o
Instituto Alberto Luiz Coimbra de U F RJ
Pés-Graduagao e Pesquisa de Engenharia

A FORMAL SPECIFICATION FOR SYNTACTIC ANNOTATION AND ITS
USAGE IN CORPUS DEVELOPMENT AND MAINTENANCE:
A CASE STUDY IN UNIVERSAL DEPENDENCIES

Guilherme Paulino Passos

Dissertacao de Mestrado apresentada ao
Programa de Pos-graduacao em FEngenharia
de Sistemas e Computacao, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessarios a obtencao do
titulo de Mestre em Engenharia de Sistemas e

Computacao.

Orientadores: Gerson Zaverucha

Alexandre Rademaker

Rio de Janeiro

Agosto de 2018

A FORMAL SPECIFICATION FOR SYNTACTIC ANNOTATION AND ITS
USAGE IN CORPUS DEVELOPMENT AND MAINTENANCE:
A CASE STUDY IN UNIVERSAL DEPENDENCIES

Guilherme Paulino Passos

DISSERTACAO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE POS-GRADUACAO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSARIOS PARA A
OBTENCAO DO GRAU DE MESTRE EM CIENCIAS EM ENGENHARIA DE
SISTEMAS E COMPUTACAO.

Examinada por:

(Prof. Gerson Zaverucha, Ph.D

2o

Prof. jxle*candrt}kﬁdomakm D.Se.

Prof. Mario Roberto Folhadela Benevides, Ph.D.

7%f. Marcelo ljﬁlger, Ph.D.
/

RIO DE JANEIRO, RJ - BRASIL
AGOSTO DE 2018

Paulino Passos, Guilherme
A Formal Specification for Syntactic Annotation and
its Usage in Corpus Development and Maintenance: A

case study in Universal Dependencies/Guilherme Paulino
Passos. — Rio de Janeiro: UFRJ/COPPE, 2018.

XTI, [165] p [i1.] 29, 7cm.

Orientadores: Gerson Zaverucha

Alexandre Rademaker

Dissertagao (mestrado) — UFRJ/COPPE/Programa de
Engenharia de Sistemas e Computacao, 2018.

Referéncias Bibliograficas: p. [149] - [165]

1. Natural language processing. 2. Syntactic parsing.
3. Knowledge representation. [. Zaverucha, Gerson
et al. 1I. Universidade Federal do Rio de Janeiro, COPPE;,
Programa de Engenharia de Sistemas e Computacao. III.
Titulo.

1l

v

A minha familia, em especial
meus pais, Fabio e Lucia, e

mainha irma, Juliana.

Agradecimentos

Agradeco aos meus pais, por todo o apoio, atencao e carinho. Foi gracas aos esforgos
de vocés, assim como o do resto da familia, que pude chegar onde estou. Agradeco
também & minha irma Juliana pelo companheirismo.

Aos meus orientadores, Professor Gerson Zaverucha e Professor Alexandre Rade-
maker. Todas as contribuigoes, discussoes e licoes foram de grande valia para cresci-
mento académico, profissional e pessoal.

A Professora Claudia Freitas, do Departamento de Letras da PUC-Rio, pelas
discussoes e comentarios sobre este trabalho e sobre Lingiiistica Computacional em
geral, bem como as suas alunas, Luisa Rocha e Isabela Soares-Bastos.

Aos Professores Mario Benevides e Marcelo Finger, pela participagao na banca e
todos os comentarios, criticas e sugestoes, que melhoraram o trabalho e trouxeram
novas idéias.

Aos professores do Programa de Engenharia de Sistemas e Computacao, por
contribuirem para meu aprendizado com suas aulas, conselhos e discussoes.

Aos colegas de mestrado, pela colaboragao e companhia, em particular ao Victor
Augusto Lopes Guimaraes, companheiro em diversas disciplinas e no laboratoério.

Aos colegas do Brasil Research Lab da IBM Research, que contribuiram para uma
experiéncia tnica e me fizeram compreender a vivéncia em um grupo de pesquisa
desta magnitude. Nao apenas o apoio e a colaboracao profissional foi de grande
valor, mas também a amizade e o apoio emocional mutuo nutridos.

Aos colegas do Supremo em Numeros, pela amizade e apoio. Ainda que minha
participagao tenha sido bastante limitada, nao s6 aprendi com vocés mas também
fui muito bem recebido e incluido por todos.

Aos amigos de diversas areas, que sempre estiveram la para escutar, aconselhar
e apoiar. Também agradego a compreensao com as auséncias e restrigoes, mas
principalmente agradeco a presenca por todos os momentos que pude compartilhar.

Finalmente, agradeco & CAPES pelo suporte financeiro, bem como a IBM Re-
search pela oportunidade e também suporte para as atividades que resultaram nesta

dissertacao.

Resumo da Dissertacdo apresentada & COPPE/UFRJ como parte dos requisitos

necessérios para a obtengao do grau de Mestre em Ciéncias (M.Sc.)

UMA ESPECIFICACAO FORMAL PARA ANOTACAO SINTATICA E SEU
USO NO DESENVOLVIMENTO E NA MANUTENCAO DE CORPORA:
UM ESTUDO DE CASO EM DEPENDENCIAS UNIVERSAIS

Guilherme Paulino Passos

Agosto/2018

Orientadores: Gerson Zaverucha

Alexandre Rademaker

Programa: Engenharia de Sistemas e Computagao

Dados anotados linguisticamente sao atualmente um recurso crucial para proces-
samento de linguagem natural (NLP). Tais dados sdo necessarios tanto para avali-
acao empirica de sistemas, quanto para o treinamento de modelos de aprendizado
de maquina de linguagem. Contudo, produzir novos conjuntos de dados ¢ muito
custoso em tempo e trabalho humano. Usualmente algum dominio em linguistica é
necessario aos anotadores, e ainda assim a decisao de como anotar nao é trivial. Em
projetos com muitos anotadores ou abrangendo longos periodos de tempo, a con-
sisténcia da anotacao pode ser comprometida. Ademais, anotar dados de dominios
especificos requer anotadores com conhecimentos correspondentes. Isso se torna um
sério problema para dominios técnicos como ciéncias biomédicas, Oleo e gés e di-
reito. Neste trabalho, contribuimos para diminuir esta dificuldade na producgao de
textos com anotagao sintatica (treebanks) por métodos formais. Nos desenvolvemos
uma specificagao formal do padrao de anotagao sintatico Dependéncias Universais
(Universal Dependencies), um projeto desenvolvido pela comunidade internacional
de NLP e de crescente importancia. Sustentamos que essa especificagao formal é
util para melhorar a qualidade de treebanks e reduzir custos de anotacao, pela im-
posicao de consisténcia nos dados. Discutimos as caracteristicas, decisoes de projeto
e limitacoes da nossa ontologia, implementada na linguagem OWL2-DL. Avaliamos
experimentalmente a utilidade de nossa ontology na tarefa de detectar analises in-
corretas automaticamente, mostrando alta precisao em quatro idiomas. Finalmente,
contextualizamos nossa contribuicao revisando o estado da arte no desenvolvimento

e manutencao de treebanks.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A FORMAL SPECIFICATION FOR SYNTACTIC ANNOTATION AND ITS
USAGE IN CORPUS DEVELOPMENT AND MAINTENANCE:
A CASE STUDY IN UNIVERSAL DEPENDENCIES

Guilherme Paulino Passos

August /2018

Advisors: Gerson Zaverucha

Alexandre Rademaker

Department: Systems Engineering and Computer Science

Linguistically annotated data are currently crucial resources for natural language
processing (NLP). They are necessary for both evaluation and as input to training
machine learning models of language. However, producing new datasets is a very
time and labor-consuming. Usually some expertise in linguistics is required for
annotators, and even so the annotation decision problem is far from trivial. This
difficulty grows in scale: in projects with many annotators or spanning a long period
of time, annotation consistency can be compromised. Furthermore, annotating data
from specific domain requires annotators with corresponding knowledge. This is a
serious problem for technical domains such as biomedical sciences, oil & gas and
law. In this work, we contribute to solving the problem of producing syntactically
annotated texts (treebanks) by formal methods. We develop a formal specification
of the syntactic annotation standard Universal Dependencies, a project developed
by the NLP community around the world which is growing in importance. We argue
that this formal specification is useful for improving the quality of treebanks and
reducing annotation costs, by enforcing consistency in the data. We discuss the
features, design choices and limitations of our ontology, implemented in the OWL2-
DL language. We evaluate experimentally the usefulness of our ontology in a task
of automatically detecting wrong analysis, showing high precision in four languages.
Finally, we contextualize our contribution by surveying state-of-the-art methods for

developing and maintaining treebanks.

vil

Contents

[List of Figures|

[List of Tables|

(I _Introduction|

(1.2 Computational syntactic analysis|

[1.3 A case study on syntactic annotation: Universal Dependencies|

2 A Formal Specification For Universal Dependencies|
2.1 Motivation|.o
[2.2 Formal foundations and languagel
[2.3 An Ontology for Universal Dependencies|
[2.3.1 Concepts in the Universal Dependencies annotation guidelines|
[2.3.2 Ontology summary|
[2.3.3 Modelingl o
2.3.4 Documentation inconsistenciesf
[2.4 Validating UD CoNLL-U files|
[3 Experimental Evaluation|
[3.1 Experiments|
[3.1.1 Finding “incorrect” analyses|
[3.1.2 Error analysis and discussion|
[3.1.3 Comparison with Udapi|
[4 Treebank Development and Maintenance

[4.1 Querying|.

[4.2 Consistency verificationl.

[4.2.1 External consistency|

[4.2.2 Internal consistency|.
[4.3 The Semantic Web approachl

[4.4 Literate programming for treebanks: a Jupyter notebook approach|. .

viil

18

29
29
29
31
33

37
38
40
40
41
42
43

[4.4.1 System architecturel. L 44

[4.4.2 Example usagel 45

[4.5 Other approaches| 47
[4.6 Example practical application| 48

b __Conclusion| 51
b1 Discussion] o1
b2 Future Workl. o 52

(A Ontology| 54
[Bibliography| 149

1X

List of Figures

(1.1 Example of dependency analysis. Sentence and analysis from the UD

| 2.2 English EW'T" treebank.|

(1.2 Example of phrase-structure analysis, in the style ot the Penn Tree-

| bank. Sentence from the UD 2.2 English EW'l' treebank.,

(1.3 UD analysis of a wverbal clause, with part-of-speech tags and

[morphosyntactic features. Adaptation of sentence found in

[Wikipedia, Current Events: |https://en.wikipedia.org/wiki/

Portal:Current_events. Original sentence under CC-BY-SA [i-

| cense. I'he analysis was simplified by omiting punctuation from the

(1.4 UD analysis of a verbal clause with a subordinate clause. Sentence

[tound in Wikipedia, Current Events: https://en.wikipedia.org/

wiki/Portal:Current_events. Original sentence under CC-BY-S5A

[license. The analysis was simplified by omiting punctuation from the

(1.5 UD analysis of a copular clause, with part-ot-speech tags. Adaption

[of sentence found in Wikipedia:About: https://en.wikipedia.org/

wiki/Wikipedia:About. Original sentence under CC-BY-5A license.|

10

(1.6 UD analysis of coordination between the nominals “project” and ** com-

| munity”. Sentence and analysis from the UD 2.2 English EW'T" tree-

[bank. For readability, we show only the analysis of the subphrase

| “wnth the Mozlla project and communaity”|

[L.7 UD analysis of coordination between two nominals. Example of (ar-

| guably) non-shared dependent. Sentence and analysis from the UD

| 2.2 English EW'T" treebank.|,
(1.8 Slightly altered version ot the sentence in Figure|l.7|

(1.9 A modified version of the sentence in Figure|l.11]without any ellipsis.

| It modifies sentence in Figure|1.10] by inserting the highlighted word

[Tewgarros” .. L L e

https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Wikipedia:About
https://en.wikipedia.org/wiki/Wikipedia:About

[1.10 A modified version of the sentence in Figure|l.11] without the ellipsis |
of the verb "fuma.|. 13
[1.11 Sentence and analysis from the UD 2.2 Portuguese Bosque treebank. |
'T'he orphan relation in highlight indicates that an elided predicate |
word would have both "mulher” and "5" as dependents. A word-for- |
word translation 1s accompanying the original sentence.| 13
(1.12 Enhanced dependencies version of the sentence in Figure|l.8, The ad- |
jectival modifier (amod) relation of "lovley" is propagated to "chips", |
meaning that it refers toitaswell| 13
[1.13 Tabular CoNLL-U format of the sentence in Figure[l.7 14
[2.1 Architecture of the UD "Theory ontology. Fach node is an OWL file.| . 20
[2.2 Concepts in ud-theory.| 22
[2.3 Validation pipeline.| 24
[2.4 Example sentence with an error on the direction of appos relation.|. . 26
[2.5 Example sentence with an error on a appos relation headed by a VERB, |
not by anominal|.o 0000000 26
[2.6 Explanation automatically given to analysis2.4| 27
[2.7 Explanation automatically given to analysisf2.ol| 27
[3.1 Pipeline for experiment described in Section|3.1.11} 30
[3.2 Example of “not” in a sentence of the UD EW'T" English corpus.| . . . 31
[3.3 Example of an ADP obl word in a sentence of the UD EW'T' English |
COTPUS.| .+« v v v v e e e e e 32
[3.4 Example of an ADP obl word in a sentence of the UD EW'l" knglish |
COTPUS., . . . o o o o e 32
[3.5 Partial analysis for a sentence of German GSD with a part-of-speech |
EITOL] o 33
[3.6 Sentence of UD Bosque Portuguese corpus with clausal subject |
(csubj) in nonverbal clause. It could be translated as “Stopping this |
attack 1n blockage 1s an almost impossible mission.”| 33
[4.1 Example of query for right-headed conj relation in the SE'TS DEP - |
SEARCH tool (LUOTOLAHTI et al., [2017). 38
[4.2 Example of query for conj relation between words with different part- |
of-speech tag in the Grew tool (GUILLAUME et al., [2012)).|. 39
[4.3 Result for the query in Figure|d.2lf. 39

A4

Architecture ot Jupyter for treebanks, including the validation service.| 45

5

Example of printing analysis of two sentences in the CoNLL-U format.| 46

x1

4.6 Example of printing a drawing of the tree of the first sentence (MUNIZ

et al,2017). . . L 46

[4.7 Example of validation output of the two sentences.| 47

x1i

List of Tables

2.1 UD Theory ontology metrics and expressivity used.| 19

[3.1 Results of the experiment described in Section|3.1.1| It was run in 25 |
| ol Tt Val]] Ted wiil . l

[averages on every fold, with standard deviation in parentheses.|. . . . 33

[3.2 Results of the Udapi experiment. It was run in 25 tolds cross valida- |

| tion. Values in the columns marked with an * are averages on every |

| fold, with standard deviation in parentheses.| 34

[3.3 Difference between ontology-based validator and Udapi in each |

| dataset, in percentage points. Values marked with x mean that the |

| difference is significant by a level of 0.001. Significance is measured |
| by paired Student’s t-tests.|.o 35

xiil

Chapter 1
Introduction

Natural language processing (NLP) requires annotated (also called labeled) linguistic
data, that is, instances of language use enhanced with additional linguistic informa-
tion about it. Not only it is essential for developing supervised machine learning
applications, but it is also required for the evaluation of any NLP system (PALMER:
and XUE; 2010; RESNIK and LIN| 2010)). In syntactic annotation, the focus of this
work, labeled datasets are usually called treebanks.

While treebanks exist for different languages and domains, they are not available
for every case and their quality may be uncertain. Indeed, even for high-resource
languages, many treebanks are originated from newswire text, for example the Wall
Street Journal part of the Penn Treebank (MARCUS et al..|1993)). Large and reliable
treebanks for specific domains such as legal texts, oil & gas and mining are still
missing. Besides, treebanks come in different annotation formats, which can be a
problem in using for practical applications, as conversion can be noisy.

However, producing this kind of data is very costly and labor-intensive. This
problem is intensified as in many cases datasets contain errors (that is, they are
noisy), and so greater amounts of data are needed in order to compensate for this
reduced quality. For solving this problem, three lines of research are possible: (i)
methods for improving the quality of datasets, that is, improving their correctness;
(ii) methods for reducing annotation cost, in both labor, time or money; and (iii)
methods for reducing the need for labeled data.

In this work, we contribute to this problem by presenting a formal specification
of a syntactic annotation standard, which allows an exact definition of possible
annotations. We argue that this resource is potentially helpful in all three lines of
research, as: (i) a formal specification yields a method for automatically detecting
(possible) errors and for improving queries on data; (ii) this detection of errors
can be exploited for producing new annotated data; (iii) a formal specification can
potentially be explored by machine learning tools for reducing possible hypothesis

to be considered, which would allow more precise learned models with less labeled

data.

1.1 Dissertation overview and contributions

e We present an OWL-DL ontology for the Universal Dependencies standard,
presenting its features, design choices and limitations (Chapter [2)). It cov-
ers most of the guidelines for part-of-speech tagging and dependency relation

annotation.

o We evaluate its usefulness in the task of detecting wrong analyses with respect
to a gold standard test set, showing that it has high precision in different
languages, although not in all of them (Chapter . We compare with an

already existing (but non-declarative) validator for Universal Dependencies.

e We survey methods for developing and maintaining datasets for syntactical an-
notation (treebanks), contextualizing the contribution of our ontology (Chap-
ter H)).

In the rest of this chapter we will present the background of our work.

1.2 Computational syntactic analysis

The study of syntax consists in understanding how words are related to each other
to form (meaningful) sentences and texts (VAN VALIN| 2004; VAN VALIN and
LAPOLLA] 1997). This combination is usually expressed in some form of repre-
sentation. Syntactic parsing is the task of, on receiving a sentence, producing such
representation of the syntactic structure that describes in some way these relation-
ships between words in that sentencd] Examples of syntactic representations are
in Figures and [I.2] A dataset of natural language text is called a corpus, while
a corpus annotated with structure analysis, is called a treebank. In the rest of this
work we will use corpus and treebank in the sense of syntactically annotated natural
language text, unless otherwise specified.

On the scientific side, annotating syntax is useful for empirical analyses of lan-
guage, such as typological studies: classifying languages, hypothesizing universals
and explaining linguistic structure (CROFT| 2002, chapter 1). A powerful moti-
vation for the study of linguistics has been understanding the historical evolution

of languages, for which syntax can be informative (SAG et al, 2003, p. 7). Some

!This definition is not entirely uncontroversial. |[STEEDMAN (2000) argues that syntactic
parsing is “merely the characterization of the process of constructing a logical form, rather than a
representational level of structure that actually needs to be built”.

root

punct

W)

punct
? advcl

det

compound
|

The US troops fired into the hostile crowd , killing 4 .
DET PROPN NOUN VERB ADP DET ADJ NOUN PUNCT VERB NUM PUNCT

Figure 1.1: Example of dependency analysis. Sentence and analysis from the UD
2.2 English EWT treebank.

%\ /\
DT NNP NNS VBD PP S :
. | T T

The US troops fired 1IN NP VP
I N
into DT JJ NN VBG NP

the hostile crowd killing CD

4

Figure 1.2: Example of phrase-structure analysis, in the style of the Penn Treebank.
Sentence from the UD 2.2 English EWT treebank.

argue as well that understanding syntax could proportionate insights on human cog-
nitive abilities or even on the structure of the mind (SAG et all 2003, pp. 9-14).

Thus an automatic parser would be able to produce annotated data from (naturally

occurring) text for scientific use.

On the engineering and applications side, syntactic parsing is generally consid-
ered useful for further downstream applications in natural language processing, such
as machine translation , p. 551), question answering (WEBBER and
WEBB, p. 635;[YAO and DURME], 2014)), information extraction (MAUSAM
et al) 2012) (CORRO and GEMULLA| 2013; GRISHMAN]| 2010; MAUSAM et al.,
2012)), and textual entailment BELTAGY et al] (2014). Some techniques use syn-
tactic parsing for producing intermediate formats with more semantic content, such
as logical forms, a task called semantic parsing (BELTAGY et al/, [2014; REDDY)|
let all,[2016)), or more lightweight semantic formats which make predicate-argument
structure, events and semantic roles more explicitf| the work of WHITE et al/ (2016)).

One purported advantage of using syntactic representations for NLP tasks is that
it allows compositionality, the principle that the meaning of a complex expression
is determined recursively by the meaning of its parts (ABEND and RAPPOPORT,
2017}, Section 6; BENDER et all,[2015] Section 2). In the case of sentences, it means

that there exists a sentence meaning which can be built from its words according

to word meaning and to syntactical structure (SZABO) 2017). Although not every

aspect of meaning is compositional (BENDER et all, 2015, Section 2), supporters

of compositional methods argue for its advantages for comprehensiveness, consis-
tency of annotation and scalability (BENDER et all,[2015, Section 4). For instance,

contextual and pragmatical aspects of meaning are isolated, which would allow the

2For a more complete view of available formats of semantic representation, as well as motivation
and discussion on goals and future research, see (ABEND and RAPPOPORT, [2017).

development of reusable task-independent methods for finding the linguistic signa]ﬂ

It should be said that the usage of syntactic methods for downstream NLP tasks
is not without its criticism: (CLARK]| (2010, p. 352) points out that “it is still the case
that convincing evidence of the benefits of parsing for NLP applications is lacking,
especially for MT [Machine Translation| where phrase-based models currently provide
the state of the art”, even if at least for some languages this criticism may not
necessarily be the case anymore (SENNRICH and HADDOW, 2015)). ABEND and
RAPPOPORT] (2017) argue that machine learning allows mapping from text to
semantic structure without worrying about syntax. A more recent challenger is
Neural Machine Translation, which achieves state-of-the-art results without any kind
of morphosyntactic analysis, by the usage of end-to-end learning with Deep Neural
Networks (BOJAR et all 2016, JOHNSON et al., [2017; WU et al., 2016). Further
discussion on the comparison of such methods is beyond the scope of this work. For
the rest of this work, we will take the relevance of syntactic parsing for applications
for granted.

Syntactic representations come in many forms, but two types are usually iden-

3 (BENDER et al., [2015) argue for these advantages in the context of grammar-based methods
for finding linguistic structure and sentence meaning. The extension of this argument for every
syntactic representation is subject to criticism, but it is not our goal to pursue a lengthy discussion
on this issue, nor on the validity of this argument itself. We will only point out cases for which
this general sentence meaning argument more clearly does not hold in its entirety:

1. Many syntactic parsers are designed only for the task of robust disambiguation syntactic
parsing. This means that, for every sentence, the parser should always return one and ex-
actly one syntactic analysis (NIVREL 2006, pp. 1, 5-6). This should always hold no matter
how strange, ambiguous or even ungrammatical the sentence may look like. Robust dis-
ambiguation is the usual scenario for Machine-Learning-based parsers, which are commonly
trained and evaluated in datasets where each sentence contains exactly one analysis.

As sentences can hold many possible readings, the disambiguation task being inserted into
syntactic parsing implies that parsing does not necessarily capture exactly the linguistic
signal contained in a sentence, as the parser will be required to make some kind of choice.

Of course, downstream semantic tools may build on top of the generated syntactic repre-
sentation using some kind of compositionality, but the entire linguistic signal is not entirely
preserved and consistency may be reduced. Thus, robust disambiguation does not share all
advantages of compositional methods claimed by BENDER et al.| (2015).

2. In task-specific semantic parsing with syntactic methods, a successful approach is using
machine learning for learning semantic representations, while keeping the syntactical ones
as latent (hidden) variables in the model (ARTZI and ZETTLEMOYER), 2013; |[ZETTLE-
MOYER and COLLINS| [2005)). This means that syntactic parsing is “implicitly” learned
during the semantic parsing task even without explicit annotated syntactic data. Even if
the resulting method includes transparent and observable syntactic analysis as well as a
compositional semantic structure with clear syntax-semantics interface, the learned syntac-
tical analysis does not necessarily generalize well for out-of-domain scenarios. Contextual
and pragmatical clues may be available in the semantic data and probably are. Using the
terminology of BENDER et al.| (2015)), in task-specific semantic parsing the semantic anno-
tation corresponds to speaker meaning, not to sentence meaning, and speaker meaning is not
necessarily compositional. Thus, as in the case of robust disambiguation, there is some kind
of compositionality, but without a commitment to a speaker-independent sentence meaning.

tified: phrase structure representations and dependency representations, usually in
the form of trees (RAMBOW, [2010; NIVRE, [2006, p. 10-12). Each one of these
two types more conveniently represent different linguistic phenomena: respectively,
syntactic constituency structure and syntactic dependency.

A phrase structure tree is a tree for which leaf nodes correspond either to words in
the language or to empty strings, while internal nodes correspond to special (called
non-terminal) symbols. This more naturally captures syntactic constituency struc-
ture, which is a recursive decomposition of a sentence in smaller pieces which have
some role as a syntactic unit. Each one of these smaller pieces is called a constituent
or phrase and usually receive some form of classification, according to syntactic role.
In phrase structure trees, this classification occurs by the non-terminal symbols used.
An example is in Figure [I.2] using the tagset of the Penn Treebank, one of the first
large-scale syntactically annotated corpora (MARCUS et al., [1993)).

On the other hand, dependency trees are trees for which all nodes correspond to
either words in the language or empty strings. This kind of representation is more
commonly used to represent syntactic dependency, which are linguistic directed
binary relations between words, usually identified with grammatical function. In
this relation, one of the words, the child or dependent, depends on the second word,
which is the former word’s head or governor. These relations usually receive a
classification according to syntactic role. An example is in Figure [I.I] This is the
structure that we will use from now on, as Universal Dependencies is a dependency
representation.

However, as RAMBOW]| (2010) emphasizes, it is possible to represent linguistic
dependency structure in phrase structure trees by the structural conventions and
specific non-terminal labels, as well as syntactic phrase structure can be expressed
in dependency tree representations by the usage of features and relation labels.

There are many distinct methods for producing such representations. It is usual
to divide two families of parsing methods: grammar-based and data-driven (NIVRE],
2006, p. 20-40; KUBLER. et al., 2009, p. 7; [IVANOVA| 2015, chapter 1). It must
be emphasized that this division is stereotypical, in that many current methods are
at least informed by both approaches. In a brief explanation, the grammar-based
methods consists in developing a formal grammar with desired scope and using this
grammar for attributing syntactic representations to strings. This grammar may be
manually designed, learned from data or any combination of both. On the other
hand, a data-driven method consists in an algorithm which generates a syntactic
parser from a sample (a finite set of examples). If every example in the sample is
annotated with their syntactic representation, it is an instance of supervised learning.
Otherwise, if no example is annotated, it is unsupervised learning. Finally, if some

are annotated and others are not, then it is an semi-supervised learning scenario.

Of course, one possibility for a data-driven method is generating a grammar, which
would be a clear case of a hybrid method. However, the data-driven method allows
for other, more general methods. An interesting work exploring the comparison
between grammar-based methods and “purely” data-driven ones and how one could
inform the other is the thesis of IVANOVA| (2015).

In this work we will not explore any parsing method, as our methods are appli-
cable to syntactic annotation, regardless of how it was produced. While supervised

data-driven methods are currently more common[], this is not a necessary relation.

1.3 A case study on syntactic annotation: Universal

Dependencies

In this work, we focus on the Universal Dependencies (UD) annotation scheme,
an initiative for cross-linguistically consistent syntactic annotation (NIVRE et al.,
2016). It allows comparative linguistic studies and multilingual NLP development
(NIVRE et all 2016). This is a recent project building upon earlier work on creat-
ing consistent morphological and syntactic annotation for different languages, such
as (universal) Stanford dependencies (DE MARNEFFE et al) 2014), the univer-
sal Google dependency scheme (MCDONALD et all 2013), the Google universal
part-of-speech tags (PETROV et al. 2012)) and the Interset interlingua for mor-
phosyntactic sets (ZEMAN] 2008). Its current full release is version 2.2@, it has 122
treebanks for 71 languages. It was used for the Conference on Computational on
Natural Language Learning (CoNLL) 2017 and 2018 shared tasks on multilingual
syntactic parsing (ZEMAN et al [2017)), respectively in its 2.1 (NIVRE et al.l [2017)
and 2.2 (NIVRE et al 2018) releases.

UD is defined by both general principles and more specific instructions for phe-
nomena and tags. It is a dependency tree formalism aiming to capture syntactic
dependency, as well as, at word level, parts-of-speech and morphological features.
Thus it follows lexicalism, that is, the basic units of annotation are words in sen-
tences.

UD’s goal is to maximize parallelism between different languages. This means
that similar constructions in different languages should be annotated in similar ways.
However, it also follows a kind of minimalism: it avoids annotating elements which
do not occur merely because they occur in other languages. If necessary, languages
can refine their analyses by specifying categories sub-types. Thus, as linguistic

phenomena should be annotated in similar ways across languages, the guidelines are

4Specially for Universal Dependencies, which is used for the Shared Tasks of the Conference on
Natural Language Learning, a competition in supervised learning of syntactic dependency parsers.
5All quotations from the documentation in this paper refer to the 2.2 release.

explained in terms of such phenomena and motivated by many linguistic concepts
which are important in defining annotation decisions, as we will see soon.

Linguistics differentiates between content words and function words. This dis-
tinction is usually identified with parts-of-speech, even if imperfectly (JEZEK] 2016
p. 14). Function words complement the meaning of content words. For instance,
they are frequently used for determining some specific kinds of semantic informa-
tion, such as number, gender, case, and so on. They are closed class, that is, there
is a fixed list, in a way that it is infrequent to add or remove this kind of word in
a language. Examples are prepositions, conjunctions, determiners, and pronouns.
As for content words, they usually have (stronger) “autonomous” semantic content,
expressing entities, events, properties, among others. They are open class, in other
words, new content words are frequently incorporated in a language. Examples are
nouns, adjectives and verbs (JEZEK, 2016, pp. 14-15).

In UD, dependency relations between content words have higher priority, which
means that they should usually be annotated higher up in the syntactic tree. This
is a consequence of the parallelism principle, as function words may vary more
among languages, because they may express features of content words which in some
languages are specified in morphology (NIVRE et al., 2016, p. 1663). Therefore,
priority to content word relations makes it more likely to find parallel syntactic
structure between languages.

A second characteristic of UD is that syntactic structures are distinguished by
types and this informs dependency relations labels. For UD 1, NIVRE et al.| (2016)
identifies nominals, clauses and modifier words, while in UD 2, the types identified
in the index of dependency relation labels are nominals, clauses, modifier words and
function words.

In order to illustrate better some linguistic aspects, we will present some exam-
ples along with documentation on how some phenomena are represented.

A simple verbal clause is represented as in Figure [[.3] The root of the entire
clause is the predicate (the verb “sinks” in this case). Its subject (nsubj) “am-
phibious” is a direct dependent, as well as “ Lake”, the head of the subphrase “ Table
Rock Lake”. Notice how function words (such as the determiner “An” and the case-
marking preposition “in”) and modifier words (such as the adjective “amphibious”)
are lower on the tree.

As for complex clauses, the head of a subordinate clause is linked as a dependent
of the main clause’s head. For instance, consider Figure [I.4] the complete version of
the sentence in the previous example. The subphrase “leaving 17 people dead” is a
subordinate clause of “An amphibious “duck boat” sinks in Table Rock Lake, United
States”. The dependency type advcl indicates that the subordinate clause is an

adverbial clause, that is, modifies the main clause as an adverb.

)
= (ki)
amod compound
An amphibious " duck boat " sinks in Table Rock Lake .
DET ADJ NOUN NOUN VERB ADP PROPN PROPN PROPN
Definite=Ind ~ Degree=Pos Number=Sing Number=Sing Mood=Ind Number=Sing Number=Sing Number=Sing
PronType=Art Number=Sing

Person=3
Tense=Pres
VerbForm=Fin

Figure 1.3: UD analysis of a verbal clause, with part-of-speech tags and mor-
phosyntactic features. Adaptation of sentence found in Wikipedia, Current Events:
https://en.wikipedia.org/wiki/Portal:Current_events. Original sentence
under CC-BY-SA license. The analysis was simplified by omiting punctuation from
the tree.

root

advel

compound

compound

An amphibious " duck boat " sinks in Table Rock Lake , United States , leaving 17 people dead .

compound] (nsubj compound
1

T

Figure 1.4: UD analysis of a verbal clause with a subordinate clause. Sentence
found in Wikipedia, Current Events: https://en.wikipedia.org/wiki/Portal:
Current_events. Original sentence under CC-BY-SA license. The analysis was
simplified by omiting punctuation from the tree.

https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events
https://en.wikipedia.org/wiki/Portal:Current_events

Copular clauses are represented as in Figure[1.5] The same principle is followed in
that the root of the clause is the (nominal or adjective) predicate. In the example, it
is a nominal predicate “(web-based free-content encyclopedia) project”. The copular

verb “is” is considered a function word and thus is not the root.

nsubj

=22
cop \
det \
amod s
amod
\iroot
i
Wikipedia is a multilingual, web- based, free- content encyclopedia project.

PROPN AUX DET ADJ NOUN VERB ADJ NOUN NOUN NOUN

Figure 1.5: UD analysis of a copular clause, with part-of-speech tags. Adap-
tion of sentence found in Wikipedia:About: https://en.wikipedia.org/wiki/
Wikipedia:About. Original sentence under CC-BY-SA license.

As for coordination, an example is in Figure [1.6] Coordination traditionally
presents problems to dependency representations. If either conjunct is selected to
be the head, an asymmetry that arguably does not exist in language is created. Else,
the coordinating conjunction could be selected as head of the structure. However,
this is not possible in UD. As the coordinating conjunction is a function word,
it would violate the “content word first” principle. A third alternative would be
creating in the tree an empty node that does not correspond to any word, but to
the conjunction itself. However, by the lexicalist hypothesis, only words occurring
in the text are nodes in the tree. Besides, it is arguably a violation of minimalism,
as it inserts an artificial element.

UD opts for the first alternative, by choosing the first occurring word in a con-
junction to always be the head. This asymmetry is not merely an elegance problem.
Consider Figures and [I.§ By reading only the text of the sentence shown in
Figure we could expect the adjective “lovley” (“lovely”) to be read as modifying
only the noun “food”, while “fab” (“fabulous”) modifies only “chips”. As for sentence
of Figure [I.8 a perhaps natural reading would be the one where both “food” and
“chips” are “lovley”. However, notice how in both cases “loviley” is represented as
a dependent of “food”. This representation creates an ambiguity of whether the
dependent word “lovley” modifies only the head “food” or is shared by the conjunct

“chips” as Wel]ﬁ. While this possibly creates problems for downstream applications,

5Notice that this is an issue of representing syntactic constituency structure in a dependency for-

10

https://en.wikipedia.org/wiki/Wikipedia:About
https://en.wikipedia.org/wiki/Wikipedia:About

it is a problem recognized by the documentation itself. It could be argued that this
is part of a trade-off in order to guarantee the principles of lexicalism, minimalism

and content-word first, seen as more important for cross-linguistic analysis.

an
|

Like Ben, I will still be very much involved with the Mozilla project and community :-)

Figure 1.6: UD analysis of coordination between the nominals “project” and ““com-
munity”’. Sentence and analysis from the UD 2.2 English EWT treebank. For
readability, we show only the analysis of the subphrase “with the Mozilla project and
community”.

\

Lovley food and fab chips

Figure 1.7: UD analysis of coordination between two nominals. Example of (ar-
guably) non-shared dependent. Sentence and analysis from the UD 2.2 English
EWT treebank.

Lovley food and chips

Figure 1.8: Slightly altered version of the sentence in Figure [I.7]

As for ellipsis, the annotation guideline is defined with respect to a hypothetical
sentence in which the elided word is present. It seems to be motivated by the desire

to disrupt the syntactic representation as little as possible, “promoting” one of its

malism, due to ambiguity between modifying the word only or the entire subphrase defined by the
subtree rooted on this word. Theoretically it could be handled by relation types or word features,
but this is not done. Possible reasons for this are that it could make annotation, comprehension
by non-linguists or parsing more difficult.

11

dependents to become the head of the subtree. More specifically, the documentation

states the following three rules:

1. If the elided word does not have a dependent, then nothing is done, that is,

only the elided word is missing.

2. Otherwise, one of this word’s dependents is promoted, taking the role of the
head of the subtree. Thus, all other dependents of the elided word become

dependents of the promoted word.

3. If the elided word is a predicate and the promoted word is an argument or
adjunct, then a special relation type (orphan) is used for linking other non-

functional dependents to the promoted word.

The promoted word is chosen accordingly to a specific order of dependency types
(with the first one, according to word order, being chosen if there is more than one
child with the best-ranked same dependency type). As for the third rule, it is
motivated by not creating “very unnatural and confusing relations”, according to
the documentation.

See the examples in Figures[I.9] [[.10jand [I.11] Figure[I.9 has no elided word, it is
an usual sentence. By the ellipsis of the word “cigarros”, one of its direct dependents
has to be promoted. As “5” is the only dependent, it becomes the object (obj) of
the verb “fuma”, creating the tree in Figure [I.10] Then, by eliding the word “fuma”,
once again we must promote one of its dependents. According to the documentation,
we must promote the subject (nsubj). Thus, “mulher” is promoted an is now the
target of the coordinate relation (conj) with the first clause. Furthermore, it must
become the head of “5”. However, as “5” is a non-functional dependent, a special

relation (orphan) is used instead.

obj

root
nummod nummod

= R

O homem fuma entre 11 e 20 cigarros por dia e a mulher fuma entre 5 e 10 cigarros .

The man smokes between 11 and 20 cigarettes per day and the woman smokes between 5 and 10 cigarettes .

Figure 1.9: A modified version of the sentence in Figure [1.11] without any ellipsis.
It modifies sentence in Figure [[.10] by inserting the highlighted word " cigarros".

There is ongoing work on an extension to UD called Enhanced Dependencies
(NIVRE et al., 2016, p. 1663; SCHUSTER and MANNING, 2016). In this exten-
sion, the analysis is not tree-structured anymore, but graph-structured, as in Fig-

ure [1.12] This allows more expressive representation and more directly presented

12

conj

B

[ty

nummod

conJ

O homem fuma entre 11 e 20 cigarros por dia e a mulher fuma entre
The man smokes between 11 and 20 cigarettes per day and the woman smokes between 5 and 10

Figure 1.10: A modified version of the sentence in Figure [1.11] without the ellipsis
of the verb "fuma".

obj
O homem fuma entre 11 e 20 cigarros por dia e a mulher , entre 5 e 10 .

The man smokes between 11 and 20 cigarettes per day and the woman , between 5 and 10 .

Figure 1.11: Sentence and analysis from the UD 2.2 Portuguese Bosque treebank.
The orphan relation in highlight indicates that an elided predicate word would have
both "mulher" and "5" as dependents. A word-for-word translation is accompanying
the original sentence.

predicate-argument structure, which can be useful for semantic tasks. For instance,
shared dependents in coordination can be explicitly marked as so. However, work
in Enhanced Dependencies is still initial. Better standards are still being developed
and very few treebanks contain Enhanced Dependencies annotation. Thus, we will

not consider it for the rest of this work.

amod

Lovley food and chips

amod
Figure 1.12: Enhanced dependencies version of the sentence in Figure [I.8 The

adjectival modifier (amod) relation of "lovley" is propagated to "chips", meaning
that it refers to it as well.

Finally, UD has been used for semantic tasks as an intermediate step

(KANAYAMA and TAKEDA| 2017; REDDY et al, 2017). Besides, it has been

13

used in the 2018 edition of Extrinsic Parser Evaluation Initiative (EPE 2018) at the
Conference on Computational Natural Language Learning (CoNLL 2018), a compe-
tition to evaluate the impact of UD syntactic parsing on downstream tasksﬂ Other
approaches further process UD syntactic trees in order to generate semantic repre-
sentations, such as logical forms (REDDY et al., 2017)), graphical representations
(KALOULI and CROUCH/ 2018) and other predicate-argument indication and lexi-
cal semantic enhancements on top of syntactic representation (WHITE et al.,[2016).
This shows that UD is not merely an academic proposal and suggests that UD is
increasingly becoming a standard in the field.

UD is annotated in a tabular format with 10 columns called the CoNLL-U for-
mat. Each line corresponds to a word in the sentence. The column fields include
word index (indicative of order in the sentence), form in which it appears, lemma
(dictionary form), part-of-speech tag, morphological features, index of the head word
and dependency relation to head word.

An example corresponding to the analysis in Figure is in Figure|l.13

newdoc id = reviews —258042
sent id = reviews —258042-0001
text = Lovley food and fab chips

1 Lovley lovley ADJ JJ Degree=Pos 2 amod -~ -
2 food food NOUN NN Number=Sing 0 root _ _
3 and and CCONJ CC _ 5 cc _ o
4 fab fab ADJ JJ Degree=Pos 5 amod _ _
5 chips chip NOUN NNS Number=Plur 2 conj .

Figure 1.13: Tabular CoNLL-U format of the sentence in Figure

“In EPE 2018, the tasks are: Biological Event Extraction, Fine-Grained Opinion Analysis and
Negation Resolution.

14

Chapter 2

A Formal Specification For Universal

Dependencies

In Computer Science, an ontology is a description, or representation, of knowledge
about some domain of interest using some formal language, that is, being able to
be read and manipulated by a machine (HITZLER et al. 2010, p. 2). In this
chapter, we present our ontology for the Universal Dependencies standard, the main

contribution of this thesis.

2.1 Motivation

In the Introduction (Chapter , we asserted that building a formal specification of
an annotation scheme, such as UD, is potentially useful for syntactic annotation.
We highlighted three specific points: finding errors in data, helping in production
and maintenance of annotated data, and being used as background knowledge by
machine learning algorithms. We will discuss these specific points in later sections,
but we shall now discuss the general idea in more detail.

A specific motivation for building a formal specification is having an unambigu-
ous language for describing something and making inferences about this description.
It is even more desirable if such inferences are automatic. Description and infer-
ence are basic goals of the area of knowledge representation and reasoning (KRR)
(BRACHMAN and LEVESQUE], 2004).

In producing linguistic data, specially in a community endeavor such as UD, great
effort is expended in writing a documentation in natural language, in order to guide
annotators, developers and users of data following the standard. Verifying possible
inconsistencies in the documentation or between examples and the documentation
is a hard and non-obvious task. As the documentation is open to discussion, it is

expected that it can change with time, and as it is modified by different authors,

15

errors may be made, possibly hard to find.

Therefore, the UD community, or at least a treebank manager, instead of simply
having the documentation in natural language, could also have a formal specifica-
tion. This formal specification could be automatically checked against examples
in the documentation and treebanks, allowing for consistency checks between what
is asserted as requirements and restrictions, and what actually occurs in data. A
formal specification could be maintained by collaboration, in the same way natural
language documentations are]]

It could be questioned why a formal specification should be built for represent-
ing annotated linguistic data. At least in some extreme version of skepticism about
knowledge representation and reasoning, an argument could be formulated as fol-
lowing: hand-building a formal specification requires much work from specialists in
both the domain (in this case, linguistics) and formal logic. Not many people have
knowledge on both areas, therefore it becomes expensive and difficult to develop such
specification. Besides, explicit hand-build knowledge is frequently wrong or incom-
plete, as humans are not particularly good in capturing every relevant property from
phenomena. Finally, formal reasoning is very slow, sometimes even undecidable.
Therefore, building formal specifications should be dispensed with and only data-
driven methods without explicit knowledge should be used.

We will dispute this argument on three grounds. First, explicit knowledge is
not necessarily hand-built and derived only from experts’ opinions. Not only an
specialist can and should use data while developing formal specifications, but there
are as well data-driven methods for producing explicit knowledge. Indeed, the areas
of statistical relational learning (SRL) and inductive logic programming (ILP) are
about such methods (GETOOR and TASKAR; [2007; MUGGLETON et al., [2012).

Second, the annotation standard is already created by specialists in computa-
tional linguistics. The success of Universal Dependencies builds on it being designed
by a community of specialists in this area. Using the correct tools, a deep knowledge
of logic is not strictly necessary. Semantic technologies and declarative methods are
built in a way so that it is not necessary to understand implementation details in
order to use them. Indeed, this is one of our motivations in using OWL: the Se-
mantic Web community has largely adopted it and there are many out-of-the-box
tools, at least in comparison to less used formalisms. Besides, it is unlikely that in a
community effort there is no collaborator with enough knowledge on logic in order
to maintain an ontology. A basic knowledge of logic is usual knowledge for both
computer scientists and linguists with some background in Semantics.

Thirdly, computation speed is not necessarily a problem. While it certainly make

!This is greatly facilitated by code repositories in the Web, such as github, and version control
tools, such as git.

16

some use cases unfeasible, such as using unrestricted reasoning in application run-
time for end users, it is not a hard problem for other uses. For instance, we assert
that one practical use for our ontology is treebank maintenance. This is hardly a
task in which time bounds are strict. Finally, undecidability is not a problem when
using a representation method with guarantees on decidability, which is the case for
description logics, for instance, which we use.

Let us now briefly remind the specific advantages highlighted before and where
they will be discussed. A formal specification produces almost directly a method for
automatically detecting errors in data. Given a reasoner, a tool that can produce
inferences from a specific formal language, finding errors in data is possible by
verifying the consistency of the data with the formal specification. This is the
method that we will use and will be explained in more detail in this chapter, Section
2.4

A formal specification is also a valuable resource for producing and maintaining
annotated linguistic data. This method for finding errors can also be used for reduc-
ing the cost of creating new datasets. Besides, it also improves methods for querying
data, due to hierarchies and relations in ontology, which allow for inference. Both
issues will be addressed in Chapter [4]

Finally, a formal specification could potentially be used by machine learning
methods in order to learn with greater precision with less data. Unfortunately this
is not an idea which we will be able to experiment and present in much detail, but

some discussion is in order in Section on future work.

2.2 Formal foundations and language

There are many possible ways of formalizing an annotation standard or, for that
matter, for representing knowledge in general. Many formal languages (with well-
defined semantics) exist which could be used, with differences in their expressive
power and computational complexity of reasoning. In practice, some scientific com-
munities developed clear standards for representation languages, some of which have
wider adoption.

In this work, we use OWL 2 DL: the Web Ontology Language, Description
Logics semantics (OWL WORKING GROUP} 2009). OWL is a current standard for
Semantic Web communities and industries. It evolved with the goal of representing
semantic content in the World Wide Web by common practices and technologies, in
addition to supporting logical inference. It is currently in the OWL 2 version.

OWL 2 offers two different semantics: OWL 2 RDF-Based Semantics, also known
as OWL 2 Full (CAROLL et al.,2012); and OWL 2 Direct Semantics, also known as
Description Logic semantics, or OWL 2 DL (MOTIK et al., 2012a) (which we may

17

refer here merely by OWL-DL). OWL-DL is designed to keep decidability, while
OWL Full is undecidable (HITZLER et al. 2009). This means that, for OWL-DL
but not for OWL Full, in principle any reasonable task can be correctly solved in
finite time, disregarding resource restrictions (time and space). Description logics
are a family of logics regarding the notions of classes (unary predicates, or concepts)
and roles (binary predicates). Many description logics are decidable subsets of first-
order logic. This is the case for the description logic SROZQ, on which OWL-DL
is based (HORROCKS et al., 2006, RUDOLPH,| 2011]).

Our choice of OWL 2 DL is motivated by: i) its wide usage by the Semantic
Web community, which means that there are supported out-of-the-shelf tools for
it; ii) its guarantee of decidability, a property that first-order logic does not have;
iii) expressivity apparently sufficient for relevant constructions in UD, although the

limit of this hypothesis can only be discovered in practice.

2.3 An Ontology for Universal Dependencies

2.3.1 Concepts in the Universal Dependencies annotation

guidelines

Even if the UD project does not present itself as a grammar or linguistic theory
(NIVRE, 2015, pp. 2-3), its guidelines make reference to many linguistic concepts
in such a way that understanding them is necessary not only for justifying design
decisions, but also for applying them. Consider, for instance, the definition of acl

(clausal modifier of noun):

acl stands for finite and non-finite clauses that modify a nominal. The
acl relation contrasts with the advcl relation, which is used for adverbial
clauses that modify a predicate. The head of the acl relation is the noun
that is modified, and the dependent is the head of the clause that modifies

the noun.

Even though clause and mominal are usual concepts in syntax, they are not
explicitly stated in the UD CoNLL-U format, and thus are not directly available for
a tool without background knowledge on UD.

Some concepts in UD’s documentation are: content word, function word, core ar-
guments, oblique modifiers, nominal phrase, clause, modifier word, promotion, among
others. Although they are explained in the documentation, the target audience is
researchers and annotators, and thus these concepts are not explicitly present in

annotated sentence files.

18

2.3.2 Ontology summary

Our ontology is divided in different files according to the architecture in Figure 2.1]
It is built on top of the OLiA system ontology (CHIARCOS and SUKHAREVA)
2015)).

ud-annotation-model contains the classes and relations necessary for describing
the contents of a UD analysis in the CoONLL-U format.

ud-structure contains axioms regarding the structure of dependency tree, such as
the requirement that each sentence has exactly one root (in its dependency

analysis).

ud-theory contains concepts referred by the documentation. This is where the
relation between the concepts and the annotated content is made, as well as
restrictions contained in the documentation are declared. This is our main

ontology and it will be used in the experiments (Section .

ud-svalidations contains restrictions contained in the official syntactic validation
ﬂ from the UD project. While many syntactic validation tests are already
contained in ud-theory, some do not seem to be implied by the documentation
and are not considered to mean that the data is invalid. These are included
only in this file. Our main goal in developing this ontology was testing if OWL-
DL (and our formalism) was expressive enough to reproduce every syntactic

validation.

ud-theory-and-svalidations The union between the last two ontologies.

Table 2.1: UD Theory ontology metrics and expressivity used.

Classes 232
Object properties 53

Data properties 6
Individuals 124
Logical axioms 532
Declaration axioms 418
Annotation axioms 39

DL expressivity ALCROZO(D)

2 Available at http://purl.org/olia/system.owl.
3Currently it covers all restrictions except the ones regarding morphological features.

19

http://purl.org/olia/system.owl

i ud-theory-and-svalidations

imports \imports

ud-theory i ud-svalidations

ud-structure

imports

L4
i ud-annotation-model

imports

k4

oliafsystem

Figure 2.1: Architecture of the UD Theory ontology. Each node is an OWL file.

2.3.3 Modeling

Following the OLiA system, words and sentences are represented as instances of sub-
classes of UnitOfAnnotation; lemmas, morphological featuresﬁ and parts-of-speech
as instances of subclasses of Feature. However dependency relations are doubly rep-
resented: not only reified as subclasses of Relation, as in OLiA system, but also
are represented as OWL relations on WOI“dSE|. Dependency relations are organized in
the following way: there is a general isDepOf property, with subproperties such as
isDepOf :nsubj or isDep0f :obj. There are some sub-types of dependency relations,
such as isDepOf : flat:name. During our conversion of CoNLL-U files (discussed in
Section , we produce some sub-type extensions of this kind on run-time if they
occur in the data.

Our main concepts are in ud-theory.owl (Figure . Most of our restrictions
are asserted as axioms on these classes.

Many of the restrictions we formalize regard the structural aspect of UD[]] Ac-

cording to the UD documentation, languages structurally involve three things: nomi-

4They are represented but currently there are no axioms added in order to constrain or make
inference from them.

5This was done in order to implement restrictions regarding word order in the case of conj
(copula), appos (appositive), flat and fixed relations, as we will discuss in the end of this
section.

SExplained on http://universaldependencies.org/u/overview/syntax.html#
a-mixed-functional-structural-system

20

http://universaldependencies.org/u/overview/syntax.html#a-mixed-functional-structural-system
http://universaldependencies.org/u/overview/syntax.html#a-mixed-functional-structural-system

nal phrases, clauses headed by a predicate and “miscellaneous other kinds of modifier
words”. Motivated by this assertion and by the tabular classification of dependency
relations according to these conceptsﬂ we consider that words are a disjunction
between the classes NominalHead, ClauseHead, ModifierWord and FunctionWord.
That is, we assert that Word = (NominalHead U ClauseHead LI ModifierWord L
FunctionWord). These classes are not disjoint, as can be noticed from nonver-
bal clauses / copular constructions: the root word, a nominal predicate, is both a
NominalHead and a ClauseHead.

Important restrictions are that Word is the disjoint union of ContentWord and
FunctionWord and that ClauseHead N (ModifierWordllNominalHead) is a subclass
of NonverbalClauseHead"

Another interesting example is that FunctionWords have no dependents except
if the dependent relation is advcl, advmod, amod, cc, conj or fixed, or in cases
of ellipsis, covering the four possible exceptions for function words not taking de-
pendents: multiword function words, coordinated function words, function word
modifiers and promotion by head elision. Currently this is an axiom which is not
very useful for finding errors automatically, as there are no restrictions (such as
negation or cardinality constraints) on ellipses, but it could be used for querying.

Such concepts are linked to the “concrete” annotation labels by specific axioms.
For instance, we assert that words with an advcl (adverbial clause) dependency re-
lation are instances of ObliqueModifier and dependents of a ClauseHead. None of
our axioms make reference to lemmas or word forms. Therefore, all of our inferences
and constraints are about delexicalized analyses.

Another issue which deserves attention is the difficulty in encoding the restriction
that some dependency relations have a specific direction. For instance, fixed is a
relation meaning that two words form a specific fixed multiword expression. One
example is “of course”, which forms a expression with specific meaning. In this
case, in UD, words should be encoded in a structure where the first word in the
expression is the head and all others are direct dependents of the first with the
fixed relation. In our example, “course” would be a dependent of “of”. A corollary
is that fixed should never occur from the right to the left, that is, from a word
that occurs later to a word that occurs earlier. We modelled word order using an
object property called nextWord. Thus (a,b) : nextWord holds if and only if the
word right after b is a. We also define a property called nextWordTrans, which is

meant to be the transitive closure of nextWord. In order to encode the restriction on

"http://universaldependencies.org/u/dep/index.html

8A more problematic axiom currently present in the ontology is that every
NonverbalClauseHead does not have a VERB part-of-speech, because it invalidates many
acceptable annotations of non-finite verb forms, such as participles and infinitives. It generates
some of our false positives in the experiment of Section

21

http://universaldependencies.org/u/dep/index.html

v Concept
v-- @ Coordination
I CoordinatedFunctionWords
DependencySubtree
~.{0 Ellipsis
v LinguisticStructure
v Clause
. @ complexClause
NonverbalClause
SimpleClause
- VerbalClause
~ () ModifierWords
[MominalPhrase
- MultiwordExpression

L MultiWordFunctionExpression
----- Sentence
v & Word

v-- @ ClauseHead

- & NonverbalClauseHead

- & VerbalClauseHead
ContentWord
- CoreArgument

- ObliqueModifier
FunctionWord
ModifierWord
b NominalHead

Figure 2.2: Concepts in ud-theory.

right-headed fixed relations, we assert the axiom that nextWordTrans is disjoint
with the property corresponding to the fixed relation (isDepOf:fixed). However,
this prohibits specifying in OWL-DL that nextWordTrans is a transitive relation,
because any object relation which is disjoint with another is “non-simple”, and in
SROZQ only simple relations may be asserted as transitive (HORROCKS et al.,
2006}, p. 59; MOTIK et al., 2012b)). A practical solution to this issue is guaranteeing
transitivity in the ABox, that is, any representation of a sentence used with the
ontology should have a nextWordTrans that is a transitive close of nextWord. We
do this in our validation tool, as we will see soon.

Finally, an important construction in the guideline which we did not capture
fully is ellipsis. As we presented in Section [I.3, UD captures guidelines on how to
annotate ellipsis with respect to a hypothetical sentence in which the elided word is
present. However, elided words are not annotated, making it hard to verify directly
if the method was followed | This creates some difficulties for our method, as it is
expected that ellipsis are a important cause to exceptions to general classifications
such as “content word” and “function words”. We noticed this in practice. On the one
hand, this implies that annotating every elided word would make it easier to verify
if the annotation is consistent, as well as making the analysis more informative, for
instance for downstream semantic tasks, or linguistic studies. On the other hand,
annotating elided words could make the annotating task harder, as there may appear
sentences for which it is not obvious whether a structure is or not elliptical. This

ambiguity in annotation may hurt annotation consistency.

9Enhanced dependencies are an exception: elided predicates are annotated as special null nodes.
However, other elided elements are not annotated, such as nominals.

22

2.3.4 Documentation inconsistencies

During the formalization, some problems in the documentation itself were found.
One of them regards the relation appos (appositional modifier). According to the

documentation itself:

An appositional modifier of a noun is a nominal immediately following

the first noun that serves to define, modify, name, or describe that noun.

Besides, it is clearly located in the the index of dependency relations as a relation
between a nominal dependent and a nominal head. However, it contained the as-
sertion (recently removed) that in some cases an appos relation between a nominal
and a clausal dependent was possible, such as when describing facts or events. This
is a clear contradiction with the dependency relation definition and UD’s structural
classifications.

Another problem found in the documentation is an imprecision regarding aux
(auxiliaries), a relation between a function word (an auxiliary, such as an auxiliary

verb) and a clause. The documentation states that

An aux (auxiliary) of a clause is a function word associated with a verbal
predicate that expresses categories such as tense, mood, aspect, voice or

evidentiality.

That is, it restricts the relation to verbal predicates. This is not only an un-
necessary constraint, but also the documentation itself contains a counter-example:
“She has been happy.’m Here, “happy” is an adverbial predicate, and therefore

non-verbal.

2.4 Validating UD CoNLL-U files

Our validation process consists in transforming a CoNLL-U file with an annotated
sentence into an OWL file and verifying joint consistency with the ontology. That
is, let S be the representation of the annotated sentence and O be the ontology. We
validate the sentence by testing whether S;O F L. In the language of Description
Logic, this is the same as testing whether Thing C Nothing, where Thing is the top
class (encompassing all things) and Nothing is the empty class. It should be noted
as well that S, the representation of the annotated sentence, is always limited to the
assertion component (also called ABox) of the ontology, that is, it contains only as-
sertions about individuals, such as relations between then or individual membership

to classes, not terminological knowledge (such as subclass relations).

0Example 77 in http://universaldependencies.org/u/overview/simple-syntax.html

23

http://universaldependencies.org/u/overview/simple-syntax.html

Our pipeline for validating UD CoNLL-U files is modularized in 3 main compo-

nents:

1. Conversion from CoNLL-U file to RDF: for this we use the CL-CONLLU
library for Common Lisp (MUNIZ et al., [2017)), which reads CoNLL-U files
and has a feature for writing it in a RDF format. It is a “shallow” structure

in the sense that it is simply a remapping of the file in triples structureE

2. Preprocessing RDF': it is necessary to adapt the RDF format to another one
which makes the sentence a compatible ABOX for our ontology. We do this
by using SPARQL Update operations. One example of such processing is
constructing the transitive closure of the relation nextWord (for word order in

a sentence).

3. Reasoning: in this step, we pass the processed RDF and the ontology to the
reasoner and check for joint consistency. In case an inconsistency is found, an
explanation is returned. We use the HermiT reasoner (GLIMM et al., [2014)),
by the interface provided by the BUNDLE tool (RIGUZZI et all 2013).

BUNDLE uses the explanation module of OWL API, which uses justifications:
minimal sets of axioms which are sufficient for proving the entailment (HORRIDGE
and BECHHOFER; [2011). In particular, it means that for large axioms, the entire
axiom is presented as part of the explanation, instead of making clear only the
part of the axiom relevant for entailment (HORRIDGE et al., 2008]). Of course, it
also means that there is no derivation tree, which could give a better view on the
entailment.

A diagram of our pipeline is in Figure [2.3

sentence I

goes into

5

cl-conllu

outputs goes into
goes into outputs goes into outputs
. TT— - - i — I I
sentence raw RDF I H)‘O" preprocessed RDF iO/ validation result
SPARQL Update reasoner

Figure 2.3: Validation pipeline.

UThis output is similar to the of one (CHIARCOS and FATH, 2017), although slightly less
shallow, as morphological features are parsed in individual triples.

24

We will illustrate the output on two invalid analyses. Consider the sentences in
Figures and 2.5 In Figures and we present the validation output for
them, respectively. As the validator returned an explanation for each one of them,
they are both wrong.

Notice that in the sentence of Figure , the appos (appositive) relation is
headed by a closing parenthesis and has as target the word “Breivik” (a proper
noun). For this sentence, our method found the explanation in Figure . It points
out that the word 25 (“ Breivik”) comes before word 30 (the closing parenthesis, “)”),
but that an appos relation can never occur to a word that comes after the dependent
word. This is encoded by the disjointness between properties nextWordTrans and
appos.

Another possible explanation, not found in this case, is that a punctuation mark
(part-of-speech PUNCT) should never have a dependent. The explanation module
from OWL API can produce many justifications. Currently we return only one
explanation, but this is easily changed by modifying the call to BUNDLE. Unfortu-
nately, OWL API explanations are often hard to understand and may contain many
superfluous parts and redundancy (HORRIDGE] |2011). Thus, reading multiple ex-
planations is very time-consuming. A possible solution left for future work is using
methods which produce more concise explanations, such as the ones proposed by
(HORRIDGE et al, 2008).

25

‘TRUITION ® Aq j0U ‘gYAA ® Aq popeoy uone[ol sodde ® U0 10110 UR [IM 00UIULS o[dWexy :G'g 9IN3Iq

ddHA
* 01801 9WIO(] UOSUIRG ST} UI SISOUINO[RY UI POINSOI JUIAD ST} ¢ UOISUSIXd SN02oRIDI,) e Jo oseyd Teuordar v Sunmp poyidn sem eare Apnjs oy J,

ﬁ sodde \

‘uorjeal sodde JO UOIJIRITP O} UO IOLID Ue M 20Ua)Ues o[dwrexs] g 9InsdI

LONNd NdOdd
: (GG6T © TR 10 YIARIg) UIseq Iejj() 9Y) Ul Pajedo] YSIY [emjonijs e ¢ (T * S) SWO(] UOSWRS o) U0 Pasnooj sT Apnjs juaserd oy T,

sodde

26

Explain unsatisfiability of owl:Thing
Axiom: Thing SubClassOf Nothing

Explanation(s):

1) nextWordTrans Disjoint With appos
sentence-4-25 nextWordTrans sentence-4-30
sentence-4-25 appos sentence-4-30

Figure 2.6: Explanation automatically given to analysis [2.4]

Explain unsatisfiability of owl:Thing
Axiom: Thing SubClassOf Nothing

Explanation(s):

1) sentence-2-5 hasUniversalPartOfSpeech VERB
NonverbalClauseHead EquivalentTo ClauseHead and (hasUniversal-
PartOfSpeech some (not (VERB CLASS)))

VERB CLASS EquivalentTo VERB

Relation EquivalentTo (hasSource min 1 Thing) or (hasTarget min 1
Thing)

hasUniversalPartOfSpeech some VERB CLASS SubClassOf Clause-
Head

sentence-2-16.edge hasSource sentence-2-5

Functional: hasUniversalPartOfSpeech

ClauseHead and (ModifierWord or NominalHead) SubClassOf Nonver-
balClauseHead

sentence-2-16.edge Type appos

acl or amod or appos or case or clf or det or nmod or nummod
SubClassOf hasSource some NominalHead

Relation SubClassOf hasSource exactly 1 Thing

Figure 2.7: Explanation automatically given to analysis [2.5]

As for Figure [2.5] in short the problem is that the appos relation is headed
by a VERB. Its justification in Figure stands for the following argument : The

edge of word 16 (“event”) is an appos, and has as source the word 5 (“uplifted”).

Moreover, the head of an appos relation is always a NominalHead. Thus, the word
5 is a NominalHead. On the other hand, the part-of-speech of word 5 is VERB.

Every word with part-of-speech VERB is a ClauseHead. However, any word which

is both a ClauseHead and a NominalHead is a NonverbalClauseHead. Finally,

a NonverbalClauseHead always has a part-of-speech different than VERB. This is

27

absurd, because word 5 is a VERB and the part-of-speech is unique (it is a functional
relation). Thus, the analysis is invalid.

Unfortunately, current explanations are hard to read. An alternative to reading
these explanations is pinpointing which words and which values are problematic in an
analysis. Another possible improvement is using laconic justifications (HORRIDGE

et al., 2008]). We leave to future work improving the readability of explanations.

28

Chapter 3

Experimental Evaluation

3.1 Experiments

3.1.1 Finding “incorrect” analyses

Although we propose an ontology for finding errors not only in automatically pro-
duced UD analyses, but also in treebanks, and many officially released treebanks are
semi-automatic conversions (and thus prone to errors), it is necessary to use data in
order to have a quantitative assessment of the resource.

A possible method for evaluating our ontology, given a treebank, consists of the
following: partitioning the treebank in training and test subsets, training a parser
in the training set, then running the parser on the test set, validating the predicted
analyses with our reasoner and measuring if the predicted analysis is “incorrect”
given that it was considered invalid by the reasoner. Here, we considered a predicted
analysis incorrect if it is not an exact match with the test analysis: two analyses are
an exact match if and only if, for every word, its head and dependency relation to
head are the same in both analyses/[l]

Thus, here we use the following definitions:

precision is the fraction of sentences for which the predicted analysis is not an
exact match with the test analysis among the sentences for which the predicted

analysis was considered wrong by our validator

recall is the fraction of sentences whose predicted analysis was considered wrong by
validator, among all sentences whose predicted analysis is not an exact match

with the test analysis

For parsing, we used UDPipe (STRAKA and STRAKOVA, 2017) We present

'We measure exact matches by ignoring punctuation tokens and dependency relation subtypes.
2We used the swap transition system, with static lazy oracle and 20 iterations for parsing
training. Otherwise we used default configurations. We did not do tokenization or tagging.

29

‘ One run for each cross-validation partition Iﬁ

|

i Full data set (CoNLL-U format)

/amtmm\

iTraining set and validation set \pamtmn
T

| \
Parser (l:fDPipe)) \
\

UDP';ﬂe mode|

/
[
|, sentenceg to be parsed

n \““
predicted
Viﬁgatorf /

T Test set

Formal UD Ontology \‘

/

v =]

Correct/Incorrect classification Validilnﬁé classification

P
final result

Figure 3.1: Pipeline for experiment described in Section [3.1.1

the workflow of our experiment in Figure [3.1]
We follow this methodology for the following datasets: UD English EWT, UD
French GSD, UD German GSD, UD Portuguese Bosque, and UD Spanish AnCoraH
If our modeling is reasonable and the treebanks sufficiently error-free, we would

expect:

e precision to be high, as invalid analyses would be incorrect and therefore not
part of the gold standard treebank{

e recall to be possibly low, as an analysis being valid only makes it possible,
but not necessarily correct in the context and with regard to words used.
More precisely, an analysis being valid ideally means at most that there could
possibly exist a sentence in some language with such analysis as correct, not

that this analysis is correct for any sentence.

Our results are in Table 3.1l

3All available on the project webpage: http://universaldependencies.org/.
40f course, it is expected that most of the predicted analyses are not exact matches, so high
precision means it should be considerably higher than random choice.

30

http://universaldependencies.org/

3.1.2 Error analysis and discussion

As expected, for French GSD, German GSD and Portuguese Bosque, precision was
over 90%, while it was almost at this value for Spanish AnCora. However, results
were much poorer for English EWT, motivating further inspection. As for recall, it
was around expected for French GSD, German GSD and Portuguese Bosque, but a
bit higher for English EWT and surprisingly high for Spanish AnCora, which even
had an especially low number of exact matches, without a big impact on precision.

On the English EWT treebank, one of the main responsible for false positives
is the word “not”, such as in Figure In this corpus, the annotation decision
is that “not” should have PART (particle) as part-of-speech, with a dependency re-
lation advmod (adverbial modifier). However, to our ontology, every advmod is an
ObliqueModifier, which is a ContentWord. However, every PART is a FunctionWord
and, finally, FunctionWord and ContentWord are disjoint concepts, raising a con-
tradiction in this case. This may raise some doubts about the annotation decision
for this treebank, or even about the concepts themselves. Except in some corner
cases (such as ellipsis, where a function word may be promoted), it would seem
reasonable to assume that function words and content words are disjoint concepts.
This is in incompatible with “not” being annotated as both PART and advmod. It
is not entirely clear why it could not be annotated as an ADV (adverb), exactly as
“nowhere”, “never”, particularly considering that the criteria for being PART is by
exclusion, that is, not satisfying the definition of any other part of speech. Of course,
the complete reasoning raised by this problem allows many other possibilities. One
of them is allowing advmod for function words as well. However, this would break
down the structural classification of the dependency relations, as it would collapse
one dependency relation for both function words and modifier words. A second
one is not using advmod in this case. However, it is a modification of a predicate,
apparently satisfying the definition. On the other hand, this also points out to the
lack of a dependency relation between function word and predicate that would be

adequate for this specific case.

This is not a post about fault-finding (...)
PART

Figure 3.2: Example of “not” in a sentence of the UD EW'T' English corpus.

There are other interesting cases. One of them is the occurrence of ADP (adposi-

31

tion) words with an obl (oblique nominal) dependency relation to their heads, such
as in Figures[3.3|and 3.4 Our ontology finds problems in this construction due to the
assertion that every obl is an ObliqueModifier, and therefore an ContentWord, as
well as the aforementioned disjointedness between ContentWord and FunctionWord.
This annotation could be defended in terms of ellipsis: for instance, in Figure |3.3]
it can be argued that “at” depends on a missing word after it (“military”), which
would be an obl of “scoff”. By ellipsis and promotion, “at” becomes an obl. On
the other hand, in Figure [3.4] this is much harder to defend, as there is clearly no
ellipsis [
(...) Syria ’s military is nothing to scoff at .
PRON VERB ADP

Figure 3.3: Example of an ADP obl word in a sentence of the UD EWT English
corpus.

usub1

‘1d\ mod

(...) the reward now up to § 5 million .
DET NOUN ADV AUX ADV ADP

Figure 3.4: Example of an ADP obl word in a sentence of the UD EWT English
corpus.

Inspecting the false positive of the other treebanks, we can find both modeling
errors and dataset errors. For instance, for German GSD, while we found many
cases of “nicht” with the exact same problem as “not” in English EWT, there were
other more clear errors, such as in Figure [3.5] Less clear cases were found, such as
the usage of part-of-speech DET for relative pronouns (PronType=Rel).

By inspecting Portuguese Bosque results, we found out another imprecision in

the documentation that creates an excessively strong requirement. It states that:

A nonverbal predicate (nominal or adjective) takes a single argument

with the nsubj relation.

5This suggests that it would be useful if ellipses were explicitly annotated somewhere in UD, as
it would allow automatic verification. While enhanced dependencies seem to make a move in this
direction by adding special null nodes of elided predicates, nominal ellipses (for instance) are still
“invisible”.

32

det

Ein kurzer Check ergab: Dies war tatsdchlich der Fall!
DET ADJ VERB VERB

A quick check showed: This was indeed the case!

Figure 3.5: Partial analysis for a sentence of German GSD with a part-of-speech
error.

However, it seems perfectly reasonable to have csubj (clausal subjects) in copular
sentences. Indeed, consider Figure [3.6]

csubj
det

Parar esse ataque no bloqueio é
VERB

uma missao quase impossivel .
AUX DET NOUN

Figure 3.6: Sentence of UD Bosque Portuguese corpus with clausal subject (csubj)
in nonverbal clause. It could be translated as “Stopping this attack in blockage is an
almost impossible mission.”

Another problem in our ontology is regarding the morphological feature
VerbForm. As we have not yet modelled morphological features, there are no ax-
ioms that consider them. This creates problems about forms such as infinitives,
participles, as they allow verbs to occur in contexts similar to other parts-of-speech
(such as nouns, adjectives and adverbs). Thus, many of our axioms regarding verbal
clauses are too restrictive, and we found counterexamples in different corpora, such

as EWT English and Bosque Portuguese.

Table 3.1: Results of the experiment described in Section [3.1.1] It was run in 25
folds cross validation. Values in the columns marked with an * are averages on every
fold, with standard deviation in parentheses.

Dataset Precision™® Recall* Exact matches* | #sentences
UD English EWT 76.53%(£02.85%) | 29.62%(£01.67%) | 45.65%(=01.44%) | 16621
UD French GSD 90.26%(£03.37%) | 14.87%(£01.47%) | 27.92%(+£01.82%) | 16448
UD German GSD 90.19%(403.15%) | 20.23%(+01.94%) | 28.47%(£01.28%) | 15590
UD Portuguese Bosque | 90.80%(£04.29%) | 19.79%(£02.44%) | 28.84%(+02.43%) 9366
UD Spanish AnCora | 89.95%(£01.61%) | 53.83%(£03.46%) | 18.36%(£01.59%) | 17680

3.1.3 Comparison with Udapi

Udapi is a framework providing an API for using UD, implemented in different

languages, but best supported in its Python implementation (POPEL et al., [2017).

33

Udapi offers functionalities such as visualizing syntactic trees, conversion between
data formats and querying. Among these functionalities, Udapi includes a validation
module, in order to capture possible annotation errors. This validation module is a
improved version of a set of queries officially maintained by the UD Project (about
which we will have more to say in Section . While our ontology can also be seen
as an improved version of this set of queries, as it covers these restrictions, Udapi
does that not by a declarative method, but using a programming language (in this
case, Python).

In order to have an assessment of our method, we will reproduce the same exper-
iment for Udapi, instead of our validator. It should be noted a priori that Udapi has
two advantages over our method. Firstly, it uses the expressivity of a full program-
ming language (Python), and therefore is less restricted than our ontology. This
implies that it is possible that Udapi includes tests which can not be replicated by
our method. Secondly, as it is a programming language, there is a explicit control
flow, and thus it can be fasterﬁ Our method, on the other hand, is a declarative im-
plementation in the form of concepts and restrictions on them. This has advantages
typically associated to Semantic Web or Knowledge Representation methods, such
as reusability and transparency (we will discuss more about Semantic Web in NLP
in Section . In any case, the evaluation is useful as it compares the ontology to
an existing approach for one of its possible tasks, besides being able to indicate in

which ways our ontology is currently lacking.

Table 3.2: Results of the Udapi experiment. It was run in 25 folds cross validation.
Values in the columns marked with an * are averages on every fold, with standard
deviation in parentheses.

Dataset Precision™® Recall* Exact matches*™ | #sentences
UD English EWT 66.64%(£02.21%) | 63.88%(£01.72%) | 45.65%(01.44%) 16621
UD French GSD 77.92%(£02.33%) | 59.19%(£02.49%) | 27.92%(+£01.82%) | 16448
UD German GSD 83.92%(£02.60%) | 30.61%(£02.17%) | 28.47%(+£01.28%) | 15590
UD Portuguese Bosque | 97.24%(£02.57%) | 15.15%(+02.43%) | 28.84%(£02.43%) 9366
UD Spanish AnCora | 90.09%(£01.16%) | 57.86%(£02.32%) | 18.36%(£01.59%) | 17680

A~~~

Results for Udapi are in Table 3.2} In order to compare more easily to results of
our ontology on Table [3.1] we also present in Table the difference between the
two on precision, recall, and also on F1 score (the harmonic mean between these two
values). We test the significance of the differences by paired Student’s t-tests. While
we consider the significance levels 0.05, 0.01, and 0.001, every value was significance
to a point of 0.001, with the exception of precision in Spanish AnCora, which was

insignificant even by the level of 0.05%.

6For example, the property of non-projectivity (that can be possessed by edge) is implemented
as a function in a faster way than would be possible in an ontology, by exploiting data structures
on descendants and counting elements.

34

Table 3.3: Difference between ontology-based validator and Udapi in each dataset,
in percentage points. Values marked with x mean that the difference is significant
by a level of 0.001. Significance is measured by paired Student’s t-tests.

Dataset APrecision | ARecall AF1

UD English EWT 09.89%* —34.26%* | —22.52%*
UD French GSD 12.34%* | —44.32%* | —41.7T1%*
UD German GSD 06.27%* —10.48%* | —11.81%*
UD Portuguese Bosque | —06.45%* | 04.65%* | 06.29%*
UD Spanish AnCora —00.14% | —04.02%* | —03.14%*

By considering this table, we notice interesting patterns. For English EWT,
French GSD, and German GSD there is a substantial loss in precision, but with a
(huge, for French GSD and English EWT) increase in recall. For Portuguese Bosque,
on the contrary, precision rose considerably, to the very high value of 97%, but recall
suffered a comparable loss. Finally, for Spanish AnCora, UDPipe showed moderate
gains in recall, but an insignificant gain in precision.

An interesting feature of Udapi is that each test is associated with an explanation
string, allowing to mark related tokens and having an indicative of which tests failed
for a sentence. This allows us to inspect which verifications may be missing currently
in our ontology, and more generally to compare tests realized with our validation.

For the automatically tagged sentences in the English EWT scenario, the five
tests which failed in the most sentences are, from most frequent to less frequent: 1)
a finite verb lacking a value for its mood feature, such as imperative or subjunctive
(3448 sentences); 2) a pronoun lacking a value for its pronominal type, such as
personal, relative or demonstrative (2848 sentences); 3) a word having more than
one object child (379 sentences); 4) a word having more than one subject child (184
sentences); 5) a cc (coordinating conjunction) dependency relation not having a
CCONJ (coordinating conjunction) part-of-speech (162 sentences)]|

This is perhaps surprising. Although these tests constitute most violations, the
first (1) and second (2) ones are not related to the syntactic representation, only to
morphosyntactic features. This means that these errors are already occurring in the
original test sets. While this could point out to a possible cause to the precision drop
in English EWT) it is not expected that recall should increase. If this validation is
unrelated to the second syntactic annotation (in this case, by parsing), then it would
be expected for it to cause false positives, with at most a random increase in recall.
However, wrong predicted analyses in our data are not unbiased, as they depend
on the data used for learning (with an overlap in folds, due to cross validation) and
on the inductive bias of the training model. This may reveal characteristics of our

learned scenario.

Tt should be stressed that multiple tests may fail for the same sentence.

35

Tests 3 and 4 have a direct corresponding in our ontology. As for test 5, we no-
ticed that by a mistake it is currently missing in our ontology. Still, it is remarkable
that adding the most occurring relevant restriction could not increase the recall by
more than 1% (one percentage point).

Similar remarks are valid for French GSD. In this case, the most frequent (in sen-
tences) occurring errors we: 1) a numeral lacking a numeral type morphosyntactic
feature (6059 sentences); 2) a pronoun lacking a pronominal type morphosyntactic
feature (3381 sentences); 3) a word with cc (coordinating conjunction) dependency
type without an adequate part-of-speech (375 sentences); 4) a word with det (de-
terminant) dependency type without an adequate part-of-speech (261 sentences); 5)
a word with more than one object child (255 sentences)

By increases in recall, Udapi showed superior results in terms of Fl-score with
respect to finding predicted analyses which are not exact matches with respect to
the original analysis. Nevertheless, there are two reasons for being careful about
this result. While covering morphosyntactic features is desirable for finding errors
in tests, in this case it seems that this restriction was decisive for the result even
though the exactly same errors occurred in the original analyses, as they were no
re-classified for morphosyntactic features. This is not informative with respect to
our original goals. In addition, the main interest in having a validation tool is not
maximizing F1 score or accuracy (as in usual classification tasks), but maximizing
F1 subject to a sufficiently high precision. For instance, consider a human annotator
provided with a validator. On running the validation, if precision is not sufficiently
high, it becomes more likely that human will have to read an entire analyzed sentence
in order to find out that the analysis is correct, and thus he should not modify it. By
having high precision, specially pinpointing the error, manually correcting is more
straightforward. In any case, specially after the level of impact measured, it is still
necessary to incorporate these constraints on the ontology, even if only in a separate

module.

36

Chapter 4

Treebank Development and

Maintenance

Developing treebanks is essential for doing NLP, either for evaluating methods, or
for training machine learning tools. Unfortunately, treebanks are typically hard to
make, because they require manual annotation of syntactic information. Training
annotators and guaranteeing consistency is hard, and annotation requires non-trivial
decision problems (WALLIS, [2003)). Furthermore, many treebanks come with their
own specifications. Thus it is frequently necessary to convert them in order to use
in other tasks, which causes errors.

Not only low-resource languages have few treebanks available, but even high-
resource ones for text in specific domains, such as legal text, oil & gas, mining and
biomedical. Manually annotating such texts requires expertise in both syntax and
the domain, which makes the task mostly unfeasible without more robust methods.
This is a problem as merely using tools trained out-of-domain cause a significant loss
in performance (JIANG et all [2015; ZHANG et al., 2018). Besides, for downstream
semantic applications the quality of such analysis is essential. Thus, the problem
of developing and maintaining annotated corpora is important for the success of
practical applications. This is a topic of active research, as shown by a research
handbook on the area (IDE and PUSTEJOVSKY] [2017), which is interesting to
contrast to one of more than 10 years before (ABEILLE), [2003).

In this chapter, we will survey methodologies and tools for the development
and maintenance of corpora, as well as illustrating the usage of our validator in an

interactive environment for literate programming, along with other tools.

37

4.1 Querying

A very important method for interacting with a treebank is by querying, that is,
using a search tool. When a user is interested in a specific word or expression, a
query can be made in order to find examples of it on the treebank, seeing sentences
in which it occurred and how they were annotated.

Usually query engines offer features such as searching not only by word forms
(strings in text), but also by regular expressions, as well as searching by annotation
content, such as labels and relations. These features may be offered in such a way
that complex queries involving any of them can be made.

Examples of querying systems are in Figures .2 and [£.3

[Turku NLP Group]

English (UDv2.0) :I _>con| _ Case sensitive: (4 Hits per page 5p :I
[Link 1o this guery] [Download data] [Query Language]
[Hits In other datasets]
[context] [conllu]

the Spiritual leader of ‘Hamas i but me'y i
[context] [conllu]
uuuuuuuu) (nn]-((
-; “-\mr \- scon —/—@r’ Aveeey o o uauu,f-/_ oo

‘s incident proves that Sharon has Tost his patience and his

Figure 4.1: Example of query for right-headed conj relation in the SETS DEP -
SEARCH tool (LUOTOLAHTI et al., 2017).

Queries offer an interactive way of exploring a treebank. As queries are precise
instructions for requiring a given information, they are transparent, that is, a user
is able to understand exactly what is being asked and what is being returned, given
that the query language itself is easy enough to read.

Specific linguistic phenomena and guidelines criteria may be tested by writing

a query and considering any hit as a (possible) error. This requires the user to

formulate manually each query he may be interested in. [WALLIS| (2003) proposed a

methodology of “transverse correction”, using queries for finding specific phenomena
and having annotators correct one grammatical construction at a time, improving
consistency.

There are many search tools available for UD, such as SETS DEP_SEARCH
(LUOTOLAHTI et all 2017), Grew (GUILLAUME et al), 2012) and Tree Query
(STEPANEK and PAJAS, 2010).

There is currently a predefined sets of queries available for verifying the contents

of UD analyses using specifications from the documentation. This set is a list of

38

Hide corpora list

1
2
5
6

pattern {
N1 -[conj]-= N2;

Search |

N1.upos == N2.upos;

Corpus: UD_English-EWT@2.2

% Coordination of unlikes

Viemma Mupos [Ixpos [Ifeatures [JconnL-u @

See relation tables

[shuffle []context

Figure 4.2: Example of query for conj relation between words with different part-
of-speech tag in the Grew tool (GUILLAUME et al., [2012)).

More than 1000
results found in
57.95% of the
COrpUS [0.095]

-wo--

weblog-
blogspot.com_gettingpalitical 20030906:
weblog-
|uancofe.com_juancole_200401 14065100
weblog-
Juancole com_juancoie 200401 14085100
weblog-
blogspat.com_marketview_20050210075)
weblog-
Juancole.com_juancole_200411 20060600
weblog-
Juancele.com_juancele_20040324065800)
weblog-
blogspot.com_marketview_ 200406111321
weblog-
blogspot.com_aggressivevolcedally_200€
wehlno-

He could be killed years ago and the israelians have all the reasons, since he founded and he is the

spiritual |[eader of Hamas, but they didn't.

— et —
can|

—~ dat l|
= L =l
(N1 and he i the spiritual [N2] .
founded Up0S=CCONI Upns=FRON UpoS=ALK upos=DET Upos=ADI leader upo:
upos=VERE ’ . Hhe upos=NOUN e
lemma=found lemma=leader
E T
=] [i

corgand

‘nfvet snce

=

Figure 4.3: Result for the query in Figure [£.2]

39

queries automatically ran on the official UD datasets. Each test has a corresponding
search expression and hits for each treebank are shown. Some of these tests contain
a disclaimer that it is only a debugging test and having a hit does not imply that
the data is invalid. It is called “syntactic validations” and it is provided by the UD

project E]

4.2 Consistency verification

Consistency verification is extremely important for treebanks, as they are usually
noisy. Noise can be generated both from inconsistent human annotation, bad guide-
lines, errors in data conversion and by errors of automatic parsers. Thus, in order
to produce reliable data, consistency should be evaluated.

Furthermore, consistency verification can be used as a method for producing new
reliable treebanks. For instance, by having an automatic parser and a reliable vali-
dation tool, one could simply remove the reject analyses, keeping the accepted ones,
forming a corpus out of those sentences. If annotators are available, rejected anal-
ysis could be hand-corrected. This is already an improvement over selecting every
sentence and manually validating them one by one. In the absence of annotators,
using multiple methods for verifying consistency is likely an easy way to produce at
least a “silver standard” dataset.

We briefly present some strategies for consistency checking in treebanks. We
refer the reader to the survey of DICKINSON]| (2015) for a more detailed discussion.

Treebank consistency verification can be distinguished in two classes. One of
them is external consistency, that is, consistency is verified with respect to some
resource external to the treebank itself. The other class if internal consistency, that

is, consistency with respect the treebank itself.

4.2.1 External consistency

A typical example of external consistency check is querying, as we just described.
For instance, UD’s syntactic validation page and the validation module of Udapi (see
Section are examples of external consistency, as they are based on an external
notion of integrity, that is, which annotations are acceptable. Another example is
the work of DE SMEDT et al.| (2015), which uses a query tool in order to search for
problematic constructions involving multiword expressions.

In (OLIVA and KVETON) (2002)), authors explore the notion of invalid bigrams
(and, more generally, invalid n-grams): that is, part-of-speech bigrams which are

forbidden. This means that any annotation with a forbidden bigram is necessarily

! Available at http://universaldependencies.org/svalidation.html

40

http://universaldependencies.org/svalidation.html

wrong. [PRZEPIORKOWSKI and LENART] (2012)) parse the same text with two
independent automatic analysis: shallow (a little more than chunking) and deep
(full syntactic trees). They then verify whether both agree in the head of a phrase.
Thus, specific patterns in the dataset are considered problematic.

Our validation method based on an ontology is in this group. The ontology is
(intended as) a machine-readable extension of the documentation. Thus it does not
depend on data, which can possibly follow it or violate it, characterizing this method
as external. Of course, the validity of this validation is entirely dependent on the
validity of the ontology itself, that is, on whether the ontology indeed reflects the
annotation guidelines. Ideally, the ontology should be maintained by the community.
As treebank or language-specific maintainers can write specific guidelines (respecting
the universal ones), they could as well build extensions of the the general ontology.

This would be useful for asserting restrictions specific to their annotation scheme.

4.2.2 Internal consistency

Internal consistency verifies whether “similar” constructions in a dataset are an-
notated the same way. For part-of-speech tagging, DICKINSON and MEURERS
(2003a) propose the variation nuclei method. A variation nucleus is a string which
occurs multiple times in the dataset with different annotation. The variation nucleus
with its context (surrounding strings) is called a wvariation n-gram. DICKINSON
and MEURERS (2003al) use heuristics to prune which variation n-grams are more
likely to be errors (instead of real ambiguities). (DICKINSON and MEURERS|
2003b)) extend the method to phrase structure treebanks. Finally, BOYD et al.
(2008) adapt the method to dependency treebanks, by considering pairs of words
linked by a dependency relation as variation nuclei. They are labeled by the de-
pendency relation and by the direction of the relation (left-headed or right-headed).
Word pairs which on some sentences occur with a direct dependency relation are
also compared to sentences where the same words occur but without a direct linking,
by using a special NIL label. As in the other cases, heuristics on the context are
used in order to filter which variation n-grams are more likely to be errors. This
method was already tried for three UD treebanks, using not only word forms but
also experimenting with lemmas instead (DE MARNEFFE et al., 2017a). It was
found that this increases the recall of the method. For English and French, there is
only a small loss of precision, but for Finnish, a morphologically-rich language, the
loss is huge (from 72% to 19%, as reported by the authors).

In (DICKINSON and MEURERS] 2005)), errors in phrase structure syntactic
annotation are found by checking the hypothesis that expressions are usually endo-

centric. This means that, given a phrase, which in turn is composed of subphrases,

41

the label of the subphrases should determine the label of phrase. Thus, in a phrase
structure treebank, having many similarly labeled subphrases which combine into
different classes should be seen as an error.

One could think about using querying for internal consistency checks. A user
could write queries in order to find syntactic phenomena which she expects to be an-
notated in the same way. However, this would require reading results and comparing

them, instead of being (semi-)automatic.

4.3 The Semantic Web approach

There is a line of research focusing on Semantic Web methods for natural language
processing. One of their main goals is making linguistic linked data, that is, offering

linguistic data that is:
1. interlinked, preferably being available on the web;

2. structurally and conceptually interoperable, improving data reusability. This
avoids losing information from datasets which are no longer used (“legacy”)
(CHIARCOS et all, 2013; IDE and PUSTEJOVSKY] 2010).

This line of research tries to develop and maintain annotated data (including
treebanks and lexicosemantic resources) by creating interoperability layers between
datasets, using Semantic Web technologies, such as RDF and OWL. For instance,
for publishing lexical semantic resources, the interchange model lemon was created
(MCCRAE et al) [2012). On the task of finding errors in data, Semantic Web
methods such as OWL, RDFS and SPARQL allow the specification of restrictions
and richer queries, as was explored in the work of (KONTOKOSTAS et al., 2014)).
Although using this technological stack may have costs in performance, its main
benefits are reusability and flexibility, and they are not intended as a replacement
for high-performance methods (HELLMANN et al., 2013, p. 15; HELLMANN]| |2015,
p. 22).

A project aiming to cover many aspects of linguistic annotation is Ontologies
of Linguistic Annotation (OLiA) (CHIARCOS and SUKHAREVA| 2015; CHIAR-
COS et all, 2016). OLiA has a “reference model”, which is an ontology which aims
to be a “interlingua” of different linguistic annotation. It has general annotation
concepts, covering mostly morphological and syntactic phenomena, but with exten-
sions to discourse annotation. For connecting a data annotation formalism to OLiA,
it is necessary to build a “linking model” an ontology which connects the specifi-
cation of the data formalism to OLiA concepts. OLiA has already been used for

NLP applications, such as morphosyntactic annotation for low-resource languages by

42

bootstrapping from taggers of similar high-resource languages (SUKHAREVA and
CHIARCOS] 2016), as well as improving classification recall by integrating annota-
tion from different tools and annotation styles (CHIARCOS) 2010)). OLiA is also
used in the NLP Interchange Format (NIF) (HELLMANN et al., 2013), a project to
integrate independent NLP applications. This is an alternative to centralized work-
flows such as UIMA (FERRUCCI and LALLY] 2004) or GATE (CUNNINGHAM
et al., 2002).

An important application of an ontology such as OLiA is increasing interoper-
ability in querying corpora. For instance, imagine someone has many treebanks in
different annotation formats, such as different tags and relations, but in a OWL
representation. If there is a linking model from this representation to OLiA, it is
possible to query for OLiA reference model concepts. For instance, one could query
for olia:CommonNoun instead of querying for the part-of-speech tag NOUN in UD or
for the Penn Treebank tags NN (singular or mass noun) and NNS (plural noun). This
would allow a single query for data represented in different tags.

Our ontology can be useful for this kind of query enrichment, but when trying
to find implicit information from UD datasets. For instance, we define the concept
of a NonverbalClauseHead, a word which is the head of a nonverbal clause. This
is not a concept annotated in CoNLL-U UD files, but it can be inferred from this
annotation, using some background knowledge on UD. Our ontology includes this
kind of background knowledge. Refinements to the ontology would allow finding
more information, such as subtrees headed by specific kinds of word. Of course, this
is restricted by the knowledge representation of UD annotation. For instance, as we
discussed in Section there is ambiguity between words which should be seen as
modifying the head of a coordination or as modifying the entire coordination.

OLiA does not use many disjointness axioms, as their goal is including informa-
tion from as many data sources as possible, in many languages and representations
(CHIARCOS et al. 2016, p. 66). Thus, constraints are not a focus of this ontology,
as opposed to our work. Our ontology builds on the top ontology (systems) of
OLiA, but is not currently linked to the OLiA reference model by a linking model.

4.4 Literate programming for treebanks: a Jupyter

notebook approach

In this section we present an approach for interacting with treebanks by the usage
of “notebooks”. In computing, a “notebook” is an environment for writing prose and
code, as well as visualizing results, with the goal of improving communication, repro-

ducibility and interacting with source code. In a notebook, code is written in units

43

called “cells”, and the output of each cell is presented after it (KERY et all [2018;
KLUYVER et al), [2016; MILLMAN and PEREZ, 2014). Notebooks usually offer
formatted output ranging from formatted text (such as Markdown, which includes
headings, bold font, italics, hyperlinks, among other features) to equations, graphics
or interactive controls (KLUYVER et al., [2016] p. 88). More well-known notebook
tools are Mathematica notebook interface (WOLFRAM RESEARCH, INC.) and
Jupyter Notebook(KLUYVER et all, 2016]), the latter with at least 2 million users
estimated in 2015. Notebooks are particularly used in scientific computing and data
science for making exploratory analyses and writing scientific reports (KERY et al.l
2018; MILLMAN and PEREZ, 2014).

A current problem with development and maintenance of corpora is that there are
no de facto standard interfaces for it, so many projects develop their own solutions,
which in turn are not reusable for different formalisms and standards. A proper
interface should include functionalities such as visualization, querying and editing
linguistic annotation. This is useful for easier navigation not only by a technical user,
but especially for a less computer-trained user (which can be the case of domain
experts and linguists). As the development of interfaces can be very costly, an
hypothesis to be explored is whether notebooks can be used as an effective tool for
interacting with corpora.

Here, we present a notebook in Jupyter with the goal of trying this hypothesis,
highlighting the integration with the UD validation tool presented in Section [2.4]
We will only briefly present how could such a notebook look like, but this is at exper-
imental stage. This methodology is flexible enough for integrating other auxiliary

services, which could be useful for a real framework for the maintenance of corpora.

4.4.1 System architecture

Jupyter notebook consists of a front-end web server which interacts with a ker-
nel, which is an interpreter of a specified language. Initially, the Jupyter project
was called IPython notebook, as the Python kernel was the only language available.
Currently three kernels are officially supported by the Jupyter Projectﬂ, but there
are over 100 community-maintained kernels, most of them unique with respect to
programming language. We use here the kernel for the language Common Lisp
(PESCHANSKI] 2015).

We developed this project with Docker, a platform for developing and running
applications in isolated environment called containers, separating concerns about
infrastructure (MERKEL, 2014). We also used Docker compose, which is a tool

for creating and running applications using multiple coordinated Docker containers.

2Python, Julia and R.

44

For each component an Docker image was developed, guaranteeing that each can be
run in many platforms, as well as providing modularity.

Our Jupyter for treebanks consists of simply using a Common Lisp library for
treebanks. In our case, mostly for CoNLL-U formatted treebanks, by the CL-
CONLLU library (MUNIZ et all [2017). In order to guarantee modularity and
scalability, we used a REST web service architecture for integrating the UD vali-
dation tool with the notebook. An advantage of this approach is that adapting to
distributed frameworks should be easier.

In more details, there is a function for invoking the UD validation tool from
Jupyter Notebook by a HITTP POST request which is made to the container re-
sponsible for running it. This POST request contains the CoNLL-U format of the
sentence. In turn, this container sends another HT'TP POST request the RDF
converter container. Fach container has its own HTTP server in order to handle
adequately the requests. For the UD validator and the RDF converter, we use the
Hunchentoot Common Lisp web server (WEITZ, 2009)).

An illustration of the architecture is in figure [4.4]

Jupyter Validation tools

&5 HTTP o i HTTP
—ﬁ;ljupyter server Jupyter CL kernel oy UD validator |(—)i RDF converter

olume

¥
zFormaI UD Cntology

Figure 4.4: Architecture of Jupyter for treebanks, including the validation service.

4.4.2 Example usage

We illustrate some common use cases in treebank development in Figures [4.5]
and .7

Most features that we present are offered by the CL-CONLLU library. Our
contribution is developing the web server architecture for the validation service and
integrating with the usage of the library, besides developing the (rudimentary, at
the moment) package directly used in Jupyter for treebanks, as well as the example
notebook. In the future, a textual interface easier for non-programmers could be

developed.

45

Printing conllu tabular format

In [2]: (write-conllu-to-stream *sents#*)

sent_id = test-invalid
text = The US troops fired into the hostile crowd, killing 4.

1 The the DET DT Definite=Def|PronType=Art 3 det _ _
2 us us PROPN NNP Number=5ing 4 nsubj _

3 troops troops NOUN NNS Number=Plur 4 nsubj _

4 fired fire VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin [} root 2
5 into into ADP IN _ 8 case _ _

6 the the DET DT Definite=Def|PronType=Art 8 det _ _
7 hostile hostile ADJ 1 Degree=Pos 8 amod _ _

8 crowd crowd NOUN NN Number=Sing 4 obl _ SpaceAfter=No

9 ; ; PUNCT _ 4 punct

10 killing kill VERB VBG VerbForm=Ger 4 advel _

11 4 4 NUM D NumType=Card 10 obj _ SpaceAfter=No

12 . . PUNCT . - 4 punct

sent_id = test
text = The US troops fired into the hostile crowd, killing 4 men.

1 The the DET DT Definite=Def|PronType=Art 3 det _ _
2 us us PROPN NNP Number=5ing 3 compound _ _

3 troops troops NOUN NNS Number=Plur 4 nsubj _

4 fired fire VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin] root _
5 into into ADP IN z 8 case 2 =

6 the the DET DT Definite=Def|PronType=Art 8 det _ _
7 hostile hostile ADJ 1 Degree=Pos 8 amod _ _

8 crowd crowd NOUN NN Number=Sing 4 obl _ SpaceAfter=No

9 7 7 PUNCT 2 _ 4 punct _

10 killing kill VERB VBG VerbForm=Ger 4 advcl _

11 4 4 NUM (&) NumType=Card 12 nummod _

12 men man NOUN NNS Number=Sing 10 obj = SpaceAfter=No

13 . . PUNCT » 4 punct

Figure 4.5: Example of printing analysis of two sentences in the CoNLL-U format.

Drawing sentences

In [3]: (conllu.draw:tree-sentence (second *sents*))

~—= The det

— US compound
—= troops nsubj

r Tired root

—= into case
—= the det

— hostile amod
—= crowd obl

— , punct

—r killing advcl

f 4 nummod
men obj
— . punct

Out[3]: NIL

Figure 4.6: Example of printing a drawing of the tree of the first sentence (MUNIZ
let all, 2017).

46

The first sentence Is invalid, because the verb has two subjects. Therefore, it returns the found explanation.

In [4]: (verify (first *sents*))

Out[4]: " punct SubClassOf DependencyRelation
isSource0f EquivalentTo inverse (hasSource)
Functional: hasUniversalPartOfSpeech
Word SubClassOf isSource0Of max 1 (csubj or nsubj)
test-invalid-12.edge Type punct
DependencyRelation SubClassOf hasSource exactly 1 Word
test-invalid-2.edge hasSource test-invalid-4
test-invalid-2.edge Type nsubj
test-invalid-3.edge Type nsubj
Relation SubClassOf hasTarget exactly 1 Thing
test-invalid-3.edge hasTarget test-invalid-3
PROPN_CLASS EquivalentTo {PROPN}
test-invalid-2 hasUniversalPart0fSpeech PROPN
OpenClass DisjointUnionOf ADJ CLASS, ADV CLASS, INTJ CLASS, NOUN CLASS, PROPN CLASS, VERB CLASS
test-invalid-4 hasUniversalPart0fSpeech VERB
Relation EquivalentTo (hasSource min 1 Thing) or (hasTarget min 1 Thing)
test-invalid-2 nextWord test-invalid-3
test-invalid-12.edge hasSource test-invalid-4
test-invalid-3 nextWord test-invalid-4
test-invalid-2.edge hasTarget test-invalid-2
Functional: nextword
test-invalid-3.edge hasSource test-invalid-4
VERB Type VERB_CLASS
Relation SubClassOf hasSource exactly 1 Thing

The second sentence is valid, there Is no inconsistency in it. Therefore, the resultis NIL .

In [5]: (verify (second *sents#*))

Out[5]: NIL

Figure 4.7: Example of validation output of the two sentences.

4.5 Other approaches

Another line of work studies the impact of syntactic representation on learnabil-
ity, that is, on the results of trainable parsers (SCHWARTYZ et al., 2012; SILVEIRA
and MANNING, 2015; WISNIEWSKI and LACROIX] |2017). That is, they consider
whether specific ways of annotating syntax improves or deteriorates learning results.
For instance, WISNIEWSKI and LACROIX (2017) find out that many transforma-
tions on UD’s syntactic structure which were expected to improve parsing did not
produce better results with a transition-based parser.

RUMSHISKY and STUBBS| (2017, section 4) discuss some machine learning
techniques in order to leverage limited quantities of annotated data. It presents
briefly some semi-supervised learning techniques, that is, methods for cases when
there is small amount of labeled data and another set (usually bigger) of unlabeled
data. One family of methods discussed is active learning, where the algorithm
queries the user for the label of some specific instances, usually ones with must
uncertainty, more controversial between multiple automatic classifiers (taggers or
parsers), or which would maximally modify the model. Another class of present
methods is co-training, where multiple classifiers are trained on the same data, run

on the unlabeled data and the output of one is used for re-training the other.

47

For a different development context, (FLICKINGER et all [2017) present an
approach centered on a grammar. While the grammar is built manually and requires
much human work, it is argued that it is also reusable, the corpus is built from human
choice between possible readings of the sentences by the grammar. This annotation
is done by the method of discriminants, features which divide the possible readings
in partitions (CARTER|] [1997). This allows an annotator to, instead of reading
syntactic analysis and understanding then in order to choose the right one, simply
answer specific questions, narrowing the correct interpretation for the sentence in
consideration. In this case, a treebank and a grammar may have complementary

developments, where one serves as a resource for improving the other.

4.6 Example practical application

We will briefly comment a real-world scenario in which the validator was used] For
evaluating information extraction techniques in the oil & gas domain, a (propri-
etary) corpus annotated with entities, relations and co-references was available to
the researchers. This corpus was sampled randomly from 1298 geological reports in
English, made available by the United States Geological Survey, Geological Survey
of Canada, and British Geological Survey. From this, 155 text passages were selected
according to relevance to petroleum systems, and annotated with entities, relations
and co-references internal to the same document. Notice that the resulting dataset
(hereinafter oil & gas corpus, O&GC) does not include syntactic annotation. The
project goal is to develop a information extraction tool for the oil & gas domain,
using syntactic knowledge in order to reduce the dependency on direct semantic
annotation on data. While direct semantic annotation does not require the same
linguistic knowledge as syntactic annotation, many annotation costs are still high,
such as time for a human annotator, possible inconsistencies between annotators
and the impossibility of using crowd-sourcing methods, due to the technical subject
of the text.

Of course, the problem is that there are no readily available treebanks for the
domain of oil & gas. Developing a new treebank by manual annotation shares many
of the drawbacks of manually annotating semantics directly. Besides, syntax ar-
guably requires more linguistic expertise, which is unlikely to be hold by annotators
with competence in the domain. Thus, for using syntactic methods, there are many
advantages in working with known frameworks, leveraging existing resources, even
if out-of-domain.

Thus, from a sample of 3 documents out of the 155, three parsing methods were

3This application was done during the author’s internship period at IBM Research Brazil with
the co-supervisor.

48

compared:

1. the head-driven phrase structure grammar, implemented in the English Re-
source Grammar (ERG) (COPESTAKE and FLICKINGER/, 2000);

2. the English Slot Grammar (ESG) (MCCORD, [1990);

3. the dependency parser UDPipe trained on UD English EWT 2.0, composed
mostly of texts from web-blogs, emails, reviews, newsgroups and question-
answers (SILVEIRA et al. 2014).

Formal grammars are subject to the robustness problem, as it is possible for
them to not find an acceptable adequate analysis for a sentence. On this situation,
modern grammars usually do not simply refuse to produce an analysis. Two ap-
proaches are used. The first one is relaxing constraints on the grammar, making it
overgenerate, that is, generating more than would be initially expected. The down-
side of this approach is that the problem of lack of robustness now becomes lack of
disambiguation, which should then be solved. Another one is producing a partial
analyses returning incomplete syntactic information instead of returning false infor-
mation or none at all (NIVRE, 2006, p. 22). Even then, it is possible to have a rough
measurement of recall by how many sentences were fully parsed by the grammar.

On the other hand, many data-driven methods such as UDPipe follow an ap-
proach of robust disambiguation, that is, for every text received by the parser, exactly
one analysis should be returned, regardless of how correct it is. This guarantees that
the parser will not suffer from severe breaks by unseen words or constructions, but
try to gracefully approximate according to learned examples.

For at least a rough (but quick) comparison between the behavior of a set of
parsers in a corpus, comparing two grammars is easy at least with respect to re-
call, that is, ratio of fully-parsed sentences (regardless of precision) to the total of
sentences. As by design many data-driven methods always produce at least an anal-
ysis, this is not a fair comparison. On the other hand, evaluating precision (the
correctness of analysis) is more labor-intensive.

Fortunately, by using a validator, the scenarios become somewhat closer. Absurd
analysis are detected, and thus there is a filter for guaranteeing at least minimum
quality. Thus, it is possible to consider the recall of a robust disambiguation parser
as the ratio of errorless (that is, non detected as invalid) parsed sentences to the
total.

By using this approach on the three documents subsample of the O&GC, we
find out that, out of 203 sentences, ESG fully parses 85% out of them, ERG, 63%.
Finally, for UDPipe, 60% of the sentences were not found invalid by the ontology.
Using the ud-theory-and-svalidation (see Section[2.3.2)), only 43% are considered

49

valid. B inspection we have found important false positives, which confirms results
from Chapter |3| of a considerable high false positive rate. However, these results also
suggest a higher false negative rate. That is, it is possible that even more sentences
are wrong. This rough analysis suggests that there may be a case for well-developed
grammars in comparison to data-driven parses; at least that grammars are not triv-
ially worse than data-driven robust disambiguation methods. Of course, any serious
conclusion on this issue can only be settled by more controlled scenarios. A validator
was useful in this case for producing estimates for an otherwise incommensurable

use case in practical decision-making in industry.

20

Chapter 5

Conclusion

5.1 Discussion

In this work, we presented an OWL-DL ontology for the Universal Dependencies
(UD) standard. This ontology covers the universal guidelines. As a consequence,
it is valid for every UD treebank, regardless of language[] We presented its char-
acteristics and argued for its utility in different contexts. One possible application
is using the ontology to create a validation method for finding errors in treebanks,
regardless of the data origin: manual annotation, automatic annotation, automatic
conversion from other formats, or a combination of these methods. This includes
post-processing parser output, although the time cost of consistency checking makes
it likely unattractive for an end-user. A different application is enriching treebank
querying, although we did not explore this here in detail.

We evaluated our validation method in a task of classifying automatically pro-
duced syntactic analyses as correct or incorrect, as a proxy to the task of classifying
analyses as valid or invalid. We showed that for many languages it finds incorrect
sentences with high precision, but not high recall. This is expected, as the methods
tries to capture only syntactic invalidities, not to classify any syntactic analysis as
correct or incorrect. By inspecting false positives, we find excessive restrictions in
our ontology (for instance, due to ellipsis, a harder to capture phenomenon), real er-
rors in treebanks, and imprecisions on the guidelines. This suggests that inspecting
treebanks with our ontology indeed provides a list of sentences with high probabil-
ity of being wrong. Besides, building and using an ontology may reveal problems
in the natural language documentation, raising imprecisions, simplified cases and

inconsistencies in the guidelines.

LOf course, specific treebanks may end up violating universal guidelines on purpose. This may
happen either with a specific guideline, or simply in the data, without any documentation of this
annotation decision. However, from the point of view of the UD project, this would be an error.
Besides, violating the universal guidelines is not the same as making additional specifications,
which is precisely the goal of having specific guidelines.

51

An advantage of using an ontology for this task is that errors are found by logical
reasoning. This implies that it is theoretically possible to generate some explanation
of this process, such as by tracing the proof. However, in practice implemented
methods in available libraries use less detailed methods for explanation, such as
Hitting Set Tree methods, which only show which axioms entail the conclusion.
Such an explanation can be confusing in practice, even for users experienced in
OWL, and it is thus necessary to use better methods (HORRIDGE], [2011, chapter
12). In this work, we have found confusing explanations, but were still able to
understand it due to limited number of axioms in the ontology. Unfortunately, an
end user is probably less used to OWL or formal logic, so better explanations should
be given in order to deploy the system in practice.

We have also contextualized our work with other methods for maintaining and
improving treebanks. Querying is a central concept in interacting with treebanks
and can be improved by ontologies, but there are other reliable methods as well,
with different strong points. This suggests that multiple methods should be used
in a project, in order to improve the quality of the datasets. Furthermore, our
work is related to the Semantic Web community, which is actively interested in
developing ontologies for NLP. Some works have already successfully used ontologies

for interoperability of tools and datasets, and for finding errors in data.

5.2 Future Work

Creating large treebanks is usually motivated by having examples for evaluating
systems and training machine-learning-based methods. Examples encode informa-
tion that is implicit, and many times not entirely clear in the absence of data. On
the other hand, syntactic formalisms may be over-inclusive, in ways that not every
possible way of annotating data is meaningful or acceptable on linguistic grounds.
This points out that both data-driven and declarative methods have uses in gener-
ating, manipulating and using linguistic data. While here we explored an ontology,
a declarative specification, it is still an open problem to combine this ontology with
the plentiful of data existing in the UD project.

One approach for this combination would be using symbolic machine learning
methods for revising or extending the specification from data. In practice this would
depend on the existence of sufficiently reliable data, but, as we have seen, there are
methods for improving datasets. As an ontology can be used to validate data, this
suggests a positive feedback loop, where an ontology could filter reliable data, which
would be used to extend its quality, improving its ability to find more reliable data.

Another extension is using a probabilistic ontology, where axioms could be

weighted in order to represent degrees of certainty on the constraints. Instead of a

52

binary valid or invalid validation, this would allow ranking sentences according to
a continuous metric of invalidity. This could prove useful for a treebank maintainer
for prioritizing which sentences to correct first.

Other representations for a formal specification could be explored. While OWL-
DL (or, more precisely, its underlying description logic SROZQ) was indeed suffi-
ciently expressive for representing UD constraints, its worst-case complexity is high,
and consistency checking for long sentences (e.g. of at least 100 words) can take
a long time to complete. While the usual sentence is much shorter than this, for
specific corpora this may become problematic. Thus, discovering whether the same
restrictions could be implemented in a logical language with reduced complexity
could prove to be useful. A possible solution to this problem is not using consis-
tency tests for validation, which require theorem-proving and are thus expensive.
An alternative which could be investigated is using model checking, that is, consid-
ering the representation of the sentence as a model and verifying if the ontology is
satisfied in the model (HALPERN and VARDI, [1991)). This conforms to our task
and has the advantage that it can be computationally cheaper. Unfortunately, there
are no out-of-the-shelf model checkers for description logics available, much less for
OWL2-DL.

A different approach to testing conformance to a specification, instead of satisfi-
ability or calculating probabilities, is using inconsistency measures. There are some
logic-based approaches for measuring inconsistency in knowledge bases, increasing
the granularity, instead of a binary classification in consistent or inconsnstence. An
example of this line of research is the work of HUNTER and KONIECZNY] (2008).

As we have discussed before, improving explanations of reasoning is an important
line of work to using an ontology in real applications. One method to do so would
be using better justification-based explanations (HORRIDGE et al., 2008), which
provide more concise explanations. Another possibility is using deductive calculi
(such as natural deduction or sequent calculus methods) for generating proof trees
(RADEMAKER], 2010).

Finally, we believe that it could be greatly useful to maintain an official UD
ontology, by the same community effort used to maintain natural language guide-
lines. The ontology and the natural language documentation could be more tightly
integrated, allowing easy comparison between the two, removing ambiguity in the
documentation (by a formal model), and automating testing of guidelines sentence

examples and treebanks.

93

Appendix A

Ontology

Here we present our ontology, the one used in our experiment. Thus, according
to our classification in Section [2.3.2] here we have system, ud-annotation-model,

ud-structure, and ud-theory.

Prefix: : <http://www.semanticweb.org/gppassos/ontologies
/2018 /2/merged—ud—theory+#>

Prefix: p: <#>

Prefix: owl: <http://www.w3.0rg/2002/07/owl#>

Prefix: rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>

Prefix: xml: <http://www.w3.org/XML/1998 /namespace>

Prefix: xsd: <http://www.w3.org /2001 /XMLSchema#>

Prefix: rdfs: <http://www.w3.o0rg/2000/01/rdf—schema#>

Prefix: ud—theory: <http://www.semanticweb.org/gppassos/
ontologies /2017/10/ud—theory+#>

Prefix: olia_ system: <http://purl.org/olia/system.owl#>

Prefix: ud—annotation—model: <http://www.semanticweb.org/

gppassos/ontologies /2017/7/ud—annotation —model#>

Ontology: <http://www.semanticweb.org/gppassos/ontologies
/2018 /2 /merged—ud—theory >

Annotations:
rdfs :comment "Annotation model for Universal

Dependencies 2.0.",

o4

owl:versionInfo "TODO: LinguisticAnnotation disjoint",
owl:versionInfo "
2008—01—13 created
2010—04—06 removed deprecated Category (equiv
UnitOfAnnotation) category
2010—04—14 added AnnotationProcess (cf. DCR
process directory)
2011—-07—15 replaced base url by purl
2011—-07—27 added hasTagMatching with full support
for XSLT—style regular expressions
2013—06—27 added ISOcat reference for

LinguisticAnnotation

Christian Chiarcos, chiarcos@Quni—potsdam .de

n
Y

rdfs :comment "OLiA core concepts for linguistic

annotations."
AnnotationProperty: ud—annotation—model:redundantWith
Annotations:
rdfs:comment "In order to annotate detected
redundancies."
Annotations:

rdfs :comment "In order to annotate detected

redundancies."

AnnotationProperty: owl:versionInfo

AnnotationProperty: rdfs:isDefinedBy

AnnotationProperty: ud—theory: verify

Annotations:

95

rdfs :comment "Marks properties and annotation that
should ve revised or otherwise verified in some
way . "
Annotations:
rdfs :comment "Marks properties and annotation that
should ve revised or otherwise verified in some

way . "

AnnotationProperty: ud—annotation—model: worldAssumption
Annotations:
rdfs :comment "Informally: Can this axiom be used
with open world assumption or is it necessary to
use closed world assumption in order to work as
expected?"
Annotations:
rdfs :comment "Informally: Can this axiom be used
with open world assumption or is it necessary to

use closed world assumption in order to work as

expected?"

AnnotationProperty: owl: qualifiedCardinality

AnnotationProperty: rdfs:label

AnnotationProperty: rdfs:comment

Datatype: rdf:PlainLiteral

Datatype: xsd:string

o6

Datatype: xsd:nonNegativelnteger

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: dislocated >

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:cc>

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: clf >

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: conj>

SubPropertyOf:

ud—annotation—model:isDepOf
Disjoint With :

Annotations: rdfs:comment "\"A conjunct is the
relation between two elements connected by a
coordinating conjunction, such as and, or,
etc. We treat conjunctions asymmetrically:
The head of the relation is the first

conjunct and all the other conjuncts depend

o7

on it via the conj relation.\"
(http://universaldependencies.org/u/dep/conj.html)"
<http://persistence.uni—leipzig.org/nlp2rdf/

ontologies /nif—core#nextWordTrans>

ObjectProperty: ud—annotation—model: prevWordTrans

InverseOf:
<http://persistence.uni—leipzig.org/nlp2rdf/

ontologies/nif—core#nextWordTrans>

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: flat >

SubPropertyOf:

ud—annotation—model : isDepOf
Disjoint With :

Annotations: rdfs:comment "\"Structures analyzed
with fixed and flat are headless by
definition and are consistently annotated by
attaching all non—first elements to the first
and only allowing outgoing dependents from

the first element.\"
(http://universaldependencies.org/u/overview/specific—
syntax . html#multiword—expressions)"

<http://persistence.uni—leipzig.org/nlp2rdf/

ontologies /nif —core#nextWordTrans>
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: expl>
SubPropertyOf:

o8

ud—annotation—model :isDepOf

ObjectProperty: <http://persistence.uni—leipzig.org/nlp2rdf/

ontologies/nif—core#nextWordTrans>

Annotations:
rdfs:comment "\"WI nextWordTrans W2\" means that W1
comes before (in the sentence) than W2, that is,
W1 is to the left of W2."

Disjoint With :

Annotations: rdfs:comment "\"An appos is a
nominal phrase that follows the head of
another nominal phrase and stands in a co—

reference or other equivalence relation to it

.\H

(http://universaldependencies.org/u/overview /nominal—syntax

~html)

\"An appositional modifier of a noun is a nominal
immediately following the first noun that serves to
define , modify, name, or describe that noun. It includes
parenthesized examples, as well as defining abbreviations

in one of these structures.\"

(http://universaldependencies.org/u/dep/appos.html)"
<http://www.semanticweb.org/gppassos/ontologies
/2017 /7/ud—annotation —model#isDepOf:appos >,

Annotations: rdfs:comment "\"Structures analyzed
with fixed and flat are headless by
definition and are consistently annotated by
attaching all non—first elements to the first
and only allowing outgoing dependents from

the first element.\"

99

(http://universaldependencies.org/u/overview/specific—
syntax . html#multiword—expressions)"
<http://www.semanticweb.org/gppassos/ontologies
/2017/7/ud—annotation —model#isDepOf: fixed >,

Annotations: rdfs:comment "\"A conjunct is the
relation between two elements connected by a
coordinating conjunction, such as and, or,
etc. We treat conjunctions asymmetrically:
The head of the relation is the first

conjunct and all the other conjuncts depend

on it via the conj relation.\"

(http://universaldependencies.org/u/dep/conj.html)"
<http://www.semanticweb.org/gppassos/ontologies
/2017 /7/ud—annotation —model#isDepOf: conj >,

Annotations: rdfs:comment "\"Structures analyzed
with fixed and flat are headless by
definition and are consistently annotated by
attaching all non—first elements to the first
and only allowing outgoing dependents from

the first element.\"

(http://universaldependencies.org/u/overview/specific—
syntax.html#multiword—expressions)"
<http://www.semanticweb.org/gppassos/ontologies
/2017 /7/ud—annotation —model#isDepOf: flat >

InverseOf:
ud—annotation—model : prevWordTrans

ObjectProperty: ud—annotation—model: nextWord

Domain :
ud—annotation—model : WordUnit

Range:

60

ud—annotation—model : WordUnit

ObjectProperty: ud—annotation—model:inSentence

Characteristics:

Functional
InverseOf:
ud—annotation—model : hasWord
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf : nmod>
SubPropertyOf:
ud—annotation—model :isDepOf
ObjectProperty: ud—annotation—model:isTargetOf
EquivalentTo:
inverse (olia_ system:hasTarget)
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation —model#isDepOf: discourse >
SubPropertyOf:
ud—annotation—model :isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/

ontologies /2017/7/ud—annotation—model#isDepOf:iobj>

SubPropertyOf:

ud—annotation—model : isDepOf

61

ObjectProperty: ud—annotation—model: wordAfter

Domain :

ud—annotation—model : WordUnit

Range:

ud—annotation—model : WordUnit
InverseOf:
ud—annotation—model : wordBefore
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation —model#isDepOf : mark>
SubPropertyOf:
ud—annotation—model :isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:root>
SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: olia_ system:hasTarget
Annotations:
rdfs :comment "A Relation is a directed edge between

a source and a target concept."”"xsd:string

Domain :

olia system: Relation

Range:

olia_system:UnitOfAnnotation

62

ObjectProperty: inverse (olia system:hasTarget)

EquivalentTo:

ud—annotation—model:isTargetOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf : nummod>

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: case>

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: orphan>

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:appos>

SubPropertyOf:

ud—annotation—model : isDepOf
Disjoint With :

Annotations: rdfs:comment "\"An appos is a
nominal phrase that follows the head of
another nominal phrase and stands in a co—

reference or other equivalence relation to it

63

.\H

(http://universaldependencies.org/u/overview /nominal—syntax

~html)

\"An appositional modifier of a noun is a nominal
immediately following the first noun that serves to
define , modify, name, or describe that noun. It includes
parenthesized examples, as well as defining abbreviations

in one of these structures.\"
(http://universaldependencies.org/u/dep/appos.html)"
<http://persistence.uni—leipzig.org/nlp2rdf/
ontologies /nif —core#nextWordTrans>

ObjectProperty: ud—annotation—model:hasWord

Domain :

ud—annotation—model: SentenceUnit

Range:

ud—annotation—model : WordUnit
InverseOf:
ud—annotation—model:inSentence
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf : amod>
SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: punct>

SubPropertyOf:

64

ud—annotation—model :isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:dep>

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: ud—annotation—model:isSourceOf

EquivalentTo:

inverse (olia_system:hasSource)

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: vocative >

SubPropertyOf:

ud—annotation—model :isDepOf

ObjectProperty: ud—annotation—model: wordBefore

Annotations:
rdfs:comment "\"W1 wordBefore W2\" means that W1
comes before (in the sentence) than W2, that is,
W1 is to the left of W2."

InverseOf:
ud—annotation—model : wordAfter
ObjectProperty: <http://www.semanticweb.org/gppassos/

ontologies /2017/7/ud—annotation—model#isDepOf: nsubj>

SubPropertyOf:

ud—annotation—model : isDepOf

65

ObjectProperty: <http://persistence.uni—leipzig.org/nlp2rdf/
ontologies /nif —core#nextWord>

SubPropertyOf:
<http://persistence.uni—leipzig.org/nlp2rdf/

ontologies /nif—core#nextWordTrans>

Characteristics:

Functional

InverseOf:

ud—annotation—model : prevWord

ObjectProperty: olia_ system:hasFeature

Annotations:

rdfs:comment "A UnitOfAnnotation or a Relation can
carry Features that express annotations attached
to them. By convention, (tags that represent)
Features can be linked with Feature individuals ,
as well. Because of this reflexivity , a predicate
like hasDegree(positive) allows to retrieve the
individual positive as well. (This is necessary
if positive represents a tag on its own, rather
than being a property of a complex tag.)"”"xsd:

string

Domain :

olia_ system: LinguisticAnnotation

Range:

olia system:Feature

InverseOf:

inverse (olia_system:hasFeature)

66

ObjectProperty: inverse (olia system:hasFeature)

InverseOf:

olia system:hasFeature

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: ccomp>

SubPropertyOf:

ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:obj>

SubPropertyOf:

ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: det>
SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:obl>
SubPropertyOf:
ud—annotation—model : isDepOf

ObjectProperty: ud—annotation—model:prevWord

SubPropertyOf:

ud—annotation—model : prevWordTrans

67

InverseOf:
<http://persistence.uni—leipzig.org/nlp2rdf/
ontologies /nif —core#nextWord>

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: aux>
SubPropertyOf:
ud—annotation—model :isDepOf
ObjectProperty: ud—annotation—model: hasUniversalPartOfSpeech

SubPropertyOf:

olia system:hasFeature

Characteristics:

Functional

Domain :

ud—annotation—model : WordUnit
Range:
ud—annotation—model: UniversalPartOfSpeech
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:advmod>
SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: acl>

SubPropertyOf:

68

ud—annotation—model :isDepOf

ObjectProperty: olia_ system:hasSource
Annotations:
rdfs :comment "A Relation is a directed edge between

a source and a target concept."”"xsd:string

Domain :

olia system: Relation
Range:
olia_system:UnitOfAnnotation
ObjectProperty: inverse (olia system:hasSource)
EquivalentTo:
ud—annotation—model:isSourceOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: parataxis >
SubPropertyOf:
ud—annotation—model :isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/

ontologies /2017/7/ud—annotation—model#isDepOf: fixed >

SubPropertyOf:

ud—annotation—model :isDepOf
Disjoint With :

Annotations: rdfs:comment "\"Structures analyzed
with fixed and flat are headless by

69

definition and are consistently annotated by
attaching all non—first elements to the first
and only allowing outgoing dependents from

the first element.\"

(http://universaldependencies.org/u/overview/specific—
syntax . html#multiword—expressions)"
<http:// persistence.uni—leipzig.org/nlp2rdf/

ontologies /nif—core#nextWordTrans>

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: list >

SubPropertyOf:

ud—annotation—model : isDepOf

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf:advcl>

SubPropertyOf:

ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: reparandum>
SubPropertyOf:
ud—annotation—model:isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/

ontologies /2017/7/ud—annotation—model#isDepOf: compound>

SubPropertyOf:

ud—annotation—model : isDepOf

70

ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: csubj>

SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: cop>
SubPropertyOf:
ud—annotation—model : isDepOf
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf: goeswith >
SubPropertyOf:
ud—annotation—model : isDepOf

ObjectProperty: ud—annotation—model:isDepOf

Domain :

ud—annotation—model : WordUnit
Range:
ud—annotation—model : WordUnit
ObjectProperty: <http://www.semanticweb.org/gppassos/
ontologies /2017/7/ud—annotation—model#isDepOf : xcomp>
SubPropertyOf:
ud—annotation—model : isDepOf

DataProperty: olia system:hasTier

71

Annotations:
rdfs :comment "Assigns a linguistic annotation a
string representation of the annotation layer (\"
tier\", \"level\") where it is to be found, e.g.,
\"pos\" for Part of Speech annotation, \"gloss\"

I ~ ~

for linguistic glosses, etc."”"xsd:string
Domain :

olia_system: LinguisticAnnotation

DataProperty: olia system:hasTagMatching

Annotations:

rdfs :comment "hasTagMatching allows to provide
regular expressions as those used in XSLT and
XPath, see http://www.w3.org/TR/xquery—operators
/#func—matches"”"xsd:string ,

rdfs :comment "hasTagMatching is a subproperty of
hasTag, so that results can be retrieved if the
regular expression match is requested, but an

exact value with reserved characters is defined

SubPropertyOf:

olia_system :hasTag

DataProperty: olia_ system:hasTagEndingWith

Annotations:
rdfs :comment "As opposed to hasTag proper, the
string representation defines the final
subsequence of a concrete annotation.
The respective linguistic annotation then applies to every
element whose annotation (tag) ends with this substring

"N~~~

xsd:string
SubPropertyOf:

72

olia system :hasTag

DataProperty: olia_ system:hasTagContaining

Annotations:
rdfs :comment "As opposed to hasTag proper, the
string representation defines a substring of a
concrete annotation.
The respective linguistic annotation then applies to every

element whose annotation (tag) contains this substring

Mo xsd i string

SubPropertyOf:
olia system :hasTag

DataProperty: olia system:hasTagStartingWith

Annotations:
rdfs :comment "As opposed to hasTag proper, the

string representation specifies only the
beginning of a concrete annotation.
The respective linguistic annotation then applies to every

element whose annotation (tag) startsWith this substring

Mo xsdrstring

SubPropertyOf:
olia system :hasTag

DataProperty: olia system:hasTag

Annotations:
rdfs :comment "Assigns a Linguistic Annotation a

String representation, e.g., a particular Part of
Speech tag, the respective abbreviation of the

grammatical cases used in an annotation scheme,

etc.

73

implicit semantics: hasTag is to be used if the tag is equal
to the string value, otherwise use hasTagContaining,
hasTagStartingWith , hasTagEndingWith"""xsd:string

Domain :
olia system: LinguisticAnnotation
Class: ud—annotation—model: Definite
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model: EvidentNfh

EquivalentTo:

{ud—annotation—model: evidentNfh }

SubClassOf:

ud—annotation—model: Evident
DisjointWith :
ud—annotation—model : EvidentFh
Class: ud—annotation—model: discourse
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: Ellipsis
Annotations:

rdfs:comment "\"The UD approach to ellipsis can be

summarized as follows:

74

1. If the elided element has no overt dependents, we do
nothing .

2. If the elided element has overt dependents, we promote
one of these to take the role of the head.

3. If the elided element is a predicate and the promoted
element a core argument, we use the orphan relation when

attaching other non—functional dependents to the promoted

head.\"

(http://universaldependencies.org/u/overview/specific —syntax

~html#ellipsis)"
SubClassOf:

ud—annotation—model : Concept

Class: ud—annotation—model : CCONJ CLASS

EquivalentTo:
{ud—annotation—model : CCONJ}

SubClassOf:
ud—annotation—model: ClosedClass

Class: ud—annotation—model: ComplexClause

SubClassOf:
ud—annotation—model: Clause

Class: olia system:AnnotationProcess

Annotations:
owl:versionInfo "DCR annotation and editing
operations ignored, e.g., add first vowel http
://www.isocat .org/datcat /DC—2199

n
Y

75

owl:versionInfo "categories for annotation and
editing operations added to account for the \"
Processes\" profile in the DCR"

Class: ud—annotation—model: VerbFormInf

EquivalentTo:

{ud—annotation—model: verbFormInf}

SubClassOf:

ud—annotation—model : VerbForm

Class: ud—annotation—model : NumType
SubClassOf:

Annotations: rdfs:comment "\"From the syntactic
point of view, some numtypes behave like
adjectives and some behave like adverbs. We
tag them ADJ and ADV respectively. Thus the
NumType feature applies to several different

parts of speech:

— NUM: cardinal numerals

— DET: quantifiers

— ADJ: definite adjectival , e.g. ordinal numerals
— ADV: adverbial (e.g. ordinal and multiplicative)

numerals, both definite and pronominal\"

(http://universaldependencies.org/u/feat /NumType. html)"
inverse (olia_ system:hasFeature) only (ud—
annotation—model: hasUniversalPartOfSpeech some
((ud—annotation—model :ADJ CLASS or ud—annotation
—model :ADV_CLASS or ud—annotation—model:
DET CLASS or ud—annotation—model :NUM_CLASS)))

Y

ud—annotation—model: MorphologicalFeature

76

Class: ud—annotation—model: clf

SubClassOf:

ud—annotation—model : DependencyRelation

Class: ud—annotation—model:aux

SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model : MoodImp

EquivalentTo:

{ud—annotation—model : moodImp}
SubClassOf:

ud—annotation—model : Mood

Class: ud—annotation—model: Animacy

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: Degree
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model : NumberPauc

EquivalentTo:

{ud—annotation—model: numberPauc}

77

SubClassOf:

ud—annotation—model : Number

Class: ud—annotation—model: VoiceAntip

EquivalentTo:

{ud—annotation—model: voiceAntip }

SubClassOf:

ud—annotation—model: Voice

Class: ud—annotation—model: OtherUniversalPartOfSpeech

Annotations:
rdfs:label "Other"

SubClassOf:

ud—annotation—model: UniversalPartOfSpeech
DisjointUnionOf:

ud—annotation—model :PUNCT CLASS, ud—annotation—model
:SYM_CLASS, ud—annotation—model : X CLASS

Class: <http://www.semanticweb.org/gppassos/ontologies
/2017/7/ud—annotation—model#nsubj : pass>
SubClassOf:
ud—annotation—model : nsubj
Class: ud—annotation—model: VerbFormSup
EquivalentTo:

{ud—annotation—model: verbFormSup}

78

SubClassOf:

ud—annotation —model : VerbForm

Class: ud—annotation—model: Reflex

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model :SYM CLASS

EquivalentTo:
{ud—annotation—model :SYM}

SubClassOf:
ud—annotation—model: OtherUniversalPartOfSpeech

Class: ud—annotation—model: UniversalPartOfSpeech

SubClassOf:
ud—annotation—model : PartOfSpeech ,
olia_system:hasTier value "UPOSTAG"

DisjointUnionOf:
ud—annotation—model: ClosedClass , ud—annotation—model

:OpenClass, ud—annotation—model:
OtherUniversalPartOfSpeech

Class: ud—annotation—model: ModifierWords
Annotations:
rdfs :comment "Perhaps this should be \"

ModifierExpression\"?

(Example: \"very quickly\" in \"John talked very quickly\",

where we have

79

advmod (quickly , very)
advmod (talked , quickly))"

SubClassOf:
ud—annotation—model: LinguisticStructure
Class: ud—annotation—model: Person4

EquivalentTo:

{ud—annotation—model: person4}
SubClassOf:
ud—annotation—model: Person
Class: ud—annotation—model : MoodDes

EquivalentTo:

{ud—annotation—model : moodDes}
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model: PronTypePrs

EquivalentTo:
{ud—annotation—model: pronTypePrs}

SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model: Foreign

SubClassOf:

ud—annotation—model: MorphologicalFeature

80

Class: ud—annotation—model:iob]
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model :DET CLASS

EquivalentTo:
{ud—annotation—model :DET}

SubClassOf:

ud—annotation—model: ClosedClass

Class: ud—annotation—model: cc

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: MorphologicalFeature

Annotations:

rdfs:comment "\"Features are additional pieces of

information about the word, its part of speech

and morphosyntactic properties. Every feature has

the form Name=Value and every word can have any

number of features, separated by the vertical bar

, as in Gender=Masc | Number=Sing .

We provide an inventory of features that are attested in

multiple corpora and it is thus desirable that they

are encoded in a uniform way. The list is

certainly

not exhaustive and later versions of the standard may

include new features or values found in new

languages , corpora or tagsets.\"

81

(http://universaldependencies.org/u/overview /morphology .
html)"

SubClassOf:
olia system: Feature,
olia system:hasTier value "FEATS"

DisjointUnionOf:

ud—annotation—model : Abbr, ud—annotation—model:
Animacy, ud—annotation—model: Aspect, ud—
annotation—model: Case, ud—annotation—model:
Definite , ud—annotation—model: Degree, ud—
annotation—model : Evident , ud—annotation—model:
Foreign , ud—annotation—model: Gender, ud—
annotation—model : Mood, ud—annotation—model:
NumType, ud—annotation—model: Number, ud—
annotation—model: Person, ud—annotation—model:
Polarity , ud—annotation—model: Polite , ud—
annotation—model: Poss, ud—annotation—model:
PronType, ud—annotation—model: Reflex , ud—
annotation—model: Tense, ud—annotation—model:

VerbForm, ud—annotation—model: Voice

Class: ud—annotation—model: punct
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: Polarity
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model: ClosedClass

SubClassOf:

82

ud—annotation—model: UniversalPartOfSpeech

DisjointUnionOf:
ud—annotation—model :ADP_CLASS, ud—annotation—model:
AUX CLASS, ud—annotation—model :CCONJ_ CLASS, ud—
annotation—model :DET CLASS, ud—annotation—model:
NUM_CLASS, ud—annotation—model :PART CLASS, ud-—
annotation—model :PRON CLASS, ud—annotation—model:

SCONJ _CLASS
Class: ud—annotation—model: Person0

EquivalentTo:
{ud—annotation—model: person0}

SubClassOf:
ud—annotation —model : Person
Class: ud—annotation—model: Personl

EquivalentTo:
{ud—annotation—model: personl}

SubClassOf:
ud—annotation—model: Person

Class: ud—annotation—model: Person?

EquivalentTo:
{ud—annotation—model: person2}

SubClassOf:
ud—annotation—model: Person
Class: ud—annotation—model: Person3

83

EquivalentTo:

{ud—annotation—model: person3}

SubClassOf:

ud—annotation—model: Person

Class: owl:Thing

Class: <http://www.semanticweb.org/gppassos/ontologies

/2017/7/ud—annotation—model#aux: pass>

SubClassOf:

ud—annotation—model: aux

Class: ud—annotation—model: DefiniteCons

EquivalentTo:

{ud—annotation—model: definiteCons}

SubClassOf:

ud—annotation—model: Definite

Class: ud—annotation—model : EvidentFh

EquivalentTo:

{ud—annotation—model: evidentFh}

SubClassOf:

ud—annotation—model : Evident

DisjointWith :

ud—annotation—model : EvidentNfh

84

Class: ud—annotation —model : Number

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: VerbFormVnoun

EquivalentTo:

{ud—annotation—model: verbFormVnoun}

SubClassOf:

ud—annotation—model: VerbForm

Class: ud—annotation—model: ForeignYes

EquivalentTo:

{ud—annotation—model: foreignYes}

SubClassOf:

ud—annotation—model: Foreign

Class: ud—annotation—model : Numberlnv

EquivalentTo:

{ud—annotation—model : numberlnv}

SubClassOf:

ud—annotation —model : Number

Class: ud—annotation—model: NonverbalClause

Annotations:
rdfs:comment "\"A nonverbal predicate (nominal or
adjective) takes a single argument with the nsubj

relation. The core argument relation is the same

85

regardless of whether there is an overt copula

linking the predicate to the subject or not.\"

(http://universaldependencies.org/u/overview /simple—syntax.

html#nonverbal—clauses)"

EquivalentTo:
ud—annotation—model : Clause

and (not (ud—annotation—model: VerbalClause))

SubClassOf:

ud—annotation—model: Clause

Class: ud—annotation—model : VerbForm

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: PartOfSpeech

Annotations:
rdfs:comment "\"The list of universal POS tags is a

fixed list containing 17 tags.

It is possible that some tags will not be used in some
languages. However, the list cannot be extended to
cover language—specific extensions. Instead , more
fine—grained classification of words can be achieved

via the use of features (see below).

Also, note that the CoNLL-U format allows an additional
POSTAG, taken from a language—specific (or corpus—
specific) tagset. Such language—specific POSTAGs have

their own data column and are not mixed with the

universal POS tags.

The universal POS tags consist of uppercase English
letters [A—Z| only. Just one tag per word is expected

86

, and it should not be empty. (Use the X tag instead
of underscore if no other tag is appropriate.)\"
(http://universaldependencies.org/u/overview /morphology .

html#part—of—speech—tags)"

EquivalentTo:
(ud—annotation—model: LanguageSpecificPartOfSpeech or

ud—annotation—model: UniversalPartOfSpeech)

SubClassOf:

olia system: Feature

Class: ud—annotation —model : nummod
SubClassOf:

Annotations: rdfs:comment "\"Marked as nummod
but not NUM

DEBUGGING TEST. NONZERO HITS DOES NOT MEAN THE DATA IS
INVALID. If a word is marked as a numeric modifier, it
should be marked as a numeral (POS).

Search expression: INUM <nummod \"

(http://universaldependencies.org/svalidation .html#marked—
as—nummod—but—not—num)"
olia system:hasTarget some
(ud—annotation—model : Word
and (ud—annotation—model:
hasUniversalPartOfSpeech some ud—annotation—
model :NUM_CLASS)) ,

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: PronTypeRcp
EquivalentTo:

87

{ud—annotation—model: pronTypeRcp}
SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model: mark
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: DefiniteCom

EquivalentTo:

{ud—annotation—model: definiteCom }
SubClassOf:
ud—annotation—model: Definite
Class: ud—annotation—model: PoliteElev

EquivalentTo:

{ud—annotation—model: politeElev}
SubClassOf:
ud—annotation—model: Polite
Class: ud—annotation—model :NUM_ CLASS

EquivalentTo:
{ud—annotation—model :NUM}

SubClassOf:

ud—annotation—model: ClosedClass

88

Class: ud—annotation—model: PoliteForm

EquivalentTo:

{ud—annotation—model: politeForm }

SubClassOf:

ud—annotation—model: Polite

Class: ud—annotation—model: PronTypeExc

EquivalentTo:
{ud—annotation—model: pronTypeExc}

SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model: WordUnit

Annotations:

rdfs:comment "\"The UD annotation is based on a
lexicalist view of syntax, which means that
dependency relations hold between words. Hence,
morphological features are encoded as properties
of words and there is no attempt at segmenting
words into morphemes. However, it is important to
note that the basic units of annotation are
syntactic words (not phonological or orthographic
words) , which means that we systematically want
to split off clitics , as in Spanish damelo = da
me lo, and undo contractions, as in French au = a
le. We refer to such cases as multiword tokens
because a single orthographic token corresponds
to multiple (syntactic) words. In exceptional
cases , it may be mnecessary to go in the other
direction , and combine several orthographic
tokens into a single syntactic word. Starting

from v2 of the UD guidelines , such multitoken

89

words are allowed for a restricted class of
phenomena, such as numerical expressions like 20
000 and abbreviations like e. g., as long as
these phenomena are approved and clearly
specified in the language—specific documentation.
Note, however, that this technique should not be
generalized to multiword expressions like in
spite of and by and large (let alone to more
flexible multiword expressions like compounds or
particle verbs), which should instead be
annotated using special dependency relations.\"

(http://universaldependencies.org/u/overview/

tokenization.html)"

SubClassOf:
olia system:UnitOfAnnotation ,
ud—annotation—model:isTargetOf exactly 1 ud—
annotation—model: DependencyRelation ,
ud—annotation—model:inSentence exactly 1 ud—

annotation—model: SentenceUnit

Class: ud—annotation—model : ADJ CLASS

EquivalentTo:
{ud—annotation—model : ADJ}

SubClassOf:

ud—annotation—model: OpenClass

Class: ud—annotation—model :PUNCT CLASS

EquivalentTo:
{ud—annotation—model :PUNCT}

SubClassOf:
ud—annotation—model: OtherUniversalPartOfSpeech

90

Class: ud—annotation—model: AspectHab

EquivalentTo:

{ud—annotation—model: aspectHab}
SubClassOf:
ud—annotation—model : Aspect
Class: ud—annotation—model : MoodOpt

EquivalentTo:

{ud—annotation—model : moodOpt }
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model: PronTypeDem

EquivalentTo:

{ud—annotation—model: pronTypeDem }
SubClassOf:
ud—annotation—model : PronType
Class: ud—annotation—model: TensePqp

EquivalentTo:

{ud—annotation—model: tensePqp}
SubClassOf:
ud—annotation—model: Tense

Class: ud—annotation—model :PRON CLASS

91

EquivalentTo:
{ud—annotation—model :PRON}

SubClassOf:
ud—annotation—model: ClosedClass

Class: ud—annotation—model: Clause

SubClassOf:
ud—annotation—model: LinguisticStructure

DisjointUnionOf:
ud—annotation—model : ComplexClause , ud—annotation—
model: SimpleClause
DisjointUnionOf:
ud—annotation—model : NonverbalClause , ud—annotation—
model: VerbalClause

Class: ud—annotation—model :NOUN CLASS

EquivalentTo:
{ud—annotation —model :NOUN}

SubClassOf:
ud—annotation—model: OpenClass

Class: ud—annotation—model : VerbFormConv

EquivalentTo:
{ud—annotation—model: verbFormConv}

SubClassOf:

ud—annotation—model: VerbForm

92

Class: ud—annotation —model:amod
Annotations:
rdfs:comment "\"An amod is an adjective modifying

the head of a nominal phrase.\"

(http://universaldependencies.org/u/overview /nominal—

syntax . html#modifier —dependents)"
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: PronTypeRel

EquivalentTo:
{ud—annotation—model: pronTypeRel}

SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model: csubj
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: CaseErg

EquivalentTo:

{ud—annotation—model: caseErg}
SubClassOf:
ud—annotation—model: Case

Class: ud—annotation—model:dep

93

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: Tenselmp

EquivalentTo:

{ud—annotation—model: tenselmp }

SubClassOf:

ud—annotation—model: Tense

Class: ud—annotation—model: det

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model : MoodPot

EquivalentTo:

{ud—annotation—model : moodPot }

SubClassOf:

ud—annotation —model : Mood

Class: ud—theory: NonverbalClauseHead

Annotations:
rdfs:comment "\"A nonverbal predicate (nominal or
adjective) takes a single argument with the nsubj
relation. The core argument relation is the same
regardless of whether there is an overt copula

linking the predicate to the subject or not.\"

(http://universaldependencies.org/u/overview /simple—syntax.

html#nonverbal—clauses)"

94

EquivalentTo:
ud—annotation—model: ClauseHead
and (ud—annotation—model: hasUniversalPartOfSpeech
some (not (ud—annotation—model:VERB CLASS)))

SubClassOf:
ud—annotation—model:isSourceOf exactly 1 ud—
annotation—model: nsubj ,

ud—annotation—model : ClauseHead ,

Annotations: rdfs:comment "\"A nonverbal
predicate (nominal or adjective) takes a
single argument with the nsubj relation. The
core argument relation is the same regardless
of whether there is an overt copula linking

the predicate to the subject or not.\"
(http://universaldependencies.org/u/overview /simple—syntax .
html#nonverbal—clauses)"
<http://org.semanticweb.owlapi/error#Error3>
Class: ud—annotation—model: Voice
SubClassOf:
ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: VoiceRcp

EquivalentTo:

{ud—annotation—model: voiceRecp}

SubClassOf:

ud—annotation—model: Voice

Class: ud—annotation—model: cop

95

SubClassOf:

Annotations: rdfs:comment "\"A cop (copula) is
the relation of a function word used to link
a subject to a nonverbal predicate. It is
often a verb but nonverbal copulas are also

frequent in the world’s languages. \"

(http://universaldependencies.org/u/dep/cop.html)"
olia_system:hasSource some ud—theory:
NonverbalClauseHead ,

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: AspectProsp

EquivalentTo:

{ud—annotation—model: aspectProsp}

SubClassOf:

ud—annotation—model: Aspect

Class: ud—annotation—model: PronType

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: PronTypeNeg

EquivalentTo:
{ud—annotation—model: pronTypeNeg}

SubClassOf:

ud—annotation—model : PronType

96

Class: ud—annotation—model: flat

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model:IntransitiveVerbalClause

SubClassOf:

ud—annotation—model: VerbalClause

Class: ud—annotation—model: OpenClass

SubClassOf:

ud—annotation—model: UniversalPartOfSpeech

DisjointUnionOf:
ud—annotation—model : ADJ CLASS, ud—annotation—model:
ADV_CLASS, ud—annotation—model :INTJ CLASS, ud—
annotation—model :NOUN CLASS, ud—annotation—model:
PROPN CLASS, ud—annotation—model :VERB CLASS

Class: ud—annotation—model : NumTypeFrac

EquivalentTo:

{ud—annotation—model : numTypeFrac}
SubClassOf:
ud—annotation—model : NumType
Class: ud—annotation—model: VoiceCau

EquivalentTo:

{ud—annotation—model: voiceCau}
SubClassOf:

97

ud—annotation—model: Voice

Class: ud—annotation—model: CaseAcc

EquivalentTo:

{ud—annotation—model: caseAcc}

SubClassOf:

ud—annotation—model : Case

Class: ud—annotation—model: Aspectlter

EquivalentTo:

{ud—annotation—model: aspectlter}

SubClassOf:

ud—annotation—model: Aspect

Class: olia_ system:Feature

Annotations:
rdfs :comment "UnitsOfAnnotation and Relations can be
described in a more detailed way by the features
that are attached to them, e.g., case, number,
or aspect. Features are, however, not subject to
further annotations (by means of hasFeature),
they are thus disjoint from Relations and

UnitsOfAnnotation."” " xsd:string
SubClassOf:
olia system: LinguisticAnnotation
Class: ud—annotation—model: CoordinatedFunctionWords
Annotations:

98

rdfs:comment "\"Head coordination is a syntactic
process that can apply to almost any word
category , including function words like
conjunctions and prepositions. In such cases, the
standard analysis of coordination is used and

function words have dependents.\"

(http://universaldependencies.org/u/overview /syntax.html#

coordinated —function—words)"

SubClassOf:

ud—annotation—model: Coordination

Class: ud—annotation—model: DefiniteDef

EquivalentTo:

{ud—annotation—model: definiteDef}
SubClassOf:
ud—annotation—model: Definite
Class: ud—annotation—model : MoodPrp

EquivalentTo:

{ud—annotation—model : moodPrp}
SubClassOf:
ud—annotation —model : Mood

Class: ud—annotation—model : AUX CLASS

EquivalentTo:
{ud—annotation—model :AUX}

SubClassOf:

ud—annotation—model: ClosedClass

99

Class: ud—annotation—model: CaseNom

EquivalentTo:

{ud—annotation—model: caseNom}

SubClassOf:

ud—annotation—model: Case

Class: ud—annotation—model: MultiwordExpression

SubClassOf:

ud—annotation—model: Concept

Class: ud—annotation—model: dislocated

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: Gender

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: DependencySubtree

Annotations:
rdfs :comment "Consists of WordUnit individuals.",
rdfs :comment "Given a WordUnit individual , the set
whose members are this individual and its

descendents in the DependencyRelation."

SubClassOf:

ud—annotation—model: Concept

100

Class: ud—annotation—model: obl

SubClassOf:

ud—annotation—model : DependencyRelation

Class: ud—annotation—model: Case

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: vocative

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: CaseAbs

EquivalentTo:

{ud—annotation—model: caseAbs}

SubClassOf:

ud—annotation—model : Case

Class: ud—annotation—model: obj

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: SimpleClause

SubClassOf:

ud—annotation—model: Clause

101

Class: ud—annotation—model : VERB CLASS

EquivalentTo:
{ud—annotation—model : VERB}

SubClassOf:
ud—annotation—model: OpenClass
Class: ud—annotation—model: Animacylnan

EquivalentTo:

{ud—annotation—model:animacylnan}
SubClassOf:
ud—annotation—model : Animacy
Class: ud—annotation—model : NumberDual

EquivalentTo:

{ud—annotation—model : numberDual }
SubClassOf:
ud—annotation—model : Number
Class: ud—annotation—model: PronTypeTot

EquivalentTo:
{ud—annotation—model: pronTypeTot }

SubClassOf:
ud—annotation—model : PronType
Class: ud—annotation—model : MoodCnd

102

EquivalentTo:

{ud—annotation—model : moodCnd}
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model : NumTypeOrd

EquivalentTo:
{ud—annotation—model : numTypeOrd}

SubClassOf:
ud—annotation—model : NumType
Class: ud—annotation—model: TensePast

EquivalentTo:

{ud—annotation—model: tensePast }
SubClassOf:
ud—annotation—model: Tense
Class: ud—annotation—model: TensePres

EquivalentTo:

{ud—annotation—model: tensePres}
SubClassOf:
ud—annotation—model: Tense
Class: ud—annotation—model :PROPN CLASS

EquivalentTo:
{ud—annotation—model :PROPN}

103

SubClassOf:

ud—annotation—model : OpenClass

Class: ud—annotation—model: PronTypeArt

EquivalentTo:
{ud—annotation—model: pronTypeArt}

SubClassOf:

ud—annotation—model : PronType
Class: ud—annotation—model: SentenceUnit
SubClassOf:
olia_system:UnitOfAnnotation ,
ud—annotation—model:hasWord exactly 1 (ud—annotation
—model:isTargetOf some ud—annotation—model:root)

Class: ud—annotation—model : NumberGrpl

EquivalentTo:

{ud—annotation—model : numberGrpl}

SubClassOf:
ud—annotation—model : Number
Class: ud—annotation—model:root
SubClassOf:
ud—annotation—model: DependencyRelation

Class: ud—annotation—model:ccomp

104

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: DegreeSup

EquivalentTo:

{ud—annotation—model: degreeSup}

SubClassOf:
ud—annotation—model: Degree

Class: ud—annotation—model: NominalHead

SubClassOf:
ud—annotation—model : Word ,

Annotations: ud—theory:verify "\"Ellipsis\"
should not be exactly a word, so this
modelling should be revised.",

rdfs:comment "\"A nominal head does
not take any core arguments but
may be associated with

different types of modifiers:\"

(http://universaldependencies.org/u/overview /nominal—syntax

~html)"
(ud—annotation—model: Ellipsis or (not (ud—annotation
—model:isSourceOf some (olia system:hasTarget

some ud—annotation—model: CoreArgument))))

Class: <http://www.semanticweb.org/gppassos/ontologies
/2017 /7 /ud—annotation —model#flat : name>
SubClassOf:

ud—annotation—model: flat

105

Class: ud—annotation-—model: Evident
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation —model: MoodInd

EquivalentTo:

{ud—annotation—model: moodInd}
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model : NumTypeRange

EquivalentTo:

{ud—annotation—model :numTypeRange}
SubClassOf:
ud—annotation—model : NumType
Class: ud—annotation—model: NumberGrpa

EquivalentTo:

{ud—annotation—model: numberGrpa}

SubClassOf:

ud—annotation —model : Number

Class: ud—annotation—model: CoreArgument

SubClassOf:

ud—annotation —model : ContentWord

106

Disjoint With :

ud—annotation—model: ObliqueModifier

Class: ud—annotation—model: MoodJus

EquivalentTo:

{ud—annotation—model : moodJus}

SubClassOf:

ud—annotation—model : Mood

Class: ud—annotation—model: MultiWordFunctionExpression

Annotations:

rdfs:comment "\"The word forms that make up a fixed
function—word multiword expression (MWE) are
connected using the special dependency relation
fixed. By convention, the first word is always
taken as the head, so when the multiword
expression is a functional element, the initial
word form will then superficially look like a

function word with dependents.\"

(http://universaldependencies.org/u/overview /syntax.html#

multiword—function —words)"

SubClassOf:

ud—annotation—model : MultiwordExpression

Class: ud—annotation—model :PART CLASS

EquivalentTo:
{ud—annotation—model :PART}

SubClassOf:

ud—annotation—model: ClosedClass

107

Class: ud—annotation—model: PronTypelnd

EquivalentTo:
{ud—annotation—model: pronTypelnd}

SubClassOf:
ud—annotation—model : PronType
Class: ud—annotation—model: AspectImp

EquivalentTo:

{ud—annotation—model: aspectImp }
SubClassOf:
ud—annotation—model : Aspect
Class: ud—annotation—model: PronTypeEmp

EquivalentTo:
{ud—annotation—model: pronTypeEmp}

SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model: acl
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: Voicelnv

EquivalentTo:

{ud—annotation—model: voicelnv}

108

SubClassOf:

ud—annotation—model: Voice

Class: ud—annotation—model : MoodNec

EquivalentTo:

{ud—annotation—model : moodNec}

SubClassOf:

ud—annotation—model : Mood

Class: ud—annotation—model: VerbFormFin

EquivalentTo:

{ud—annotation—model: verbFormFin }

SubClassOf:

ud—annotation—model : VerbForm

Class: ud—annotation—model: PronTypelnt

EquivalentTo:
{ud—annotation—model: pronTypelnt}

SubClassOf:

ud—annotation—model : PronType

Class: ud—annotation—model : NumTypeMult

EquivalentTo:
{ud—annotation—model : numTypeMult }

SubClassOf:

ud—annotation—model : NumType

109

Class: ud—annotation—model: DegreeCmp

EquivalentTo:

{ud—annotation—model: degreeCmp}
SubClassOf:

ud—annotation—model: Degree

Class: ud—annotation—model: Abbr
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model: TransitiveVerbalClause
SubClassOf:
ud—annotation—model: VerbalClause
Class: ud—annotation—model: fixed
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model : NumberPlur

EquivalentTo:

{ud—annotation—model : numberPlur}

SubClassOf:

ud—annotation—model : Number

Class: ud—annotation—model: appos

110

SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model:reparandum
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: PoliteHumb

EquivalentTo:

{ud—annotation—model: politeHumb}
SubClassOf:
ud—annotation—model: Polite

Class: ud—annotation—model :ADV_CLASS

EquivalentTo:
{ud—annotation —model :ADV}

SubClassOf:
ud—annotation—model : OpenClass
Class: ud—annotation—model: GenderNeut

EquivalentTo:

{ud—annotation—model: genderNeut }

SubClassOf:

ud—annotation—model : Gender

Class: ud—annotation—model: ContentWord

111

SubClassOf:

ud—annotation—model : Word

Class: ud—annotation—model : NumTypeSets

EquivalentTo:

{ud—annotation—model: numTypeSets}

SubClassOf:

ud—annotation—model : NumType

Class: ud—annotation—model : AnimacyNhum

EquivalentTo:

{ud—annotation—model : animacyNhum }

SubClassOf:

ud—annotation—model : Animacy
Class: ud—annotation—model: Sentence
SubClassOf:
ud—annotation—model: Concept
Class: ud—annotation—model : Lemma
Annotations:
rdfs :comment "\"The IEMMA field should contain the
canonical or base form of the word, such as the
form typically found in dictionaries.
If the lemma is not available, an underscore ('’ ’’) can

be used to indicate its absence.

112

The LEMMA field should not be used to encode features or
other similar properties of the word (use FEATS and
MISC instead; see format).\"

(http://universaldependencies.org/u/overview /morphology .
html#lemmas) "

SubClassOf:
olia_system:hasTier value "LEMMA",
olia system:Feature
Class: ud—annotation—model:orphan
SubClassOf:
ud—annotation—model: DependencyRelation

Class: ud—annotation—model :SCONJ CLASS

EquivalentTo:
{ud—annotation—model : SCONJ}

SubClassOf:
ud—annotation—model: ClosedClass
Class: ud—annotation—model: VerbFormPart

EquivalentTo:

{ud—annotation—model: verbFormPart }

SubClassOf:

ud—annotation—model: VerbForm

Class: ud—annotation—model:advmod

SubClassOf:

113

Annotations: rdfs:comment "\"An adverbial
modifier of a word is a (non—clausal) adverb
or adverbial phrase that serves to modify a

predicate or a modifier word.\"

http://universaldependencies.org/u/dep/advmod. html#advmod—

adverbial —modifier

However, there are some problems, such as function word
modifiers, as in the example in the documentation:
\"not every linguist\"

det (linguist ,every)

advmod (every ,not)

In this case, \"every\" is a function word, not a (content)

modifier word.

http://universaldependencies.org/u/overview /syntax.html#

function —word—modifiers

In this case, this axiom could be weakened by transforming
it into:
advmod SubClassOf hasSource some (Clause Head of
ModifierWord of FunctionWord)"
olia_ system:hasSource some
((ud—annotation—model: ClauseHead or ud—
annotation—model: ModifierWord)) ,

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: goeswith
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model : MoodQot
EquivalentTo:

114

{ud—annotation—model : moodQot }
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model: LanguageSpecificPartOfSpeech
SubClassOf:
olia_system:hasTier value "XPOSTAG",
ud—annotation—model: PartOfSpeech

Class: ud—annotation—model: PoliteInfm

EquivalentTo:

{ud—annotation—model: politeInfm }

SubClassOf:

ud—annotation—model: Polite

Class: ud—annotation—model: LinguisticStructure

SubClassOf:

ud—annotation—model : Concept

Class: ud—annotation—model: VerbalClause

SubClassOf:

ud—annotation—model: Clause
Class: ud—annotation—model: VoiceDir
EquivalentTo:

{ud—annotation—model: voiceDir}

115

SubClassOf:

ud—annotation—model: Voice

Class: ud—annotation—model: LayeredFeature

Annotations:
rdfs:comment "\"In some languages, some features are
marked more than once on the same word. We say
that there are several layers of the feature. The

exact meaning of individual layers is language—

dependent .

For example, possessive adjectives , determiners and
pronouns may have two different values of Gender and
two of Number. One of the values is determined by
agreement with the modified (possessed) noun. This is
parallel to other (non—possessive) adjectives and
determiners that agree in gender and number with the
nouns they modify. The other value is determined
lexically because it is a property of the possessor
A

(http://universaldependencies.org/u/overview /morphology .
html#layered —features)"

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: GenderFem

EquivalentTo:

{ud—annotation—model: genderFem }

SubClassOf:

ud—annotation—model : Gender

Class: ud—annotation—model: Person

116

SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model :INTJ CLASS

EquivalentTo:
{ud—annotation—model : INTJ}

SubClassOf:
ud—annotation—model: OpenClass
Class: ud—annotation—model: Aspect
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model: AbbrYes

EquivalentTo:

{ud—annotation—model:abbrYes}
SubClassOf:
ud—annotation—model : Abbr
Class: ud—annotation—model : AnimacyAnim

EquivalentTo:

{ud—annotation—model: animacyAnim }

SubClassOf:

ud—annotation—model : Animacy

Class: ud—annotation—model: VoiceAct

117

EquivalentTo:

{ud—annotation—model: voiceAct}
SubClassOf:
ud—annotation—model: Voice
Class: ud—annotation—model: expl
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model : MoodAdm

EquivalentTo:

{ud—annotation—model : moodAdm}
SubClassOf:
ud—annotation—model : Mood
Class: ud—annotation—model : Mood
SubClassOf:
ud—annotation—model: MorphologicalFeature
Class: ud—annotation—model: NumberSing

EquivalentTo:

{ud—annotation—model : numberSing}

SubClassOf:

ud—annotation—model : Number

Class: ud—annotation—model: GenderMasc

118

EquivalentTo:

{ud—annotation—model: genderMasc}
SubClassOf:
ud—annotation—model : Gender
Class: ud—annotation—model : NumTypeCard

EquivalentTo:

{ud—annotation—model : numTypeCard}

SubClassOf:
ud—annotation —model : NumType
Class: ud—annotation—model : NumberTri

EquivalentTo:

{ud—annotation—model : numberTri}
SubClassOf:
ud—annotation—model : Number
Class: ud—annotation—model: AspectPerf

EquivalentTo:

{ud—annotation—model: aspectPerf}
SubClassOf:
ud—annotation—model: Aspect

Class: <http://org.semanticweb.owlapi/error#Error3>

Class: ud—annotation—model: Concept

119

Class: ud—annotation—model: Tense

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model : NominalPhrase

SubClassOf:

ud—annotation—model: LinguisticStructure

Class: ud—annotation—model: case

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: DependencyRelation

SubClassOf:
olia_system:hasSource exactly 1 ud—annotation—model:
Word,
olia_system:hasTarget exactly 1 ud—annotation—model:
Word ,

olia system: Relation

Class: ud—annotation—model: parataxis

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: DegreePos

EquivalentTo:

120

{ud—annotation—model: degreePos}
SubClassOf:
ud—annotation—model: Degree
Class: ud—annotation—model: NumTypeDist

EquivalentTo:

{ud—annotation—model : numTypeDist }

SubClassOf:
ud—annotation—model : NumType
Class: ud—annotation—model: conj
SubClassOf:
ud—annotation—model : DependencyRelation
Class: ud—annotation—model : AnimacyHum

EquivalentTo:

{ud—annotation—model: animacyHum}

SubClassOf:
ud—annotation—model : Animacy
Class: ud—annotation—model : NumberCount

EquivalentTo:

{ud—annotation—model : numberCount }

SubClassOf:

ud—annotation—model : Number

121

Class: ud—annotation—model: FunctionWord

SubClassOf:

ud—annotation—model : Word ,

Annotations: ud—theory:verify "\"Ellipsis\"
should not be exactly a word, so this
modelling should be revised.",

rdfs:comment "\"Nevertheless, there
are four important exceptions
to the rule that function words

do not take dependents:

Multiword function words
Coordinated function words
Function word modifiers
Promotion by head elision\"
(http://universaldependencies.org/u/overview /syntax.html)"
(ud—annotation—model: Ellipsis or (ud—annotation-—
model:isSourceOf only
((ud—annotation—model: advecl or ud—annotation—
model :advmod or ud—annotation—model:amod or
ud—annotation—model:cc or ud—annotation—model

:conj or ud—annotation—model: fixed))))

Class: ud—annotation—model: VoiceMid

EquivalentTo:

{ud—annotation—model: voiceMid }
SubClassOf:
ud—annotation—model: Voice
Class: ud—annotation—model : Word
EquivalentTo:

122

(ud—annotation—model: ClauseHead or ud—annotation—
model : FunctionWord or ud—annotation-—model:

ModifierWord or ud—annotation—model: NominalHead)

SubClassOf:

Annotations: rdfs:comment "This is never

explicitly stated in the documentation.

However, it is stated that:

\"The object of a verb is the second most core argument of a
verb after the subject. Typically, it is the noun phrase
that denotes the entity acted upon or which undergoes a
change of state or motion (the proto—patient).\" (http
://universaldependencies.org/u/dep/obj.html)

This suggests that the object is unique. Furthermore:

\"A clausal complement of a verb or adjective is a dependent
clause which is a core argument. That is, it functions
like an object of the verb, or adjective.\" (http://

universaldependencies.org/u/dep/ccomp. html)

and

\"In general, if there is just one object, it should be
labeled obj, regardless of the morphological case or
semantic role that it bears. If there are two or more
objects , one of them should be obj and the others should
be iobj. In such cases it is necessary to decide what is
the most directly affected object (patient).\" (http://
universaldependencies.org/u/dep/obj.html)

These suggest that there should not be more than one direct

object , and that ccomp is an object.
Besides, this is in the svalidations as a warning."

ud—annotation—model:isSourceOf max 1 ((ud—annotation

—model: csubj or ud—annotation—model:nsubj)),

123

Annotations: rdfs:comment "This is never
explicitly stated on the documentation.
However, some possible annotation guidelines
are rejected as they would create words with
two subjects (for instance, see discussion on
copula in equational constructions involving
full clauses: http://universaldependencies.
org/u/overview /complex—syntax . html#clausal —

complements—objects)

Besides , in some descriptions a subject is referred to as \"
the\" subject , what implies in uniqueness:
\"A nominal subject (nsubj) is a nominal which is the

syntactic subject and the proto—agent of a clause.\"

This is also in a svalidation as a warning."
ud—annotation—model:isSourceOf max 1 ((ud—annotation
—model:ccomp or ud—annotation—model:obj)),
olia_ system:hasFeature exactly 1 ud—annotation—model
: UniversalPartOfSpeech |,

ud—annotation—model: Concept

DisjointUnionOf:
ud—annotation—model : ContentWord, ud—annotation—model

: FunctionWord

Class: olia_ system:UnitOfAnnotation

Annotations:
rdfs:comment "A UnitOfAnnotation is a structural
entity that can be annotated, e.g., a word, token
, constituent , or another types of markable.
Word classes , etc., are then modelled as indirect children
of UnitOfAnnotation. The division between Features and
classes of UnitsOfAnnotation follows conventional
standards .

"N~~~

xsd:string

124

SubClassOf:

olia_ system: LinguisticAnnotation

Class: ud—annotation—model: compound

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: Polite

SubClassOf:

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model: ReflexYes

EquivalentTo:

{ud—annotation—model: reflexYes}

SubClassOf:

ud—annotation—model: Reflex

Class: olia_ system:LinguisticAnnotation

Annotations:
rdfs:comment "label: Text attached to an element",
rdfs:comment "Linguistic annotations pertain to
either structural entities (words, tokens,
constituents , sentences => UnitOfAnnotation),
relations between these (dependency, dominance,
coreference , etc. => Relation), or grammatical
features attached to these (case, gender, number,
agreement , tense, mood, aspect, ... => Feature)
"~~xsd:string ,
rdfs:isDefinedBy "http://www.isocat.org/datcat /DC

—1857"

125

Class: ud—annotation—model :nmod

SubClassOf:

ud—annotation—model : DependencyRelation

Class: ud—annotation—model: ObliqueModifier

SubClassOf:

ud—annotation—model : ContentWord
DisjointWith :
ud—annotation—model : CoreArgument
Class: ud—annotation—model:advel
SubClassOf:
ud—annotation—model: DependencyRelation
Class: ud—annotation—model: PossYes

EquivalentTo:

{ud—annotation—model: possYes}

SubClassOf:

ud—annotation—model: Poss

Class: ud—annotation—model: ClauseHead

SubClassOf:

ud—annotation —model : Word

Class: ud—annotation—model: DegreeEqu

126

EquivalentTo:

{ud—annotation—model: degreeEqu}

SubClassOf:
ud—annotation—model : Degree
Class: ud—annotation—model: ModifierWord
SubClassOf:
ud—annotation—model : Word
Class: ud—annotation—model: DefiniteSpec

EquivalentTo:

{ud—annotation—model: definiteSpec}
SubClassOf:
ud—annotation—model: Definite
Class: ud—annotation—model: TenseFut

EquivalentTo:

{ud—annotation—model: tenseFut}

SubClassOf:

ud—annotation—model: Tense

Class: ud—annotation—model:xcomp

SubClassOf:

ud—annotation—model : DependencyRelation

Class: ud—annotation—model: DegreeAbs

127

EquivalentTo:
{ud—annotation—model: degreeAbs}

SubClassOf:
ud—annotation—model : Degree
Class: ud—annotation—model: NumberPtan

EquivalentTo:

{ud—annotation—model : numberPtan }

SubClassOf:
ud—annotation —model : Number
Class: ud—annotation—model: VerbFormGdv

EquivalentTo:

{ud—annotation—model: verbFormGdv}
SubClassOf:
ud—annotation—model : VerbForm
Class: ud—annotation—model : X CLASS

EquivalentTo:

{ud—annotation—model : X}
SubClassOf:
ud—annotation—model: OtherUniversalPartOfSpeech
Class: ud—annotation—model: DefiniteInd

EquivalentTo:

{ud—annotation—model: definitelnd}

128

SubClassOf:

ud—annotation—model: Definite

Class: ud—annotation—model: Coordination

SubClassOf:

ud—annotation—model: Concept

Class: ud—theory: VerbalClauseHead

EquivalentTo:
ud—annotation—model: ClauseHead
and (ud—annotation—model: hasUniversalPartOfSpeech
some ud—annotation—model :VERB CLASS)

SubClassOf:

ud—annotation—model : ClauseHead

Class: ud—annotation—model: Poss

SubClassOf:
inverse (olia_ system:hasFeature) only
((ud—annotation—model :ADJ_CLASS or ud—annotation
—model :DET CLASS or (ud—annotation—model:
hasUniversalPartOfSpeech some ud—annotation—
model :PRON_CLASS))) ,

ud—annotation—model: MorphologicalFeature

Class: ud—annotation—model : MoodSub

EquivalentTo:

{ud—annotation—model : moodSub}
SubClassOf:

129

ud—annotation—model : Mood

Class: ud—annotation—model: list
SubClassOf:
ud—annotation—model: DependencyRelation
Class: <http://www.semanticweb.org/gppassos/ontologies
/2017 /7 /ud—annotation—model#acl: relcl >
SubClassOf:
ud—annotation—model: acl

Class: ud—annotation—model: PolarityNeg

EquivalentTo:
{ud—annotation—model: polarityNeg}

SubClassOf:

ud—annotation—model: Polarity
Disjoint With :
ud—annotation—model: PolarityPos
Class: ud—annotation—model: VoicePass

EquivalentTo:

{ud—annotation—model: voicePass}
SubClassOf:
ud—annotation—model: Voice

Class: olia_ system:Relation

130

Annotations:

rdfs :comment "Between instances of two Categories, a
Relation can be established that links these
together , e.g., a dominance relation (constituent
X is grammatical subject of sentence Y), a
dependency relation (token X is a modifier of
token Y), a discourse relation (discourse unit X
is in contrast to discourse unit Y), an anaphoric
relation (referring expression X is coreferent
with referring expressing Y), an alignment
relation (word X expresses the same meaning as
word Y) .

Note that Relation and UnitOfAnnotation are not disjoint ,
because in some approaches, establishing a Relation
between two concepts entails that a structural entity is
formed, consisting of Relation and the Categories
connected by the Relation, e.g., in Rhetorical Structure
Theory (Mann and Thompson 1987)."""xsd:string

EquivalentTo:
((olia_system:hasSource min 1 owl:Thing) or (

olia system:hasTarget min 1 owl: Thing))

SubClassOf:
olia_system: LinguisticAnnotation ,
olia_system:hasTarget exactly 1 owl:Thing,

olia_system:hasSource exactly 1 owl:Thing

Class: ud—annotation—model: VerbFormGer

EquivalentTo:

{ud—annotation—model: verbFormGer}

SubClassOf:

ud—annotation—model: VerbForm

Class: ud—annotation—model: PolarityPos

131

EquivalentTo:

{ud—annotation—model: polarityPos}

SubClassOf:

ud—annotation—model: Polarity
DisjointWith :
ud—annotation—model: PolarityNeg
Class: ud—annotation—model : GenderCom

EquivalentTo:

{ud—annotation—model: genderCom}
SubClassOf:

ud—annotation—model: Gender

Class: ud—annotation—model: nsubj

SubClassOf:

ud—annotation—model: DependencyRelation

Class: ud—annotation—model: AspectProg

EquivalentTo:

{ud—annotation—model: aspectProg}
SubClassOf:
ud—annotation—model: Aspect
Class: ud—annotation—model :ADP_CLASS

EquivalentTo:
{ud—annotation—model : ADP}

132

SubClassOf:

ud—annotation—model: ClosedClass

Class: ud—annotation—model : NumberColl

EquivalentTo:

{ud—annotation—model: numberColl}

SubClassOf:

ud—annotation —model : Number

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model

ud—annotation—model:

ud—annotation—model:

verbFormGer

degreeAbs

animacyAnim

numTypeFrac

voiceMid

:pronTypeExc

pronTypeArt

pronTypeRel

ud—annotation—model :SYM

133

Types:
ud—annotation—model :SYM CLASS

Individual : ud—annotation—model: polarityPos

Individual: ud—annotation—model:verbFormGdv

Individual : ud—annotation—model: voiceRcp

Individual: ud—annotation—model :PROPN

Types:

ud—annotation—model : PROPN CLASS

Individual: ud—annotation—model: numberTri

Individual : ud—annotation—model:degreeSup

Individual: ud—annotation—model :AUX

Types:

ud—annotation—model : AUX CLASS

Individual: ud—annotation—model: voiceDir

Individual: ud—annotation—model :numTypeRange

Individual : ud—annotation—model:tensePqp

134

Individual: ud—annotation—model : CCONJ

Types:
ud—annotation—model : CCONJ CLASS

Individual: ud—annotation—model: verbFormlInf

Individual: ud—annotation—model : ADP

Types:

ud—annotation—model : ADP_CLASS

Individual: ud—annotation—model : numberCount

Individual : ud—annotation—model: personl

Individual : ud—annotation—model: person0

Individual : ud—annotation—model: moodPrp

Individual: ud—annotation—model :ADV

Types:

ud—annotation—model : ADV_CLASS

Individual: ud—annotation —model:ADJ

Types:
ud—annotation—model :ADJ CLASS

135

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

ud—annotation—model

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

136

:numTypeCard

persond

person?

degreePos

person4d

voiceAct

numberlnv

voicePass

pronTypeRcp

evidentFh

numTypeSets

numberPlur

degreeCmp

Individual : ud—annotation—model: aspectPerf

Individual: ud—annotation—model:pronTypeEmp

Individual: ud—annotation—model: definiteDef

Individual : ud—annotation—model: possYes

Individual: ud—annotation—model: definiteCom

Individual: ud—annotation—model : SCONJ

Types:

ud—annotation—model : SCONJ CLASS

Individual : ud—annotation—model: politeForm

Individual : ud—annotation—model: definiteSpec

Individual: ud—annotation—model: definiteCons

Individual : ud—annotation—model:animacyHum

Individual: ud—annotation—model: numberPtan

Individual: ud—annotation—model :PUNCT

137

Types:

ud—annotation—model :PUNCT _CLASS

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model

ud—annotation—model:

ud—annotation—model

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

138

tensePres

animacylnan

verbFormFin

moodInd

aspectProsp

genderMasc

:pronTypeDem

politelnfm

:verbFormVnoun

pronTypelnt

abbrYes

moodSub

Individual: ud—annotation—model: VERB

Types:

ud—annotation—model : VERB CLASS

Individual : ud—annotation—model: aspectProg

Individual : ud—annotation—model: genderNeut

Individual: ud—annotation—model : moodImp

Individual: ud—annotation—model : moodPot

Individual : ud—annotation—model: genderCom

Individual: ud—annotation—model : moodAdm

Individual : ud—annotation—model : moodQot

Individual : ud—annotation—model: pronTypelnd

Individual: ud—annotation—model: verbFormConv

Individual: ud—annotation—model:verbFormSup

Individual: ud—annotation—model: definitelnd

139

Individual : ud—annotation—model: numTypeDist

Individual: ud—annotation—model: numberPauc

Individual: ud—annotation—model:INTJ

Types:

ud—annotation—model : INTJ CLASS

Individual: ud—annotation—model:evidentNfh

Individual: ud—annotation—model: pronTypePrs

Individual: ud—annotation—model :NUM

Types:

ud—annotation—model :NUM CLASS

Individual: ud—annotation—model: moodJus

Individual : ud—annotation—model: voiceAntip

Individual: ud—annotation—model: reflexYes

Individual : ud—annotation—model: polarityNeg

Individual : ud—annotation—model: politeHumb

140

Individual: ud—annotation—model:

voiceCau

Individual : ud—annotation—model :numTypeMult

Individual: ud—annotation—model :PRON

Types:

ud—annotation—model :PRON CLASS

Individual: ud—annotation—model :PART

Types:

ud—annotation—model :PART CLASS

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model:

141

foreignYes

tensePast

numberColl

genderFem

animacyNhum

caseAcc

pronTypeTot

Individual: ud—annotation—model

Individual: ud—annotation—model

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Individual: ud—annotation—model

Individual: ud—annotation—model:

Individual: ud—annotation—model:

Types:

:moodDes

:moodNec

caseErg

pronTypeNeg

:numTypeOrd

caseAbs

numberSing

: moodCnd

numberGrpl

ud—annotation—model : X CLASS

Individual: ud—annotation—model

Individual: ud—annotation—model

142

:degreeEqu

:verbFormPart

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Individual:

Types:

ud—annotation—model

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model:

ud—annotation—model

:moodOpt

tenseFut

aspectImp

numberGrpa

caseNom

aspectlter

politeElev

tenselmp

numberDual

voicelnv

aspectHab

:DET

ud—annotation—model :DET CLASS

143

Individual: ud—annotation—model :NOUN

Types:
ud—annotation—model :NOUN_CLASS

Individual: :genid2908

Annotations:
owl: qualifiedCardinality "1"""xsd:nonNegativelnteger

Individual: :genid2484

Annotations:
owl: qualifiedCardinality "1"""xsd:nonNegativelnteger

DisjointClasses:

ud—annotation—model : Abbr ,ud—annotation—model : Animacy , ud—
annotation—model: Aspect ,ud—annotation—model: Case ,ud—
annotation—model: Definite ,ud—annotation—model: Degree ,
ud—annotation—model : Evident ,ud—annotation—model:
Foreign ,ud—annotation—model : Gender ,ud—annotation—
model : Mood ,ud—annotation—model : NumType,ud—annotation —
model : Number ,ud—annotation—model : Person ,ud—annotation
—model: Polarity ,ud—annotation—model: Polite ,ud—
annotation—model: Poss ,ud—annotation —model: PronType ,ud
—annotation—model : Reflex ,ud—annotation—model : Tense ,ud

—annotation—model: VerbForm ,ud—annotation—model: Voice

DisjointClasses:
ud—annotation—model : VerbFormConv ,ud—annotation —model:
VerbFormFin ,ud—annotation—model : VerbFormGdv , ud—
annotation—model: VerbFormGer ,ud—annotation —model:
VerbFormInf ,ud—annotation—model : VerbFormPart , ud—

annotation—model : VerbFormSup ,ud—annotation —model:

144

VerbFormVnoun

DisjointClasses:
ud—annotation—model : AspectHab ,ud—annotation—model:
AspectImp ,ud—annotation—model : Aspectlter ,ud—
annotation—model: AspectPerf ,ud—annotation—model:

AspectProg ,ud—annotation—model: AspectProsp

DisjointClasses:
ud—annotation—model : TenseFut ,ud—annotation—model:
Tenselmp ,ud—annotation—model: TensePast ,ud—annotation—

model : TensePqp ,ud—annotation—model: TensePres

DisjointClasses:
ud—annotation—model : DegreeAbs ,ud—annotation —model:
DegreeCmp ,ud—annotation—model : DegreeEqu ,ud—annotation

—model: DegreePos ,ud—annotation—model: DegreeSup

DisjointClasses:

ud—annotation—model: PronTypeArt ,ud—annotation—model:
PronTypeDem ,ud—annotation —model : PronTypeEmp , ud—
annotation—model : PronTypeExc ,ud—annotation —model:
PronTypelnd ,ud—annotation—model: PronTypelnt , ud—
annotation—model : PronTypeNeg ,ud—annotation —model:
PronTypePrs ,ud—annotation—model : PronTypeRcp ,ud—
annotation—model: PronTypeRel ,ud—annotation—model:

PronTypeTot

DisjointClasses:
ud—annotation—model: PoliteElev ,ud—annotation—model:
PoliteForm ,ud—annotation—model: PoliteHumb , ud—

annotation—model: PoliteInfm

DisjointClasses:
ud—annotation—model : NumTypeCard ,ud—annotation —model:
NumTypeDist ,ud—annotation —model : NumTypeFrac, ud—
annotation—model : NumTypeMult ,ud—annotation —model:
NumTypeOrd ,ud—annotation —model : NumTypeRange , ud—

annotation—model : NumTypeSets

145

DisjointClasses:
ud—annotation—model :PUNCT CLASS,ud—annotation —model:
SYM CLASS,ud—annotation—model : X CLASS

DisjointClasses:
ud—annotation—model : GenderCom ,ud—annotation —model:
GenderFem ;ud—annotation—model : GenderMasc , ud—

annotation—model : GenderNeut

DisjointClasses:

ud—annotation—model: acl ,ud—annotation—model:advcl ,ud—
annotation—model :advmod ,ud—annotation—model : amod , ud—
annotation—model: appos ,ud—annotation—model:aux,ud—
annotation—model: case ,ud—annotation—model: cc ,ud—
annotation—model: ccomp ,ud—annotation—model: clf jud—
annotation—model : compound ,ud—annotation—model: conj ,ud
—annotation—model: cop ,ud—annotation—model: csubj ,ud—
annotation—model :dep ,ud—annotation—model: det ,ud—
annotation—model: discourse ,ud—annotation—model:
dislocated ,ud—annotation—model:expl ,ud—annotation—
model : fixed ,ud—annotation—model: flat ,ud—annotation—
model: goeswith ,ud—annotation—model:iobj ,ud—annotation
—model: list ,ud—annotation—model :mark ,ud—annotation—
model :nmod ,ud—annotation—model : nsubj ,ud—annotation—
model :nummod , ud—annotation—model: obj ,ud—annotation—
model : obl ,ud—annotation—model:orphan ,ud—annotation—
model : parataxis ,ud—annotation—model: punct ,ud—
annotation—model : reparandum ,ud—annotation—model : root ,
ud—annotation—model: vocative ,ud—annotation—model:

xcomp
DisjointClasses:
ud—annotation—model : CaseAbs ,ud—annotation—model : CaseAcc,
ud—annotation—model : CaseErg ,ud—annotation—model:

CaseNom

DisjointClasses:

146

ud—annotation—model : ADP_CLASS, ud—annotation—model:
AUX CLASS,ud—annotation—model : CCONJ CLASS, ud—
annotation—model :DET CLASS,ud—annotation—model:
NUM_CLASS,ud—annotation—model :PART CLASS, ud—
annotation—model :PRON CLASS, ud—annotation—model:
SCONJ _CLASS

DisjointClasses:
ud—annotation—model : AnimacyAnim ,ud—annotation—model:
AnimacyHum ,ud—annotation —model : AnimacylInan ,ud—

annotation—model : AnimacyNhum

DisjointClasses:
ud—annotation—model : DefiniteCom ,ud—annotation—model:
DefiniteCons ,ud—annotation—model: DefiniteDef ,ud—
annotation—model: DefiniteIlnd ,ud—annotation—model:

DefiniteSpec

DisjointClasses:

ud—annotation—model : MoodAdm, ud—annotation —model : MoodCnd,
ud—annotation—model : MoodDes ,ud—annotation —model:
MoodImp , ud—annotation —model : MoodInd ,ud—annotation—
model : MoodJus ,ud—annotation—model : MoodNec , ud—
annotation—model : MoodOpt ,ud—annotation —model : MoodPot ,
ud—annotation—model : MoodPrp,ud—annotation —model:
MoodQot ,ud—annotation —model : MoodSub

DisjointClasses:
ud—annotation—model: VoiceAct ,ud—annotation—model:
VoiceAntip ,ud—annotation—model: VoiceCau ,ud—annotation
—model: VoiceDir ,ud—annotation—model: Voicelnv ;ud—
annotation—model: VoiceMid ,ud—annotation—model:

VoicePass ,ud—annotation—model: VoiceRcp

DisjointClasses:
ud—annotation—model : ADJ CLASS,ud—annotation—model:
ADV_CLASS,ud—annotation—model :INTJ CLASS, ud—
annotation—model :NOUN_ CLASS, ud—annotation—model:
PROPN CLASS,ud—annotation—model : VERB CLASS

147

DisjointClasses:
ud—annotation—model : NumberColl ,ud—annotation—model:

NumberCount ,ud—annotation —model : NumberDual , ud—
annotation—model : NumberGrpa ,ud—annotation—model:
NumberGrpl ,ud—annotation—model : NumberInv , ud—
annotation—model : NumberPauc,ud—annotation—model:
NumberPlur ,ud—annotation —model : NumberPtan , ud—
annotation—model : NumberSing ,ud—annotation—model:

NumberTri

DisjointClasses:
ud—annotation—model: ClosedClass ,ud—annotation—model:

OpenClass ,ud—annotation—model:
OtherUniversalPartOfSpeech

DisjointClasses:
ud—annotation—model: Person(0 ,ud—annotation—model: Personl ,

ud—annotation—model: Person2 ,ud—annotation—model:

Person3 ,ud—annotation—model: Person4

148

Bibliography

2013, Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 2: Short
Papers. The Association for Computer Linguistics. ISBN: 978-1-937284-
51-0. Available at: <http://aclweb.org/anthology/P/P13/>. Cited on

page [[59]

2014, Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume
1: Long Papers. The Association for Computer Linguistics. ISBN: 978-1-
937284-72-5. Available at: <http://aclweb.org/anthology/P/P14/>.
Cited on page [164]

2003, EACL 2003, 10th Conference of the European Chapter of the Association
for Computational Linguistics, April 12-17, 2003, Agro Hotel, Budapest,
Hungary. The Association for Computer Linguistics. Available at: <http:
//aclueb.org/anthology/E/E03//>. Cited on page [L54]

2000, Proceedings of the Second International Conference on Language Resources
and FEvaluation, LREC 2000, 31 May - June 2, 2000, Athens, Greece.
European Language Resources Association. Available at: <http://www.
lrec-conf.org/proceedings/1rec2000/>. Cited on page [153]

2008, Proceedings of the International Conference on Language Resources and Eval-
uation, LREC 2008, 26 May - 1 June 2008, Marrakech, Morocco. Eu-
ropean Language Resources Association. Available at: <http://www.

lrec-conf.org/proceedings/1rec2008/>. Cited on page [164]

2010, Human Language Technologies: Conference of the North American Chapter
of the Association of Computational Linguistics, Proceedings, June 2-4,
2010, Los Angeles, California, USA. The Association for Computational
Linguistics. ISBN: 978-1-932432-65-7. Cited on page [161]

149

http://aclweb.org/anthology/P/P13/
http://aclweb.org/anthology/P/P14/
http://aclweb.org/anthology/E/E03/
http://aclweb.org/anthology/E/E03/
http://www.lrec-conf.org/proceedings/lrec2000/
http://www.lrec-conf.org/proceedings/lrec2000/
http://www.lrec-conf.org/proceedings/lrec2008/
http://www.lrec-conf.org/proceedings/lrec2008/

2005, UAI 05, Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence, Edinburgh, Scotland, July 26-29, 2005. AUAI Press. ISBN:
0-9749039-1-4. Cited on page [164]

2016, Proceedings of the First Conference on Machine Translation, WMT 2016,
colocated with ACL 2016, August 11-12, Berlin, Germany. The Asso-
ciation for Computer Linguistics. Available at: <http://aclweb.org/
anthology/W/W16/>. Cited on page[151]

ABEILLE, A. (Ed.), 2003, Treebanks: Building and Using Parsed Corpora.
Text, Speech and Language Technology. Springer Netherlands. ISBN:
9789401002011. Cited on pages [37 and [163]

ABEND, O., RAPPOPORT, A., 2017, “The State of the Art in Semantic Repre-
sentation”. In: BARZILAY and KAN| (2017), pp. 77-89. ISBN: 978-1-
945626-75-3. Cited on pages [4] and

ALANI, H., KAGAL, L., FOKOUE, A., et al. (Eds.), 2013, The Semantic Web
- ISWC 2013 - 12th International Semantic Web Conference, Sydney,
NSW, Australia, October 21-25, 2013, Proceedings, Part II, v. 8219, Lec-
ture Notes in Computer Science. Springer. ISBN: 978-3-642-41337-7.
Available at: <https://doi.org/10.1007/978-3-642-41338-4">. Cited

on page [156]
ALLEN, J. F., FIKES, R., SANDEWALL, E. (Eds.), 1991, Proceedings of the 2nd

International Conference on Principles of Knowledge Representation and
Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991. Morgan
Kaufmann. ISBN: 1-55860-165-1. Cited on page [155]

ARTZI, Y., ZETTLEMOYER, L., 2013, “Weakly Supervised Learning of Semantic
Parsers for Mapping Instructions to Actions”, TACL, v. 1, pp. 49-62. Cited

on page [9]

BARZILAY, R., KAN, M. (Eds.), 2017, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long
Papers. Association for Computational Linguistics. ISBN: 978-1-
945626-75-3. Available at: <http://aclanthology.info/volumes/
proceedings-of-the-bbth-annual-meeting-of-the-association-for-computatione
Cited on page [I50]

150

http://aclweb.org/anthology/W/W16/
http://aclweb.org/anthology/W/W16/
https://doi.org/10.1007/978-3-642-41338-4
http://aclanthology.info/volumes/proceedings-of-the-55th-annual-meeting-of-the-association-for-computational-linguistics-volume-1-long-papers
http://aclanthology.info/volumes/proceedings-of-the-55th-annual-meeting-of-the-association-for-computational-linguistics-volume-1-long-papers

BELTAGY, 1., ERK, K., MOONEY, R., 2014, “Semantic Parsing using Distribu-
tional Semantics and Probabilistic Logic”, Proceedings of the ACL 2014
Workshop on Semantic Parsing. Cited on page

BENDER, E. M., FLICKINGER, D., OEPEN, S., et al., 2015, “Layers of Interpre-
tation: On Grammar and Compositionality”. In: PURVER et al. (2015),
pp. 239-249. ISBN: 978-1-941643-33-4. Cited on pages [4] and [5|

BOJAR, O., CHATTERJEE, R., FEDERMANN, C., et al., 2016, “Findings of the
2016 Conference on Machine Translation”. In: Proceedings of the First
Conference on Machine Translation, WMT 2016, colocated with ACL
2016, August 11-12, Berlin, Germany DBL| (2016), pp. 131-198. Cited on

page [5}

BOYD, A., DICKINSON, M., MEURERS, W. D., 2008, “On Detecting Errors in
Dependency Treebanks”, Research on Language and Computation, v. 6,

n. 2 (Oct), pp. 113-137. ISSN: 1572-8706. Cited on page

BRACHMAN, R. J., LEVESQUE, H. J., 2004, Knowledge Representation and
Reasoning. Elsevier. ISBN: 978-1-55860-932-7. Cited on page [15]

CALZOLARI, N., CHOUKRI, K., MAEGAARD, B., et al. (Eds.), 2010, Proceed-
ings of the International Conference on Language Resources and Fuval-
uation, LREC 2010, 17-23 May 2010, Valletta, Malta. European Lan-
guage Resources Association. ISBN: 2-9517408-6-7. Available at: <http:
//www.lrec-conf.org/proceedings/lrec2010/index.html>. Cited on

page [163]

CALZOLARI, N., CHOUKRI, K., DECLERCK, T., et al. (Eds.), 2012, Proceed-
ings of the Eighth International Conference on Language Resources and
FEvaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012. European
Language Resources Association (ELRA). ISBN: 978-2-9517408-7-7. Cited

on page [I60]

CALZOLARI, N., CHOUKRI, K., DECLERCK, T., et al. (Eds.), 2014, Pro-
ceedings of the Ninth International Conference on Language Resources
and Fvaluation, LREC 201/, Reykjavik, Iceland, May 26-31, 2014. Eu-
ropean Language Resources Association (ELRA). Available at: <http:
//www.1lrec-conf.org/lrec2014>. Cited on page[153

CALZOLARI, N., CHOUKRI, K., DECLERCK, T., et al. (Eds.), 2016, Pro-

ceedings of the Tenth International Conference on Language Resources

151

http://www.lrec-conf.org/proceedings/lrec2010/index.html
http://www.lrec-conf.org/proceedings/lrec2010/index.html
http://www.lrec-conf.org/lrec2014
http://www.lrec-conf.org/lrec2014

and FEvaluation LREC 2016, Portoroz, Slovenia, May 23-28, 2016. Eu-
ropean Language Resources Association (ELRA). Available at: <http:
//www.lrec-conf.org/lrec2016>. Cited on pages[160] [162] and [163]

CAROLL, J., HERMAN, I, PATEL-SCHNEIDER, P. F. (Eds.), 2012,
OWL 2 Web Ontology Language RDF-Based Semantics. W3C
Recommendation. Available at https://www.w3.org/TR/2012/
REC-owl2-rdf-based-semantics-20121211/, Cited on page [17]

CARTER, D., 1997, “The TreeBanker. A tool for supervised training of parsed
corpora”. In: Proceedings of the Workshop on Computational Environ-
ments for Grammar Development and Linguistic Engineering, pp. pp- 9—
15, Madrid, Spain. Cited on page

CHIARCOS, C., 2010, “Towards Robust Multi-Tool Tagging. An OWL/DL-Based
Approach”. In: HAJIC et al. (2010), pp. 659-670. ISBN: 978-1-932432-
66-4. Cited on page

CHIARCOS, C., FATH, C., 2017, “CoNLL-RDF: Linked Corpora Done in an NLP-
Friendly Way”. In: (GRACIA et al| (2017), pp. 74-88. ISBN: 978-3-319-
59887-1. Cited on page [241

CHIARCOS, C., SUKHAREVA, M., 2015, “OLiA - Ontologies of Linguistic Anno-
tation”, Semantic Web, v. 6, n. 4, pp. 379-386. Cited on pages [19 and [42]

CHIARCOS, C., MCCRAE, J., CIMIANO, P., et al., 2013, “Towards Open Data for
Linguistics: Linguistic Linked Data”. In: OLTRAMARI, A., VOSSEN, P,
QIN, L., et al. (Eds.), New Trends of Research in Ontologies and Lexical

Resources: Ideas, Projects, Systems, Springer Berlin Heidelberg, pp. 7-25,
Berlin, Heidelberg. ISBN: 978-3-642-31782-8. Cited on page [42]

CHIARCOS, C., FATH, C., SUKHAREVA, M., 2016, “Developing and using the
ontologies of linguistic annotation (2006-2016)”. In: LDL 2016 5th Work-
shop on Linked Data in Linguistics: Managing, Building and Using Linked
Language Resources, p. 63. Cited on pages [42] and [43]

CLARK, A., FOX, C., LAPPIN, S. (Eds.), 2010, The Handbook Of Computational
Linguistics And Natural Language Processing. Chichester, United King-
dom, Wiley-Blackwell. Cited on pages[152] 160, and [161}

CLARK, S., 2010, “Statistical Parsing”. In: CLARK et al.| (2010), p. 333-363. Cited
on page 5]

152

http://www.lrec-conf.org/lrec2016
http://www.lrec-conf.org/lrec2016
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/

COPESTAKE, A. A., FLICKINGER, D., 2000, “An Open Source Grammar De-
velopment Environment and Broad-coverage English Grammar Using
HPSG”. In: Proceedings of the Second International Conference on Lan-
gquage Resources and FEvaluation, LREC 2000, 31 May - June 2, 2000,
Athens, Greece DBLJ (2000). Cited on page [49]

CORRO, L. D., GEMULLA, R., 2013, “ClauslE: clause-based open information
extraction”. In: SCHWABE et al. (2013), pp. 355-366. ISBN: 978-1-4503-
2035-1. Cited on page [

CROFT, W., 2002, Typology and Universals. Cambridge University Press. ISBN:
9780511840579. Cited on page

CUNNINGHAM, H., MAYNARD, D., BONTCHEVA, K., et al., 2002, “GATE:
A Framework and Graphical Development Environment for Robust NLP
Tools and Applications”. In: Proceedings of the 40th Anniversary Meet-
ing of the Association for Computational Linguistics (ACL’02). Cited on

page [43]

DE MARNEFFE, M., DOZAT, T., SILVEIRA, N, et al., 2014, “Universal Stanford
dependencies: A cross-linguistic typology”. In: (CALZOLARI et al.|(2014),
pp. 4585-4592. Cited on page

DE MARNEFFE, M., GRIONI, M., KANERVA, J., et al., 2017a, “Assessing
the Annotation Consistency of the Universal Dependencies Corpora”. In:

MONTEMAGNI and NIVRE (2017), pp. 108-115. ISBN: 978-91-7685-
467-9. Cited on page

DE MARNEFFE, M., NIVRE, J., SCHUSTER, S. (Eds.), 2017b, Pro-
ceedings of the NoDaLiDa Workshop on Universal Dependencies,
UDW@NoDaLiDa 2017, Gothenburg, Sweden, May 22, 2017, b.
Association for Computational Linguistics. ISBN: 978-91-7685-
501-0. Available at: <https://aclanthology.info/volumes/

proceedings-of-the-nodalida-2017-workshop-on-universal-dependencies-udw-2(

Cited on pages and

DE SMEDT, K., ROSEN, V., MEURER, P., 2015, “Studying Consistency in UD
Treebanks with INESS-Search”. In: | DICKINSON et al.| (2015)). Cited on

page [40]

DICKINSON, M., 2015, “Detection of Annotation Errors in Corpora”, Language
and Linguistics Compass, v. 9, n. 3, pp. 119-138. Cited on page [40]

153

https://aclanthology.info/volumes/proceedings-of-the-nodalida-2017-workshop-on-universal-dependencies-udw-2017
https://aclanthology.info/volumes/proceedings-of-the-nodalida-2017-workshop-on-universal-dependencies-udw-2017

DICKINSON, M., MEURERS, D., 2003a, “Detecting Errors in Part-of-Speech An-
notation”. In: FACL 2003, 10th Conference of the European Chapter of
the Association for Computational Linguistics, April 12-17, 2003, Agro
Hotel, Budapest, Hungary DBL (2003), pp. 107-114. Cited on page

DICKINSON, M., MEURERS, W. D., 2003b, “Detecting Inconsistencies in Tree-
banks”. In: Proceedings of the Second Workshop on Treebanks and Linguis-
tic Theories (TLT 2003), pp. 45-56, Vixjo, Sweden, b. Cited on page [41]

DICKINSON, M., MEURERS, W. D., 2005, “Prune diseased branches to get
healthy trees! How to find erroneous local trees in a treebank and why it
matters”. In: Proceedings of the Fourth Workshop on Treebanks and Lin-
guistic Theories (TLT 2005), pp. pp. 41-52, Barcelona, Spain. Cited on

page [T}

DICKINSON, M., HINRICHS, E., PATEJUK, A., et al. (Eds.), 2015, Proceedings
of the Fourteenth International Workshop on Treebanks and Linguistic
Theories (TLT14), Warsaw, Poland. Cited on page

DOHERTY, P., MYLOPOULOS, J., WELTY, C. A. (Eds.), 2006, Proceedings,
Tenth International Conference on Principles of Knowledge Representa-
tion and Reasoning, Lake District of the United Kingdom, June 2-5, 2006.
AAAT Press. ISBN: 978-1-57735-271-6. Cited on page [156}

FERRUCCI, D., LALLY, A., 2004, “UIMA: An Architectural Approach to Un-
structured Information Processing in the Corporate Research Environ-
ment”, Natural Language Engineering, v. 10, n. 3-4 (Sept.), pp. 327-348.
ISSN: 1351-3249. Cited on page 43|

FLICKINGER, D., OEPEN, S., BENDER, E. M., 2017, “Sustainable Development
and Refinement of Complex Linguistic Annotations at Scale”. In: IDE

and PUSTEJOVSKY] (2017), p. 353-377. ISBN: 9789402408812. Cited on
page [48]

GETOOR, L., TASKAR, B. (Eds.), 2007, Introduction to Statistical Relational
Learning. Adaptive Computation and Machine Learning series. Cam-
bridge, Massachusetts, MIT Press. Cited on page [16]

GLIMM, B., HORROCKS, I., MOTIK, B., et al., 2014, “HermiT: An OWL 2
Reasoner”, Journal of Automated Reasoning, v. 53, n. 3 (Oct), pp. 245—
269. ISSN: 1573-0670. Cited on page [24]

154

GRACIA, J., BOND, F., MCCRAE, J. P., et al. (Eds.), 2017, Language, Data,
and Knowledge - First International Conference, LDK 2017, Galway,
Ireland, June 19-20, 2017, Proceedings, v. 10318, Lecture Notes in Com-
puter Science. Springer. ISBN: 978-3-319-59887-1. Available at: <https:
//doi.org/10.1007/978-3-319-59888-8>. Cited on page [152]

GRISHMAN, R., 2010, “Information Extraction”, The Handbook of Computational
Linguistics and Natural Language Processing, (Jun), pp. 515-530. Cited

on page 4]

GUILLAUME, B., BONFANTE, G., MASSON, P., et al., 2012, “Grew : un outil
de réécriture de graphes pour le TAL (Grew: a Graph Rewriting Tool
for NLP) [in French|”. In: Proceedings of the Joint Conference JEP-
TALN-RECITAL 2012, volume 5: Software Demonstrations, pp. 1-2.
ATALA/AFCP. Cited on pages and [39]

HAJIC, J., ZEMAN, D. (Eds.), 2017, Proceedings of the CoNLL 2017
Shared Task: — Multilingual Parsing from Raw Text to Univer-
sal Dependencies, Vancouver, Canada, August 3-4, 2017 As-
sociation for Computational Linguistics. ISBN: 978-1-945626-
70-8. Available at: <http://aclanthology.info/volumes/
proceedings-of-the-conll-2017-shared-task-multilingual-parsing-from-raw-te¢
Cited on page [164]

HAJIC, J., CARBERRY, S., CLARK, S. (Eds.), 2010, ACL 2010, Proceedings of
the 48th Annual Meeting of the Association for Computational Linguis-
tics, July 11-16, 2010, Uppsala, Sweden. The Association for Computer
Linguistics. ISBN: 978-1-932432-66-4. Cited on page [152]

HAJICOVA, E., NIVRE, J. (Eds.), 2015, Proceedings of the Third International
Conference on Dependency Linguistics, DepLing 2015, August 24-26
2015, Uppsala University, Uppsala, Sweden. Uppsala University, Depart-
ment of Linguistics and Philology. ISBN: 978-91-637-8965-6. Available at:
<http://aclweb.org/anthology/W/W15/>. Cited on page[162]

HALPERN, J. Y., VARDI, M. Y., 1991, “Model Checking vs. Theorem Proving: A
Manifesto”. In: |ALLEN et al. (1991), pp. 325-334. ISBN: 1-55860-165-1.
Cited on page

HELLMANN, S., 2015, Integrating Natural Language Processing (NLP) and Lan-
guage Resources Using Linked Data. Tese de Doutorado, Universitit

Leipzig, Gottingen, Germany, jan. Cited on page [42]

155

https://doi.org/10.1007/978-3-319-59888-8
https://doi.org/10.1007/978-3-319-59888-8
http://aclanthology.info/volumes/proceedings-of-the-conll-2017-shared-task-multilingual-parsing-from-raw-text-to-universal-dependencies
http://aclanthology.info/volumes/proceedings-of-the-conll-2017-shared-task-multilingual-parsing-from-raw-text-to-universal-dependencies
http://aclweb.org/anthology/W/W15/

HELLMANN, S., LEHMANN, J., AUER, S., et al., 2013, “Integrating NLP Using
Linked Data”. In: ALANI et al| (2013), pp. 98-113. ISBN: 978-3-642-
41337-7. Cited on pages [#2] and [43]

HITZLER, P., KROTZSCH, M., PARSIA, B., et al. (Eds.), 2009, OWL 2 Web
Ontology Language: Primer. W3C Recommendation. Available at http:
//www.w3.org/TR/owl2-primer/. Cited on page

HITZLER, P., KROTZSCH, M., RUDOLPH, S., 2010, Foundations of Semantic
Web Technologies. Chapman and Hall/CRC Press. ISBN: 9781420090505.
Cited on page

HORRIDGE, M., 2011, Justification based explanation in ontologies. Tese de
Doutorado, University of Manchester, UK. Available at: <http://www.

manchester.ac.uk/escholar/uk-ac-man-scw:131699>. Cited on pages

23 and 521

HORRIDGE, M., BECHHOFER, S., 2011, “The OWL API: A Java API for OWL
ontologies”, Semantic Web, v. 2, n. 1, pp. 11-21. Cited on page

HORRIDGE, M., PARSIA, B., SATTLER, U., 2008, “Laconic and Precise Justi-
fications in OWL”. In: |SHETH et al| (2008)), pp. 323-338. ISBN: 978-3-

540-88563-4. Cited on pages and [53]

HORROCKS, I., KUTZ, O., SATTLER, U., 2006, “The Even More Irresistible
SROIQ”. In: DOHERTY et al.| (2006), pp. 57-67. ISBN: 978-1-57735-
271-6. Cited on pages [18| and

HUNTER, A., KONIECZNY, S., 2008, “Measuring Inconsistency through Mini-
mal Inconsistent Sets”. In: 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR’08), pp. 358-366, Sydney,
Australia. Cited on page

IDE, N., PUSTEJOVSKY, J. (Eds.), 2017, Handbook of Linguistic Annota-
tion. Dordrecht, Netherlands, Springer Science+Business Media. ISBN:
9789402408812. Cited on pages [37} [[54] and [162]

IDE, N., PUSTEJOVSKY, J., 2010, “What Does Interoperability Mean, anyway?
Toward an Operational Definition of Interoperability”. In: Proceedings of
the Second International Conference on Global Interoperability for Lan-
guage Resources (ICGL 2010), Hong Kong, China. Cited on page [42]

IDE, N., XIA, F. (Eds.), 2012, Proceedings of the Sizth Linguistic Annotation
Workshop, LAW@QACL 2012, July 12-13, 2012, Jeju Island, Republic of

156

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699

Korea. The Association for Computer Linguistics. ISBN: 978-1-937284-
32-9. Cited on page [161

IVANOVA, A., 2015, Bilexical Dependencies as an Intermedium for Data-Driven
and HPSG-Based Parsing. Tese de Doutorado, Faculty of Mathematics
and Natural Sciences, University of Oslo, nov. Cited on pages [6] and

JEZEK, E., 2016, The Lezicon: An Introduction. Oxford University Press. Cited
on page [§

JIANG, M., HUANG, Y., FAN, J.-W. et al., 2015, “Parsing clinical text: how good
are the state-of-the-art parsers?” BMC Medical Informatics and Decision
Making, v. 15, n. S1 (May). ISSN: 1472-6947. Cited on page [37]

JOHNSON, M., SCHUSTER, M., LE, Q., et al., 2017, “Google’s Multilingual Neu-
ral Machine Translation System: Enabling Zero-Shot Translation”, Trans-
actions of the Association for Computational Linguistics, v. 5, pp. 339—
351. ISSN: 2307-387X. Cited on page [f|

KALOULI, A.-L., CROUCH, R., 2018, “GKR: the Graphical Knowledge Repre-
sentation for semantic parsing”. In: Proceedings of the Workshop on Com-
putational Semantics beyond Events and Roles, pp. 27-37. Association for
Computational Linguistics. Cited on page

KANAYAMA, H., TAKEDA, K., 2017, “Multilingualization of Question Answering
Using Universal Dependencies”. In: Proceedings of Open Knowledge Base
and Question Answering Workshop at SIGIR2017, Tokyo, Japan, aug.
Cited on page

KAY, M., BOITET, C. (Eds.), 2012, COLING 2012, 24th International Conference
on Computational Linguistics, Proceedings of the Conference: Technical
Papers, §-15 December 2012, Mumbai, India. Indian Institute of Technol-
ogy Bombay. Available at: <http://aclweb.org/anthology/C/C12/>.
Cited on page [162

KERY, M. B., RADENSKY, M., ARYA, M., et al., 2018, “The Story in the Note-
book: Exploratory Data Science using a Literate Programming Tool”,
Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems - CHI ’18. Cited on page [44]

KLUYVER, T., RAGAN-KELLEY, B., PEREZ, F., et al., 2016, “Jupyter Note-
books - a publishing format for reproducible computational workflows”. In:
LOIZIDES and SCHMIDT] (2016), pp. 87-90. ISBN: 978-1-61499-648-4.
Cited on page [44]

157

http://aclweb.org/anthology/C/C12/

KONTOKOSTAS, D., BRUMMER, M., HELLMANN, S, et al., 2014, “NLP Data
Cleansing Based on Linguistic Ontology Constraints”, The Semantic Web:
Trends and Challenges, p. 224-239. ISSN: 1611-3349. Cited on page [42]

KUBLER, S., MCDONALD, R. T., NIVRE, J., 2009, Dependency Parsing. Syn-
thesis Lectures on Human Language Technologies. Morgan & Claypool
Publishers. Cited on page [6]

LOIZIDES, F., SCHMIDT, B. (Eds.), 2016, Positioning and Power in Academic
Publishing: Players, Agents and Agendas, 20th International Conference
on Electronic Publishing, Géttingen, Germany, June 7-9, 2016. 10S Press.
ISBN: 978-1-61499-648-4. Available at: <http://ebooks.iospress.nl/
ISBN/978-1-61499-648-4>>. Cited on page

LUOTOLAHTI, J., KANERVA, J., GINTER, F., 2017, “Dep_search: Efficient
Search Tool for Large Dependency Parsebanks”. In: Proceedings of the 21st
Nordic Conference on Computational Linguistics (NoDaLiDa), Gothen-
burg, Sweden. Linkoping University Electronic Press. Cited on pages

and B8

MARCUS, M. P., SANTORINI, B., MARCINKIEWICZ, M. A., 1993, “Building a
Large Annotated Corpus of English: The Penn Treebank”, Computational
Linguistics, v. 19, n. 2, pp. 313-330. Cited on pages [1] and [6]

MARQUEZ, L., CALLISON-BURCH, C., SU, J., et al. (Eds.), 2015, Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015. The Associ-
ation for Computational Linguistics. ISBN: 978-1-941643-32-7. Available
at: <http://aclweb.org/anthology/D/D15/>. Cited on page[162

MAUSAM, SCHMITZ, M., SODERLAND, S., et al., 2012, “Open Language Learn-
ing for Information Extraction”. In: [TSUJIL et al| (2012), pp. 523-534.
ISBN: 978-1-937284-43-5. Cited on page

MCCORD, M. C., 1990, “Slot Grammar”, Lecture Notes in Computer Science, p.
118-145. ISSN: 1611-3349. Cited on page

MCCRAE, J., MONTIEL-PONSODA, E., CIMIANO, P., 2012, “Integrating Word-
Net and Wiktionary with lemon”. In: CHIARCOS, C., NORDHOFF, S.,
HELLMANN, S. (Eds.), Linked Data in Linguistics: Representing and
Connecting Language Data and Language Metadata, Springer Berlin Hei-
delberg, pp. 25-34, Berlin, Heidelberg. ISBN: 978-3-642-28249-2. Cited

on page [42]

158

http://ebooks.iospress.nl/ISBN/978-1-61499-648-4
http://ebooks.iospress.nl/ISBN/978-1-61499-648-4
http://aclweb.org/anthology/D/D15/

MCDONALD, R. T., NIVRE, J., QUIRMBACH-BRUNDAGE, Y., et al., 2013,
“Universal Dependency Annotation for Multilingual Parsing”. In: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 2: Short
Papers [DBL (2013), pp. 92-97. ISBN: 978-1-937284-51-0. Cited on page|[7]

MERKEL, D., 2014, “Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment”, Linux Journal, v. 2014, n. 239 (Mar.). ISSN:
1075-3583. Cited on page

MILLMAN, K. J., PEREZ, F., 2014, “Developing Open-Source Scientific Practice”.
In: STODDEN et al] (2014), p. 448. Cited on page [44]

MONTEMAGNI, S., NIVRE, J. (Eds.), 2017, Proceedings of the Fourth Interna-
tional Conference on Dependency Linguistics, Depling 2017, Pisa, Italy,
September 18-20, 2017. Linkoping University Electronic Press. ISBN: 978-
91-7685-467-9. Available at: <https://aclanthology.info/volumes/
proceedings-of-the-fourth-international-conference-on-dependency-linguisti
Cited on page [153

MOTIK, B., PATEL-SCHNEIDER, P. F., GRAU, B. C. (Eds.), 2012a,
OWL 2 Web Ontology Language Direct Semantics. W3C Rec-
ommendation. Available at https://www.w3.org/TR/2012/
REC-owl2-direct-semantics-20121211/. Cited on page[17

MOTIK, B., PATEL-SCHNEIDER, P. F., PARSIA, B. (Eds.), 2012b, OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntazx.
W3C Recommendation. Available at https://www.w3.org/TR/2012/
REC-owl2-syntax-20121211/. Cited on page

MUGGLETON, S., RAEDT, L. D., POOLE, D., et al., 2012, “ILP turns 20 -
Biography and future challenges”, Machine Learning, v. 86, n. 1, pp. 3—
23. Cited on page

MUNIZ, H., CHALUB, F., RADEMAKER, A., 2017, “CL-CONLLU: dependéncias
universais em Common Lisp”. In: V Workshop de Iniciacao Clientifica em
Tecnologia da Informagao e da Linguagem Humana (TILic), Uberlandia,
MG, Brazil. https://sites.google.com/view/tilic2017/. Cited on pages
2 [and 5]

NIVRE, J., 2006, Inductive Dependency Parsing, v. 34, Text, speech and language
technology. Springer. ISBN: 978-1-4020-4888-3. Cited on pages[5] [6] and 49}

159

https://aclanthology.info/volumes/proceedings-of-the-fourth-international-conference-on-dependency-linguistics-depling-2017
https://aclanthology.info/volumes/proceedings-of-the-fourth-international-conference-on-dependency-linguistics-depling-2017
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

NIVRE, J., 2015, “Towards a Universal Grammar for Natural Language Process-
ing”, Lecture Notes in Computer Science, p. 3—16. ISSN: 1611-3349. Cited

on page [I8

NIVRE, J., DE MARNEFFE, M., GINTER, F., et al., 2016, “Universal Depen-
dencies v1: A Multilingual Treebank Collection”. In: (CALZOLARI et al.

(2016). Cited on pages and

NIVRE, J., AGIC, Z., AHRENBERG, L., et al., 2017. “Universal Dependen-
cies 2.17. Available at: <http://hdl.handle.net/11234/1-2515>. LIN-
DAT/CLARIN digital library at the Institute of Formal and Applied Lin-
guistics (UFAL), Faculty of Mathematics and Physics, Charles University.
Cited on page [7]

NIVRE, J., ABRAMS, M., AGIC, Z., et al., 2018. “Universal Dependencies
2.2”. Available at: <http://hdl.handle.net/11234/1-2837>. LIN-
DAT/CLARIN digital library at the Institute of Formal and Applied Lin-
guistics (UFAL), Faculty of Mathematics and Physics, Charles University.
Cited on page [7]

OLIVA, K., KVETON, P., 2002, “Linguistically Motivated Bigrams in Part-of-
Speech Tagging of Language Corpora”, Prague Bull. Math. Linguistics,
v. 78, pp. 23-36. Cited on page 0]

OWL WORKING GROUP, W., 2009, OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. Available at http://www.w3.org/TR/
owl2-overview/. Cited on page

PALMER, M., XUE, N., 2010, “Linguistic Annotation”. In: (CLARK et al.| (2010)),
p. 238-270. Cited on page

PESCHANSKI, F., 2015. “cl-Jupyter: an enhanced interactive Shell for Common
Lisp”. oct. Available at: <https://github.com/fredokun/cl-jupyter/
blob/master/about-cl-jupyter.pdf>. Accessed on August 4, 2018.

Cited on page

PETROV, S., DAS, D., MCDONALD, R. T., 2012, “A Universal Part-of-Speech
Tagset”. In: (CALZOLARI et al| (2012), pp. 2089-2096. ISBN: 978-2-
9517408-7-7. Cited on page

POLLERES, A., D’AMATO, C., ARENAS, M., et al. (Eds.), 2011, Reason-
ing Web. Semantic Technologies for the Web of Data - 7th Interna-
tional Summer School 2011, Galway, Ireland, August 23-27, 2011, Tu-

torial Lectures, v. 6848, Lecture Notes in Computer Science. Springer.

160

http://hdl.handle.net/11234/1-2515
http://hdl.handle.net/11234/1-2837
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://github.com/fredokun/cl-jupyter/blob/master/about-cl-jupyter.pdf
https://github.com/fredokun/cl-jupyter/blob/master/about-cl-jupyter.pdf

ISBN: 978-3-642-23031-8. Available at: <https://doi.org/10.1007/
978-3-642-23032-5>. Cited on page[161

POPEL, M., ZABOKRTSKY, Z., VOJTEK, M., 2017, “Udapi: Universal API for
Universal Dependencies”. In: DE MARNEFFE et al|(2017b), pp. 96-101.
ISBN: 978-91-7685-501-0. Cited on page [33]

PRZEPIORKOWSKI, A., LENART, M., 2012, “Simultaneous error detection at
two levels of syntactic annotation”. In: IDE and XIA| (2012), pp. 118-123.
ISBN: 978-1-937284-32-9. Cited on page [41]

PURVER, M., SADRZADEH, M., STONE, M. (Eds.), 2015, Proceedings of the
11th International Conference on Computational Semantics, IWCS 2015,
15-17 April, 2015, Queen Mary University of London, London, UK. The
Association for Computer Linguistics. ISBN: 978-1-941643-33-4. Available
at: <http://aclweb.org/anthology/W/Wi5/>. Cited on page[151]

RADEMAKER, A., 2010, A Proof Theory for Description Logics. Tese de

Doutorado, Pontificia Universidade Catoélica do Rio de Janeiro. Cited

on page [53]

RAMBOW, O., 2010, “The Simple Truth about Dependency and Phrase Structure
Representations: An Opinion Piece”. In: Human Language Technologies:
Conference of the North American Chapter of the Association of Compu-
tational Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California,
USA[DBL (2010), pp. 337-340. ISBN: 978-1-932432-65-7. Cited on page|6]

REDDY, S., TACKSTROM, O., COLLINS, M., et al., 2016, “Transforming De-
pendency Structures to Logical Forms for Semantic Parsing”, TACL, v. 4,
pp- 127-140. Cited on page

REDDY, S., TACKSTROM, O., PETROV, S., et al., 2017, “Universal Semantic
Parsing”, Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Cited on pages [13] and

RESNIK, P., LIN, J., 2010, “Evaluation of NLP Systems”. In: CLARK et al.| (2010),
p- 271-295. Cited on page

RIGUZZI, F., BELLODI, E., LAMMA, E., et al., 2013, “BUNDLE: A Reasoner
for Probabilistic Ontologies”. In: RR, v. 7994, Lecture Notes in Computer
Science, pp. 183-197. Springer. Cited on page

RUDOLPH, S., 2011, “Foundations of Description Logics”. In: POLLERES et al.
(2011)), pp. 76-136. ISBN: 978-3-642-23031-8. Cited on page .

161

https://doi.org/10.1007/978-3-642-23032-5
https://doi.org/10.1007/978-3-642-23032-5
http://aclweb.org/anthology/W/W15/

RUMSHISKY, A., STUBBS, A., 2017, “Machine Learning for Higher-Level Lin-
guistic Tasks”. In: IDE and PUSTEJOVSKY] (2017), p. 333-351. ISBN:
9789402408812. Cited on page

SAG, I. A.,, WASOW, T., BENDER, E. M., 2003, Syntactic Theory: A Formal
Introduction. 2 ed. Stanford, CA, CSLI. Cited on pages [2] and 4|

SCHUSTER, S., MANNING, C. D., 2016, “Enhanced English Universal Dependen-
cies: An Improved Representation for Natural Language Understanding
Tasks”. In: (CALZOLARI et al.| (2016). Cited on page

SCHWABE, D., ALMEIDA, V. A. F., GLASER, H., et al. (Eds.), 2013, 22nd In-
ternational World Wide Web Conference, WWW 13, Rio de Janeiro,
Brazil, May 153-17, 2013. International World Wide Web Conferences
Steering Committee / ACM. ISBN: 978-1-4503-2035-1. Available at:
<http://dl.acm.org/citation.cfm?id=2488388>. Cited on page [153|

SCHWARTZ, R., ABEND, O., RAPPOPORT, A., 2012, “Learnability-Based Syn-
tactic Annotation Design”. In: KAY and BOITET| (2012), pp. 2405-2422.
Cited on page [47]

SENNRICH, R., HADDOW, B., 2015, “A Joint Dependency Model of Morpho-
logical and Syntactic Structure for Statistical Machine Translation”. In:

MARQUEZ et al. (2015)), pp. 2081-2087. ISBN: 978-1-941643-32-7. Cited
on page 5]

SHETH, A. P., STAAB, S., DEAN, M., et al. (Eds.), 2008, The Semantic Web
- ISWC 2008, Tth International Semantic Web Conference, ISWC 2008,
Karlsruhe, Germany, October 26-30, 2008. Proceedings, v. 5318, Lecture
Notes in Computer Science. Springer. ISBN: 978-3-540-88563-4. Avail-
able at: <https://doi.org/10.1007/978-3-540-88564-1>. Cited on

page [I56]

SILVEIRA, N., MANNING, C. D., 2015, “Does Universal Dependencies need a
parsing representation? An investigation of English”. In: HAJICOVA and
NIVRE (2015)), pp. 310-319. ISBN: 978-91-637-8965-6. Cited on page [47]

SILVEIRA, N., DOZAT, T., DE MARNEFFE, M.-C., et al., 2014, “A Gold Stan-
dard Dependency Corpus for English”. In: Proceedings of the Ninth In-

ternational Conference on Language Resources and Evaluation (LREC-

2014). Cited on page [49]

STEEDMAN, M., 2000, The Syntactic Process. MIT Press. Cited on page 2}

162

http://dl.acm.org/citation.cfm?id=2488388
https://doi.org/10.1007/978-3-540-88564-1

STEPANEK, J., PAJAS, P., 2010, “Querying Diverse Treebanks in a Uniform
Way”. In: [CALZOLARI et al| (2010). ISBN: 2-9517408-6-7. Cited on

page [38|

STODDEN, V. C., LEISCH, F., PENG, R. D., 2014, Implementing Reproducible
Research. CRC Press. Cited on page [159

STRAKA, M., STRAKOVA, J., 2017, “Tokenizing, POS Tagging, Lemmatizing and
Parsing UD 2.0 with UDPipe”. In: Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pp. 8899, Vancouver, Canada, August. Association for Computational
Linguistics. Cited on page

SUKHAREVA, M., CHIARCOS, C., 2016, “Combining Ontologies and Neural Net-
works for Analyzing Historical Language Varieties. A Case Study in Mid-
dle Low German”. In: [CALZOLARI et al.|(2016). Cited on page

SZABO, Z. G., 2017, “Compositionality”. In: ZALTA, E. N. (Ed.), The Stanford
Encyclopedia of Philosophy, summer 2017 ed., Metaphysics Research Lab,
Stanford University. Cited on page

TSUJIL, J., HENDERSON, J., PASCA, M. (Eds.), 2012, Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, EMNLP-CoNLL, Jeju Is-
land, Korea, jul. ACL. ISBN: 978-1-937284-43-5. Available at: <http:
//www .aclweb.org/anthology/K/K12/#2012_0>>. Cited on page [L58]

VAN VALIN, JR, R. D., 2004, An Introduction to Syntaxr. Cambridge University
Press. Cited on page

VAN VALIN, JR, R. D., LAPOLLA, R. J., 1997, Syntaz: Structure, Meaning and
Function. Cambridge University Press. Cited on page

WALLIS, S., 2003, “Completing Parsed Corpora”. In: ABEILLE| (2003), p. 61-71.
ISBN: 9789401002011. Cited on pages [37 and [38

WAY, A., 2010, “Machine Translation”, The Handbook of Computational Linguistics
and Natural Language Processing, (Jun), pp. 531-573. Cited on page .

WEBBER, B., WEBB, N., 2010, “Question Answering”, The Handbook of Compu-
tational Linguistics and Natural Language Processing, (Jun), pp. 630—-654.
Cited on page [4

163

http://www.aclweb.org/anthology/K/K12/#2012_0
http://www.aclweb.org/anthology/K/K12/#2012_0

WEITZ, E., 2009, Hunchentoot - The Common Lisp web server formerly known
as TBNL. Available at: <https://edicl.github.io/hunchentoot/>.
Accessed on August 4, 2018. Cited on page

WHITE, A. S., REISINGER, D., SAKAGUCHI, K., et al., 2016, “Universal De-
compositional Semantics on Universal Dependencies”, Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing.
Cited on pages [4 and [14]

WISNIEWSKI, G., LACROIX, O., 2017, “A Systematic Comparison of Syntac-
tic Representations of Dependency Parsing”. In: | DE MARNEFFE et al.
(2017D)), pp. 146-152. ISBN: 978-91-7685-501-0. Cited on page [47]

WOLFRAM RESEARCH, INC. “Mathematica, Version 11.3”. Champaign, IL,
2018. Cited on page [44l

WU, Y., SCHUSTER, M., CHEN, Z., et al., 2016, “Google’s Neural Machine Trans-
lation System: Bridging the Gap between Human and Machine Transla-
tion”, Computing Research Repository/arXiv, v. abs/1609.08144. Cited on

page [Bl

YAO, X., DURME, B. V., 2014, “Information Extraction over Structured Data:
Question Answering with Freebase”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, ACL 2014,
June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers DBL
(2014)), pp. 956-966. ISBN: 978-1-937284-72-5. Cited on page

ZEMAN, D., 2008, “Reusable Tagset Conversion Using Tagset Drivers”. In: Pro-
ceedings of the International Conference on Language Resources and Eval-
uation, LREC 2008, 26 May - 1 June 2008, Marrakech, Morocco DBL
(2008). Cited on page

ZEMAN, D., POPEL, M., STRAKA, M., et al., 2017, “CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies”. In: [HA-
JIC and ZEMAN]| (2017), pp. 1-19. ISBN: 978-1-945626-70-8. Cited on

page 1]

ZETTLEMOYER, L. S., COLLINS, M., 2005, “Learning to Map Sentences to Log-
ical Form: Structured Classification with Probabilistic Categorial Gram-
mars”. In: UAI ’05, Proceedings of the 21st Conference in Uncertainty in

Artificial Intelligence, Edinburgh, Scotland, July 26-29, 2005 |DBL (2005)),
pp. 658-666. ISBN: 0-9749039-1-4. Cited on page [5

164

https://edicl.github.io/hunchentoot/

ZHANG, Y., TIRYAKI, F., JIANG, M., et al., 2018, “Parsing Clinical Text: How
Good are the state-of-the-art Deep Learning Based Parsers?” 2018 IFEE
International Conference on Healthcare Informatics Workshop (ICHI-W),
(Jun). Cited on page |37,

165

