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Santos, Ĺılian Chaves Brandão dos

Accelerating Dual Dynamic Programming applied

to Hydrothermal Coordination problems/Ĺılian Chaves

Brandão dos Santos. – Rio de Janeiro: UFRJ/COPPE,

2018.

XIII, 72 p.: il.; 29, 7cm.

Orientadores: Luidi Gelabert Simonetti
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TÉCNICAS PARA ACELERAR A PROGRAMAÇÃO DINÂMICA DUAL

APLICADA A PROBLEMAS DE COORDENAÇÃO HIDROTÉRMICA
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André Luiz Diniz
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A Programação Dinâmica Dual (PDD) é uma estratégia de decomposição ca-

paz de resolver grandes problemas de otimização estocástica multi-estágio, que tem

aplicação em diversas áreas de estudo. A PDD é amplamente utilizada no plane-

jamento hidrotérmico de sistemas de energia elétrica, principalmente em sistemas

predominantemente hidroelétricos, para definir um despacho de operação de mı́nimo

custo, considerando incertezas em algumas variáveis do problema, notadamente as

afluências às usinas hidroelétricas. Quanto maior é o sistema, mais complexo é

o modelo que o representa, o que torna mais caro computacionalmente resolver o

problema.

Este trabalho apresenta novas estratégias para acelerar o método da PDD, que

envolvem um teste de convergência local nas sub-árvores de cenários, assim como

uma análise de estabilidade das variáveis de estado, para evitar operações forward

e backward - intŕınsecas do método de PDD - desnecessárias e economizar tempo

de processamento e memória. Outra forma eficiente de redução de tempo proposta

neste trabalho é um algoritmo de processamento paralelo asśıncrono para a PDD, e

uma variante asśıncrona parcialmente paralela. Estas estratégias fazem melhor uso

dos recursos dispońıveis ao contornar algumas restrições de sincronismo da PDD que

podem ser muito prejudiciais ao paralelismo. A eficiência das estratégias propostas

é mostrada para problemas de planejamento hidrotérmico.
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André Luiz Diniz

Department: Systems Engineering and Computer Science

Dual Dynamic Programming (DDP) is a decomposition strategy capable of solv-

ing high-dimension multistage stochastic optimization problems, which is applied in

several fields of study. The DDP method is widely used in hydrothermal coordination

planning (HTC) problems for power generation systems - mainly in predominantly

hydro power systems, such as in Brazil, Norway and Chile - to define a minimum

cost dispatch of power generation, taking into account some uncertainties in the

system, such as the natural inflows to the reservoirs. The larger is the system, the

more complex is the model, however more expensive is to solve the problem.

This work presents new strategies to accelerate DDP method, which consist in

local convergence tests in scenario sub-trees, as well as analysis of the stability in the

values of state variables along the nodes, to avoid unnecessary forward and backward

passes and therefore saving CPU time and memory requirements. Another efficient

way to reduce time proposed in this work is a novel asynchronous parallel scheme

based on DDP, as well as a partial-asynchronous variant. Such strategies make a

better use of the available resources by overcoming some drawbacks of traditional

DDP parallel algorithms, which may be too restrictive depending on the structure

of the scenario tree. The efficiency of the proposed strategies is shown for a HTC

problem of the real large-scale Brazilian system.
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Chapter 1

Introduction

Most problems involving decision under uncertainty may be modeled as a stochastic

programming problem (SPP), which aim to find an optimal decision that minimizes

the expected value of a given objective function (possibly, including some risk aver-

sion criterion) under uncertainty [39], [4]. A special class of SPPs - referred to in the

literature as stochastic linear programming - considers a linear objective function

and linear constrains and represents uncertainty by means of a scenario tree, where

the tree levels represent decision stages and branches indicate discrete values for the

random variables for each node of the tree. Even with these assumptions, stochastic

linear programs may be difficult to be solved, mainly due to their high dimensions.

SPP is widely used for energy planning involving uncertainty [33], [20], [18] and

[15]. In particular, the mid-term hydrothermal coordination problem (HTC) in

power generation systems aims to determine the weekly/monthly optimum dispatch

of hydro and thermal plants. The goal is to meet an energy demand taking into

account present and future operation costs, and representing many constraints of

the generation and transmission systems, as well as uncertainty on some input data,

such as the water inflows to the reservoirs. The HTC problem may be modeled as a

multistage SPP and designed as a scenario tree, where the tree levels represent deci-

sion stages along time and branches indicate discrete values of the random variables

for each node of the tree.

Figure 1.1 illustrates a simplified hydrothemal coordination problem where, in a

first stage, a decision on how to generate energy to meet some demand needs to be

taken. A second stage may happen under two different possible scenarios, e.g., high

or low water inflows to the reservoirs, such that the consequences of the previous

decision vary depending on which scenario occurs. Figure 1.2 illustrates a two-stage

stochastic programming model for such problem, where the two aforementioned sce-

narios (high or low inflows) may happen with probabilities p and 1−p, respectively.

The decision on the second stage (consequences) depends on the decision in the first

stage, which is made taking into account the probability of the future scenarios.
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Decision

Minimize thermal cost 
using stored water

Future
water inflow Consequences

High

Low

Ok

Higher cost/
Energy deficit

High

Low

Spill water

Ok

Keep the water and 
use thermal energy

Figure 1.1: Hydrothermal coordination problem with uncertain water inflows

node 
1

node 
2

node 
3

Scenario 1: 
High inflow

Scenario 2: 
Low inflow

p

1-p

Decision 
stage 1

Decision 
stage 2

Ok

Higher cost/
Energy deficit

Spill water

Ok

Consequences on 
stage 2 depending on 
the decision of stage 1

Figure 1.2: Two-stage stochastic programming model of the hydrothermal coordi-
nation problem of Figure 1.1.

The HTC problem for real systems has a very large number of stages and cor-

responding scenarios, leading to a scenario tree with many nodes. Moreover, the

so-called “deterministic equivalent formulation” of this problem is a possibly huge

linear problem (LP) because it would comprise the constraints and contribution to

the objective function related to all scenarios, with their corresponding probabilities.

Depending on the problem structure, the size of this LP may become prohibitive.

As a consequence, decomposition algorithms have been proposed in the literature as

an alternative to solve large problems where the deterministic equivalent approach

proved to be inefficient or intractable.

Some of these decomposition methods are based on Lagrangian Relaxation [14],

2



[23], [16], where the idea is to decompose the problem into subproblems by relaxing

some constraints. Depending on the problem formulation, several decomposition

perspectives can be applied, such as spatial or scenario decomposition, as well as

variable splitting techniques [19]. Other technique commonly applied to these prob-

lems is Benders Decomposition [2], where the set of decision variables are explicitly

divided according to the stages of the problem and the so-called state variables

“connect” these stages, which are solved iteratively until convergence of the global

problem. Benders algorithm is the dual form of the Dantzig-Wolfe decomposition

[7], where instead of adding columns in the first stage (in the latter), constraints to

approximate the recourse function are added in the former method. Initially, Ben-

ders Decomposition was applied to solve two stages SPPs, leading to the well known

L-shaped method [41]. Later, a nested extension of this algorithm was proposed to

solve multistage SPPs, leading to the multistage Benders decomposition approach

[3], also known as Dual Dynamic Programming (DDP).

The DDP approach is extensively used to solve linear or convex problems with

a discrete scenario tree representation. In the traditional form of this approach, the

overall problem is decomposed according to the nodes of the scenario tree. Each

“level” of the tree corresponds to the decisions at a given time step and the branches

represent the scenarios of each level. Considering this, each node is solved separately

while the algorithm evolves along the tree and local information is transmitted back

and forward until a global optimal solution is found within a desired tolerance.

However, nested methods for SPPs may require a considerable number of itera-

tions to converge, and is always desirable to solve a stochastic problem as efficient

as possible, in order to allow handling large problems without compromising the

CPU time for convergence. In this sense, several techniques to improve efficiency

of the original algorithms have been proposed in the literature with the purpose of

reducing the number of iterations, accelerating the iterations, avoiding unnecessary

operations, etc.

1.1 Objectives of the dissertation

Based on a bibliographical survey of existing variants of the DDP approach, the

main goal of this work is to propose new techniques that are able to improve the

efficiency of this method. The proposed schemes are grouped into two sets:

• The first set aims to increase efficiency by making a better use of the avail-

able information, thus avoiding redundant calculations. Two complementary

strategies are presented: the local convergence test (LCT) and the state vari-

ables stability test (VST), which acts directly in the DDP iterations attempting

3



to decrease their CPU time (Chapter 5).

• The second set is based on parallel processing. We first describe the traditional

DDP parallel algorithm employed in the literature and then propose two dif-

ferent asynchronous parallelization schemes, with the objective of breaking

the time dependency of the traditional DDP algorithm and thus increasing its

suitability for parallel environments (Chapter 6).

The efficiency of the proposed algorithms are assessed by solving a HTC problem

in the official model DECOMP [11] used for mid-term planning and to determine

spot prices and weekly dispatch of the Brazilian electrical system. The model de-

termines the optimal dispatch taking into account several physical and operation

hydro/thermal constraints and uncertainty on the natural inflows to the reservoirs.

1.2 Events and publications

The research and methods proposed in this work were presented in the conference:

• BRANDAO, LILIAN C., DINIZ, ANDRE L., “Advances in tree traversing

strategies and cut sharing for multistage Benders decomposition - application

to the stochastic hydrothermal coordination problem in a parallel process-

ing environment”. XIV International Conference on Stochastic Programming

(ICSP), Buzios - Brazil, June, 2016.

and the following conference papers have been published:

• BRANDAO, LILIAN C., DINIZ, ANDRE L., “Programação dinâmica dual:

estratégias eficientes aplicadas a problemas estocásticos de coordenação

hidrotérmica”. XXIV Seminário Nacional de Produção e Transmissão de En-

ergia Elétrica (SNPTEE), Curitiba - Brazil, October, 2017.

• BRANDAO, LILIAN C., DINIZ, ANDRE L., SIMONETTI, LUIDI G., “Ac-

celerating Dual Dynamic Programming for Stochastic Hydrothermal Coor-

dination Problems”. XX Power Systems Computation Conference (PSCC),

Dublin - Ireland, June, 2018.

Finally this work was also submitted for publication in the following journal:

• BRANDAO, LILIAN C., DINIZ, ANDRE L., SIMONETTI, LUIDI G.,

BORGES, CARMEN L., “Asynchronous Dual Dynamic Programming”. Eu-

ropean Journal of Operational Research (EJOR), February, 2018.
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1.3 Dissertation arrangement

The dissertation is organized into 7 chapters, as follows:

• Chapter 2: the state of the art on DDP improving methods is reviewed, and

the main techniques proposed in order to increase time efficiency on DDP are

described.

• Chapter 3: mid-term HTC problem - which will be used in the dissertation

experiments - is modeled in detail as a SSP.

• Chapter 4: the stochastic programming formulation is introduced, and then

the DDP method - as traditionally presented in the literature - is described.

• Chapter 5: the two proposed improved strategies for DDP are presented.

• Chapter 6: some parallel processing strategies applied within the DDP ap-

proach are presented: first, the traditional parallel approach, followed by the

two proposed strategies proposed in this work: an asynchronous and a partial

asynchronous approach.

• Chapter 7: the numerical experiments are presented. The proposed strate-

gies are applied to a HTC problem and their performance are evaluated as

compared to existing methods on the literature.

• Chapter 8: the main conclusions, results and analysis are summarized.
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Chapter 2

Literature Survey: improvements

in the DDP Algorithm

Dual Dynamic Programming (DDP) is a decomposition method that is very useful

for solving large SPPs, since it is able to split the overall problem, solving it iter-

atively until a global optimal solution is found. However, as an iterative strategy

it may need a large number of iterations to converge and, in addition, each itera-

tion involves solving a large number of subproblems. Some strategies were proposed

in the literature attempting to reduce the running time of DDP in two senses: by

increasing the convergence rate of the method (i.e., performing a lower number of it-

erations) and/or by decreasing the time required per iteration (i.e., iterating faster).

In this chapter some of the main strategies found in the literature are reviewed.

Multicuts

The classical version of L-shaped method - applied to two-stage problems - com-

putes one linear approximation (cutting plane) per iteration for the expected re-

course (future cost) function of the first stage, which is calculated as the average

contribution of the second stage nodes. The work [5] proposed an alternative model

that considers a linear approximation for the contribution of each scenario sepa-

rately, thus not aggregating the cuts from the second stage nodes. The idea is to

make use of more information in order to increase the convergence rate and thus

fewer iteration are needed. Such strategy may lead to smaller CPU times, although

it also implies in having more variables and constraints for the first stage, mak-

ing this subproblem more expensive to be solved. Later, the work [17] extended

the multicut version of the L-shaped method for the multistage setting proposed

in [3]. A comparative analysis of the two methods [4] concluded that the multicut

algorithm is more efficient than the singlecut version when the number of scenarios

and the dimension of the vector of decision variables have a similar magnitude. In

addition, comparative results presented in [13] for a stochastic HTC problem with

8 time steps and 255 nodes showed a slight superiority of the multicut version.
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Cut aggregation

The main drawback of multicut strategies is the large number of constraints

included per iteration in the subproblem of each node, due to the addition of one

cut for each of its descendant scenarios. In order to reduce this effect, strategies have

been developed on the aim of finding an adequate trade-off between the convergence

rate and the size of the LPs to be solved for each subproblem. In [42] a general

strategy was proposed to aggregate the recourse functions of some descendant nodes,

thus allowing an intermediate scheme between the single and multicut strategies, for

two-stage problems. A dynamic adjustment of the aggregation level was proposed,

where the most aggregated level is the singlecut version and the least is the multicut.

Although the choice of the aggregation level is not known a priori, the proposed

adaptive technique proved to be able to reduce the CPU time as compared to both

standard multi and singlecut methods.

More recently, a cut aggregation scheme for a multistage problem was proposed

in [46], where the number of cuts is reduced by summing the constraints, even though

the number of cost variables is kept. The definition of the DDP iteration in which

the cuts are aggregated is based on two measures: (a) the number of consecutive

iterations a cut was inactive and (b) a given number of cuts removed per iteration.

Cut selection

Another way of handling the overload caused by large amounts of cuts is selecting

some interesting cuts and discarding the others. One of the simplest cut selection

strategies is to discard the dominated cuts that will never be active during the LP

solution, and thus can be removed without loss of information. Even though this

strategy seems to be simple and efficient, it is computationally expensive to deter-

mine dominated cuts, specially in problems with a large number of state variables in

the recourse function. In [38] an algorithm to remove dominated cuts is presented,

where the extra computation cost is offset by proceeding the cut removal algorithm

only after a certain number of iterations. In [8] the concept of level of dominance

is defined, where a cut is considered to be dominated if it is dominated into a set

of points of the state variables domain. By applying this technique for a long term

hydrothermal planning problem a reduction of up to 10 times in the computational

time was achieved.

The work [27] proposed a so called “cut strengthening” method to accelerate

Benders convergence for Mixed Integer Problems (MIP). They explore the non-

uniqueness of second stage solutions and try to find the best cut among the so

called set of “Pareto-optimal” cuts. The idea is to look for nondominated cuts into

the set of optimal dual solutions of the second stage problem. Even though an
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extra cost is added to perform this procedure, the algorithm may be able to find

better results in a faster way and reach convergence more efficiently. Such set of

Pareto-optimal cuts was studied in [28] for a problem of aircraft routing, however

the reduction in the number of Benders iterations was not compensated by the time

spent in those extra calculations. Some strategies were later proposed in order to

decrease the cost of finding the nondominated cuts. Approximations, alternatives,

adaptations and improvements of the method can be found in [36], [32], [40] and

[31].

Instead of searching the bests cuts, the work [47] seeks inexact cuts yielded by

non-optimal feasible dual solutions. An early termination of the solving procedure

for the second stage subproblem produces a valid cut, and saves the CPU time of

finding the optimal solution, specially if the second stage is a large subproblem. The

authors have proved convergence in problems with complete recourse.

Bunching

The subproblems of each node in a given time step (level) of the scenario tree are

usually very similar. Therefore, the LPs related to these nodes may share the same

optimal basis, especially in the particular case where they differ from each other only

by the right hand side of some constraints. Based on that, the bunching technique

proposes to use the final Simplex basis of a given subproblem as a starting basis to

another one, in order to minimize the number of Simplex pivots in the solution of

siblings nodes of the tree [43], [44], [17].

Sequence protocols

The sequence protocol, also called tree-traversing strategy, defines how the algo-

rithm will visit the nodes of the scenario tree. Studies have shown that the sequence

protocol may have an important impact on the algorithm convergence [17]. Some

of the classical protocols are:

• Fast-forward-fast-backward : this strategy - proposed by [45] - consists in mov-

ing forward through the tree, solving all subproblems from stages 1 to T (where

T is the number of stages of the tree) and transferring the values of state

variables. Then it goes backward from stages T to 1 passing cost information

through the Benders cuts. Therefore, information (states and cuts) are quickly

spread through the tree, even if at earlier iterations this information does not

correspond to points in the neighborhood of the (yet unknown) optimal values

of state variables.

• Backwards approach: the idea of this strategy is to always move backward on

the tree, except in two situations: when the root node is reached or when no

8



new information is produced on the backward pass with relation to the previous

iterations. The main concern about this approach is that the method may

demand too much effort to construct cuts to the earlier stages that represent

the recourse function in distant regions to the optimal solution.

• Forward approach: in contrast to the previous approach, this strategy always

move forward on the tree except in two cases: when a leaf node is reached

or when no new information is produced on the forward pass with relation to

the previous iterations, [3]. In this case, the main concern is to spend a lot

of time trying to reach convergence in the final stages for bad values for the

state variables of previous stages.

Alternatively, additional strategies have been proposed in the literature. The

work [30] presented a protocol named “ε−strategy”, where the idea is to reverse the

direction of the algorithm if the local convergence gap on the current stage is smaller

than a parameter ε. In [1] a bouncing technique is presented, where the authors

first define a “block-stage” t < T and two kinds of iterations: a minor iteration,

which goes forward and backward along stages 1 to t; and a major iteration, which

consists in a complete forward from stage 1 to T , then a backward pass from stage

T to t, followed by another forward pass from stage t to T , and finally a complete

backward pass from T to 1. The algorithm proceeds by alternating between major

iterations (that traverse the whole tree) and minor iterations, trying to avoid final

stages, which may have a large number of scenarios.

More recently, the work [46] proposed a sequence protocol that uses the bounc-

ing method [1] with a dynamic way to choose the block-stage, combined with

ε−backward strategies ([30]), but applying a dynamic parameter by computing a

discrepancy measure that depends on the size of the convergence gap.

Node aggregation

Node aggregation techniques aim to increase the performance of a decomposition

method by grouping the nodes of the scenario tree. Nodes that belong to the same

group are solved together as deterministic equivalent subproblems, and the groups

are taken into account in the cutting plane decomposition scheme as if they were

single node subproblems.

Different node aggregation models are proposed and studied in [4], [22], [9],

[12], labeled as: complete node decomposition, scenario decomposition, subtree de-

composition and complete scenario decomposition, respectively. These methods are

very sensitive to the size and shape of the scenario tree, which makes it difficult to

evaluate and compare these strategies for general problems.

As the nodes are aggregated in a same group, the corresponding subproblems
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become more complex and require more memory and CPU time to be solved. How-

ever, the convergence rate tends to increase, since the number of subproblems that

need to communicate in order to reach an optimal solution is decreased. On the

other hand, when nodes are disaggregated, the subproblems are simpler (and faster

to be solved) but the granularity is higher, which leads to a slower convergence rate.

Parallelization

Parallelization is a very powerful and efficient acceleration strategy that can dras-

tically reduce the real time of an algorithm and also allows the introduction of new

techniques to increase algorithm efficiency. However, the parallel capability depends

not only on the available resources, but also on the suitability of the algorithm for

parallelization. As a consequence, the parallelization strategy and efficiency of an

algorithm is strongly related to its structure, since dependencies along the algorith-

mic flows create bottlenecks in the parallel process and may limit the efficiency and

scalability of a parallelization scheme, thus reducing its performance.

Parallel computing has been studied and applied in many areas, including

stochastic programming, many approaches were proposed and studied in an attempt

to parallelize DDP methods. However, the tree structure of multistage stochastic

problems causes a high dependency among the different scenario levels: in the tra-

ditional DDP tree traversing strategy, a given node of the tree must wait new values

of state variables from its ascendant node in the forward passes, as well as new

Benders cuts from its descendant nodes in the backward passes.

Even though nodes in the same level are independent and parallelization can

be exploited among them, the inter-level dependencies restrain some classical par-

allel algorithms that have been proposed for DDP problems, as for example [6],

that solves independent sub-trees in parallel, and [9], which explores the inter-level

independence by solving the same stages in parallel. In both works, several stochas-

tic instances of stochastic programs were considered, and their results showed that

speedup and efficiency of the parallelization schemes are very sensitive to the size

and shape of the scenario tree. In addition, these authors experienced a consider-

able drop in running time with a small number of processors, but premature speedup

saturation as more processors were employed.

Some smarter techniques attempt to break the time dependency of DDP algo-

rithms. In [24], the authors proposed a partial asynchronism to solve two-stage

stochastic programs (asynchronous L-Shaped method), where the first stage sub-

problem is solved again without waiting all second stage nodes to be solved, thus

avoiding idle processors due to unbalance. They showed that the proposed scheme

does not harm the method convergence and can be very suitable for heterogeneous

parallel environments.
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An asynchronous DDP approach was also proposed by [29] for a multistage

stochastic program, where the subproblem of a given node is computed whenever a

new entry (state or cut) is available. Even though this also reduces idleness along

the processors, the convergence criterion of the algorithm is somehow affected and

their results are not very conclusive. More recently, [35] proposed an asynchronous

version for Deterministic Dual Dynamic Programming (DDDP), where deterministic

problems (i.e., that have at most one descendant node for each node) are solved. In

those cases, the inter-level dependency of the original DDP algorithm does not allow

any level of parallelization. In order to overcome this issue, the authors proposed

an asynchronous solving procedure where all nodes are solved in parallel and then

information (state variables and Benders cuts) are exchanged. The results showed a

significant time reduction as compared to the sequential algorithm for trees of any

size, even though the efficiency and speedup of the algorithm were not satisfactory.
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Chapter 3

Hydrothermal Coordination

Problem

The HTC problem has an important role in operation and expansion planning stud-

ies of power generation systems. As the model used to represent the system becomes

more detailed and the representation of uncertainties/length of the time horizon are

improved, the problem becomes closer to reality but more difficult to solve. This

work considers a mid-term HTC problem modeled by a linear objective function and

linear or piecewise linear constraints. Some of the main aspects of the model are as

follows:

• individual representation of thermal plants, as well as hydro plants in cascade,

arranged in several river basins;

• a load duration curve with three load blocks for each weekly/monthly time

step. The use of load blocks allows to discretize the demand representation to

express the load variability within a stage;

• several physical and operating constraints for hydro and thermal plants;

• a finite number of water income scenarios to the hydro plants in each time step,

leading to a multistage scenario tree. The inflow scenarios are synthetically

generated by a periodic auto-regressive model (GEVAZP - [21]) where the

parameters are calculated based on the inflow historical record. Therefore,

the scenario tree has an implicit time correlation, since the past inflows are

used by the auto-regressive model in order to generate the inflow scenarios for

subsequent stages;

• a multivariate future cost function (FCF) attached at the end of the horizon,

to couple mid-term and long term decisions, as presented by [25].
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Each node (t, s) of the scenario tree is related to a time period t and an inflow

scenario s, with a corresponding linear programming subproblem (LP). The input

parameters of this subproblem are the so called “state variables”, which are the

storages in the reservoirs at the beginning of the scenario. The mathematical for-

mulation of the objective function and constraints of the LP of a given node (t, s)

is presented below.

3.1 Objective function

The objective function of each individual LP is composed by the sum of thermal

generation costs (present cost) and an estimation of future costs:

min
NT∑
i=1

NL∑
p=1

ctigt
p,t,s
i + E[Q(t, s)], (3.1)

where NT is the number of thermal plants and NL is the number of load blocks;

cti is the incremental cost of thermal plant i and gtp,t,si is the generation of thermal

plant i at load block p, time step t and scenario s. The term E[Q(t, s)] represents the

expected value of future costs, which is given either by the FCF (in the leaf nodes)

or by the Benders cuts generated by the DDP strategy (for the remaining nodes).

In order to take into account risk aversion, a conditional value-at-risk measure can

be considered in the problem formulation, as for example by [37], [34] and [26].

Artificial costs are also included in the objective function, by means of slack

variables for constraint violation (with high penalty costs) and very low costs for

spillage, in order to avoid unnecessary waste of water.

3.2 Future cost function

For the leaf nodes of time step T , a FCF function provides an expected value of

future system operating costs, which depends on the energy stored in the reservoirs

at the end of the time horizon. The expression for the future cost is the same for

all scenarios and is a function of state variables of a long term planning problem

NEWAVE ([25]). Since the hydro plants are not considered individually in such

long term problem, the state variables of the FCF are the total energy storage in

the equivalent reservoirs (EERs) represented in the NEWAVE model. The cuts of

the FCF are modeled as constraints and a variable FCF T,s represents its cost in the

objective function:
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FCF T,s ≥ π
(k)
0,T +

NEER∑
j=1

π
(k)
j,TE

T,s
eerj

,

k = 1, ..., NCUTFCF ;

(3.2)

ET,s
eerj

=
∑
i∈Ωj

ρiv
T,s
i , (3.3)

where NEER is the number of equivalent reservoirs and NCUTFCF is the number

of FCF cuts provided by the long term model, with corresponding coefficients π.

An auxiliary variable ET,s
eerj

is used to convert water storage in the individual plants

to aggregated energy storage for EER j, where ρi is the corresponding conversion

coefficient for each plant i in the set Ωj of hydro plants belonging to EER j.

3.3 Load supply

The load supply constraint for each load block is given by:

NT∑
i=1

gtp,t,si +
NH∑
j=1

ghp,t,sj = dp,t, p = 1, ..., NL, (3.4)

where NH is the number of hydro plants of system, ghp,t,sj is the generation of hydro

plant j at load block p, time step t and scenario s, and dp,t is the power demand at

load block p and time step t.

3.4 Water balance

There is a time-coupling water balance equation for each hydro plant i:

vt,si +
NL∑
p=1

(qp,t,si + sp,t,si )−
NL∑
p=1

∑
j∈Ωup

i

(qp,t,sj + sp,t,sj )

= vt−1,r
i + I t,si i = 1, ..., NH,

(3.5)

where I t,si is the water inflow and qp,t,si , sp,t,si are the turbined and spillage outflows

for hydro plant i; Ωup
i is the set of upstream hydro plants to plant i, and vt,si is

the final storage level of the reservoir i for the node (t, s). The initial state for the

reservoir in this node is the final storage vt−1,r
i of its ascendant node (t− 1, r).
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3.5 Maximum turbined outflow

A maximum turbined outflow constraint for each hydro plant, time step, scenario

and load block is imposed:

qp,t,si ≤ qp,ti ∀i = 1, ..., NH, p = 1, ..., NL, (3.6)

where qp,ti is the maximum turbined outflow, calculated by a pre-processing algo-

rithm that considers the limits of the generator and turbine, according to the initial

storage levels of the reservoirs. Since the turbined outflow depends on the storage

levels, the maximum limit would vary along the DDP iterations, depending on the

storage levels in previous nodes, which are decision variables. In order to avoid that,

which would violate the convexity principles of DDP, the initial values of storage

are used to obtain approximated values for such limits.

3.6 Hydro Production Function

The generation of a hydro plant is a function of the turbined outflow, the net head

(which is a function of storage), the spillage and the turbine/generator efficiency

factors, which also depend on the net water head and discharge. Since this relation is

known to be non-convex, we use a so-called Approximate Hydro Production Function

(AHPF), which estimates the power generation as a concave piecewise linear function

of the storage in the reservoir, the turbined outflow and the spillage ([10]). This

piecewise function is computed a priori and added to the model as a set of time-

coupling inequalities for each load block, hydro plant and time step:

ghp,t,si ≤ γ
(k)
0,i,t,s + γ

(k)
v,i,t,s(v

t−1,r
i + vt,si )/2

+γ
(k)
q,i,t,sq

p,t,s
i + γ

(k)
s,i,t,ss

p,t,s
i

k = 1, ..., NCUT i,t
FPHA; i = 1, ..., NH; p = 1, ..., NL,

(3.7)

where γ are the cut coefficients related to each variable (indicated in the first lower

index) of the AHPF.

Finally, there are additional constraints related to storage/generations limits for

all hydro plants and power capacity for the thermal plants.
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Chapter 4

Dual Dynamic Programming

Dual Dynamic Programming (DDP) is a decomposition method capable of solving

multistage stochastic optimization problems. The algorithm builds iteratively a

set of linear approximations of the recourse (or future cost function) at each node

of the scenario tree. This function will tend to converge to the exact future cost

function, specially in the neighborhood of the optimal solution, after a fair number

of iterations. This chapter introduces the stochastic programming formulation and

notation used in this work, as well as the DDP algorithm.

4.1 Stochastic programming formulation

A multistage optimization problem with a discrete scenario representation is a rather

general type of a stochastic programming problem. We consider a problem with

stagtes (time steps) T = {1, ..., T}, where each stage t ∈ T is composed by a set

of nodes (or subproblems) denoted by SP s
t , where s ∈ Z is a scenario of stage t.

By defining Ωu
t−1 as the set of descendant scenarios of the subproblem SP u

t−1, then

s ∈ Ωu
t−1 if and only if the SP s

t is descendant of the subproblem SP u
t−1. We denote

pst ∈ R+ the conditional probability of scenario s, given that scenario u has occurred,

and s ∈ Ωu
t−1. By probability laws we have that:∑

s∈Ωu
t−1

pst = 1, ∀t ∈ {2, ..., T}

The total probability pstotalt of a node is defined by the probability that a specific

scenario s in time period t will happen, and is the product of the conditioned prob-

abilities of the branches along the path from the root node to this node:

pstotalt = pst ∗ putotalt−1
, s ∈ Ωu

t−1,∀t ∈ {3, ..., T}

pjtotal2 = pj2, j ∈ Ω1
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time horizon

stages: t=1 t=2 t=3

node 1

node 2

node 3

node 4

node 5

node 6

node 7

Figure 4.1: Three stages scenario tree example

Figure 4.1 illustrates an example of a scenario tree with the notation for prob-

abilities, subproblems and set of scenarios described previously. The tree contains

three stages (T = 3), and each node is associated with two possible descendant

scenarios (|Ωs
t | = 2, ∀t < 3), with a total of seven nodes.

The dynamic programming formulation of the nested decomposition applied to

the overall problem is as follows:

Stage t = 1:

z = min
x1∈X1(x0)

f1(x1) + E
s∈Ω1

[Qs
2(x1)] (4.1)

Stage t ∈ [2, T − 1]:

Qu
t (xjt−1) = min

xu
t ∈Xu

t (xj
t−1)

ft(x
u
t ) + E

s∈Ωu
t

[Qs
t+1(xut )],∀u ∈ Ωj

t−1.

Stage t = T :

Qu
T (xjT−1) = min

xu
T∈X

u
T (xj

T−1)
fT (xuT ),∀u ∈ Ωj

T−1,

where:
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xst ∈ Rn: decision variables from subproblem SP s
t (stage t and sce-

nario s);

X s
t ⊂ Rn: feasible set for xst , which depends on the state variable

xjt−1 coming from ascendant the scenario;

ft : Rn → R: present cost function of stage t;

Qs
t+1 : Rn → R: is the cost-to-go function of a future stage t + 1 and sce-

nario s;
We note that, x1, X1 and Ω1 are not indexed by scenario, since stage t = 1

has only one subproblem. The cost-to-go function Qs
t+1 represents the future cost

incurred by a decision xut on a stage t given the occurrence of a scenario s in time

step t+ 1. Therefore, the goal is to make a decision at each stage u that minimizes

the present cost ft(x
u
t ) plus the expected value of the cost-to-go function given by

the set of possible scenarios. Such expected cost function is the “recourse function”

Qu
t+1 of the scenario, given by:

Qu
t+1(xut ) = E

s∈Ωu
t

[Qs
t+1(xut )].

In order to solve problem 4.1 and obtain the minimal cost z, some strategy must

be adopted. The most intuitive approach is to aggregate the problem into a single

huge minimization problem that comprises the constraints and contributions of all

scenarios - with their corresponding probabilities - to the objective function. This

so called “deterministic equivalent problem” is formulated as follows:

min f1(x1) +
∑
u∈Ω1

pu2 [f2(xu2) +
∑
s∈Ωu

2

ps3[f3(xs3) + ...[fT−1(xqT−1) +
∑

j∈Ωq
T−1

pjTfT (xjT )]...]]

(4.2)

s.t.

x1 ∈ X1(x0)

xst ∈ X s
t (xjt−1),∀s ∈

⋃
j

Ωj
t−1,∀t ∈ [2, ..., T ],

where the set of decision variables comprises all stages and scenarios. If we con-

sider linear cost functions and polyhedral feasible sets, the optimization problem as

presented in 4.2 is a linear program that can be solved with standard linear program-

ming methods such as Simplex algorithm. However, due to the stochastic nature

of the problem and the exponential growth in the number of scenarios of the tree,

it rapidly becomes prohibitive to solve such problem.. In this sense, decomposition

algorithms have been proposed in the literature, one well known strategy that ex-

plores the formulation 4.1 is Nested Benders Decomposition, also known as Dual
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Dynamic Programming (DDP). This strategy - used in this work and described in

the next section - uses a natural decomposition in scenarios and applies an iterative

solving procedure that uses a cutting plane strategy.

4.2 Dual Dynamic Programming

Dual Dynamic Programming or Nested Benders Decomposition is a cutting plane

strategy that solves multistage problem 4.1 in an iterative way. The idea is to

obtain one feasible solution for the subproblem of each node per iteration and build

a linear approximation of the corresponding cost-to-go functions at the states (state

variables values) related to these solutions. As the iterative process evolves and

several points are visited, piecewise linear models of the cost-to-go functions are

progressively constructed. The model Mk
t+1,s of the cost-to-go function for scenario

s of stage t+ 1 in iteration k can be represented as follows.

Mk
t+1,s(x

u
t ) = max{αi

t+1,s + βi
t+1,sx

u
t , i = 1, ..., k},

where coefficients α and β are obtained by a first order Taylor approximation of the

cost-to-go function around a feasible point xk,ut at iteration k:

αk
t+1,s + βk

t+1,sx = Mk−1
t+1 (xk,ut ) +

∂Mk−1
t+1 (xk,ut )

∂xk,ut

(x− xk,ut ).

As the model accumulates the linear approximations computed in all previous

iterations, the following property holds:

Mk−1
t+1,s(x

u
t ) ≤Mk

t+1,s(x
u
t ) ∀k ∈ Z,∀xut ∈ R. (4.3)

It is shown that if the subproblem SP s
t is convex, the cost-to-go function Qs

t is

also convex [4]. Due to this convexity property, any linear approximation built as a

first order Taylor expansion of the cost-to-go function is a lower estimation of this

function along its domain, i.e:

Mk
t+1,s(x

u
t ) ≤ Qs

t+1(xut ), s ∈ Ωu
t , ∀xut ∈ Rn. (4.4)

The dynamic programming formulation of the DDP method then becomes:

Stage t = 1:

zk = min
x1∈X1(x0)

f1(x1) + E
s∈Ω1

[Mk
2,s(x1)]
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Stage t ∈ [2, T − 1]:

Mk
t,u(xjt−1) = min

xu
t ∈Xu

t (xj
t−1)

ft(x
u
t ) + E

s∈Ωu
t

[Mk
t+1,s(x

u
t )],∀u ∈ Ωj

t−1.

Stage t = T :

Mk
T,u(xjT−1) = min

xu
T∈X

u
T (xT−1)

fT (xuT ),∀u ∈ Ωj
T−1

We note that for the last stage (t = T ) the model matches the real function

in those points around which the function was approximated. An iteration of the

traditional tree traversing protocol of DDP method comprises two phases:

• Forward pass : consists in solving the nodes of the tree from stage 1 to T ,

nesting the decision variables of the ascendants nodes with the state variables

for the descendants nodes. In other words, the solution xjt of subproblem SP j
t

is used as input in the subproblems SP s
t+1,∀s ∈ Ωj

t , for all subproblems of the

scenario tree, as presented in Figure 4.2.

node 1

node 2

node 3

node 4

node 5

node 6

node 7

Figure 4.2: Forward pass representation

• Backward pass : consists in solving the nodes of the tree from stage T to 1,

where the solution of nodes on stage T are the ones obtained in the previous

forward pass (i.e., nodes of the last stage are solved once per iteration), and

the solution of the root node (t = 1) is the used for next forward pass. The

solution of each subproblem SP s
t in the backward pass is used to build a

Benders cut for the model Mk
t,s, as presented in Figure 4.3.

During the course of the DDP algorithm, several forward and backward passes

are consecutively performed. As a consequence, several values of states at each node
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node 1

node 2

node 3

node 4

node 5

node 6

node 7

Figure 4.3: Backward pass representation

of the scenario tree are visited and the model of the future cost in each node is built

and updated. After a fair number of iterations, the model may have a reasonable

number of cuts in order to be a good approximation of the real future cost function

and then archive a optimum solution within the desired tolerance. The next section

details the convergence criterion of the DDP strategy.

4.3 Convergence of Dual Dynamic Programming

A global optimal solution for the multistage stochastic programming problem is one

that yields the minimal cost and is feasible for all nodes of the scenario tree. Con-

sidering the dynamic formulation, an optimum solution for the first stage problem

is given by:

x∗1 ∈ X1(x0) is an optimum solution⇐⇒

f1(x∗1) + E
s∈Ω1

[Qs
2(x∗1)] ≤ f1(x1) + E

s∈Ω1

[Qs
2(x1)],∀x1 ∈ X1(x0).

Therefore, the minimum cost solution is given by:

z∗ = f1(x∗1) + E
s∈Ω1

[Qs
2(x∗1)].

The stopping criterion of the DDP solving strategy is based on the proximity

of lower and upper bounds for the value z∗ of the optimum solution, as explained

below.

Lower bound calculation:

The DDP lower bound zk, at iteration k, is given by the optimal value (sum of

21



present and future costs) of the solution of the first node in this iteration:

zk = min
x1∈X1(x0)

f1(x1) + E[Mk
2,s(x1)],

where zk has the following properties:

• by definition, it is always the minimum (optimal) value of the subproblem

related to the first node;

• the future cost function, at any iteration k, is a lower approximation of the

real future cost function, due to the convexity property (equation 4.4).

Because of these two properties we conclude that zk is always a lower bound for z∗.

Proof. Suppose ∃x∗1 ∈ X1(x0) such that:

z∗ = f1(x∗1) + E
s∈Ω1

[Qs
2(x∗1)] = min

x1∈X1(x0)
f1(x1) + E

s∈Ω1

[Qs
2(x1)].

From 4.4 we also have:

Mk
2,s(x1) ≤ Qs

2(x1), ∀x1 ∈ X1(x0), ∀k ∈ Z.

So, considering a fixed point x∗1 and the expectation of the second stage costs,

the following inequality also holds:

f1(x∗1) + E
s∈Ω1

[Mk
2,s(x

∗
1)] ≤ f1(x∗1) + E

s∈Ω1

[Qs
2(x∗1)],∀k ∈ Z.

Considering the minimum of the functions we have:

min
x1∈X1(x0)

f1(x1)+ E
s∈Ω1

[Mk
2,s(x1)] ≤ f1(x∗1)+ E

s∈Ω1

[Mk
2,s(x

∗
1)]

≤ f1(x∗1) + E
s∈Ω1

[Qs
2(x∗1)] = min

x1∈X1(x0)
f1(x1) + E

s∈Ω1

[Qs
2(x1)],∀k ∈ Z

and:

min
x1∈X1(x0)

f1(x1) + E
s∈Ω1

[Mk
2,s(x1)] ≤ min

x1∈X1(x0)
f1(x1) + E

s∈Ω1

[Qs
2(x1)],∀k ∈ Z,

which leads finally to:

zk ≤ z∗,∀k ∈ Z.

Additionally, as the first node subproblem differs between iterations only by an
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extra cut (constraint), we have that:

Mk
2,s(x1) ≤Mk+1

2,s (x1),∀x1 ∈ X1(x0),∀k ∈ Z,

with a similar proof we can conclude that:

min
x1∈X1(x0)

f1(x1) + E
s∈Ω1

[Mk
2,s(x1)] ≤ min

x1∈X1(x0)
f1(x1) + E

s∈Ω1

[Mk+1
2,s (x1)],∀k ∈ Z

and, finally:

zk ≤ zk+1,∀k ∈ Z.

Considering this, the lower bound is a monotonically increasing function along the

iterations.

Upper bound calculation:

The upper bound is calculated based on the total cost of a global solution ob-

tained at the end of a forward pass, taking into account all nodes and their corre-

sponding probabilities. Such solution is feasible, since it came from a nested forward

pass, i.e., the initial condition of a given node is the final condition of its ascendant

node; thus satisfying the time linking constraints of the problem. The cost zk of

the forward solution xk = {xk1, x
s,k
2 , xu,k3 , ..., xj,kT },∀s ∈ Ω1, u ∈ Ωs

2, ..., j ∈ Ωq
T−1, at

iteration k ∈ Z is given by:

zk = f1(xk1)+
∑
s∈Ω1

ps2[f2(xs,k2 )+
∑
u∈Ωs

2

pu3 [f3(xu,k3 )+...[fT−1(xq,kT−1)+
∑

j∈Ωq
T−1

pjTfT (xj,kT )]...]].

Since any feasible solution in a minimization problem is an upper bound of its

optimal value, we have the following property:

zk ≥ z∗,∀k ∈ Z.

However, there is no guarantee that the cost of a feasible solution will be mono-

tonically decreasing along the iterations, because depending on the decision made on

earlier stages, the sum of costs in all nodes may be higher than a solution computed

in a previous iteration. In this sense, the upper bound zk is given by:

zk = min(zk−1, zk)

Convergence test:

The optimality gap gapk at a given iteration k is defined as the relative difference

of the bounds:

gapk =
zk − zk

zk
,
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and the convergence test, which determines the stopping criterion is:

gapk < ε,

where ε ∈ R is the accepted tolerance for the value of the optimal solution. It

has been shown in the literature that DDP method finitely converges to the global

optimum solution after a (possibly) large enough number of iterations [4].
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Chapter 5

Smart strategies on DDP

This chapter presents two complementary strategies proposed in this work that are

directly applied to the iterative process of the DDP. The goal is to improve DDP

efficiency by avoiding unnecessary calculations and use of memory that would not

provide useful additional information to the solution process, without loss of the

convergence properties of the algorithm.

5.1 Local convergence test (LCT)

Along the DDP iteration process, state variables are transmitted forward on the tree,

i.e., the optimal final conditions on the current stage are the initial conditions for the

next stage. Similarly, Benders cuts are transmitted backward on the tree, in order

to improve the model of the cost function of the current stage for the subproblem of

the previous stage, around the current value of the state variables. As explained in

the previous chapter, the convergence test of the method is based on a comparison

of the actual costs obtained in the forward passes (upper bound) with costs based

on a lower convex approximation of future costs, which is built during the backward

iterations (lower bound). When these two values are close enough the solution is

considered as optimal.

The concept of the Local Convergence Test (LCT) uses a similar idea to the

DDP global convergence, but applied to each subtree instead of only in the complete

scenario tree. The goal is to avoid calculations and memory that would not append

useful information to the problem in the solution process.

Subtrees are defined as a subset of nodes of the scenario tree which can be

considered as tree itself. We consider one subtree for each node on the complete

tree where it is composed by the node itself and all its descendants, therefore, the

number of subtrees considered for LCT is equal to the number of nodes on the tree.

However, there are two special kinds of subtrees and for neither of them we perform

the LCT test:
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• Trivial subtrees: formed by the leaf nodes, where the subtree is the node itself.

The LCT in that case is also trivial and always true;

• complete tree: the subtree which contains the root node is the whole scenario

tree itself. The LCT test in this case is already performed in the DDP solving

procedure.

The LCT strategy is performed at each DDP iteration, and consists in calculating

local upper and lower bounds for the considered subtrees and then proceed a local

convergence test, as detailed below:

• Local lower bound (zkt,u): for iteration k, subproblem SP u
t , given a state

xst−1, u ∈ Ωs
t−1, the local lower bound is given by:

zkt,u = min
xu
t ∈Xu

t (xs
t−1)

ft(x
u
t ) + E

v∈Ωu
t

[Mk
t,v(x

u
t )].

• Local upper bound (zkt,u): for iteration k, subproblem SP u
t , given a state

xst−1, u ∈ Ωs
t−1, we take the forward solution {xu,kt , xv,kt+1, ..., x

j,k
T } on the subtree

v ∈ Ωu
t , ..., j ∈ Ωq

T−1 spanned from subproblem SP u
t to compute the upper

bound:

zkt,u = fu
t (xu,kt ) +

∑
v∈Ωu

t

pvt+1[ft+1(xv,kt+1) + ...+
∑

j∈Ωq
T−1

pjTfT (xj,kT )...]

• Local convergence test : local convergence gap gapkt,u for iteration k and sub-

problem SP u
t is given by:

gapkt,u =
zkt,u − zkt,u

zkt,u

and the convergence test, which determines the stopping criterion is:

gapkt,u < ε,

where ε ∈ R is the desired tolerance for the optimality of the solution.

The test is proceeded before the backward pass: if the LCT is successful in a

given node, it means that the future cost approximation is already accurate (given

a convergence criterion) for the current value of the state variables. Therefore, it is

not necessary to build more linear cuts for this node, which avoids additional CPU,

memory and the computational burden of adding more cuts. More importantly,

it may avoid several LP computations because there is no need to compute the
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backward pass for all nodes on this subtree. We note that, differently from the

global convergence test, the LCT depends on the values of the state variables, i.e.,

if a subtree has converged in a certain iteration, it may not necessarily converge on

the next one, because the values of the corresponding state variables for the root

node on this subtree may change.

5.1.1 Global and local convergence

In order to determine the convergence gap to be used in the local convergence test we

compare the relation between the local and global gaps. Considering this, we show

that if the subtrees corresponding to all descendant nodes of the root node converges

with the tolerance ε then the global tree converges with the same tolerance.

Considering u ∈ Ω1 the descendants of the root node, the gaps and the tolerance

test of these nodes are given by:

gap2,u =
z2,u − z2,u

z2,u

< ε

We also can write that:

z2,u − z2,u < ε ∗ z2,u,∀u ∈ Ω1

Which means that all descendant nodes of the root node have converged with ε

tolerance. We also can write:∑
u∈Ω1

z2,u −
∑
u∈Ω1

z2,u < ε ∗
∑
u∈Ω1

z2,u

The upper bound of the root node with relation of its descendants can be write as:

z1 = f1(x1) +
∑
u∈Ω1

z2,u

So we have:

z1 − f1(x1)−
∑
u∈Ω1

z2,u < ε ∗
∑
u∈Ω1

z2,u

z1 − (f1(x1) +
∑
u∈Ω1

z2,u) < ε ∗
∑
u∈Ω1

z2,u

Considering that the lower bound is always a lower approximation of a convex

function, the lower bound of the root node is less than the :

z1 = f1(x1) + E[Mk
2,s(x1)] < f1(x1) +

∑
u∈Ω1

z2,u
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So:

z1 − (z1) < ε ∗
∑
u∈Ω1

z2,u

And, the sum of the upper bounds are also below of the root node upper bound:

z1 − (z1) < ε ∗
∑
u∈Ω1

z2,u < ε ∗ z1

Leading to:

z1 − z1 < ε ∗ z1

z1 − z1

z1

< ε

In conclusion, if the subtrees have converged with tolerance ε the global tree also

converges with the same tolerance.

5.2 State Variables Stability Test (VST)

The State Variables Stability Test (VST) is a complementary strategy to the LCT,

and aims to avoid the resolution of LPs in the forward iteration. The VST test makes

use of the concept that a subtree will always converge at the current DDP iteration,

if it has already reached convergence at a past iteration for the same values (given a

numerical tolerance) of the state variables for the root node of this subtree. In this

sense, we save all values of state variables for which the subtree has converged in

past iterations and avoid the forward pass on that subtree when such values appear

again (given a numerical tolerance). We note that this procedure is very effective

in saving CPU time, because eliminates the entire forward and backward passes for

the subtree that has become stable in a given iteration

Figure 5.1 exemplifies the convergence tests defined in this chapter, as described

below:

• Global convergence: the input state variables for node 1 (x0) are constant. If

this node yields a solution xk1 with approximated cost zk close enough to the

real cost Q2(xk1) for the subtree spanned from that node (which is the complete

scenario tree of the problem), global convergence has been reached.

• Local convergence (node 2): for the same cost function approximation, a cer-

tain state reach local convergence and another may not:

– case A: for a certain set of input state variables (xk1) an output state xk2 is

obtained. This output state gives an approximated future cost of zk2,1 and

local convergence is not detected because in this region the approximated
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          node 1
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          node 2
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Figure 5.1: Example of global convergence, local convergence and state variables
stability tests.

value of future cost given by the model is much smaller than the real cost

Q3(xk2);

– case B : for another set xk+1
1 of input state variables, an output state xk+1

2

is obtained. This output state gives an approximated future cost of zk+1
2,1 ,

which is an accurate of approximation of the real cost. Therefore, we

may say that node 2 has converged for an input state xk1 and there is no

need to proceed a backward operation for this node.

• State variables stability (node 2): suppose that, at iteration k + 1, local con-

vergence was detected for an input state xk+1
1 , yielding a lower bound that had

been considered converged, as shown in Figure 5.1. Since the lower bound is

monotonically increasing (for a constant input state), if in any further itera-

tion n > k + 1 the input state xk+1
1 occurs again (i.e., xn1 = xk+1

1 ), we neither

need to recalculate the costs nor to build Benders cuts, because the algorithm

has already performed such procedures in the previous iteration k + 1.

Figure 5.2 shows the flow diagram of one iteration with respect to the subproblem

of a given node of the tree. The node receives an input state from its ascendant

node, and the VST is performed. If the test succeeds, the process for this node

is terminated, otherwise the forward pass for the subtree spanned from this node
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Figure 5.2: Flow diagram of one iteration with respect to the subproblem of a given
node of the tree.

is performed. At the end of this procedure, local lower and upper bounds for this

node are tested and the backward pass for this subtree is performed only if local

convergence has not been detected. Finally, after the backward pass reaches this

node, a Benders cut is built and sent to the ascendant node.

We expect that, as the iterative process evolves and the approximations of the

future costs become more accurate, several subtrees will reach local convergence

and stabilize the values of state variables along their nodes. This drastically reduces

the number of solved subproblems in each forward and backward pass and, as a

consequence, the CPU time of each DDP iteration.
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Chapter 6

Parallel Dual Dynamic

Programming

This chapter explores the parallel execution of the DDP algorithm. Firstly, a tradi-

tional parallelization scheme for this algorithm is introduced. Then, an asynchronous

version of the DDP method proposed in this paper is presented. The asynchronism

introduced in the DDP method makes it more suitable for parallel environments,

although the serial execution of this algorithm may be harmed. Finally, another ap-

proach which is partially asynchronous is also proposed with the goal of increasing

the convergence rate of the method.

6.1 Traditional Parallel Dual Dynamic Program-

ming Algorithm

A classical way of parallelizing a DDP method was proposed by [9], which explores

independence of the scenarios at the same level of the tree. The main idea is to

apply the traditional DDP algorithm, with forward and backward passes, solving

the nodes at the same stage in parallel. Because the subproblem of a node requires

either the state of its ascendant node (in the forward pass) or the Benders cuts of

its descendants nodes (in the backward pass), there exists an inter-level dependency

that creates a synchronization point in each time level.

These synchronization points are a major drawback of the method. Besides

creating a dependence between the levels in both backward and forward passes, it

also limits the granularity of the algorithm. The maximum granularity of a time

level is given by the number of scenarios at this level. Therefore, since each time level

has a different granularity, idleness along the traditional DDP solving procedure is

expected, specially in the prior levels of the scenario tree. It is also important to

note that parallel performance, granularity and dependencies are strongly related to
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the size and shape of the scenario tree.

In order to describe the classical DDP parallel scheme we use the example tree

of Figure 6.1, which shows how the subproblems (nodes) are distributed among the

processors. Since the tree has a total number of four scenarios at the last time level,

the maximum granularity is four processors, being represented by p0, p1, p2 and p3,

.

time horizon

t=1 t=2 t=3

1

2

4

5

6

7

3

p0

p1

p2

p3

Figure 6.1: Example tree and the distribution of the sub-trees among the processors
for the DDP traditional parallel method.

Figure 6.2 presents the Unified Modeling Language (UML) sequence diagram of

the iteration loop on the classical parallel DDP algorithm. The diagram represent

the lifelines of the four processors, p0, p1, p2 and p3, and the information to be

exchanged among them, which are the values of state variables in the forward pass

and the Benders cuts in the backward pass. Firstly, node1 is solved by processor

p0, while the other processors are waiting; the state of node1 is transmitted for

processor p2, which will solve node3, at the same time processor p0 solves node2.

Then, the output states of nodes 2 and 3 are transmitted to processors p1 and p3

in order to solve the subproblems for the last time level (nodes 4, 5, 6 and 7), by all

processors working in parallel. After that, the backward iteration begins with the

transmission of the cuts to the descendant nodes on the tree. Only processors p0

and p2 proceed this pass by solving nodes 2 and 3, respectively.

It is possible to note that idle times are an important issue for all processors

(except for p0), since they do not perform any operation in a portion of the iteration

time line. Such idleness is critical for processors p1 and p3, which are responsible

for the solution of only one node. At the end of each iteration a convergence test is

performed, for which a special care must be taken in transmitting the present costs

of all nodes to processor p0, which will compute the upper bound. We note that

32



the convergence process of the parallel version of the traditional DPP algorithm

is exactly the same as its non-parallel (serial) version, since the parallelization is

applied without changing the algorithm.

loop

<until convergence test equal true>

forward: state (1 to 3)

forward: state (2 to 5) forward: state (3 to 7)

backward: cut (7 to 3)backward: cut (5 to 2)

backward: cut (3 to 1)

p1 p3p2p0

forward: state (1 to 2)

forward: state (2 to 4)

backward: cut (4 to 2)

forward: state (3 to 6)

backward: cut (6 to 3)

Figure 6.2: UML sequence diagram of DDP parallel algorithm

6.2 An Asynchronous Dual Dynamic Program-

ming Algorithm

The inherent time level dependence in the forward and backward passes of the DDP

algorithm can be very restrictive to parallelization schemes. In order to overcome

this limitation, an asynchronous version of the DDP algorithm called ADDP is

formally proposed here and can be more naturally adapted to parallel environments.
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A similar asynchronous idea was proposed for deterministic problems in [35], to

allow the use of several processors simultaneously, since in the deterministic case

the application of traditional DDP algorithm turned out to be inherently serial.

We adapted their idea to the stochastic framework, with a set of improvements in

order to better proceed the DDP algorithm in a parallel environment for stochastic

problems.

The ADDP algorithm has neither a forward pass nor a backward pass; thus it

does not iterate in the same way as the traditional DDP approach. Instead, ADDP

iterates by “steps”, where each step is defined as an independent resolution of all

subproblems of the scenario tree. The exchange of information occurs simultaneously

along the tree in between steps: state variables for the descendant stages and Benders

cuts for the ascendant stage of each given subproblem. Considering this, the nodes

are totally independent from each other and can be solved simultaneously within a

step. However, in between steps there is a synchronization point.

The same scenario tree as before is used to describe the ADDP scheme, and

Figure 6.3 shows the distribution of duties among the processors for this tree. Since

the maximum granularity of the ADDP method corresponds to the number of nodes

on the tree, seven processors can be used in this case: p0 to p6.

time horizon

t=1 t=2 t=3

1

2

4

5

6

7

3

p0

p1 p2

p3

p4 p5

p6 

Figure 6.3: Example tree and the distribution of the subtrees among the processors
for the ADDP strategy.

Figure 6.4 represents the UML sequence diagram of the iterative loop of steps

for the ADDP algorithm. Each step is composed by two well defined phases: the

first one consists in solving the LP subproblem of each node; therefore, within a

step, all nodes of the tree can be solved independently. The second phase consists in

exchange of information: state variables and cuts are transmitted to the ascendant
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and descendants nodes, respectively, and cost information is transmitted to the

master noted in order to perform the convergence test.

loop

<until convergence test equal true>

S
ol

ve
 L
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ra
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sm

it

p3p2p0 p4 p5 p6p1

state: 1 to 2
cut: 2 to 1

state: 2 to 4
cut: 4 to 2

state: 1 to 3
cut: 3 to 1

state: 3 to 6
cut: 6 to 3

state: 3 to 7
cut: 7 to 3

state: 2 to 5
cut: 5 to 2

cost: 2 to 1 cost: 4 to 1 cost: 5 to 1 cost: 3 to 1 cost: 6 to 1 cost: 7 to 1

Figure 6.4: UML sequence diagram of the ADDP parallel algorithm.

We also show in Figure 6.5 a flow diagram of processes in the slave processors

(p1 to p6) and in the master processor (p0). Firstly, the LP subproblem of the

corresponding node is initialized in each processor. Then the LP is updated with

new information (cuts and states), solved and new values of local state variables and

cuts are computed. We proceed by sending state variables to descendants nodes and

receiving cuts from the ascendants nodes. In the same time, a new cut that has just

been built is sent backwards and the new state values are received from the ascendant

node. Moreover, cost information is transmitted to the master node by all nodes,

and such master node computes the convergence and broadcasts the convergence

result (i.e., a stop signal if the stopping criterion has been met). Otherwise, all

processors repeat the same process of updating the LP and a new step of the ADDP

algorithm is performed.

At the fist step, there are no state values available for the subproblems, except

for the root node, where the state is given as an input data for the algorithm.

Therefore, as the algorithm needs to be initialized with state values to start the

iterative process, in the first step we applied the initial state from the first node to

all nodes.
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Figure 6.5: Flow diagram of ADDP process for the slave and master processors

6.2.1 Convergence of the ADDP algorithm

Convergence of the ADDP method carries the same concepts and properties of the

traditional DDP convergence, as described in section 4.3. The lower bound is the

value of the optimal solution of the first (root) node. The upper bound calculation,

on the other hand, becomes more complex since the method has no forward passes.

However, it is possible to identify an implicit forward pass along the ADDP steps:

as the state variables are transmitted to descendant nodes between steps, a sequence

of T steps - where T is the number of time levels - comprises a complete propagation

of a forward pass from the root node to the leaf nodes.

Figure 6.6 illustrates the implicit forward pass from step k to step k + 2 of

the ADDP algorithm for the previous example. The convergence test is calculated

as follows: the lower bound zk is the solution of first node in step k, similarly

to the traditional DDP lower bound. On the other hand, the upper bound zk is

composed by the present costs of the nodes in steps k to k+2, following the forward

propagation. In this sense, the convergence test on step k needs the information on

step k + 2 in order to be computed.

Algorithm 1 presents the pseudo code of the convergence test in the proposed

ADDP method. After computing the upper and lower bounds, a convergence gap is

obtained by the relative difference between the two bounds. The algorithm reaches

convergence in the current step if the gap is less than a fixed tolerance. As required

for a reliable stopping criterion, once convergence is detected in a given step, the

algorithm will be always convergent for furthers steps because of the monotonicity
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Figure 6.6: Convergence process of the ADDP algorithm.

property of the bounds.

6.3 Partial ADDP algorithm

The asynchronous DDP method is capable of solving all nodes on the scenario tree in

a completely independent mode; thus allowing full node parallelization as compared

to the traditional DDP algorithm. Nevertheless, when the number of available

processors is lower than the number of nodes in the tree, a certain number of nodes

will share a same processor, and their subproblems will be solved sequentially but

asynchronously.

For this reason, in order to improve the convergence rate of the ADDP method,

a Partial Asynchronous DDP approach (PADDP) is also proposed, where we in-
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Algorithm 1 The ADDP method convergence calculation

. Lower bound computation
1: zk = f(x∗

k

1 ) + Eu∈Ω1 [M
k
2,u(x∗

k

1 )]
. Upper bound computation

2: zk = f(x∗
k

1 )
3: for i = 1, ..., T − 1 do . collecting costs from second to last
4: period = i+ 1 . periods consulting the corresponding step
5: for s ∈ ∪∀uΩu

period do

6: zk = zk + psaccperiod × f(x∗
s,k+i

period)
7: end for
8: end for
9: zk = min(zk−1, zk)

. Convergence gap
10: gapk = (zk − zk)/zk

11: convergencek = false
12: if gapk ≤ ε then . Convergence test
13: convergencek = true
14: end if

tentionally introduce an inter-level synchronism for nodes at the same processor to

allow one node to use information computed by other nodes during the same ADDP

step. Therefore, the idea of PADDP is to pass information on the state variables

from one node to its descendant node at the same ADDP step if both nodes are

solved at the same processor. It is important to note that, for a problem comprising

a scenario tree with N nodes, if there are N available processors the PADDP and

ADDP methods are identical. Conceptually, the PADDP approach gradually leads

to the ADDP method as the number of processors tends to the number of nodes.

The upper bound computation for convergence test varies on how the implicit

forward pass is split among the PADDP steps, depending on the number of proces-

sors. For example, in one limiting case, the PADDP with a single processor has an

entire forward pass within one step (which is identical to the DDP forward pass),

and each step yields an independent convergence test. If two processors are em-

ployed, a complete forward pass will be performed in two consecutive steps. On

the other extreme case, the PADDP approach with N processors needs N steps to

produce an upper bound.

Figure 6.7 is the UML sequence diagram representing the PADDP method of

the example tree when there are two available processors. In such case the first

processor will solve nodes 1, 2, 4 and 5, the second processor will solve nodes 3, 6

and 7, and the state variables between them are shared at the same step.

For the PADDP algorithm it is necessary to define how the nodes will be spread

among the processors, since this may have an effect in the algorithm progress. A

static distribution is made before the solution of the problem as a preprocessing
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loop

<until convergence test equal true>

Solve LP

Transmit

p0 p1

state: 3 to 6
state: 3 to 7state: 1 to 2

state: 2 to 4
state : 2 to 5

cut: 3 to 1
state: 1 to 3

cut: 4,5 to 2

cut: 2 to 1

cut: 6,7 to 3

cost: 3,6,7 to 1

Figure 6.7: UML sequence diagram of an iteration of the PADDP method with 2
processors

phase. We allocate an uniform number of nodes in each processor to pursue a good

load balance, two different strategies were experiment to proceed this distribution:

• Node approach: which divides the nodes among the processors according to

their numbers, as presented in Figure 6.3, enumerated by their position in the

time horizon.

• Scenario approach: which attempts to allocate in the same processor the

nodes that are located in a same path.

We note that, despite having the same forward process with one processor, the

PADDP algorithm differs from the traditional DDP approach in the backward pass,

which is implicit among the steps in the PADDP method.
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Chapter 7

Results

This chapter presents the results of studies made to evaluate the efficiency of the

proposed schemes in multistage linear stochastic optimization problems solved using

DDP decomposition with a multi-cut approach [5]. All the algorithms, the proposed

ones and the originals were implemented by the author with the same resources in

order to be comparable. The LCT and VST strategies proposed in this work were

compared to the standard DDP strategy in terms of number of operations that were

avoided and time taken until convergence. In addition, the proposed ADDP and

PADDP strategies were compared to a parallel scheme that is traditionally used for

the DDP algorithm (section 6.1) where time, efficiency and speedup were assessed

for the three parallel schemes with different amounts of cores.

7.1 Study cases

We considered a stochastic HTC problem for part of the large-scale Brazilian inter-

connected system, as described in chapter 3. The model comprises 84 hydro plants,

from which 44 are reservoirs with regularization capacity, and 46 thermal plants.

To evaluate the algorithms more carefully, we generated different scenario trees by

varying the length of the time horizon and the stochastic scenarios of water inflows.

Four different study cases were constructed with the scenario trees described in

Tables 7.1, 7.2, 7.3 and 7.4.

Table 7.1: Structure of the scenario tree for study case 1
Total number of nodes: 127

Time periods: 1 2 3 4 5 6 7
# Scenarios per period: 1 2 2 2 2 2 2

Each LP subproblem in a node has around 1200 variables and 2500 constraints,

besides the Benders cuts that are appended to the LP along the iterative process.
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Table 7.2: Structure of the scenario tree for study case 2
Total number of nodes: 781

Time periods: 1 2 3 4 5
# Scenarios per period: 1 5 5 5 5

Table 7.3: Structure of the scenario tree for study case 3
Total number of nodes: 306

Time periods: 1 2 3 4 5 6 7
# Scenarios per period: 1 1 1 1 1 1 300

Table 7.4: Structure of the scenario tree for study case 4
Total number of nodes: 221

Time periods: 1 2 3 4 5 6 7 8 9 10 11 12
# Scenarios per period: 1 20 1 1 1 1 1 1 1 1 1 1

Three load blocks are represented in each time period. We considered monthly

periods, except for case 3, where periods 1 to 6 correspond to weeks, in order to

emulate the official studies for the definition of spot prices for the Brazilian market

([11]).

7.2 Hardware and software features

We developed the algorithms in Fortran language and Linux environment. Since the

applied parallelism technique was suitable for a distributed memory environment

based on message passing, Message Passing Interface (MPI) was used to implement

the parallel algorithms. The study cases were executed in a cluster with several

nodes containing 2 AMD processors, 6 cores and 2.6GHz each, 2MBytes of cache

memory and 96 GBytes of RAM memory.

The study cases were executed five times each and the time computed in average

excluding any outliers execution.

7.3 Assessment of LCT and VST strategies

The performances of the strategies presented in Chapter 5 were evaluated in a mul-

tistage linear stochastic optimization problem through the study cases described

previously. We compare the number of LPs solved in each iteration, in the for-

ward and backward passes, as well as the time taken until convergence (within a

given tolerance) when using 1 processor and 8 processors (with traditional parallel

implementation on DDP - section 6.1), for the following methods:
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• traditional DDP method, as a benchmark (section 4.2);

• DDP method with the proposed LCT strategy (section 5.1);

• DDP method with the proposed VST strategy, which also includes the LCT

approach by construction (section 5.2).

The results are exposed and discussed for each study case in the following.

7.3.1 Results and analysis - Study case 1

Table 7.5 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds in the three methods

assessed:

Table 7.5: Study case 1 - lower and upper bounds and convergence gap of the
executions.

Method Upper bound Lower bound Gap
DDP 11900728.6 11900828.5 0.0008389382
LCT 11900728.2 11900810.4 0.0006908652
VST 11900738.7 11900842.2 0.0008702884

It is important to notice that for the three methods the solution bounds are

consistent with the fact that the problems been solved are the same as well as the

solution.

Figures 7.1 and 7.2 show the number of LPs solved in the forward pass and in

the backward pass, respectively, for each one of the 18 iterations before the global

convergence. For the classical DDP algorithm, the number of LPs solved is constant

along iterations, since each forward pass (with 127 LPs) and backward pass (with 63

LPs) traverses the whole scenario tree. On the other hand, the LCT strategy avoids

solving LPs in the backward passes, so the total number of solved LPs tends to be

smaller (Figure 7.2). Such difference is more evident as the process approaches the

optimal solution, since more and more sub-trees reach convergence.

The VST strategy avoids LPs in the backward and in the forward passes of the

DDP algorithm, thus yielding an even greater reduction in the number of solved

LPs, since the forward pass has twice the number of LPs than the backward pass.

However, we cannot expect the VST strategy to always provide a lower number

of LPs as compared to LCT, because there is a somehow random effect caused by

multiple optimal solutions for the subproblem of a given node, which may cause

different behaviors in further stages.

We also note that VST had a small impact in the second iteration and LCT

did not. The reason is that, since the future cost function of the leaf nodes are
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Figure 7.1: Number of LPs solved per iteration in the forward pass for the study
case 1.
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Figure 7.2: Number of LPs solved per iteration in the backward pass for the study
case 1.

fixed, they do not perform backward passes, therefore LCT is not effective on them.

However, the VST strategy may avoid forward passes in the leaf nodes if the values

of state variable are stable from one iteration to another.

Figure 7.3 shows the time each of the 18 iterations took to proceed, both in a

serial execution and in a parallel execution with 8 processors. As a consequence of
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Figure 7.3: Time per iteration in study case 1 by using one and eight processors.

the reduction on the number of LPs solved, we observe the lower execution times

for LCT and VST strategies as compared to the traditional version of DDP method,

specially in the final iterations. We note that for this case VST presents the best

(lower) time consumption, performing some iterations 40% faster than DDP (with

one processor). In the parallel case the gain in terms of time is lower as compared

to the single-processor case. The reason is that part of the reduction is obtained by

not solving subproblems in a processor which later would be idle anyway because of

the DDP time dependency.

7.3.2 Results and analysis - Study case 2

Table 7.6 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds in the three methods

assessed:

Table 7.6: Study case 2 - lower and upper bounds and convergence gap of the
executions.

Method Upper bound Lower bound Gap
DDP 11765793.1 11765899.3 0.0009027470
LCT 11765780.5 11765889.1 0.0009236680
VST 11765790.3 11765897.0 0.0009076835

As well as the previous case, the bounds are consistent reinforcing the fact that

the methods lead to the same global solution.

Figures 7.4 and 7.5 show the number of LPs solved in the forward pass and in

the backward pass for each of the 16 iterations before the global convergence of the
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Figure 7.4: Number of LPs solved per iteration in the forward pass for the study
case 2.
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Figure 7.5: Number of LPs solved per iteration in the backward pass for the study
case 2

In this case, the number of LPs in the forward pass is 781 and in the backward

pass is 155, therefore the classical DDP algorithm will solve all these LPs per itera-

tion since it traverses the whole scenario tree. On the other hand, the LCT strategy
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provides a reduction on the number of LPs in the backward passes, which can be

more than 50% in the final iterations.

The impact observed on VST in the backward pass was lower than the LCT

approach, however in the forward pass the reduction in the number of LPs solved

was significant. Since in this study case the forward pass is proportionally more

costly than the backward pass, the impact of VST on the execution time was more

evident. Figure 7.6 shows the time taken for each method using one and eight

processors. Even though we observe that the impact of LCT in the execution time

is small, on the other hand, the impact of VST was significant, in both experiments,

being more evident with a single processor.
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Figure 7.6: Time per iteration in study case 2 by using one and eight processors.

7.3.3 Results and analysis - Study case 3

Table 7.7 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds in the three methods

assessed:

Table 7.7: Study case 3 - lower and upper bounds and convergence gap of the
executions.

Method Upper bound Lower bound Gap
DDP 12812793.4 12812918.6 0.0009769356
LCT 12812793.4 12812918.6 0.0009769356
VST 12812793.4 12812918.6 0.0009769356

In this case of study the bounds and consequently the gap are the same in the

three executions. The shape of the scenario tree presents six deterministic time steps
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followed by a 7th time step with 300 scenarios. Therefore, 306 nodes perform the

forward passes and 5 nodes perform the backward passes. The local convergence test

on these 5 nodes means that almost the whole tree has converged, and no cut will

be built, so the whole tree is convergent. In conclusion, the local convergence test

does not apply to this type of tree. Concerning the VST, the state variable stability

on a deterministic tree also means global convergence, since no new information will

be appended to the problem. Therefore, VST is also not applicable to this type of

scenario tree. Figures 7.7 and 7.8 show the number of LPs solved in the study case

3, reinforcing the identical execution of the three methods.
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Figure 7.7: Number of LPs solved per iteration in the forward pass for the study
case 3.

Figure 7.9 shows the time to proceed each iteration until convergence. Since

the LCT and VST have no effect on the number of LPs solved, we observe that

both strategies have a higher time than DDP, which can be explained by the extra

calculations in order to perform the local testes. In the case with 8 processors, the

time of the three strategies are similar.
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Figure 7.8: Number of LPs solved per iteration in the backward pass for the study
case 3.
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Figure 7.9: Time per iteration in study case 3 by using one and eight processors.

7.3.4 Results and analysis - Study case 4

Table 7.8 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds in the three methods

assessed.

Noticing the the bounds among the methods showed to be consistent.

In the scenario tree of study case 4, the second stage is stochastic (with 20

scenarios) and the further stages are deterministic. Therefore there are 221 nodes
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Table 7.8: Study case 4 - lower and upper bounds and convergence gap of the
executions.

Method Upper bound Lower bound Gap
DDP 12837714.5 12837830.8 0.0009054650
LCT 12837704.7 12837832.9 0.0009986051
VST 12837718.3 12837815.3 0.0007555267

performing forward passes and 200 performing backward passes.
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Figure 7.10: Number of LPs solved per iteration in the forward pass for the study
case 4.

Figures 7.10 and 7.11 show the number of LPs solved in the forward and backward

passes, respectively. We observe that LCT has an important impact on the reduction

of the number of LPs solved in the backward pass. On the other hand, the impact

caused by VST is less evident, even with the reduction being observed in both

forward and backward passes. The consequence of these reductions can be noted in

Figure 7.12, which shows the time of each iteration of the DDP algorithm.

We observe that the methods took different number of iterations to converge,

which can be explained by the different paths in the convergence process of each

approach. It is important to note that this is a random effect; thus the reduction in

the number of iterations is not related directly to some strategy.
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Figure 7.11: Number of LPs solved per iteration in the backward pass for the study
case 4.
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Figure 7.12: Time per iteration in study case 4 by using one and eight processors.

7.4 Assessment of parallelization: traditional and

asynchronous DDP approaches

The performance of the presented algorithms was evaluated in a multistage linear

stochastic optimization problem. We assess the parallel CPU time, speedup and

efficiency using several amounts of cores for the following algorithms:

• traditional DDP parallelization (section 6.1);
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• the proposed ADDP approach, as described in section 6.2;

• the alternative PADDP framework also proposed (6.3). The results showed

correpond to the scenario approach once we verified that the efficiency are not

too different compared to the node approach, we also observed that depending

on the number of processors and the shape of the tree one approach is slightly

more or less efficient than other.

7.4.1 Results and analysis - Study case 1

Table 7.9 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds of the DDP and

ADDP, where the bounds do not vary with the number of processors and all bounds

of the parallel executions of PADDP method.

Table 7.9: Study case 1 - lower and upper bounds and convergence gap of the parallel
methods.

Method Upper bound Lower bound Gap

PADDP

1p 11900724.0 11900815.5 0.0007686771
12p 11900714.7 11900817.8 0.0008668367
24p 11900707.2 11900806.0 0.0008300325
36p 11900717.1 11900833.1 0.0009749642
48p 11900703.3 11900815.1 0.0009393943
60p 11900719.5 11900834.4 0.0009653238
72p 11900719.5 11900834.4 0.0009653238
84p 11900719.5 11900834.4 0.0009653238
96p 11900719.5 11900834.4 0.0009653238
108p 11900719.5 11900834.4 0.0009653238
120p 11900719.5 11900834.4 0.0009653238

ADDP 11900707.0 11900819.5 0.0009452812
DDP 11900728.6 11900828.5 0.0008389382

It is important to notice that for the three methods the solution bounds are

consistent with the fact that the problems been solved are the same as well as the

solution.

Table 7.10 shows the necessary CPU time to solve case 1 by the three strategies

and varying the number of processors. Table 7.11 shows the number of steps for

convergence of the ADDP and PADDP approaches, as compared to the number of

iterations for the traditional DDP algorithm. We note that a PADDP or ADDP step

consists in solving all nodes a single time and a DDP iteration consists in performing

both a forward pass (solving all nodes once) and a backward pass, solving again all

nodes except the leaf ones.

Based on the CPU time and number of iterations/steps, we can make the fol-

lowing comments:
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Table 7.10: Study case 1 - time consumption (in seconds) varying the number of
processors.

Number of Processors
1 12 24 36 48 60 72 84 96 108 120
PADDP t(s):
1897 337 249 177 110 85 84 73 65 71 70
ADDP t(s):
3563 408 302 175 147 135 103 104 101 93 89
DDP t(s):
1845 655 517 347 358 317 321 321 326 323 327

Table 7.11: Study case 1 - number of steps/iterations until convergence
Number of Processors

1 12 24 36 48 60 72 84 96 108 120
PADDP steps: 24 30 35 34 35 38 38 38 35 39 40
ADDP steps: 44 in all cases
DDP iterations: 18 in all cases

• The DDP algorithm has a serial (1 processor) CPU time of 1845 seconds

(approximately 30 minutes), which is reduced to approximately 5 minutes

with the increase in the number of processors. However, we note a saturation

of the CPU time curve when the number of processors is greater than 60. This

saturation was expected because the scenario tree has a maximum number of

64 independent leaf nodes.

• The time of the serial execution of the ADDP (around 60 minutes) was twice

the time of the traditional DDP approach. Nevertheless, in the parallel envi-

ronment with 12 processors, the CPU time of ADDP is 60% of the total DDP

time. Moreover, the time of ADDP drops to 89 seconds (1 minute and half)

with 120 processors.

• On the other hand, PADDP has comparable CPU time with DDP with one

processor, and smaller CPU times with 12 or more processors. Moreover, this

method had a better performance than the ADDP algorithm.

• The DDP approach takes 18 iterations until convergence, while the ADDP

takes 44 steps, which justifies the greater CPU time of the latter in the serial

run. Nevertheless, even proceeding 44 steps, the parallel CPU time for the

ADDP approach is smaller, since the asynchronous approach is more suitable

for parallel environments.

• The number of steps needed to perform a complete DDP iteration (forward

and backward passes) depends on the size of the tree. Since this case has 7

periods, a complete iteration takes 12 steps because the initial state requires 7
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steps to propagate the state variables information until the end of the scenario

tree, plus 5 more steps to propagate cuts until the first node. As a result, 44

steps of the ADDP algorithm represented only about 4 DDP iterations. This

shows that the extra information appended in the steps indeed contributes for

faster convergence of the method.

• Regarding the ADDP method, the number of steps until convergence in Table

7.11 decreases when a smaller number of processors is used, which is expected

since the convergence rate increases as the nodes share the same processor. As

a consequence, for identical input data, the PADDP convergence results may

differ with the number of processors, which may be an issue in official uses

of this approach for market pricing, since the Independent System Operator

(ISO) may require that exactly the same results should be obtained regardless

of the number of processors.

Figure 7.13: Study case 1 - speedup and efficiency varying the number of processors

The speedup of a given parallel algorithm is defined by the ratio between the time

speed with 1 and N processors (speedup(N) = t1/tN), and the ideal speedup occurs

when tN = t1/N or speedup(N) = N . The parallel efficiency of the algorithm may

be defined as the speedup divided by the number of processors that were employed:

η%(N) = 100× t1
N × tN

.

Figure 7.13 shows the computed speedup and efficiency for study case 1. We

observe that both the ADDP and PADDP approaches have better speedup than

DDP for any number of processors. Since the number of steps of the PADDP

method increases with the number of processors, the speedup is reduced. This

reduction causes the ADDP to have better speedup than the PADDP, even if the

PADDP spends less computational time.
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Figure 7.14: Study case 1 - average CPU time of the processor activities per itera-
tion/step.
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Figure 7.15: Study case 1 - average CPU time per iteration/step in each processor.

In order to measure the CPU times spent by each processor during the solution

process, we divide the processor work into two main activities:

• Waiting : is the CPU time a processor spends either sending/receiving mes-
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sages from other processors or waiting into a synchronization point;

• Computing : is the CPU time spent in all calculations of the algorithm flow,

including data processing, solving or updating of LPs, as well as computation

of costs or convergence tests. We note that 99% of the computing time is spent

solving LPs.

We process the study case 1 with 36 processors and Figure 7.14 shows the ra-

tio between the waiting activity and the computing activity per-unity of the total

CPU time, in average among all processors. We observe that in DDP method the

processors spend 90% of the time in average waiting and only 10% computing, in

contrast, the processors using the ADDP and PADDP methods spend around 80%

proceeding calculations. Figure 7.15 shows the average CPU time per iteration for

each processor individually. As expected, the average iteration time of DDP method

is higher than the average step time of the ADDP or PADDP method since the steps

are faster to process than the iterations. We note that DDP algorithm has an un-

balanced distribution where some processors spend a larger time computing while

others spend a larger time waiting, which occurs because of the stage dependencies

of the method. On the other hand, the processors work more homogeneously in the

ADDP and PADDP algorithms, we also note that the balance in this two methods

are quite similar.

7.4.2 Results and analysis - Study case 2

Table 7.12 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds of the DDP and

ADDP, where the bounds do not vary with the number of processors and all bounds

of the parallel executions of PADDP method.

It is important to notice that for the three methods the solution bounds are

consistent with the fact that the problems been solved are the same as well as the

solution.

Table 7.13 shows the CPU time to solve study case 2 and Table 7.14 shows

the number of steps/iterations for convergence of the ADDP, PADDP and DDP

methods. Based on these results, we note that:

• The DDP algorithm has a serial CPU time of 9536 seconds (approximately 2

hours and 40 minutes), which is decreased to about 8 minutes with the increase

in the number of processors.

• The CPU time of the serial run of the ADDP algorithm (5 hours and 18

minutes) is twice the CPU time of the DDP method. Nevertheless, the CPU
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Table 7.12: Study case 2 - lower and upper bounds and convergence gap of the
parallel methods.

Method Upper bound Lower bound Gap

PADDP

1p 11765779.9 11765887.3 0.0009127211
12p 11765772.1 11765880.8 0.0009241311
24p 11765794.8 11765892.0 0.0008266657
36p 11765799.7 11765910.2 0.0009386515
48p 11765777.4 11765883.5 0.0009012106
60p 11765788.9 11765903.3 0.0009724866
72p 11765796.1 11765898.1 0.0008666923
84p 11765816.2 11765924.5 0.0009210862
96p 11765780.7 11765895.2 0.0009730531
108p 11765780.3 11765892.4 0.0009529356
120p 11765789.8 11765885.6 0.0008142677

ADDP 11765789.2 11765889.3 0.0008510270
DDP 11765793.1 11765899.3 0.0009027470

Table 7.13: Study case 2 - time consumption (in seconds) varying the number of
processors.

Number of Processors
1 12 24 36 48 60 72 84 96 108 120
PADDP t(s):
9944 1432 825 533 431 373 313 268 243 233 236
ADDP t(s):
19042 2017 1102 752 578 470 408 363 310 290 272
DDP t(s):
9536 2727 1676 1164 925 817 590 526 514 519 504

Table 7.14: Study case 2 - number of steps/iterations until convergence
Number of Processors

1 12 24 36 48 60 72 84 96 108 120
PADDP steps: 20 26 29 28 29 31 31 29 30 31 33
ADDP steps: 37 in all cases
DDP iterations: 16 in all cases

time of the ADDP, with 12 processors, is 70% of the CPU time for the DDP

approach. Also, the CPU time of the ADDP with 120 processors drops to 272

seconds (4 minute and half), which is 50% of the CPU time of DDP. We note

that such drop happens faster in the ADDP scheme because the CPU time

with 60 processors is already smaller than the CPU time of the DDP with 120

processors.

• As in case 1, the serial PADDP algorithm has comparable time with the DDP

approach and, for 12 or more processors, the CPU time of PADDP is always

less than both DDP and ADDP algorithms.

• While the DDP takes 16 iterations until convergence, the ADDP takes 37
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Figure 7.16: Study case 2 - speedup and efficiency with different numbers of proces-
sors.

steps. This explains the difference in the serial CPU time and reinforces the

parallel suitability of the asynchronous algorithm.

• We note that the number of steps until convergence for the ADDP method

tends to increase with the number of processors. However, we note that from 24

to 36 processors and from 72 to 84 processors, the number of steps decreases.

This may occur due to the distribution of the nodes among the processors:

the convergence rate may differ depending on the nodes that share the same

processor.

Figure 7.16 shows the computed speedup and efficiency for study case 2. We

observe that both ADDP and PADDP approaches have a more satisfactory speedup

than the DDP method for all numbers of processors. While the DDP efficiency is

lower than 30%, the ADDP efficiency is at least 60%.

We process the study case 2 with 36 processors and Figure 7.17 shows the ratio

between the waiting activity and the computing activity per-unity of the total CPU

time, in average among the processors. In this case the ratios were better than the

previous study case for the three methods, although the DDP method still has the

waiting CPU times higher than the computing CPU times. Figure 7.18 shows the

average CPU time of each processor.

7.4.3 Results and analysis - Study case 3

Table 7.15 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds of the DDP and

ADDP, where the bounds do not vary with the number of processors and all bounds

of the parallel executions of PADDP method.
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Figure 7.17: Study case 2 - average CPU time of the processor activities per itera-
tion/step.
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Figure 7.18: Study case 2 - average CPU time per iteration/step in each processor.

It is important to notice that for the three methods the solution bounds are

consistent with the fact that the problems been solved are the same as well as the

solution.
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Table 7.15: Study case 3 - lower and upper bounds and convergence gap of the
parallel methods.

Method Upper bound Lower bound Gap

PADDP

1p 12812796.3 12812908.2 0.0008731928
12p 12812778.7 12812904.4 0.0009816727
24p 12812772.8 12812882.1 0.0008532467
36p 12812793.1 12812885.5 0.0007214608
48p 12812782.6 12812897.7 0.0008978335
60p 12812770.2 12812896.5 0.0009856747
72p 12812766.7 12812894.2 0.0009952550
84p 12812772.3 12812899.9 0.0009962923
96p 12812772.3 12812899.9 0.0009962923
108p 12812775.1 12812901.8 0.0009885657
120p 12812775.1 12812901.8 0.0009885657

ADDP 12812793.0 12812888.9 0.0007486135
DDP 12812793.4 12812918.6 0.0009769356

Table 7.16 shows the CPU time for study case 3 and Table 7.17 shows the num-

ber of steps/iterations for convergence of the ADDP, PADDP and DDP methods.

Figures 7.19a and 7.19b show the computed speedup and efficiency for study case

3.

Table 7.16: Study case 3 - time consumption (in seconds) varying the number of
processors.

Number of Processors
1 12 24 36 48 60 72 84 96 108 120
PADDP t(s):
6266 998 724 473 576 429 706 492 682 466 475
ADDP t(s):
13075 2053 1397 1293 1222 1175 1116 1088 1054 1060 1037
DDP t(s):
5132 1211 804 643 562 506 509 478 476 452 428

Table 7.17: Study case 3 - number of steps/iterations until convergence
Number of Processors

1 12 24 36 48 60 72 84 96 108 120
PADDP steps: 24 28 30 26 30 27 37 30 36 30 30
ADDP steps: 45 in all cases
DDP iterations: 15 in all cases

We note that:

• The DDP algorithm has a serial CPU time of 5132 seconds (approximately 1

hours and half), which is decreased to about 7 minutes with the increase in

the number of processors.
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• The serial CPU time of the ADDP algorithm (around 3 hours and 40 minutes

minutes) is more than twice the CPU time of DDP, since the number of ADDP

steps is three times greater than the number of DDP iterations. Although the

speedup of ADDP is still better than DDP, it is not sufficient to compensate

the global CPU time for a parallel environment.

• By contrast, the serial run of the PADDP algorithm has comparable time with

the DDP one, since the number of steps until convergence is smaller.

Figure 7.19: Study case 3 - speedup and efficiency with different numbers of proces-
sors.
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Figure 7.20: Study case 3 - average CPU time of the processor activities per itera-
tion/step.
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Figure 7.21: Study case 3 - average CPU time per iteration/step in each processor.

Figure 7.19 shows the computed speedup and efficiency for study case 3. The

PADDP presented irregular behavior because of the changes on the number of steps

to convergence. For both measures the ADDP presented slightly more satisfactory

numbers than DDP.

Figure 7.20 and Figure 7.21 show the waiting and computing activities CPU

times of processors, in average and individually. Due to the deterministic part of

the scenario tree, which causes the nodes to be very dependent from each other, we

observe that waiting CPU times are greater than computing in all methods. It is

possible to note the overload of the processor that performs that handles this part

of the tree (id 0) while the others are idle most part of the time.

7.4.4 Results and analysis - Study case 4

Table 7.18 shows the final bounds on the convergence process and the convergence

gap calculated as described in section 4.3. We show the bounds of the DDP and

ADDP, where the bounds do not vary with the number of processors and all bounds

of the parallel executions of PADDP method.

It is important to notice that for the three methods the solution bounds are

consistent with the fact that the problems been solved are the same as well as the

solution.
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Table 7.18: Study case 4 - lower and upper bounds and convergence gap of the
parallel methods.

Method Upper bound Lower bound Gap

PADDP

1p 12837698.5 12837823.1 0.0009704447
12p 12837707.6 12837818.0 0.0008599612
24p 12837700.2 12837825.0 0.0009725472
36p 12837699.5 12837818.1 0.0009236725
48p 12837706.0 12837821.1 0.0008968712
60p 12837712.6 12837810.1 0.0007594435
72p 12837701.0 12837826.3 0.0009762634
84p 12837700.7 12837827.9 0.0009901938
96p 12837704.3 12837829.2 0.0009732802
108p 12837705.8 12837824.8 0.0009265179
120p 12837696.8 12837819.3 0.0009539291

ADDP 12837693.5 12837814.9 0.0009455434
DDP 12837714.5 12837830.8 0.0009054650

Table 7.19 shows the CPU time for study case 4 and Table 7.20 shows the number

of steps/iterations for convergence of the ADDP, PADDP and DDP methods. For

this case, we note that:

Table 7.19: Study case 4 - time consumption (in seconds) varying the number of
processors.

Number of Processors
1 12 24 36 48 60 72 84 96 108 120
PADDP t(s):
6566 641 400 320 270 274 247 208 221 202 171
ADDP t(s):
10652 1143 806 581 480 437 409 350 357 348 282
DDP t(s):
6179 1024 725 722 748 730 715 735 725 736 735

Table 7.20: Study case 4 - number of steps/iterations until convergence
Number of Processors

1 12 24 36 48 60 72 84 96 108 120
PADDP steps: 50 51 52 54 57 57 60 60 64 64 64
ADDP steps: 82 in all cases
DDP iterations: 31 in all cases

• The CPU time of the serial run of the DDP algorithm is 6179 seconds (ap-

proximately 1 hours and 40 minutes) and decreases to about 12 minutes with

the increase in the number of processors. However, we observe a saturation of

the CPU time curve with 24 processors, which is expected since the shape of

the tree allows only 20 independent nodes to be solved at the same time.
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• In contrast, the ADDP serial time is approximately 3 hours. Nevertheless, in

the parallel environment this difference soon vanishes, and the CPU time of

ADDP and DDP algorithms are similar with 12 processors. The CPU time of

ADDP with 120 processors drops to 282 second (5 minutes), which is 40% of

the DDP CPU time for the same number of processors.

• The PADDP algorithm has a serial time slightly greater than the DDP method.

However, the CPU time of PADDP using 12 processors is smaller that the CPU

time of DDP, even when the latter uses 120 processors.

• PADDP and ADDP algorithms are shown to be much more suitable for parallel

environments as compared to DDP approach, since they lead to much smaller

CPU times even when performing a much larger number of steps than DDP

iterations.

Figure 7.22: Study case 4 - speedup and efficiency with different numbers of proces-
sors.

Figure 7.22 shows the computed speedup and efficiency for study case 4. Dif-

ferently from the other cases, the PADDP presented a similar performance to the

ADDP, considering speedup and efficiency.

Figure 7.23 and Figure 7.24 show the waiting and computing activities CPU

times of processors, in average and individually. The individual activities show that

DDP traditional parallel scheme could not use all 36 processors since the maximum

number of scenarios are 20 for this study case, also we note that processor 0 is

overloaded because of the synchronization point in the beginning of the scenario

tree. On the other hand, the PADDP and ADDP algorithms were able to better

distribute the effort among all processors.
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Figure 7.23: Study case 4 - average CPU time of the processor activities per itera-
tion/step.
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Chapter 8

Conclusion

The optimal power energy planning and dispatch of large hydrothermal systems is

a challenging task in both modeling and solving aspects. When using a complex

model, it is possible to represent more precisely the many features of the system,

however this poses difficulties to solve the problem. Decomposition methods are

commonly used to solve large problems, since they are able to find global solution

by handling smaller subproblems in an iterative way.

Dual Dynamic Programming (DDP) is a method for solving multistage stochas-

tic optimization problems that is widely used in the literature for hydrothermal

coordination problems. However, depending on the size of the scenario tree and on

the complexity of the optimization subproblems, the DDP algorithm may take a

large time until reach convergence, which encourages the development of strategies

to accelerate it.

In this dissertation we review some strategies that have been proposed in the

literature with the objective of reducing the time of the DDP method. We also

propose alternative strategies to accelerate the DDP solution process and evaluate

these algorithms by solving four study cases related to the large scale hydrothermal

coordination (HTC) problem of the Brazilian system, with different features of the

scenario tree. The proposed strategies are divided in two approaches:

• Reducing the amount of calculation of the DDP algorithm: We pro-

pose two strategies - called local convergence test (LCT) and state variables

stability test (VST) - which are capable of reducing the iteration time of the

solution process by avoiding unnecessary operations. We show that the appli-

cation of both strategies yields a reduction in the computation burden of the

DDP algorithm, mainly in the final stages of the convergece process. However,

these strategies can be more or less effective depending on the size and shape

of the scenario tree.

• Parallel approach applied to the DDP algorithm: We propose two asyn-
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chronous versions of the Dual Dynamic Programming (DDP) algorithm, which

are much more suitable for parallel environments as compared to the tradi-

tional algorithm, without losing its convergence properties. The main idea is

to perform totally asynchronous steps, with respect to solving the linear pro-

gramming subproblems at each node, instead of using the classical iterations

with forward and backward passes. The first asynchronous DDP algorithm

(ADDP) allows homogeneous granularity and full node-wise parallelization

within each step. In the partial version of this algorithm (PADDP) a certain

synchronism is introduced, as convenient, in order to obtain a better conver-

gence rate. Both ADDP and PADDP approaches presented better speedup

and efficiency as compared to the traditional DDP algorithm.

Table 8 summarizes the proposed strategies by showing the state of the art

background and the main features of each method.

Table 8.1: Summary of the proposed strategies
Background What is new? Effect

LCT [45]

Local conver-
gence test of
subtrees

- Reduces CPU
time per iteration
- Avoids backward
passes in subtrees

VST [45]
State variables
stability test

- Reduces CPU
time per iteration
- Avoids forward
passes in subtrees

ADDP
[35]

Asynchronous way
of performing DDP

Reduces wall time
in parallel
environments

PADDP
[35]

ADDP with
convenient
synchronism

Reduces wall time
in parallel
environments

As future works, we aim to continue investigating the benefits of using ADDP

instead of DDP method. Possible improvements in the new parallel approach can

also be studied, such as: a better division of nodes between the processors, the use

of a dynamic parallel alocation of the available processors, a more accurate analysis

on the best way to traverse the tree, and also investigating more suitable initial

conditions at each node in the ADDP approach, in order to increase the convergence

rate. We can also combine ADDP with a cut selection technique, in order to avoid

an excessive number of cuts in the linear programming subproblems (LPs). Finally,

the proposed ADDP approach can also be extended to the sampling version of the

DDP algorithm, known as stochastic dual dynamic programming (SDDP).
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Dispońıvel em: <http://dx.doi.org/10.1023/A:1018996821817>.

[10] DINIZ, A. L., MACEIRA, M. E. P., 2008, “A Four-Dimensional Model of

Hydro Generation for the Short-Term Hydrothermal Dispatch Problem

Considering Head and Spillage Effects”, IEEE Transactions on Power

Systems, v. 23, n. 3 (Aug), pp. 1298–1308. ISSN: 0885-8950. doi:

10.1109/TPWRS.2008.922253.

[11] DINIZ, A. L., SANTOS, T. N., CABRAL, R., et al., 2018, “Short/mid-term

hydrothermal dispatch and spot pricing for large-scale systems - the case of

Brazil”, Accepted for publication at the 20th Power System Computation

Conference.

[12] DOS SANTOS, T. N., DINIZ, A. L., 2009, “A New Multiperiod Stage Def-

inition for the Multistage Benders Decomposition Approach Applied to

Hydrothermal Scheduling”, IEEE Transactions on Power Systems, v. 24,

n. 3 (Aug), pp. 1383–1392. ISSN: 0885-8950. doi: 10.1109/TPWRS.2009.

2023265.

[13] ENNES, M. I. A., CABRAL, R. N., DINIZ, A. L., 2012, “Modelagem linear por
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Dispońıvel em: <http://www.sciencedirect.com/science/article/

pii/S0377221713003159>.

[47] ZAKERI, G., PHILPOTT, A. B., RYAN, D. M., 1999, “Inexact Cuts in Benders

Decomposition”, SIAM Journal on Optimization, v. 10, n. 3, pp. 643–657.

doi: 10.1137/S1052623497318700. Dispońıvel em: <http://dx.doi.org/
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