POD results for Al plates. As well as the prior work cited, the authors did not 

simulate the POD curve, only the inspection results.  

REVERDY et al. (2013) studied the struggle to inspect aerospace turbine components using 

phased array technique. The main idea was to validate the virtual inspections performed by 

CIVA comparing with experimental data. After the experimental validation of the simulation, 

POD curves were built in order to optimize the virtual inspection process. No POD curve 

was simulated in the process. Although, the authors state that once the virtual inspection is 

validated against experimental results, all POD analysis coming from that simulated results 

are valid, which is highly questionable. It is important to say that the POD curves were 

generated by CIVA considering 60 values of defect height and for each height, five 

inspections were made, totaling 300 inspections. The same number of inspections 

(experimental and simulated) were used in the present dissertation. The simulated value of 

a90/95 were compared to the one predicted by the pertinent standard and it came out that the 

simulated value was smaller than the one predicted in standard as being critical. Therefore, 

based only on simulated POD curve, the aerospace structure would not be in any danger of 

failure.  
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ANNIS et al. (2013) reviewed reliability studies carried out until that point and concluded 

that, among other things, nuclear industry requires more controlled NDT reliability than 

aerospace industry. Therefore, producing coupons that provide a higher confidence level that 

represent nuclear components become extremely costly. Besides, quantifying the artificial 

defects to ensure a statistical variability on these types of components and confidence 

requirements it is a sophisticated task. They presented a mathematical model that relies on 

the Monte Carlo (MC) Method in order to produce random values that could illustrate 

inspection variability and then create a set of data statistical representative to build POD 

curves. Unfortunately, the modeling exercise itself was inconclusive and the computational 

cost of generating those random data was extremely high.   

Aiming to bypass the computational cost, the authors suggested the application of a Quasi-

Monte Carlo approach (CAFLISCH, 1998). The main idea is to accelerate convergence for 

MC quadrature using quasi-random or low discrepancy sequences. These sequences are 

deterministic compared to purely random or pseudo-random sequences. The singularity of it 

is that these numbers generated by quasi-MC are correlated and allow the system to become 

more uniform. Considering a Hit/Miss approach, both hit and miss receive a weight 

corresponding to their prior likelihood generating a Bayesian network.  

Results on ANNIS et al. (2013) using quasi-MC showed that parameters such as number of 

defects, number of inspections, range of defect sizes, among others, are correlated to the POD 

curve. ANNIS et al. (2013) is considered one of the most important papers regarding 

modeling of POD but it was purely mathematical and strongly corroborated many predictions 

made by BERENS (1989). 

As a result of a partnership with the French Oil & Gas company Technip, the CEA team 

presents in CHAPIUS et al. (2014) a set of POD curves generated by CIVA based on AUT 

(automated ultrasonic testing) on orbital welding. The inspection procedure was based on 

recommendations by DNV (Det Norske Veritas) and ASTM 

(American Society for Testing and Materials) best practice guide. The inspections were 

carried out virtually using CIVA with the virtual solid representing a reference block and the 

simulated results were used to draw the POD curves. However, no experimental results were 

used to validate either the simulated POD curves or the virtual inspections.  
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One of the main motivations of CALMON et al. (2015), study elaborated by CEA team along 

MAPOD Working Group and European Project PICASSO, was to predict multivariable POD 

considering not only the defect size but its positioning and furthermore, evaluate how those 

two parameters combined affect the behavior of POD when ET inspections are performed. 

All ET virtual inspections were performed by CIVA. Moreover, the group intended to 

establish the set of conditions that enables the cumulative log-normal distribution function 

which forces, therefore, the use of non-parametrical regression regarding the Hit/Miss 

approach. Whilst the topic addressed was extremely interesting, the POD curves were not 

simulated by CIVA. No experimental validation was carried out by the authors.  

Concluding, the present literature review clearly shows that this dissertation can shed new 

light into the study of simulated POD curves. It is extremely hard to find, if at all available, 

a work that at least consider approaching the following steps based on plane scientific 

methodology: 

 Consider significant amount of experimental data with industrial variability;  

 Develops a sensitivity analysis of the software; 

 Uses the same software to build the virtual inspections and to estimate POD curve; 

 Attempts to optimize the fitting of POD curves in order to improve agreement with 

experimental results; 

 Performs some validation of simulated POD curves comparing to experimental data 

and 

 Tests the achieved optimal fitting on a different set of configurations. 
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3 METHODOLOGY  
 

In general, the main steps that describe this dissertation Methodology are the following: 

 

1. Stablish a correlation between simulated POD curves and an experimental POD 

curve built by non-laboratorial experimental set of data;  

2. Perform a sensitivity study on the software performing over 80 virtual variations;  

3. Compare simulated POD curves considering a new approach of estimating 

variability of simulated data; 

4. Identify the virtual parameters that induce more impact on the simulated POD curve; 

5. Apply adjustments on the original virtual scenario in order to optimize the fitting of 

the simulated POD curve and compare with the experimental one to verify 

improvements; 

6. With the set of adjustments that was used in the optimization step, apply the same 

set of parameters changes on a different inspection scenario and verify if this 

optimization set could be transferred to other virtual scenarios.  

 

Since one of the key goals of this dissertation is to optimize the fitting of simulated POD 

curves in order to get them close to experimental ones, it is necessary to describe both sets 

of data: experimental data coming from real inspections and the simulated data coming from 

virtual inspections. Therefore, the Methodology section is divided in two subsections: 

experimental and simulated data. 

 

3.1 EXPERIMENTAL DATA 

 

The experimental inspection results were kindly shared by LNDC – Laboratory of 

Nondestructive Testing, Corrosion and Welding that is part of the Metallurgical and Material 

Engineering Department of the Federal University of Rio de Janeiro. Having Reliability 

Analysis as one of the most important lines of research, LNDC was hired for a well-

established, but undisclosed, pipe manufacturer to analyze its automated ultrasonic 
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inspection system through POD curves. In order to do that, a coupon was specially built 

consisting in a 12 m long API 5L X-65 pipe with a longitudinal weld made by SAW 

(Submerged arc welding). In the welding region and adjacencies, 99 artificial defects were 

inserted respecting a 100mm distance between each one of them. The defects differ from 

each other based on geometry, location and type. Regarding their types, as shown in Table 

1, six different kinds of defects were artificially inserted: regular longitudinal cracks, 

longitudinal crack on the HAZ area, two different kinds of transverse cracks, lack of fusion 

and lack of penetration.  

 

Table 1: List of defects inserted in the API 5L X-65 pipe used in experimental AUT inspections 

 

 

Each group of defect was produced following a distribution of different and known lengths 

and heights. The projected heights presented a range from 0.35 mm to 2.1 mm while the 

lengths varied from 1.5 mm to 12 mm.  

The defect insertion technique was based on simulating a real defect by adding size-

controlled graphite pieces into the weld region. To do so, cavities were made in the pipe by 

gouging and the graphite pieces were carefully positioned inside those cavities in specific 

locations and depths, as shown in Figure 4. At the end of the described process, all cavities 

were covered by SMAW (Shielded Metal Arc Welding), as can be seen in Figure 6. 

 

Types of Defects Number of Defects Heights Lenghts Depths

Lack of Fusion (LF) 9

Lack of Penetration (LP) 14

Cracks on HAZ 20

Transverse cracks type A 12

Transverse cracks type B 24

Longitudinal cracks 20

Sizes of Defects (mm)

0.35 - 2.10 1.5 - 12.0 0.5 - 24.0
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Figure 4: Gouging of the pipe to insert artificial defects in the welding region 

 

The graphite technique may be assumed to be an efficient way of simulating real defects 

because it causes an interference in the ultrasonic wave propagation inside the material due 

to its different properties. Having a graphite structure inserted in a metal, the ultrasonic wave 

will be affected as a real defect because the graphite presents different acoustic properties 

from the metal. The graphite insertion method was properly validated experimentally by 

LNDC team through macrography as can be seen in Figure 5 and and NDT techniques. 

 

(a)                                                         (b) 

Figure 5: The figure (a) shows a macrography of a defect inserted in the weld region by graphite 

technique and figure (b) shows its location through radiography test 
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Figure 6: Covering of the gouged areas with Shielded Metal Arc Welding 

 

After the insertion of the 99 defects, it was necessary to verify if their location were still the 

same as projected because the SMAW process could have moved them to a different spot. 

For that, manual ultrasonic inspection was carried out and all pipe was mapped according to 

the real and final locations of the defects after the closing process. It is important to mention 

that only the longitudinal position of the flaws could be confirmed by UT inspection at this 

point, but not the depths. 

Once the coupon pipe was ready, it was transported to the manufacturing plant to be inspected 

by the automated UT system. The client’s system consisted of 12 steady probes working in 

pairs while the pipes to be inspected pass beneath them. The probes couple stablishes contact 

with the pipe surface using water as coupling medium. Each pair of probes is designed to 

inspect a certain area and depth of the pipe. As such, at least in theory, every region of interest 

nearby the welding area was covered. It is worth mentioning that the UT signal from the 

inspections were considered to be real defects signals instead of noise each time the they 

overcame 50% of the screen, stablishing this value as the threshold value. 

The client’s main concern was if the probes were being efficient regarding the detectability 

of potential defects. Besides that, they wonder if these probes were detecting what they do 

not need to detect. In the same way, the client was interested in knowing if the AUT system 

were failing to detect indications that are crucial for the integrity of the pipe. To answer these 
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and other important questions, they were right to recognize that a reliability study through 

POD curves was necessary.  

What is important to the present dissertation is not the result of the mentioned reliability 

study. This dissertation will take advantage of the 1.188 experimental data resulting from 

real inspections that took place on the industrial plant, which were influenced by all sources 

of variability made on a 99 well-known defect pipe. From all this valuable data generated, 

the present work will focus only on a subset that was found to be representative. Since the 

main propose of this work is only achieved performing a large number of computer 

simulations, it was necessary to choose a certain configuration of probe and type of defect 

instead of considering all configurations. Once this chosen subset is studied, expanding the 

procedure to the full set of data is a trivial, but time-consuming task, which is beyond the 

scope of the work. 

For all further analysis, the configuration that will be considered regards defects that 

represent cracks on the HAZ (heat-affected zone). One of the main outcomes of the reliability 

study that was carried out previously was that the probability of detection does not strongly 

depend on the defect length but on its height. Having said that, for this point on, all POD 

curves will be based on a fixed length of 12mm and the geometric parameter for the analysis 

will be the defect height.   

The experimental POD curve concerning the subset of HAZ defects was build using the 

software mh-1823 version 4.2.4, which is a free code written in R that was developed 

following the MIL-HDBK-1823A (2009) recommendations. This particular software was 

used in this dissertation since it is the same code implemented on CIVA’s POD curve module. 

In order to compare properly experimental to simulated results, it is important to be as 

systematic as possible, that is, use the same code, the same data set size (300 results) and the 

same mathematical approach. The curve can be seen in Figure 7 and shows the main 

parameters that are taken into account to evaluate a POD curve, which are the a90 and a90/95 

values and the covariance matrix which is composed by parameters that will stablish the  

and  modeling. 
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Figure 7: POD curve from experimental data inspection of AUT on HAZ defects 

 

Figure 7 shows the a90 and a90/95 values being 1.892 mm and 1.961 mm respectively and it is 

important to emphasize that the axis concerning flaw size is, in fact, its height. The a vs â 

approach was selected, as well as a linear distribution of defect heights and a confidence 

bound of 95%. Aiming to compare the experimental a90 and a90/95 values with simulated 

results, the same scenario but virtual, had to be developed.  
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3.2 SIMULATED DATA 

 

The software used to simulate not only the inspections but also the POD curve was CIVA 

version 2016. CIVA, as mentioned before, is a well stablished semi-analytical physical-based 

software used to perform virtual inspections through NDT techniques and to predict 

reliability through simulated POD curves; among many other functions. CIVA has four major 

modulus regarding NDT: an ultrasonic module, guided waves module, eddy current module 

and radiographic module. This dissertation only makes use of the ultrasonic module, 

specifically the inspection simulation part. The POD analysis is a specific kind of file 

generated from the simulation file or independently.  

For the propose of this work, the inspection simulation was carried out with the experimental 

configuration of the chosen subset and computational results could be verified associating 

the signal responses with the experimental ones; the results showed satisfactory agreement. 

From that point on, it was possible to stablish the virtual model as a suitable representation 

from the experimental configuration. Therefore, POD files regarding flaws height could start 

being produced. This original curve, the one built from the experimental model, was called 

CONTROL and all others curves will consider the CONTROL one as the POD curve base 

for comparison. All parameters set up in the CONTROL modeling are presented in Table 3 

at the end of this section, including the defect geometry as shown in the schematic Figure 8. 

 

Figure 8: Scheme of the rectangular defect used to simulate the crack on the HAZ 
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It is important to understand certain aspects on how CIVA performs probabilistic studies to 

build POD curves. The inspection simulation in a deterministic model.  The POD curve can 

only begin to exist when uncertainty parameters are considered. CIVA calls those parameters 

as “uncertain parameters” but this dissertation will refer to them as uncertainty parameters or 

just UP. The users have to define which inspection parameters are uncertain. In the present 

work, three aspects were defined as uncertain: skew, tilt and disorientation of the flaw. That 

means that there is no certainty regarding the orientation of the defect. Furthermore, the 

uncertainty parameters have to follow a given probability distribution function (PDF) which 

is also defined in the virtual environment. All three uncertainty parameters assumed a normal 

PDF, which is a perfect acceptable premise, according to expert’s analysis (REVERDY et 

al., 2013). 

Once the uncertainty parameters (UP) and their PDF are defined, the software is able to 

describe the variability necessary for the probabilistic study. The mentioned variability is 

achieved through a Monte Carlo routine that provides a random sampling with null mean 

value and standard deviation = 1.  

When the code gathers the random data sampling sets, it applies the calculated variability to 

simulate all scenarios respecting the physics-model computation. The result is a set of signal 

responses for every scenario coming from the combination of each random value calculated 

for each UP applied on the deterministic model. Based on the resulting set of signal 

responses, corresponding to 300 inspection results, POD curves can be extracted. The curve 

is extracted according to Berens approach and it can be analyzed in many ways: Hit/Miss or 

a vs â approach, linear or logarithmic model and variable confidence level among others. 

The involving parameters are calculated according to MIL-HDBK-1823A (2009) approach. 

The analysis also provides the data table with all a sizes and all corresponding values 

attributed to the UP and the maximum signal response (maximum amplitude). Results on 

CIVA are also presented graphically as data plot of flaw sizes vs signal response, a data plot 

of residuals and de POD red curve along with the confidence level blue curve, as it shown in 

red in Figure 9. 

 After performing the virtual inspections, the resulting data is exported and the POD curve 

that corresponds to CONTROL configuration is built through mh-1823, as it is shown in 
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Figure 10. This figure shows the a90 and a90/95 values being 1.623 mm and 1.664 mm. As well 

as the experimental POD curve, the simulated POD curve considered the a vs â approach, 

the linear distribution of defect heights model and a confidence bound of 95%.  

An initial comparison between experimental and simulated results of a90 and a90/95 is 

presented in Table 2. 

 

Figure 9: Example of POD analysis results coming from CIVA software 

 

It can be seen that the corresponding values differ, of course, but they remain in good 

agreement, which allows follow-up studies to be done. 

 

Table 2: Comparison between experimental and simulated data for a90 and a90/95 values CONTROL 

regarding configuration 

 

a 90 a 90/95

Experimental 1.892 mm 1.961 mm

Simulated 1.623 mm 1.644 mm
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Figure 10: POD curve from simulated data inspection of AUT on HAZ defects 

 

 

a 90 a 90/95

Experimental 1.892 mm 1.961 mm

Simulated 1.623 mm 1.644 mm
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Table 3: Simulation parameters used to model CONTROL scenario through CIVA 

 

Computational configuration

Involved modes

Specimen echoes model

Number of half skips

Flaws model

x 30 mm

y 30 mm

z 30 mm

arbitrary

coordinate system local

Cartesian

depth direction along local normal

x 59 mm

y 0

z 8 mm

Compuitation type

Field reflector interaction

Field

Defect

Mode identification

Number modes to return

Calibration

CONTROL PARAMETERS

S
im

u
la

ti
o

n
 S

et
ti
n

g
s

Initialization
advanced definition

transversal waves

Interactions

Kischhoff

Backwall skip activated

1 max

Kirchhoff & GTD

Sensitivity zone

Other Options

Account for attenuation

No creeping waves

Activated

5

No

Enabled

Dimensions

Positioning

Local Cartesian coordinates

Options

3D

plane wave

Accuracy
1

1
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Geometry

Width

Length

Focusing

L1

L2

L3

L4

Refraction angle

Incident angle

Squint angle

Disorientation

Wave Type

Material

Attenuation type

Longitudinal wave attenuation

Transversal wave attenuation

Structural noise

number of points

temporal position

frequency

Case

Contact with wedge

Crystal shape

Single element pattern

Rectangular

8 mm

P
ro

b
e

60°

50.14°

Other Angles
0

0

Transverse

9 mm

No apodization

Flat (surface type)

Geometry

34 mm

34 mm

68 mm

30 mm

Crystal Orientation

Plexiglas

Modal

power

none

none

Signal

Imported reference signal

Sampling

512

1.707 mm

Wedge

4 MHz

Unabled
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Shape

Length

Height

Options

Position mode

Ligament calculation

y

Ɵ

R

tilt

skew

disorientation

Ligament

Translation direction

Diameter

Length

Thickness

Inner Radius

Angular Sector

Roughness

Density

Longitudinal wave

Transversal wave 

S
p
ec

im
en

Geometry

457.2 mm

300 mm

28.32 mm

200.28 mm

180°

20 mm

Material

Carbon Steel 

7.8 g /cm
3

5900 m/s

3230 m/s

F
la

w
s

Rectangular defects

Geometry
12 mm

0.35 - 2.1 mm

Positioning

Length along rotation axis

Orientation

0

0

0

0.5 mm

along normal direction

from surface to bottom

outer

Center coordinates

150 mm

0

228.6 mm
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Inspection plane

Inner/outer

Scanning direction

Matched contact

Choice or reference point

offset y

offset Ɵ

offset R

y

Ɵ

R

Coupling medium

Bottom medium

step

number of steps

step

number of steps

No increment

Scanning reversed

Increment skip

In
sp

ec
ti
o

n

Single transducer

Configuration

perpendicular to rotation axis

external

positive

NO adapted probe

Positioning

wedge center

Reference point coordinates

140 mm

-15°

9.614 mm

Reference point in the CIVA reference frame

140mm

-15°

238.214 mm

water

air

Scanning

 Ɵ rotation
0

0

Translation along the axis
0.1 mm/deg

190

Choice of scanning modes

raster
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Number characteristic Values

Number of samples

Charasteristic Value Height

Step value

Type

skew

tilt

disorientation

Type of Amax

PDF Normal

Extraction

ABS

No signal processing

No calibration

P
o

D

Variables

60

5

0.35 - 2.1 mm

0.03

Linear

Uncertain Parameters

PDF Normal

PDF Normal
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4  RESULTS AND ANALYSIS 
 

 

This section is divided in four major topics, illustrated in Figure 11, which are: Sensitivity 

Analysis, Simulated Relevant Parameters, Optimal Fitting of Simulated POD Curves and 

Optimal Fitting Transfer to a Test Set of Data.  

 

Figure 11: Flow chart of the main steps covered in the Results and Analysis section 

It is important at this point of the dissertation, to stablish the terms for all virtual inspection 

configurations that will be addressed to. Each process brought up by Figure 11 has specific 

inspections configurations and the correspondent names and descriptions are as follow: 

 CONTROL Configuration: is the virtual configuration coming from the experimental 

data regarding HAZ defects, showed in Table 3, 

 OPTIMAL Configuration: is the CONTROL configuration after changes on the 

virtual setting under the sensitivity analysis guidelines, 

 TEST Configuration: is the virtual configuration coming from the experimental data 

regarding Lack of Fusion defects, 

 TRANSFERRED Configuration: is the TEST configuration after changes on the 

virtual setting under the same optimized parameters used in the OPTIMAL 

configuration. 

 

4.1 SENSITIVITY ANALYSIS 
 

The present section addresses the simulation parameters that may affect the simulated POD 

curve behavior when performed by CIVA software. To do so, the configuration CONTROL 

Sensitivity 
Analysis

Identification 
of the most 
impactant 
parameters

Optimal 
Fitting of 
simulated 

POD curves

Opimal  
Fitting 

Transfer to a 
Test Set of 

Data
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showed on Table 3 will suffer systematic modifications changing one parameter at a time 

while the others remains constant. Therefore, the subsection will show graphic 

representations comparing two POD curves: CONTROL and the curve resulting from 

changing the parameter of interest. The results are divided in two categories: Computational 

Parameters and Physical Parameters. In order to inform the reader about which parameters 

names are being used literally as they are in CIVA, most parameters are presented in quotes 

in the first time that they are mentioned. 

 

4.1.1 Assigning Variability to Simulated Data  

 

As the probabilistic part of the simulated POD curve is based on a random set of numbers 

attributed to the uncertainty parameters, it is obvious that every POD built will differ from 

each other. Comparing two POD curves in a raw way will give the impression that all 

parameters modification affect the original curve (CONTROL). Therefore, if the intention 

here is precisely to stablish which parameters affect the most the POD behavior, it is 

important that an error bar is applied to the curves in order to distinguish from each other 

and compare them.  

Well, the question is how to assign an error value to simulated data? For that matter, a method 

to do just that was proposed by the author of this dissertation to assign variability to simulated 

POD curves for comparison proposes.  

As previously mentioned, being the POD curve a stochastic way to quantify reliability, there 

is a deterministic part and a probabilistic part. In CIVA, when a certain configuration is 

simulated and the POD curve is drawn, if there are no changes in any parameter, the generated 

curve will remain unchanged. It states that the software presents repeatability, which is 

expected. In that way, it presents no direct variability between two simulations. However, 

CIVA presents a functionality that is to randomize the uncertainty parameters (UP). In other 

words, all parameters remain constant but a new set of UP is produced. The result showed in 

Figure 12 is a different POD curve based on the randomized set of UP.  
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Figure 12: POD curve from CONTROL configuration before and after randomization of UP 

 

The next step was to subtract the CONTROL POD values from the randomized curve. The 

result from the subtracting operation is a distribution of values that vary mostly in the 

transition area of the curve, tending to 0 when POD approaches the origin and when it 

approaches the 100% baseline. These subtraction values are then put on a decreasing order 

and the upper quartile of numbers were selected. Calculating the mean of the upper quartile, 

it was possible to get to a constant value of 6.03793% which is, from this point on, considered 

as simulated data error or as variability of simulated data. The unit is % because the value 

came from the subtraction of two probabilities values.  

Therefore, all simulated POD curves in the sensitivity analysis section will present two 

auxiliary curves attached, as shown in Figure 13 – one above and another below the POD 

curve - varying the original probabilities values in a range of +/- 6.03793% in order to 

compare different configuration curves.  
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Figure 13: Auxiliary curves attached to the CONTROL POD curve representing the variability 

assigned to simulated data 

 

Idealistic, it would be preferable is the variability assigned to the simulated data was not a 

constant value but a function that increases in the middle region of the POD curve and 

decreases at both extremes of it. For an initial approach, a constant value was used but further 

consideration on that matter in future works must be paid attention.  

 

4.1.2 Computational Parameters 

 

This subsection will report all parameters that do not represent direct physical meaning 

regarding UT, being mostly parameters that changes the computational configuration and 

premises. Setup of computational parameters is located on the “Simulation Settings” tab on 

CIVA and the parameters classified in five major categories: Initialization, Interactions, 

Gates, Options and Calibration. Each category presents a variety of parameters that can be 

set. Over twenty parameter change analyzes were performed and will be investigated as 

follows. 
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4.1.2.1 Computation Configuration 

 

Computational configuration allows the user to choose between many ways to compute the 

simulation such as easy setting, direct, half skip, full skip, advanced definition and others. 

For the user that does not have experience on UT or CIVA, it is best to choose the “easy 

setting” option whilst the user that is more acquainted with the tool can choose the “advanced 

definition”.  

The CONTROL configuration assumes the advanced definition and the changed one was the 

easy setting. In fact, as Figure 14 shows, there is no impact on resulting POD curves when 

the easy setting is chosen as both curves are superimposed. Instead, there is one important 

advantage of using the easy setting: the computational cost is lower. While the advanced 

definition takes around 8 hours of simulation time, the easy setting take almost 3 hours, 

always using an Intel Xeon CPU E5-2620, 2 processors (2 GHz). Therefore, if the user does 

not need the advanced definition, it is strongly recommended that the easy setting be used.  
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Figure 14: Effect of computational configuration on simulated POD: curves superimposed showing 

no difference between CONTROL (Advanced Definition) vs Easy Setting behavior regarding POD 

curves 
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4.1.2.2 Involved Modes – Longitudinal and Transverse Waves 

 

“Longitudinal waves”, “transverse waves” and “account for mode conversions” are the 

options of the “involved mode” configuration. The user can choose more than one mode to 

set the simulation. On CONTROL configuration, the transverse mode was selected and the 

changed configuration accounted for both transverse and longitudinal waves and no 

difference between the two configurations could be detected on the POD curve. Regarding 

the “account for mode conversion” option, this is a typical example that if the user does not 

need the simulation to compute all modes conversions, this option definitely should not be 

enabled. While the CONTROL configuration takes 8 hours to me simulated, the one that 

accounts for mode conversion takes 54 hours and the POD curve based on this last model is 

exactly the same as the CONTROL. 

 

4.1.2.3 Specimen Echoes 

 

Regarding the “specimen echoes model”, the user can choose between a “specular” model 

and a non-specular model: the “Kirchhoff” scattering, which was used in CONTROL 

configuration. In the case of the present particular configuration, there was no difference on 

the POD results between the two echoes models. 

Concerning which echoes are taken into account, the user can select among front echoes, 

back wall echoes, interface echoes and side echoes. CONTROL configuration enables the 

“back wall echoes” and once the corresponding POD is simulated, it shows no difference 

from the simulated POD for back wall echoes disabled.  The time for computing the 

simulation is 3 hours for back wall echoes disabled and approximately 8 hours for “back wall 

echoes” enabled, so the user might gain some substantial time disabling this particularly 

option. 
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4.1.2.4 Skips – Number of Half Skips 

 

While the CONTROL configuration consider one half skip to be computed, the changed 

configuration assumes five maximum half skips regarding the ultrasonic wave. Skip can be 

understood as the sound path distance between two successive surface reflections. Therefore, 

a half skip is half of that distance. Increasing the “number of half skip” is the same as 

extending the reach of the ultrasonic beam. Simulating the POD for five half skips, results 

show a POD that display no difference in comparison with the original one (one half skip).  

 

4.1.2.5 Flaw Model – Kirchhoff & GTD 

 

Still on simulation settings, CIVA presents a tab under Interactions that refers to the model 

that is used to simulate the flaw. The current model is “Kirchhoff & GTD” (BO LU et al. 

(2012)) for the rectangular defect and it is activated in CONTROL configuration. For any 

planar defect, CIVA uses geometrical theory of diffraction (GTD) and the Kirchhoff 

approximation for scattering modeling. When this option is disabled, the POD curve cannot 

be plotted due to calculations errors. The problem is that the software does not inform the 

error to the user right up front. The error is reported at the end of all calculations, which taken 

nearly 3 hours to be finalized.  

 

4.1.2.6 Sensitivity Zone 

 

Establishing a “sensitivity zone” (SZ) is equivalent to establishing a ROI (region of interest). 

In theory, if the virtual inspection configuration is properly set, there should be no difference 

between defining or don’t a SZ. If the probe is at the correct place and the flaw is detectable, 

the simulated POD for both configurations should be the same. It is only a computational 

tool to focus computational effort in a certain region; and that in fact could be inferred on the 

followings comparisons between: 

 Sensitivity zone enabled (CONTROL) vs disabled 
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 SZ dimension decreased from 30 mm x 30 mm x 30 mm (CONTROL) to 25 mm x 

25 mm x 25 mm  

 SZ dimension enhanced from 30 mm x 30 mm x 30 mm (CONTROL) to 35 mm x 35 

mm x 35 mm 

The resulting simulated POD curves show no difference when compared to CONTROL 

configuration POD curve. Therefore, settling changes on the sensitivity zone does not 

enhance nor decrease simulated reliability. 

 

4.1.2.7 Gate 

 

The “gate” in an UT inspection is the window that will provide the signal response for a 

possible indication. It is extremely important that the gate is set according as part of the 

inspection calibration system. Regardless, concerning simulated POD curves performed by 

CIVA, the fact that the gate is enabled or disabled, the resulting POD is not significantly 

affected. Furthermore, once the option “gate” is enabled, the way that synchronization is 

stablished is irrelevant to simulated POD curve. The user can set the synchronization by the 

“echo max absolute” or “first echo” and the simulated reliability presents the same behavior. 

 

4.1.2.8 Computation Type 

 

About the computation of virtual inspection, users have two options available: compute the 

results through a “3D” model or using a “2D” model. The 2D model is usually used to study 

the ultrasonic phenomena on a certain section of the virtual solid.  

For a full simulation experience using defect inspection module, it is recommended the 3D 

computation type. Based on the previous information, it is expected that for the changed 

configuration, which admitted a 2D computation, the reliability result could not be calculated.  
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4.1.2.9 Field Interaction 

 

There are many ways to compute the UT beam when a virtual inspection takes place. 

Concerning the field interaction, CIVA provides the “plane wave approximation for incident 

plane” and “full incident beam”. It is logical to infer that one considers mathematical 

approximations for the beam while the other takes the full beam incidence into account.  

The result shown in Figure 15 reveals a completely different POD curve from the original 

CONTROL. The results show an increase on the detectability resulting in a steeper curve. 

The computational cost also increases drastically for the full computational mode. While the 

CONTROL configuration results in an 8 hours simulation process, the full incident beam 

results in a 36 hours simulation.  
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Figure 15: Effect of field interaction on simulated POD: CONTROL (approximation) vs Full 

Incident Beam 

 

 

 



42 
 

4.1.2.10 Accuracy Field and Accuracy Defect 

 

The software provides an option to change the “accuracy field” and “accuracy defect”. Under 

Options tab on Simulation Settings, the user can change the previous default value, which is 

one. Both parameters were tested changing the accuracy value to two as an initial attempt to 

study these variables and the results are shown in Figures 16 and 17. No important changes 

on the simulated POD for accuracy field change was detected. Although, changes on the 

accuracy defect cause a decrease of simulated reliability. 

0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1

0

10

20

30

40

50

60

70

80

90

100

 

 

 Control

 Accuracy Field

P
o
D

 (
%

)

Height (mm)

 

Figure 16: Effect of accuracy field on simulated POD: CONTROL (1) vs accuracy field 2 
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Figure 17: Effect of accuracy defect on simulated POD: CONTROL (1) vs accuracy defect 2 

 

4.1.2.11 Account for Attenuation 

 

It is also possible to “account for attenuation” by checking the correspondent box under 

Options tab. Since the material inspected is a regular steel, there are no expected attenuation. 

Moreover, as will be seen on Physical Parameters Section, the material is set up for not to 

account for attenuation. As expected, no impact on the simulated POD is perceived when this 

option is disabled. 

 

4.1.2.12 Creeping Waves 

 

“Creeping waves” are a particular phenomenon where longitudinal waves are taken into 

account (KRAUTKRAMER (1990)). Although, even when only transverse waves are 

considered, there are mode conversions inside the material and creeping waves can be 

produced. The base simulation CONTROL only considers transverse waves and besides that, 

does not account for mode conversions. Therefore, if the user chooses those options, which 



44 
 

are longitudinal waves and uncheck the account for conversion mode box, the option to 

account creeping waves must be disabled; otherwise the simulation will not be completed.  

 

4.1.3 Physical Parameters 

 

In this present section, the sensitivity analysis concerning physical UT parameters is 

explored. The analysis of physical parameters is subdivided respecting the categories used 

by CIVA, which are Specimen, Probe, Inspection, Flaws and POD. The majority of the 

relevant physical parameters were tested, totaling over sixty POD predictions accounting for 

more than 700 hours of simulation. 

 

4.1.3.1 Specimen 

 

The tab for specimen specification allows the user to set properties of the material, its 

dimensions and geometry, among other parameters. CIVA provides options to insert 

homogeneous and heterogeneous materials, add new materials to the already extended 

material library, insert attenuation and structural noise and account for depressions. At this 

point, it is worthwhile reviewing the settings used in CONTROL regarding the specimen set 

up: 

- Geometry: Cylinder 

- Outer Diameter: 457.2 mm 

- Thickness: 28.32 mm 

- Material: Carbon Steel  

- Roughness: 20 m 

- No attenuation / no structural noise / no depressions 
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4.1.3.1.1 Outer Diameter 

 

The actual pipe used in all experimental inspections has 457.2 mm of “outer diameter”. This 

comparison aims to stablish what influence an increase on the outer diameter would have on 

the probability of detection of defect from HAZ type. In order to do so, an increase of 10 mm 

(~2%) on the outer diameter was performed virtually and the corresponding POD was built. 

Figure 18 shows that, regarding a90 and a90/95 values, there was no effect by increasing the 

outer diameter, whereas the probability of detection increases for flaw sizes between 0.6 mm 

and 1.4 mm. For instance, flaw sizes of 1.2 mm, for example, are detected with a probability 

of 45% regarding the CONTROL configuration while the same flaw size is detected with 

over 70% POD when the outer diameter is increased.  

 

4.1.3.1.2 Thickness 

 

Just like the outer diameter analysis, the original “thickness” value was increased in 

approximately 2% from the original value and the possible impact on POD is evaluated 

comparing the increased thickness with the POD regarding the original configuration 

(CONTROL). Figure 19 shows the lower values of probability of detection due to the 

incremental increase on thickness value.  
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Figure 18: Effect of outer diameter on simulated POD: CONTROL (457.2 mm) vs Outer Diameter 

Increased (467.2 mm) 
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Figure 19: Effect of thickness on simulated POD: CONTROL (28.32 mm) vs Thickness Increased 

(28.88 mm) 



47 
 

 

4.1.3.1.3 Roughness 

 

According to HONEYWELL (2009), the surface “roughness” of a steel oil pipe is around 45 

m. In CONTROL modeling, the roughness used was 20 m and this value was attributed to 

the experimental pipe empirically. No formal tests were used to stablish the exact roughness 

value. It could be considered that the value used in the CONTROL simulation is near the 

predicted by HONEYWELL (2009). However, it could also differ from the expected value 

due to fabrication conditions. The experimental pipe presented a rather irregular surface and 

it is possible that the simulated roughness value was underestimated. For that reason, the 

changed POD prediction considered a roughness of 100 m and Figure 15 shows that the 100 

m roughness resulted in lower probabilities of detection.  
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Figure 20: Effect of roughness on simulated POD: CONTROL (20 m) vs Roughness of 100 m 

 

This result is expected since a higher roughness makes coupling of the probe on the surface 

pipe more difficult. Nevertheless, the roughness of 4 µm was also tested to predict the POD 

behavior when the surface is more polished. Results shown at Figure 21 enlighten that no 
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significant difference on POD is perceived. This means that under a certain value, the 

roughness does not impact the probability of detection. 
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Figure 21: Effect of roughness on simulated POD: CONTROL (20 m) vs Roughness of 4 m 

 

4.1.3.1.4 Material 

 

CIVA contains an interesting variety of materials on its library. They are divided in four 

major groups: anisotropic materials, composites, isotropic and polycrystalline materials. The 

experimental pipe is a regular API 5L X-65 which is usually produced for oil transport.  Since 

CIVA does not provide this particular option, the configuration CONTROL assumed the pipe 

material as being regular steel which shows similar characteristics compared to API 5L X-

65 regarding longitudinal and transverse wave velocities. To test the material impact on POD, 

two different materials were considered in the changed configuration: 410 and 302 stainless 

steel. Figure 22 compares reliability results between regular steel and 410 stainless steel 

while Figure 23 shows the results for 302 stainless steel. On the comparison between regular 

steel and 410 stainless steel, the simulated reliability decreased, while regarding 302 stainless 

steel, POD showed no significant difference.  
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Figure 22: Effect of material on simulated POD: CONTROL (steel) vs Stainless Steel 410 
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Figure 23: Effect of material on simulated POD: CONTROL (steel) vs Stainless Steel 302 
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These results are suitable to the sensitivity analysis but they do not show good agreement 

with real inspections. Usually, stainless steel presents a very unique microstructure where the 

crystallographic directions of the grains totally differ from one other, scattering the ultrasonic 

wave (MARK et al. (2014)). As such, it was expected that the simulated results would show 

a drastic drop of reliability which was not observed, because CIVA does not take into account 

stainless steel microstructure, regarding version 2016.   

 

4.1.3.2 Probe 

 

The Probe tab is divided in five groups being: Crystal shape, Focusing, Wedge, Signal and 

Case. The probe can be set as contact type, immersion, dual element, flexible, surrounding 

array, surrounded array and EMAT.  

CONTROL configuration admits a contact probe with wedge. Under crystal shape tab, the 

user can change the pattern of crystal and its geometry. Focusing tab provides options on the 

surface type being flat, cylindrical, spherical, bifocal, trifocal or Fermat. For the baseline 

POD curve, a flat surface type probe was selected in CONTROL. The wedge tab allows the 

user to change wedge configurations as its geometry and material while the Signal tab 

characterizes the UT signal properties. The Case simply allows the user to consider or not a 

probe’s case visualization. 

 

4.1.3.2.1 Crystal Shape 

 

CONTROL configuration set the crystal geometry as rectangular. The present subsection 

intents to analyze the impact of changes in geometry on the simulated POD curve. For that 

matter, the changed configuration admits a circular “crystal shape” and results are 

demonstrated on Figure 24.  

The comparison between the two configurations shows that when the shape of the crystal is 

modified, the reliability suffers an impact decreasing its behavior, represented by a horizontal 

shift in the curve.  
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Figure 24: Effect of crystal shape on simulated POD: CONTROL (rectangular) vs circular crystal 

shape 

 

4.1.3.2.2 Crystal Dimension 

 

The user can also change the dimensions of the probe’s crystal. CONTROL set the size of 

the crystal as being 8 mm of width and 9 mm of length. The changed configuration admitted 

a crystal size being 9.6 mm of width and 10.8 mm of length.  

Results in Figure 25 show a small loss of reliability, especially between defect heights 

between 0.9 mm and 1.3 mm. However, the changed configuration presented a steeper curve, 

which is a good result in terms of reliability since it clearly discriminates defects that are and 

that are not detected.  
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Figure 25: Effect of crystal size on simulated POD: CONTROL (8 mm x 9mm) vs 9.6 mm x 10.8 

mm 

 

4.1.3.2.3 Wedge Geometry – Crystal Orientation 

 

Experimental results demonstrate that the wedge is amenable to suffer wear due to constant 

friction between its surface and the object of inspection. This wear makes the wedge slightly 

inclined which can affect the direction of the ultrasonic beam. Changing the “crystal 

orientation” on the simulation environment is an appropriate way to simulate the wedge wear. 

From the experimental inspections, it could be observed that this wear, on average, is around 

2°. Therefore, while CONTROL configuration admits a crystal orientation of 60° for 

refraction angle, the changed configurations will admit 58° and 62° for refraction angle. 

Results are shown in Figures 26 and 27 and both demonstrate that there is no significant 

impact on reliability due the wedge wear regarding CONTROL configuration. Although, 

they suggest that a reduction in the refraction angle resulted in a shallower POD curve and 

an increase of the refraction angle result on a steeper simulated curve. Therefore, these 

parameters effect cannot be undervalued. 



53 
 

0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1

0

10

20

30

40

50

60

70

80

90

100

 

 

 Control

 Crystal Refraction - 2° 

P
o
D

 (
%

)

Height (mm)

 

Figure 26: Effect of crystal refraction angle on simulated POD: CONTROL (60º) vs Crystal 

Refraction -2º (58º) 
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Figure 27: Effect of crystal refraction angle on simulated POD: CONTROL (60º) vs Crystal 

Refraction +2º (62º) 
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4.1.3.2.4 Wedge Geometry – Squint Angle 

 

“Squint angle” can be understood as being the measurement on how deviated the ultrasonic 

beam is related to the probe’s axis, as can be seen in Figure 28.  

 

Figure 28: Representation of the Squint Angle (B) and Disorientation Angle (D) according to CIVA 

software 

 

Probe manufactures try to keep this particular angle always below 2º, although, ideally, it 

should be zero. In fact, zero was the value used in the CONTROL configuration. The present 

subsection evaluates the squint angle impact on reliability when it is ± 2º. Results shown in 

Figures 29 and 30 reveal a significant impact of squint angle on the POD curve and in both 

cases, reliability decreases.  
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Figure 29: Effect of squint angle on simulated POD: CONTROL (null) vs squint angle -2º  

 

0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1

0

10

20

30

40

50

60

70

80

90

100

 

 

 Control

 Squint Angle +2°

P
o
D

 (
%

)

Height (mm)

 

Figure 30: Effect of squint angle on simulated POD: CONTROL (null) vs squint angle +2º  
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4.1.3.2.5 Wedge Geometry – Crystal Disorientation 

 

“Crystal disorientation” is the angle formed when there is any rotation of the crystal around 

its own axis, according to Figure 28. Control configuration admits crystal disorientation 

equals zero, as it should be in practice. The changed configuration will admit a 2º 

disorientation in order to assess its impact on reliability.  

Figure 31 shows that the POD curve suffers a significant impact of the tested parameter, 

lowering the reliability. 
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Figure 31: Effect of disorientation angle on simulated POD: CONTROL (null) vs disorientation 

angle +2º  

 

4.1.3.2.6 Wedge Material 

 

The wedge is usually made of an attenuating material such as a polymer. CONTROL 

configuration used a “plexiglass” wedge while the changed configuration admitted a 

“rexolite” wedge. Figure 32 shows that the resulting POD curve remained nearly unchanged, 

except for two aspects: flaw sizes between 0.8 mm and 1.3 mm have different POD values 
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and the changed configuration provides a less steep POD curve, which is not good for 

reliability analysis. 
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Figure 32: Effect of wedge material on simulated POD: CONTROL (Plexiglass) vs Rexolite  

 

4.1.3.2.7 Signal Choice 

 

CIVA’s signal tab allows the user to set up configurations regarding the ultrasonic signal 

properties. Regarding “signal choice”, CIVA presents three possible modes to the final user: 

Gaussian, Hanning and Imported. CONTROL configuration admits the imported signal but 

this choice was not based on any prior knowledge on the matter. The changed configuration 

considered a Gaussian signal choice and the resulting POD curve shows no significant 

difference between the two configurations.  
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4.1.3.2.8 Signal Frequency 

 

Every probe has an intrinsic frequency and choosing the right one to perform a certain 

inspection can provide important enhancements on reliability. The probes used on the 

experimental inspections were 4 MHz probes.  
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Figure 33: Effect of frequency on simulated POD: CONTROL (4 MHz) vs frequency increased (4.8 

MHz)  
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Figure 34: Effect of frequency on simulated POD: CONTROL (4 MHz) vs frequency decreased 

(3.2 MHz)  

 

Therefore, the frequency set up on the CONTROL configuration was also 4 MHz. The 

present subsection will assess the effect of this frequency on the POD curve when its value 

is increased and decreased 20%. Figures 33 and 34 show two different impacts on the 

CONTROL POD curve. Figure 33 indicates that when there is an increase in 20% on the 

probe’s frequency, the reliability decreases while Figure 34 show the exact opposite: when 

frequency is decreased in 20%, reliability increases. Indeed, reduction in frequency of the 

probe resulted in steeper POD curves. 

 

4.1.3.3 Inspection 

 

Inspection tab brings five major capabilities for the user to simulate the reliability analysis, 

namely: Configuration, Positioning, Coupling Medium, Bottom Medium and Scanning. 

CONTROL configuration admits a single transducer inspection instead of Tofd or Tandem. 

This section deals with the evaluation of inspection parameters and their influence on the 
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probability of detection, analyzing six major aspects involving: scanning, coupling and 

bottom medium and adapted probe.   

 

4.1.3.3.1 Adapted Probe 

 

Under the configuration tab, the user can set the matched contact enabling the “adapted 

probe” option. Adapted probe disregards any difficulty in respect to the coupling of the probe 

onto the inspected surface. It is, however, an ideal approach that cannot be reproduced fully 

on experimental inspections. CONTROL configuration disables the adapted probe in order 

to better reproduce experimental results. However, aiming to proceed with the sensitivity 

analysis of the software, the changed configuration enables the adapted probe and the 

resulting effect on reliability is shown in Figure 35. As expected, the resulting POD curve 

shows that probability of detection is increased with adapted probe. 
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Figure 35: Effect of adapted probe on simulated POD: CONTROL (disabled) vs Adapted Probe 

Enabled  
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4.1.3.3.2 Coupling Medium  

 

Since the experimental inspections were performed as being contact inspections, it is 

important to analyze the influence of the medium used to couple the probe to the pipe surface. 

In the CONTROL configuration water was used as the “coupling medium”. The changed 

configuration will analyze the impact on changing water to glycerin. Figure 36 shows a 

resulting steeper curve and a better probability of detection, especially for flaw heights over 

1.3 mm. 
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Figure 36: Effect of coupling medium on simulated POD: CONTROL (water) vs Glycerin  

 

4.1.3.3.3 Bottom Medium  

 

In this subsection, the effect of the nature of “bottom medium” is analysed. The experimental 

pipe was an oil pipe but at the moment of the inspection, it was empty. Therefore, the bottom 

medium is air and this characteristic was transferred to the CONTROL configuration. The 

changed configuration declares a bottom medium as oil as if the pipe was filled. After 

simulating the POD curves, results showed no significant difference between CONTROL 

and changed configuration regarding reliability.  
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4.1.3.3.4 Scanning  

 

Scanning parameters on a simulated inspection are some of the most important parameters, 

so they must be analyzed carefully. The present subsections will analyze two scanning 

options: “number of steps” and one “scanning choice mode”.  

The inspection step along the number of steps on the inspection axis gives an idea on how 

the inspection is being judicious. For instance, if the simulation takes an inspection value 

every 2 mm instead of every 0.1 mm, it means that there are regions that are not being 

inspected.  

Moreover, if only 10 measurements of signal response are made, instead of 200, it is logical 

to infer that the resulting simulation will be less effective. With these arguments in mind, it 

is easy to understand the importance of inspection scanning. The CONTROL configuration 

admits 190 steps with a step of 0.1 mm/degree. The changed configuration admits only 19 

steps and the resulting POD curve is shown in Figure 37.  

As expected, the simulated POD curve for 19 steps reveals a less refined probability of 

detection. This subsection also tested a change in the “scanning mode”. CONTROL 

configuration disabled both software’s options: “increment” and “scanning reversed”, which 

means that the movement that the probe carries out is straight forward on the inspection axis 

predefined.  

The scanning reverse admits a back and forward scanning regarding the probes movement 

on the inspected area. Regarding this parameter, enabling scanning reverse mode has no 

effect on the resulting simulated POD. 
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Figure 37: Effect of scanning steps on simulated POD: CONTROL (190 steps) vs 19 steps 

 

4.1.3.4 Flaws 

 

Regarding the Flaws section, aspects such as their geometry and position will be addressed 

and their effect on simulates POD curves will be analyzed. Along with basic parameters, 

sophisticated aspects concerning reliability such as characteristic values and uncertainty 

parameters and their probability distribution function (PDF) will be discussed. Reviewing 

some important aspects concerning the CONTROL configuration and the corresponding 

POD curve, it is worth emphasizing that the heights of the defects were defined as 

characteristic values and that the orientations of the defects were considered as uncertainty 

parameters: tilt, skew and disorientation. The geometry of the flaw is considered to be 

rectangular, which is suitable for a defect type as crack. The flaw length is considered 12 mm 

for all simulations in the present dissertation and will not be changed; otherwise, it would be 

impossible to compare the PODs. Indeed, in order to keep the CONTROL as the reference 

configuration, flaw length must not be altered. The height of the flaws varied from 0.35 mm 

to 2.1 mm, as already mentioned before in the Methodology Section.  



64 
 

 

4.1.3.4.1 Flaw Positioning 

 

CIVA allows the user to position the flaw in three major ways: with its length along the 

rotation axis, perpendicular to the rotation axis or in an oblique way. CONTROL assumes 

the “flaw position” with its “length along the rotation axis” and this subsection will analyze 

the impact on the POD curve of changing this position to “oblique”.  

Figure 38 show how the probability of detection decreases when the flaw is in an oblique 

position. This result was expected since the probe was set to detect the flaw directly. If the 

flaw is in an oblique position, its reflection area decreases and the ultrasonic sees the flaw as 

being considerable smaller than in reality it is.  
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Figure 38: Effect of flaw positioning on simulated POD: CONTROL (length along rotation axis) vs 

oblique position 
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4.1.3.4.2 Center Coordinates 

 

It is also possible to establish the positioning of the defect regarding its “center coordinates”. 

CONTROL considers the flaw’s positioning center in 150 mm regarding the axial direction 

and 0 degrees regarding the θ coordinate. The changed configurations evaluate the change of 

axial positioning to 160 mm and θ equals to ± 3º. Figure 39 presents results concerning 

changes on center coordinates on y and shows no important effect on the simulated POD 

curve, although the changed configuration results on a POD less steeper. Figures 40 and 41 

show, respectively, the simulated POD curves for θ + 3º and -3º and present two different 

behaviors. While the result for θ + 3º indicates a loss in reliability, the results for θ - 3º seems 

to present no significant change on reliability, but the curve presents a flatter behavior 

suggesting a slight loss of reliability. 
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Figure 39: Effect of center coordinates y on simulated POD: CONTROL (150 mm) vs axial position 

= 160 mm 
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Figure 40: Effect of center coordinates θ on simulated POD: CONTROL (θ=0) vs θ + 3º 
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Figure 41: Effect of center coordinates θ on simulated POD: CONTROL (θ=0) vs θ - 3º 
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4.1.3.4.3 Orientation 

 

There are three possible “orientations” that the rectangular flaw can admit: “tilt”, “skew” and 

“disorientation”. Disorientation can be understood as being the defect orientation regarding 

x axis as illustrated on Figures 42 while tilt is the orientation regarding y axis and skew is the 

orientation regarding z axis. As an observation, it is important not to confuse flaw 

disorientation with the probe’s crystal disorientation angle.  

In real experimental inspections, it is very difficult to determine the orientation of a certain 

flaw and, for that reason, the three orientations will be considered uncertainty parameters 

(UP). Although, it is worth testing the possibility that just one of the orientations is uncertain 

or two of them are uncertain. CONTROL admits all three being uncertain and states that their 

PDF is normal. This subsection will analyze first the possibility that not all of them are UP 

and then, will analyze the impact of changes on the PDF considered. Figures 43, 44 and 45 

show the POD curves considering just one orientation as UP but still respecting a normal 

PDF. 

           

Figure 42: Disorientation representation: rotation on x axis 
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Figure 43: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Disorientation (normal PDF)  
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Figure 44: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Skew (normal PDF)  
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Figure 45: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Tilt (normal PDF)  

 

Surprisingly, results show that if only skew or tilt are considered as uncertainty parameter, 

the resulting reliability presents the same behavior that when skew, tilt and disorientation 

together are considered. As for the disorientation, when only this type of orientation is chosen 

as uncertainty parameter, reliability decreases. 

The next natural step is to evaluate the combination of the UP compared with CONTROL 

configuration. In other words, if two of the orientations as UP are considered instead of only 

one, as used above, and compare those combinations with CONTROL that admits all three 

orientations as being UP, what will be the effect on reliability? Figures 46, 47 and 48 show 

the results for those combinations of two UP. Results show a modest loss of reliability in 

comparison to Figures 46 and 47 but no significant difference on Figure 48. 
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Figure 46: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Skew + Disorientation (normal PDF)  
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Figure 47: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Tilt + Disorientation (normal PDF)  
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Figure 48: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Skew + Tilt (normal PDF)  

 

The presented result could make the user wonder if this behavior is in any level linked to the 

chosen PDF. In order to evaluate the role of the PDF, the same simulations were re-run but 

taking into account a uniform PDF for the UP. For that matter, Figures 49, 50 and 51 show 

the results for single UP presenting a uniform probability distribution function.  

Results show that all three POD curves differ from CONTROL, which was expected. The 

single UP behavior which was unexpected. While the disorientation under Normal PDF was 

more impacting on reliability when compared to the three UP all together, it was the tilt 

orientation that provided more impact under a uniform PDF.  
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Figure 49: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Disorientation (uniform PDF)  
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Figure 50: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Skew (uniform PDF)  
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Figure 51: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Tilt (uniform PDF)  

 

Once the change of the PDF from Normal to Uniform provided different results for single 

uncertainty parameters, it was considered worthwhile testing a third PDF type in order to 

evaluate properly its impact on reliability. Therefore, the same study performed by changing 

Normal PDF to Uniform PDF was also made changing Normal PDF to Log-Normal. Figures 

52, 53 and 54 show complete different results that the ones shown so far regarding PDF. As 

such, it can be concluded that there an optimal way to establish the PDF for each UP, and 

that this optimal way has to be evaluated case-by-case considering each inspection variability 

according to an expert opinion.  
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Figure 52: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Disorientation (Lognormal PDF)  
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Figure 53: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Skew (Lognormal PDF)  
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Figure 54: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs Tilt (Lognormal PDF)  

 

Summarizing the virtual tests presented concerning PDF of uncertainty parameters, here are 

the studies performed: 

 Skew + Disorientation + Tilt under Normal PDF vs Skew under Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Tilt under Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Disorientation under Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Skew + Tilt under Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Skew + Disorientation under 

Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Tilt + Skew under Normal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Skew under Uniform PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Tilt under Uniform PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Disorientation under Uniform 

PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Skew under LogNormal PDF 
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 Skew + Disorientation + Tilt under Normal PDF vs Tilt under LogNormal PDF 

 Skew + Disorientation + Tilt under Normal PDF vs Disorientation under LogNormal 

PDF 

Since each UP parameter was tested in two different PDF, the present analysis requires also 

to test all three parameters under Uniform and LogNormal PDF. Figures 55 shows the results 

for skew + tilt + disorientation under Uniform PDF and it can be seen that the tested POD 

curve reveals a drop on reliability. The simulation of the configuration skew + tilt + 

disorientation under LogNormal PDF could not be concluded due to calculations errors. 

0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1

0

10

20

30

40

50

60

70

80

90

100

 

 

 Control

 PDF UP Uniform (skew + tilt + disor)

P
o
D

 (
%

)

Height (mm)

 

Figure 55: Effect of uncertainty parameters on simulated POD: CONTROL (disorientation + skew 

+ tilt under normal PDF) vs disorientation + skew + tilt under Uniform PDF 

 

4.1.3.4.4 Ligament 

 

“Ligament” is the parameter that defines the distance of the flaw positioning to the specimen 

surface, as can be seen in Figure 56. In the experimental configuration, the HAZ defect is 

located in a depth of 0.5 mm below the external surface of the pipe. Therefore, the 

CONTROL configuration also considered a depth of 0.5 mm. The changed configuration 
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admits the depth being 1.0 mm, so the ligament also assumes this value. Results shown in 

Figure 57 suggest that increasing the depth of the defect under the CONTROL’s inspection 

configuration, decreases the reliability and the probability of detection of defects with height 

between 0.9 mm and 1.7 mm suffers a drop.   

 

 

Figure 56: CIVA’s representation of ligament as being the distance between the flaw and the pipe’s 

surface (outer or inner) 

 

Another parameter concerning ligament called “ligament calculation” was also tested. 

Ligament calculation defines which specimen surface is considered when the depth of the 

flaw is set up: inner or outer surface. The real defect was located 0.5 mm from outer surface, 

so the virtual model followed this configuration. The changed configuration located the flaw 

0.5 mm from the inner surface and computational calculation of reliability was not completed 

because the flaw just could not be detected anymore. 
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Figure 57: Effect of ligament on simulated POD: CONTROL (0.5 mm) vs ligament of 1.0 mm 

 

4.1.3.5    POD 

 

There are many parameters that can be tested regarding the POD tab in CIVA: variables 

parameters, extraction and computation options. In theory, every parameter under POD tab 

should impact in some way the simulated POD curve. The significance of this impact is 

analyzed in the present section. 

 

4.1.3.5.1 Number of Characteristic Values 

 

The characteristic value is the geometric parameter that is taken into account to build the 

POD curve. In this case, the characteristic value is the flaw height. Once the height range is 

established (0.35 mm to 2.1 mm), the “number of character value” represents how many 

height values are going to be considered, maintaining a fixed step value. In other words, there 

are 60 height values between 0.35 mm and 2.1 mm which are equally divided. In terms of a 

reliability study, a large number of characteristic values should increase the quality of the 
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result, improving the confidence bound. However, this strategy increases costs, not only 

experimentally but also computationally. Changing the step value and keeping the start and 

stop values, which are 0.35 mm and 2.1 mm, has the same impact as changing the number of 

characteristic values, therefore, this analysis will be considered done. This subsection verifies 

the impact on the POD curve once the number of characteristic values is either increased or 

decreased. Surprisingly, results shown in Figures 58 and 59 indicate that the reliability 

decreases in both cases.  
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Figure 58: Effect of number of characteristic values on simulated POD: CONTROL (60) vs 40 

Characteristic Values 
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Figure 59: Effect of number of characteristic values on simulated POD: CONTROL (60) vs 80 

Characteristic Values 

 

4.1.3.5.2 Number of Samples 

 

The “number of samples” determines how many times each “characteristic value” (parameter 

explained in the prior subsection) will be inspected. The CONTROL configuration sets up a 

sample value = 5 which means that all 60 characteristic values will be inspected five times 

summing a total of 300 inspections which is the same number of experimental inspections. 

It is interesting to evaluate the effect when the number of samples is either increased or 

decreased. Figures 60 and 61 present those results, showing the simulated POD curve for 3 

and 7 samples, respectively. They show that for a reduced number of samples, reliability 

remains the same while for an enhanced number of samples, reliability decreases.  
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Figure 60: Effect of number samples on simulated POD: CONTROL (5) vs Number of samples = 3 
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Figure 61: Effect of number samples on simulated POD: CONTROL (5) vs Number of samples = 7 
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4.1.3.5.3 Number of Classes for Histogram  

 

Regarding uncertainty parameters, CIVA provides a histogram showing the minimum and 

maximum values considered as well as the mean and standard deviation values. This 

particularly parameter does not present any physical meaning, but as it is a parameter that 

can be changed by the user, it is worthy to describe its impact on reliability simulation. It is 

possible to change the number of classes used in this histogram and CONTROL configuration 

considered 10 classes while the changed configuration considered 50 classes. Figure 62 

shows the impact of increasing histogram number and suggests that the resulting POD curve 

suffered a loss of reliability. 
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Figure 62: Number of Classes for Histogram: CONTROL (10) vs 50 classes for histogram 

 

4.1.3.5.4 Randomization 

 

As described by the proposed approach to assign variability to simulates data, it is possible 

to randomize the uncertainty parameters set of data. The resulting simulated POD curve is 

impacted by this randomization as shown in Figure 63 but not enough to differ from the 
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original POD curve without randomization. This capability provides certain variability on 

the UP values but are incapable to change the reliability. 
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Figure 63: Effect of randomization on simulated POD: CONTROL (no randomization) vs UP 

randomized 

 

4.1.3.5.5 Extraction of Signal Response 

 

Under the Extraction tab, the user can choose how the signal response values will be 

considered to build the simulated POD. The amplitude of the ultrasonic signal can be 

extracted considering the “absolute maximum values”, “positive maximum values” or 

“negative maximum values”. CONTROL configuration considered the extraction of all 

absolute maximum values while the changed configuration considered the positive values. 

The resulting POD curves and enlighten that no significant difference between them is 

produced by that parameter. 
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4.2 SIMULATED RELEVANT PARAMETERS 

 

This section will present the most significant parameters for simulated POD curves. These 

are the parameters that initial users of CIVA software must dedicate more attention if they 

aim to simulate POD curves. It is important to mention that the results presented in this 

section are not final, but relative to the changes tested on the CONTROL configuration. They 

come from a sensitivity analysis regarding CONTROL configuration and compared with 

incremental changes. It is a comparative study between two distinct virtual configurations. If 

the original configuration is completely different from the one used in this dissertation 

(CONTROL) it is possible that incremental changes would provide a different impact on the 

simulated POD. The present study must be perceived as a preliminary approach concerning 

comparing simulated POD curves and as a guideline for users starting to simulate reliability 

on CIVA. 

 Having said that, Table 4 shows a list of all tested parameters that, in any level, changed the 

behavior of the POD curve.  

The next natural step is to use the collected information to fit parameters of the CONTROL 

configuration aiming to reach better agreement of the simulated POD with experimental data. 

Nevertheless, not all parameters can be changed on prior simulation because it would lose its 

representativeness regarding experimental inspections.  

Parameters such as specimen material or geometry, crystal shape or dimension, coupling 

medium or probe’s frequency are examples of parameters that cannot be modified, otherwise 

the simulation will not be describing the reality of the physical experiment. The following 

section addresses some parameters that can be modified in order to optimize the fitting of the 

simulated POD curve.  
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Table 4: List of tested parameters that changed simulated POD curve behavior

 

 

 

4.3 OPTIMAL FITTING OF SIMULATED POD CURVES 

 

The Sensitivity Analysis carried on regarding CIVA software in order to stablish the impact 

of changes on the virtual inspections parameters that will or will not affect the simulated 

POD curve, generated a subset of parameters that were considered the most relevant ones on 

that matter.  

Figure 64 describes the process of optimizing the CONTROL configuration as being an 

interactive and systematic process that should lead to a more representative simulated POD 

curve when compared with the experimental one.  

Module Parameter Prior Condition Tested Condition Effect on POD

Full Incident Beam Disabled Enabled Increases

Accuracy Defect 1 2 Decreases

Outer Diameter 457.2 mm 467.2 mm Increases

Thickness 28.32 mm 38.32 mm Increases

Roughness 20 mm 100 mm Decreases

Material Steel Stainless steel 410 Decreases

Crystal Shape Rectangular Circular Decreases

Crystal Dimension 8.0 mm x 9.0 mm 9.6 mm x 10.8 mm Decreases

Squint Angle 0 + 2 degrees Decreases

Squint Angle 0 - 2 degrees Decreases

Disorientation Angle 0 + 2 degrees Decreases

Wedge Material Plexiglas Rexolite Increases

Frequency 4 MHz 4.8 MHz Decreases

Frequency 4 MHz 3.2 MHz Increases

Adapted Probe Disabled Enabled Increases

Coupling Meddium Water Glycerin Increases

Scanning Steps 190 19 Decreases

Positioning Lenght along rotation axis Oblique Decreases

Center coordinates θ 0 + 3 degrees Decreases

Ligament 0.5 mm 1.0 mm Decreases

Number Characteristic Values 60 80 Decreases

Number Characteristic Values 60 40 Decreases

Number of Samples 5 3 Decreases

Number Classes Histogram 10 50 Decreases

Uncertain Parameters Skew + Tilt + Disorientation Disorientation Decreases

Uncertain Parameters Skew + Tilt + Disorientation Tilt + Disorientation Decreases

Uncertain Parameters Skew + Tilt + Disorientation Tilt PDF Uniform Decreases

Uncertain Parameters Skew + Tilt + Disorientation Skew LogNormal Increases

Uncertain Parameters Skew + Tilt + Disorientation Disorientaion LogNormal Decreases

Uncertain Parameters Skew + Tilt + Disorientation Skew + Tilt + Disorientaion LogNormal Decreases

Simulation Settings

Specimen

Probe

Inspection

Flaws

POD
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Figure 64: Description diagram on the process of optimizing the fitting of CONTROL configuration 

 

In other words, based on the most relevant parameters that effect the simulated POD curves 

behavior presented on the previous section, it is possible to set up a new CONTROL 

configuration, which is called OPTIMAL configuration, aiming to build a simulated POD 

curve that presents the a90 and a90/95 parameters that more closely match the experimental 

ones. Nevertheless, before changing the virtual parameters of the prior configuration, it is 

important to consider some aspects: 

 Not all parameters that effect the simulated POD curve can be changed, as explained 

in section 4.2; 

 It takes only one example of combination of changed parameters to indicate that it is 

possible to calibrate simulated POD curves; 

 The calibration example presented is one combination parameters of the many 

combinations that possibly could improve the curve behavior. 
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Improving the simulated curve behavior does not mean that the parameters that are 

responsible for increasing reliability have to be taken into account in the calibration process. 

The aim is not to change the behavior of the curve by increasing the reliability, but to more 

closely match the experimental results. Having said that, the chosen parameters to re-run the 

CONTROL simulation were parameters that originally decreased the simulated reliability 

but are perfectly suitable to turn the simulated POD more realistic.  

Based on the results presented on Table 4, some of the experimental parameters were 

reassessed regarding the actual inspected pipe and the AUT system. Therefore, all changed 

performed on the CONTROL configurations were corroborated by results coming from the 

sensitivity analysis. The parameters that were reassessed and used as optimal fitting set 

parameters were: full incident beam, ligament, squint angle, roughness and the crystal 

refraction angle due to wear. 

The full incident beam option was activated to re-run CONTROL simulation instead of plane 

wave approximation for incident beam because it is natural to think that, in real inspections, 

the ultrasonic beam doesn’t suffer computational approximations being a truly incident beam.  

Even though the crystal refraction angle was not elected as one of the most relevant 

parameters, it is important to take into account the expert’s opinion that it is a source of 

system perturbation and that this parameter combined with the others can result in an effect 

on the simulated POD curve that cannot be disregarded. After the experimental inspections, 

a wear measurement was performed on the corresponding wedge. It could be verified that, in 

fact, evidence existed of wear that resulted on a 2° inclination between the wedge and the 

pipe surface. Therefore, this inclination value was transferred to the refraction angle of the 

probe, changing it from 60° to 58° in the OPTIMAL configuration.  

In the same way, the original ligament value was considered inaccurate and could be changed 

on OPTIMAL configuration. This consideration could be made because there is no certainty 

about the depth of the inserted defect. No destructive test was carried out to verify the exact 

depth of the graphite piece after the gouging opening and the consequent closing through 

SMAW. Although, after the Sensitivity Analysis results, inspections on the actual pipe trough 

phased array techniques suggested that the depth of the considered defect was not 0.5 mm 

but approximately 1.0 mm.  
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About the roughness, as the sensitivity analysis suggested, the value was updated to 48 m, 

based on specific literature (HONEYWELL, 2009) regarding brand new oil pipes such as 

API 5L X-65. 

Concerning squint angle and its important effect on simulated POD curves, this possible 

perturbation should be considered by the OPTIMAL configuration. As the squint angle could 

not be measured at the actual AUT system probes, a medium value was attributed to it on the 

OPTIMAL configuration. Therefore, at the re-run CONTROL simulation, squint angle was 

set to 1°.  

 

Table 5: Parameters considered on the optimal fitting process 

 

 

Figure 65 shows the results for the simulated POD curve regarding the calibration coming 

from the changes made on the parameters listed on Table 5.  

Extracting the results for a90 and a90/95, Figure 66 demonstrates the clear improvement that 

the calibration provided on the simulated POD curve, as presented in greater detail in Table 

6. It is obvious that calibration procedures could enhance the simulation POD curve results 

bringing them closer to real results increasing the agreement between simulates and 

experimental reliability prediction. 

 

  

Incident Beam
Squint 

Angle

Refraction 

Angle
Ligament Roughness

CONTROL 

configuration
Approximated 0 60° 0.5 mm 20 mm

OPTIMAL 

configuration
Full Incident 1° 58° 1.0 mm 48 m
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Figure 65: Simulated POD curve after calibration changes were made on CONTROL configuration: 

OPTIMAL configuration 

 

 

Figure 66: Details of the POD curve parameters values regarding OPTIMAL configuration set up 

 

Table 6: Comparison between experimental and simulates results before and after calibration 

procedures regarding HAZ defects 

 

 

Experimental
CONTROL 

configuration

OPTIMAL 

configuration

a50 1.366 mm 1.271 mm 1.359 mm

a90 1.892 mm 1.623 mm 1.806 mm

a90/95 1.961 mm 1.664 mm 1.896 mm
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4.4 OPTIMAL FITTING TRANSFER TO A TEST SET OF DATA 

 

This section addresses the evaluation of the optimal fitting transfer regarding the selected set 

of parameters to a similar but different set of experimental data. While the usual method used 

to transfer reliability involves applying a transfer function to the inspection configuration, as 

shown in Figure 1, this study will address to that matter in a different systematic and 

interactive way, as described by Figure 67 below.  

Using computational simulation tools, more specifically, CIVA software, it is possible to 

transfer unfailingly the computational parameters as well as the uncertainty parameters the 

exact way as they present themselves in the OPTIMAL configuration. The new physical 

parameters box on the below diagram refers to the differences regarding the TEST 

configuration as they consider a new type of defect and its positioning. 

 

 

Figure 67: Description diagram on the process of transferring the fitting of OPTIMAL configuration 

to the TRANSFERRED configuration 
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The main question that will be analyzed in this section is whether or not it is possible to use 

the same set of optimal fitting parameters to a different experimental-based simulation and 

still maintain the improvements that were observed on the original experimental-based 

simulation.  

In order to answer that question, the experimental results were revisited and another subset 

of defects was chosen. While the first subset of defects and inspections procedures 

culminated on the CONTROL configuration described on Table 3, this new subset of defects 

are represented virtually by the TEST configuration. The main difference between the two 

sets of experimental and simulated data sets is that the first one took into account cracks in 

the HAZ defects located at 0.5 mm (theoretical value) from the surface and the second subset 

of defects are the type lack of fusion (LF) in a depth of 7.0 mm from the outer pipe’s surface.  

The second type of defects and their positioning were inserted in the virtual environment of 

CIVA and the UT inspection simulations were performed. The resulting POD curve is shown 

in Figure 68, whereas the a90 and a90/95 parameters are given in Table 7. 

 

 

Figure 68: Simulated POD curve regarding TEST configuration: LF defects 
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Table 7: POD curves values regarding TEST configuration – LF Defects 

 

 

Reliability analysis coming from experimental inspections revealed a90 and a90/95 values of 

1.26 mm and 1.493 mm respectively, while simulated results were equal to 1.433 mm and 

1.453 mm respectively, as shown in the table above. As such, the simulated curve shows an 

excellent agreement to experimental results. Once the simulated and experimental reliability 

results for LF defects show enough agreement, the process of trying the optimal fitting 

applied on HAZ defects on LF defects in order to evaluate its behavior under transference of 

reliability could proceed.  

Thus, Figures 69 shows the simulated curve after the calibration parameters of HAZ defects 

were applied on LF defects, defining from now on, the TRANSFERRED configuration. 

 

 

Figure 69: Simulated POD curve regarding TRANSFERRED configuration 

 

a 90 a 90/95

TEST Configuration 1.433 mm 1.453 mm
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Table 8: POD curves values regarding TRANSFERRED configuration – LF Defects 

 

 

The previous results, however, demonstrate that applying an optimal fitting used on a certain 

virtual inspection configuration to a different one could decrease the simulated result’s 

agreement to experimental ones, which is corroborated by the comparison presented on Table 

9.  

Table 9: Comparison between experimental results and simulated results before and after 

transferring HAZ defects optimal fitting procedures to LF defects 

 

 

The analysis made so far concerning transferring optimal fitting to a different inspection 

configuration demonstrate what the common sense states:  if two different virtual inspections 

are carried on, the results regarding simulated POD curve will be different. Although, the 

contribution of the present study  is to stablish a systematic way to approach the reliability 

transferring subject  and to shade light on the parameters that should be considered in a more 

careful way. 

Nevertheless, it is already possible to infer that there is a certain set of parameters that can 

be transferred to different inspection’s configuration without prejudice of simulated 

reliability. These parameters are all parameters listed on Table 10 that were tested in 

sensitivity analysis process and were found not to impact the POD curve behavior.  

What can be seen based on the results it that: 

a 90 a 90/95

TRANSFERRED 

Configuration
1.661 mm 1.701 mm

Experimental
TEST 

configuration

TRANSFERRED  

configuration

a90 1.260 mm 1.433 mm 1.661 mm

a90/95 1.493 mm 1.453 mm 1.701 mm



94 
 

 Not all virtual parameters impact on the simulated POD curve; 

 There is a subset of virtual parameters that effect the simulated POD curve enhancing 

or decreasing reliability, which are mostly physical parameters and uncertainty 

parameters; 

 It is possible to perform an optimal fitting on the simulated POD curve addressing 

corrections on virtual parameters in order to enhance the agreement regarding 

experimental curves; 

 It is possible to transfer virtual parameters to a different inspection condition without 

impacting on simulated reliability. According to that, the interactive analysis process 

developed suggests that transferring computational and most uncertainty parameters 

to a different inspection configuration should be able to optimize the fitting for this 

different configuration through simulation, but further studies must be carried on.  

 

Table 10: Parameters that can be transferred to a different virtual inspection configuration without 

impacting on simulated POD curve behavior 

 

 

Module Parameter CONTROL Configuration Sensitivity Analysis Test

Invloved Modes Transverse Waves Transverse + Longitudinal Waves

Account for Mode Conversion Disabled Enabled

Specipen Echoes - Model Kirchhoff Specular

Number of Half Skips Max. 1 Max. 5

Sensitivity Zone Enabled Disabled

30 mm x 30 mm x 30 mm 25 mm x 25 mm x 25 mm 

30 mm x 30 mm x 30 mm 35 mm x 35 mm x 35 mm 

Enabled Disabled

Echo Max Absolute Fisrt Echo Synchronization

Accuracy Field 1 2

Account for Attenuation Enabled Disabled

Roughness 20 mm 4 mm

Material Steel Stainless steel 302

Probe Signal Choice Imported Gaussian

Bottom Medium Air Oil

Scanning Reversed Disabled Enabled

Positioning Lenght along rotation axis Oblique

Orientation as UP - PDF Normal Skew + Tilt + Disorientation Skew

Orientation as UP - PDF Normal Skew + Tilt + Disorientation Tilt

Orientation as UP - PDF Normal Skew + Tilt + Disorientation Skew + Tilt

Orientation as UP Skew + Tilt + Disorientation (PDF Normal) Tilt (PDF LogNormal)

POD Extraction of Signal Response absolute maximum values positive values

Flaws

Simulation Settings
Sensitivity Zone Dimension

Gate

Specimen

Inspection
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5 CONCLUSIONS 
 

Through the software CIVA, a sensitivity analysis on the POD curve was carried out on both 

computational and physical parameters. The tested parameters were changed one at a time 

and their effect on the resulting simulated POD curve was analyzed based on a comparison 

to a control simulation. This control simulation came from a series of experimental results 

carried on by UT on API 5L X-65 pipes and used as reference to validate and calibrate the 

simulated POD curves. The defect considered by the control configuration was a crack on 

the HAZ.  

Based on sensitivity analyzes results, a subset of virtual parameters was selected as being the 

most relevant ones based on their impact on the resulting POD curve, increasing or 

decreasing the reliability of the inspection. Thus, these most relevant parameters guided an 

OPTIMAL configuration by changing some of the virtual inspection parameters, namely: 

ligament, incident beam, roughness, squint angle and crystal’s refraction angle. Adjusting 

these parameters values on the OPTIMAL configuration and setting up a calibration set, the 

resulting POD curve could be driven closer to the experimental one, increasing the agreement 

between simulated POD curves and experimental POD curves. 

Regarding transfer function, a different inspection configuration based on a different type of 

defect (lack of fusion) was selected in order to analyze the feasibility of transferring optimal 

fitting parameters to a new simulation configuration. The simulated POD curve based on the 

actual experimental inspections on the LF defect was build showing excellent agreement with 

experimental POD curve regarding the same type of defect. After applying the OPTIMAL 

configuration set of optimal fitting parameters to LF configuration, the resulting POD curve 

showed a loss of agreement comparing to experimental results. Nevertheless, it is possible to 

stablish that there is a set of parameters that can be transferred based on sensitivity analysis 

results. Therefore, results suggest that it might be possible to transfer reliability results using 

CIVA if the interactive process of finding the suitable parameters are optimized and better 

understood, which implies on further studies on the matter.  

In addition to that, the Transfer Function is described by Thompson et al. (2009) as a new set 

of empirical data which will be compared to a baseline POD curve. This new set of data has 
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to be brought up through careful laboratory experiments and/or physics-based computer 

simulation. Nevertheless, the present dissertation attempts to compare the reliability of two 

different sets of data from non-laboratorial inspections using physics-based simulation. In 

order to perform additional tests regarding the effectiveness of the transfer function, 

controlled experiments could be necessary.  

On the other hand, this dissertation also studied in a systematic way the effects on variability 

of physical parameters on the resulting reliability through physics-based computer simulation 

using CIVA. This particularly systematic study characterizes a FMA (Full Model Assisted) 

approach, described by Thompson et al. (2009). Having said that, it is accurate to imply that 

in this dissertation, the unified approach was carried on successfully.  

Finally, it is important to mention that no further comparison with the current state of art 

status concerning optimal fitting of POD simulated curves and their validation through non-

laboratorial experimental AUT data could be elaborated because the present study found no 

reference regarding all the topics at a single reference. 
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6 FUTURE WORK 
 

Suggested future work regarding validating and calibrating simulated POD curves using 

CIVA from experimental UT inspections include: 

 The Proposed Method to apply variability on simulated data can be improved by, for 

example, a non-uniform variation of the variability value along the POD curve. 

 Some few CIVA parameters that were not tested on the sensitivity analysis for being 

considered less important could be tested. 

 Combinations of simulation parameters could also be tested by sensitivity analysis. 

In other words, evaluation of double changes of virtual parameters or different 

simulation order could be tested. 

 Different experimental sets of data could be taken into account to verify if there is 

any difference on the sensitivity analysis results.  

 Different combinations of parameters could be tested in order to optimize the 

simulated POD curves. 

 A second set of experimental data could be taken into account to evaluate the 

possibility of transferring calibration set of parameters to another experimental-

virtual configuration.  
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