
i

BPMNT: A PROPOSAL FOR FLEXIBLE PROCESS TAILORING

REPRESENTATION IN BPMN

Raquel Mainardi Pillat Basso

Tese de Doutorado apresentada ao Programa de

Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Doutor em

Engenharia de Sistemas e Computação.

Orientador: Toacy Cavalcante de Oliveira

Rio de Janeiro

Março de 2018

ii

BPMNT: A PROPOSAL FOR FLEXIBLE PROCESS TAILORING

REPRESENTATION IN BPMN

Raquel Mainardi Pillat

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

Prof. Toacy Cavalcante de Oliveira, D.Sc.

__

Prof. Cláudia Maria Lima Werner, D.Sc.

__

Prof. Geraldo Bonorino Xexéo, D.Sc.

__

Prof. Renata Mendes de Araujo, D.Sc.

__

Prof. Adriano Bessa Albuquerque, D.Sc.

RIO DE JANEIRO, RJ - BRASIL

MARÇO DE 2018

iii

Basso, Raquel Mainardi Pillat

BPMNt: A Proposal for Flexible Process Tailoring

Representation in BPMN/ Raquel Mainardi Pillat Basso. –

Rio de Janeiro: UFRJ/COPPE, 2018.

XIII, 186 p.: il.; 29,7 cm.

Orientador: Toacy Cavalcante de Oliveira

Tese (doutorado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2018.

 Referências Bibliográficas: p. 157-166.

1. Process tailoring. 2. Process adaptation. 3. BPMN.

I. Oliveira, Toacy Cavalcante de. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. Título.

iv

 Para Fábio.

v

Agradecimentos

Em primeiro lugar, agradeço à Deus, por me acompanhar ao longo do caminho e

permitir que eu chegasse até aqui.

A minha família, pelo apoio, amor e incentivo neste período em que estive

distante. Em especial a meu marido, Fábio, que sempre me apoiou e foi crucial para a

conclusão dessa tese. A minha mãe, Lúcia, meu pai, Luiz Clóvis, e minha irmã, Micheli.

Ao meu orientador, professor Toacy Oliveira, pelos direcionamentos, incentivo,

e confiança. Obrigada por me ajudar a chegar até aqui.

Aos professores do PESC que participaram do meu aprendizado e formação.

À UFRJ como um todo, que deu todo suporte necessário, e ao CNPq, CAPES e

PESC que contribuíram também com apoios financeiros.

Aos professores Cláudia Werner, Geraldo Xexéo, Renata de Araujo e Adriano

Albuquerque por terem aceitado fazer parte desta banca.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

BPMNT: UMA PROPOSTA PARA REPRESENTAÇÃO DE ADAPTAÇÃO DE

PROCESSO FLEXÍVEL EM BPMN

Raquel Mainardi Pillat Basso

Março/2018

Orientador: Toacy Cavalcante de Oliveira

Programa: Engenharia de Sistemas e Computação

 BPMN (Business Process Model and Notation) é um padrão para modelagem de

processos de negócio, que tem seu foco na representação do comportamento de

processos. No entanto, ele pode também ser usado para representar o comportamento de

processos de software, já que eles são um tipo de processo de negócio. Embora BPMN

tem sido extensivamente usado para modelar processos em diferentes domínios, sua

especificação padrão não possui nenhum mecanismo para apoiar usuários em atividades

relacionadas à adaptação de processos. Pesquisas que estendem o padrão são baseadas

em modelos complexos, que dificultam a análise e manutenção de modelos variantes, e

não são apropriadas para domínios de aplicação onde variações de processo são difíceis

de predizer, como em processos de desenvolvimento de software. Assim, nosso objetivo

foi fornecer uma extensão para BPMN, chamada BPMNt, e mecanismos de suporte para

especificar, de modo flexível, adaptações em processos modelados com esta linguagem.

BPMNt deve também garantir a corretude de modelos adaptados e explicitamente

capturar rastros de mudanças realizadas. Essa pesquisa teve como foco os domínios de

Engenharia de Processos de Software e Gerenciamento de Processos de Negócio. Por

fim, nós avaliamos a aplicabilidade da proposta para representar cenários de adaptação

reais em ambos os domínios.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

BPMNT: A PROPOSAL FOR FLEXIBLE PROCESS TAILORING

REPRESENTATION IN BPMN

Raquel Mainardi Pillat Basso

March/2018

Advisors: Toacy Cavalcante de Oliveira

Department: Computer Science and Systems Engineering

 Business Process Model and Notation (BPMN) is a de-facto standard for

business process modeling, which focuses on the representation of the process behavior.

However, it can also succeed in representing the behavior of software processes, since

they are a type of business process. Although BPMN has been extensively used for

modeling processes in different domains, its standard specification does not have any

mechanism to support users in activities related to process adaptation (tailoring).

Moreover, researches extending BPMN are based on complex consolidated models,

which hamper the analysis and maintenance of individual variant process models and

are not appropriate for application domains in which process variations are difficult to

predict, such as in software development processes. Thus, our objective was to provide

a BPMN-compliant extension and associated mechanisms for specifying flexible

process tailoring on models produced with this language while ensuring the correctness

of adapted process models and explicitly capturing change traces. We have focused our

research on the domains of Software Process Engineering (SPE) and Business Process

Management (BPM). At last, we evaluated the applicability of the proposal for

representing realistic tailoring scenarios in both domains.

viii

Table of Contents

1. INTRODUCTION... 1

1.1. MOTIVATION .. 1
1.2. PROBLEM STATEMENT .. 4
1.3. GOALS ... 8
1.4. RESEARCH METHODOLOGY .. 10
1.5. OUTLINE .. 11

2. BACKGROUND .. 14

2.1 SOFTWARE PROCESS ENGINEERING (SPE) .. 14
2.1.1 Concepts and Definitions .. 14
2.1.2 Software Process Modeling Languages (SPMLs) .. 16
2.1.3 Core Software Process Elements in SPEM 2.0 .. 17

2.2 BUSINESS PROCESS MANAGEMENT (BPM) .. 18
2.2.1 Concepts and Definitions .. 18
2.2.2 Business Process Modeling Languages (BPMLs) .. 20

2.3 BPMN (BUSINESS PROCESS MODEL AND NOTATION) .. 21
2.3.1 Correspondence with SPEM Core Process Elements 22
2.3.2 BPMN Extension Mechanism .. 24

2.4 PROCESS ADAPTATION .. 26
2.4.1 Software Process Tailoring ... 26
2.4.2 Business Process Adaptation .. 27

2.5 WELL-FORMEDNESS OF BPMN PROCESS MODELS ... 28

3. RELATED WORK .. 30

3.1. INTRODUCTION .. 30
3.2. OVERVIEW OF TECHNIQUES FOR PROCESS ADAPTATION MANAGEMENT 30

3.2.1. Techniques in SPE ... 30
3.2.1.1 Software Process Line ... 30
3.2.1.2 Situational Method Engineering (SME) .. 32
3.2.1.3 Context-based Management .. 33
3.2.1.4 Summary of Approaches in SPE .. 34
3.2.2. Techniques in BPM .. 35
3.2.2.1 Variability Management ... 35
3.2.2.2 Change Management ... 36

3.3. ADAPTATION OPERATIONS FROM THE LITERATURE ... 37
3.3.1 Adaptation Operations in SPE .. 37
3.3.2 Adaptation Operations in BPM ... 39
3.3.2.1 Adaptation Patterns .. 39
3.3.2.2 Refinement Patterns .. 41

3.4. SUPPORT FOR PROCESS ADAPTATION IN STANDARD META-MODELS 42
3.4.1 Process Adaptation in SPEM 2.0 ... 43

ix

3.4.2 Process Adaptation in V-Modell XT .. 46
3.5. BPMN-BASED ADAPTATION APPROACHES ... 47

3.5.1 Structured Literature Review .. 48
3.5.1.1 Research Question .. 48
3.5.1.2 Studies Selection ... 49
3.5.1.3 Summary of Selected Works ... 50
3.5.2 Comparison between Approaches .. 54
3.5.3 Analysis ... 57

3.6. CONCLUDING REMARKS .. 58

4. BPMNT ... 60

4.1. SOLUTION STRUCTURE .. 60
4.2. TAILORING OPERATION ... 63
4.3. CONCLUDING REMARKS .. 64

5. SPEM-BASED TAILORING SUPPORT.. 66

5.1 INTRODUCTION .. 66
5.2 SPEM-BASED TAILORING OPERATIONS IN BPMNT .. 67

5.2.1 Meta-model Representation ... 68
5.2.2 XML Schema Based Representation .. 69

5.3 TAILORING SOFTWARE PROCESSES: RUNNING EXAMPLE .. 70
5.4 VARIANT BPMN ELEMENTS AND WELL-FORMEDNESS RULES ... 75

5.4.1 Extension Operation .. 76
5.4.2 Suppression Operation .. 76
5.4.3 Local Replacement Operation ... 79
5.4.4 Local Contribution Operation .. 80

5.5 BPMNT SUPPORT PROTOTYPE ... 81
5.6 EVALUATION ... 84

5.6.1 Goal ... 84
5.6.2 Research Question .. 85
5.6.3 Context Description .. 85
5.6.4 Procedure .. 86
5.6.5 Description of a Complex Tailoring Scenario .. 86
5.6.6 Results and Conclusions .. 88
5.6.7 Threats to Validity .. 90

5.7 CONCLUDING REMARKS .. 91

6. PATTERN-BASED TAILORING SUPPORT .. 93

6.1 INTRODUCTION .. 93
6.2 HIGH-LEVEL TAILORING OPERATIONS FROM PATTERNS ... 94
6.3 CATALOG OF BPMNT TAILORING OPERATIONS ... 101
6.4 USE CASES APPLYING HIGH-LEVEL OPERATIONS ... 106

6.4.1 Tailoring Scenarios from the SPE domain ... 106
6.4.2 Tailoring Scenarios from the BPM domain ... 113

6.5 CONCEPTUAL REPRESENTATION OF THE BPMNT EXTENSION .. 118
6.6 SUPPORT PROTOTYPE ... 123
6.7 CONCLUDING REMARKS .. 126

x

7. EVALUATION ... 128

7.1. INTRODUCTION .. 128
7.2. EVALUATION PLAN ... 129

7.2.1 General Objective ... 129
7.2.2 Research Questions .. 130
7.2.3 Description of Contexts ... 131
7.2.4 Contexts Selection and Data Collection .. 131

7.3. EVALUATION STUDY 1: SOFTWARE DEVELOPMENT PROCESS SIGA 132
7.3.1 Execution Procedure ... 133
7.3.2 Results ... 133

7.4. EVALUATION STUDY 2: ATM PROCESS IN BANKING.. 134
7.4.1 Execution Procedure ... 137
7.4.2 Results ... 138

7.5. EVALUATION STUDY 3: PICTURE POSTPRODUCTION PROCESS IN FILM INDUSTRY 138
7.5.1 Execution Procedure ... 140
7.5.2 Results ... 141

7.6. THREATS TO VALIDITY ... 142
7.7. CONCLUSIONS ... 144

8. CONCLUSION .. 147

8.1. SUMMARY .. 147
8.2. CONTRIBUTIONS .. 149
8.3. PUBLICATION RESULTS .. 151
8.4. LIMITATIONS ... 152
8.5. IMPLICATIONS AND FUTURE PERSPECTIVES .. 154

REFERENCES ... 157

APPENDIX 1: BPMN WELL-FORMEDNESS RULES ... 167

APPENDIX 2: CATALOG OF BPMNT TAILORING OPERATIONS 169

APPENDIX 3: XML SCHEMA-BASED BPMNT EXTENSION .. 180

APPENDIX 4: BPMN MODELS USED IN THE EVALUATION 185

xi

List of Figures

Figure 1: Stages of the research methodology (left) and related tasks (right) 12
Figure 2. Base technology and relations of existing SPMLs (GARCÍA-BORGOÑÓN et al.,
2014) ... 17
Figure 3. Process Structure package main meta-classes .. 19
Figure 4. BPMN 2.0 meta-class structure for the core process elements 22
Figure 5. Core process elements of the BPMN notation and their related meta-classes
 .. 22
Figure 6: Representations of the BPMN extension mechanism. 25
Figure 7. Adaptations on structuring elements in SPE (MARTÍNEZ-RUIZ et al., 2012) .. 35
Figure 8. Usage of direct (left) and indirect (right) tailoring operations in SPE
(MARTÍNEZ-RUIZ et al., 2012) ... 38
Figure 9. Definition of an adaptation pattern (WEBER et al., 2008) 40
Figure 10. Definition of the refinement pattern Change Activity Type (BRANCO et al.,
2014) ... 42
Figure 11. Process Structure package main meta-classes. ... 43
Figure 12. SPEM tailoring representation (left) and interpretation (right) (adapted from
OMG, 2008) .. 45
Figure 13. Concept and example of variability operation in V-Modell XT (KUHRMANN et
al., 2014) ... 46
Figure 14: Process Models used by BPMNt .. 61
Figure 15: Solution structure of the BPMNt approach... 63
Figure 16: Concept and example of tailoring operation .. 65
Figure 17. Defining the BPMNt extension using the BPMN extensibility meta-classes . 69
Figure 18. BPMNt.xsd – XML Schema Extension Definition. .. 70
Figure 19. Base process of the SIGA project for the Specification and Design phase. .. 71
Figure 20. Process tailored for a specific use case (process after tailoring
interpretation). ... 72
Figure 21. Representation of the BPMNt tailoring specification 73
Figure 22. Tailored_Specification_and_Design.bpmn – Application of the BPMNt
extension to a BPMN model ... 75
Figure 23. Tailoring process of the BPMNt tool prototype .. 83
Figure 24. The BPMNt tool prototype and its mechanisms that assist activities related
to the tailoring process in Figure 23. .. 83
Figure 25. Tailoring specification for scenario 10 in Table 10 and the process diagram
after tailoring. ... 88
Figure 26: Example tailoring scenario .. 96
Figure 27. Modeling errors: Local deadlock (left) and lack of synchronization (right) .. 96
Figure 28: BPMNt tailoring specification based on high-level operations 98
Figure 29. Tailoring operation Parallel Insert ... 104
Figure 30. Tailoring operation Specialize ... 105
Figure 31. Scenario 1: Base process of the SIGA Project (top) and schematic
specification of tailoring (bottom) ... 108

xii

Figure 32. Scenario 1: Final tailored process .. 108
Figure 33. Scenario 2: Base process of the SIGA Project (top) and schematic
specification of tailoring (bottom) ... 109
Figure 34. Scenario 2: Final tailored process .. 109
Figure 35. Requirements Engineering base process (top) and schematic specification of
tailoring (bottom) ... 112
Figure 36. MDD-based Requirements Engineering tailored process after tailoring
interpretation ... 112
Figure 37. Business-level base process (top) and schematic specification of tailoring
(bottom).. 113
Figure 38. Technical-level tailored process after tailoring interpretation 113
Figure 39. Tailoring the “Loan Offer” process – example 1 ... 117
Figure 40. Tailoring the “Loan Offer” process – example 2 ... 118
Figure 41. Main meta-classes of the BPMNt extension (top) and their relation to BPMN
meta-classes (bottom) .. 121
Figure 42. Tailoring specification based on high-level operations using our support
prototype .. 123
Figure 43. BPMNt meta-classes representing high-level tailoring operations............. 124
Figure 44: Set of basic operations automatically generated.. 126
Figure 45: Base process model (Business-level ATM Process) 136
Figure 46: Variant process model (Technical-level ATM Process) 137
Figure 47: Result of checking the tailored process model in Signavio 139
Figure 48: Variants of the picture postproduction process (V1 has been taken as base
process)... 141
Figure 49. Tailoring operation Extend .. 169
Figure 50. Tailoring operation Delete ... 170
Figure 51. Tailoring operation Replace .. 171
Figure 52. Tailoring operation Move .. 171
Figure 53. Tailoring operation Parallelize ... 172
Figure 54. Tailoring operation Serial Insert .. 173
Figure 55. Tailoring operation Conditional Insert .. 174
Figure 56. Tailoring operation Event-Based Insert ... 175
Figure 57. Tailoring operation Encapsulate .. 176
Figure 58. Tailoring operation Split .. 177
Figure 59. Tailoring operation Merge ... 177
Figure 60. Tailoring operation Rename .. 178
Figure 61. Tailoring operation Add Exception Handler .. 179
Figure 62. Tailoring operation Add Exception Flow ... 179
Figure 63: Base process model of the SIGA Project ... 185
Figure 64: Scenario 1 – Variant process model .. 185
Figure 65: Scenario 2 – Variant process model .. 185
Figure 66: Scenario 3 – Variant process model .. 186
Figure 67: Scenario 4 – Variant process model .. 186
Figure 68: Scenario 5 – Variant process model .. 186
Figure 69: Scenario 6 – Variant process model .. 186

xiii

List of Tables

Table 1. Correspondence of SPEM Core Process Elements with BPMN Core Process
Elements ... 22

Table 2. Tailoring Operations in SPE (MARTÍNEZ-RUIZ et al., 2012) 38

Table 3. Control-Flow Adaptation Patterns in BPM (WEBER et al., 2008) 39

Table 4. Business-IT Refinement Patterns in BPM (BRANCO et al., 2014) 41

Table 5. BPMN-based Adaptation Approaches .. 54

Table 6. Comparison between BPMN-based Adaptation Approaches 56

Table 7. BPMNt well-formedness rules related to element suppression. 78

Table 8. BPMNt well-formedness rules related to element replacement. 80

Table 9. Base Process of the SIGA Project for the Specification and Design Phase 89

Table 10. Results of Evaluation of the Process Tailoring involving the SIGA Project 89

Table 11. Comparison between BPMNt and adaptation/refinement patterns 94

Table 12. Derivation of BPMNt tailoring operations from patterns 100

Table 13. Results of BPMNt process tailoring involving the SIGA Project 135

Table 14. Results of BPMNt process tailoring involving the ATM Process 143

Table 15. Results of BPMNt process tailoring involving the Picture Postproduction
Process .. 143

Table 16. Subset of BPMN control-flow well-formedness rules considered in this
research (adapted from CORREIA, 2014) ... 167

Table 17. BPMNt2.xsd – BPMNt Extension Definition in XML Schema 180

1

CHAPTER I

1. Introduction

1.1. Motivation

Nowadays, there is a consensus that managing processes (at different levels of

abstraction) is essential for organizational performance and, for this reason, process-

oriented approaches are already institutionalized in most organizations (SHARP and

MCDERMOTT, 2009). In the context of an organization, a process defines how its

activities are structured in a coordinated manner in order to reach business objectives

(WESKE, 2007). However, processes are not static and often need to be adapted to

specific contexts where they will be applied or improved due to organizational learning.

Process adaptation is a topic widely discussed in the literature, with extensive

range of application domains (e.g., engineering, health, business management, software

development, etc.). As a wide-range concept, the term process adaptation (and its

equivalents) varies in meaning from one research community to another. In this thesis,

we consider process adaptation from the perspective of two research communities,

Business Process Management (BPM) and Software Process Engineering (SPE). In the

context of a software organization, the software development process represents its

main business process, since it prescribes the activities that must be carried out when

creating and maintaining software products to reach business objectives. Therefore,

software development processes (software process, for short) are also a type of business

process (HENDERSON, 1994) (BENDRAOU and GERVAIS, 2007) (CAMPOS and

OLIVEIRA, 2013) and we argue that it is beneficial for both areas, BPM and SPE, to

share noteworthy technologies, techniques or tools.

Within the community of Business Process Management (BPM), adaptation is

often considered a specific type of flexibility, concept of broad scope that represents

definitely a key concern (VAN DER AALST, 2013). According to SCHONENBERG et

al. (2007) flexibility reflects the ability of a process to deal with foreseen and unforeseen

changes, by varying or adapting those parts of the business process that are affected by

2

them. Adaptation, in turn, deals with unforeseen changes (e.g., special situations that

occur rarely). Different taxonomies have been proposed in the technical literature of

BPM aiming to precisely define typical application scenarios and nomenclatures related

to process flexibility/adaptation (e.g., SCHONENBERG et al., 2007; REICHERT and

WEBER, 2012). However, currently there is not a consensus on it. We can only state

that the concept of adaptation in BPM includes changes performed at both design- and

run-time. Design-time adaptation leads to a variant process model that is intended to be

executed in a particular organizational setting. Hence, it affects all instances of the

business process executed in this setting. In contrast, run-time adaptations are unique

and affect only one process instance. Such adaptations are not intended to modify the

executed process model itself, beyond its effects on the process instance where the

decision is applied (LA ROSA, 2017).

On the other hand, in the Software Process Engineering (SPE) domain, process

adaptation is a concept typically employed to refer to changes or adjustments performed

at design-time, usually referred as process tailoring. In this context, adaptation can be

considered as a reuse technique (YOON, MIN and BAE, 2001), in which a new process

is created from an existing one by adjusting its definition to meet specific needs of a

given organization or project (GINSBERG and QUINN, 1995) (PEDREIRA et al.,

2007). However, as GINSBERG and QUINN (1995) have already claimed in their

seminal document, “tailoring is not a one-time event, but a repeated, ongoing analysis”

that integrates a process improvement program, suggesting that tailoring is continuously

necessary in order to improve organization’s processes. Still, tailoring can also be

defined in terms of modifications that emerge from the monitoring of executions of a

process, providing feedback on its definition (FERRATT and MAI, 2010) (SANTOS,

OLIVEIRA and ABREU, 2015). In summary, process tailoring is an important activity

for establishing and improving processes in software organizations (MARTÍNEZ-RUIZ

et al., 2012) and such a perspective on process adaptation can also be applied to

business processes in general.

In this thesis we are especially interested in process adaptation at design-time. In

order to clearly set up our scope under investigation, in this research we consider

process adaptation from the perspective of the SPE community, such as described

above, but apply such a concept to business processes in general (not only for software

processes). Thus, we consider process adaptation any activity in which a process is

derived from an existing one by refining and/or modifying its definition in order to meet

3

specific needs for a given environment/context or incorporate evolution improvements.

In this way, the terms adaptation and tailoring are considered synonymous in this

research. However, unlike many solutions for process tailoring from the literature, our

research has not the purpose of managing or constraining the way as processes can be

adapted. Process engineers are allowed to freely adapt processes according to each

current need.

Moreover, although process adaptation involves aspects from several existing

disciplines, including organizational science, information science, computer science,

and sociology (WESKE, 2007), in this thesis we focus on adaptation of business

processes to support the operational level of an organization. In particular, our interest is

on methodological and technological issues related to process adaptation, whereas

managerial issues are outside the scope of this thesis.

A first step towards process adaptation within any organization is to explicitly

represent its processes through process models. A process model aims to capture the

different ways in which a case (i.e., process instance) can be handled. Process models

are especially useful to analyze, understand, and improve the processes they describe

(VAN DER AALST, 2013). In this sense, BPM systems provide important

computational support. These systems are driven by process models to enact (execute)

and manage operational business processes (VAN DER AALST, TER HOFSTEDE and

WESKE, 2003), covering the scope of an entire process lifecycle. Thus, the explicit

representation of business processes and the adoption of BPM systems is certainly an

important step toward increased awareness on organization’s activities and will allow

improving its reactivity to changes (COGNINI et al., 2014).

Business processes are usually described in terms of activities (and

subprocesses) ordered according to causal dependencies. The control-flow perspective

(modeling the ordering of activities) is often the backbone of a process model (VAN

DER AALST, 2013). Although other perspectives, including the resource perspective

(modeling roles, organizational units, authorizations, etc.), the data perspective

(modeling creation and use of data, forms, etc.), and the functional perspective

(describing activities and related applications), are also important for comprehensive

process models, it is common to find business process models where these perspectives

are not represented. For this reason, the solution presented in this thesis focuses on the

control-flow perspective of process models.

4

Various Process Modeling Languages (PMLs) exist to represent business

processes, e.g., Petri nets (HACK, 1976), BPMN (OMG, 2011), UML (OMG, 2015),

and EPCs (MENDLING, 2008). However, BPMN 2.0 has been standing out as a

leading technology since it is an ISO (ISO, 2013) and OMG standard (meta-model and

notation) for business process modeling. Nowadays, BPMN is the business process

notation most used among BPM practitioners1 (HARMON, 2016) and with the highest

number of available tools. BPMN models can be interpreted and manipulated by both

technical and non-technical personnel, reducing the chance of erroneous knowledge

transfer (OMG, 2011). Moreover, BPMN can also express executable models (since its

2.0 version) that are automatically interpreted by BPM systems. In fact, systems such as

Camunda2, Flowable3, and BonitaSoft4 are able to deliver an integrated environment

where users can design and run BPMN models. At last, BPMN also has available

transformations to other notations, such as Petri Nets, which allow the use of tools for

formal verification.

Unlike formal languages such as Petri Nets (HACK, 1976), YAWL (VAN DER

AALST and TER HOFSTEDE, 2005), and ADEPT (REICHERT et al., 2005) that the

semantics is based on mathematical theories (VERGIDIS, TIWARI and MAJEED,

2008) (preventing any kind of ambiguity), BPMN has precise syntax but semantics

given in natural language. However, according to VAN DER AALST (2013), users in

practice often have problems using formal languages due to the rigorous semantics and

low-level nature. They typically prefer to use higher-level languages such as BPMN.

1.2. Problem Statement

Although BPMN has been extensively used for modeling business processes

since its launch as an OMG standard in 2008, its current specification (OMG, 2011) still

does not have any mechanism to support users in activities related to process adaptation

(tailoring). Likewise, the most prominent BPM systems based on this technology also

do not provide support for such activity.

1
 BPMN is used by 64% of respondents in survey published by BPTrends

2 https://camunda.org/
3 www.flowable.org/
4 https://www.bonitasoft.com/

5

When using BPMN and its current BPM systems, process variants, i.e., process

models that pursue the same or similar business objective (e.g., product sale, car

maintenance, or software development), are usually defined and maintained in separate

process models without any connection with each other (HALLERBACH, BAUER and

REICHERT, 2009). This solution typically results in highly redundant model data

because process variants are identical or similar in most parts. When considering the

large number of variants that generally occur in practice, this approach leads to

significant modeling and maintenance efforts. Particularly, efforts for maintaining and

changing process variants become high since process changes (e.g., due to new or

changed legal regulations) have to be separately accomplished for each individual

variant model, which is both time-consuming and error-prone (HALLERBACH,

BAUER and REICHERT, 2009).

Consequently, organizations may have repositories containing many variations

of the same process model for different departments or products without any relation

established between them. Moreover, due to continuous improvement practices and

organizational learning, processes may also change over time resulting in different

versions. Due to the lack of appropriated support for process reuse, including the

activity of adaptation, process models may be built from scratch without reusing

existing models (VAN DER AALST, 2013). As a result, even more process models

need to coexist, further hampering model management. In such contexts, techniques are

needed to keep track of process variants, understand their common points and

differences, and co-evolve them over time (DIJKMAN, ROSA and REIJERS, 2012).

In this sense, we have found BPMN-based approaches aiming to support process

variability modeling (REICHERT and WEBER, 2012). Variability can be found in

many domains and requires processes to be handled differently, resulting in different

process variants, depending on the given context (GOTTSCHALK et al., 2009)

(HALLERBACH, BAUER and REICHERT, 2010) (REICHERT and WEBER, 2012).

Process variants typically share the same core process whereas the concrete course of

action changes from one variant to another.

In general, variability approaches represent at design-time all possible process

variants for a given domain (i.e., a process family) into a configurable process model.

This model may be customized for a particular setting by hiding (i.e., bypassing) or

blocking (i.e., inhibiting) certain fragments of the configurable model (GOTTSCHALK,

6

VAN DER AALST and JANSEN-VULLERS, 2007). In this way, the desired behavior

is selected.

However, although variability modeling through configuration may facilitate

planned process reuse (requiring only the selection of alternative process fragments

from a configurable model), it is generally suitable in well-defined domains, where all

alterations are previously known (REICHERT and WEBER, 2012). Adaptations to

generate specific process variants at design-time are usually limited to addition and

removal of process fragments defined in advance. In this way, variations limited to a

given set of options and in specific process parts can prevent new or changing needs of

an organization or department from being properly addressed in time. Moreover, there

are application domains in which process variations are difficult to predict, such as in

software development processes. This type of process is influenced by several complex

factors that are still poorly understood (KALUS and KUHRMANN, 2013) (CLARKE

and O’CONNOR, 2012).

Still, there are use cases in which unanticipated changes are required in order to

improve or evolve a business process (VAN DER AALST and JABLONSKI, 2000)

(REICHERT and WEBER, 2012). In such cases, adaptations are planned at design-time

to meet new needs (unanticipated), extending or modifying existing process models.

These adaptations can be driven by changes in the business, technological environment,

and legal context (VAN DER AALST and JABLONSKI, 2000), as well as by

performance or quality issues related to the process model (WEBER et al., 2011).

Another motivation is organizational learning. In this last case, changes are motivated

by optimization/improvement opportunities or misalignments between real-world

processes and those ones represented by process models (REICHERT and WEBER,

2012).

According to REICHERT and WEBER (2012), evolution changes may be

incremental, only requiring small changes in the process model as for continuous

process improvements (PANDE, NEUMAN and CAVANAGH, 2000), or be

revolutionary, requiring radical changes as in the case of process innovation or re-

engineering (HAMMER and CHAMPY, 2003). In general, such changes are applied on

a single process model, affecting only its new instances. However, in some practical

scenarios, evolution changes should have effect on other process models as well. For

example, when changing a reference process model can be desirable to propagate such

changes to its variant process models. Such a situation is usually referred as co-

7

evolution. In this research field, a large body of knowledge exists and has been surveyed

(HEBIG, KHELLADI and BENDRAOU, 2017) (HERRMANNSDÖRFER and

WACHSMUTH, 2014) (PAIGE, MATRAGKAS and ROSE, 2016). However,

providing such types of solution (i.e., for model co-evolution) is out of the scope of this

thesis. We are only concerned with aspects related to the suitable representation of

adaptations, which can also occur in such scenarios.

Finally, in the context of BPM initiatives it is also common to find use cases in

which a business process model needs to be adapted from a general business

specification (which focuses on the concepts and rules relevant to business analysts) to

technical-level specifications (which detail tasks and flows as well as add technical

exceptions) in order to make clear issues related to the implementation of the process

(BRANCO et al., 2014) (KÜSTER et al., 2016). The final aim of this technical-level

specification is to obtain an executable process model that can be directly enacted into a

BPM system. Typically, these representations of the same process in different levels of

abstraction are created and maintained in different process models to effectively

separate concerns and to convey the right information (with proper level of abstraction)

to groups of stakeholders (BRANCO et al., 2014). Such process models can be

conveniently modeled in BPMN 2 (OMG, 2011), since it supports appropriated

modeling concepts to both business and IT-level concerns. The derivation of technical-

level process models from business-level process models is referred in the literature of

the area as Business-IT refinement (BRANCO et al., 2014).

Despite the importance of flexible adaptations for BPM contexts, we have not

identified researches proposing extensions of BPMN for explicitly specifying this type

of variation on its process models. In other words, BPMN still lacks a flexible and

comprehensive mechanism to address process adaptation (beyond the variability

modeling). An important aspect related to this type of solution involves the correctness

of the produced model. That is, adaptation solutions should provide some mechanism to

prevent the specification of incorrect models.

An aspect on correctness of process models is related to their structural

correctness (ROSA et al., 2017). In this case, a correct process model must not contain

flow breaks, i.e., disconnected process nodes. Another aspect related to correctness is

the well-formedness of the process model concerning the modeling language used to

build them. BPMN is a semantically rich modeling language. While, for example, a

UML activity diagram has around 20 different modeling constructs, a BPMN process

8

model diagram has around 100 different modeling constructs, including 51 event types,

8 gateway types, 7 task types, etc. (CORREIA and ABREU, 2012). If process designers

are allowed to freely specify/adapt models by combining such a plethora of modeling

constructs, incorrect models can easily be produced (CORREIA and ABREU, 2015).

Even if only a subset of these elements is taken into account, it is still important to

impose well-formedness rules when specifying BPMN process models for reducing the

sources of modeling malformation (CORREIA and ABREU, 2015). As mentioned

above, since the amount of BPMN process elements and their possibilities of

combination are huge, automated support for process tailoring becomes very important,

and to this end it is necessary to specify a set of rules compliant to this language. In this

thesis, we consider process model correctness concerning the two mentioned aspects,

i.e., structural correctness and well-formedness.

Moreover, another important aspect related to tailoring is change traceability.

Traceability implies keeping track of the relationships between different artifacts

involved in any development process so that this traceability information can help in the

evolution of such artifacts over time (VARA et al., 2014). As tailoring is applied,

different process models are produced from a base process model and, at any time, this

base process can need modifications aiming its improvement. In this scenario, it may be

necessary to propagate updates of the base process to variant processes in order to keep

them consistent with the original process (DIJKMAN, ROSA and REIJERS, 2012)

(KUHRMANN et al., 2016). A prerequisite for propagating (manually or automatically)

such modifications to variant processes is to track the changes previously performed

(DIJKMAN, ROSA and REIJERS, 2012) (KUHRMANN et al., 2016).

 Thus, the main research question that guided this thesis was: How to extend

BPMN to support flexible process tailoring in different application scenarios while

ensuring the correctness of tailored process models as well as explicitly capturing

change traces?

1.3. Goals

Motivated by the lack of support for process tailoring in BPMN, we propose a

meta-model extension and associated infrastructure to address process adaptation

especially designed to this technology. As stated by AYORA et al. (2015), “it might be

9

more suitable to focus on a well established process modeling language (e.g.,

standardized languages) as well as to develop adaptation techniques optimized for this

language. In particular, this would facilitate its industrial adoption and evaluation”.

Our BPMN extension, named BPMNt (BPMN + tailoring), (and support

mechanisms) aims at specifying flexible process tailoring in different application

scenarios, ensuring the correctness of tailored process models and explicitly capturing

change traces.

Thus, this thesis research has the following specific goals:

(1) Specify a conceptual representation of tailoring compliant with the BPMN

standard: Tailoring operations must be conceptually represented and

associated to the BPMN process meta-model in order to facilitate the

specification and management of adaptations on models of the language.

This goal involves introducing tailoring concepts in BPMN, related to basic

and high-level operations, by using its standard extension mechanism.

(2) Define a change traceability mechanism: Tailoring operations applied to a

variant process will be recorded into the variant model itself as extension

information. Moreover, configuration parameters of operations will be used

as traceability links connecting new variant process elements to adapted base

process elements. These links will be created and kept in order to facilitate

the identification of adaptations (changes) after tailoring.

(3) Define a catalog of BPMN tailoring operations: The catalog must include a

complete set of basic operations as well as the main adaptation and

refinement patterns for BPM.

(4) Specify rules ensuring the well-formedness of tailored models regarding

the BPMN specification: Tailoring operations must have pre- and post-

conditions associated. Pre-conditions aim at verifying if an operation can be

applied on a given process element or set of elements and post-conditions

aim at adjusting the resulting process model after the tailoring for ensuring

its validity concerning constraints of the BPMN standard.

(5) Implement a tool support: A prototype must be implemented to evaluate and

validate the proposed approach, allowing adaptation of BPMN-based process

models through the tailoring operations proposed in this research.

10

1.4. Research Methodology

This thesis followed the research stages shown on the left part of Figure 1, which

are based on the methodology proposed by PEFFERS et al. (2007). Such stages are: (1)

Identify the problem and define objectives of the solution; (2) Design and development

of the solution; (3) Demonstration; (4) Evaluation; and (5) Communication. Figure 1

also shows our main research tasks related to each stage.

We followed these stages in an iterative and incremental way, more specifically

in two iterations. In the first iteration of the methodology we focused our research on

the Software Process Engineering (SPE) domain, which was initially our target domain.

In this way, we identified a problem, defined objectives to solve it, designed, developed,

demonstrated, evaluated, and communicated the solution named SPEM-based BPMNt,

which has been intended for representing software process tailoring. In the second

iteration, we followed these same research stages, but now focusing on the Business

Process Management (BPM) domain. This focus change was a recommendation of the

researchers that evaluated our thesis proposal during the Doctoral Qualification Exam.

Thus, the second iteration of the methodology resulted in the solution named Pattern-

based BPMNt, which has been intended for representing business process tailoring in

general.

Therefore, our proposal for dealing with adaptations on BPMN process models

involved two application domains, SPE and BPM. Initially, we formulated our research

problem considering the domain of SPE (i.e., dealing with adaptations in workflow-

based software process models). This problem was identified from a literature review on

process adaptation in SPE and then we defined requirements for a possible solution (i.e.,

SPEM-based tailoring support as an extension for the BPMN modeling language). The

relevance of this initial research proposal was checked by submitting its description for

peer review in an international conference in the area of software processes, in which it

was accepted for publication as a short paper (PILLAT et al., 2012).

Then, we designed and developed an extension of the BPMN meta-model for

specifying process tailoring inspired in a widespread technology in the SPE domain (the

OMG standard SPEM). This extension had software processes as its target domain and

is referred in this thesis as SPEM-based BPMNt (depicted in Chapter 5). After, we

demonstrated the solution by implementing a support prototype and evaluated its

11

applicability for representing real tailoring scenarios through a study in the SPE domain.

At last, this solution was published in a journal of the area (PILLAT et al., 2015).

In the second iteration on the stages of the proposed methodology, we

reformulated our research problem considering the domain of BPM, but focusing

especially on the context of BPMN (i.e., how to support flexible process tailoring in

BPMN while ensuring correctness of tailored models), which is the base technology of

our proposal. We conducted an ad-hoc literature review on process adaptation in the

general context of BPM and performed a structured5 literature review on BPMN-based

adaptation approaches, which are our main related works. In order to check the

relevance of our more recent research proposal considering the domain of BPM, we

have again submitted its description for peer review in an international conference, in

which it was accepted for publication (PILLAT and OLIVEIRA, 2016).

Then, we designed and developed an extension of BPMN meta-model for

specifying process tailoring based on high-level operations, which aim at ensuring the

correctness of the adapted model. These operations were derived from adaptation

patterns and refinement patterns in BPM, which are recognized researches in this field.

This extension had business processes in general (including still software processes) as

its application domain and is referred in this thesis as Pattern-based BPMNt (depicted in

Chapter 6). After, we demonstrated the proposal by extending our previous support

prototype and evaluated its applicability for representing real tailoring scenarios through

studies in both domains (BPM and SPE). This complete proposal has not yet been

published, but we are currently working on its description in an article. Therefore,

during the second iteration of the methodology we expanded our application scope for

business processes and solved limitations identified in our first proposal (i.e., SPEM-

based BPMNt).

1.5. Outline

This thesis is organized in eight chapters. Chapter 1 presented our motivation,

problem, goals and research methodology.

5 We called the review of structured and not systematic because it has been conducted uniquely by the
researcher of this thesis.

12

Figure 1: Stages of the research methodology (left) and related tasks (right)

Chapter 2 introduces concepts related to the Software Process Engineering

(SPE) and Business Process Management (BPM) domains as well as their main

technologies. This chapter also introduces concepts of process adaptation in both the

domains (SPE and BPM) and the well-formedness of BPMN models.

Chapter 3 presents the main related works to this research. It summarizes

techniques for process adaptation management, presents a review of adaptation

operations proposed in the literature, discusses on the main approaches for process

adaptation based on BPMN and compares them by using a set of criteria.

Chapter 4 introduces our solution, named BPMNt, presenting its structure and

providing an overview on tailoring operations. At the end of this chapter, we summarize

the two BPMN extensions that compose our solution.

Chapter 5 presents the first part of our solution, which consists of a support for

adapting BPMN process models based on SPEM. SPEM is an OMG standard for

modeling of software processes. Such a support has been intended for representing

adaptations in the behavior of software processes. Thus, Chapter 5 presents the

conceptual representation, implementation and evaluation of this tailoring support.

Chapter 6 presents our BPMN extension and support mechanisms based on

high-level tailoring operations, which has been derived from adaptation patterns in

BPM. This chapter also presents a catalog of high-level operations for BPMN and

demonstrates the application of these operations in different adaptation scenarios.

Chapter 7 presents three studies evaluating the proposed solution. These studies

have been conducted based on real process adaptation data from different contexts in

13

both domains, SPE and BPM, and aimed at evaluating the feasibility of the BPMNt

solution.

Chapter 8 presents our final remarks about this thesis research, including our

main contributions, limitations of the proposed solution, implications and perspectives

for future development.

14

CHAPTER II

2. Background

2.1 Software Process Engineering (SPE)

2.1.1 Concepts and Definitions

Software Process Engineering refers to “the total set of software engineering

activities needed to transform user’s requirements into software” (HUMPHREY, 1989).

According to LONCHAMP (1993), a software process can be defined as “a set of steps,

with sets of related artifacts, human and computerized resources, organizational

structures and constraints, intended to produce and maintain the requested software

deliverables”.

Software production is a highly creative task and many activities involved in a

software process cannot be automated (ARMENISE et al., 1993). According to

BENDRAOU and GERVAIS (2007), software processes have some typical

characteristics:

 They are complex;

 They are unpredictable since they depend on many people and circumstances;

 Not all activities are supported by automated tools;

 They depend on communication, coordination and cooperation within a

predefined framework;

 Their success depends on the coordination of many roles;

 They may take a long time and are subject to changes during this time.

A software process lifecycle defines the engineering activities performed in this

process and organizes them into different stages (FUGGETTA, 2000). Lifecycle

activities are called meta-activities whereas the lifecycle itself is called software meta-

process (DERNIAME et al., 1999). Therefore, software processes are formed of two

kinds of processes: the Software Production Process, which represents the process

being actually performed by software developers and tools, and the Meta-Process,

15

which consists of lifecycle activities. There are many proposals of software process

lifecycle in the literature; the most traditional ones are described by PRESSMAN

(2015). However, the lifecycle more related to assumptions of this thesis was proposed

by REIS (2003). She considered the following lifecycle activities:

(1) Provision of technology provides support technologies for production of

software and models (e.g., process modeling languages, reusable process

models, and support tools for lifecycle stages).

(2) Process requirement analysis identifies requirements for the design of a new

process or new requirements for an existing process.

(3) Process design or modeling defines the general and specific architecture of the

process. In this stage, Process Modeling Languages (PMLs) are used to describe

processes in Process Models.

(4) Process instantiation modifies the process specification created in the previous

stage (process design) by adding information on time constraints and allocating

people and resources for activities defined in the process.

(5) Process simulation allows verifying and validating defined processes before

executing.

(6) Process model execution executes the instantiated process through tools that

coordinate the software process in real world. Moreover, the progress of the

process is monitored and relevant information is collected along the execution

(in other lifecycles, these activities are usually considered in a separated stage

named Process Monitoring).

(7) Process evaluation analyzes quantitative and qualitative information on the

performance of process execution. The result of this stage can be used to

improve the software process in a next cycle.

The definition of software processes and their representation in model is

performed in initial stages of lifecycle. The modeling of software processes can have

several purposes. Most important ones remain ensuring process understandability and

communication between software developers. In addition, ARMENISE et al. (1993)

adds the following objectives: process planning, analysis, measurement, configuration,

reuse, execution, and improvement.

Regarding core process elements, in essence software process models should

represent activities that have to be accomplished to achieve the process objectives (e.g.,

develop and test a functionality); roles of people in the process (e.g., software analyst

16

and project manager); artifacts to be created and maintained (e.g., requirement

specification documents, implementation documents, and test cases); and tools to be

used (e.g., CASE tools and IDEs) (FUGGETTA, 2000) (LONCHAMP, 1993).

2.1.2 Software Process Modeling Languages (SPMLs)

Researchers have created a number of languages and modeling formalisms, often

called Software Process Modeling Languages (SPMLs), which make possible to

represent in a precise and comprehensive way a number of software process features

and perspectives. There are many different types of PMLs, but a detailed discussion of

existing approaches can be found in the literature review conducted by GARCÍA-

BORGOÑÓN et al. (2014).

The authors have provided taxonomy for SPMLs considering the base

technology used in their development. They have structured the proposals in three

groups according to the results of the review: (1) Grammar-based SPMLs focus on

programming languages (e.g., graph theory, Petri Nets, and rules); (2) UML-based

SPMLs; and (3) Metamodel-based SPMLs or DSLs that are mainly derived from SPEM

(in different versions).

Figure 2 outlines the correspondence among each SPML obtained from the

literature review and the aforementioned groups. Grammar-based SPMLs are shown

with no background color or thick frame, UML-based SPMLs are shown with

background color and Metamodel-based SPMLs are shown with a thick frame. The

authors concluded that UML has been considered a suitable base technology, since it

constitutes a standard in Software Engineering. However, its weakness is the inability to

execute processes due to the lack of formality. Considering the temporal view in Figure

2, new SPMLs trend to use meta-models as base technology, mainly SPEM 2.0 (OMG,

2008) that is an OMG standard for software process modeling. However, the SPEM

specification also does not support process execution. It suggests the use of some

external formalism for modeling precise process behavior. The authors of the literature

review also stated that Grammar-based SPMLs, which focus on process execution and

formality, are complex, inflexible and difficult to understand (GARCÍA-BORGOÑÓN

et al., 2014).

17

Figure 2. Base technology and relations of existing SPMLs (GARCÍA-BORGOÑÓN et al., 2014)

They finalized the paper claiming “a proposal that may allow establishing both,

a modeling and execution environment, maintaining suitable levels of understandability,

would result in an important alternative in this area” of software process modeling

(GARCÍA-BORGOÑÓN et al., 2014).

2.1.3 Core Software Process Elements in SPEM 2.0

SPEM 2.0 is currently the most widespread and popular SPML to represent

software processes (KUHRMANN et al., 2013) (RUIZ-RUBE et al., 2013). It is

frequently used in academia for exploration and prototyping and comprises reference

processes that are applied in practice (KUHRMANN et al., 2013). Thus, in this section

we briefly present how core software process elements are represented in the SPEM 2.0

meta-model.

SPEM 2.0 (Software & Systems Process Engineering Meta-Model) (OMG, 2008)

is a meta-model based on MOF 2.0 (Meta Object Facility) and a UML2 profile for the

specification of software processes. The SPEM meta-model is organized in 7 packages,

but we will focus on the Process Structure package because it contains the basic

18

structural elements for defining development processes, including activities,

workproducts and roles. This package also supports organizing process elements

hierarchically and defines the mechanism for tailoring process elements, which will be

explained further in this document.

Figure 3 illustrates the main meta-classes found in the Process Structure package.

The abstract meta-class ProcessElement represents any element that is part of a SPEM

process whereas BreakdownElement is an abstract generalization for any type of Process

Element that is part of a breakdown structure. Any concrete subclass of

BreakdownElement can be “placed inside” an Activity (via the nestedBreakdownElement

association) to become part of a breakdown of Activities. Note that Activities are also

Breakdown Elements themselves and therefore can be nested inside other activities.

Thus, an Activity is a WorkBreakdownElement (element that represents work) which

defines basic units of work within a process as well as a process itself. Generally,

activities are assigned to specific performers represented by RoleUse and can rely on

input artifacts or produce output artifacts represented by WorkProductUse.

SPEM 2.0 contains a precedence control mechanism that supports sequencing

activities through relationships of type WorkSequence. Such a relationship links two

Work Breakdown Elements in which the execution of the first depends on the start or

finish of the second. The specific type of WorkSequence relationship is defined by the

WorkSequenceKind enumeration (see Figure 3). However, SPEM does not provide

resources for reactive control, i.e., it does not allow the specification of conditions or

events in response to which activities are to be executed (OMG, 2008). Therefore, the

precedence control mechanism of SPEM is very limited to represent process advanced

behavior.

2.2 Business Process Management (BPM)

2.2.1 Concepts and Definitions

Business Process Management (BPM) refers to the set of methods, techniques

and tools to support the design, enactment, management, analysis and improvement of

19

business processes (VAN DER AALST et al., 2003). In other words, BPM is concerned

about all stages of lifecycle of a business process.

Figure 3. Process Structure package main meta-classes

DAVENPORT (1993) defined business process as “a specific ordering of work

activities across time and space, with a beginning and an end, and clearly defined

inputs and outputs”. According to WESKE (2007), business process consists of a set of

activities that are performed in coordination in an organizational and technical

environment to realize a business goal. Typical examples of business processes are

Purchasing, Manufacturing, Marketing, and Sales.

 Business process activities can be performed by company’s employees

manually or with help of information systems. There are also activities that can be

enacted automatically by information systems, without any human involvement

(WESKE, 2007).

Business processes are usually modeled as workflows, i.e., flows of activities.

The formal representation of these processes by means of a Business Process Modeling

Language (BPML) allows the simulation, execution, monitoring and improvement of

an organization’s workflow. The output workflow of the business process modeling is

known as Business Process Diagram. It uses a network of graphical elements from a

BPML to represent flows of activities.

In practice, a range of business to IT-oriented stakeholders create and use

Business Process Diagrams for specific purposes (BRANCO, 2014). Each model must

20

be appropriate for its target audience and purpose, having adequate level of detail

(BRANCO, 2014). This goal is generally achieved by creating separate models, each

one focused on a particular set of stakeholders and purposes. Typically, business

processes are modeled in three abstraction levels: Business specification, Technical

specification, and Executable specification (BRANCO et al., 2014).

Regarding core process elements, in essence business process models should

contain work activities, roles of people in the process, artifacts to be created and

consumed, and support tools (BENDRAOU and GERVAIS, 2007).

2.2.2 Business Process Modeling Languages (BPMLs)

Well-known BPMLs can be coarsely divided into (CORREIA, 2014): (1) semi-

formal approaches, which focus on graphical modeling but also provide technical

backgrounds, such as Business Process Model and Notation (BPMN), Event-Driven

Process Chain (EPC), and Yet Another Workflow Language (YAWL); and (2) formal

approaches, which are grounded in different algebraic theories and target simulation

and execution of business processes, such as Business Process Execution Language

(BPEL), Petri Nets, and Communicating Sequential Processes (CSP).

In this context, BPMN 2.0 (OMG, 2011) (ISO, 2013) has been standing out as a

leading technology because:

(1) BPMN is an OMG and ISO standard for business process modeling;

(2) BPMN is one of the most recent BPMLs, so it is grounded on the experience

of earlier BPMLs, which ontologically makes it one of the most complete

BPMLs (RECKER et al., 2005);

(3) BPMN is nowadays the business process notation most used among BPM

practitioners;

(4) It is the BPML with more available BPM tools;

(5) BPMN models can be interpreted and manipulated by both technical and

non-technical personnel, reducing the chance of erroneous knowledge

transfer (ISO, 2013);

(6) BPM tools can automatically run BPMN models. In fact, tools such as

Activiti BPM (ACTIVITI, 2016) are capable of delivering an integrated

environment where users can design and run BPMN models;

21

(7) BPMN also has transformations to other notations, such as Petri Nets

(DIJKMAN et al., 2008), which allow the use of tools for formal

verification.

In this thesis, we use BPMN 2.0 for representing and adapting behavior of

software processes. Our choice of BPMN as modeling language has been especially

motivated by its large number of associated tools and techniques as well as its

comprehensive set of concepts for modeling of precise process behavior. Thus, the next

section presents an overview of BPMN 2.0, its core process elements and how these

elements relate to SPEM 2.0 core process elements. Here, SPEM 2.0 is used as

reference for comparison because it is the main technology applied currently for

representing software processes.

2.3 BPMN (Business Process Model and Notation)

BPMN (Business Process Model and Notation) (OMG, 2011) (ISO, 2013) is a

standard meta-model and notation for the representation of business processes. Details

on BPMN, such as the entire range of icons used to represent each aspect of a process,

including alternative and exception flows, can be found in THOM and IOCHPE ([s.d.]).

Figure 4 shows the main meta-classes of BPMN process elements and their

relationships. Such meta-classes are derived from the same abstract super class

BaseElement at the top right in the figure. In the hierarchical level below this super class

there are the meta-classes FlowElementsContainer and FlowElement, which are related

by a composition relationship. The first represents a container or superset of flow

elements that forms a BPMN process, whereas the second represents the process flow

elements themselves such as tasks, events, gateways, sequence flows, and data objects.

Such meta-classes together allow the specification of processes in a hierarchical

structure.

Figure 5 shows the most commonly used elements of the BPMN process

notation. BPMN meta-classes that instantiate these notation elements are identified in

the figure by textual annotations connected to each graphical element.

22

Figure 4. BPMN 2.0 meta-class structure for the core process elements

Figure 5. Core process elements of the BPMN notation and their related meta-classes

2.3.1 Correspondence with SPEM Core Process Elements

In order to show that BPMN can be used to specify software process, we first

identify correspondences between SPEM core process elements and BPMN elements.

Table 1 summarizes the mapping between the meta-models considering the core process

elements.

Table 1. Correspondence of SPEM Core Process Elements with BPMN Core Process Elements

SPEM 2.0 Meta-Class Equivalent BPMN 2.0 Meta-

Class(es)

Activity

Process

SubProcess

Task

23

RoleUse
Lane

HumanPerformer

WorkProductUse

DataObject
DataInput

DataOutput

As explained previously, the SPEM meta-class Activity is used to represent not

only basic units of work (atomic tasks) within a process, but also a process itself. BPMN

also has a meta-class called Activity (see Figure 4) that represents basic or composed

work units within a process, but it cannot represent a whole process. Moreover, this

meta-class is abstract and cannot be instantiated. In order to create a process activity

instance, its sub-classes Task or SubProcess must be used. Thus, in BPMN the behavior

of the SPEM meta-class Activity is provided by three different concrete meta-classes:

Task, SubProcess and Process. The first one represents an atomic activity (indivisible)

within a process whereas the second represents a set of activities. Subprocess defines an

embedded process that must be contained within another. Both meta-classes are a type of

FlowElement and share the same shape in the BPMN notation. However, the meta-class

SubProcess is also a type of FlowElementsContainer. Finally, Process is a type of

FlowElementsContainer used to reference a set of elements that composes a global and

reusable process. Unlike the previous meta-classes, Process does not have a specific

graphical object in the BPMN notation, since it is a set of graphical objects.

Nevertheless, it is common to use the notation element Pool to represent a meta-class

element Process, such as shown in the BPMN model in Figure 5 (an element Pool is

used to represent the process “Process Payment”).

The SPEM meta-class RoleUse can correspond to two different elements in the

BPMN meta-model, which are often used together. Visually, the BPMN notation

provides only the element Lane, a named sub-partition within a Pool, to represent

specific roles (e.g., see the role Vendor in Figure 5). The meta-class Lane is used to

organize and categorize activities within a process, and often represents roles played by

humans. However, BPMN does not specify the exact meaning of lanes, leaving the

modeler to choose a specific meaning. On the other hand, when considering the

modeling of executable processes that can be managed by a process engine, BPMN

specifies the meta-class HumanPerformer (a type of ResourceRole) to assign people in

various roles to activities. HumanPerformer supports the definition of a specific

individual or group that will perform or be responsible for an activity. However, this

meta-class has no visual representation. Thus, in executable BPMN models it is common

24

to find both elements Lane and HumanPerformer to represent roles whereas in business

models only the element Lane is used.

In the same way, SPEM WorkProductUse corresponds to BPMN meta-classes

DataObject, DataInput and DataOutput. DataObject represents data used during process

execution and whose lifecycle is tied to the lifecycle of the specific process. In contrast,

DataInput and DataOutput are related to activities. DataInput defines data that an

activity needs in order to execute and DataOutput defines data produced by an activity.

The relationship between activities and their data is defined in the BPMN meta-model

through the meta-class InputOutputSpecification (see Figure 4).

2.3.2 BPMN Extension Mechanism

The BPMN 2.0 meta-model, which is specified using the OMG’s Meta Object

Facility (MOF), has a built-in extension mechanism, represented in Figure 6(a). It

supports extension by addition, in that groups of attributes and elements are attached to

standard BPMN elements without modifying their original structure. Such an extension

mechanism mostly depends on four meta-classes: ExtensionAttributeDefinition,

ExtensionAttributeValue, ExtensionDefinition, and Extension. The meta-class

ExtensionAttributeDefinition configures the attributes that can be added to any BPMN

element by defining their name and type. The meta-class ExtensionDefinition groups

these new attributes under a new concept name and can be created independently of any

element or BPMN definition. However, in order to use this meta-class to represent an

extension, it must be associated with the meta-class Extension that connects the

ExtensionDefinition with the definition of a specific BPMN model (meta-class

Definitions). The element Extension is an attribute (represented as the extensions

relationship) in the meta-class Definitions, which associates an ExtensionDefinition with

any child element of BaseElement. Furthermore, any “extended” BPMN element is

associated with the meta-class ExtensionAttributeValue, which contains the new attribute

value of type Element. The new attributes specified in an ExtensionDefinition element

and bounded to a model definition by an Extension element can be used by any BPMN

element (being an instance of a subclass of BaseElement) within that model. This is

because the BPMN extension mechanism does not provide a way to specify which

element of the language is being extended.

25

However, the BPMN specification (OMG, 2011) provides two representations of

its elements. Besides the MOF based meta-model describing the language concepts,

BPMN also provides a set of XML Schema documents that specify the interchange

format for BPMN models. In this way, an interchangeable BPMN model is a set of

domain-specific elements represented in XML Schema into a BPMN file (i.e., a file

with bpmn extension). Since the MOF representation of the BPMN extension

mechanism (Figure 6-a) has a limited capability, for example not supporting the

definition of type structures for new attributes, the XML Schema extensibility

representation (Figure 6-b) has been more widely used. The XML Schema

representation of BPMN supports the definition of complex extensions that could be

processed by BPMN tools. However, the BPMN specification (OMG, 2011) does not

provide any graphical notation for the representation of extensions, meaning that

designers need to work on detailed textual implementations.

Moreover, in the specific case of the extension mechanism, the MOF and XML

Schema representations of BPMN are not equivalent (see Figure 6). The XML Schema

representation does not contain the elements ExtensionDefinition,

ExtensionAttributeDefinition, and ExtensionAttributeValue defined in the MOF

representation. When using XML Schema, BPMN extensions are defined using native

components of this language (such as type definitions and element declarations) in

separate XML Schema documents (with their own namespaces), which are imported by

BPMN model documents through the element TImport. Moreover, the element

TExtensionElement can include extension attribute values of any type, even the types

defined in other namespaces, since the XML Schema representation of BPMN

extensibility specifies a relationship between TExtensionElement and AnyElement.

Figure 6: Representations of the BPMN extension mechanism.

26

2.4 Process Adaptation

This section introduces concepts related to process adaptation in Software

Process Engineering (SPE) and Business Process Management (BPM) domains. In the

SPE domain, process adaptation is usually called Software Process Tailoring.

2.4.1 Software Process Tailoring

Building processes from scratch can be risky and involve high overhead (XU and

RAMESH, 2008). In this way, many reference process models have been created based

on industry’s good practices for software development, such as IEEE/EIA 12207 and the

Rational Unified Process (RUP). Such models provide generic processes that capture

common activities, information, artifacts and control flows encountered in different

processes into the domain of software development.

However, it is unlikely that one of these “off-the shelf” approaches will meet the

requirements of a specific project or organization. Therefore, adjustments are necessary

to make reference processes suitable for specific environments (PEDREIRA et al.,

2007). Such adjustments are often referred to as process tailoring, an activity which has

originally been defined as ‘‘adjusting the definitions and/or particularizing the terms of

general description to derive a description applicable to an alternate (less general)

environment’’ (GINSBERG and QUINN, 1995).

However, as GINSBERG and QUINN (1995) have already claimed in their

seminal document, “tailoring is not a one-time event, but a repeated, ongoing analysis”

that integrates a process improvement program. Therefore, tailoring can also be defined

in terms of modifications that emerge from the monitoring of executions of a process,

providing feedback on its definition (FERRATT and MAI, 2010) (SANTOS,

OLIVEIRA and ABREU, 2015).

Several software process standards, such as CMMI and ISO/IEC 15504, or

reference models, such as RUP (KRUCHTEN, 2004) and OpenUP (EPF, 2010), provide

guidelines for process tailoring. These standards and reference models provide a wide

range of guidelines, including information regarding activities that should be performed,

the order in which to perform the activities, and the type of personnel that should

perform them. Moreover, there are also several researches in the literature about tailoring

software processes. Although such a topic is not new to researchers, it has recently

received increased attention from the software engineering community (MARTÍNEZ-

27

RUIZ et al., 2012) (KALUS and KUHRMANN, 2013) (ZAKARIA et al., 2015). Here

we mention four literature reviews conducted on software process tailoring. PEDREIRA

et al. (2007) presented a review on software process tailoring, analyzing its current

practice in general terms such as approaches, methods, tools, and guidelines. The review

by MARTÍNEZ-RUIZ et al. (2012) aimed at discovering requirements for a process

tailoring notation and mechanisms currently used to support it. KALUS and

KUHRMANN (2013) investigated the concrete tailoring criteria that have been reported

in the literature, their dependencies and influence on software processes. Finally,

ZAKARIA et al. (2015) reviewed research works on software process tailoring in order

to investigate the state of the art in terms of research activities. Three classifications were

produced that group research works into critical success factors, experiences and

practices with tailoring reference models and supporting tool.

In summary, there are currently several approaches for tailoring software

processes. Such approaches focus on different perspectives related to tailoring such as:

formal specification (MARTÍNEZ-RUIZ et al., 2012), criteria (KALUS and

KUHRMANN, 2013) (XU and RAMESH, 2008) and guidelines (KRUCHTEN, 2004)

(EPF, 2010), standard compliance (YOON et al., 2001) and well-formedness/consistency

rules (PEREIRA et al., 2008) (PEREIRA et al., 2007), variability modeling / Software

Process Lines (TEIXEIRA, 2016) (OLIVEIRA et al., 2013) (MARTÍNEZ-RUIZ et al.,

2008), generative and automatic strategies (HURTADO ALEGRÍA et al., 2011)

(ALEIXO et al., 2011), and composition of methods (HENDERSON-SELLERS et al.,

2014) (RALYTÉ et al., 2003).

However, there is no current consensus on how to perform process tailoring; what

criteria should be applied; or a standard notation.

2.4.2 Business Process Adaptation

In the area of business processes the tailoring term is not common. Such a

concept is often referenced as variability management (ROSA et al., 2017) (AYORA et

al., 2015) or change management (WANG and ZHAO, 2011) (RAJABI and LEE, 2009)

(WEBER et al., 2008). In general, Business Process Modeling Languages (BPMLs) do

not provide explicit modeling support for specifying process adaptations. Moreover,

when using existing BPM systems, process variants are defined and maintained in

separate process models which are only loosely coupled based on naming conventions

28

(HALLERBACH et al., 2009). Therefore, efforts for maintaining and changing process

variants in this context become high since changes have to be separately applied for

each variant model. Still, proposed approaches in this area for dealing with process

adaptation usually do not address mechanisms for derivation traceability between

designed models as it occurs with software process tailoring.

Our approach adds process tailoring support for a specific BPML (i.e., BPMN)

and provides mechanisms for derivation traceability between process models created at

design-time as it occurs with software process tailoring.

2.5 Well-formedness of BPMN Process Models

The popularity of BPMN is related primarily to the rich expressiveness of its

graphical representation. Activities in a process and their technical constraints expressed

graphically facilitate the communication about processes among the different involved

stakeholders. According to ISO (2013), the notation is understandable by all business

users, from business analysts that create the initial models of processes to the technical

developers responsible for implementing the technology that will perform those

processes, and finally, to the business people who will manage and monitor those

processes. Thus, BPMN creates a standardized bridge for the gap between the business

process design and process implementation (ISO, 2013).

The BPMN meta-model (OMG, 2011) provides an abstract syntax for the

constructs of the language. This is described at the meta-level using a class diagram.

The BPMN meta-model can serve as a precise description of the notation and is

therefore useful in implementing modeling tools, since it can be used as a basis to

define the language syntax. However, it cannot serve as a description of the meaning

and usage of BPMN constructs.

BPMN well-formedness rules are described in the standard specification in

natural language, scattered over more than 500 pages of the document. As a

consequence, given the expressiveness of the language, it is difficult for process

modelers to produce well-formed models (CORREIA, 2014). This also makes difficult

for tools handling BPMN models to ensure their correctness.

The objective of this thesis is to provide flexible support for adapting BPMN

process models while ensuring their correctness regarding the standard specification. In

29

this sense, an important part of this research is to define and implement rules associated

to each supported adaptation operation that lead to well-formed tailored BPMN models.

As a first step in this direction, it was necessary to capture and analyze all the rules of

the BPMN specification in order to identify which rules could be impacted when

performing model adaptation actions. Besides the study of the BPMN specification’s

document, we have also based on the research of CORREIA (2014), which identified

such rules from the BPMN specification and produced a summarized list describing

them. Thus, we have extracted from this list the subset of well-formedness rules related

only to the BPMN’s control-flow perspective (our focus) and have selected those rules

that refer to BPMN elements usually represented in conceptual process models, which

are the target of this research. We distinguish between conceptual process models,

which are intended for communication and analysis, and executable process models,

which are intended for deployment in an execution engine. Executable models require

numerous formalizations and configurations of specific properties that are out of the

scope of our proposal. In this way, BPMN well-formedness rules that refer for

Compensation activities and specific elements such as Transaction Sub-Process and

Event Sub-Process have not been considered in this research, since these elements are

typically used in executable process models (BRANCO, 2014). The complete list of

BPMN well-formedness rules that our process adaptation solution takes into account to

ensure correctness regarding the BPMN specification is presented in Appendix 1. There,

one can also find more details about rules of the BPMN standard that we have not

considered in our solution.

Such well-formedness rules are actually static semantic rules6 (AABY, 1996) of

the BPMN language, which we have based on to derive pre- and post-conditions

associated with tailoring operations in our solution in order to assist process designers in

moving towards correct specification of tailored process models.

6 The static semantics defines restrictions on the structure of valid texts that are hard or impossible to

express in standard syntactic formalisms, i.e., exclusively through the elements and relationships of meta-

model.

30

CHAPTER III

3. Related Work

3.1. Introduction

This section presents the main research works related to our proposal in the area

of process adaptation. Section 3.2 presents an overview of main techniques for process

adaptation management from the SPE and BPM domains. Next, Section 3.3 presents the

different types of adaptation operations that have been proposed in the literature of SPE

(Software Process Engineering) and BPM (Business Process Management) for

executing changes on process models.

Section 3.4 describes the support for process adaptation provided by two

important process meta-models in SPE, SPEM 2.0 (an OMG standard) and V-Modell

XT (a German standard), which define specific concepts representing adaptation

operations. Section 3.5 describes BPMN-based adaptation approaches, which are our

main related works. In this section, we present the steps, results and analysis of a

structured literature review that we have conducted. In this same section, we also

compare the selected BPMN-based adaptation approaches through a set of specific

criteria. Finally, in Section 3.6 we present our final remarks.

3.2. Overview of Techniques for Process Adaptation
Management

3.2.1. Techniques in SPE

3.2.1.1 Software Process Line

The Software Process Line (SPrL) approach is a concept derived from Software

Product Line (CLEMENTS and NORTHROP, 2002). A SPrL is composed of a family

of processes that have certain common as well as some variable characteristics

31

(SUTTON and OSTERWEIL, 1998). Most of the variability mechanisms for SPrL are

based on variation points (places in which variability occurs) and variants (concrete

elements that are placed at the variation points). WASHIZAKI (2006) and

MARTÍNEZ-RUIZ et al. (2008) proposed new mechanisms to support SPEM 2.0

tailoring that allow the establishment of a part of the process specification as common

to all processes and to limit variations by specifying which parts can vary (variation

points) and in which range of values (variants). Similarly, OLIVEIRA et al. (2013) also

proposed to extend SPEM for representing variability in the context of SPrL. They take

into consideration the SMarty approach for variability management and, as an important

differentiator the authors also provide guidelines that suggest how to identify variances

in a SPrL.

BARRETO (2011) proposed to define a SPrL as a process architecture, similar

to work flows, which can contain process components or activities. He defines a

“skeleton” of workflow that a process must follow, containing its main elements and

relationships. However, variations on this pre-determined process flow are very limited.

Such variations are supported by defining if flow elements (edges) of the model are

optional or mandatory.

MAGDALENO (2013) proposed an approach to assist project managers in

selecting and combining process components to derive a project-specific process. To

this end, a context-based SPrL was defined. The approach requires that information

about project’s context (e.g., organizational structure, size, complexity and time of the

project, experience of the team, etc.) is previously identified and recorded to support

decisions of a project manager.

TEIXEIRA (2016) proposed to develop a component-based SPrL with

variability management in multiple perspectives, including the behavioral perspective of

software process. However, such proposal also deals with limited variations on the

process’ flow.

 In summary, Software Process Line approaches are only suitable in well-

defined domains where there are few and known alterations. Adaptations to generate

specific processes are limited to addition and removal operations of process elements

defined in advance. In other words, a SPrL approach facilitates planned reuse, while

classic tailoring must integrate techniques that can react to unanticipated variability in

the process model (ARMBRUST et al., 2009). In the case of software process tailoring,

variations limited to a given set of values and specific points can prevent specific needs

32

of an organization or project from being properly addressed, especially because

variations in software processes are difficult to predict. In addition, Software Process

Line-based approaches generally do not deal with sequence flows (ordering) and flow

controls such as fork and join, but restrict their focus to which concrete elements will be

reused. In any case, even if sequencing is considered by some of the SPrL approaches, it

is addressed in a very limited way.

In general, SPrL approaches have some main limitations:

(1) They support limited variation mechanisms (basically: optional, mandatory,

and alternative) (MARTÍNEZ-RUIZ et al., 2012);

(2) They are appropriate to requirements specification of process, but not to

activities sequencing (ZAVE, 1993);

(3) In most cases, support for transition between abstraction levels of models is

lacking (BEUCHE et al., 2004).

Conversely, our approach for BPMN-based process tailoring supports

unanticipated variances and is able to address specific needs of an organization or

project. Moreover, our approach also supports advanced adaptations on sequencing and

control flow as well as managed process derivation.

3.2.1.2 Situational Method Engineering (SME)

The concept of process tailoring is also related to Situational Method Engineering

(SME) (HENDERSON-SELLERS et al., 2014). In the method engineering community,

this term has been used to advocate that methods for the development of information

systems must be adapted to the specific characteristics of a particular situation. In other

words, SME focuses on the definition of organization-specific or project-specific

methods.

Traditionally, SME promotes the definition of a method by selecting and

assembling reusable method pieces such as core process elements, that have been already

created and stored in a repository or methodbase (HENDERSON-SELLERS and

RALYTÉ, 2010). The kinds of method elements as well as the high-level relationships

that are possible between these elements are given by an underlying meta-model. In the

Information System literature a method is considered as a set of pieces, also called

fragments or components, that can have a very different granularity and can describe the

product or the process of a method. The method components can comprise a single

activity or construct but can also contain a complete method. Thus, an SME project can

33

start from a set of method components which must be assembled as well as from an

existing method (reference model or pattern) which has to be adapted (RALYTÉ et al.,

2003). According to BECKER et al. (2007), the first strategy (and the more usual) is

supported by aggregation mechanisms whereas the second one is mainly applied with

specialization mechanisms.

Comparing SME contributions to our proposal, the BPMNt approach is

especially related to the ones that employ specialization operations on existing methods

as RALYTÉ et al. (2003) and HENNINGER et al. (2002). However, BPMNt does not

require a repository of reusable components. Therefore, novel additions to an existing

process model are not limited to predefined components. Moreover, we have not

identified any SME approach that preserves traces of the adaptations performed on the

base method into the derived method. Such a feature, provided by our approach, allows

us to identify easily the base process model that originated the tailored process model at

hand and the changes made on it. In addition, SME approaches, such as PrL approaches,

focus on insertion and removal of elements that make up the process (e.g., methods or

activities), but they do not deal with managed adaptations on the process behavior

(control flow).

3.2.1.3 Context-based Management

Recently, some researches related to process adaptation have proposed to use

context information for determining how processes should be adapted (POPP and

KAINDL, 2015) (NUNES, 2014) (HURTADO ALEGRÍA et al., 2011)

(HALLERBACH et al., 2009). Most of these proposals use context information to

automatically derive variant processes.

However, several researches still try to formalize the context definition.

BAZIRE and BRÉZILLON (2005) cataloged more than 150 definitions and realized

that such definitions vary according to the considered domain. A definition more widely

used claims that context is “any information that can be used to characterize the

situation of entities (i.e., a person, place, or object) that are considered relevant to the

interaction between a user and an application” (DEY et al., 2001).

Most of context-based approaches are from the BPM area (e.g., POPP and

KAINDL, 2015; NUNES, 2014; DÖHRING and ZIMMERMANN, 2011). In fact,

tailoring criteria seem to be more easily understood to business processes. For example,

34

NUNES (2014) proposed an approach for dynamic process adaptation (i.e., at runtime)

that was validated on business processes from specific domains.

However, in the SPE domain it still lacks understanding regarding context and

criteria for software process tailoring (KUHRMANN, 2014) (KALUS and

KUHRMANN, 2013). According to KUHRMANN (2014), selecting a tailoring

criterion depends on many context variables (e.g., size and complexity of the software

to be developed, time constraints, personnel availability, and team distribution pattern),

but the way that different variables relate to each other is still poorly understood

(KALUS and KUHRMANN, 2013).

In summary, context-based approaches tend to produce inaccurate results and

provide low flexibility for process adaptation. Moreover, they require big effort before

the tailoring to capture current context information and relationships. Due to these

limitations, the BPMNt approach does not use context information. We have opted by

proving a flexible solution, based on tailoring operations, in which a process manager

can adapt processes according to his/her current needs.

3.2.1.4 Summary of Approaches in SPE

MARTÍNEZ-RUIZ et al. (2012) have conducted a systematic literature review

(SLR) with the aim of analyzing existing mechanisms that support software process

tailoring. From the review, they have found that only 17 of 32 proposals dealing with

software process tailoring consider adaptations on the control flow of the process (i.e., its

workflow), as shows the graph in Figure 7.

As we have already mentioned in previous sections, proposals addressing

adaptations with respect to the behavioral perspective of software processes use limited

possibilities of variation, such as defining sequence flows between tasks as optional or

mandatory. Other approaches use components as mechanism to vary the flow of the

process. However, it is important to highlight that these proposals do not define

mechanisms to trace variations in the process behavior.

Conversely, our proposal intents to provide advanced mechanisms to adapt the

control flow of processes, while tracking all the performed changes.

35

Figure 7. Adaptations on structuring elements in SPE (MARTÍNEZ-RUIZ et al., 2012)

3.2.2. Techniques in BPM

3.2.2.1 Variability Management

Variability aims at capturing a family of process model variants in a way that

individual variants can be derived via transformations, for example, adding or removing

fragments (ROSA et al., 2017). Therefore, variability modeling encapsulates, in some

way, all customization decisions between process variants. These decisions may result in

the removal or addition of behavior to a base process model. In this sense, ROSA et al.

(2017) distinguish between two approaches to variability modeling: by restriction and by

extension.

Variability by restriction or configuration starts with a base process model that

contains the behavior of all process variants. This model is often called configurable

process model, in which adaptation is achieved by restricting the behavior of the model

through configuration. For example, activities may be skipped or blocked during the

configuration. In this case, one can think about the configurable process model as the

union of all process variants. This technique has been realized based on different

methods, including hiding and blocking (e.g., SCHUNSELAAR et al., 2012; YOUSFI et

al., 2016), configurable nodes (e.g., GOTTSCHALK et al., 2007), annotations in models

(e.g., FRECE and JURIC, 2012; SCHNIEDERS and PUHLMANN, 2006) and meta-

model extensions (e.g., MOON et al., 2008).

On the other hand, in the variability by extension the base process model does

not contain all possible behavior. Instead, it represents the most common behavior or

that one that is shared by most process variants (ROSA et al., 2017). During the

36

adaptation, this model is then extended with additional behavior to meet a particular

situation. For example, one may need to insert new activities in order to create a

dedicated variant. In this case, one can think on the base process model as the

intersection of all process variants under consideration. For representing the additional

behavior (variable process fragments), this technique can use, for example, process

components (PASCALAU et al., 2011), or a set of pre-specified change operations

(e.g., DÖHRING and ZIMMERMANN, 2011; HALLERBACH et al., 2009). In turn,

the rules for adapting the base model may rely on methods such as business rules.

Our proposal may be used for modeling customization decisions that produce a

particular process variant, but it is not a variability approach since it does not

encapsulate all customization decisions that can take place when deriving variants in the

context of process families.

3.2.2.2 Change Management

Approaches to (flexible) change management (RAJABI and LEE, 2009)

(WEBER et al., 2008) are not concerned with maintaining multiple process models that

together form a family of processes. Instead, these approaches focus on unique

adaptations of a particular process model.

From some of the most prominent works on change management, we highlight

ADEPT and YAWL. The ADEPT project (REICHERT et al., 2005) started in 1995 and

is the origin of the AristaFlow BPM system, which supports users in modifying the

structure of processes at runtime. It allows process participants to apply changes to all

running instances (with an appropriate migration strategy). On the other hand, the

YAWL environment (VAN DER AALST and TER HOFSTEDE, 2005) has been

extended with Worklets Services, which enable planned changes for process instances as

well as ad-hoc changes (unexpected) at runtime. However, both projects use their own

process modeling languages and are intended to manage adaptations at runtime.

Although these systems are able to manage an extensive set of process adaptation

operations, their purpose differs from our approach, which intends to support and track

adaptations between process models at design-time, such as solutions for software

process tailoring. While our approach addresses issues of traceability between process

types (schemas), change management solutions such as ADEPT and YAWL address

traceability between process types (schemas) and their instances.

37

3.3. Adaptation Operations from the Literature

In this section, we present the different types of adaptation operations that have

been proposed in the SPE (Software Process Engineering) and BPM (Business Process

Management) literature for performing changes on process models.

3.3.1 Adaptation Operations in SPE

From a systematic literature review, MARTÍNEZ-RUIZ et al. (2012) identified

two types of variations from proposals in the literature of SPE: Individual modification

of process elements, named direct operations, and simultaneous variation of several

process elements, named indirect operations.

The specific types of operations that compose these two categories are described

in Table 2, while Figure 8 presents the number of proposals (of 32) that apply each

specific operation. Observing Figure 8, one can realize that most of proposals (20 of 32)

does not address indirect operations, but applies only direct operations on single

elements. Among these proposals, nine of them deal with direct variations on

relationships between elements, which include sequence flows and data flows. However,

an effective approach to deal with adaptations regarding the process behavior (i.e., its

execution flow) should not perform modifications directly on flow elements, but to vary

them indirectly due to changes on core process elements (e.g., activities, roles and

artifacts) (WEBER et al., 2008) (CASATI, 1998).

 In this sense, other proposals use patterns to vary the control flow of software

processes. In general, process patterns provide some additional knowledge to help

process engineers in defining processes. However, as stated by BARRETO (2011), it is

often difficult to distinguish the concept of pattern from other concepts as components,

frameworks, templates or process families, especially when patterns involve groups of

activities or tasks. In fact, analyzing works related to process patterns from the literature

of SPE, we realized that they are generally used in a way very similar to components,

containing domain- or context-specific solutions.

38

Figure 8. Usage of direct (left) and indirect (right) tailoring operations in SPE (MARTÍNEZ-

RUIZ et al., 2012)

Table 2. Tailoring Operations in SPE (MARTÍNEZ-RUIZ et al., 2012)

Direct Operations

Insertion Adds process elements.

Deletion Removes process elements.

Modification Changes properties of elements instead of replacing them.

Replacement A combination of deletion and insertion operations.

Relationships
between elements

Adaptation of relationships and constraints between elements.

Indirect Operations

Patterns Well-defined variations to be applied when certain requirements are satisfied.

Parameterization Assignment of a value to certain previously defined parameters of the process
when it is going to be tailored.

Inheritance Adaptation of a parent process by defining child processes that extend the
properties of the parent, according to each particular context.

Encapsulation Groups of activities that are dealt with jointly for the tailoring of the process.

Decision nodes Decision nodes are composed of conditions, which are used to change the flows
between activities (control flows) or to change usage of products (product flow).

Comparing the presented results by MARTÍNEZ-RUIZ et al. (2012) with our

proposal, we intend to address many of the types of process variations reported by the

authors, through basic and high-level tailoring operations. All operations of the category

direct operations (see left part of Figure 8) will be covered by our set of basic

operations. Regarding indirect operations (see the right part of Figure 8), our high-level

operations are similar to concepts as patterns and parameterization. They are a set of

well-defined variations (i.e., a set of basic or direct operations), but do not contain an

“additional knowledge” by default as the patterns found in the literature of SPE. Process

elements handled by high-level operations are assigned to them, through operation

parameter, when the process is going to be tailored (such as the concept of

parameterization specifies). This way, our set of tailoring operations remains

independent of domain or context.

39

3.3.2 Adaptation Operations in BPM

3.3.2.1 Adaptation Patterns

The most widespread and complete set of adaptation operations in BPM has been

proposed by WEBER et al. (2008) as control-flow adaptation patterns (see descriptions

in Table 3). The authors use the concept of high-level operation to represent a set of

well-defined operations that aims at reducing complexity, like design patterns in

software engineering, and ensuring the model correctness (WEBER et al., 2008).

An adaptation pattern comprises exactly one high-level operation. Its application

to a given process model preserves soundness of this process if certain pre- and post-

conditions are met. Figure 9 exemplifies the definition of the adaptation pattern Insert

Process Fragment. In the context of these patterns, a process fragment can represent an

atomic activity, a subprocess or a subgraph.

Although process adaptations can be performed based on low-level change

primitives, these primitives are not considered as real adaptation patterns due to their

lack of abstraction. According to the authors, high-level patterns have been identified by

analyzing a large collection of business process models from two domains.

Table 3. Control-Flow Adaptation Patterns in BPM (WEBER et al., 2008)

Adaptation Patterns

Insert Process Fragment Adds a process fragment to an existing process. The fragment can be added
between two directly succeeding activities (serial insert) or between two sets
of activities (meting certain conditions). In the latter case, the insertion of a
process fragment can occur in parallel to another one (parallel insert) or as a
new conditional branch, if an execution condition is provided to the operation
(conditional insert). This operation is exemplified in Figure 9.

Delete Process
Fragment

Removes a process fragment from an existing process. Afterwards, pos-
conditions ensure the correct reconfiguration of sequence flows of the
workflow.

Move Process Fragment Allows shifting a process fragment from its current position to a new one. Like
for the Insert Process Fragment pattern, an additional design choice specifies
the way the fragment can be re-embedded in the process, i.e., in serial,
parallel or conditional way.

Replace Process
Fragment

Replaces a process fragment by a new one.

Swap Process Fragment Two existing process fragments are swapped (in their workflow positions) in
the process model.

Copy Process Fragment Allows to copy a process fragment. In contrast to the pattern Move Process
Fragment, the respective fragment is not removed from its initial position.

Extract Subprocess Allows to extract an existing process fragment from a process model and to
encapsulate it in a separate subprocess. This pattern can be used to add a
hierarchical level in order to simplify a process model or to hide information
from process participants.

40

Inline Subprocess Allows to inline a sub-process schema into the parent process, and
consequently to flatten the hierarchy of the overall process. This can be
useful in case a process model is divided into too many hierarchical levels or
for improving its structure.

Parallelize process
fragments

Enables the parallelization of process fragments that were confined to be
executed in sequence in the original process model.

Add control
dependency

A control edge (e.g., for synchronizing the execution order of two parallel
activities) is added to the process model. As opposed to the low-level change
primitive add edge, the added control dependency must not violate model
soundness (e.g., no deadlock causing cycles).

Remove control
dependency

A control dependency and its attributes can be removed from a process
model. Similar considerations as for the previous patter can be made.

Update condition Allows to update transition conditions in a process model.

Figure 9. Definition of an adaptation pattern (WEBER et al., 2008)

In this thesis, we support high-level operations from the adaptation patterns

presented above for adapting the control-flow of BPMN process models. Our aim was to

provide a meta-model representation for process tailoring and associated mechanisms

(tool support) based on operations of low and high level, which allow process managers

to specify managed process derivations, i.e., with tracked adaptations. This way, it is

important to provide a set of high-level adaptation operations compliant to particularities

of BPMN, i.e., operations that support users in deriving new processes while ensuring

their correctness.

41

3.3.2.2 Refinement Patterns

In the context of BPM, it is common a business process model to be represented

in different levels of abstraction, including a general business specification (which

focuses on the concepts and rules relevant to business analysts), a technical-level

specification (which details tasks and flows as well as adds technical exceptions), and an

executable specification. Typically, these representations of the same process in different

levels of abstraction are created and maintained in different process models to effectively

separate concerns and to convey the right information (with proper level of abstraction)

to different groups of stakeholders (BRANCO et al., 2014). The derivation of more

technical process models from business-level process models is referred in the literature

of the area as Business-IT refinement (BRANCO et al., 2014).

In this context, the research conducted by BRANCO et al. (2014) and BRANCO

(2014) has identified different refinement patterns applied when producing technical

process models from business-level process models. The research was based on the

analysis of 74 models in 5 BPM projects in the banking domain and more than 1,000

changes made on these models. However, unlike adaptation patterns, these patterns do

not represent necessarily a high-level change operation and neither have any concern

related to model correctness. Table 4 describes the entire set of refinement patterns,

whereas Figure 10 exemplifies the pattern Change activity type.

Table 4. Business-IT Refinement Patterns in BPM (BRANCO et al., 2014)

Refinement Patterns

Add properties Parameters for grounding the executable model on top of the underlying IT
infrastructure are added during the implementation. Such properties do not
change the workflow and may be tool or platform-specific.

Add script task Script tasks are used to initialize variables and implement business rules and
non-functional requirements that access or transform business objects data,
e.g., logging steps of the workflow.

Add protocol task An asynchronous service can be implemented by a connection-less request or
reply protocol.

Add boundary event Boundary events are used to divert the normal flow under special conditions,
for example, because of a particular action performed by the operator on a
human task.

Add technical
exception flow

Technical exception flows are included to divert the flow in case of technical
exceptions, such as an unavailable service or a permission denied.

This operation is exemplified in Figure 10.

Change activity name The name of a business activity can be changed to facilitate the identification of
an IT service that has a similar but different name.

Change activity type The type of a model element can be changed because of an implementation
decision.

42

Split task into block A single business task can be implemented by a combination of service tasks.

Split workflow The specification workflow can be split into smaller workflows that should be
orchestrated by a main flow.

Suppress specification
activity

Business elements can be suppressed during the implementation.

Figure 10. Definition of the refinement pattern Change Activity Type (BRANCO et al., 2014)

In this thesis, we support refinement operations for conceptual BPMN models.

That is, we are only interested in operations applied to derive a technical-level process

model (that is still conceptual) from a business-level process model (that is also

conceptual). In other words, we are not interested on refinement operations that are

applied exclusively for deriving executable models and many of refinement patterns

described in Table 4 refer to this type of refinement. Therefore, in our approach we

derive refinement operations from the presented patterns for dealing only with

refinements required between business-level models and technical-level models that are

both conceptual.

3.4. Support for Process Adaptation in Standard Meta-models

Although there are different meta-models for specifying process, we focus on

SPEM 2.0 (OMG, 2008) and V-Modell XT (TERNITÉ and KUHRMANN, 2009)

because they explicitly define support for process tailoring through specific concepts

representing adaptation operations. Process assets that are built on these meta-models

can extend or modify other process assets. However, while SPEM supports generic

tailoring operations (e.g., extends and replaces), V-Modell XT supports a set of typed

43

operations (e.g., rename work product and change role name) and defines a specific

concept for process variant (TERNITÉ, 2010).

SPEM 2.0 is a widely used OMG standard for specifying software process and V-

Modell XT is the standard process framework for IT development projects in Germany's

government agencies. The following subsections detail how process tailoring is

supported by these meta-models.

3.4.1 Process Adaptation in SPEM 2.0

SPEM 2.0 (OMG, 2008) is an OMG standard for software process modeling that

explicitly support concepts for tailoring representation. Figure 11 illustrates the main

meta-classes of the SPEM’s Process Structure package, which supports organizing

process elements hierarchically and defines the mechanism for tailoring process

elements.

Figure 11. Process Structure package main meta-classes.

Tailoring operations in SPEM are implemented through relationships between two

classes of type Activity (Figure 11). Activities are at the center of SPEM-based processes

as they can relate to each other to define sequences as well as specify the roles in charge

of their execution and the work products (artifacts) that are manipulated. Some other

Activity properties in Figure 11 relevant to tailoring are:

 nestedBreakdownElement: Represents the relationship between nesting activities

and allows the representation of a hierarchical structure where an Activity can

represent an entire process, along with its nested elements.

44

 usedActivity: Represents an association between two classes of type Activity,

where the current activity (source) extends the linked activity (target). The

semantics of such association are conveyed by the attribute useKind.

 useKind: Defines the type of tailoring operation carried out between elements

related through usedActivity. The enumeration ActivityUseKind defines the

tailoring semantics:

na: Defines the default value for activities that are not reused, i.e., that have no

association of type usedActivity.

extension: Indicates that an activity (and its associated elements) extends

another activity. In other words, this relationship makes a copy of the activity

being pointed at and associates it with the source activity (such as an

inheritance mechanism). The relationships localContribution,

localReplacement and suppressedBreakdownElement must be used in

conjunction with extension.

localContribution: Indicates that an activity adds process elements to another

inherited by the extension relationship.

localReplacement: Indicates that an activity replaces another inherited by the

extension relationship.

 supressedBreakdownElement: This relationship allows process elements to be

removed from an inherited activity. After an activity A extends an activity B, it is

possible to remove elements (and not only activities) of A using this relationship.

Figure 12 illustrates the tailoring mechanism using instances of the meta-class

Activity with their relationships and attribute values. In this case, composition relations

represent the nestedBreakdownElement relationship. The example has two SPEM-based

processes represented as hierarchies. Process 2 (in the middle) adapts Process 1 (on the

far left) by performing a few adjustments. The first activity has the highest hierarchical

level, being itself Process 2. It is related to the Process 1 top activity through a

usedActivity relationship with its attribute useKind set to extension. This allows the reuse

of the whole structure that is defined through the relationship nestedBreakdownElement.

In this example, however, the structure is modified through suppression, local

contribution and local replacement operations.

The first change is the deletion of Activity 1.1. For this purpose, Activity 2.1 points

to Activity 1.1 through the relationship suppressedBreakdownElement. As a result, the

final representation for Process 2 removes Activity 1.1 from the process hierarchy.

45

Activity 2.2 is directly related to Activity 1.2 through the relationship usedActivity.

In this case, the attribute useKind is set to localContribution, which causes the addition

of a child activity to Activity 1.2 that remains in the final process. Finally, Activity 2.3

relates to Activity 1.3 with the attribute useKind set to localReplacement. In this case,

Activity 2.3 and its children completely overlap Activity 1.3, thus redefining the reused

process. Activity 1.4 is reused in Process 2 (through the extension relationship) such as

defined in Process 1.

The hierarchy on the far right of Figure 12 presents the final Process 2, obtained

from tailoring Process 1. It is possible to observe that the SPEM tailoring mechanism

allows the representation and interpretation of process adaptations through a set of

relationships that can be clearly specified when modeling software processes.

Our first specific goal was to include in BPMN a basic tailoring support similar to

the one provided by SPEM in order to allow adaptations on the behavior of software

processes. Thus, our approach extends the BPMN meta-model by providing additional

concepts for representing the tailoring operations extension, contribution, replacement

and suppression. However, since SPEM operations do not take into account the

behavioral perspective of process, i.e. its execution flow, we have adapted these

operations to application in workflow models. That is, our SPEM-based operations

(presented in Chapter 5) were incremented with well-formedness rules to produce valid

process models after tailoring. Such rules must consider the current state of the process

when tailoring operations are created and processed.

Figure 12. SPEM tailoring representation (left) and interpretation (right) (adapted from OMG,

2008)

46

3.4.2 Process Adaptation in V-Modell XT

The V-Modell XT meta-model is designed to support hierarchically organized

process variants (TERNITÉ, 2010). A new process variant is created referring to a

reference model (base process) on which the variant is based. A variant can be regarded

as an extension applied to a reference model that refers to it extending or modifying any

reference model element. Afterwards, a merge tool creates an integrated process from the

variant and the reference model. New process assets introduced by the variant will be

integrated with the reference model. For example, exclusions will be deleted and

variability operations will be executed.

The types of variability operations are defined in meta-models representing

architectures of Software Process Line (SPrL) that control supported variations

(TERNITÉ, 2009). That is, each Process Line defined from the V-Modell XT meta-

model can define its own variability operations, which will be applied to variant models.

The types of operations supported can be classified as positive (addition of elements or

relations), negative (removal of elements or relations), extension (elements or relations

are extended), and replacing (elements or relations are replaced) (TERNITÉ, 2009).

KUHRMANN et al. (2014) presented a review of all specific types of operations that

have already been defined from the V-Modell XT meta-model.

Figure 13 shows the definition of a variability operation (concept) named

RenameWorkProduct in the meta-model level (on the left part of the figure) and its

instantiation in a process variant (on the center part). Such an operation is used to change

the name of the work product ABC defined by the base process (reference model) from

which the variant is derived. Finally, the change represented by the operation

RenameWorkProduct must be processed by a merge tool to generate the resulting

variant, in which the name of the work product ABC has been changed to XYZ.

Figure 13. Concept and example of variability operation in V-Modell XT (KUHRMANN et al.,

2014)

47

The support of tailoring provided by the framework and meta-model V-Modell

XT was clearly based on the tailoring support of SPEM, since the solution structure of

both frameworks is very similar. They specify adaptations on a base model through an

extension model, which does not modify the original model, but only refers to it.

SPEM and V-Modell XT are two important technologies for process tailoring

from the SPE domain, since they explicitly represent tailoring concepts in meta-model.

Well-defined concepts specifying tailoring possibilities, i.e. adaptation operations, and

their constraints are important in order to support a process engineer in specifying

process adaptations (MARTÍNEZ-RUIZ et al., 2012). The explicit representation of

adaptation operations also favors the traceability of process derivations, as supported by

SPEM and V-Modell XT. However, the main drawback of these technologies is that they

do not support adaptations regarding the behavioral perspective of processes, which

specifies when activities are performed (i.e., the workflow of the process). In fact, as

discussed in Section 3.2.4, few approaches for software process tailoring address

adaptations on the process behavior. SPEM and V-Modell XT also support only basic

adaptation operations (which modify single elements of a process), which can require

very effort and time of the user to specify even simple adaptation scenarios.

Our solution structure has also been based on SPEM and, for this reason, it also

presents similarities to the framework V-Modell XT. However, unlike SPEM and V-

Modell XT, our solution takes into account the behavioral perspective of process (i.e., its

execution flow), which means our tailoring operations need to result in valid workflow

models (regarding the BPMN process meta-model). To this end, the state of the model

when specifying and processing operations must be considered by pre- and post-

conditions associated to adaptation operations. Regarding the supported operations, we

believe it is important to provide with the solution a set of operations to cover the most

of tailoring scenarios from the BPM domain in general.

3.5. BPMN-based Adaptation Approaches

The Business Process Model and Notation (BPMN) is an ISO and OMG

standard for modeling business processes and a de-facto standard in professional

practice (CHINOSI and TROMBETTA, 2012). In this section, we investigate which

approaches/techniques have been proposed from the literature to adapt BPMN process

48

models and thus derive new process models. A possible solution for this issue would be

to extend BPMN with specific concepts, i.e., related to process adaptation, but our

investigation has not been limited to researches proposing BPMN extensions. Our scope

was a broad analysis of BPMN-based adaptation approaches. With this purpose, we

conducted a structured literature review7 on such approaches.

3.5.1 Structured Literature Review

We started the review by adopting a predefined protocol to avoid the possibility

of bias (selection of individual studies not driven by our own expectations). Therefore,

we followed the methods specified in the protocol, including the identification of the

research question, the selection of studies, data extraction and synthesis of findings. The

protocol underpinning our structured review is organized according to the following

activities:

1. Define a research question.

2. Locate and select relevant research studies – We tried to find papers and

reports in journals and papers with peer review.

3. Critically evaluate the studies – We assessed each research work against a set

of criteria related to the quality of BPMN-based adaptation proposals.

4. Combine the results – The findings were compiled and aggregated in Table 6

for comparison purposes.

3.5.1.1 Research Question

The goal of this review was to identify studies that provide an approach for

design-time process adaptation based on BPMN process models. Thus, the research

question that guided this structured literature review was:

 How BPMN process models have been adapted at design-time for deriving new

process models?

7 We called our review of structured and not systematic because it has been conducted uniquely by the
researcher of this thesis.

49

3.5.1.2 Studies Selection

This step was intended to specify the search strategy aiming to detect relevant

literature on BPMN models’ adaptation. To comply with the protocol, we searched for

studies using a predefined query string. We were interested in research works related to

process adaptation exclusively in the context of BPMN and that deal with design-time

adaptation. Therefore, we chose a set of terms related to adaptation and configured our

query string to disregard results containing the word “dynamic”, since it is usually

associated with runtime solutions:

 BPMN AND (adaptation OR adaptability OR adaptive OR tailoring OR

variability OR variant OR configurable OR customization OR customizable OR

flexibility OR flexible OR refinement) AND NOT dynamic

After the definition of the query string, the next step was to submit the query to

the chosen search base, which corresponds to Scopus8. We have chosen only this base

because it groups publications from the more relevant sources in Software Engineering

and Business Process Management. The string has been applied evaluating the title,

abstract, and keywords of researches from this base. The result of this search retrieved

315 publications. Then, the selection of relevant researches was done by reading the

abstract, introduction, and conclusion of each article.

We have selected only publications finding the following inclusion criteria:

(1) Article containing information about any kind of approach concerning the

adaptation of BPMN process models;

(2) Article referring for design-time adaptation.

We also applied some exclusion criteria:

(1) Publications with less than 6 pages;

(2) In case several studies refer to the same process adaptation approach, all

studies, except the latest and most complete version, were excluded.

As a result of applying such criteria, the final set of researches was composed by

9 articles (listed in Table 5).

8 http://www.scopus.com

50

3.5.1.3 Summary of Selected Works

We summarize below each of the selected approaches (Table 5):

1. CUI (2017) proposed a template-based approach for developing new processes. A

Template Model is used to model a process template, which represents common

features of a set of concrete processes. On the other hand, a Customization Model

expresses the way of building a concrete process based on a Template Model. To

specify Customization Models, the author proposed a BPMN extension, allowing

add and delete process elements and modify properties. These operations, however,

are used only for creating customized forms associated to process tasks, i.e., the

approach does not deal with adapting control-flow of process templates. Finally,

from these two models, an Instance Model can then be generated, which is a

standard BPMN model. According to the author, the approach is practically used in

an organization, facilitating process model reuse and consequently the development

and maintenance of new processes. He argues because all the proposed models are

based on the standard BPMN language, such models can easily be understood and

manipulated by people and BPMN-compliant tools.

Main limitations: (1) BPMN extension is not formalized; (2) it does not support

control-flow adaptation (only of task’s form elements).

2. YOUSFI et al. (2016) designed a configurable business process in which variability

is directly embedded into a BPMN process diagram. They defined variability

mechanisms for BPMN by using flow controls of the own language, i.e., Gateways,

for imposing variation points in the process. Each flow branch from a variation

point (gateway) represents a variable partition (activated by a data flow or an event

flow) that delimits where multiple possibilities may occur. Data- or Event-based

variation points can be of three types: single choice (represented by a XOR

Gateway), multiple choice (represented by an OR Gateway), or still optional (also

represented by an OR Gateway). In this proposal, variant elements can be activities,

intermediate events, or sequence flows. Performed adaptations by this proposal

result in well-structured process models (DUMAS et al., 2010) and meeting control-

flow requirements related to the use of Gateways posed by the BPMN standard

(OMG, 2011). Main limitations: (1) As a configuration approach, adaptation is

limited to addition and removal of pre-defined variant fragments in pre-determined

51

workflow positions; (2) derived processes by the approach contain only basic flow

controls (i.e., mutually exclusive or parallel ones).

3. POPP and KAINDL (2015) proposed to model high-level reference processes

(represented in BPMN) with less detail than “fully-fledged” processes and to capture

missing details in business rules (represented as model-transformations) that

operationalize how an organization performs miscellaneous tasks. The application of

these rules to a high-level reference process leads to its refinement, generating

another process model (more detailed). This proposal executes automatic process

model adaptations without any extension of the BPMN standard. Business rules are

separately maintained and only coupled with a given process in the course of

refinement. In this way, the approach allows that any existing process can

potentially be adapted according to business rules. Main limitations: (1) It does not

define a set of adaptation operations and model well-formedness rules (only

provides an example); (2) it does not extend BPMN for specification of adaptations

(uses ATL to this end).

4. ASSY et al. (2014) proposed a technique for automatically deriving configurable

BPMN process fragments from existing process models. The configurable

fragments subsume the behavior of the origin fragment models allowing designers

to derive any of them from the configurable one. New process variants can then be

created by configuring model elements that represent configuration points. In this

approach, Gateways and Events are configurable elements. According to authors, a

gateway can be configured by restricting its behavior, i.e., reducing its incoming or

outgoing branches while preserving its behavior. For example, a configurable OR

could be configured to an OR, an AND or a XOR with restricted outgoing flows in

the case of a split. A configurable event, in turn, can be included or excluded from a

concrete process fragment or refined for a specific type of BPMN event. Main

limitations: (1) As a configuration approach, adaptation is limited to addition and

removal of pre-defined variant fragments in pre-determined workflow positions; (2)

the refinement of events for specific types does not have any associated constraint

validating the operation.

5. ZHANG et al. (2014) proposed a semantic extension to BPMN in order to support

configurable process modeling with a focus on control-flow perspective. They

named the resulting language Configurable BPMN, i.e., C-BPMN. The proposal

52

defines configurable BPMN tasks that can be set as ON, OFF, and OPT as well as

configurable gateways that can be mapped to a concrete choice gateway

(representing the logic construct of split or join) or even to a sequence. Likewise the

previous works proposing configurable BPMN models, this one also does not define

new meta-model concepts. It uses existing BPMN constructs for representing

variations. Main limitations: (1) As a configuration approach, adaptation is limited

to hiding and blocking operations on pre-defined variant fragments in pre-

determined workflow positions; (2) no constraint is provided for ensuring semantic

correctness of the configured process regarding the BPMN specification; (3) it does

not deal with events or different gateways of Exclusive one.

6. DÖHRING and ZIMMERMANN (2011) proposed the approach named vBPMN

(variant BPMN) for design-time and runtime customizations of executable process

models using BPMN. In our review, we will focus on the aspects of this proposal

related to design-time adaptation. It applies structural adaptations to a base model

defined in BPMN and annotated with adjustment points, which can be adaptive

activities or fragments of the model (called adaptive segments). The authors also

provide a set of specific patterns, defined in the form of block structures, that can be

assigned to adaptive activities or inserted into an adaptive segment to customize the

model. Main limitations: (1) The only possible adaptation operation is Insert; (2)

adaptation rules for applying patterns to adaptive parts of the model are specified

only for runtime settings (i.e., they are triggered after the execution of a particular

event), then the approach does not provide any flexibility for customizing the

process model at design-time; (3) it is a non-conservative BPMN extension, which

requires the base process model to have adaptive segments explicitly marked, so that

the usual tooling for BPMN cannot be directly used with this approach.

7. SANTOS et al. (2010) proposed the approach GV2BPMN (Goal-Oriented

Variability Analysis to BPMN), which promotes the use of goal models to represent

variability in BPMN. The aim is to use these models to drive the configuration of

business processes, mapping BPMN tasks to goals and keeping links between them.

Goals models represent variability in terms of variation points and variants, like

approaches for Software Product Line (SPL). Goals in different branches of the

decomposition tree can also be related, for example, to indicate exclusion or

dependency among them. Main limitations: (1) Fails in the process workflow can be

introduced by using this type of configuration approach; (2) authors do not mention

53

how the process’ structural correctness is maintained; (3) adaptation is limited to

pre-defined configuration options.

8. Although stereotypes are an extensibility mechanism of UML, they were applied by

SCHNIEDERS and PUHLMANN (2006) to add variability in BPMN models in this

pioneer approach. Four complex variability mechanisms were introduced:

Encapsulation of Sub-Processes (ESP), Extension Points, Parameterization, and

Inheritance. Encapsulation of sub-processes along with extension points are forms

of defining extension points where variants are sub-processes. In this case, ESP

imposes that a single variant sub-process be chosen while the Extension Points

mechanism specifies that all offered options (sub-processes) are possible, including

no choice. Next, the Inheritance mechanism modifies an existing (default) sub-

process by adding activities related to specific business rules. Finally,

Parameterization, unlike all the previous mechanisms, offers the possibility to

represent variability in both events and data, e.g., by customizing the condition of

occurrence of an event. Except by this last mechanism, events and gateways cannot

be customized. Main limitations: (1) Adding stereotypes to BPMN models, the

approach burdens process diagrams with superfluous notations, hampering the

comprehensibility of the model (YOUSFI et al., 2016); (2) Parameterization offers

very restrictive support for modeling events, while other mechanisms do not offer

any possibility in this sense; (3) Gateways cannot be customized, meaning control-

flow variations are not supported by the approach.

9. PILLAT et al. (2015) describes our approach, named BPMNt (BPMN + tailoring),

intended for BPMN-based software process tailoring, which is depicted in details in

Chapter 5. In this article we proposed to extend the BPMN meta-model for

including tailoring support similar to the one provided by the SPEM meta-model,

which is an OMG standard for software process modeling. This extension is

compliant with the standard extension mechanism of BPMN (therefore,

conservative) and allows adding SPEM-based tailoring operations to BPMN process

elements as extension elements. The proposal supports flexible process tailoring

(change), like SPEM, and maintains change traceability links into the tailored

process model itself. In this article, we took a first step towards the specification of

rules for structural correctness and well-formedness of tailored BPMN models.

However, these features were only partially supported. Our more recent contribution

54

for supporting process tailoring in BPMN (presented in Chapter 6), now focusing on

business processes in general, has not yet been submitted for divulgation.

Table 5. BPMN-based Adaptation Approaches

Title Authors Year

1 An approach implementing template-based
process development on BPMN

X. Cui 2017

2 Variability patterns for business processes in
BPMN

A. Yousfi, R. Saidi
and A. Dey

2016

3 Automated refinement of business processes
through model transformations specifying
business rules

R. Popp and H. Kaindl 2015

4 Deriving configurable fragments for process
design

N. Assy, N. Chan,
W. Gaaloul and B. Defude

2014

5 Extending BPMN for Configurable Process
Modeling

H. Zhang, W. Han and C.
Ouyang

2014

6 vBPMN: Event-Aware Workflow Variants by
Weaving BPMN2 and Business Rules

M. Döhring and B.
Zimmermann

2011

7 A Goal-Oriented Approach for Variability in BPMN E. Santos, J. Castro, J.
Sanchez and O. Pastor

2010

8 Variability mechanisms in e-business process
families

A. Schnieders and F.
Puhlmann

2006

Our Research: BPMNt

9 BPMNt: A BPMN extension for specifying
software process tailoring

R. Pillat, T. Oliveira, P.
Alencar and D. Cowan

2015

3.5.2 Comparison between Approaches

In order to facilitate the analysis and comparison of the selected researches in

our review and listed in Table 6, we classified them according to a number of criteria

that have been derived considering the analysis perspective “how” of our research

question. The adopted criteria were inspired in other literature reviews, such as ROSA

et al. (2017), which surveyed approaches for business process variability modeling, and

BRAUN and ESSWEIN (2014), which surveyed domain-specific BPMN extensions.

Thus, we adopted the following comparison criteria:

 Flexibility type: Do the transformations supported by the approach restrict,

extend or change the process behavior?

o Restriction (variability by restriction or configuration). An approach

matches this criterion if a process model is customized by restricting

its behavior through configuration.

http://dblp.uni-trier.de/pers/hd/o/Oliveira:Toacy_C=
http://dblp.uni-trier.de/pers/hd/a/Alencar:Paulo_S=_C=
http://dblp.uni-trier.de/pers/hd/a/Alencar:Paulo_S=_C=
http://dblp.uni-trier.de/pers/hd/c/Cowan:Donald_D=

55

o Extension (variability by extension). An approach matches this

criterion if a process model is customized of controlled way (e.g., at

specific regions) by extending its behavior (i.e., adding elements).

o Change (adaptation). An approach matches this criterion if a process

model can be freely modified by the process designer.

 Adaptation operations: Which adaptation operations are provided by the

approach for customizing/modifying the base process model?

 Structural correctness: Is the structural (syntactical) correctness of the

derived models guaranteed? This criterion corresponds to the ability of the

approach in avoiding disconnected nodes in the derived process.

 Well-formedness: Are the main control-flow well-formedness rules of the

BPMN standard enforced for derived models? This criterion verifies if the

approach provides means for ensuring the control-flow well-formedness in

produced models considering as comparison base the list of rules presented

in Appendix 1.

 BPMN-compliant extension: Does the approach present an extension

definition compliant with the BPMN standard? This criterion verifies if a

BPMN extension is defined by using the standard extension mechanism

provided by the BPMN specification (OMG, 2011) (described in Section

2.3.2).

 Change Traceability: Does the approach maintain change traceability links

between the tailored model and its base model?

 Tool support: Does the research describe some tool support?

56

Table 6. Comparison between BPMN-based Adaptation Approaches

Approach
Flexibility

Type
Adaptation Operations

Variant Process
Elements

Structural
Correctness

Well-
formedness

BPMN-
compliant
extension

Change
Traceability

Tool
support

1 Cui (2017) Change Add, Delete and Modify Activity properties -- -- -- -- +

2
Yousfi, Saidi and Dey

(2016)
Restriction

Add/Remove pre-defined process
fragments in variation points

Activities,
Intermediate Events,

Sequence Flows
+

+/-

(ref.
gateways)

-- -- --

3 Popp and Kaindl (2015) Change unspecified unspecified -- -- -- -- --

4 Assy et al. (2014) Restriction

Add/Remove pre-defined process
fragments in variation points;

Refine pre-defined events

Activities,
Intermediate Events,

Sequence Flows
+ -- -- -- +

5
Zhang, Han and Ouyang

(2014)
Restriction

Add/Remove pre-defined process
fragments in variation points

Activities, Sequence
Flows

+ -- -- -- +

6
Döhring and

Zimmermann (2011)
Extension

Insert of customized process
fragments in variation points

Activities, Adaptive
Segments

+ + -- -- +

7 Santos, et al. (2010) Restriction
Add/Remove pre-defined process
fragments according to variation

points
Activities -- -- -- -- --

8
Schnieders and

Puhlmann (2006)
Restriction

Add/Remove pre-defined process
fragments in variation points

Activities (restrictive
support for Events)

-- -- -- -- +

9
SPEM-based BPMNt

Pillat et al. (2015)
Change

Extension, Local Contribution, Local
Replacement, Suppression

Activities, Events,
Gateways, Sequence

Flows

+/-

(except for
Contribution)

+/-

(only for
Suppression)

+ + +

10 Pattern-based BPMNt Change

Delete, Replace, Move, Parallelize,
Insert, Encapsulate, Split, Merge,

Rename, Specialize, Add Exception
Handler, Add Exception Flow

Activities, Events,
Gateways, Sequence

Flows
+ + + + +

57

3.5.3 Analysis

In order to facilitate the comparison of approaches listed in Table 5 with our

current research (detailed in Chapter 6), we have included it (#10) in Table 6. Observing

this comparative table, some findings are evident:

1) Most of the works proposing BPMN-based adaptation approaches address

variability modeling, essentially through the technique of configuration (restriction)

(see column Flexibility Type of the table). This meaning that all customization

decisions need to be known during the creation of the configurable process model

that will guide user’s adaptation decisions. As discussed in Chapter 1 of this

research, although this technique facilitates reuse of models, it can only succeed in

well-defined contexts where there is little change. Approaches based on

configuration are not proper for evolving contexts and, in general, do not support

adaptation across levels of abstraction (i.e., refinements), for example, for deriving

technical-level BPMN models from business-level models. Conversely, our

proposal BPMNt (#9 and #10) is based on flexible change operations that can meet

adaptation needs from different contexts.

2) Types of adaptations (fourth column) and variant process elements (fifth column)

supported by most of approaches are very limited, what can prevent user’ adaptation

needs being adequately addressed. Adaptation of events, for example, is supported

by only three approaches from other researchers (#2, #4, and #8). Conversely, our

more recent proposal (#10) supports an extensive set of adaptation operations that

can produce process variations affecting (directly or indirectly) all elements from

the control-flow perspective.

3) Most of approaches based on variability by restriction (configuration) support

structural correctness (except #7 and #8), which is a feature relatively trivial to be

achieved when using the technique hiding and blocking. However, this feature is

rarely supported by techniques of flexible change. From Table 6, only our more

recent adaption approach (#10 - Pattern-Based BPMNt) fully supports structural

correctness, i.e., it avoids flow breaks in the process workflow.

4) Concerning the well-formedness of BPMN models derived from adaptation, only

our approach in #10 ensures all control-flow well-formedness rules in Appendix 1,

such as prescribed by the BPMN specification. Our approach in #9 takes well-

58

formedness into account only for removal operations and the proposal in #2

considers this issue only regarding the use of Gateways (flow controls).

5) Our BPMNt solution (#9 and #10) is the only research identified from the structured

literature review proposing a BPMN-compliant extension. Other researches in Table

6 also present BPMN extensions. However, only we have concerned on proposing

new meta-model concepts related to adaptation based on the built-in extension

mechanism of BPMN. The importance of using such a mechanism is explained by

BRAUN and ESSWEIN (2014): “authors of BPMN extension should strictly use the

BPMN extension mechanism in order to provide a valid extension and enable model

exchangeability”. This is indispensable for reasons of standard conformity,

comprehensibility, and tool support. According to the same authors, “model

engineers fail in reusing the most BPMN extensions since they do not provide a

valid BPMN extension model. Thus, it is necessary to transform the provided

dedicated meta model into a BPMN conform model in order to integrate it within a

BPMN tool”.

6) At last, we also highlight that no approach from other authors describe a specific

strategy for maintaining traceability of performed changes. Conversely, we store

change traceability links into the adapted process model itself, through adaptation

operations.

In summary, our solution seems to be the one that encompasses all evaluated criteria

in this section.

3.6. Concluding Remarks

From our analysis of the state-of-the-art on approaches for process adaptation,

we have observed some main limitations in the target domains of this research.

In the context of Software Process Engineering (SPE), while variations on the

elements that make up a software process (e.g., activities, roles, and data artifacts) are

addressed by different proposals (e.g., SPEM and V-Model XT), little attention has

been given for variations on the process control-flow. Such variations show differences

in when process activities are performed and are related to the order (or sequencing) of

activities within a process workflow. Although control-flow differences related to the

process execution flow may seem primarily just details, they are very important to

59

understand how processes have been performed, how they could be improved and even

simulated (ALI et al., 2014). Therefore, effective techniques and mechanisms to specify

control-flow variations in software processes are also important.

In the context of Business Process Management (BPM), on the other hand,

approaches for process adaptation usually deal with control-flow variations. However,

at design-time these variations are generally represented through variability modeling,

especially by using the technique of configuration. This means that all adaptation

possibilities need to be known a priori, during the creation of the configurable process

model. According to LA ROSA (2017), this technique leads to highly complex models,

which hamper the analysis and maintenance of individual process model variants.

Approaches based on this technique are not proper for evolving contexts or in which

process variations are difficult to predict.

In BPM, flexible process adaptation is only supported at runtime by some

researches addressing change management. However, these researches do not intend to

develop new process models from existing ones. Their focus is to manage relationships

between a process model and its running instances.

At last, considering the narrow scope of BPMN-based adaptation approaches,

we can still highlight that no research from the literature entirely guarantees control-

flow well-formedness for the adapted process model regarding rules prescribed by the

BPMN specification. Moreover, our solution is the only identified research proposing a

BPMN-compliant extension and describing a strategy for maintaining traceability of

performed changes.

Thus, in the next chapter we introduce the BPMNt solution by presenting its

solution structure and depicting the concept of tailoring operation, which is the base of

the solution.

60

CHAPTER IV

4. BPMNt

This chapter introduces BPMNt (BPMN + tailoring), our thesis contribution that

aims at providing a meta-model extension and associated infrastructure to address

process adaptation in BPMN. Our solution allows specifying flexible process tailoring

in different application contexts, ensuring the correctness of tailored process models and

explicitly capturing change traces.

Process tailoring involves adapting an existing process definition to derive a new

alternate one. In this thesis, we use the terms Base Process or Reference Process to refer

to the existing process (i.e., the target process of tailoring) and the terms Tailored

Process or Variant Process to refer to the derived process (i.e., the resulting process of

tailoring).

The objective of this chapter is only to provide an introduction for the BPMNt

solution, presenting some general aspects. BPMNt comprises two BPMN extensions,

which are presented in the next chapters. Thus, Section 4.1 presents the solution

structure of BPMNt whereas Section 4.2 describes and exemplifies the concept of

tailoring operation, which is the base of the approach. Section 4.3 presents some final

remarks.

4.1. Solution Structure

The proposed solution structure to address the target problem of this thesis was

based on principles of MDE (Model-Driven Engineering) (SCHMIDT, 2006). We

defined and applied model transformations (SELIC, 2003), which are actually

adaptation operations, to automate each step of the process tailoring procedure and

connect the involved process models, i.e., the base (reference) process model and the

tailored process model. These adaptation operations are agnostic to the reference

process, meaning they can be applied to adapt any well-formed BPMN process model.

The reference model does not need to be previously “prepared” for adaptation neither to

contain special modeling elements, what could limit its use in practice. Our adaptation

61

operations are also outplace (MENS and VAN GORP, 2006), i.e., they transform

(adapt) the reference process in a separate model, preserving the unmodified original

model.

We defined these adaptation operations as meta-model concepts into our

BPMN’s extension, which we call BPMNt. Such operations also represent traceability

relationships that trace links between elements of the tailored process and elements of

the reference process at the model level, identifying which elements of the second

model the first one modifies.

Inspired by techniques of software process tailoring embedded in meta-models

of widespread process modeling languages in the SPE’s domain, we also applied in our

BPMN-based solution the concept of partitioned process (KUHRMANN et al., 2016)

for creating tailored processes. Thus, every process derived from tailoring relies on two

physically separated, but logically connected models: the Base Process Model and the

Tailored Process Model. This relation is schematically represented in Figure 14, which

shows the process models required and produced by our approach.

Figure 14: Process Models used by BPMNt

Our solution requires a Base Process Model, which is a BPMN model containing

the specification of the process to be tailored. BPMN process models consist mainly of

activity workflows represented as diagrams.

In the tailoring specification phase (left part of Figure 14), a Tailored Process

Model must be built to represent the process derived from the first one. This model must

only contain the changes (or differences) in relation to the Base Process Model, which

are specified using BPMNt tailoring concepts (i.e., adaptation operations) and

relationships (i.e., adaptation traceability links connecting model elements, represented

62

by the arrow <<depends>> in Figure 14). Therefore, the Tailored Process Model contains

some BPMN process elements (additions to the base process) plus BPMNt elements

that make it dependent on the Base Process Model. Thus, since such a model is not

entirely compliant to BPMN (because it contains only part of a process), we refer to it

as a BPMNt model instead of BPMN model. The Base Process Model, which is target

of tailoring, will remain unmodified.

Finally, in order to provide users with a unified tailored process model, both

models involved in the creation of a variant process need to be merged into one

integrated process model, which we refer as Final Tailored Process Model (represented

on the right part of the figure). The procedure that integrates these models into a single

one we call tailoring interpretation. In this moment, a set of correctness rules is applied

to interpret tailoring concepts and relationships of the tailored process and generate the

Final Tailored Process Model. This last one contains a complete BPMN model, i.e., the

complete set of BPMN elements that compose the derived process. Thus, this model can

be loaded into any BPMN tool.

This solution structure provides as advantage the separate declaration of the

required changes by a variant process (defined in the Tailored Process Model), such

that they can easily be accessed and analyzed when it is necessary. Moreover, the Base

Process Model remains unmodified and decoupled from its variants.

Figure 15 shows a more comprehensive view of our solution structure. Tailoring

operations are used as a container for the declaration of a process change and an

interpreter component is provided to execute such operations, performing actions on

models according to the semantics of the operations.

The solution structure represented in Figure 15 involves two model levels: the

meta-model level (upper part) and the instance level (lower part). The represented meta-

model level corresponds to our BPMNt extension, which defines the types of tailoring

operations that can be used on the instance level. For each tailoring operation type,

specific semantics must be provided and implemented in the interpreter.

At the instance level, instances of tailoring operations reference target elements

in a Base Process Model to indicate that these elements will be adapted. The references

to base model elements are created by means of operation parameters, which also act as

adaptation traceability links.

An interpreter is necessary to execute the tailoring operations on the target

elements. The interpreter must know the semantics of the tailoring operation types and

63

be able to take into account specific parameters provided by attributes of each operation

type.

The interpreter uses a Tailored Process Model and merges it with a Base

Process Model, thus executing all tailoring operations in the order in which they appear

in the first model. The result (i.e., a Final Tailored Process Model) is generated in a

separate file.

Figure 15: Solution structure of the BPMNt approach

4.2. Tailoring Operation

Tailoring operations allow a variant process to reuse and modify content from a

base process. These modifications are valid only into the scope of the variant process;

they do not alter the base process itself. Indeed, our tailoring operations are model

elements (integrated to BPMN via conservative extension) that define a process

modification, e.g., renaming elements or inserting new elements in specific workflow

positions. Figure 16 exemplifies the tailoring operation Serial Insert as concept in the

meta-model level (at the top) and as instance in the model level (at the bottom).

According to the BPMN extension mechanism, tailoring concepts defined in the BPMNt

Tailoring Extension package can be added to any BPMN element as extension elements.

However, we have limited their application to relevant process elements through

additional rules. The concept SerialInsert defines two relationships to the BPMN meta-

class FlowNode (only one of them is mandatory), which represents all process graph

nodes (task, subprocess, event, or gateway). SerialInsert aims at adding a new process

64

node to the workflow position after the node identified by after or before the node

identified by before.

In the model level at the bottom of Figure 16, a tailored process extends a base

process by using another tailoring operation named Extension. Basically, it indicates

that a given process will reuse the content of the base process, thus inheriting all its

element structure and enabling other adaptation operations. An instance of operation

SerialInsert (dotted arrow in the figure) is added as extension element to the task Treat

Incorrect Measures, the only one defined in the tailored process. This task is referred as

source of the operation, since the extension element is defined by it. The parameter after

of the operation is set to task Verify Measures, meaning the tailored process modifies

the process inherited from the base process (via extension) by adding the task Treat

Incorrect Measures after the task referenced by the operation parameter after. We refer

to this parameter as tailoring relationship or adaptation traceability link. It is

configured by a process engineer while specifying process adaptations with BPMNt.

Such relationship creates a link between an element of the variant and base processes in

order to keep traces of changes. Tailoring relationships (or traceability links) are

essential for supporting future evolution of processes. Finally, the process model shown

in Figure 16 identified as final tailored process presents the result of applying tailoring

operations defined by the tailored process on the base process model.

4.3. Concluding Remarks

This chapter depicted the solution structure of our reseach and the concept of

tailoring operation, which is the base of the solution. In the next two chapters, we

describe the BPMN extensions that compose the BPMNt solution.

In Chapter 5, we present SPEM-based BPMNt, which consists of a BPMN-

compliant extension designed for representing software process tailoring. It extends the

BPMN meta-model for including tailoring support similar to the one provided by the

SPEM meta-model, which is an OMG standard for software process modeling. This

extension aims at allowing the specification of control-flow variations in software

process models represented with BPMN. Therefore, it addresses the main limitation

identified from the state of art in SPE. It also moves towards providing some rules

associated to tailoring operations in order to help in the well-formedness of adapted

65

models. The content of this chapter corresponds to our publication in the Information

and Software Technology journal (PILLAT et al., 2015).

In Chapter 6, we present Pattern-based BPMNt, which is also a BPMN-

compliant extension, but intended for business process adaptation in general (including

software processes). It extends the BPMN meta-model for including tailoring support

based on high-level operations, which encapsulate basic operations in order to abstract

the user from details of process model transformation and ensure correctness of the

adapted model. These operations have been derived from adaptation patterns (WEBER

et al., 2008) (described in Section 3.3.2.1) and refinement patterns (BRANCO et al.,

2014) (described in Section 3.3.2.2) identified for the BPM domain.

Figure 16: Concept and example of tailoring operation

https://www.journals.elsevier.com/information-and-software-technology
https://www.journals.elsevier.com/information-and-software-technology

66

CHAPTER V

5. SPEM-BASED TAILORING SUPPORT

5.1 Introduction

BPMN 2.0 supports the representation of process activities, roles and

information, which resembles SPEM capabilities, but also provides additional concepts

related to the technical support and execution of processes, which allow the precise

modeling of their behavior. However, BPMN lacks a representation and associated

mechanism for process tailoring. Thus, this chapter presents our SPEM-based BPMNt

approach, which includes tailoring capabilities in BPMN by supporting a process

adaptation mechanism similar to the one provided by SPEM 2.0. This way, our solution

enables the reuse of BPMN-based software process representations. To this end, we

have extended BPMN to include the representation of SPEM-based tailoring operations

such as suppression, contribution and replacement. This extension for tailoring support

is presented in Section 5.2.

We have also identified some rules to ensure model well-formedness when using

such adaptation operations. They are presented in Section 5.4. However, well-

formedness checking does not cover contribution operations. Such a limitation will be

addressed by the solution presented in the next chapter. In order to validate this initial

tailoring proposal we have implemented a prototype to support the BPMNt approach,

presented in Section 5.5, by extending resources of the MDT/BPMN2 Project (MDT,

2012). Then the approach has been applied to represent real process adaptation cases

from an academic management system development project, as presented in Section 5.6.

A running example from the evaluation study (depicted in Section 5.3) is used along

this chapter to explain our approach.

67

5.2 SPEM-based Tailoring Operations in BPMNt

In order to represent the concepts related to process tailoring in the context of

BPMN-based software processes, we have developed BPMNt (BPMN + tailoring), a

conservative BPMN extension. By conservative we mean an extension that does not

modify the original semantics of the BPMN specification. The proposed extension

introduces elements into BPMN that capture the syntax and semantics to support the

ability to remove, replace and add process elements. We have defined such an extension

based on the process tailoring concepts found in SPEM 2.0 (discussed in Section 3.4.1

and represented in Figure 11) and on the BPMN standard extension mechanism

(discussed in Section 2.3.2 and represented in Figure 6), which allows specifying new

attributes (of extension) for BPMN elements.

The SPEM-based BPMNt extension is represented by a new concept, named

Tailoring, and its associated attributes. The three new attributes will be used by sub-

classes of BPMN FlowElementsContainer (i.e., Process and Subprocess elements) and

sub-classes of BPMN FlowElement (e.g., Task, Gateway, and Event) because they allow

the specification of processes and sub-processes in a hierarchical structure, similar to that

used in SPEM. The new attributes are:

 usedBaseElement: A process element represented by FlowElementsContainer or

FlowElement should have an attribute to represent its association with another

similar element indicating that a tailoring operation will occur. Thus, we have

added the attribute usedBaseElement, which must be related to the class (process

element) that will be reused (tailored).

 useKind: This attribute defines the type of tailoring operation carried out between

elements related through usedBaseElement. The semantics of tailoring operations

are represented by the enumeration ElementUseKind, which has the same values

as its SPEM counterpart:

 NA denotes the default when the usedBaseElement relationship is not

defined.

 Extension defines the reuse of a process structure based on an instance of

class FlowElementsContainer (i.e., a process or subprocess). In other words,

an extension relationship makes a copy of the process being pointed at and

associates it with the source process (such as an inheritance mechanism). The

68

relationships localContribution, localReplacement and

suppressedBaseElement must be used in conjunction with extension.

 LocalContribution indicates that a (sub)process adds elements to another

inherited by the extension relationship. For example, if process A extends

process B, a subprocess of A, say A.1 can add elements (contribution) to a

subprocess of B such as B.1 relating to it through a localContribution. Thus,

in this case the subprocess B.1 in A will have its own elements plus all the

content of A.1.

 LocalReplacement indicates that a process element replaces another

inherited by the extension relationship. For example, if process A extends

process B, a subprocess of A, say A.1 can replace a whole subprocess of B

such as B.1 linking to it through a localReplacement. Thus, in this case the

result in A will be A.1 with its own content.

 supressedBaseElement: This relationship attribute supports excluding any

BaseElement of the inherited process structure. It is used in the context of a

process reused by the usedBaseElement attribute. After a process A extends a

process B, it is possible to remove elements of A using this relationship.

5.2.1 Meta-model Representation

Figure 17 illustrates the new BPMNt concept Tailoring, its attributes and how they

could relate to BPMN extension meta-classes (presented in Figure 6-a). The relation

between the new elements and the original meta-classes are represented in this figure by

dependency relationships, although those relations should be instance relationships

representing how the model elements conform to the meta-model elements. Although

using the BPMN meta-model extension mechanism makes it easier to define and explain

a new extension, such a representation does not properly support the BPMNt extension.

The BPMN extensibility meta-classes do not support the definition of extension attribute

multiplicity (number of objects referenced by the attribute). For example, it is not

possible to represent that the attribute suppressedBaseElement can reference zero or

more BaseElement elements whereas the attribute useKind must contain only one

ElementUseKind enumeration value. Another problem is that the BPMN extensibility

meta-model does not provide any element to define the structure of new types of

attributes specified by ExtensionAttributeDefinition elements. Consequently, the

69

ElementUseKind enumeration type of the BPMNt extension (marked with an error icon

in Figure 17) is not able to be defined through the BPMN meta-model extensibility

mechanism. The definition of attribute multiplicities and new types is only supported in

XML Schema. Thus, in order to provide implementation support to the BPMNt

extension, we first have defined it using the XML Schema representation.

Figure 17. Defining the BPMNt extension using the BPMN extensibility meta-classes

5.2.2 XML Schema Based Representation

Figure 18 shows the structure of the BPMNt extension defined using native elements

of the XML Schema language. The dotted boxes link elements of the XML Schema

document to corresponding concepts of the BPMN meta-model representation. In our

case, the element xsd:complexType groups the new extension attributes, such as the

BPMN meta-class ExtensionDefinition. However, unlike the BPMN meta-model

representation, our XML Schema extension representation creates a new type of element

(named bpmnt) to contain the extension attributes of a BPMN model. We have chosen

this approach for clarity and modularity reasons. In the tag structure xsd:complexType,

each extension attribute itself is created by an XML Schema element xsd:element, which

corresponds to the BPMN meta-class ExtensionAttributeDefinition. However, unlike the

BPMN meta-model representation, the XML Schema representation supports definition

of the multiplicity of extension attributes through the configurations maxOccurs and

minOccurs of the tag xsd:element. The type QName is used in XML Schema documents

to represent references to elements within the same file or in external files, expressed via

IDs. Finally, the element xsd:simpleType in conjunction with the nested elements

xsd:enumeration are used to represent the BPMNt enumeration type ElementUseKind

70

and its literal values. As mentioned previously, it is not possible to specify the structure

of the types of extension attributes using the BPMN meta-model extension

representation. To this end, the XML Schema elements xsd:complexType or

xsd:simpleType must be used.

Figure 18. BPMNt.xsd – XML Schema Extension Definition.

In the next section, we present a running example that illustrates the application of the

BPMNt extension (defined in Figure 18) to a BPMN process model (representing a

tailored process).

5.3 Tailoring Software Processes: Running Example

We will use as a running example one simple tailoring scenario from the SIGA-EPCT

system development project (SIGA, for short), described in detail in Section 5.6. Such a

project has a software development process defined and organized in six phases.

However, we will consider only the Specification and Design phase. The modeling of

this process phase in BPMN notation is shown in Figure 19 and represents the base

process model of the example. The same figure also shows the correspondence between

BPMN notation elements and meta-classes. With regard to the modeling of process

activities, we have used the BPMN concept Task since all modeled activities of the

process phase are atomic. Observing the names of these activities in Figure 19, one can

note that the project process is centered on use cases, that is, the process is instantiated

for each use case of the project. In addition, the project records data about all instances of

71

this process for each use case (tasks, roles and sequence flows) and the process shown in

Figure 20 represents an execution for a given use case. As an example tailoring scenario,

we consider the representation of the adaptations needed on the Specification and Design

phase’s base process shown in Figure 19 to derive the specific process shown in Figure

20.

From compliance analysis, it was identified that the executed process represented in

Figure 20 had the following changes related to the project base process:

1) The task Specify Report was not executed for the use case under consideration and

for this reason was suppressed from the tailored process model.

2) Immediately after the task Design Screen was performed, a new task Validate

Screen was also performed, and both tasks were executed in sequence two times;

as a result, they have been grouped in the BPMN model as a recursive subprocess

named Design and Validate User Interfaces (since it involves a loop).

3) A new task Elaborate Mapping of Use Case Links was performed immediately

after the task Update General Class Diagram and before the task Review Use

Case Specification, requiring changes in their related sequence flows and the

addition of the new task to the tailored process model.

Figure 21 shows how the derived process (on the right side of the figure) is related or

linked to its base process (on the left side) through BPMNt tailoring relationships to

represent the aforementioned adaptations. In such a figure, we have represented both the

processes as element trees to facilitate the visualization of tailoring relationships.

However, a BPMN process model can be represented either as an element tree or as a

diagram.

Figure 19. Base process of the SIGA project for the Specification and Design phase.

72

Figure 20. Process tailored for a specific use case (process after tailoring interpretation).

In Figure 21, we have named the use case specific process Tailored Specification and

Design. Such a process is related to the original project process through an extension

relationship, which means that the tailored process reuses all process elements specified

under the original Specification and Design process. Moreover, as the derived process

adapts the original one, it was required to represent tailoring relationships. There is more

than one way to represent the process adaptations just mentioned, but we have adopted a

configuration as shown in Figure 21:

 Suppression: A relationship between the task Suppress Task Specify Report of the

tailored process and the task Specify Report of the base process using the

Suppressed Base Element attribute to represent exclusion.

 Replacement: A relationship of type LocalReplacement between the subprocess

Design and Validate User Interfaces (which contains the new activity Validate

Screen) and the task Design Screen to represent replacement.

 Suppression: A relationship from the task Suppress Sequence Flow 9 of the

tailored process pointing to the sequence flow 9 of the base process using the

Suppressed Base Element attribute to represent exclusion.

 Contribution: A relationship of type LocalContribution between the subprocess

Add New Task of the tailored process (which contains the new task Elaborate

Mapping of Use Case Links as well as two new sequence flows that connect it to

other activities) and the base process itself to represent element addition.

73

Figure 21. Representation of the BPMNt tailoring specification

Figure 22 shows how the tailoring relationships of the running example (illustrated in

Figure 21) are represented in the tailored process file (Tailored Specification and Design

process) using the BPMNt extension defined in the XML Schema in Figure 18. Elements

in bold are part of the BPMN’s XML Schema extensibility mechanism whereas elements

in red are part of our BPMNt extension. Note that we have imported two files: the first

one, BPMNt.xsd, contains the definition of our tailoring extension detailed in Figure 18,

and the second file, Specification_and_Design.bpmn, is a BPMN model file, which

contains the process that will be reused (Specification and Design). As in the case of the

SPEM extension mechanism, the new defined process does not override or modify the

base process, but only links to it and its elements through tailoring relationships. For

example, the suppression relationship defined by the task Suppress Task Specify Report

links to task Specify Report of the base process through the QName value

BaseProcess:Specify_Report provided by the extension attribute

extension:suppressedBaseElement. The first part of the QName value identifies the

74

namespace of the base process (Specification and Design), whereas the second part

represents the ID of the task Specify Report.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="def1" xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmlns:BaseProcess="BaseProcess" xmlns:extension="http://www.extensions.com/bpmnt"

targetNamespace="TailoredSpecificationAndDesign">

<import importType="http://www.w3.org/2001/XMLSchema" location="BPMNt.xsd"

namespace="http://www.extensions.com/bpmnt"/>

<import importType="http://www.omg.org/spec/BPMN/20100524/MODEL"

location="Specification_and_Design.bpmn"

 namespace="BaseProcess"/>

<extension mustUnderstand="true" definition="extension:bpmnt"/>

<process id="Tailored_Specification_and_Design" name="Tailored Specification and Design">

 <extensionElements>

<extension:bpmnt>

<extension:usedBaseElement>BaseProcess:Specification_and_Design</extension:usedBaseElement>

<extension:useKind>Extension</extension:useKind>

</extension:bpmnt>

</extensionElements>

 <task id="Suppress_Task_Specify_Report" name="Suppress Task Specify Report">

<extensionElements>

<extension:bpmnt>

 <extension:suppressedBaseElement>BaseProcess:Specify_Report</extension:suppressedBaseElement>

<extension:useKind>NA</extension:useKind>

</extension:bpmnt>

</extensionElements>

</task>

<subProcess id="Design_and_Validate_User_Interfaces" name="Design and Validate User Interfaces">

<extensionElements>

<extension:bpmnt>

<extension:usedBaseElement>BaseProcess:Design_Screen</extension:usedBaseElement>

<extension:useKind>LocalReplacement</extension:useKind>

</extension:bpmnt>

</extensionElements>

<standardLoopCharacteristics id="loop1"/>

+ <task id="Design_Screen" name="Design Screen">

+ <task id="Validate_Screen" name="Validate Screen">

<sequenceFlow id="SF1.1" name="1.1" sourceRef="Design_Screen" targetRef="Validate_Screen"/>

</subProcess>

<task id="Suppress_Sequence_Flow_9" name="Suppress Sequence Flow 9">

<extensionElements>

<extension:bpmnt>

<extension:suppressedBaseElement>BaseProcess:SF9</extension:suppressedBaseElement>

<extension:useKind>NA</extension:useKind>

</extension:bpmnt>

</extensionElements>

</task>

<subProcess id="Add_New_Task" name="Add New Task">

<extensionElements>

<extension:bpmnt>

<extension:usedBaseElement>BaseProcess:Specification_and_Design

</extension:usedBaseElement>

<extension:useKind>LocalContribution</extension:useKind>

</extension:bpmnt>

</extensionElements>

+ <task id="Elaborate_Mapping_of_Use_Case_Links" name="Elaborate Mapping of Use Case Links">

<sequenceFlow id="N_1" name="N_1" sourceRef="Update_General_Class_Diagram"

targetRef="Elaborate_Mapping_of_Use_Case_Links"/>

<sequenceFlow id="N_2" name="N_2" sourceRef="Elaborate_Mapping_of_Use_Case_Links"

targetRef="Review_Use_Case_Specification"/>

</subProcess>

75

</process>

</definitions>

Figure 22. Tailored_Specification_and_Design.bpmn – Application of the BPMNt extension to

a BPMN model

Finally, the complete tailored process, which corresponds in our example to the

process shown in Figure 20, is generated by a support tool from the interpretation of the

tailoring relationships. Such interpretation is performed following the top-down order in

which the tailoring operations (or relationships) appear in the tailored process structure.

In the tailored process model shown in Figure 22, the order of tailoring interpretation

follows the sequence: (1) extension; (2) suppression (of task Specify Report); (3) local

replacement; (4) suppression (of sequence flow 9); and (4) local contribution.

The next section describes the effect of BPMNt tailoring operations on the BPMN

elements and presents some well-formedness rules.

5.4 Variant BPMN Elements and Well-Formedness Rules

The approach described in this section to tailor BPMN processes involves four

operations to enable process tailoring: extension, suppression, local contribution and

local replacement. These operations are applied to BPMN flow elements, i.e., elements

that interfere directly in the process execution flow. This element group encompasses

Task, Subprocess, Gateway, Event and Sequence Flow. Changes in data objects, roles

and associations have not been considered yet.

For some tailoring operations, well-formedness rules are provided by the BPMN

meta-model specification through UML relationships and their multiplicities. For

example, the composition relationship between the meta-classes Activity and

ResourceRole states that the suppression of the first element implies the automatic

deletion of the second one. However, many rules are not expressible using the UML

class model, especially those that aim to ensure a valid process workflow. Thus, we have

defined some rules that help ensure the well-formedness of BPMN models when

performing tailoring operations. Such rules are summarized in Table 7 and Table 8

according to the tailoring operation to which they apply. We have used natural language

to present our well-formedness rules to be consistent with the BPMN specification. In

order to facilitate identification, each rule is numbered and preceded by the tailoring

target element type involved in its activation.

76

5.4.1 Extension Operation

An extension operation must have elements source and target of type

FlowElementsContainer. In this research, we have considered the containers Process and

Subprocess and an extension relationship on both elements has the same effect: Child

elements of the target container (base process) are copied to the source container

(tailored process). During the phase of tailoring specification, an extension operation

makes all elements of the base process accessible to other tailoring operations as if they

were part of the tailored process. For instance, in Figure 21 the extension relationship

from the process Tailored Specification and Design (the tailored process) pointing to the

process Specification and Design (the base process) results in the first process containing

all elements of the second one. Moreover, the definition of an extension operation

enables the use of the tailoring operations suppression, local contribution and local

replacement from the elements of the tailored process to the elements of the base

process.

5.4.2 Suppression Operation

In a suppression relationship, the type of the source element does not matter because

this element does not interfere with the result of the suppression operation. Thus, a

suppression relationship can be added to any element of the tailored process or to the

process itself. On the other hand, the target element of a suppression relationship must be

a task, subprocess, gateway, event or sequence flow. For instance, in Figure 21, the

suppression relationship from the task Suppress Task Specify Report to task Specify

Report results in the removal of the latter task from the final tailored process.

Since our approach supports adaptations involving flow elements, the suppression of

one or more of these elements from a BPMN process model may lead the process into an

incorrect state, such as breaking the sequence of the process execution flow. In order to

avoid such scenarios, we have defined a rule set that aims to preserve and recover the

process well-formedness after suppression operations are performed. Such rules are

presented in Table 7 and are grouped by the element type to which they apply.

Supposing, for example, that the task Review Use Case Description in Figure 19 was

suppressed from the final tailored process, it would cause a workflow break immediately

after the task Describe Use Case. However, this would be resolved by rule 1, which

would automatically connect the precedent element of Review Use Case Description

77

(Describe Use Case) to its subsequent (XOR_DIV) through the sequence flow 2. This last

one would be reconfigured by the rule to point to the gateway XOR_DIV. Such a rule is

applied to suppression of any flow element considered in this approach, except Sequence

Flow. Otherwise, the process execution flow will not be automatically restored, and the

process engineer becomes responsible for ensuring that the final process is correct. Next,

we describe the rules that apply to each process element that can be the target of a

BPMNt suppression operation.

Task suppression: If a task requires input data or produces output data, it contains

elements Data Input and/or Data Output as well as associations that move data to or

from the task. Such data elements and associations will be automatically removed if the

task is removed because of composition relationships of the BPMN meta-model that

connect Task to these elements. In addition, we have defined rules 2 and 3 in Table 7

which ensure data objects and artifacts related to the deleted task are also eliminated,

since they are not related to other elements. Similarly, rule 4 ensures that events attached

to the boundary of a task as well as their exception flows are also removed entirely. The

types of events that can be attached to the boundary of a task are Message, Timer, Error,

Escalation, Cancel, Compensation, Conditional, Signal, Multiple, or Parallel Multiple

(OMG, 2011). Finally, associations of the deleted task with elements of class Lane have

to be eliminated (rule 5) as well as message flows that originate from or point to such a

task (rule 6).

Subprocess suppression: Since a subprocess is a container for other elements, all the

subprocesses’ children also have to be removed from the final tailored process, but this is

already ensured by the BPMN meta-model’s composition relationships. Furthermore,

rules 1, 2, 3, 4, 5 and 6 can also be applied to subprocesses just as they have been applied

to tasks.

Event suppression: Events may also have specific data requirements to catch a trigger

or throw a result that is specified by elements Data Input and/or Data Output. However,

as in the case of tasks, these elements and their associations are removed as a

consequence of composition relationships in the BPMN meta-model. Additionally, rule 1

of Table 7 automatically connects the precedent element of a deleted intermediate flow

event to its subsequent element. On the other hand, when the removed element is a

boundary event (annexed to the border of an activity), rule 7 ensures that exception flows

that have such an event as source are also removed. Moreover, data objects, artifacts,

78

message flows or any associations that have the deleted event as source or target are also

excluded from the model (see rules 2, 3, 5 and 6).

Gateway suppression: In our approach, it is not allowed to suppress a gateway that

shares or unifies more than one process stream (rules 8 and 9). To suppress a gateway, it

is first necessary to remove entirely at least one of its streams, so that, in the end, there is

only one linear flow coming into and one going out from the gateway. In this situation,

the gateway will be automatically removed by rule 10. Then, the element immediately

preceding the removed gateway will be connected to the element immediately following

this gateway (rule 1). For instance, in the tailoring specification represented in Figure 21,

the task Specify Report is suppressed from the final tailored process. Observing Figure

19, which shows the base process as a diagram, one can note that such suppression

leaves both dangling exclusive gateways (with only one input and output stream).

However, this problem is automatically resolved by rule 10. As a result, both the

gateways are also suppressed and, then rule 1 connects through sequence flows the tasks

Review Use Case Description and Design Screen (after being replaced by the subprocess

Design and Validate User Interfaces) as well as the tasks Define Test Cases and

Elaborate Physical Model. The result of these rule transformations can be observed in

Figure 20, which shows the final tailored process as a diagram. Moreover, artifacts

connected to a deleted gateway and its relationships with lanes are also excluded from

the model (see rules 3 and 5).

Sequence flow suppression: No well-formedness rule applies to suppression

operations of sequence flows, but they apply only to elements that represent flow nodes.

When a sequence flow is removed, the process engineer is responsible for ensuring the

correctness of the tailored process model. For example, in Figure 21 there is a

suppression relationship that removes the sequence flow 9 from the final tailored

process. This causes a break in the process workflow that must be repaired by the

process engineer. In the example, the correction of this problem is performed with the

contribution operation, which adds new sequence flows.

Table 7. BPMNt well-formedness rules related to element suppression.

ID Element Type Suppression Rule

1 Task,
Subprocess,

Gateway, Event

The last element of the flow immediately preceding the deleted element
will be connected to the element immediately following it, except if the
predecessor is a diverging gateway and the successor is a converging
gateway.

2 Task, Data objects related to the deleted element must also be eliminated, as

79

Subprocess,
Event

long as they are not related to other elements.

3 Task,
Subprocess,

Gateway, Event

Artifacts related to the deleted element must also be eliminated, as long
as they are not related to other elements.

4 Task,
Subprocess

Boundary events and their exception flows linked to suppression should
also be removed entirely.

5 Task,
Subprocess,

Gateway, Event

Relationships between the deleted element and lanes have to be
eliminated.

6 Task,
Subprocess,

Event

Message flows which originate from or point to the suppressed element
have to be eliminated.

7 Boundary Event Flows of exception (error, time or any other type) with source in the
deleted boundary event should also be removed.

8 Gateway It is not permitted to suppress a gateway that shares a process flow in
more than one output stream without completely removing at least one
of its flows entirely, so that in the end there is only one final linear flow.

9 Gateway It is not permitted to suppress a gateway that unifies more than one
input stream without removing at least one stream, so that in the end
there is only one linear flow coming immediately after suppression.

10 Gateway By deleting an entire flow to or from a gateway, if there is only one flow
entering and leaving this gateway, then the gateway will also be
removed.

5.4.3 Local Replacement Operation

The interpretation of a replacement relationship results in the target element being

entirely replaced by the source element in the final tailored process. Since our approach

supports adaptations of flow elements (task, subprocess, gateway, event or sequence

flow), the source and target elements of a replacement relationship can be any of these

element types. Further it is not necessary for the source and target elements to have the

same type, except when one of them is a sequence flow. For example, a task can be

replaced by an event, subprocess, gateway, or another task. It just cannot be replaced by

a sequence flow, according to rule 11 of Table 8. Moreover, when replacing a flow node

element by another, rule 12 ensures that sequence flows connected to the replaced

element are maintained and reconfigured to connect to the new element. For example, in

Figure 21, the replacement relationship from the subprocess Design and Validate User

Interfaces to the task Design Screen results in the replacement of the last element by the

first one (see Figure 20). The sequence flows 3 and 7 have been reused and reconfigured

80

by rule 12 in order to link to the subprocess Design and Validate User Interfaces (new

element) instead of the task Design Screen (replaced element). Such a rule is not applied

when elements connected by a replacement relationship are of type Sequence Flow.

Finally, rule 13 ensures that the new element (the substitute element) is allocated to the

same lane as the replaced element, when this last element has a lane defined.

Table 8. BPMNt well-formedness rules related to element replacement.

ID Element Type Replacement Rule

11 Sequence Flow A sequence flow element can replace only another sequence flow
element.

12 Task, Subprocess,
Gateway, Event

Sequence flows connected to the replaced element must be
reconfigured to connect in the same way as they were connected to
the substitute element.

13 Task, Subprocess,
Gateway, Event

The substitute element must be allocated to the same Lane to which
the replaced element was allocated.

5.4.4 Local Contribution Operation

In a local contribution operation, the elements source and target of the contribution

relationship must be of type FlowElementsContainer. Such a type is represented by

elements Process and Subprocess, which assemble other process elements. In this way,

the interpretation of a contribution relationship results in the final tailored process

containing the child elements of the target (sub)process plus the child elements of the

source (sub)process of the relationship. In other words, all child elements of the

container to which a contribution relationship is added in the tailored process represent

contributions or additions to the extended target container that was originally defined in

the base process.

It is important to highlight that through this mechanism our approach makes it

possible to add new process elements to an existing process by generating an adapted

version from that process. However, with this approach the process engineer is

responsible for specifying adaptations that do not generate invalid BPMN processes. For

instance, in Figure 21, the contribution relationship from the subprocess Add New Task

to the main process Specification and Design results in addition of all child elements of

the source subprocess into the target process. Note that the source subprocess of the

contribution relationship contains, besides the task Elaborate Mapping of Use Case

Links, two new sequence flows named N_1 and N_2. These elements insert the new task

81

into the execution flow of the final tailored process in the position between the tasks

Update General Class Diagram and Review Use Case Specification (see Figure 20). The

sequence flow N_1, for example, connects the task Update General Class Diagram,

defined originally in the base process model (Specification and Design), to the new task

Elaborate Mapping of Use Case Links, defined in the tailored process model (Tailored

Specification and Design). Such connection across processes is possible because an

extension operation has made all elements of the base process accessible in the tailored

process as if they were part of this last process.

In this way, after the interpretation of tailoring relationships in Figure 21, the final

tailored process Tailored Specification and Design shown in Figure 20 will have its

complete element structure, resulting in a valid BPMN process with continuous flow.

Finally, as process correctness after a contribution operation must be ensured by the

process engineer by using this approach, we do not provide here validation rules related

to such an operation. However, after generating the final tailored process, this process

can be submitted to a model checker that will detect modeling errors.

5.5 BPMNt Support Prototype

We have developed a support prototype for BPMNt tailoring specification that

extends the MDT/BPMN2 Project (MDT, 2012). This project uses the Eclipse Modeling

Framework (EMF) to produce Java classes for the BPMN model specification as well as

to provide a basic editor for manipulating such models, which are represented as

hierarchical structures (trees). In order to support the BPMNt extension proposed in this

research, we have transformed its specification in XML Schema (file BPMNt.xsd shown

in Figure 18) to an EMF model and its manipulation has been integrated with the

standard BPMN editor. Thus, our tool prototype supports the addition of BPMNt

extension elements to standard BPMN elements without requiring manual extension

importation.

Figure 23 shows the typical process of using of the BPMNt prototype. The tailoring

process starts by importing into the tool a BPMN file that contains the model

specification of a base process (BaseProcess.bpmn), which will be reused by another

process. Such a model file can be designed using any compliant BPMN 2.0 tool. After,

the tailored process, which will reuse part of the structure of the previous one, can be

82

created by the process engineer as a new file of BPMNt type (TailoredProcess.bpmnt).

Although its structure is of a BPMN file (such as the structure shown in Figure 22), we

have opted to use a different extension because such a file contains an incomplete BPMN

process specification. In other words, it contains only new elements to be added to the

base process and definitions of tailoring operations. Thus, the BPMNt file (tailored

process) makes sense only in conjunction with the BPMN file that defines its base

process. For this reason, every BPMNt file is linked to a BPMN file through a tag import

that references the latter file.

After defining a tailoring operation in the tailored process (BPMNt file), the process

engineer can observe its result by requesting the generation of the final tailored process.

This process is generated by our support prototype in a new BPMN file

(FinalTailoredProcess.bpmn) that contains the interpretation of the tailoring operations.

Such a procedure can be performed at each tailoring operation definition or just at a

single time as represented in Figure 23, at the end of the BPMNt file’s specification.

Our prototype supports the visual representation of BPMN models as element trees,

but the generated model file can be exported to a graphic modeling BPMN tool in order

to visualize the final process as a diagram. However, the BPMN tool must support

automatic diagram generation since the model produced by our prototype does not

contain diagram information. Some examples of BPMN tools that contain such a feature

are BPMN Web Modeler9 and Activiti BPM10. Moreover, by specifying some additional

configurations on the generated model, it can be interpreted using BPMN-based

workflow tools.

Most of our well-formedness rules for tailoring, which are described in natural

language in Table 7 and Table 8, are applied by our tool prototype on BPMN models

during the tailoring interpretation. Each of these rules is implemented as a Java method

and another overarching method is used to fire the appropriate rule(s) for each adaptation

in the BPMN model. However, rules 8, 9 and 11 are applied before the tailoring

operation interpretation, while the process engineer specifies tailoring operations. When

any of these rules is violated in such a phase, the user of the tool is immediately notified.

Figure 24 shows the main graphic interface of the BPMNt support prototype and

some of its resources to assist the activities related to the process in Figure 23, using as

an example the process tailoring scenario shown in Figure 21. The numbers in Figure 23

9 http://www.bpmnwebmodeler.com/
10 http://www.activiti.org/

83

and Figure 24 trace correspondences between activities of the use process and its support

mechanisms in the tool. The activity Import Base Process is not detailed in Figure 24.

This figure only shows the file Specification_and_Design.bpmn (base process of the

running example) already available in the current tailoring project (region 1 in the

figure). In the central region of the main interface, the element structure of the file

Tailored_Specification_and_Design.bpmnt (tailored process of the running example) is

shown.

Figure 23. Tailoring process of the BPMNt tool prototype

Figure 24. The BPMNt tool prototype and its mechanisms that assist activities related to the

tailoring process in Figure 23.

According to the process in Figure 23, the first activity for designing the tailored

process is Link to Base Process. Such activity is performed by selecting the menu option

84

Load Resource (box 2 in Figure 24) and then the base process file. Such a procedure

results in the addition of an import element in the tailored process structure (selected

element in region 3 in Figure 24). The activity Specify Structure Differences is carried

out through the menu options New Child and New Sibling (see box 2 in the figure) that

support the addition of new BPMN elements of specific types to a process structure. The

final difference structure of the tailored process is shown in region 3 in the figure. Note

that such a structure contains elements of the BPMNt extension (the names preceded by

<bpmnt>) and they are always contained by elements Extension Attribute Value. These

elements are instances of the BPMN extensibility meta-class ExtensionAttributeValue

(see Figure 6-a) and have been used to contain BPMNt elements in the tool’s model

graphic representation because of its use in the extension mechanism. Tailoring

operations are defined during the activity Configure Tailoring Relationships of the tool’s

use process, in which the properties of the BPMNt elements are set according to each

operation type (see box 4 of the figure for configuration details on each tailoring

operation). In this context, links to elements of the base process are defined by simply

selecting the name of the target element(s) in the properties’ selection boxes. Finally, the

activity Generate Final Tailored Process is automatically executed by the BPMNt tool

support after the user clicks on the button Generate Tailored Process in the main

interface (see component identified by number 5 in the figure). The generated BPMN file

will be added to the current tailoring project in region 1 of the figure.

5.6 Evaluation

We have conducted an evaluation study of the BPMNt approach by using real-world

tailoring data. This section presents the study, which aimed at assessing the applicability

of the proposed BPMNt extension to specify typical tailoring scenarios of software

processes. The following subsections present our study’s goal, context description, the

procedure that was followed, a tailoring case more complex than the running example

(used to show the proposed approach), and finally the results and conclusions of the

evaluation.

5.6.1 Goal

Our goal with this evaluation was to assess the applicability of the proposed BPMNt

solution. In other words, we wanted to verify the ability of BPMNt (and related support

85

mechanisms) to express process variations performed in the context of the SIGA Project

(detailed in the following subsection). This goal is detailed bellow according to the

structure proposed by BASILI et al. (1994):

Analyze the specification of process adaptation scenarios by using

our BPMNt tailoring approach implemented in an EMF-

based support prototype.

For the purpose of Characterize

Regarding Feasibility of the proposed solution

From the viewpoint of Researcher and Domain Expert

In the context of the SIGA software development project, regarding the

Software Process Engineering domain.

5.6.2 Research Question

The evaluation aimed to answer the following question:

1) Q: Is the current BPMNt extension (and related support mechanisms) able to

specify software process tailoring scenarios from the SIGA Project?

5.6.3 Context Description

We have adopted software process models and tailoring scenarios from the SIGA-

EPCT Project (SIGA, for short). SIGA-EPCT stands for Academic Management

Integrated System for Technological, Scientific and Professional Education and is

intended to develop an academic management system to be used by public universities in

Brazil. Such a system is a joint project of several Brazilian research institutions using

open technologies. The project has a defined software development process, which

comprises the following phases: Planning, Requirements, Specification and Design,

Implementation, Test, and Deployment. However, driven by the aim to evaluate our

work, we have focused on the Specification and Design phase, since this is core to the

project. The representation in BPMN notation of the process associated with the

Specification and Design phase is shown in Figure 19. The SIGA project is centered on

use cases and as a result a new process is instantiated for each use case of the project.

The project records all process instances in a task management system for each use case

(that is, the tasks, roles and sequence flows), to allow better orchestration of the people

involved. Using the records from the task management system, another research project

(SANTOS, OLIVEIRA and ABREU, 2015) has applied data mining and compliance

analysis techniques to identify variances between the defined project process and the

86

process executed by the project team in some core use cases. Such variances would be

useful to the process engineer to evaluate the possibility of adaptations on the project

base process in order to better reflect the actual execution behavior since, according to

FERRATT and MAI (2010), tailoring can also be defined in terms of modifications that

emerge from the results of monitoring a project and providing feedback on the

development process. Thus, in this project we have an opportunity to evaluate our

approach and support prototype on real process variability scenarios.

5.6.4 Procedure

A specialist from the SIGA Project team has modeled in BPMN the process of the

Specification and Design project phase, used as base process in this evaluation study, and

we have specified variances in its execution from ten real use cases of the project by

using the BPMNt support prototype. That is, we have created ten BPMNt files in our

prototype, each one containing the differences of a specific process execution and

tailoring relationships relative to the base process model. Finally, to ensure the

correctness of the tailored process models, they have been checked by the domain expert

of the SIGA project.

5.6.5 Description of a Complex Tailoring Scenario

Throughout this chapter, we have used a running example, which is a simple tailoring

scenario from the SIGA project and corresponds to case 1 in Table 10. However, in order

to demonstrate the behavior of our current approach on a more complex scenario, this

section provides details about another tailoring case related to the SIGA project. Thus, in

this section we consider scenario 10 in Table 10, where the tailoring specification using

the BPMNt support prototype is shown in Figure 25. Instead of adding a new task to the

tailored process as in the running example, which adds the task Elaborate Mapping of

Use Case Links, the process in this scenario (represented in Figure 25 box 8) had the

following difference:

 The tasks Elaborate Physical Model and Update Data Base were performed in

parallel with Define Test Cases and Review Use Case Specification, requiring

changes in their related sequence flows and the addition of parallel gateways, one

to share process flow and another to unify it.

To represent this specific change we have adopted the following configuration:

87

 Suppression: A relationship from the task Suppress Sequence Flows of the

tailored process pointing to the sequence flows 9,10, 11, and 14 of the base

process using the Suppressed Base Element attribute to represent exclusion (see

boxes 1 and 5 of Figure 25).

 Contribution: A relationship of type LocalContribution between the subprocess

Contribute with Parallel Gateways of the tailored process, which contains two

new gateways to share and unify the process flow as well as new sequence flows

connecting them to activities, and the base process itself to represent element

addition (see boxes 1, 6 and 7 of Figure 25).

The other tailoring operations of the running example’s scenario were repeated in the

scenario considered in this section: suppression of the task Specify Report (boxes 1 and 3

of Figure 25) and replacement of the task Design Screen by the subprocess Design and

Validate User Interfaces (boxes 1 and 4 of Figure 25).

The tailoring operations are processed in the top-down order in which they are

specified in the process structure of the BPMNt file. Thus, after the extension operation,

the first tailoring operation interpreted as part of the generation of the final tailored

process involves the suppression of task Specify Report. In this case, rule 5 in Table 7

identifies the lane to which the task is associated and also removes such a relationship. In

addition, the suppression of this task (and its related sequence flows) leaves both

dangling exclusive gateways with only one input and output stream and this problem is

solved by rule 10. As a result, both gateways are suppressed as well as their relations

with lanes, which are removed by rule 5. Now rule 1 connects the tasks Review Use Case

Description and Design Screen through sequence flows as well as the tasks Define Test

Cases and Elaborate Physical Model. With regard to the replacement operation, rules 12

and 13 are applied. This implies that sequence flows connected to the replaced task

Design Screen are reconfigured to connect to the substitute subprocess Design and

Validate User Interfaces, and such a subprocess is allocated to the same lane as the

previous element. It is also important to mention that, in accordance with rules 8 and 9,

no gateway can be directly removed from the process in Figure 19 when it has more than

one input or output stream. On the other hand, no well-formedness rule is applied with

respect to the last two tailoring operations just described. As mentioned previously in

this chapter, our rules do not apply to sequence flow suppressions and contribution

operations. Finally, box 8 in Figure 25 illustrates the final tailored process for scenario

10 of the SIGA project using the BPMN notation.

88

Figure 25. Tailoring specification for scenario 10 in Table 10 and the process diagram after

tailoring.

5.6.6 Results and Conclusions

Table 9 shows the size of the tested base process BPMN model in terms of the

number of tasks, subprocesses, events, gateways, and sequence flows. Table 10 shows

the number of adaptations performed for each process execution case when using the

BPMNt support prototype where the tailoring scenario is identified by the column ID.

This table shows the number of direct and indirect adaptations regarding the process

elements. Direct adaptations (contribution, replacement and suppression) are those

specified explicitly by the process engineer (through tailoring relationships) when

designing a tailored process model. On the other hand, indirect adaptations are those

executed automatically by well-formedness rules (in Table 7 and Table 8) in an effort to

ensure the validity of BPMN models after tailoring. Such adaptations primarily affect

sequence flows.

89

Table 9. Base Process of the SIGA Project for the Specification and Design Phase

Base Process BPMN Model

Tasks Subprocesses Events Gateways Sequence Flows

10 0 2 2 14

Table 10. Results of Evaluation of the Process Tailoring involving the SIGA Project

ID Contribution Replacement Suppression Indirect Tailoring
(by Rule)

 Tasks/
Subproc.

Gateways Sequence
Flows

Task/
Subproc.

Gateways Sequence
Flows

Tasks/
Subproc.

Gateways Sequence
Flows

Rule
1

Rule
5

Rule
10

Rule
12

Rule
13

1 1 - 2 1 - - 1 - 1 2 3 2 1 1

2 - 3 10 - - - 1 - 5 2 3 2 - -

3 1 3 11 - - - 1 - 5 2 3 2 - -

4 - - - - - - 5 - - 6 7 2 - -

5 3 2 7 - - - 5 - 1 6 7 2 - -

6 - 2 11 1 2 - 1 - 6 - 1 - 3 3

7 - 2 8 1 - - 1 - 4 2 3 2 1 1

8 1 2 10 1 - - 1 - 4 2 3 2 1 1

9 1 - 2 - - - 5 - 1 6 7 2 - -

10 - 2 8 1 - - 1 - 4 2 3 2 1 1

As shown in Table 10, tailoring scenarios 1 to 10 allowed us to evaluate all proposed

tailoring operations (contribution, replacement, and suppression) in conjunction with the

main well-formedness rules (rules 1, 5, 10, 12, and 13). Moreover, all tailoring scenarios

(and their specific adaptations) considered in this evaluation could be successfully

specified using the BPMNt support prototype. The set of proposed tailoring operations as

well as the set of BPMN process elements that currently support such operations were

enough to specify the adaptations required by the tailoring scenarios tested from the

SIGA Project.

However, through this experience we realized that the tailoring specification using

proposed tailoring operations is laborious and time-consuming. In particular, applying

contribution operations, such as the last operation specified in the model in Figure 25,

was laborious and time-consuming because the modeler needs to specify how new

elements are connected to the process workflow. The modeler must manually add

sequence flow elements to the tailored process model (see the final part of the process

structure in box 1 Figure 25) and set their properties to connect with node elements (see

box 7 in Figure 25).

Thus, this evaluation allowed us to conclude that: (1) the proposed approach was

expressive enough to represent process tailoring in the evaluated scenarios; and (2) the

tailoring operations must be improved to facilitate the definition of adaptation scenarios,

mainly contribution operations.

90

Finally, we conclude by answering our initial evaluation question:

 Q: Is the current BPMNt extension (and related support mechanisms) able to

specify software process tailoring scenarios from the SIGA Project?

Based on scenarios we evaluated from the SIGA Project, we can state that the

BPMNt approach and its support prototype satisfactorily dealt with the adaptations

needed to produce tailored software process models from the base process in this

context. However, more research is necessary to extend the evaluation with

additional real-world data and potentially identify more test scenarios in which our

approach needs to improve, besides the “easy to use” aspect already identified in

this study.

5.6.7 Threats to Validity

This evaluation is subject to four main threats:

 Limited number of evaluation scenarios: It is difficult to obtain data to drive

research in the domain of software process modeling. Companies that adopt

process modeling usually consider process artifacts extremely sensitive and

confidential. We obtained access to people and artifacts from the SIGA Project, a

collaborative system development project involving several Brazilian research

institutions. However, because mining the artifact repository and applying

compliance analysis techniques to identify variances between the defined process

model and executed process models is a laborious and time-consuming effort, we

could obtain just a few tailoring scenarios from the aforementioned project.

Moreover, all evaluated scenarios were related to the same process phase (i.e.,

Specification and Design phase).

 Data coming from a single project: The models and tailoring scenarios used in

this evaluation may not be representative of those occurring in other realistic

settings. Different software development processes, domains and organizations

may lead to different results. Thus, our approach should be tested further on

models and tailoring scenarios from other organizations and domains.

 Modeling of the SIGA’s tailored development processes (processes actually

executed by the project team): The modeling of the tailored processes in BPMN

plus BPMNt and processed by our prototype was outside the main project. This

91

threat was minimized by checking with a domain expert from the SIGA project

that the BPMN models obtained after our modeling were correct.

Although the observed results are promising, it is important to note that in practice

there may exist many other types of organization-, domain-, or even project-specific

tailoring operations. Clearly, there may also exist many test cases where the context

(dependencies) of the model elements affected by a tailoring operation may lead to

failures uncovered by the rules proposed in this research so far.

5.7 Concluding Remarks

In order to analyze our results from different perspectives, we first consider the

analysis dimensions adopted by BECKER et al. (2007). Such dimensions include: (1)

complexity of the reuse situation, (2) repetition rate of the reuse situation, (3) cost of

preparation, and (4) cost of utilization. We believe the BPMNt approach can be

especially interesting in situations that involve a high complexity and low repetition

rates. The complexity of the reuse situation describes how many contingency factors

influence the suitability of a solution and the repetition rate measures whether the

specific conditions of a reuse situation are unique or regularly reoccurring (BECKER et

al., 2007). In our case, the reuse context considered in this chapter is related to software

processes. There are papers in the literature indicating that this process type is difficult to

predict because it is influenced by several factors that are still poorly understood

(CLARKE and O’CONNOR, 2012) (KALUS and KUHRMANN, 2013). The way

tailoring occurs remains unclear and is, therefore, often left to experts, such as process

engineers or project managers (KALUS and KUHRMANN, 2013). Therefore, software

processes involve complex reuse situations and our approach can be useful in such a

context because it does not require anticipating circumstances that may affect a process.

BPMNt tailoring operations enable an existing process to be altered with a high degree

of freedom. Moreover, we believe that many of the specific conditions that lead to the

adaptation of software processes are not recurring and our approach can be useful in this

context because it does not work on predefined adaptation situations.

The cost of preparation depends on how much effort is necessary before a reuse

mechanism can be used (BECKER et al., 2007). Our approach does not require any

predefinition before applying tailoring because we do not exclude or limit certain types

92

of alterations on models, which would need to be specified a priori. The only constraints

applied are related to the correct specification of tailoring operations themselves.

However, the BPMNt approach requires the process engineer understands the provided

tailoring operations and their effects before using them. For this reason, in the next

chapter we present a detailed specification of catalog for our tailoring operations,

describing their effects, application rules, and use examples in which they apply to.

On the other hand, the cost of using the BPMNt approach is currently high. This cost

varies based on how much the modeler is instructed when a reuse mechanism is

employed, that is, it is related to the degree of guidance in adaptation (BECKER et al.,

2007). Process tailoring using the BPMNt support prototype is performed in an ad-hoc

manner by the process engineer, who selects which actions to apply and when. To

improve guidance in adaptations, in the next chapter we expand the set of rules

associated with tailoring operations, thus avoiding the development of incorrect tailored

process models.

We also acknowledge that tailoring specification using our SPEM-based tailoring

operations is laborious and time-consuming, since for some operations the modeler needs

to specify several basic (or primitive) operations (e.g., add task, add sequence flow 1,

add sequence flow 2, etc.) to obtain the same result of a single high-level operation such

as the addition of a new process element to a specific workflow position. It is also

difficult for the modeler to predict a priori, before the tailoring interpretation, how a set

of adaptation operations interact with each other and how they modify the final tailored

process when a set of basic operations needs to be applied to achieve each user’s

adaptation intention. That is, a set of basic (or primitive) operations are difficult for

humans to interpret. For these reasons, in the next chapter we propose to evolve tailoring

operations currently supported (SPEM-based operations) for a higher level of

abstraction, which can represent each user’s adaptation intention through a single

tailoring operation, also decreasing the possibility of errors in the final tailored process

model. For example, flow breaks will not occur anymore. We believe that the use of

high-level operations will facilitate the task of specifying process adaptations as well as

the interpretation by humans of performed changes.

93

CHAPTER VI

6. Pattern-Based Tailoring Support

6.1 Introduction

 Process adaptations can be performed based on a set of primitive operations such

as our SPEM-based operations presented in the previous chapter, e.g., contribute with

new task x, suppress sequence flow 5, contribute with sequence flow N_1, and

contribute with sequence flow N_2. Following this approach, a particular adaptation

(e.g., to insert a new task) usually requires the application of multiple primitive

operations. However, as discussed in the previous chapter, specifying process

adaptations at this low level of abstraction is a complex and error-prone task (WEBER et

al., 2008) (PILLAT et al., 2015). Moreover, when applying a single primitive operation,

the correctness of the resulting process model (e.g., absence of flow breaks) cannot be

ensured. It is not possible to associate pre- and post-conditions related to semantic rules

of the BPMN language (e.g., well-formedness rules in Appendix 1) with the application

of primitive operations. Instead, correctness of a process model has to be explicitly

checked after applying a set of primitives.

 On the other hand, adaptations on process models can be based on high-level

adaptation operations (e.g., to insert a process fragment between two tasks), which

abstract from the process model transformations to be conducted. Instead of specifying

several primitive operations, the process engineer can apply a smaller number of high-

level adaptation operations to accomplish a same desired adaptation. Moreover, pre- and

post-conditions associated with high-level operations can guarantee correctness when

applying such operations. Still, high-level operations are more easily understood

(LANGER et al., 2013) (WEBER et al., 2008), since their semantics is directly related to

certain adaptation intentions.

 Thus, from a deeper analysis of adaptations required to represent tailoring

scenarios in BPMN, considering use cases from both SPE and BPM domains, as well as

94

limitations identified for the SPEM-based operations (presented in the previous chapter),

in this chapter we expand our tailoring solution by providing high-level operations as a

cohesive set of atomic operations that are applied together to achieve a user’s adaptation

intent. High-level operations intend to improve the understandability of operation

semantics and avoid modeling errors on the tailored process model.

6.2 High-Level Tailoring Operations from Patterns

 The BPMNt high-level operations consider adaptations of BPMN process models

regarding the process’ control-flow perspective and all they were designed to ensure the

structural correctness (i.e., absence of flow breaks) and well-formedness of the adapted

process model regarding control-flow’s semantic rules of the BPMN specification

(presented in Appendix 1). For preventing structural fails in the model, it is essential to

abstract the user from specific model transformations, such as redefining workflow

edges.

 We derived our high-level operations based on definitions of adaptation patterns

proposed by WEBER, REICHERT and RINDERLE-MA (2008) and refinement patterns

proposed by BRANCO et al. (2014). In order to make clear our contributions regarding

such works, in Table 11 we summarize the main characteristics of our tailoring

operations in comparison to characteristics of adaptation patterns and refinement

patterns. Next, we describe in more details the differences between works.

Table 11. Comparison between BPMNt and adaptation/refinement patterns

Adaptation Patterns BPMNt

- Generic definition (independent of language)
of high-level adaptation operation patterns
for control-flow

- High-level adaptation operations specialized for
BPMN (supported as standard-compliant
extension concepts)

- Additional high-level adaptation operation
specific for BPMN

- Do not define application rules (related to
model correctness)

- Defines operation pre- and post-conditions
(related to structural correctness and well-
formedness of BPMN models)

- - Built-in change traceability mechanism

Refinement Patterns BPMNt

- Definition of refinement patterns for the
Business-TI context (from business model for
technical-level model)

- Patterns do not correspond to high-level

- Derivation of high-level refinement operations
(supported as standard-compliant extension
concepts)

95

operations

- Do not define application rules (related to
model correctness)

- Defines operation pre- and post-conditions
(related to structural correctness and well-
formedness of BPMN models)

- - Built-in change traceability mechanism

The research conducted by WEBER, REICHERT and RINDERLE-MA (2008)

has identified diverse control-flow adaptation patterns for business processes from the

analysis of real-world process models. Each pattern corresponds to exactly one high-

level operation (e.g., to insert a task in parallel to another one) that has been observed at

least three times in different models. However, such as the definition of a pattern

requires, these high-level operations are presented as generic solutions, described in

high-level, and independent from any process meta-model. Thus, as stated by the

authors, the realization of these operations for specific modeling languages requires

identifying and associating pre- and post-conditions to each operation in order to ensure

the correctness of the resulting model. More specifically, these conditions need be

related to the meta-model of a process language to enable automation of the operations.

Therefore, we adapted these generic operation definitions according to the

BPMN meta-model specification and defined constraints for application of each

operation (pre-conditions) as well as action rules (post-conditions), which evaluate the

state of the model after the adaptation and execute certain actions to ensure its

correctness. For example, consider the simple tailoring scenario from Figure 26, which

shows a tailored process on the right part and its BPMN base process on the left part. In

this scenario, the high-level adaptation operation Parallel Insert was applied to insert

the new task Check credit history in parallel to the existing task Check income sources.

This operation can be applied since the resulting model is valid. Constraints of pre-

conditions for this operation determine, for example, that no insertion can be performed

in parallel to the start or end events of the process. As post-conditions associated to this

operation, specific control connectors of the BPMN language for diverging and

converging parallel flows (i.e., Parallel Gateways) are automatically inserted by the

operation before and after the parallelized tasks (see model on the right part of Figure

26). In this way, high-level operations allow focusing on the adaptation intention,

abstracting structural configuration details of the model, and guarantee its structural

correctness by keeping all connected workflow nodes as well as preventing the

modeling of errors concerning semantic rules of BPMN. For example, the model on the

96

left part of Figure 27 violates the BPMN well-formedness rule #16 in Appendix 1,

which prescribes “a Parallel Gateway (AND) joins only non-exclusive Sequence

Flows”. In fact, the violation of this rule leads to a case of local deadlock, such as in the

example on the left part of the figure. Similarlly, the model on the right part of Figure

27 violates the BPMN well-formedness rule #17 in Appendix 1, which prescribes “a

join Exclusive Gateway (XOR) must merge only exclusive Sequence Flows”. The

violation of this rule leads to a case of lack of synchronization, such as in the example

on the right part of the figure.

Figure 26: Example tailoring scenario

Figure 27. Modeling errors: Local deadlock (left) and lack of synchronization (right)

It is also important to highlight that due to the generality purpose of the

adaptation patterns, they only consider the most common types of flow variations

(enabled by basic control connectors), which are supported by any process modeling

language. However, BPMN offers other possibilities of flow control (e.g., based on the

occurrence of events), which are found in many process models designed with this

language and can also be necessary when adapting its process models. Thus, in order to

support such possibilities, we also extended the set of operations defined by adaptation

patterns (WEBER, REICHERT and RINDERLE-MA, 2008).

The adaptation operations mentioned above have as main focus to adapt the

control-flow of a process, generally implying in significant changes in its behavior.

However, in many scenarios of process adaptation/tailoring, the most of the performed

adaptations correspond to refinements, in which the flow of the process and its elements

are changed in a way that does not essentially change the process’ normal behavior

97

(e.g., if a high-level activity is refined into a sequence of low-level activities or into a

subprocess with the same input/output behavior). In this sense, the research conducted

by BRANCO et al. (2014) has identified different refinement patterns applied when

producing technical-level process models from business-level process models.

However, such patterns do not represent necessarily a high-level change operation and

neither have any concern related to model correctness. Thus, we analyzed their

descriptions and examples for deriving refinement operations in our solution. Such as

for adaptation operations, we were concerned with the correctness of the resulting

process model, then we also defined for these operations a set of pre- and post-

conditions in order to prevent problems in the resulting model. However, in this case,

most of the conditions are not concerned on ensuring model structural correctness, but

on its well-formedness concerning semantic constraints of the BPMN specification

(Appendix 1). For example, in the tailoring scenario represented in Figure 26, two

refinement operations Specialize were applied to the start and end event of the reused

base process. As a result, the original plain events were changed to message events (see

right part of the figure). For this operation, we defined pre-conditions (well-formedness

rules) that verify if the specialized element type provided for the original element is

valid according to the BPMN specification. A process’ start event, for instance, can

only be specialized to one of the following types: Message, Timer, Conditional, or

Signal (in accordance with rule #1 from Appendix 1).

It is also important to mention that, as the SPEM-based extension proposed in

the previous chapter, the BPMNt extension presented in this chapter also aims at being

totally compliant with the standard extension mechanism of BPMN.

Therefore, considering our proposed solution structure, we present in Figure

28(b) a schematic representation of the Pattern-based BPMNt tailoring specification for

the example in Figure 26 by using high-level operations. The new process elements are

specified in the Tailored Process Model and each of these elements has an associated

tailoring operation (represented as a dotted arrow on the top right corner of the element)

that defines how the new element is related to its Base Process Model. The

interpretation of this tailoring specification is presented on the right part of the figure.

98

Figure 28: BPMNt tailoring specification based on high-level operations

Finally, in Table 12 we present our BPMNt high-level tailoring operations and

patterns from which they were derived. As one can observe from the table, operations for

removal and addition of activities (or process fragments) are present in both sets of

patterns (adaptation and refinement). For example, our operation Delete was derived

from an operation of same name from adaptation patterns and an operation named

Suppress from refinement patterns. BPMNt operations Delete, Replace, Move, and

Parallelize have the same semantics of their corresponding patterns and their detailed

specifications are presented in Appendix 2.

We opted to provide three different operations related to insertion of elements:

Serial Insert, Conditional Insert, and Parallel Insert. Our intent was to make explicit the

way in which a given process fragment is inserted in the workflow reused from the base

model. Moreover, this decision allowed us to include operation configuration parameters

customized for each case. In special, the Conditional Insert operation (specified in

Figure 55 from Appendix 2) includes a parameter called condition that indicates when

the new fragment will be performed in the process. We also adapted this operation for

supporting both exclusive (XOR) and inclusive (OR) inserts. To this end, an additional

binary parameter was included in the operation definition, which aims at informing if the

inserted conditional fragment can be performed in parallel to another alternative

conditional fragment. In affirmative case, the operation will automatically include a

BPMN Inclusive gateway (OR) before the inserted fragment to diverge the process flow

and another gateway of same type after the inclusion to converge again the flow.

Otherwise, the operation will include Exclusive gateways (XOR) before and after the

inserted fragment.

99

We also considered a special type of insertion, supported by the Event-based

Insert operation (specified in Figure 56 from Appendix 2), which has not been derived

from any pattern. This operation enables insertion of a conditional process fragment that

is executed only when a given event (of message, signal, time, or condition) occurs

before other alternative events. This type of flow variation is specific of BPMN,

supported by a particular gateway of the language (named Event-Based Gateway), and

can be found in many models designed with this language. Thus, we opted to create a

specific operation for supporting this type of flow variation of the language. Such as

other BPMNt tailoring operations, this one also has associated rules (pre- and post-

conditions) that avoid inconsistencies in the adapted process model. With this objective,

the operation automatically adds in the adapted process the control gateway for this case

as well as the event that determines the activation of the inserted process fragment by the

user. The specification of this operation enforces the well-formedness rules #21, #24,

#25 and #26 from Appendix 1, which are related to the use of Event-Based Gateway.

BPMNt Encapsulate and Split operations have the same semantics of their

corresponding patterns. However, we provide a single Split operation that supports two

much related refinement patterns. At each use of the operation, one can choose which

specific split pattern will be applied by configuring a parameter of the operation.

The BPMNt Merge operation does not have a directly related pattern. Its necessity

was observed from scenarios exemplifying refinement patterns (BRANCO et al., 2014).

The authors relate use cases of this operation to the pattern Suppress Specification

Activity. However, we considered this an inadequate relation, since the Suppress pattern

does not adequately represent the intent of the performed action.

Our Rename operation corresponds to a change of element name, but also enables

update of conditions related to process flows in conceptual models. In this model type,

flow conditions are represented informally through the name property of sequence flows

(edges). We do not provide a specific operation for such an update because our solution

does not intent to generate executable models. This type of model requires detailed

configuration and formalization of various specific properties that are out of the scope of

our solution. Technical-level models derived with the BPMNt extension and support

infrastructure are still conceptual models, which need further refinement in order to be

enacted in a BPM system.

The BPMNt Specialize operation corresponds essentially to a change in the type

of an element (i.e., its specialization), such as the first related refinement pattern.

100

However, since in many use cases of this pattern the element name is also changed, we

opted to provide an operation for change of type that optionally can also change the

element name.

Finally, BPMNt operations Add Exception Handler and Add Exception Flow were

derived for performing refinement actions related to exception handling while still

resulting in a correct BPMN model. The refinement patterns related to these operations

do not match to a complete adaptation intention (i.e., a high-level operation). For

instance, the pattern Add Boundary Event (BRANCO et al., 2014) does not correspond to

a high-level operation, since the addition of a boundary event that catches an exception

without indicating a handler for such exception does not make sense. This behavior,

actually, violates the well-formedness rule #14 (Appendix 1) of the BPMN specification

that prescribes “a Boundary Event must have exactly one outgoing Sequence Flow

(unless it has the Compensation type)”.

Table 12. Derivation of BPMNt tailoring operations from patterns

BPMNt High-Level Tailoring Operation Adaptation (AP) or Refinement (RP) Pattern

Delete
AP: Delete Process Fragment

RP: Suppress Specification Activity

Replace AP: Replace Process Fragment

Move AP: Move Process Fragment

Parallelize AP: Parallelize Activities

Serial Insert AP: Insert Process Fragment

RP: Add Script Task

RP: Add Protocol Task

Conditional Insert AP: Insert Process Fragment

Parallel Insert AP: Insert Process Fragment

Event-based Insert ---

Encapsulate AP: Extract Process Fragment to Sub-Process

Split
RP: Split Task into Block

RP: Split Workflow

Merge RP: Suppress Specification Activity

Rename
RP: Change Activity Name

AP: Update Condition

Specialize
RP: Change Activity Type

RP: Change Activity Name

Add Exception Handler
RP: Add Boundary Event

RP: Add Technical Exception Flow

Add Exception Flow RP: Add Boundary Event

101

RP: Add Technical Exception Flow

6.3 Catalog of BPMNt Tailoring Operations

In order to facilitate the correct understanding of our high-level operations, we have

defined them in a catalog (Appendix 2). We present this catalog of high-level tailoring

operations for BPMN providing the following information about each operation (e.g., see

Figure 29): purpose, motivation, description, source element, list of parameters, pre- and

post-conditions (correctness-related rules), a schematic use representation, related

patterns, and a use example.

 In order to apply the proposed operations on a BPMN process model, it must meet

some constraints that we describe in the following. A base process model must be well-

structured. A model is well-structured if for every node with multiple outgoing edges (a

split) there is a corresponding node with multiple incoming edges (a join), and vice

versa, such that the fragment of the model between the split and the join forms a single-

entry-single-exit (SESE) component (POLYVYANYY et al., 2017) (DUMAS et al.,

2010). Any split or join of the process flow must be represented through a BPMN

Gateway of type diverging or converging, respectively. That is, tasks, subprocesses, or

events must not have multiple input or output flows. When it is necessary to converge or

diverge the process flow, a gateway must be used. Moreover, the model must have its

input point and output point explicitly represented through Start and End Events,

respectively. All other process nodes (tasks, subprocesses, gateways, or events) must be

preceded and succeeded by at least one node.

In the description of the catalog of BPMNt operations, a process element

generally corresponds to objects from subclasses of BPMN FlowNode. That is, a Task,

Subprocess, Event, or Gateway. However, for the operation rename, a process element

can correspond to objects of subclasses of BPMN FlowElement. In these cases, in

addition to the FlowNode elements, a process element can also refer to a Sequence Flow

or Data Object. A process fragment, in turn, corresponds to a sub-graph (containing

FlowNode elements directly connected through sequence flows) with single entry and

single exit node.

Our operation catalog for tailoring BPMN-based processes focusing on the

control-flow perspective includes the operations:

102

1. Extend: Reuses the elements structure of an existing process model to derive a

new one and enables the use of tailoring operations (complete definition in

Figure 49);

2. Delete: Removes a process element or fragment from the reused base process

(complete definition in Figure 50);

3. Replace: Replaces a process element or fragment from the reused base

process by another element or fragment (complete definition in Figure 51);

4. Move: Shifts a process element or fragment from its current position in the

base process to another position within the variant process (complete

definition in Figure 52);

5. Parallelize: Enables the concomitant (concurrent) execution of elements from

a process fragment which has been defined as sequential in the base process

(complete definition in Figure 53);

6. Serial Insert: Adds a new process element or fragment between two directly

succeeding elements of the reused base process (complete definition in Figure

54);

7. Conditional Insert: Adds to the reused base process a conditional process

element or fragment which is executed only when a given condition (situation)

is true (complete definition in Figure 55);

8. Parallel Insert: Adds to the reused base process a new process element or

fragment that is executed while another element or fragment is also executed

(complete definition in Figure 29);

9. Event-based Insert: Adds to the reused base process a conditional process

fragment that is executed only when a given event (of message, signal, time,

or condition) occurs before other alternative events. The occurrence of this

event cancels the others, i.e., event-based alternatives are mutually exclusive

(complete definition in Figure 56);

10. Encapsulate: Encapsulates a process fragment with related activities into a

separate subprocess (complete definition in Figure 57);

11. Split: Splits a single task from the base process to a process fragment or

subprocess that details its procedure in the variant process (complete

definition in Figure 58);

12. Merge: Merges two or more directly succeeding tasks into a single particular

task (complete definition in Figure 59);

103

13. Rename: Allows to change the name of a reused process element (complete

definition in Figure 60);

14. Specialize: Changes the type (and optionally the name) of a basic process

element (e.g., plain tasks) for a more specific one (complete definition in

Figure 30);

15. Add Exception Handler: Adds an exception handler (task or subprocess) to

deal with a given type of exception event that can occur in the context of one

or more task(s) or subprocess(es) (complete definition in Figure 61);

16. Add Exception Flow: Adds an exception flow to deal with a given type of

event that is triggered and handled by activities from the base process

(complete definition in Figure 62).

Given the large number of high-level operations that comprise our catalog, in this

section we present the complete definition of only two of them: Parallel Insert and

Specialize. The former represents an example of BPMNt operation that has been derived

from the set of adaptation patterns (WEBER, REICHERT and RINDERLE-MA, 2008)

whereas the second operation exemplifies a case of derivation from the set of refinement

patterns (BRANCO et al., 2014). The complete definition of other high-level operations

that comprise our catalog are presented in Appendix 2 (Figure 49 to Figure 62).

Figure 29 shows the definition of the BPMNt Parallel Insert operation and Figure

30 shows the definition of the Specialize operation. Both operations have already been

exemplified in the previous section for inserting a new task in parallel to another existing

one and for changing the type of events, respectively, in the process models presented in

Figure 26 and Figure 28.

The Parallel Insert operation (Figure 29) was derived from the adaptation pattern

Insert Process Fragment (presented in Figure 9), and the Specialize operation (Figure

30) was essentially derived from the refinement pattern Change Activity Type (presented

in Figure 10). Comparing definitions of these BPMNt operations with definitions of the

patterns that originated them, one can observe that our operation definitions are

significantly more detailed than their original patterns. They explicitly define parameters

provided by each operation, all of them related to BPMN meta-model’s elements, and, in

special, stand out for presenting rules of pre- and post-conditions associated to each

high-level operation, which ensure its correct use and the validity of the resulting process

model concerning semantic rules of the BPMN specification.

104

PARALLEL INSERT

Purpose: Insert a new process element or fragment that is executed while another task or fragment is also
executed.

Motivation: In a specific process, a task (or fragment) that has not been modeled in the base process needs
to be performed and it can be executed while another task (or fragment) is executed.

Description: A variant process defines a process element or fragment X which is inserted in the reused base
process workflow in parallel to the single element indicated by the parameter parallelToElement or in
parallel to the process fragment contained between the elements indicated by after and before.
The parameter additionIsFragment is relevant only when this operation is defined to a subprocess (source
element X). When its value is true, it indicates that the content of the source subprocess of the operation
represents a process fragment to be inserted directly in the workflow of the reused base process.
Otherwise, the source subprocess itself will be inserted in the target process’ workflow.

Source Element Type(s): Task, Subprocess, or Event.

Parameters: parallelToElement(BPMN:FlowNode), after(BPMN:FlowNode), before(BPMN:FlowNode),
additionIsFragment(boolean = false).

Pre-conditions:
1. The parameter parallelToElement must not point to a start or end event or a gateway;
2. Parameters after and before must not point to directly succeeding elements;
3. The base process fragment between the parameters after and before cannot contain incomplete

flow branches;
4. Gateways cannot be inserted singly;
5. Process fragments containing incomplete flow branches cannot be inserted;
6. If source element of the operation is a Subprocess, its content cannot violate any rule in Appendix

1;
7. If source element of the operation is an Event, it must be an intermediate event of specific type

(None, Message, Timer, Escalation, Conditional, or Signal).

Post-conditions:
1. A BPMN parallel gateway is included soon after the element pointed by the parameter after (or

soon before the element pointed by parallelToElement) to diverge the process flow and another
parallel gateway is included soon before the element pointed by the parameter before (or soon
after the element pointed by parallelToElement) to converge again the process flow;

2. Sequence flows are adjusted to connect to the inserted elements.

Representation:

Related Pattern: Insert Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008).

Example: In a check-in process (AYORA et al., 2015), a variant of the traditional process it is necessary
when the passenger is an unaccompanied minor. In this case, the new task Print Duplicated Boarding Card
for the Relative is performed in parallel to the base process’ task Drop off Regular Luggage.

Figure 29. Tailoring operation Parallel Insert

SPECIALIZE

Purpose: Change the type (and optionally the name) of a basic process element (e.g., a plain task) for a
more specific type.

Motivation: The type of a process element can be changed due to a technical specification decision.
According to BRANCO et al. (2014), it is easier for business people to stick with basic modeling elements
(such as plain tasks), while other types of elements are more suitable to implement the business intent.

105

Furthermore, elements are sometimes renamed to better reflect some technical aspects.

Description: A variant process defines a specific type of process modeling element that
specializes/implements the base process element identified by the parameter targetElement. If a name is
provided for this element, it will replace the name of the target element.

Source Element Type: Task, or Event.

Parameters: targetElement (BPMN:FlowNode).

Pre-conditions:
1. Parameter targetElement CANNOT point to gateways;
2. Parameter targetElement CANNOT point to a Start Event of a base process’ Subprocess (ref. rule 2

in Appendix 1);
If target element is a Task:

3. If parameter targetElement points to a Task, source element of the operation MUST be a task
of specific type (i.e., SendTask, ReceiveTask, ServiceTask, UserTask, ManualTask, ScriptTask or
BusinessRuleTask) or an event of specific type Message or Signal;

4. If parameter targetElement points to a Task, source element of the operation CAN be a Start
Event ONLY IF predecessor element of targetElement is a Start Event;

5. If parameter targetElement points to a Task, source element of the operation CAN be an End
Event ONLY IF successor element of targetElement is an End Event;

If target element is an Event:
6. If parameter targetElement points to the base process’ Start Event, then source element of

the operation MUST be a Start Event of specific type Message, Timer, Conditional, or Signal;
7. If parameter targetElement points to an End Event, then source element of the operation

MUST be an End Event of specific type Message, Error, Escalation, Signal, or Terminate;
8. If parameter targetElement points to an Intermediate Event, then source element of the

operation MUST be an Intermediate Event of specific type Message, Timer, Escalation,
Conditional, or Signal;

Post-conditions:
1. If target element is a Task and source element of the operation is a Start Event, then the start

event that precedes the target element in the base process will be removed from the tailored
process;

2. If target element is a Task and source element of the operation is an End Event, then the end
event that succeeds the target element in the base process will be removed from the tailored
process;

3. If target element has other elements linked to it (e.g., boundary events), then these elements
must be re-linked to the substitute element.

Representation:

Related Pattern: Change Activity Type; Change Activity Name (BRANCO et al., 2014).

Example: In a technical-level claim handling process, the plain task Validate Claim (from the business-level
process) has been specialized by a task of type BusinessRuleTask (see Figure 37 and Figure 38), which
indicates it has some associated business rule. In technical-level process models, the use of specialized
tasks is a common practice when using BPMN.

Figure 30. Tailoring operation Specialize

In the next section, we demonstrate how operations from our catalog can be used

in different application contexts to represent some tailoring scenarios, including

scenarios from the SIGA Project that has already been considered in Chapter 5.

106

6.4 Use Cases applying High-Level Operations

 In this section, we use tailoring scenarios from two different domains, Software

Process Engineering (SPE) and Business Process Management (BPM), to demonstrate

the application of high-level tailoring operations presented in the previous section.

6.4.1 Tailoring Scenarios from the SPE domain

In this section, we use two tailoring scenarios of the SIGA Project (described in

Chapter 5), which apply most of the control-flow adaptation operations, and another

scenario from the technical literature of the area that adapts a Requirements Engineering

process for supporting activities of MDD (Model-Driven Engineering). This last one is

used for exemplifying operations that have not been applied in the processes from the

SIGA Project.

6.4.1.1 Academic Management Process (SIGA Project)

Tailoring scenarios from the SIGA project correspond to changes performed on

the base process model of the project to represent specific execution cases. In this

context, performed changes modify significantly the process structure, corresponding to

the application of control-flow adaptation operations. Figure 31 presents the base

process model of the project SIGA and the first tailoring scenario, which has already

been described in Section 5.6.5. This scenario now applies operations extend, delete,

split, parallelize, and move on the base process model. Figure 31 represents tailoring

specification in a tailored process of schematic way (on the bottom) in order to facilitate

the understanding of performed adaptations. Tailoring operations are illustrated in the

figure by a dotted arrow on the top right corner of BPMN elements. Tailoring

operations shown in the figure are applied on the base process model following the

order from left to right, which represents the order in which the process engineer

specifies such operations in the tailored process model. The operation specification

order is important to obtain the intended result, since an incorrect order can cause

conflicts (e.g., when an operation removes a process element that is referred by another

subsequent) or result in a different semantically process model from the expected one.

In this case, the application order of the operations is determined by the user due to the

configuration of the parameter applicationOrder of the Extend operation (number 1 in

107

Figure 31), which establishes the reuse of the base process’ structure and enables

tailoring operations. This parameter was set to the value Free, meaning the application

order follows the same in which operations were specified in the tailored process model.

Numbers associated to Figure 31 and Figure 32 trace correspondences between

the specification of tailoring operations in the tailored process model (Figure 31) and

their results after interpretation in the final tailored process model (Figure 32). The

following operations are applied in the tailoring scenario of Figure 31 to obtain the final

tailored process in Figure 32:

1. Extend process Specification and Design: This operation specifies the reuse

relationship, enables tailoring operations, and determines the criterion for

application order of these operations.

2. Delete task Specify Report: Removes this task from the final tailored process

and the two exclusive gateways that now have only one input flow and one

output flow (operation post-condition 2); also connects task Review Use

Case Description to Design Screen and Define Test Cases to Elaborate

Physical Model (operation post-condition 3).

3. Split task Design Screen: Replaces this task from the base process by the

subprocess of same name that details its procedure in the tailored process

(see region 3 in Figure 32).

4. Parallelize tasks Review Use Case Specification, Define Test Cases, and

Elaborate Physical Model: A parallel gateway is included before these tasks

to diverge the process flow and another parallel gateway is included after the

tasks to converge (synchronize) again the process flow (post-condition 1) as

well as sequence flows are adjusted (post-condition 2) (see regions of

number 4 in Figure 32).

5. Move Update Database: After the interpretation of the Parallelize operation

(described above), Update Database is executed only after the

synchronization of parallelized tasks. However, it should be performed soon

after the task Elaborate Physical Model. For this reason, the operation move

shifts the task (identified by the operation parameter movedElement) to this

new position (indicated by the operation parameter newPositionAfter) (see

region 5 in Figure 32).

108

Comparing the tailoring specification using our SPEM-based operations

presented in Chapter 5 (Figure 25) with the tailoring specification based on high-level

operations presented in this section, one can perceive that using the new operations the

adaptation intention of the modeler is more evident, since the name of these operations

is more fine-grained. Moreover, the number of manual specifications required from the

modeler is significantly decreased, e.g., he/she does not need anymore to specify each

sequence flow connecting inserted elements to the process workflow as well as does not

need to specify gateways that diverge and converge process flows, because they are

automatically created during the interpretation of high-level operations.

Figure 31. Scenario 1: Base process of the SIGA Project (top) and schematic specification of tailoring

(bottom)

Figure 32. Scenario 1: Final tailored process

109

Figure 33. Scenario 2: Base process of the SIGA Project (top) and schematic specification of tailoring

(bottom)

Figure 34. Scenario 2: Final tailored process

Figure 33 shows another tailoring scenario from the SIGA Project, which

demonstrates the use of other operations of the catalog proposed in the previous section.

Again, numbers trace correspondences between the specification of tailoring operations

in Figure 33 and their results in the final tailored process model (Figure 34). The

following operations are applied in the tailoring scenario of Figure 33:

1. Extend process Specification and Design: This operation specifies the reuse

relationship, enables tailoring operations, and determines the criterion for

application order of these operations (free).

2. Delete task Specify Report: Removes this task from the final tailored process as

well as the two exclusive gateways; also connects task Review Use Case

Description to Design Screen and Define Test Cases to Elaborate Physical Model.

110

3. Conditional Insert of task Review Screen Design: This task should be executed

only if the screen project produced by the previous task has not been revised yet.

Therefore, the execution of this task is conditioned to the previous situation. For

this reason, we have used an operation Conditional Insert to add it between the

tasks Design Screen and Elaborate Class Diagram of the base process. This

operation inserts the task to the process workflow between one pair of exclusive

gateways, as determines the operation post-condition 1 (see regions 3 in Figure 34).

If the condition associated to the task is true (i.e., non-revised screen design), it is

executed. Otherwise, the process only skips the execution of this task and follows

to the next one, i.e., task Elaborate Class Diagram. The operation post-condition 4

sets the alternative flow (that skips the execution of the added task) as default path

(for the case of no flow condition to be true).

4. Serial Insert of task Elaborate Mapping of Use Case Links: Adds this task to the

final tailored process between directly succeeding tasks Update General Class

Diagram and Review Use Case Specification, adjusting sequence flows of the

process (see region 4 in Figure 34).

5. Conditional Insert of task Correct Inconsistencies in Use Case Specification: This

task should be executed only if problems are found in a use case specification

during the previous task. When its condition is true, the new task is executed.

However, unlike the previous operation Conditional Insert, this one has its

parameter inLoop set to true. This means that the new task must be inserted into a

conditional loop that returns the process execution flow to a previous step. In this

case, after the task Review Use Case Specification the process flow returns to soon

before the task Design Screen (see regions of number 5 in Figure 34). Again, post-

condition 4 sets the existing flow for default.

In this second tailoring scenario, again the modeler does not have to worry about

adjusting process’ sequence flows after adaptation operations or manually inserting

gateways to diverge and converge the process flow after operations Conditional Insert.

In Figure 34, gateways highlighted by dotted boxes are automatically generated during

interpretation of operations Conditional Insert. These characteristics of high-level

operations help the modeler to abstract model’s configuration details and focus on the

adaptation itself.

111

6.4.1.2 Model-Driven Requirements Engineering Process

LONIEWSKI, ARMESTO and INSFRAN (2011) proposed an adaptation of

OpenUP-based Requirements Engineering process to incorporate processes of Model-

Driven Development (MDD). According to authors, the adapted process model can be

useful for software engineers who need to guide software development projects

following an MDD approach from the requirements elicitation.

Figure 35 presents the base process model of this scenario modeled in BPMN

(on the top) and a schematic representation of its tailoring specification by using our

BPMN extension (on the bottom). This scenario applies operations Encapsulate and

Serial Insert. The operation Encapsulate promotes a hierarchical restructuration by

separating existing process parts into a subprocess. According to KÜSTER et al. (2016),

besides better readability and reuse, there are several other technical reasons motivating

such changes, e.g., performance, dependability, and security requirements.

Again, as one can observe in the figure, the tailored process (bottom) contains

only its new flow elements (differences regarding the base process) and each of them

has an associated tailoring operation (illustrated in the figure by a dotted arrow on the

top right corner), which is actually a BPMNt extension element. Each tailoring

operation has specific parameters (traceability links) that determine which element(s)

from the base process its source element (new one) is related to. In order to avoid

possible conflicts, operations involving insertions (Serial Insert for this case) are

executed first and after are executed operations involving deletions (Encapsulate for

this case). This criterion of operations application is determined through the parameter

applicationOrder = FirstAddition of the Extension operation. Although we did not

represent this operation in the following tailoring examples, it must always be the first

operation applied when creating a new derived process with our approach, since it is

responsible by establishing an extension/reuse relationship with a base process.

Therefore, the following tailoring operations are applied in the scenario of

Figure 35 to obtain the final tailored process (Figure 36):

 Serial Insert of process fragment: Since the subprocess defined in the tailored

model (on bottom part of Figure 35) has an associated tailoring operation whose

binary parameter additionIsFragment was set to true, only the content of the

subprocess (fragment) is inserted in the final tailored process (see Figure 36),

112

directly into the main process workflow. Afterwards, sequence flows are

reconfigured to connect to the process fragment inserted (operation post-condition).

 Encapsulate process fragment: The encapsulated fragment contains all the four

original tasks of the base process, since the first one is pointed by the operation

parameter fragmentBegin and the last one is pointed by the parameter fragmentEnd.

These tasks are encapsulated into the subprocess Capture and Analyze

Requirements, which defines the operation in the tailored process and, therefore, is

its source element (see left bottom part of Figure 35). In Figure 36, the final content

of this subprocess is shown in the detail. As one can observe, a start and end events

were added in the beginning and end of the encapsulated process fragment (action

performed by operation post-condition 1). Finally, the subprocess is placed in the

same workflow position of the extracted fragment.

Figure 35. Requirements Engineering base process (top) and schematic specification of tailoring

(bottom)

Figure 36. MDD-based Requirements Engineering tailored process after tailoring interpretation

113

6.4.2 Tailoring Scenarios from the BPM domain

6.4.2.1 Claim Handling Process

In this section we consider a scenario reported by KÜSTER et al. (2016), which,

according to the authors, demonstrates the main changes performed when producing a

technical-level process model from its business-level specification. In this context, most

of performed changes do not essentially modify the process behavior, corresponding to

the application of refinement operations. Figure 37 shows these changes in a claim

handling process.

Figure 37. Business-level base process (top) and schematic specification of tailoring (bottom)

Figure 38. Technical-level tailored process after tailoring interpretation

This scenario applies operations Merge, Serial Insert, Specialize, Split, and Add

Exception Handler on the (business-level) base process model, which is shown on top

of Figure 37. Among these operations, only Serial Insert modifies in significant way the

114

normal behavior of the process. The same figure also represents the tailoring

specification for the (technical-level) tailored process of schematic way (on the bottom)

in order to facilitate the understanding of performed adaptations. As one can observe in

the figure, the tailored process (bottom) contains only its new flow elements

(differences regarding the base process) and each of them have an associated tailoring

operation. In general, tailoring operations are applied on the base process model

following the order in which the process engineer specifies such operations in the

tailored process model, i.e., from left to right in the figure. However, in order to avoid

possible conflicts, all operations involving only insertions (e.g., Serial Insert and Add

Exception Handler) are executed first and afterwards are executed operations involving

deletions (e.g., Merge, Specialize, and Split).

Therefore, the following tailoring operations are applied in the scenario of

Figure 37 to obtain the final tailored process (Figure 38):

 Serial Insert task Log Session Data: Inserts this task soon before the task named

Validate Claim (identified by the operation parameter before); also reconfigures

sequence flows for connecting the new task to the process workflow (operation

post-condition 1). According to the authors of this model, task Log Session Data is

a merely technical task, and for this reason it was not represented in the business-

level base process.

 Add Exception Handler subprocess Manual Handling: Adds this subprocess as

exception handler for tasks Reject Claim and Create Claim Document (identified by

the operation parameter targetElement). In this case, the default value for the

parameter exceptionType is taken on, i.e., expectionType = Error. This means the

subprocess Manual Handling must deal with error exceptions that can occur while

any of the two aforementioned tasks is executing. The occurrence of an error event

in the context of these tasks diverts the normal flow of the process for an exception

flow that takes to the added subprocess. According to the BPMN specification,

error events must always interrupt the process’ normal flow and this constraint is

ensured by the operation pre-condition 1. Moreover, since our high-level operations

aim preventing structural failures in the process, first post-condition 1 adds an event

of Error type to the boundary of tasks Reject Claim and Create Claim Document.

After, post-condition 2 adds a Sequence Flow outgoing from each added boundary

event and incoming to the subprocess Manual Handling (see Figure 38). At last,

post-condition 3 adds an end event after the exception handler, which is a good

115

practice recommended by the BPMN specification. In this way, the operation

ensures the tailored process model remains correct after its application.

 Merge tasks Get Personal Details and Get Insurance Details: Combines these tasks

from the base process (corresponding to the process fragment delimited by

operation parameters fragmentBegin and fragmentEnd) into a single (human) task

named Get Request Details, which defines the operation in the tailored process. In

this context, such a practice means the separate steps of the human action are

described elsewhere (e.g., a screenflow). At last, operation post-condition 1

reconnects the process flow by adjusting Sequence Flows to tie the new task in the

same position of the grouped fragment. As the task Log Session Data was inserted

earlier soon after the grouped fragment, it now succeeds the merged task.

 Specialize task Validate Claim: This plain task (identified by the operation

parameter targetElement) is represented in the technical-level tailored process by a

specialized BPMN task (of type BusinessRuleTask) that indicates it has some

associated business rule. In process models of more technical nature, the use of

specialized tasks, subprocesses, or events is a common practice when using BPMN.

However, this tailoring operation involves several pre- and post-conditions because

there are many constraints in the BPMN specification related to the specialization

of each type of supported element (i.e., task, subprocess, or event). In order to

support the correct specialization of basic process elements, we have specified the

main BPMN well-formedness rules related to this operation (presented in Figure

30).

 Split task Reject Claim: Replaces this task from the base process by a subprocess

that details its procedure in the tailored process. Besides the parameter

targetElement, which identifies the task to be splitted, this operation has another

parameter named splitIntoSubprocess that is binary (i.e., accepts values true or

false). The default value of this parameter is true, which was taken on in this case.

This means the task Reject Claim is detailed into a subprocess, which defines the

operation. In this case, the subprocess has the same name of the task from the base

process (i.e., Reject Claim). In this case, operation post-condition 2 reconfigures

sequence flows to connect to the substitute subprocess whereas post-condition 3

links to this subprocess the error event (boundary event) attached to the original

task, which was added earlier by the operation Add Exception Handler.

116

 Split task Settle Claim: Replaces this task from the base process by a process

fragment (composed by the tasks Create Response Letter and Send Response) that

details its procedure in the tailored process. Unlike the previous Split operation, in

this one the parameter splitIntoSubprocess is set to false. This means the task Settle

Claim is detailed by a process fragment (defined into the subprocess Settle Claim in

the tailored process model) that must be part of the main process workflow directly

(i.e., not enclosed in a subprocess’ scope) (see Figure 38). In this case, only the

content of the subprocess defining the operation is considered during the tailoring

interpretation. Finally, operation post-condition 2 reconfigures sequence flows to

connect the new process fragment into the main workflow, in the same position of

the splitted task.

6.4.2.2 Loan Process

 In this section we present a simple example in order to demonstrate the use of the

operation Event-Based Insert, which we have created for meeting specific adaption needs

of BPMN. To this end, we consider a loan process from DUMAS and PFAHL (2016),

which has been modeled in BPMN by the authors. A part of this process consists of the

sub-process “Loan Offer”. In order to better expose the high-level operation, suppose

that initially only the success case was modeled (see top part of Figure 39), in which a

customer accepts the offered loan (identified by the process through the Message

receiving event “offer accepted”). In such a case, the process will wait for this event to

occur, which can never happen. Then, we want to adapt the process for identifying also a

negative response from the customer (Message receiving event “offer refused”) and send

him/her a form to understand his reasons (new task “Send form to understand refusal”).

This adaptation is reached through an operation Event-Based Insert defined by the new

task of the tailored process (named “Tailored Loan Offer”) as represented on the top of

Figure 39. In other words, the new task “Send form to understand refusal” is the source

element of the tailoring operation Event-Based Insert that adds this task as an event-

based alternative to the process fragment between the start event and the end event in the

tailored process (see bottom part of Figure 39). The type and name of the event that takes

the new task to run are determined by the parameters eventType and eventName of the

operation, respectively. Since all pre-conditions of this operation are met (specially pre-

condition 2 that requires the first element of the target process fragment to be an event of

117

type Message, Signal, Timer, or Conditional), the operation interpretation automatically

adds to the final tailored process a BPMN Event-Based Gateway (event-based XOR-

Split) before the alternative fragments starting by events and a BPMN Exclusive

Gateway (XOR-Join) after these fragments (post-condition 2). The first gateway means

the choice between alternative ways is determined by the first of the following events

that occurs when the execution of the process arrives in this gateway. If the message

“offer accepted” is received first, the execution flow proceeds to the task “Record loan

contract”. If the message “offer refused” is received first, then a form is sent to the

customer. The second gateway only merges two exclusive branches into a single one.

Moreover, post-condition 3 also adds to the final tailored process an intermediate event

of specific type informed by the operation parameter eventType and name defined by the

parameter eventName. This event will be responsible by the activation of the new task.

Finally, post-condition 4 adds and adjusts sequence flows to connect the new elements to

the tailored process workflow. The definition of this operation is in accordance with

rules #21, #24, #25 and #26 from Appendix 1, which specify constraints of the BPMN

standard related to the use of the Event-Based gateway.

Figure 39. Tailoring the “Loan Offer” process – example 1

 In a second example by using the same process (Figure 40), we now consider

that the original process is equal to the resulting process of example 1. In this case, we

want to add a new task that will cancel the loan offer when its expiry date is reached and

the customer has yet not provided any response. This way, we specify the new task

“Cancel loan offer” in the tailored process (at the top right of the figure) and add to it an

118

operation Event-Based Insert defining how this task will be inserted in the tailored

process workflow after tailoring interpretation. As parameters after and before were

configured to link to both gateways of the base process, post-condition 1 is applied by

connecting the new task to these gateways as a new event-based alternative path.

Moreover, post-condition 3 adds immediately before the new task in the final tailored

process a time intermediate event (according to configurations specified for operation

parameters eventType and eventName) that will be responsible by its activation (see

bottom part of Figure 40).

Figure 40. Tailoring the “Loan Offer” process – example 2

6.5 Conceptual Representation of the BPMNt Extension

Following our BPMN extension presented in the previous chapter, we used the

BPMN’s built-in extension mechanism (OMG, 2011) to add support for high-level

concepts. The standard extension mechanism consists of a set of extension meta-classes

that allows attaching additional elements and attributes to BPMN elements.

The BPMN extension mechanism comprises four extension meta-classes. In

summary, the ExtensionDefinition meta-class allows defining a new extension concept

for BPMN elements whereas the ExtensionAttributeDefinition meta-class defines new

extension attributes for an ExtensionDefinition element. The Extension meta-class

119

binds/imports an extension definition and its attributes into a BPMN model and, finally,

the ExtensionAttributeValue meta-class stores the values for additional attributes of a

BPMN element instance defined in a model.

Our BPMN extension defines tailoring operations as language’s extension concepts

and their configuration parameters as extension attributes, generally bound to BPMN

process elements. Relationship attributes of these operations are used by variant process

models to configure tailoring operations and track adapted base process elements, since

they maintain links between elements from the base and tailored process models. Such

relationship attributes correspond to operation parameters in the presented catalog.

 Figure 41 shows the structure of the new BPMNt extension into the BPMNt

Tailoring Extension package and its relationships to standard BPMN elements, shown

into the BPMN package. According to the aforementioned BPMN extension mechanism,

tailoring concepts defined in the BPMNt Tailoring Extension package can be bound to

any standard BPMN element as extension elements. However, we have limited their

application to relevant process elements through additional rules.

All concepts defined by the BPMNt tailoring extension correspond to instances of

the BPMN extension meta-class ExtensionDefinition. However, we have added the

stereotype <<ExtensionDefinition>> only to the BPMNt extension super-class

TailoringOperation to not hamper the understanding of the model (see Figure 41).

Similarly, all extension attributes (including relationships) of BPMNt concepts

correspond to instances of the BPMN extension meta-class ExtensionAttributeDefinition,

identified in the figure by the stereotype of same name that has been added only to the

aforementioned super-class.

We structured concepts representing tailoring operations hierarchically

according to two classifications, high-level operations and basic operations (see Figure

41), in which the first operation group reuses a set of basic operations to build more

complex adaptation patterns that better represent user’s intentions.

We refactored the BPMNt extension model presented in the previous chapter,

which applied the same meta-class structure used by SPEM to represent tailoring

concepts. We now represent each basic tailoring operation as a separate class that derives

from the common super-class BasicOperation such as shown in Figure 41. The set of

basic operations comprises the tailoring operations contribute and suppress presented in

the previous chapter, but with names slightly modified to correspond to verbs instead of

nouns and without rules associated (pre- and post-conditions). Such rules were related to

120

corresponding high-level operations, since basic operations do not represent a whole and

independent adaptation. The replace operation, also presented in the previous chapter,

was classified as high-level operation because it is essentially a composition of

operations suppress and contribute.

 Extend (which corresponds to the extension operation presented in the previous

chapter) is a special type of operation, since it determines a relationship of

extension/reuse in which a variant (tailored) process extends/reuses a given base process

(identified by the operation parameter extendedProcess), enabling the use of tailoring

operations that modify the base process’ structure. Thus, we represent the concept

Extend in the same hierarchical level of BasicOperation (see Figure 41). The

enumeration OrderType defines available options for one to configure the application

order of tailoring operations through the parameter applicationOrder of Extend. The

value Free indicates the operation application order is defined by the specification order

of the operations in the tailored process model. On the other hand, the value

FirstAddition determines that operations adding process elements must be executed

before the others.

Therefore, the proposed set of basic (primitive) operations comprises the

following tailoring operations:

1. Modify: Changes property values of a reused process element from the base

process. Description: An element from the base process (identified by the

operation parameter modifiedElement) has a given property modified

(identified by the operation parameter property). The new property value is

provided by the operation parameter value, for simple properties, or by the

parameter valueRef, for association properties (see definition of Modify concept

in Figure 41). This operation has not been previously considered by the

BPMNt approach, but it is necessary to support some high-level operations.

2. Suppress: Removes an element from the structure of the reused base process.

Description: An element of the base process (identified by the operation

parameter suppressedElement) is removed from its reused process structure

(see definition of Suppress concept in Figure 41).

3. Contribute: Adds a new element to the reused base process. Description: A

variant process defines a new process element that should be added to the

reused structure of the base process itself or to some of its sub-processes

121

(identified by the operation parameter targetProcess). However, this operation

does not support the direct specification of a workflow position to addition of

the new node element; such position must be determined by Sequence Flow

elements connecting the new element to other ones. The operation parameters

newElement and newElementRef reference the added element. The former is

used when the new element has been specified by the process engineer and the

second parameter is used when the new element is automatically created by the

interpreter component of the BPMNt approach, during the execution of a high-

level operation (see definition of Contribute concept in Figure 41). Elements

generated by the approach are typically sequence flows or gateways.

Figure 41. Main meta-classes of the BPMNt extension (top) and their relation to BPMN meta-

classes (bottom)

High-level operations represent abstractions of a set of basic operations and must

be defined by subclasses of HighLevelOperation. The operations of our catalog are

presented in the class diagram of Figure 43. Each subclass needs to define the parameters

of the high-level operation whereas its execution semantics must be defined in the

122

interpreter component that integrates the proposed solution structure. The execution

semantics of high-level operations shoud be defined by composing basic operations.

In order to allow the comprehension of the rationale of each adaptation applied to

a variant model, the super-class HighLevelOperation also provides the attribute

motivation. Providing information to such attribute along with a tailoring operation

allows one to understand more easily why an adaptation has been performed.

The relationship attribute basicOperations of the class HighLevelOperation

shown in Figure 41 is used by variant process models to record the sequence of basic

operations applied by an instance of high-level operation. Such a sequence of operations

can be determined only during the execution of tailoring operations by the interpreter

component, because it depends of the state of the model at the moment in which the

operation is executed. For example, when an operation delete is applied to remove a task

from a process workflow, it can also be necessary to remove gateways (i.e., splits or

joins) related to the removed task that have become inconsistent after the operation.

It is important to highlight the BPMNt meta-class structure for defining tailoring

operations can be extended according to needs of a given user, environment or context.

To support a new high-level operation, one should: (1) provide a new subclass of

HighLevelOperation with specific operation parameters; (2) define the execution

semantics of operation into the interpreter component; and (3) define well-formedness

rules (pre- and post-conditions) related to the new operation.

High-level operations can be defined with the single purpose of making an

existing operation more intuitive for the user. For example, the operation rename

presented in our catalog of high-level operations, which is often used in practice to

customize process elements, consists of a single basic operation, of type modify, in which

the element’s property to be modified is previously defined by the operation rename, i.e.,

the name of the element. Moreover, the name of the operation rename makes evident its

purpose.

Finally, in order to facilitate the reuse and application of the BPMNt extension

for adapting BPMN process models, we have designed it to be compliant with the

BPMN standard extension mechanism (discussed in Section 2.3.2), which allows

assigning new extension elements for BPMN elements. The complete specification in

XML Schema of the BPMNt extension supporting high-level operation concepts is

presented in Appendix 3. From this specification, process engineers can import and use

our extension into BPMN standard-compliant tools. In the next section, we briefly

123

present our support prototype, which consists of an EMF-based domain specific

language derived from the XML Schema specification presented in Appendix 3.

6.6 Support Prototype

To support high-level operations, we have extended our prototype presented in

the previous chapter, which is based on the MDT/BPMN2 Project (MDT, 2012). We

used a simple model editor from this project for manipulating BPMN process models,

which are represented as hierarchical structures (trees). Figure 42 shows the main

graphic interface of the prototype representing one of the tailoring scenarios of the SIGA

Project (scenario 1, represented graphically in Figure 31).

Figure 42. Tailoring specification based on high-level operations using our support prototype

To represent process adaptations and to obtain the final tailored process in Figure

32, we have created a variant process model named Tailored Specification and Design

(presented in Figure 42 using our prototype) that contains new process elements (e.g., the

subprocess Design Screen) and definitions of tailoring operations. Operation definitions

are always contained by elements Extension Attribute Value associated to a standard

BPMN element. The BPMN element containing the tailoring operation definition

represents a new element of the tailored process (contribution) for the case of operations

Replace, Split, Serial Insert, Conditional Insert and Parallel Insert. For other operations,

such an element will not be included in the final tailored process model.

124

Figure 43. BPMNt meta-classes representing high-level tailoring operations

125

The figure also shows the main parameters (on the right part) of high-level

tailoring operations applied by this running example and their configuration values. The

tailored process model Tailored Specification and Design represented in the figure has

the following specification of tailoring operations:

 Delete task Specify Report (see specification of number 4 in Figure 42): The

execution of the operation removes this task from the final tailored process as

well as the two exclusive gateways (XOR_DIV and XOR_CONV) that after the

task removal have only one input flow and one output flow (incorrect model

state); also connects the task Review Use Case Description to Design Screen and

Define Test Cases to Elaborate Physical Model.

 Split task Design Screen (see specification 5 in Figure 42): The execution of the

operation transforms this general task of the base process in a subprocess that

details its procedure in the tailored process.

 Parallelize tasks Review Use Case Specification, Define Test Cases, and

Elaborate Physical Model (see specification 6 in Figure 42): The execution of the

operation includes a parallel gateway (AND_DIV) before these tasks to diverge

the process flow and another parallel gateway (AND_CONV) after the tasks to

converge (synchronize) again the process flow.

 Move task Update Database (see specification 7 in Figure 42): After the

execution of the operation parallelize (described above), the task Update

Database is performed only after the synchronization of parallelized tasks.

However, it should be performed soon after the task Elaborate Physical Model.

Thus, the operation move is applied to shift the task Update Database to the new

position (indicated by the parameter newPositionAfterNode).

Before executing any tailoring operation from a specified scenario, the prototype

checks all pre-conditions of these operations. The transformation of the base process

model to the tailored process model only starts when no operation’s pre-condition is

violated by the current specification.

The execution order of tailoring operations generally corresponds for the same

order in which they were specified in the process structure of the BPMNt file,

represented by the model Tailored Specification and Design in Figure 42, but prioritizing

insertion operations in order to avoid operation conflicts. This is the default behavior

when interpreting a BPMNt tailoring specification. However, this behavior can be altered

126

by the user by configuring the parameter applicationOrder of the Extend operation,

which is always the first operation specified in a BPMNt tailoring scenario.

 During the execution (interpretation) of high-level operations specified by the user

in the tailored process model, the interpreter component of the BPMNt approach records

in this model the basic tailoring operations that have been executed to achieve the expect

result of each high-level operation. Basic operations that assembly a given high-level

operation are added in the tailored process model (BPMNt file) as sub-elements of the

one that represents the high-level operation, as such shown in Figure 44 for the high-

level operation Move. Such an operation is achieved by executing the following set of

basic operations: one suppress operation removing a sequence flow; two modify

operations changing connection properties of sequence flows; and one contribute

operation adding a new sequence flow to the process.

Figure 44: Set of basic operations automatically generated

6.7 Concluding Remarks

 Well-defined language constructs specifying tailoring possibilities, i.e., adaptation

operations, and their constraints are important in order to support process engineers in

specifying process adaptation scenarios. However, such constructs should also be

semantically meaningful for humans in order to better represent user’s adaptation

intentions, facilitating the posterior understanding of performed changes.

 In order to tackle these challenges, in this chapter we proposed a BPMN meta-

model extension and a catalog defining a set of tailoring operations (language concepts)

based on BPM adaptation and refinement patterns that intend to improve our previous

proposal (presented in Chapter 5) regarding the following issues: (1) understandability of

the performed changes; (2) abstraction of model transformation details; (3) reduction of

the number of necessary operations for specifying a tailoring scenario; and (4)

127

conservation of the structural correctness and well-formedness of tailored models

regarding semantic rules of the BPMN standard.

 High-level operations proposed in this chapter realize a user’s adaptation intent.

This means that all necessary elements and connections for producing such an adaptation

associated with the operation must be correctly added to the process and configured,

resulting in a valid BPMN process model. To achieve this objective, our operations

impose constraints on the way as a base process can be adapted (through operation pre-

conditions) and provide “action rules” (operation post-conditions) that modify the

resulting process model, whenever necessary, to avoid disconnected elements, remove

trivial gateways and sequence flows or add gateways and events related to the correct

configuration of the operation semantics.

128

CHAPTER VII

7. Evaluation

7.1. Introduction

In this thesis, we presented a BPMN extension and support mechanisms for

dealing with adaptations in process models represented in this language. Our research

involved two target domains, Software Process Engineering (SPE) and Business Process

Management (BPM).

In Chapter 5, we proposed an extension of the BPMN meta-model for specifying

process tailoring inspired on widespread approaches in the SPE domain. This extension

had software processes as its target domain. In the same chapter, we also showed the

feasibility of the proposal by using real-world tailoring data from this domain (Section

5.6). This evaluation study demonstrated the effectiveness of the proposed tailoring

concepts (operations) in representing tailoring scenarios from the software development

project SIGA, since all extension concepts could be applied.

Next, in Chapter 6 we presented an extension of our previous proposal aiming to

solve limitations identified from the conducted evaluation study (in Section 5.6) as well

as expanding our solution scope for covering also business processes. Therefore, the

BPMNt solution supports flexible process tailoring in both domains as well as in

different application scenarios in which BPMN-based process adaptation can be useful.

For example, covering not only the derivation of business-level processes, but also the

refinement of these processes to technical-level models.

Thus, our concern here is on assessing the feasibility of the BPMNt solution in

different situations from SPE and BPM domains that lead to the production of new

BPMN models by adapting existing ones. More specifically, our research problem

concerns the completeness and correctness of BPMN process models generated by our

proposal.

In this sense, we judged to be more interesting to evaluate our research through

different studies based on process models and tailoring scenarios from the real-world. In

129

this way, we can use varied data sources and process models that preserve their original

characteristics.

In Section 7.2 we present our evaluation plan. Section 7.3 presents the first

study, the second one is presented in Section 7.4 and, at last, Section 7.5 depicts our

third evaluation study. Next, Section 7.6 presents threats to validity of the studies

whereas in Section 7.7 some conclusions are drawn.

7.2. Evaluation Plan

Next, we present the evaluation plan that guided our studies. The general

objective is described in Section 7.2.1 and our research questions are presented in

Section 7.2.2. An overview of evaluated contexts is given in Section 7.2.3 whereas the

procedure for selection of such contexts and data collection is presented in Section

7.2.4.

7.2.1 General Objective

We intend to conduct evaluation studies of descriptive purpose (ROBSON,

2011). Our aim is to evaluate the feasibility of the BPMNt solution based on high-level

operations to represent real-world adaptation needs in different application scenarios

from SPE and BPM domains. Moreover, we want to evaluate the capacity of BPMNt to

produce correct tailored process models, regarding a structural perspective (i.e., with

absence of flow breaks) as well as regarding BPMN specification’s constraints.

This general objective is detailed bellow according to the structure proposed by

BASILI et al. (1994):

Analyze the specification of tailoring scenarios and BPMN process

models produced by applying BPMNt high-level

operations implemented in our support prototype.

For the purpose of Characterizing

With respect to Feasibility of the proposed BPMNt solution and

effectiveness of performed adaptations

From the viewpoint of Researcher (and domain expert in one of studies)

In the context of Three real processes from different domains and

application contexts

130

7.2.2 Research Questions

Bellow, we present the research questions (RQ) that this evaluation aims to

answer.

 RQ1: Is the BPMNt extension based on high-level tailoring operations capable of

specifying the adaptation needs from the evaluated contexts?

With this question we intent to assess the feasibility of the set of BPMNt high-

level tailoring operations. In other words, we wanted to verify the capacity of

BPMNt to express process variations required in the evaluated contexts. This

question will be evaluated by comparing the number of adaptations required

from each tailoring scenario with the number of adaptations supported by

BPMNt.

 RQ2: Are the BPMN process models generated by the BPMNt solution correct in

the evaluated contexts?

This question aims to assess if BPMN process models produced by our solution

are correct considering two different analysis perspectives: (1) structural

correctness (i.e., without flow fails) and (2) BPMN specification-based

correctness (i.e., if semantic rules of the language are met). The structural

correctness will be evaluated considering the number of flow breaks

(disconnected nodes) found in the produced models. The BPMN specification-

based correctness, i.e. model well-formedness, will be evaluated by observing

the number of BPMN’s rule violations in the models produced by BPMNt. Since

we have not found an available implementation for the research conducted by

CORREIA (2014), we have used the BPMN model checker provided by the

system Signavio11, which had the best score in identifying violations of rules

prescribed by the BPMN specification in the study conducted by CORREIA

(2014).

11 https://academic.signavio.com/

131

7.2.3 Description of Contexts

We will present three evaluation studies based on real process models from the

following contexts:

1) Software Development Process (SIGA Project): The SIGA project involves

Brazilian federal institutions aiming at developing an academic management system.

Each identified variation in this context can be seen as a possible improvement for

the base process model of the project (SANTOS, OLIVEIRA and ABREU, 2015).

2) ATM Process in Banking: The ATM process was modeled within a Brazilian

Banking (BRANCO et al., 2014). In this context, variations represent changes from

a business-level BPMN process to a technical-level BPMN process.

3) Picture Postproduction Process in Film Industry: This context represents a

typical case of organizational process variability. Process variants from the

Australian Film, Television and Radio School (AFTRS) were modeled and validated

by ROSA et al. (2017). Such variants share commonalities while also showing

differences. In this case, a base process has not been pre-defined. Therefore, we

needed to define it before applying our tailoring approach.

7.2.4 Contexts Selection and Data Collection

Since our proposal requires process variants derived from a base process model,

we have found difficulty to obtain models for our evaluation. Software or business

organizations usually do not share their processes, since they represent a business

differential. For this reason, we have based our evaluation on real use cases obtained by

convenience (i.e., easier availability). Nevertheless, we could obtain case data from

different domains (in SPE and BPM) and applying process tailoring to varied purposes.

In the evaluation study based on the SIGA project (SPE domain), adaptations represent

possible improvements for the base process model (SANTOS, OLIVEIRA and

ABREU, 2015). In the study from banking, adaptations are applied in order to refine a

business-level process model to a technical-level model. Finally, in the study from the

film industry, tailoring can be applied to derive new variants of a picture

postproduction process from a base model composed by activities commonly

performed in this process. Despite the little number of case studies and evaluated

models, we believe evaluations based on these contexts provide initial evidence of the

132

applicability and effectiveness of our solution for adapting BPMN process models in

different application contexts and from both SPE and BPM domains.

Process models from the SIGA project were obtained directly with a member of

the project’s development time that collaborated with this research. On the other hand,

models used for the other evaluation studies reported in this chapter were collected

from the literature (BRANCO, 2014) (ROSA et al., 2017). In all the cases, we have

based our evaluation on already available process data, i.e., archival data (RUNESON

and HÖST, 2009).

7.3. Evaluation Study 1: Software Development Process SIGA

In this study, we have adopted software process models and tailoring scenarios

from the SIGA-EPCT Project (SIGA, for short). SIGA-EPCT stands for Academic

Management Integrated System for Technological, Scientific and Professional Education

and is intended to develop an academic management system to be used by public

universities in Brazil.

The project began in 2008 and is developed collaboratively by researchers and

developers from Federal Institutes of Education, Science and Technology through

research centers geographically distributed throughout Brazil. The project has a defined

software development process, which comprises the following phases: Planning,

Requirements, Specification and Design, Implementation, Test, and Deployment.

However, driven by the aim to evaluate our work, we have focused on the Specification

and Design phase, since this is core to the project. This phase is composed by the

following activities: Describe Use Case, Review Use Case Description, Design Screen,

Elaborate Class Diagram, Update General Class Diagram, Review Use Case

Specification, Define Test Cases, Elaborate Physical Model, and Update Database.

 The representation in BPMN notation of the process associated with the

Specification and Design phase has already been shown in Figure 19 (Chapter 5). The

SIGA project is centered on use cases and as a result a new process is instantiated for

each use case of the project. The project records all process instances in a task

management system for each use case (i.e., tasks, roles and sequence flows) in order to

better allow orchestration of the people involved. Using the records from the task

management system, another research project (SANTOS, OLIVEIRA and ABREU,

133

2015) has applied data mining and compliance analysis techniques to identify variances

between the defined project process and the process executed by the project team in

some core use cases. Such variances would be useful to the process engineer to evaluate

the possibility of adaptations on the project base process in order to better reflect the

actual execution behavior since, according to FERRATT and MAI (2010), tailoring can

also be defined in terms of modifications that emerge from the results of monitoring a

project and providing feedback on the development process.

7.3.1 Execution Procedure

 A specialist from the SIGA Project team has modeled in BPMN the process of the

Specification and Design project phase, used as base process in this evaluation study, and

we have specified variances in its execution from six real use cases of the project, whose

BPMN models were produced by the specialist by mining the project’s task repository.

Thus, we have created six BPMNt files in our prototype, each one containing the

differences of a specific process execution case and tailoring operations linking to base

process elements. Figure 42 (presented in Section 6.6), for example, shows the BPMNt

tailoring specification for one of the SIGA project’s use cases (scenario 3 in Table 13).

Finally, to evaluate the completeness and correctness of the tailored process models

generated by our prototype, they have been checked by the domain specialist from the

SIGA project. The correctness regarding rules from the BPMN specification has been

checked through the automatic support provided by the Signavio system.

7.3.2 Results

All six variant process cases evaluated in this study from the SIGA project are

presented in Appendix 4 (Figure 64 to Figure 69).

Table 13 presents all high-level tailoring operations applied to each variant case

(following the application order top-down) when using the BPMNt support prototype. In

this table, each evaluated tailoring scenario (execution case) is identified by a number in

the column ID. The table also details high-level tailoring operations in terms of the

number of basic adaptations (additions, removals, and modifications) performed on

specific process elements. The most of these basic adaptations are automatically

134

executed by rules of the operation in an effort to ensure the correctness of BPMN models

after tailoring. The last column of the table, named Result, uses the symbol ‘+’ for

indicating that a BPMNt adaptation operation was totally effective at executing an

adaptation pattern. That is, modifications produced by the operation resulted in a correct

BPMN model (without structural fails and concerning the BPMN’s specification). As

one can observe from the table, all adaptations required from the evaluated scenarios of

the SIGA project were successfully supported and executed by BPMNt, resulting in

complete and correct tailored models.

7.4. Evaluation Study 2: ATM Process in Banking

 In this section, we have adopted business process models and tailoring scenario

for evaluating our proposal from the Bank of Northeast of Brazil (BNB), which have

been collected and published in a case study reported by BRANCO et al. (2014).

 BNB is controlled by the federal government and oriented towards regional

development. The Information Technology (TI) area of the bank contains over 300

professionals, responsible for maintaining more than 200 information systems in

operation. Since 2007, BNB has used Business Process Management (BPM) based on

the WebSphere family of products from IBM, including Business Modeler, Integration

Developer, Business Monitor, and Process Server. The development process is based on

the Rational Unified Process (RUP), extended to include business process modeling, and

entails iterative and multi-staged model refinement, resulting in three types of models:

business specifications, technical specifications, and executable specifications

(BRANCO et al., 2014).

135

Table 13. Results of BPMNt process tailoring involving the SIGA Project

ID BPMNt High-level Operation Added (Contribute)

Removed(Suppress) Modified (Modify) Result

 Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow

1 Extend Process Specification and Design
Delete Specify Report
 Split Design Screen
Serial Insert Elaborate Mapping of Use Case Links

-
-
2
1

-
-
1
-

-
-
-
-

-
-
2
-

-
-
3
2

-
1
1

-
-
-
-

-
2
-
-

-
-
-
-

-
4

1

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
2
2
-

+
+
+
+

2 Extend Process Specification and Design
Delete Specify Report
 Split Design Screen
Parallel Insert Elaborate Mapping of Use Case Links

-
-
2
1

-
-
1
-

-
-
-
2

-
-
2
-

-
-
3
4

-
1
1
-

-
-
-
-

-
2
-
-

-
-
-
-

-
4
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
2
2
2

+
+
+
+

3 Extend Process Specification and Design
Delete Specify Report
 Split Design Screen
Parallelize Elaborate Physical Model, Define Test Cases and Review UC Specif.
Move Update Database

-
-
2
-
-

-
-
1
-
-

-
-
-
2
-

-
-
2
-
-

-
-
3
6
1

-
1
1
-
-

-
-
-
-
-

-
2
-
-
-

-
-
-
-
-

-
4
-
-
1

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
2
2
2
2

+
+
+
+
+

4 Extend Process Specification and Design
Delete Specify Report
 Conditional Insert Review Screen Desing
Serial Insert Elaborate Mapping of Use Case Links
Conditional Insert Correct Inconsistencies in Use Case Spefic.

-
-
1
1
1

-
-
-
-
-

-
-
2
-
2

-
-
-
-
-

-
-
5
2
4

-
1
-
-
-

-
-
-
-
-

-
2
-
-
-

-
-
-
-
-

-
4
1
1
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
2
-
-
2

+
+
+
+
+

5 Extend Process Specification and Design
Delete Specify Report
Delete Review Use Case Description
Delete Define Test Cases
Parallelize Design Screen, Elaborate Class Diagram and Update General Class Diagram
Parallelize Elaborate Physical Model and Review Use Case Specification
Move Update Database

-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
2
2
-

-
-
-
-
-
-
-

-
-
-
-
6
4
1

-
1
1
1
-
-
-

-
-
-
-
-
-
-

-
2
-
-
-
-
-

-
-
-
-
-
-
-

-
4
1
1
-
-
1

-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
2
1
1
2
2
2

+
+
+
+
+
+
+

6 Extend Process Specification and Design
Delete fragment from Design Screen to Define Test Cases
Serial Insert Validate Report

-
-
1

-
-
-

-
-
-

-
-
-

-
-
2

-
5
-

-
-
-

-
2
-

-
-
-

-
8
1

-
-
-

-
-
-

-
-
-

-
-
-

-
2
-

+
+
+

136

 In our evaluation study, we focus on business and technical models that are

completely presented in the original research. We do not consider here executable

models, because dealing with models at this level of abstraction is out of the scope of our

research. Probably due to issues related to organizational information secrecy, only a

business process of BNB has been completely presented, i.e., the Automated Teller

Machine (ATM) process. Moreover, we have not found other researches reporting case

studies in this context of model refinement across levels of abstraction. Therefore, the

BNB’s ATM process is the single real process case that we have obtained focusing on

model refinement rather than purely adaptation. Nevertheless, this model still allowed us

to apply and evaluate many of our high-level operations aiming at refinement.

 Figure 45 and Figure 46 show two models representing the process of using an

Automated Teller Machine (ATM) system at different levels of abstraction. We will use

these models, which are versions of real process models from the company, as base

(Figure 45) and variant (Figure 46) processes in this tailoring evaluation study.

 The two models are the same as the original models, except that their labels were

translated from Portuguese to English by the enterprise’s member that collected and

published such models in the original case study (BRANCO et al., 2014). The first

model (Figure 45) represents a business-level process specification, which is created by

Business Analysts. The second model (Figure 46) is a refinement of the first one, created

by IT Systems Analysts. These stakeholders use such models to align the modeled

process with the existing service infrastructure.

 Figure 45: Base process model (Business-level ATM Process)

137

 Figure 46: Variant process model (Technical-level ATM Process)

7.4.1 Execution Procedure

 A specialist’s team from the BNB organization has modeled in BPMN the ATM

process of business- and technical-levels, used as base and variant process models,

respectively, in our evaluation study. However, we have remodeled such models into the

BPMN modeling tool bpmn.io12, since it allows saving them in the BPMN file format,

which is the standard format for exchange of BPMN process definitions. Having the base

process model specified in this format, we could directly import it into our prototype for

specifying and executing necessary adaptations for producing the variant process model.

Next, we have specified variances of the technical-level process (Figure 46)

regarding the business-level process (Figure 45) by using the BPMNt support prototype.

In other words, we have created a BPMNt file in our prototype containing the new

process elements of the technical model and tailoring operations linking them to base

process elements. Finally, in order to evaluate the completeness and correctness of the

tailored process model generated by our prototype, we have compared it to the original

technical-level process shown in Figure 46. Our model is correct if it has the same

functionality and behavior than the original technical process (that does not contain

structural fails). Otherwise, there are problems that need to be reported in the

presentation of results. The correctness concerning rules from the BPMN standard has

been checked through the automatic support provided by the Signavio system.

12 https://bpmn.io/

https://bpmn.io/

138

7.4.2 Results

Table 14 presents all high-level tailoring operations applied to the technical-level

ATM process (Figure 46) when using the BPMNt support prototype. In this case, all

operations involving only additions were executed first, as determinates the

configuration applicationOrder = FirstAddition of the Extend operation. The table also

details high-level tailoring operations in terms of the number of basic operations

(additions, removals, and modifications) performed on specific process elements. Again,

most of these basic adaptations are automatically executed by operation rules in order to

ensure the correctness of the BPMN model after tailoring. The Result column of the table

shows that all adaptations required from this tailoring scenario, involving mainly process

element’s refinements, were successfully supported and executed, resulting in a complete

and correct tailored process model.

Since this model contains varied BPMN process elements, including ones related

to exception handling, we chose it for illustrating the result of the automatic checking of

BPMN modeling rules by using Signavio. As one can observe from the message

presented at the bottom of Figure 47, no error was found by the model checking.

However, because the tool verifies in the same checking several “best practices” and not

only violations of rules from the BPMN standard specification, the result also presents

several warnings and hints that do not have relation to the purpose of this study. The

important factor for our evaluation is that the tool has found no modeling error.

7.5. Evaluation Study 3: Picture Postproduction Process in
Film Industry

 In this last study, we adopted real business process models from a process family.

These models have been collected and published by ROSA et al. (2017) and are the

result of a case study in picture postproduction conducted by the authors in the

Australian Film, Television and Radio School (AFTRS) in Sydney. In the film industry,

picture postproduction (postproduction, for short) is the process that starts after the

shooting has been completed, and deals with the creative editing of the motion picture.

139

 Figure 47: Result of checking the tailored process model in Signavio

 Figure 48 shows six variants of the postproduction process from ROSA et al.

(2017), which we modeled in BPMN based on the original representation using the

Event-driven Process Chains (EPCs) language. The postproduction process starts with

the receipt, from the shooting that needs to be prepared for editing. The footage can

either be prepared on film (e.g., as in variant V1 in the figure), on tape (e.g., variant V2)

or on both media (variant V4) depending on whether the motion picture was shot on a

film roll and/or on a tape. Next, the medium is edited offline to achieve the first rough

cut (therefore, activity Edit offline appears in all variants). Afterwards, online editing is

carried out if the footage was shot on tape (variants V2 and V3), while a negmatching is

performed if the footage was shot on film (e.g., variant V1).

 Online editing is a cheap editing procedure applied for low-budget movies,

typically shot on tape. Negmatching offers better-quality results but involves higher

costs, then it is more adequate for high-budget productions, typically shot on film. The

choice between online editing and negmatching depends on, e.g., budget, creativity, and

type of project. One option or both needs to be chosen. Indeed, each variant in Figure 48

corresponds to a common practice in postproduction. For example, variant V1 is a

typical low-budget practice (shooting and releasing on tape), whereas variant V4

represents a more expensive procedure (shooting and releasing on both tape and film).

 The final step of postproduction is the finishing of the edited picture. This may

involve other activities (e.g., to transfer in a telecine machine) based on the combination

140

of editing type and final medium. The process may conclude with an optional release on

a new medium (e.g., DVD or digital stream), which follows the finishing on tape or film.

7.5.1 Execution Procedure

The picture postproduction process and its variants have originally been modeled

in the EPCs language with support of domain specialists from the AFTRS organization.

In order to use such processes in our evaluation study, we have remodeled them in

BPMN by using the modeling tool bpmn.io.

ROSA et al. (2017) present only the six process variants shown in Figure 48, but

they do not mention the existence of a base (or reference) process model. In this case,

i.e., when it does not exist a pre-defined base model for derivation of new variants,

several strategies can be adopted to obtain a reference process model from a set of

existing variants, and thus, finally, applying the BPMNt approach. The base model can

be the most frequently used process variant, a generic model, the superset of all variants,

or their intersection.

We opted by using the variant V1 of Figure 48 as our base model, since this is

one of the simplest variants for postproduction. Thus, we imported the BPMN model of

V1 into our support prototype and specified a BPMNt model for each other process

variant (V2 to V6) relating them to the base model through tailoring operations, which

create traceability links.

At last, in order to evaluate variant process models generated by our prototype,

we have compared them to the original variant processes shown in Figure 48. Our

models are complete and correct if they have the same functionality and control flow

structure than original variant processes. The correctness concerning BPMN standard

rules was again evaluated through automatic verification with Signavio.

141

Figure 48: Variants of the picture postproduction process (V1 has been taken as base process)

7.5.2 Results

All five process variants evaluated in this study from the picture postproduction

process are presented in Figure 48 (models V2 to V6). Table 15 shows high-level

tailoring operations applied to each of these variant processes (following the application

order top-down) when using the BPMNt support prototype. Evaluated tailoring scenarios

(V2 to V6) are identified in the column ID. The table also details high-level tailoring

operations in terms of the number of basic adaptations (additions, removals, and

modifications) performed on specific process elements. The last column of the table

(Result) uses the symbol ‘+’ for showing that BPMNt adaptation operation was effective

at executing an adaptation pattern. As one can observe from the table, all adaptations

applied to evaluated tailoring scenarios in this study (V2 to V6) were successfully

142

executed. The BPMNt approach was able to produce variant models with the same

functionality and behavior of original variant processes, resulting in complete and correct

tailored process models (concerning original models, which do not contain flow breaks).

The automatic verification of well-formedness of the tailored models also did not

identify no problem. We only highlight here a little difference between models V5 and

V6 generated by BPMNt and original ones from Figure 48. While in the figure both

models have all named conditional paths (i.e., specifying conditions for their execution

after exclusive gateways), in models generated by BPMNt conditional paths comprising

activities that were already in the base model are set as default paths, and, for this reason,

they do not receive specific conditions. Specifying a default conditional flow is a best-

practice recommended by the BPMN specification, since it avoids that no conditional

flow is selected, and does not change the process behavior concerning the specification

presented in Figure 48 for V5 and V6 models.

7.6. Threats to Validity

 The validity of a study denotes the trustworthiness of the results, to what extent

the results are true and not biased by the researcher’ subjective point of view

(RUNESON and HÖST, 2009). Thus, this evaluation is subject to the following main

threats.

 Internal validity: The trust on the correct reality representation of the process

models obtained from the literature is an uncontrolled factor. To minimize this threat, we

have selected as data sources only case studies that describe the target domain and

mention the exact source from which process models and variation scenarios were

captured. Moreover, regarding the study based on the picture postproduction process,

original process models were represented in the modeling language EPCs and were

converted to BPMN by the researcher of this thesis. In order to minimize any possible

misalignment during this process, we have followed guidelines for conversion between

these models (ROSA et al., 2017). Another threat to internal validity is related to the

choice of the Signavio BPMN model checker, which cannot have identified some rule

violations in our models.

143

Table 14. Results of BPMNt process tailoring involving the ATM Process

ID BPMNt High-level Operation Added (Contribute)

Removed(Suppress) Modified (Modify) Result

 Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow

1 Extend ATM Process (applicationOrder = FirstAddition)
Add Exception Flow Transaction Canceled by Customer
Rename task Validate PIN (to Authorize Transaction)
Rename gateway PIN is valid? (to Transaction Authorized?)
Serial Insert Debit Account
Add Exception Handler Process Pending Transaction
Add Exception Handler Process Pending Debit
Specialize Customer Insert Card into ATM
Delete Customer Selects Transaction
Split Cancel Transaction

-
-
-
-
1
-
-
-
-
-

-
-
-
-
-
1
1
-
-
1

-
-
-
-
-
-
-
-
-
-

-
2
-
-
-
4
2
1
-
-

-
2
-
-
2
4
2
-
-
-

-
-
-
-
-
-
-
1
1
1

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
1
-
-

-
-
-
-
1
-
-
1
1
-

-
-
1
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
1
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
1
1
4

+
+
+
+
+
+
+
+
+
+

Table 15. Results of BPMNt process tailoring involving the Picture Postproduction Process

ID BPMNt High-level Operation Added (Contribute)

Removed(Suppress) Modified (Modify) Result

 Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow Task Subproc. Gateway Event Flow

V2 Extend Postproduction Process
Replace Prepare film for editing by Prepare tape for editing
Replace fragment (Perform neg-matching, Finish on film) by
fragment (Edit online, Finish on tape, Release on new medium)

-
1

3

-
-

-

-
-

-

-
-

-

-
-

2

-
1

2

-
-

-

-
-

-

-
-

-

-
-

1

-
-

-

-
-

-

-
-

-

-
-

-

-
2

2

+
+

+

V3 Extend Postproduction Process
Replace Perform neg-matching by fragment (Edit online, Record digital film master)

-
2

-
-

-
-

-
-

-
1

-
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2

+
+

V4 Extend Postproduction Process
Parallel Insert Prepare tape for editing
Parallel Insert fragment (Transfer in telecine, Finish on tape)

-
1
2

-
-

-
2

-
-
-

-
4
5

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
2
2

+
+
+

V5 Extend Postproduction Process
Conditional Insert fragment (Transfer in telecine, Finish on tape)

-
2

-
-

-
2

-
-

-
5

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2

+
+

V6 Extend Postproduction Process
Conditional Insert Prepare tape for editing

-
1

-
-

-
2

-
-

-
4

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2

+
+

144

 External validity: Although different domains and use situations have been

evaluated in this study, it is not possible to claim that it was exhaustive and its results

directly apply to other domains, contexts or use situations. Further studies with a larger

number of process models and in different domains and contexts should be performed.

However, results of this study provide an indication about the applicability and

effectiveness of the BPMNt solution in real process tailoring scenarios.

Conclusion validity: The main threat for conclusions of this study is related to

the limited number of evaluated scenarios. It is difficult to obtain data to drive researches

on process adaptation. Companies which adopt process modeling usually consider

process artifacts extremely sensitive and confidential. We obtained access to people and

artifacts from the SIGA Project, a collaborative system development project involving

several Brazilian research institutions. However, because mining the artifact repository

and applying compliance analysis techniques to identify variances between the process

models is a laborious and time-consuming effort, we could obtain just a few tailoring

scenarios from the aforementioned project. Likewise, we believe other researches

reporting process variations from real contexts faced similar difficulties, which would

explain the limited number of case studies (and evaluated variants) reported in the

literature on process adaptation.

7.7. Conclusions

 Finally, we conclude this chapter by answering our initial evaluation questions:

 RQ1: Is the BPMNt extension based on high-level tailoring operations capable of

specifying the adaptation needs from the evaluated contexts?

Based on scenarios we evaluated from the three studies presented in this chapter,

we can state that the BPMNt extension based on high-level operations and its

support prototype were capable to specify all adaptations needed to produce

tailored process models in these contexts, which involved variations related to the

control-flow perspective. This conclusion is based on the analysis of results from

the three conducted studies, which are presented in Table 13, Table 14, and Table

15. As one can observe from the Result column of these tables, all adaptation

operations required in the evaluated scenarios were successly executed (as

indicated by the symbol ‘+’). Moreover, in no of the three studies was reported the

145

necessity of some adaptation that is not supported by the BPMNt solution.

However, more research is necessary to extend the evaluation with additional real-

world data and potentially identify test scenarios in which our approach needs to

improve besides the known limitations, such as the absence of support for

adaptations on other process perspectives (e.g., data and resource ones).

 RQ2: Are the BPMN process models generated by the BPMNt solution correct in

the evaluated contexts?

Based on scenarios we evaluated from the three presented case studies, we can

also state that BPMN models generated by the BPMNt solution were correct

with respect to their structural correctness. No produced model by BPMNt

presented disconnected process nodes.

Concerning BPMN specification’s constraints, according to results of the

automatic verification executed by the Signavio BPMN model checker, no rule

violation was identified from the evaluated contexts. However, since this

checker does not verify all control-flow rules of the BPMN specification

presented in Appendix 1, we cannot claim that BPMN process models generated

by the BPMNt solution are fully correct in respect to the BPMN specification.

This tool verifies only control-flow BPMN rules related to the correct use of

Gateways, according to available information in its website13. Other studies are

still necessary to evidence these conclusions or identifying improvement

opportunities besides the known limitations related to this research question. For

example, we know that BPMNt does not ensure model correctness regarding

some very specific control-flow constraints of the BPMN standard that are

related to compensation events and activities and other elements usually applied

in executable models.

 In summary, despite the little number of case studies and considered models, we

believe evaluations based on these contexts provide initial indication of the applicability

and effectiveness of our solution for adapting typical BPMN process models from

contexts in the SPE and BPM domains. But it is also important to highlight that in

practice there may exist contexts requiring tailoring operations uncovered by the BPMNt

13 https://www.modeling-guidelines.org/categories/process-structure/

146

extension so far, as well as situations that lead to failures in the generation of tailored

models.

147

CHAPTER VIII

8. Conclusion

This chapter presents our final remarks about the presented solution, including

main contributions (Section 8.2), publication results (Section 8.3), limitations of the

research (Section 8.4) and its implications and future perspectives (Section 8.5).

8.1. Summary

Nowadays, there is a consensus that managing processes is essential for

organizational performance and, for this reason, process-oriented approaches are

already institutionalized in most organizations (SHARP and MCDERMOTT, 2009). In

the context of an organization, a process defines how its activities are structured in a

coordinated manner in order to reach business objectives (WESKE, 2007). However,

processes are not static and often need to be adapted to specific contexts where they will

be applied or improved due to changing requirements or organizational learning. In this

scenario, techniques for process adaptation play an important role, since they enable the

development of new processes from existing ones by refining and/or modifying their

definitions.

In order to effectively adapt organizational processes is recommended to

explicitly represent them through models. The development of models contributes

reducing ambiguities and facilitating the communication of processes. In this direction,

the Business Process Model and Notation (BPMN) is an ISO and OMG standard for

modeling business processes and a de-facto standard in professional practice (CHINOSI

and TROMBETTA, 2012). However, although BPMN has been extensively used for

modeling processes, its current specification (OMG, 2011) still does not have any

mechanism to support users in activities related to process adaptation (tailoring).

Likewise, the most prominent BPM systems based on this technology also do not

provide support for such activity.

148

As a consequence, process variants (which share common process parts) are

usually defined and maintained in separate process models without any connection with

each other (HALLERBACH, BAUER and REICHERT, 2009). Considering the large

number of variants that generally occur in practice, this approach requires significant

effort for creating and maintaining process variants.

From a literature review, we have identified researches proposing to extend

BPMN for supporting techniques of variability modeling. However, such techniques are

not appropriated for application domains in which process variations are difficult to

predict, such as in software development processes. Thus, the lacks of support for

process adaptation from the BPMN standard and limitations from its extension

proposals found currently in the literature motivated this thesis research. We argued

BPMN needed a flexible and comprehensive mechanism to address process adaptation

in conjunction with specific concepts that could be applied in the different contexts in

which BPMN models are produced.

The objective of this research was to provide a BPMN-compliant extension and

associated infrastructure for specifying flexible process tailoring on models produced

with this language in different application contexts. BPMN is a de-facto standard for

business process modeling, which focuses on the representation of the process behavior.

However, BPMN can also succeed in representing the behavior of software processes

(DUMAS and PFAHL, 2016) (CAMPOS and OLIVEIRA, 2013), since they are also a

type of business process. In this way, we have designed a tailoring solution optimized

for BPMN and have applied it in these two domains of processes, Software Process

Engineering (SPE) and Business Process Management (BPM). In particular, we believe

focusing on this technology could facilitate the adoption of the solution, since it may

more easily be integrated to BPMN-compliant tools.

Based on evaluation studies using realistic process tailoring scenarios, it was

possible to obtain indications about the feasibility of the proposed solution, since it was

capable of representing all evaluated tailoring scenarios, producing tailored process

models in accordance with obtained reference models and structurally correct. However,

the well-formedness of the model regarding semantic rules of the BPMN specification

could not be entirely evaluated, since we did not find a publicly available automatic

model checker that covers all these rules (Appendix 1). Thus, it was possible to confirm

the model well-formedness only concerning BPMN rules related to the use of

Gateways, which are supported by the Signavio checker (used in our studies).

149

According to CORREIA (2014), this checker has the better rule coverage among

available tools for this purpose.

8.2. Contributions

The main contributions of this research include:

1) The BPMN meta-model extension called SPEM-based BPMNt (depicted in

Chapter 5). This proposal extended the BPMN meta-model for including tailoring

support similar to the one provided by the SPEM meta-model, which is an OMG

standard for software process modeling. This extension is compliant with the

standard extension mechanism of BPMN (therefore, conservative) and allows

adding SPEM-based tailoring operations to BPMN process elements as extension

elements. This proposal has been implemented and applied for representing realistic

software process adaptation scenarios in the context of a system development

project. Results of this study showed that the proposal could successfully adapt the

considered BPMN-based software process models.

2) The BPMN meta-model extension called Pattern-based BPMNt (depicted in

Chapter 6). This proposal extended the BPMN meta-model for including tailoring

support based on high-level operations, which encapsulate a set of basic operations

in order to abstract the user from details of process model’s transformation. These

operations have been derived from adaptation patterns (WEBER et al., 2008) and

refinement patterns (BRANCO et al., 2014) identified for the BPM domain. This

proposal has also been implemented and applied for representing realistic process

adaptation scenarios from different application contexts. Results of this study

showed that the proposal was capable of successfully adapting the BPMN process

models from the evaluated contexts.

3) A catalog of high-level tailoring operations for BPMN: The catalog specifies

tailoring possibilities, i.e., adaptation operations, and their constraints (pre- and

post-conditions) aiming at supporting process designers in specifying BPMN-based

process adaptation scenarios while ensuring the correctness of the tailored process

model regarding semantic constraints of the BPMN language and integrity of the

process flow. The catalog contains a set of high-level operations that meet the

mentioned requirements. Such operations were derived from BPM patterns and aim

at supporting different types of adaptation needs, covering structural adaptations of

150

BPMN models (e.g., move or insert elements) as well as refinements that do not

essentially change the process behavior (e.g., split or specialize a task). Each high-

level operation from the catalog has been designed to correspond for a user’s

adaptation intent, aiming at improving the understandability of operation semantics

and facilitating the posterior understanding of performed changes. These operations

also meet most of control-flow requirements posed by the BPMN standard (OMG,

2011), enforcing well-formedness rules defined in the specification of the language

(Appendix 1).

4) A built-in change traceability mechanism: Tailoring operations applied to a

variant process are recorded into the variant model itself as extension information

and configuration parameters of these operations are used as traceability links,

connecting new variant process elements to adapted base process elements. These

links are created and kept in order to facilitate the identification of the base process

elements that are affected by adaptations (operations) after tailoring.

5) A set of rules associated to tailoring operations that aims at ensuring the well-

formedness of tailored models regarding the BPMN specification. The

applicability of tailoring operations in each specific situation is previously checked

before executing the operation (e.g., it is not possible to insert a new process

element after an end event). A complete tailoring specification is allowed executing

only when there is no violation of operation pre-conditions. Afterwards, the

application of each tailoring operation can trigger some “action rules” that modify

the resulting process model in order to correctly specify an adaptation according to

semantic rules of the BPMN language (Appendix 1) or solve any structural fail (i.e.,

flow break). Thus, the defined set of rules prevents any structural fail or violation of

rules of the BPMN specification.

6) A support prototype for the proposed solution: A support tool was developed to

enable the use of the BPMNt (SPEM-based and Pattern-based) extension and its

mechanisms in specifying process adaptation scenarios based on BPMN models.

The prototype was built by integrating our extension definition with resources of

the MDT/BPMN2 Project (MDT, 2012), which is based on the Eclipse Modeling

Framework (EMF). In order to support the BPMNt extension proposed in this

research, we have automatically converted its BPMN-compliant specification in

XML Schema (Appendix 3) to an EMF model, and its manipulation has been

integrated with the BPMN editor of the MDT project. Thus, we enabled the

151

addition of BPMNt extension elements to standard BPMN elements without

requiring manual transformations between models.

8.3. Publication Results

During this research, we have achieved the following publications:

 Raquel M. Pillat and Toacy C. Oliveira. A Representation Structure for

Software Process Tailoring Based on BPMN High-Level Operations. In:

Proceedings of the 31st Annual ACM Symposium on Applied Computing

(SAC 2016), ACM, 2016, p. 1576-1579.

 Raquel M. Pillat, Toacy C. Oliveira, Paulo S. C. Alencar, and Donald D.

Cowan. BPMNt: A BPMN Extension for Specifying Software Process

Tailoring, Information and Software Technology, vol. 57, January 2015, p.

95-115.

 Raquel M. Pillat, Fábio P. Basso, Toacy C. Oliveira, and Cláudia L. Werner.

Ensuring Consistency of Feature-based Decisions with a Business Rule

System. In: Proceedings of the Seventh International Workshop on

Variability Modelling of Software-intensive Systems (VaMoS’13). ACM,

Pisa, 2013, p. 1-8.

 Raquel M. Pillat and Toacy C. Oliveira. Introducing Software Process

Tailoring to BPMN: BPMNt. In: Proceedings of the International

Conference on Software and System Process (ICSSP’12). IEEE Computer

Society, Zurich, 2012, p. 58-62.

Some publications were also achieved from related researches and collaborations:

 Fábio Basso, Raquel Pillat, Toacy Oliveira, Fabricia Roos-frantz, Rafael

Frantz. Automated design of multi-layered web information systems. The

Journal of Systems and Software, v. 117, 2016.

 Fábio Basso, Raquel Pillat, Fabricia Roos-frantz, Rafael Frantz. Combining

MDE and Scrum on the rapid prototyping of web information systems.

International Journal of Web Engineering and Technology, v. 10, 2015.

 Fabio P. Basso, Raquel M. Pillat, Rafael Frantz and Fabrícia Rooz-Frantz.

Study on Combining Model-driven Engineering and Scrum to Produce

152

Web Information Systems. In: 16th International Conference on Enterprise

Information Systems (ICEIS’14), Lisbon, 2014, p. 137-144.

 Fabio P. Basso, Raquel M. Pillat, Rafael Frantz and Fabrícia Rooz-Frantz.

Assisted Tasks to Generate Pre-prototypes for Web Information

Systems. In: 16th International Conference on Enterprise Information

Systems (ICEIS’14), Lisbon, 2014, p. 14-25.

 Fabio P. Basso and Raquel M. Pillat. Towards a Web Modeling

Environment for a Model Driven Engineering Approach. In: III Brazilian

Workshop on Model-Driven Software Development, Natal, 2012.

Currently, we are working on an article reporting our Pattern-based BPMNt

extension (presented in Chapter 6) that has not yet been submitted for publication.

8.4. Limitations

On the scope of the research:

 The proposal presented in this thesis focuses only on the representational aspect

of adaptations involving two BPMN process models that share common process

elements. We have not investigated or dealt with issues that are around the

mentioned aspect, such as reuse concerns. For example, this research does not

present techniques for selecting a base process model from a set of available

models in a repository as well as it does not concern on the definition of

reference process models that will be target of tailoring.

 This proposal has not been intended for managing variants in the context of

process families (variability management). It focuses only in the relationship

between two similar process models (base and variant ones), so that a model

extends the behavior of another by reusing common process parts.

On the solution approach:

 This proposal does not impose constraints defining process parts that can or

cannot be target of adaptations, for example, aiming at standard conformance.

Since it intends to be useful in situations involving process adaptation beyond

the variability management (e.g., model refinement for including technique

153

aspects and changes aiming at process improvement), we judged to be better to

let the process engineer to make these decisions.

 Adaptations are not graphically represented in any process model perspective

and can only be inferred from the adaptation operations that form a given

tailoring scenario. The lack of graphical representation can make difficult for a

user to predict the final result of tailoring in some cases.

 The proposal does not provide mechanisms to guide the user during the

specification of tailoring scenarios, which can become complex and difficult to

manage when there are many operations modifying the process structure.

 Like other approaches based on BPMN models, we consider only the process

control-flow perspective in our adaptation approach. This limitation is because

other process perspectives are generally not represented in BPMN process

models.

 In the current proposal, we do not provide mechanisms for identifying and

solving possible conflicts between adaptation operations (e.g., an operation that

modifies an element that has been removed). Although we created a

configuration option that executes operations involving only insertion before

operations involving removals in order to minimize this issue, conflicts can still

occur.

 We did not formalize our rules associated with tailoring operations because we

did not find a single suitable formal representation for representing them. We

considered OCL, but it represents only static model rules and we have also action

rules. Then we investigated the representation of business rules with a specific

rule management system (Drools) and evaluated its use for managing the

configuration process of a Feature Model. This experience was reported in

PILLAT et al. (2013). However, this type of representation seems adequate only

for dynamic rules, which use runtime information.

On the evaluation of the proposal:

 Despite we have conducted some evaluation studies based on real process

adaptation data, these studies were still limited in their scope and coverage and

evaluated only the feasibility of our proposal. New studies evaluating other

perspectives of the proposal must be conducted to better understand its benefits

and limitations.

154

8.5. Implications and Future Perspectives

In this research, we have dedicated considerable effort for defining our BPMN

extension in a compliant way with its standard extension mechanism, which is rather

peculiar and has little available guidance information. However, this initiative was

indispensable for achieving standard conformity, better extension comprehensibility,

model exchangeability, and support of BPMN tools (BRAUN and ESSWEIN, 2014). In

fact, the conformance to the standard made simpler the development of our prototype.

Therefore, we believe this characteristic of the proposal can facilitate its adoption in

other BPMN tools and projects dealing with process adaptation based on BPMN

models. Recently, this initiative has also motivated other researches proposing BPMN

extensions to follow standard conformance (e.g., YOUSFI et al., 2017; MANDAL,

WEIDLICH and WESKE, 2017).

Our proposal explicitly represents adaptation decisions. This explicit information

about performed changes (i.e., applied tailoring operations), and optionally about their

motivation, can be especially important in domains where process tailoring decisions

are still poorly understood, such as in software development processes (KALUS and

KUHRMANN, 2013) (CLARKE and O’CONNOR, 2012). According to KUHRMANN

(2014), the explicit representation of process tailoring enables one to analyze and

understand how tailoring has been performed, and also allows, for example, to support

continuous process improvement.

Indeed, a BPMNt model (i.e., a tailored process model) only contains specific

elements of the derived process and tailoring operations that modify elements of the

base model. Thus, this model can be used as documentation of the adaptation steps and

may be transformed to a change list representation, which is an important asset for

future revisions of the process model (TERNITÉ, 2010).

Our SPEM-based BPMNt extension has been designed based on the tailoring

mechanism of an important technology in the SPE domain and has been evaluated with

real adaptation data from this domain. Therefore, it can be an important resource for

recording, analyzing and understanding behavior variations in software processes. On

the other hand, our BPMNt extension based on high-level operations (pattern-based)

allows representing adaptation operations that have increased semantic value,

155

facilitating the comprehension of performed adaptations and requiring less effort for

specification of tailoring scenarios.

Our proposal can be applied to adapt common BPMN process models, i.e. which

has not been previously “prepared” for reuse (for example, by containing special

configuration semantics), and it also preserves the original model, since no of its

elements is directly modified. Instead, all adaptation information is expressed as

extension information in the tailored process model (BPMNt model). These

characteristics provide flexibility for our support of tailoring, which can be applied in

different contexts, on traditional BPMN process models, and requiring no time or effort

of preparation for the tailoring.

In future works, we intend to extend the thesis research by addressing the

following issues:

 Techniques of information visualization could be explored to graphically

represent dependency relationships from elements of a variant process to

elements of a base process. This graphic representation of dependencies between

models would facilitate the impact analysis of changes added in their future

revisions. Considering our SPEM-based BPMNt extension, since its tailoring

operations are similar to primitive ones, techniques of differential analysis a

posteriori could be investigated to analyze a pair of base and variant models and

extract information about the application of our operations, thus automatically

creating tailoring relationships of the BPMNt extension. These relationships are

important for recording, analyzing and understanding behavior variations in

related processes.

 In order to meet requirements from organizations that need to retain conformity

with a reference (base) model, we can further extend our proposal for including

possibilities of restricting the application of certain tailoring operations. For

example, in some cases can be forbidden for the user to apply tailoring

operations that remove elements from the base process. In other cases, the user

can only be allowed to apply refinement operations, which do not modify the

process behavior.

 At last, for use in well-defined domains, where process variations can be

associated for certain context variables, tailoring scenarios with BPMNt could

be automatically configured adopting a rule-based adaptation approach. In this

156

case, pre-defined business rules could create specific tailoring operations that

modify a base process model according to certain values in context variables.

157

References

AABY, A. Introduction to Programming Languages. 1996. Disponível em:
<http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/>. Acesso em: 10 dez. 2017.

ACTIVITI. Activiti BPM Platform. Disponível em: <http://www.activiti.org/>.

ALEIXO, F. A. et al. Automating the Variability Management, Customization and Deployment of
Software Processes: A Model-Driven Approach. In: Enterprise Information Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. v. 73, p. 372–387.

ALI, N. B.; PETERSEN, K.; WOHLIN, C. A systematic literature review on the industrial use of
software process simulation. Journal of Systems and Software, v. 97, p. 65–85, nov. 2014.

ARMBRUST, O. et al. Scoping software process lines. Software Process: Improvement and
Practice, v. 14, n. 3, p. 181–197, maio 2009.

ARMENISE, P. et al. A Survey and Assessment of Software Process Representation Formalisms.
International Journal of Software Engineering and Knowledge Engineering, v. 03, n. 03, p.
401–426, set. 1993.

ASSY, N. et al. Deriving configurable fragments for process design. International Journal of
Business Process Integration and Management, v. 7, n. 1, p. 2, 2014.

AYORA, C. et al. VIVACE: A framework for the systematic evaluation of variability support in
process-aware information systems. Information and Software Technology, v. 57, p. 248–276,
jan. 2015.

BARRETO, A. Uma Abordagem para Definição de Processos baseada em Reutilização Visando
à Alta Maturidade em Processos. Doctoral Thesis — Rio de Janeiro: COPPE/UFRJ, 2011.

BASILI, V.; CALDIERA, G.; ROMBACH, H. D. Goal Question Metric (GQM) Approach. In:
Encyclopedia of Software Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1994. v. 1,
p. 528–532.

BAZIRE, M.; BRÉZILLON, P. Understanding Context Before Using It. In: Modeling and Using
Context. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. v. 3554, p. 29–40.

BECKER, J.; JANIESCH, C.; PFEIFFER, D. Reuse Mechanisms in Situational Method Engineering.
In: Situational Method Engineering: Fundamentals and Experiences. Boston, MA: Springer US,
2007, v. 244, p. 79–93.

BENDRAOU, R.; GERVAIS, M.-P. A Framework for Classifying and Comparing Process
Technology Domains. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
ADVANCES (ICSEA 2007). IEEE, 2007. Disponível em:
<http://ieeexplore.ieee.org/document/4299888/>

BEUCHE, D.; PAPAJEWSKI, H.; SCHRÖDER-PREIKSCHAT, W. Variability management with
feature models. Science of Computer Programming, v. 53, n. 3, p. 333–352, dez. 2004.

158

BRANCO, M. C. Managing Consistency of Business Process Models across Abstraction Levels.
Doctoral Thesis — Waterloo, Canada: University of Waterloo, 2014.

BRANCO, M. C. et al. A case study on consistency management of business and IT process
models in banking. Software & Systems Modeling, v. 13, n. 3, p. 913–940, jul. 2014.

BRAUN, R.; ESSWEIN, W. Classification of Domain-Specific BPMN Extensions. In: The Practice
of Enterprise Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. v. 197, p. 42–57.

CAMPOS, A. L. N.; OLIVEIRA, T. Software Processes with BPMN: An Empirical Analysis. In:
Product-Focused Software Process Improvement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, v. 7983, p. 338–341.

CASATI, F. Models, Semantics, and Formal Methods for the design of Workflows and their
Exceptions. Milan: University of Milano, 1998.

CHINOSI, M.; TROMBETTA, A. BPMN: An introduction to the standard. Computer Standards &
Interfaces, v. 34, n. 1, p. 124–134, jan. 2012.

CHRISSIS, M. B.; KONRAD, M.; SHRUM, S. CMMI for development: guidelines for process
integration and product improvement. 3rd ed. Upper Saddle River, NJ: Addison-Wesley, 2011.

CLARKE, P.; O’CONNOR, R. V. The situational factors that affect the software development
process: Towards a comprehensive reference framework. Information and Software
Technology, v. 54, n. 5, p. 433–447, maio 2012.

CLEMENTS, P.; NORTHROP, L. Software product lines: practices and patterns. Boston:
Addison-Wesley, 2002.

COGNINI, R. et al. Research challenges in business process adaptability. In: PROCEEDINGS OF
THE 29TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC’14). ACM Press, 2014.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2554850.2555055>

CORREIA, A. Quality of Process Modeling Using BPMN: A Model-Driven Approach. Doctoral
Thesis — Lisboa, Portugal: Universidade Nova de Lisboa, 2014.

CORREIA, A.; ABREU, F. B. E. Adding Preciseness to BPMN Models. Procedia Technology, v. 5,
p. 407–417, 2012.

CORREIA, A.; ABREU, F. B. E. Enhancing the Correctness of BPMN Models. In: Improving
Organizational Effectiveness with Enterprise Information Systems. Advances in Business
Information Systems and Analytics. [s.l.] IGI Global, 2015. v. 1, p. 241–261.

CUI, X. An approach implementing template-based process development on BPMN. In:
INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS). IEEE, 2017.
Disponível em: <http://ieeexplore.ieee.org/document/7960000/>.

DAVENPORT, T. H. Process innovation: reengineering work through information technology.
Boston, Mass: Harvard Business School Press, 1993.

DERNIAME, J.-C.; KABA, B. A.; WASTELL, D. (EDS.). Software Process: Principles, Methodology,
and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. v. 1500.

159

DEY, A. K.; ABOWD, G. D.; SALBER, D. A. Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications. Human–Computer Interaction, v. 16, n.
2–4, p. 97–166, dez. 2001.

DIJKMAN, R. M.; DUMAS, M.; OUYANG, C. Semantics and analysis of business process models
in BPMN. Information and Software Technology, v. 50, n. 12, p. 1281–1294, nov. 2008.

DIJKMAN, R.; ROSA, M. L.; REIJERS, H. A. Managing large collections of business process models
— Current techniques and challenges. Computers in Industry, v. 63, n. 2, p. 91–97, fev. 2012.

DÖHRING, M.; ZIMMERMANN, B. vBPMN: Event-Aware Workflow Variants by Weaving BPMN2
and Business Rules. In: Enterprise, Business-Process and Information Systems Modeling.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. v. 81, p. 332–341.

DUMAS, M.; GARCÍA-BAÑUELOS, L.; POLYVYANYY, A. Unraveling Unstructured Process Models.
In: Business Process Modeling Notation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
v. 67, p. 1–7.

DUMAS, M.; PFAHL, D. Modeling Software Processes Using BPMN: When and When Not? In:
KUHRMANN, M. et al. (Eds.). Managing Software Process Evolution. Cham: Springer
International Publishing, 2016. p. 165–183.

EPF. The OpenUP methodology web site. Disponível em:
<http://epf.eclipse.org/wikis/openup/>. Acesso em: 10 dez. 2017.

FERRATT, T. W.; MAI, B. Tailoring software development. In: PROCEEDINGS OF THE SPECIAL
INTEREST GROUP ON MANAGEMENT INFORMATION SYSTEM’S 48TH ANNUAL CONFERENCE
ON COMPUTER PERSONNEL RESEARCH ON COMPUTER PERSONNEL RESEARCH. ACM Press,
2010. Disponível em: <http://portal.acm.org/citation.cfm?doid=1796900.1796963>.

FRANK, U. Conceptual modeling as the core of the information systems discipline—
perspectives and epistemological challenges. In: FIFTH AMERICAS CONFERENCE ON
INFORMATION SYSTEMS. 1999.

FRECE, A.; JURIC, M. B. Modeling functional requirements for configurable content- and
context-aware dynamic service selection in business process models. Journal of Visual
Languages & Computing, v. 23, n. 4, p. 223–247, ago. 2012.

FUGGETTA, A. Software Process: A Roadmap. Proceedings of the Conference on The Future of
Software Engineering. Anais...: ICSE’00. New York, NY, USA: ACM, 2000. Disponível em:
<http://doi.acm.org/10.1145/336512.336521>. Acesso em: 15 jun. 2012.

GARCÍA-BORGOÑÓN, L. et al. Software process modeling languages: A systematic literature
review. Information and Software Technology, v. 56, n. 2, p. 103–116, fev. 2014.

GINSBERG, M. P.; QUINN, L. H. Process Tailoring and the Software Capability Maturity Model:
CMU/SEI Report Number: CMU/SEI-94-TR-024. Pittsburgh, PA, USA: Software Engineering
Institute, nov. 1995. Disponível em: <https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=12261>.

GOTTSCHALK, F. et al. Configurable Process Models: Experiences from a Municipality Case
Study. In: Advanced Information Systems Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. v. 5565, p. 486–500.

160

GOTTSCHALK, F.; VAN DER AALST, W. M. P.; JANSEN-VULLERS, M. H. Configurable Process
Models — A Foundational Approach. In: Reference Modeling. Heidelberg: Physica-Verlag HD,
2007. p. 59–77.

HACK, M. Petri Net Language. Cambridge, MA, USA: Massachusetts Institute of Technology,
1976.

HALLERBACH, A.; BAUER, T.; REICHERT, M. Capturing variability in business process models:
the Provop approach. Journal of Software Maintenance and Evolution: Research and
Practice, v. 22, n. 6–7, p. 519–546, 19 out. 2009.

HALLERBACH, A.; BAUER, T.; REICHERT, M. Configuration and Management of Process Variants.
In: BROCKE, J. VOM; ROSEMANN, M. (Eds.). Handbook on Business Process Management 1.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 237–255.

HAMMER, M.; CHAMPY, J. Reengineering the corporation: a manifesto for business
revolution. New York: HarperBusiness Essentials, 2003.

HARMON, P. The State of Business Process Management 2016: BPTrends Report. [s.l.]
BPTrends, mar. 2016. Disponível em: <https://www.bptrends.com/bpt/wp-
content/uploads/2015-BPT-Survey-Report.pdf>.

HEBIG, R.; KHELLADI, D. E.; BENDRAOU, R. Approaches to Co-Evolution of Metamodels and
Models: A Survey. IEEE Transactions on Software Engineering, v. 43, n. 5, p. 396–414, maio
2017.

HENDERSON, P. Software processes are business processes too. IEEE Comput. Soc. Press,
1994. Disponível em: <http://ieeexplore.ieee.org/document/344411/>.

HENDERSON-SELLERS, B. et al. Situational Method Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014.

HENDERSON-SELLERS, B.; RALYTÉ, J. Situational Method Engineering: State-of-the-Art Review.
JUCS - Journal of Universal Computer Science, n. 3, fev. 2010.

HENNINGER, S. et al. Supporting Adaptable Methodologies to Meet Evolving Project Needs. In:
Extreme Programming and Agile Methods — XP/Agile Universe 2002. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002. v. 2418, p. 33–44.

HERRMANNSDÖRFER, M.; WACHSMUTH, G. Coupled Evolution of Software Metamodels and
Models. In: MENS, T.; SEREBRENIK, A.; CLEVE, A. (Eds.). Evolving Software Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014. p. 33–63.

HUMPHREY, W. S. The software engineering process: definition and scope. ACM SIGSOFT
Software Engineering Notes, v. 14, n. 4, p. 82–83, 1989.

HURTADO ALEGRÍA, J. A. et al. An MDE approach to software process tailoring. In:
INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEMS PROCESS (ICSSP). ACM Press,
2011. Disponível em: <http://portal.acm.org/citation.cfm?doid=1987875.1987885>.

ISO. ISO/IEC 15504-2:2003. International Organization for Standardization, 2004.

161

ISO. ISO/IEC 19510:2013: Information technology -- Object Management Group Business
Process Model and Notation. International Organization for Standardization, jul. 2013.
Disponível em: <https://www.iso.org/standard/62652.html>.

KALUS, G.; KUHRMANN, M. Criteria for software process tailoring: a systematic review. In:
INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEM PROCESS (ICSSP). ACM Press,
2013. Disponível em: <http://dl.acm.org/citation.cfm?doid=2486046.2486078>.

KRUCHTEN, P. The rational unified process: an introduction. 3rd ed. Boston: Addison-Wesley,
2004.

KUHRMANN, M. You can’t tailor what you haven’t modeled. In: PROCEEDINGS OF THE 2014
INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEM PROCESS (ICSSP). ACM Press,
2014. Disponível em: <http://dl.acm.org/citation.cfm?doid=2600821.2600851>.

KUHRMANN, M. et al. Flexible software process lines in practice: A metamodel-based
approach to effectively construct and manage families of software process models. Journal of
Systems and Software, v. 121, p. 49–71, nov. 2016.

KUHRMANN, M.; FERNÁNDEZ, D. M.; STEENWEG, R. Systematic software process
development: where do we stand today?. In: INTERNATIONAL CONFERENCE ON SOFTWARE
AND SYSTEMS PROCESS (ICSSP). ACM Press, 2013. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2486046.2486077>.

KUHRMANN, M.; FERNÁNDEZ, D. M.; TERNITÉ, T. Realizing software process lines: insights
and experiences. In: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON
SOFTWARE AND SYSTEM PROCESS. ACM Press, 2014. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2600821.2600833>.

KÜSTER, J. et al. Supporting different process views through a Shared Process Model. Software
& Systems Modeling, v. 15, n. 4, p. 1207–1233, out. 2016.

LA ROSA, M. Modeling Business Process Variability: Are We Done Yet?. In: INTERNATIONAL
SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE (SPLC) - VOLUME A. Sevilla, Spain:
ACM Press, 2017. Disponível em: <http://dl.acm.org/citation.cfm?doid=3106195.3106196>.

LANGER, P. et al. A posteriori operation detection in evolving software models. Journal of
Systems and Software, v. 86, n. 2, p. 551–566, fev. 2013.

LONCHAMP, J. A structured conceptual and terminological framework for software process
engineering. In: CONFERENCE ON THE SOFTWARE PROCESS. IEEE Comput. Soc. Press, 1993.
Disponível em: <http://ieeexplore.ieee.org/document/236823/>

LONIEWSKI, G.; ARMESTO, A.; INSFRAN, E. An agile method for model-driven requirements
engineering. In: THE SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
ADVANCES (ICSEA). IARIA, 2011.

MAGDALENO, A. COMPOOTIM: Em Direção ao Planejamento, Acompanhamento e
Otimização da Colaboração na Definição de Processos de Software. PhD Thesis — Rio de
Janeiro: COPPE/UFRJ, 2013.

162

MANDAL, S.; WEIDLICH, M.; WESKE, M. Events in Business Process Implementation: Early
Subscription and Event Buffering. In: Business Process Management Forum. Cham: Springer,
2017. v. 297, p. 141–159.

MARTÍNEZ-RUIZ, T. et al. Requirements and constructors for tailoring software processes: a
systematic literature review. Software Quality Journal, v. 20, n. 1, p. 229–260, mar. 2012.

MARTÍNEZ-RUIZ, T.; GARCÍA, F.; PIATTINI, M. Towards a SPEM v2.0 Extension to Define Process
Lines Variability Mechanisms. In: LEE, R. (Ed.). Software Engineering Research, Management
and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. v. 150, p. 115–130.

MDT. MDT/BPMN2 Project. Disponível em: <http://wiki.eclipse.org/MDT/BPMN2>.

MENDLING, J. Metrics for Process Models. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. v. 6.

MENS, T.; VAN GORP, P. A. Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science, v. 152, p. 125–142, mar. 2006.

MOON, M.; HONG, M.; YEOM, K. Two-Level Variability Analysis for Business Process with
Reusability and Extensibility. In: COMPUTER SOFTWARE AND APPLICATIONS (COMPSAC). IEEE,
2008. Disponível em: <http://ieeexplore.ieee.org/document/4591567/>.

NUNES, V. Dynamic Process Adaptation: Planning in a Context-Aware Approach. PhD Thesis
— Rio de Janeiro: COPPE/UFRJ, 2014.

OLIVEIRA, E. A. et al. SMartySPEM: A SPEM-Based Approach for Variability Management in
Software Process Lines. In: Product-Focused Software Process Improvement. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. v. 7983, p. 169–183.

OMG. Software Process Engineering Metamodel (SPEM) 2.0 Specification. Object
Management Group, 2008. Disponível em: <http://www.omg.org/spec/SPEM/2.0/PDF/>.

OMG. Business Process Model and Notation (BPMN) Version 2.0. Object Management Group,
jan. 2011. Disponível em: <http://www.omg.org/spec/BPMN/2.0>.

OMG. Unified Modeling Language version 2.5. Object Management Group, maio 2015.
Disponível em: <http://www.omg.org/spec/UML/2.5/>.

OSTERWEIL, L. Software processes are software too. In: PROCEEDINGS OF THE 9TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE ’87). Monterey, California,
USA: IEEE, 1987.

PAIGE, R. F.; MATRAGKAS, N.; ROSE, L. M. Evolving models in Model-Driven Engineering: State-
of-the-art and future challenges. Journal of Systems and Software, v. 111, p. 272–280, jan.
2016.

PANDE, P. S.; NEUMAN, R. P.; CAVANAGH, R. R. The Six Sigma way: how GE, Motorola, and
other top companies are honing their performance. New York: McGraw-Hill, 2000.

PASCALAU, E. et al. Partial process models to manage business process variants. International
Journal of Business Process Integration and Management, v. 5, n. 3, p. 240, 2011.

163

PEDREIRA, O. et al. A systematic review of software process tailoring. ACM SIGSOFT Software
Engineering Notes, v. 32, n. 3, p. 1, 2007.

PEFFERS, K. et al. A Design Science Research Methodology for Information Systems Research.
Journal of Management Information Systems, v. 24, n. 3, p. 45–77, dez. 2007.

PEREIRA, E. B.; BASTOS, R. M.; OLIVEIRA, T. Process tailoring based on well-formedness rules.
In: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
AND KNOWLEDGE ENGINEERING (SEKE’08). San Francisco, CA, USA: 2008.

PEREIRA, E. B.; BASTOS, R. M.; OLIVEIRA, T. C. A Systematic Approach to Process Tailoring.
IEEE, mar. 2007.

PILLAT, R. M. et al. Ensuring consistency of feature-based decisions with a business rule
system. In: INTERNATIONAL WORKSHOP ON VARIABILITY MODELLING OF SOFTWARE-
INTENSIVE SYSTEMS (VAMOS). Pisa - Italy, ACM Press, 2013.

PILLAT, R. M. et al. BPMNt: A BPMN extension for specifying software process tailoring.
Information and Software Technology, v. 57, p. 95–115, jan. 2015.

PILLAT, R. M.; OLIVEIRA, T. C. A representation structure for process tailoring based on BPMN
high-level operations. In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC). ACM
Press, 2016, p. 1576-1579.

PILLAT, R. M.; OLIVEIRA, T. C.; FONSECA, F. L. Introducing Software Process Tailoring to BPMN:
BPMNt. In: INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEM PROCESS (ICSSP). IEEE,
jun. 2012.

POLYVYANYY, A. et al. Restructuring BPMN diagrams using BPStruct. Signavio BPM. Disponível
em: <https://www.signavio.com/bpm-academic-initiative/>. Acesso em: 12 dez. 2017.

POPP, R.; KAINDL, H. Automated refinement of business processes through model
transformations specifying business rules. In: INTERNATIONAL CONFERENCE ON RESEARCH
CHALLENGES IN INFORMATION SCIENCE (RCIS). IEEE, 2015.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. Eighth edition ed. New
York, NY: McGraw-Hill Education, 2015.

RAJABI, B. A.; LEE, S. P. Change Management in Business Process Modeling Survey.
Information Management and Engineering, 2009. In: INTERNATIONAL CONFERENCE ON
INFORMATION MANAGEMENT AND ENGINEERING (ICIME '09). IEEE, 2009.

RALYTÉ, J.; DENECKÈRE, R.; ROLLAND, C. Towards a Generic Model for Situational Method
Engineering. In: Advanced Information Systems Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003. v. 2681, p. 95–110.

RECKER, J. et al. Do Process Modelling Techniques Get Better? A Comparative Ontological
Analysis of BPMN. In: 16TH AUSTRALASIAN CONFERENCE ON INFORMATION SYSTEMS,
SYDNEY AND AUSTRALIA, AUSTRALASIAN CHAPTER OF THE ASSOCIATION FOR INFORMATION
SYSTEMS. 2005.

164

REICHERT, M. et al. Adaptive Process Management with ADEPT2. In: PROCEEDINGS OF THE
21ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE’05). Tokoyo, Japan: IEEE,
2005.

REICHERT, M.; WEBER, B. Enabling flexibility in process-aware information systems:
challenges, methods, technologies. Berlin, New York: Springer, 2012.

REIS, C. Uma Abordagem Flexível para Execução de Processos de Software Evolutivos. PhD
Thesis - Porto Alegre: PPGC- UFRGS, 2003.

ROBSON, C. Real world research: a resource for users of social research methods in applied
settings. 3. ed. Chichester: Wiley, 2011.

ROSA, M. L. et al. Business Process Variability Modeling: A Survey. ACM Computing Surveys, v.
50, n. 1, p. 1–45, mar. 2017.

RUIZ-RUBE, I. et al. Uses and applications of Software & Systems Process Engineering Meta-
Model process models. A systematic mapping study: Uses and Applications of SPEM process
models. Journal of Software: Evolution and Process, v. 25, n. 9, p. 999–1025, set. 2013.

RUNESON, P.; HÖST, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering, v. 14, n. 2, p. 131–164, abr. 2009.

SANTOS, E. et al. A Goal-Oriented Approach for Variability in BPMN. In: PROCEEDINGS OF THE
13TH WORKSHOP ON REQUIREMENTS ENGINEERING (WER). 2010.

SANTOS, R. M. S.; OLIVEIRA, T. C.; ABREU, F. B. Mining software development process
variations. In: ACM SYMPOSIUM ON APPLIED COMPUTING (SAC). ACM Press, 2015.

SCHMIDT, D. C. Model-Driven Engineering. Computer, v. 39, n. 2, p. 25–31, fev. 2006.

SCHNIEDERS, A.; PUHLMANN, F. Variability mechanisms in e-business process families. In:
PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON BUSINESS INFORMATION
SYSTEMS (BIS). GI, 2006.

SCHONENBERG, M. H. et al. Towards a taxonomy of process flexibility (extended version):
BPM Center Report No. BPM-07-11. [s.l.] BPM Center, 2007. Disponível em:
<http://bpmcenter.org/wp-content/uploads/reports/2007/BPM-07-11.pdf>.

SCHUNSELAAR, D. M. M. et al. Creating Sound and Reversible Configurable Process Models
Using CoSeNets. In: Business Information Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012. v. 117, p. 24–35.

SEI. Standard CMMI Appraisal Method for Process Improvement (SCAMPI), version 1.1:
Method definition document (CMU/SEI-2001-HB-001). Software Engineering Institute, 2001.

SELIC, B. The pragmatics of model-driven development. IEEE Software, v. 20, n. 5, p. 19–25,
set. 2003.

SHARP, A.; MCDERMOTT, P. Workflow modeling: tools for process improvement and
applications development. 2a ed. Boston: Artech House, 2009.

165

SUTTON, S. M.; OSTERWEIL, L. J. Product families and process families. In: PROCEEDINGS OF
THE 10TH INTERNATIONAL SOFTWARE PROCESS WORKSHOP. IEEE Comput. Soc, 1998.

TEIXEIRA, E. OdysseyProcessReuse: Uma Metodologia para Engenharia de Linha de Processos
de Software Baseada em Componentes. PhD Thesis — Rio de Janeiro: COPPE/UFRJ, 2016.

TERNITÉ, T. Process Lines: A Product Line Approach Designed for Process Model
Development. In: 35TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS. IEEE, 2009.

TERNITÉ, T. Variability of Development Models. PhD Thesis — TU Clausthal, 2010.

TERNITÉ, T.; KUHRMANN, M. Das V-Modell XT 1.3 Metamodell. Technische Universität
München, 2009.

THOM, L.; IOCHPE, C. BPMN 2.0 Poster. Berliner BPM-Offensive, [s.d.]. Disponível em:
<http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf>.

VAN DER AALST, W. M. P. Business Process Management: A Comprehensive Survey. ISRN
Software Engineering, v. 2013, p. 1–37, 2013.

VAN DER AALST, W. M. P.; JABLONSKI, S. Dealing with workflow change: identification of issues
and solutions. International Journal of Computer Systems Science & Engineering, v. 15, n. 5,
p. 267–276, set. 2000.

VAN DER AALST, W. M. P.; TER HOFSTEDE, A. H. M. YAWL: yet another workflow language.
Information Systems, v. 30, n. 4, p. 245–275, jun. 2005.

VAN DER AALST, W. M. P.; TER HOFSTEDE, A. H. M.; WESKE, M. Business Process Management:
A Survey. In: TER HOFSTEDE, A. (Ed.). Business Process Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003. v. 2678, p. 1–12.

VARA, J. M. et al. Dealing with Traceability in the MDDof Model Transformations. IEEE
Transactions on Software Engineering, v. 40, n. 6, p. 555–583, jun. 2014.

VERGIDIS, K.; TIWARI, A.; MAJEED, B. Business Process Analysis and Optimization: Beyond
Reengineering. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), v. 38, n. 1, p. 69–82, jan. 2008.

WANG, H. J.; ZHAO, J. L. Constraint-centric workflow change analytics. Decision Support
Systems, v. 51, n. 3, p. 562–575, jun. 2011.

WASHIZAKI, H. Deriving Project-Specific Processes from Process Line Architecture with
Commonality and Variability. In: IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL
INFORMATICS. IEEE, ago. 2006.

WEBER, B. et al. Refactoring large process model repositories. Computers in Industry, v. 62, n.
5, p. 467–486, jun. 2011.

WEBER, B.; REICHERT, M.; RINDERLE-MA, S. Change patterns and change support features –
Enhancing flexibility in process-aware information systems. Data & Knowledge Engineering, v.
66, n. 3, p. 438–466, Setembro 2008.

166

WESKE, M. Business process management: concepts, languages, architectures. New York:
Springer, 2007.

XU, P. Knowledge Support in Software Process Tailoring. In: PROCEEDINGS OF THE 38TH
ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS ’05). Big Island,
HI, USA: IEEE, 2005.

XU, P.; RAMESH, B. Using Process Tailoring to Manage Software Development Challenges. IT
Professional, v. 10, n. 4, p. 39–45, jul. 2008.

YOON, I.-C.; MIN, S.-Y.; BAE, D.-H. Tailoring and verifying software process. IEEE Comput. Soc,
2001. Disponível em: <http://ieeexplore.ieee.org/document/991478/>.

YOUSFI, A. et al. Towards uBPMN-Based Patterns for Modeling Ubiquitous Business Processes.
IEEE Transactions on Industrial Informatics, p. 1–1, 2017.

YOUSFI, A.; SAIDI, R.; DEY, A. K. Variability patterns for business processes in BPMN.
Information Systems and e-Business Management, v. 14, n. 3, p. 443–467, ago. 2016.

ZAKARIA, N. A.; IBRAHIM, S.; MAHRIN, M. N. The state of the art and issues in software
process tailoring. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
COMPUTER SYSTEMS (ICSECS). IEEE, ago. 2015. Disponível em:
<http://ieeexplore.ieee.org/document/7333097/>.

ZAVE, P. Feature interactions and formal specifications in telecommunications. Computer, v.
26, n. 8, p. 20–28, ago. 1993.

ZHANG, H.; HAN, W.; OUYANG, C. Extending BPMN for Configurable Process Modeling.
Advances in Transdisciplinary Engineering, p. 317–330, 2014.

167

Appendix 1: BPMN Well-Formedness Rules

Table 16 lists all BPMN well-formedness rules related to the process’ control-

flow perspective that we have taken into account for producing correct tailored process

models regarding the BPMN specification when using BPMNt tailoring operations. It is

important to highlight that our solution works only with BPMN models that explicitly

represent start and end events, which is a best-practice recommendation (OMG, 2011).

Our list does not contain some control-flow rules from the original list in

(CORREIA, 2014), which represent limitations of our solution. Such missing rules are:

 Rules related to Message Flow (element used in the modeling of

Collaborations);

 Rules related to event of type Link;

 Rules related to matching between Catch and Throw Events.

 Rules for merging exception flows with the normal flow of the process;

 Rules related to BPMN elements usually represented in executable models

(BRANCO, 2014): Compensation activities and events, Transaction Sub-Process

and Event Sub-Process.

Table 16. Subset of BPMN control-flow well-formedness rules considered in this research (adapted from

CORREIA, 2014)

ID BPMN Control-Flow Well-formedness Rules

1

Process:
A Top-Level Process can only be instantiated by a restricted set of Start Event types
(None, Message, Timer, Conditional, or Signal).

2

Sub-Process:
A Sub-Process can only have one None Start Event.

3

Flow Node:
A Flow Node, in a container that includes start and end events, must have at least one
incoming or one outgoing sequence flow.

4

5
6
7

8

9
10
11

Event:
Only some predefined types of Start, Intermediate and End Events are allowed in
specific contexts.
Incoming Sequence Flow not allowed in a Start Event.
Outgoing Sequence Flow not allowed in an End Event.
Intermediate Events used within normal flow require incoming and outgoing Sequence
Flows.
Explicit Start/End Events do not allow Activities or Gateways without incoming/outgoing
Sequence Flow.
Error intermediate events can only be attached to activity boundaries.
Catch Error Event must trigger an exception flow.

168

12
13
14

15

A Throwing Error Event must be an End Event.
Catch Escalation Events can only be attached to activity boundaries.
Catch Escalation Event must trigger an exception flow.
A Boundary Event must have exactly one outgoing Sequence Flow (unless it has the
Compensation type)
A Boundary Event must not have incoming Sequence Flow

16
17
18

19

20

21
22

23

24

25

26

27

Gateway:
A Parallel Gateway joins only non-exclusive Sequence Flows
A join Exclusive Gateway must merge only exclusive Sequence Flows
A Gateway must have either multiple incoming Sequence Flow or multiple outgoing
Sequence Flow (i.e., it must merge or split the flow).
A Gateway with a gatewayDirection of converging must have multiple incoming
Sequence Flow, but must not have multiple outgoing Sequence Flow.
A Gateway with a gatewayDirection of diverging must have multiple outgoing Sequence
Flow, but must not have multiple incoming Sequence Flow.
An Event-Based Gateway must have two or more outgoing Sequence Flow.
A Conditional Sequence Flow must not be used if the source Gateway is of type Event-
Based.
A condition Expression must be defined if the Source of the Sequence Flow is an
Exclusive or Inclusive Gateway.
Target of the Event-Based Gateway must be Receive Task or specific Intermediate Catch
Event (Message, Signal, Timer, or Conditional).
If Message Intermediate Catch Events are used as Target for the Gateway’s outgoing
Sequence Flow, then Receive Tasks must not be used and vice versa.
Target elements in an Event-Based Gateway configuration must not have any additional
incoming Sequence Flow (other than that from the Event Gateway).
A Parallel Gateway must not have outgoing Conditional Sequence Flow.

28

29
30

Sequence Flow:
A conditional Sequence Flow cannot be used if there is only one sequence flow out of
the element.
Sequence Flows cannot cross container boundaries.
The source and target must not be the same.

169

Appendix 2: Catalog of BPMNt Tailoring Operations

EXTEND

Purpose: Reuse the elements structure of an existing process model to derive a new one and enable the
use of tailoring operations.

Motivation: A new process TP shares with another existing one part of its elements structure, therefore the
new process should be defined by adapting the existing one through tailoring operations.

Description: A process or subprocess (Tailored Process - TP) reuses the structure of another (Base Process -
BP), inheriting its complete elements structure. The parameter applicationOrder specifies the criterion
used for applying tailoring operations defined in a Tailored Process (TP). If applicationOrder = FirstAddition
(default), then all operations involving only insertions of elements are executed first. On the other hand, if
the value of the parameter is Free, then the order of operation application is given by the order in which
they were specified in the Tailored Process.

Source Element Type(s): Process, or Subprocess.

Parameters: extendedProcess(BPMN:FlowElementsContainer), applicationOrder (OrderType =
FirstAddition {Free | FirstAddition })

Post-conditions: Enables the application of other tailoring operations from the Tailored Process (source)
to the Base Process (target).

Representation:

Example: In the SIGA project, specific execution cases (i.e., instances) of the defined process for the project
(i.e., base process) represent tailored processes from this last one (e.g., see Figure 31, item number 1).

Figure 49. Tailoring operation Extend

DELETE

Purpose: Remove a process element or fragment from the reused base process.

Motivation: In a specific process, an element or fragment of the base process does not need to be
executed.

Description: A variant process defines an element B which removes another one (identified by
removedElement) or a fragment of elements (from fragmentBegin to fragmentEnd) from the reused base
process.

Source Element Type(s): Task, Subprocess, or Event.

Parameters: removedElement (BPMN:FlowNode), fragmentBegin (BPMN:FlowNode), fragmentEnd
(BPMN:FlowNode).

Pre-conditions:
1) It is not allowed to suppress the start or end event of a process;
2) It is not allowed to suppress gateways directly;
3) It is not allowed to suppress process fragments containing incomplete flow branches.

Post-conditions:
1) Elements linked to the removed one that are not related to other elements should also be

removed;
2) By deleting an entire flow to or from a gateway, if there is only one flow entering or leaving this

170

gateway, then the gateway will also be removed;
3) The element immediately preceding the removed one will be connected to the element

immediately following it.

Representation:

Related Pattern: Delete Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008); Suppress
Specification Activity (BRANCO et al., 2014).

Example: In a variant software process (SIGA Project), use cases that do not describe a report specification,
but a functionality with associated GUI screen, do not require the task Specify Report (see Figure 32).

Figure 50. Tailoring operation Delete

REPLACE

Purpose: Replace a process element or fragment from the reused base process by another element or
fragment.

Motivation: A process element or fragment from the base process is no longer adequate to the specific
process, but it can be replaced by another one.

Description: A variant process defines an element X (or process fragment into a subprocess) which replaces
another element B (identified by replacedElement) or a fragment of elements (from fragmentBegin to
fragmentEnd) from the reused base process.
The parameter additionIsFragment is relevant only when this operation is defined to a subprocess (source
element X). When its value is true indicates that the content of the source subprocess of the operation
represents a process fragment to be inserted directly in the workflow of the reused base process.
Otherwise, the source subprocess itself will be inserted in the target process’ workflow.

Source Element Type(s): Task, Subprocess, or Event.

Parameters: replacedElement (BPMN:FlowNode), fragmentBegin (BPMN:FlowNode), fragmentEnd
(BPMN:FlowNode), additionIsFragment(boolean).

Pre-conditions:
1) Start or end events cannot be replaced;
2) Gateways cannot be replaced directly;
3) Process fragments containing incomplete flow branches cannot be replaced.
4) If source element of the operation is a Subprocess, its content cannot violate any rule in Appendix

1;
5) If source element of the operation is an Event, it must be an intermediate event of specific type

(None, Message, Timer, Escalation, Conditional, or Signal).

Post-conditions:
1) Elements linked to the replaced one that are not related to other elements should be removed;
2) Sequence flows connected to the replaced element must be reconfigured to connect in the same

way to the substitute element.

Representation:

Related Pattern: Replace Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008).

171

Example: The SIGA project’s base process could specify only the workflow used to use cases with
associated GUI screen (alternative path on the bottom part of Figure 31), i.e., without representing the
alternative flow that contains the task Specify Report, since these are the most common types of use case
of the project. In this case, the base process could be easy adapted to represent the workflow of use
cases related to reports by replacing the process fragment between tasks Design Screen and Define Test
Cases by the task Specify Report.

Figure 51. Tailoring operation Replace

MOVE

Purpose: Move a process element or fragment from its current position in the base process to another
position within the variant process.

Motivation: The predefined order to elements in the base process cannot be completely satisfied in the
specific process for a given process element or fragment.

Description: A variant process element specifies through this operation that an element D (identified by
movedElement) or a fragment of elements (from fragmentBegin to fragmentEnd) is moved to a new
workflow position immediately after (newPositionAfter) or immediately before (newPositionBefore)
another element C within the same process.

Source Element Type(s): Task.

Parameters: movedElement (BPMN:FlowNode), fragmentBegin (BPMN:FlowNode), fragmentEnd
(BPMN:FlowNode), newPositionAfter (BPMN:FlowNode), newPositionBefore (BPMN:FlowNode).

Pre-conditions:
1) If only the parameter newPositionAfter is provided by the user, it cannot link to a diverging

gateway or end event;
2) If only the parameter newPositionBefore is provided by the user, it cannot link to a converging

gateway or start event;
3) Start or end events cannot be moved;
4) Gateways cannot be moved singly;
5) Process fragments containing incomplete flow branches cannot be moved.

Post-conditions:
1) Elements linked to the moved one should be moved together;
2) Sequence flows must be reconfigured to connect the predecessor to the successor of the moved

element (or fragment) in its old position as well as to reconnect it in its new position.

Representation:

Related Pattern: Move Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008).

Example: In a particular variant process from the SIGA Project, the task that precedes Update Database has
been parallelized with other tasks. So, in order to continue being executed soon after its original
predecessor, the task Update Database needs to be moved (see Figure 32).

Figure 52. Tailoring operation Move

PARALLELIZE

Purpose: Parallelize the execution of elements from a process fragment that has been defined as a
sequential flow in the base process.

Motivation: The predefined sequential order for a fragment of the base process does not correspond to its
real-world execution order, which is concomitant. Typically, tasks assigned to different roles and without

172

dependencies to each other can be performed in parallel.

Description: A variant process element specifies through this operation that a process fragment identified
by the parameters fragmentBegin and fragmentEnd has its execution parallelized in the reused base
process. To this end, the operation includes a parallel gateway before the target fragment’s elements to
diverge the process flow and another parallel gateway after the fragment’s elements to converge again the
process flow.

Source Element Type(s): Task.

Parameters: fragmentBegin (BPMN:FlowNode), fragmentEnd (BPMN:FlowNode).

Pre-conditions:
1) Parameters fragmentBegin and fragmentEnd must point to succeeding different elements;
2) The target process fragment cannot include start or end events;
3) The target process fragment cannot include gateways.

Post-conditions:
1) A BPMN parallel gateway is included before the target fragment’s elements to diverge the process

flow and another BPMN parallel gateway is included after the target fragment’s elements to
converge again the process flow;

2) Sequence Flows are inserted and adjusted to connect target fragment’s elements to the parallel
gateways included by this operation.

Representation:

Related Pattern: Parallelize Activities (WEBER, REICHERT and RINDERLE-MA, 2008).

Example: In a particular variant process from the SIGA Project, the tasks Review Use Case Specification,
Define Test Cases, and Elaborate Physical Model have been parallelized to represent their real-world
execution order (see Figure 32).

Figure 53. Tailoring operation Parallelize

SERIAL INSERT

Purpose: Insert a new process element or fragment between two directly succeeding elements of the
reused base process.

Motivation: In a more specific process, a task has to be performed which has not been modeled in the
more general process, i.e. the base process.

Description: A variant process defines a process element or fragment X which should be inserted in the
reused base process workflow after the element indicated by the parameter after or before the element
indicated by the parameter before.
The parameter additionIsFragment is relevant only when this operation is defined to a subprocess (source
element X). When its value is true indicates that the content of the source subprocess of the operation
represents a process fragment to be inserted directly in the workflow of the reused base process.
Otherwise, the source subprocess itself will be inserted in the target process’ workflow.

Source Element Type(s): Task, Subprocess, or Event.

Parameters: after(BPMN:FlowNode), before(BPMN:FlowNode), additionIsFragment(boolean = false).

Pre-conditions:
1. If the parameter aftef is provided by the user, it cannot link to a diverging gateway or end event;
2. If the parameter before is provided by the user, it cannot link to a converging gateway or start

event;
3. Gateways cannot be inserted singly;
4. Process fragments containing incomplete flow branches cannot be inserted;

173

5. If source element of the operation is a Subprocess, its content cannot violate any rule in Appendix
1;

6. If source element of the operation is an Event, it must be an intermediate event of specific type
(None, Message, Timer, Escalation, Conditional, or Signal).

Post-conditions:
1. Sequence flows must be reconfigured to connect to the element or fragment inserted.

Representation:

Related Pattern: Insert Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008).

Example: In a particular variant process from the SIGA Project, the task Elaborate Mapping of Use Case
Links, which has not been modeled in the base process, needed to be performed in executed processes
between the directly succeeding tasks Update General Class Diagram and Review Use Case Specification
(see Figure 33).

Figure 54. Tailoring operation Serial Insert

CONDITIONAL INSERT

Purpose: Insert in the reused base process a conditional process element or fragment that is executed only
when a given condition is true.

Motivation: In a specific process, a task that has not been modeled in the base process needs to be
performed when a given condition (situation) is met.

Description: A variant process defines a process element or fragment X which is inserted in the reused base
process workflow as an alternative to the single element indicated by the parameter alternativeToElement
or to the process fragment contained between the elements indicated by after and before. When these
parameters point to directly succeeding elements means the inserted task or fragment is optional, i.e., its
execution can be skipped. The parameter condition must contain a unique expression determining when
the inserted element is executed and isExclusiveCondition indicates if the true evaluation of the provided
condition excludes the evaluation of other conditional alternatives. The parameter additionIsFragment is
relevant only when this operation is defined to a subprocess (source element X). When its value is true
indicates that the content of the source subprocess of the operation represents a process fragment to be
inserted directly in the workflow of the reused base process. Otherwise, the source subprocess itself will
be inserted in the target process’ workflow. The parameter inLoop indicates if the inserted element is into
a loop.

Source Element Type(s): Task, Subprocess, or Event.

Parameters: alternativeToElement(BPMN:FlowNode), after(BPMN:FlowNode), before(BPMN:FlowNode),
condition(String), isExclusiveCondition(boolean = true), additionIsFragment(boolean = false), inLoop
(boolean = false).

 Pre-conditions:
1. The parameter alternativeToElement must not point to a start or end event or a gateway;
2. The base process fragment between the parameters after and before cannot contain incomplete

flow branches;
3. Parameters after and before cannot both link to non-conditional gateways (i.e., different of

exclusive or inclusive ones);
4. Gateways cannot be inserted singly;
5. Process fragments containing incomplete flow branches cannot be inserted;
6. The parameter condition must always be provided;
7. If source element of the operation is a Subprocess, its content cannot violate any rule in

Appendix 1;

174

8. If source element of the operation is an Event, it must be an intermediate event of specific type
(None, Message, Timer, Escalation, Conditional, or Signal).

Post-conditions:
1. If the parameter isExclusiveCondition is true, a BPMN Exclusive Gateway is included soon after

the element pointed by the parameter after (or soon before the element pointed by
alternativeToElement) to diverge the process flow and another exclusive gateway is included
soon before the element pointed by the parameter before (or soon after the element pointed by
alternativeToElement) to converge again the process flow;

2. If the parameter isExclusiveCondition is false, a BPMN Inclusive Gateway is included soon after
the element pointed by the parameter after (or soon before the element pointed by
alternativeToElement) to diverge the process flow and another inclusive gateway is included
soon before the element pointed by the parameter before (or soon after the element pointed by
alternativeToElement) to converge again the process flow;

3. Sequence flows are adjusted to connect to the inserted elements.
4. The sequence flow outgoing from the added diverging Gateway (split) and leading to the original

base process fragment must become the default flow from the Gateway.

Representation:

Related Pattern: Insert Process Fragment (WEBER, REICHERT and RINDERLE-MA, 2008).

Example: In a variant process from the SIGA Project, a system screen design needs to be reviewed only if it
has not been reviewed yet in a previous stage of the process (i.e., the review task is conditional and it has
not been modeled in the project’s base process). In another situation, when are found problems in a use
case specification, a new task to correct its inconsistencies needs to be performed and soon after the
process execution flow must return to before the task Design Screen in order to alter the artifacts
produced previously (see Figure 33).

Figure 55. Tailoring operation Conditional Insert

EVENT-BASED INSERT

Purpose: Insert in the reused base process a conditional process fragment that is executed only when a
given event (of message, signal, time, or condition) occurs before other alternative events. The occurrence
of this event cancels the others, i.e., event-based alternatives are mutually exclusive.

Motivation: In a specific process, a process fragment that has not been modeled in the base process needs
to be performed when a given event occurs before other alternative events. The event, usually the receipt
of a message or time expiration, determines the execution of this fragment instead of other ones.

Description: A variant process defines a process element or fragment X which is inserted in the reused
base process workflow as an event-based alternative to the target process fragment contained between
the elements indicated by after and before. The target fragment MUST have as first element an
intermediate catch event of type Message, Signal, Timer, or Conditional. The parameter eventType
identifies the type of event that makes the new process fragment be performed (its default value is
Message) whereas the parameter eventName must contain a unique identifier name for such an event.

Source Element Type(s): Task or Subprocess.

Parameters: after(BPMN:FlowNode), before(BPMN:FlowNode), eventType(InsertEventType = Message
{Message | Signal | Timer | Conditional}), eventName(String).

Pre-conditions:
1. Parameters after and before must not point to directly succeeding elements;
2. The target process fragment between the parameters after and before must have as first element

an intermediate catch event of type Message, Signal, Timer, or Conditional;
3. The target process fragment cannot contain incomplete flow branches;

175

4. Parameters after and before cannot both point to different gateways of event-based and exclusive
ones, respectively;

5. Gateways cannot be inserted singly;
6. Process fragments containing incomplete flow branches cannot be inserted.
7. If source element of the operation is a Subprocess, its content cannot violate any rule in Appendix

1.

Post-conditions:
1. If parameter after points to a Event-Based Gateway (event-based XOR-Split) and parameter before

points to a converging Exclusive Gateway (XOR-Join), then new outgoing and incoming sequence
flows are added to these gateways, respectively, connecting to the inserted process fragment;

2. If post-condition 1 is false, a BPMN Event-Based Gateway (event-based XOR-Split) is included soon
after the element pointed by the parameter after to diverge the process flow and a BPMN
Exclusive Gateway (XOR-Join) is included soon before the element pointed by the parameter
before to converge again the process flow;

3. An intermediate event of specific type informed by the parameter eventType and name defined by
the parameter eventName is added immediately before the inserted process fragment, since it will
be responsible by the activation of this fragment, and immediately after the Event-Based Gateway.

4. Sequence flows are added and adjusted to connect the new elements to the tailored process
workflow.

Representation:

Related Pattern: --

Example: In a loan offer process (DUMAS and PFAHL, 2016), after offering loan for a customer the process
waits for a response. It will perform one given task if the customer responds “offer accepted” and another
task if the customer responds “offer refused”. The identity (name) of the customer’s response message
determines which task is performed. That is, “offer accepted” and “offer refused” are different messages
because they have different identifiers. However, besides these options it is necessary to consider that the
customer cannot respond. Then, the task Cancel Loan Offer is inserted in the process to be performed
when the response date expired (see Figure 40).

Figure 56. Tailoring operation Event-Based Insert

ENCAPSULATE

Purpose: Encapsulate a process fragment with related activities into a separate subprocess.

Motivation: The complexity of the variant process increased significantly regarding its base process, then in
order to make it simpler and easy to understand and maintain, a part of this process is encapsulated in a
separate subprocess.

Description: A variant process defines a subprocess S that through this operation will encapsulate the
process fragment identified by the parameters fragmentBegin and fragmentEnd and take its place in the
process workflow.

Source Element Type: Subprocess.

Parameters: fragmentBegin (BPMN:FlowNode), fragmentEnd (BPMN:FlowNode).

Pre-conditions:
1. Parameters fragmentBegin and fragmentEnd cannot point to the same element;
2. The target process fragment cannot include start or end events;
3. The target process fragment cannot contain incomplete flow branches;

Post-conditions:
1. Start and End events are added in the beginning and end of the encapsulated process fragment,

176

respectively;
2. Sequence flows connected to the target process fragment must be reconfigured to connect in the

same way to the substitute subprocess.

Representation:

Related Pattern: EXTRACT Process Fragment to Sub-Process (WEBER, REICHERT and RINDERLE-MA, 2008)

Example: When adapting a Requirements Engineering process to incorporate activities of MDD (Model-
Driven Development), a process has become too large (LONIEWSKI, ARMESTO and INSFRAN, 2011). Thus,
activities from the original process have been encapsuled into a subprocess named Capture and Analyze
Requirements (see Figure 35 and Figure 36).

Figure 57. Tailoring operation Encapsulate

SPLIT

Purpose: Split a single task from the base process to a process fragment or subprocess that details its
procedure in the variant process.

Motivation: A task from the base process is too generic to the level of abstraction of the variant process
and therefore needs of refinement.

Description: A variant process defines a subprocess X which details steps to perform a generic task
identified by the parameter targetElement from the base process. If the parameter splitIntoSubprocess is
true, then task B is replaced by the subprocess X into the variant process. Otherwise, the workflow defined
by the subprocess X is directly embedded into the variant process as a process fragment (by automatically
removing any start or end event).

Source Element Type: Subprocess.

Parameters: targetElement(BPMN:Task), splitIntoSubprocess(boolean = true).

Pre-conditions:
1. The subprocess that defines this operation (from the variant process) must contain a valid process

workflow or fragment (according to rules in Appendix 1).
Post-conditions:

1. If parameter splitIntoSubprocess is false, then start and end events of the workflow defined by the
source subprocess of the operation must be removed before embedding it into the variant
process;

2. Sequence flows connected to the splitted element must be reconfigured to connect in the same
way to the substitute subprocess or fragment.

3. If parameter splitIntoSubprocess is true, then elements linked to the splitted task (e.g., boundary
events) must be re-linked to the substitute subprocess.

Representation:

177

Related Pattern: Split Task into Block; Split Workflow (BRANCO et al., 2014).

Example: (1) In a variant software process (SIGA Project), the task Design Screen of the base process has
been splitted into a subprocess called Design and Validate User Interfaces that details its steps (see Figure
32). In this case, the default value of the parameter splitIntoSubprocess was taken on (i.e., true).

(2) In a technical-level claim handling process, the task Settle Claim of the business-level base process has
been detailed by a process fragment (composed by tasks Create Response Letter and Send Response)
directly embedded into the workflow of the technical-level process, i.e., not enclosed in a subprocess’
scope (see Figure 37 and Figure 38). In this case, the parameter splitIntoSubprocess was set to false.

Figure 58. Tailoring operation Split

MERGE

Purpose: Merge two or more directly succeeding tasks into a single particular task.

Motivation: Business tasks from the base process can be subsumed in a technical-level specification
(tailored process). Typical examples are: (1) Combine several business tasks into a single service task (the
service provided would be coarser than the business steps described); (2) Combine human tasks into a
single human task in which the separate steps of the human action are described elsewhere (e.g., a
screenflow).

Description: A variant process defines a task (DE) that represents the combination (merge) of tasks
contained in the base process fragment identified by the parameters fragmentBegin and fragmentEnd and
replaces these tasks in the variant process workflow.

Source Element Type: Task.

Parameters: fragmentBegin (BPMN:Task), fragmentEnd (BPMN:Task).

Pre-conditions:
1. Parameters fragmentBegin and fragmentEnd must point to succeeding different tasks;
2. The target process fragment must contain only task nodes;

Post-conditions:
1. Sequence flows connected to the target process fragment must be reconfigured to connect in the

same way to the substitute task.
2. If a task from the target fragment has elements linked to it (e.g., boundary events), then these

elements must be re-linked to the substitute task.

Representation:

Related Pattern: SUPPRESS Specification Activity (BRANCO et al., 2014).

Example: In a technical-level claim handling process, tasks Get Personal Details and Get Insurance Details
have been merged into a single (human) task named Get Request Details (see Figure 37 and Figure 38). In
this context, such a practice means the separate steps of the human action are described elsewhere (e.g.,
a screenflow).

Figure 59. Tailoring operation Merge

RENAME

Purpose: Change the name of a process element.

Motivation: The name of an element from the base process is not adequate or representative enough to
the context of the tailored process.

Description: A variant process defines an element Z of same type than an element Y from the base process.

178

Through this operation, the name of the variant element Z replaces the name of the base element Y.

Source Element Type(s): Task, Subprocess, Event, Gateway, or Sequence Flow.

Parameters: renamedElement(BPMN:FlowElement).

Pre-conditions: Variant and base elements must be of same type.

Representation:

Related Pattern: Change Activity Name (BRANCO et al., 2014); Update Condition (WEBER, REICHERT and
RINDERLE-MA, 2008).

Example: In a claim handling process, the task Validate Claim has been renamed to Validate Claim on
Decision Server to better reflect some technical aspects of this task (see Figure 37 and Figure 38).

Figure 60. Tailoring operation Rename

ADD EXCEPTION HANDLER

Purpose: Add an exception handler (task or subprocess) to deal with a given type of exception event that
can occur in the context of one or more task(s) or subprocess(es).

Motivation: According to BRANCO et al. (2014), technical exception handlers are not expected to be
represented in a business-level model, because they implement nonfunctional requirements. Therefore,
they are generally added when refining these models to technical-level models.

Description: A variant process defines a task or subprocess that will be responsible by dealing with a
technical exception of type defined by the parameter exceptionType and name defined by the parameter
exceptionName that can occur while the element pointed by targetElement is executing. The parameter
interrupting determines if the normal flow of the process will be or not interrupted when this exception
occurs.

Source Element Type: Task or Subprocess.

Parameters: targetElement (BPMN:Activity[*]), exceptionType(ExceptionType = Error {Message | Timer |
Escalation | Error | Signal | Conditional}), exceptionName(String), interrupting(boolean = true).

Pre-conditions:
1. If parameter exceptionType is of type Error, then the parameter interrupting must be true.
2. If source element of the operation is a Subprocess, its content cannot violate any rule in Appendix

1.

Post-conditions:
1. Add an event of the specific type indicated by the parameter expectionType to the boundary of the

element(s) pointed by targetElement.
2. Add a Sequence Flow outgoing from each boundary event added by rule 1 and incoming to the

source element of the operation (exception handler).
3. Add an (plain) end event and a sequence flow outgoing from the source element of the operation

(exception handler) and incoming to the added end event.

Representation:

Related Pattern: Add Boundary Event; Add Technical Exception Flow (BRANCO et al., 2014).

179

Example: In a technical-level claim handling process, an exception handler subprocess named Manual
Handling has been added for tasks Reject Claim and Create Claim Document (see Figure 37 and Figure 38).
In this case, the default value for the parameter exceptionType was taken on (i.e., Error). Therefore, the
subprocess Manual Handling must deal with error exceptions that can occur while any of these tasks is
executing.

Figure 61. Tailoring operation Add Exception Handler

ADD EXCEPTION FLOW

Purpose: Add an exception flow to deal with a given type of event that is triggered and handled by
activities from the base process.

Motivation: Addition of a technical exception flow is required when a given exception event must be
catched and handled and the source activity of the exception as well as its handler are already modeled in
the base process.

Description: A variant process defines an event of specific type that will be responsible by catching an
exception that can occur in the context of one or more activities pointed by the parameter
triggeringElement. This exception will be handled by the activity pointed by the parameter
handlingElement.

Source Element Type: Event.

Parameters: triggeringElement (BPMN:Activity[*]), handlingElement(BPMN:Activity).

Pre-conditions:

1. The source event of the operation must be of type Message, Timer, Escalation, Error, Signal, or
Conditional;

2. If the source event of the operation is of type Error, then it must be an interrupting event.

Post-conditions:

1. Add the source event of the operation to the boundary of the element(s) pointed by the parameter
triggeringElement.

2. Add a Sequence Flow outgoing from each boundary event added by rule 1 and incoming to the
element pointed by the parameter handlingElement (exception handler).

Representation:

Related Pattern: Add boundary event; Add technical exception flow (BRANCO et al., 2014).

Example: In an Automated Teller Machine (ATM) process, the task Cancel Transaction modeled in the
business-level base process is considered an exception handler in the technical-level process. Thus, this
task is transformed in a subprocess and afterwards it becomes target of exception flows, added in the
technical process, that take to it. The complete model of this example can be seen in Figure 45 and Figure
46.

Figure 62. Tailoring operation Add Exception Flow

180

Appendix 3: XML Schema-based BPMNt Extension

Table 17 bellow shows the structure of the High-Level BPMNt extension

defined in the XML Schema language. Elements xsd:complexType group the BPMNt

extension concepts representing tailoring operations, such as the BPMN extension meta-

class ExtensionDefinition. Above of the definition of each extension concept type, an

element of this specific type is also created for containing its instances in a BPMN

model.

Table 17. BPMNt2.xsd – BPMNt Extension Definition in XML Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.extensions.com/bpmnt_HL"
xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="http://www.extensions.com/bpmnt_HL">

<xsd:import namespace="http://www.omg.org/spec/BPMN/20100524/MODEL"
schemaLocation="BPMN20.xsd"/>

<xsd:element name="extendOperation" type="Extend"/>

<xsd:complexType name="Extend">

<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="extendedProcess"
type="bpmn:tBaseElement"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="applicationOrder" type="OrderType"/>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="OrderType">

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Free"/>
 <xsd:enumeration value="FirstAddition"/>
 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType abstract="true" name="BasicOperation">

<xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="suppressOperation" type="Suppress"/>

<xsd:complexType name="Suppress">
<xsd:complexContent>
<xsd:extension base="BasicOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="suppressedElement"
type="bpmn:tBaseElement"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="contributeOperation" type="Contribute"/>

<xsd:complexType name="Contribute">

<xsd:complexContent>
<xsd:extension base="BasicOperation">
 <xsd:sequence>

181

 <xsd:element maxOccurs="1" minOccurs="1" name="targetProcess" type="bpmn:tBaseElement"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="newElement" type="bpmn:tBaseElement"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="newElementRef" type="bpmn:tBaseElement"/>
 </xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="modifyOperation" type="Modify"/>

<xsd:complexType name="Modify">

<xsd:complexContent>
<xsd:extension base="BasicOperation">
<xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="value" type="xsd:string"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="modifiedElement"
type="bpmn:tBaseElement"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="valueRef" type="bpmn:tBaseElement"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType abstract="true" name="HighLevelOperation">

<xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="motivation" type="xsd:string"/>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="basicOperations"
type="BasicOperation"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="deleteOperation" type="Delete"/>

<xsd:complexType name="Delete">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="removedElement" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentBegin" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentEnd" type="bpmn:tFlowNode"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="replaceOperation" type="Replace"/>

<xsd:complexType name="Replace">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="replacedElement" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentBegin" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentEnd" type="bpmn:tFlowNode"/>
 <xsd:element name="additionIsFragment" type="xsd:boolean"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="renameOperation" type="Rename"/>

<xsd:complexType name="Rename">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="renamedElement"
type="bpmn:tFlowElement"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

182

<xsd:element name="moveOperation" type="Move"/>

<xsd:complexType name="Move">
<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="movedElement" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentBegin" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="fragmentEnd" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="newPositionAfter" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="newPositionBefore"
type="bpmn:tFlowNode"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="parallelizeOperation" type="Parallelize"/>

<xsd:complexType name="Parallelize">
<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentBegin" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentEnd" type="bpmn:tFlowNode"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="splitOperation" type="Split"/>

<xsd:complexType name="Split">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="targetElement" type="bpmn:tTask"/>
 <xsd:element name="splitIntoSubprocess" type="xsd:boolean"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="mergeOperation" type="Merge"/>

<xsd:complexType name="Merge">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentBegin" type="bpmn:tTask"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentEnd" type="bpmn:tTask"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="encapsulateOperation" type="Encapsulate"/>

<xsd:complexType name="Encapsulate">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentBegin" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="fragmentEnd" type="bpmn:tFlowNode"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="serialInsertOperation" type="SerialInsert"/>

<xsd:complexType name="SerialInsert">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="after" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="before" type="bpmn:tFlowNode"/>
 <xsd:element name="additionIsFragment" type="xsd:boolean"/>

183

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="conditionalInsertOperation" type="ConditionalInsert"/>

<xsd:complexType name="ConditionalInsert">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="0" name="alternativeToElement"
type="bpmn:tFlowNode"/>

<xsd:element maxOccurs="1" minOccurs="0" name="after" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="before" type="bpmn:tFlowNode"/>
 <xsd:element name="condition" type="xsd:string"/>
 <xsd:element name="isExclusiveCondition" type="xsd:boolean"/>
 <xsd:element name="additionIsFragment" type="xsd:boolean"/>
 <xsd:element name="inLoop" type="xsd:boolean"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="parallelInsertOperation" type="ParallelInsert"/>

<xsd:complexType name="ParallelInsert">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="parallelToElement"
type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="after" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="before" type="bpmn:tFlowNode"/>
 <xsd:element name="additionIsFragment" type="xsd:boolean"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="eventBasedInsertOperation" type="EventBasedInsert"/>

<xsd:complexType name="EventBasedInsert">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="after" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="before" type="bpmn:tFlowNode"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="eventType" type="InsertEventType"/>
 <xsd:element name="eventName" type="xsd:string"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="InsertEventType">

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Message"/>
 <xsd:enumeration value="Signal"/>
 <xsd:enumeration value="Timer"/>
 <xsd:enumeration value="Conditional"/>
 </xsd:restriction>

</xsd:simpleType>

<xsd:element name="specializeOperation" type="Specialize"/>

<xsd:complexType name="Specialize">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="targetElement" type="bpmn:tFlowNode"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

184

<xsd:element name="addExceptionHandlerOperation" type="AddExceptionHandler"/>

<xsd:complexType name="AddExceptionHandler">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="targetElement"
type="bpmn:tActivity"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="exceptionType" type="ExceptionType"/>
 <xsd:element name="exceptiontName" type="xsd:string"/>
 <xsd:element name="interrupting" type="xsd:boolean"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="ExceptionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Message"/>
 <xsd:enumeration value="Timer"/>
 <xsd:enumeration value="Escalation"/>
 <xsd:enumeration value="Error"/>
 <xsd:enumeration value="Signal"/>
 <xsd:enumeration value="Conditional"/>
 </xsd:restriction>

</xsd:simpleType>

<xsd:element name="addExceptionFlowOperation" type="AddExceptionFlow"/>

<xsd:complexType name="AddExceptionFlow">

<xsd:complexContent>
<xsd:extension base="HighLevelOperation">
<xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="triggeringElement"
type="bpmn:tActivity"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="handlingElement" type="bpmn:tActivity"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

185

Appendix 4: BPMN Models used in the Evaluation

Bellow, we present all BPMN models used in our evaluation study based on the

software development process of the SIGA Project. We present the base process model

from the Specification and Design phase of the project (Figure 63) and six of its

execution variants (Figure 64 to Figure 69).

 Figure 63: Base process model of the SIGA Project

 Figure 64: Scenario 1 – Variant process model

 Figure 65: Scenario 2 – Variant process model

186

 Figure 66: Scenario 3 – Variant process model

 Figure 67: Scenario 4 – Variant process model

 Figure 68: Scenario 5 – Variant process model

 Figure 69: Scenario 6 – Variant process model

