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flexão. 3. Distribuição de curvatura. 4. Estimativa
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

MODELAGEM E ESTIMATIVA DE PARÂMETROS DA CONEXÃO DE TOPO

DE RISER FLEXÍVEL/ENRIJECEDOR À FLEXÃO

Yangye He

Outubro/2019

Orientadores: Murilo Augusto Vaz

Marcelo Caire

Programa: Engenharia Oceânica

A conexão de topo do riser flex́ıvel é uma região cŕıtica para a (re) avaliação de

vida à fadiga devido à grande variação de tração/curvatura e incertezas de mode-

lagem. O efeito do enrijecedor à flexão na distribuição de curvatura traz incertezas

inerentes. Neste trabalho, um modelo de flexão de viga de grandes deslocamentos é

desenvolvido para representar a conexão de topo do riser com enrijecedor à flexão

e com interface de I-tube considerando os comportamentos de flexão não linear do

riser e enrijecedor à flexão sujeito a uma tração de topo com um ângulo de rotação.

A formulação matemática correspondente, com condições de contorno em múltiplos-

pontos, é numericamente resolvida por um procedimento iterativo em Mathematica.

Resposta da deflexão do sistema riser/enrijecedor e avaliações paramétricas do com-

primento do I-tube e do raio de curvatura da luva são analisadas em um estudo de

caso, incluindo a curvatura da extremidade final e forças de contato do riser com en-

rijecedor à flexão e luva. Uma abordagem proposta de monitoramento composta por

girômetros instalados ao longo do comprimento do riser/enrijecedor à flexão combi-

nado com o algoritmo de Levenberg-Marquardt (L-M), é numericamente investigada

para estimar a tração efetiva desconhecida e a resposta elástica do poliuretano no

sistema riser com enrijecedor à flexão. Uma investigação preliminar de viabilidade

é implementada em um estudo de caso com os dados de girômetros numericamente

gerados pelas simulações de Monte Carlo. O número e localizações de sensores,

condições de carga e modelo de topo podem influenciar significativamente as esti-

mativas. Além disso, um teste de flexão em real escala do riser/enrijecedor à flexão

utilizando medições baseadas em imagem é apresentado com alguns parâmetros des-

conhecidos. A análise inversa, usando o algoritmo L-M, é empregada no sistema de

teste de flexão com um modelo direto de elementos finitos e medições de configuração

para estimar os parâmetros de tração e de material de poliuretano, o que indica que

a abordagem proposta é confiável para estimar os parâmetros na conexão da parte

topo do riser.
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The flexible riser top connection is a critical region for fatigue lifetime

(re)assessment due to large tension/curvature variation and modeling uncertain-

ties. Both the bend stiffener effect on the curvature distribution and top tension

time series could be its inherent uncertainties. In this work, a large deflection beam

bending model is developed to represent the flexible riser-bend stiffener top con-

nection with I-tube interface, considering the nonlinear bending behaviors of riser

and bend stiffener subjected to a top tension with a rotated angle. The correspond-

ing mathematical formulation with multipoint boundary conditions is numerically

solved by an iterative procedure in Mathematica. Large deflection response of the

top connection and parametric assessments of I-tube length and sleeve curved ra-

dius are analyzed in a case study, including the end-fitting curvature and contact

forces of riser with bend stiffener and sleeve. A proposed monitoring approach

composed by gyrometers installed along the riser/bend stiffener length combined

with the Levenberg-Marquardt (L-M) algorithm, is investigated in riser/bend stiff-

ener system to numerically estimate the unknown top tension and polyurethane

elastic response. A preliminary feasibility investigation is implemented in a case

study with the gyrometer data numerically generated by Monte Carlo simulations.

The sensor number and arrangement, loading conditions and direct top connection

model may significantly influence the estimations. Furthermore, a full-scale bending-

tension test of riser/bend stiffener with the image-based measurements is presented

with unknown material response. The inverse analysis using L-M algorithm is em-

ployed in the bending-tension test system combined with a direct finite element

model and configuration measurements to simultaneously estimate top tension and

polyurethane material parameters, which indicates that the proposed approach is

reliable for parameter estimation in the riser top connection.
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Chapter 1

Introduction

Since early 1970’s, the flexible risers have been widely applied in offshore oil fields to

connect the floating production systems (FPSO) and subsea facilities, especially in

harsh and deep environments. There are more than 3500 dynamic unbounded flex-

ible risers in worldwide operation in 2016 [4], such as offshore Brazil, West Africa,

North Sea and Gulf of Mexico oil fields. The flexible pipe can meet field specifica-

tion: ultra deepwater up to 3000 m, higher temperatures up to 170◦C, and higher

pressures up to 70 MPa, 90 MPa and 120 MPa respectively for 10”, 8” and 6” inter-

nal diameters (ID) on dynamic riser applications [5]. Flexible pipes are also used in

the shallow and medium water depth compared to the rigid steel flowlines ranging

from 2” to 22” ID. In addition, there are applications of flexible flowlines on the

seabed and jumpers with a considerable number and kilometers.

A flexible riser is generally made up of several different layers for specific field

development requirements. Simple flexible pipes consist only of 4 layers for water

transport with medium pressure, while the most complex flexible pipes may have

up to 19 layers. The main components are leakproof thermoplastic barriers and

corrosion resistant steel wires. The helically wound steel wires give the structure its

high pressure resistance and excellent bending characteristics, which provides the

flexibility and superior dynamic behavior. For example, a typical 8” ID flexible pipe

can be bent safely to a radius of 2 m or less. Flexibility makes it possible to spool

the pipe on a reel or in a carousel for the efficient and quick transportation and

installation. The average laying speed is commonly 500 m/h as the flexible pipe

comes in a continuous length [5]. Flexible pipe has a better corrosion resistance

than steel pipe as its steel wires are not in direct contact with the conveyed fluid.

Advantages of flexible pipe make it gaining more popularity, including superior

dynamic behavior, prefabrication, storage in long lengths on reels, reduced transport

and installation costs, and suitability for use with compliant structures.

The riser top connection is a critical area for the dynamic behavior and fatigue

life assessments of the flexible risers, which sustains the highest tensions and often
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Figure 1.1: Flexible risers supported by the FPSO top mounted turret [1].

the maximum curvatures in the riser system. Bend stiffener, an ancillary polymeric

structure with a conical shape, is employed in the top connection to protect flexible

riser against excessive bending and accumulative fatigue damage. The riser top

connection usually presents two main floating unit interface configurations: i) end-

fitting and bend stiffener directly connected to the riser balcony or ii) riser connected

to the floating unit in the top end of an I-tube, reducing the end-fitting bending

loading, and bend stiffener assembled to a bellmouth with a given inclination in

relation to the I-tube longitudinal axis. Figure 1.1 illustrates the second flexible

riser-bend stiffener top connection with I-tube configuration in a FPSO top mounted

internal turret [1], which is similar to a spread moored FPSO with riser balcony.

The objective of this work is to analyze the complex flexible riser-bend stiffener

top mechanical responses, and furthermore propose a monitoring approach with

parameter estimation methodology to reduce modeling uncertainties in the riser top

connection. The flexible pipe cross-section and end fitting, I-tube bellmouth and

bend stiffener in the riser top connection together with its main failure models are

introduced in Section 1.1; the detailed objective of this work is presented in Section

1.2; the organization of this thesis is summarized in Section 1.3.

1.1 Flexible riser-bend stiffener top connection

1.1.1 Flexible pipe cross section and end fitting

The unbounded flexible pipe is composed of several independent layers interacting

with each other with low bending stiffness combined with high axial and torsional

stiffness. Figure 1.2 presents a typical flexible riser cross section [2]. The main layers
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are identified: i). the interlocked metallic carcass provides the collapse resistance;

ii). the extruded polymer internal pressure sheath is used for the internal fluid

integrity; iii). interlocked metallic pressure armors support the internal pressure

sheath and system internal pressure loads in the radial direction; iv). tensile armor

layers typically consist of the flat, round, or shaped metallic wires, in two or four

layers helically cross-wound at an angle range from 20◦ and 60◦, to sustain tensile

loads and internal pressure totally or partially; v). the extruded polymer outer

sheath can provide external fluid integrity.

Main failure models of flexible pipes are concerned in the design process with

its increasing applications in deep and utra-deep water: critical collapse pressure

of carcass [6], overbending, radial and lateral bucking of tensile armour wires [7],

rupture of tensile armour wire due to fatigue or abrasion [8]. Large bending forces

may also result in the unlocking of the inter layer (carcass and pressure armour).

And the corrosion of the tensile and pressure armour wires and degradation of the

polymer layers by the flooded annulus environment can rapidly increase the fatigue

damage of flexible pipe [9].

Figure 1.2: Schematic of typical flexible riser cross section [2].

Figure 1.3: End fitting of an unbounded flexible pipe [2].

End fittings are the terminations of flexible pipes, which is illustrated in Fig. 1.3.

The end fittings may be built during pipe manufacture or installed in the field. The
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main functions of the end fittings are to terminate all the strength members in the

construction of flexible pipes and ensure all axial loads and bending moments can

be transmitted into the end connector on the vessel without affecting the sealing of

fluid-containing layers. The end fitting effects the tensile armour stress calculation

significantly for the bending problem [10, 11], which indicates this region can be

critical in fatigue analyses.

1.1.2 I-tube bellmouth

The I-tube bellmouth system is usually designed to receive the bend stiffener with

an end angle, as adopted by the turret moored FPSO in Schiehallion field [1, 12]

and the spread moored FPSOs in Albacora Leste field [13], for examples. Figure 1.4

shows the I-tube bellmouth configuration in a FPSO with riser balcony. A polymeric

curved plate sleeve, called “trumpet”, is assembled at the bend stiffener top base

and the bellmouth adapter, to avoid riser overbending by an angle deviation inside

the I-tube. The polymeric sleeve can also reduce the wear between the riser and

I-tube and prevent possible rupture of the riser outer sheath. The contact pressure

and relative displacement of riser outer sheath with the I-tube bellmouth interfaces

are considered to be the cause of excessive wear [13–15] for the I-tube configuration.

Figure 1.4: Riser-bend stiffener top connection with I-tube interface [3].

1.1.3 Bend stiffener

Bend stiffeners are conical polyurethane structures placed outside of flexible riser

top, as shown in Fig.1.4, to ensure a smooth transition with the floating production

units, which transfers the shear forces and bending moments principally from the
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riser to the support structure. The design of bend stiffener is usually driven by the

criteria of fatigue lifetime and minimum bending radius (MBR) of flexible riser [14,

15]. The main design parameters are the stiffener material, the stiffener length and

the stiffener maximum external diameters, which greatly influence the mechanical

behaviors of bend stiffeners. The polyurethane nonlinear elastic behavior [16, 17],

nonlinear viscoelastic behavior for time domain [18] and steady-state formulations

[19] of bend stiffener were recently investigated for the riser top connection.

1.2 Objective and methodology

The global dynamic analysis of flexible riser is usually implemented through a global

finite element model with beam elements subjected to stochastic environmental load-

ing and operational conditions. The effects of bend stiffener and I-tube interface in

the curvature distribution of riser top connection can be either directly incorporated

in the global dynamic model or separately assessed by an intermediate quasi-static

model [18]. The time series of the effective top tension and curvature distribution

are then used as input into a local cross-sectional analytical or numerical model

to calculate the armour wire stresses. A stress transfer function can alternatively

be employed to convert the obtained time-domain forces and moments in global

analysis into tensile armour stresses [20]. The lifetime assessment procedure is fol-

lowed by cycle counting the resulting irregular stress time series with the Rainflow

technique. An appropriate S −N curve selection is an important aspect for fatigue

damage estimation due to the possibility of corrosive annulus environment caused

by gas/water permeation through polymeric layers degradation mechanisms.

Due to the large degree of uncertainties associated to the lifetime estimation

procedure, a safety factor of 10 is usually adopted (API 17J [21], DNV-OS-F201

[22]). If a comprehensive monitoring system is employed, a reduction of the safety

factor conservatism may be achieved (API 17B [2]) and is being increasingly fa-

cilitated by sensor technology development combined with larger capacity of data

storage and processing. The bend stiffener polyurethane mechanical response not

only presents a nonlinear loading rate and temperature dependency but is also sub-

jected to weather aging during operation, which may affect its mechanical behavior

over time. The top tension, employed for riser local cross-section stress calculation,

is usually obtained from global dynamic analyses performed under selected envi-

ronmental conditions, if direct measurement is not available. As a consequence,

both the bend stiffener effect on the curvature distribution and the top tension time

series present inherent uncertainties for riser lifetime (re)assessment. A more real-

istic modeling approach combined with an inverse problem methodology to reduce

modeling uncertainties in the riser-bend stiffener top connection is proposed by the
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Figure 1.5: A proposed methodology for riser top connection lifetime assessment.

author for the further flexible riser lifetime (re)assessment with less conservatism,

as illustrated in Fig.1.5. Once the unknown parameters are estimated by the inverse

analysis, the direct model can be employed to calculate the curvature distribution.

The curvature results are then used together with the top tension as input into a

local cross-sectional analysis model for tensile armour stress calculation, followed by

more accurate fatigue assessment.

In this work, a modeling approach of flexible riser-bend stiffener top connec-

tion and an inverse problem methodology for multiple parameter estimation in the

riser/bend stiffener system are studied in detail as follows:

• An intermediate quasi-static analytical model capturing the complex interac-

tions of riser/bend stiffener with I-tube interface is proposed and investigated

for the flexible riser top connection;

• A monitoring approach composed by gyrometers installed along the bend

stiffener length combined with the inverse problem methodology (Levenberg-

Marquardt algorithm) and a direct riser/bend stiffener analytical model is

proposed to numerically estimate the modeling uncertainties: polyurethane

hyperelastic response and effective top tension;

• Furthermore, the proposed inverse analysis approach is applied in a full-scale

riser/bend stiffener bending-tension test with optical configuration measure-

ments to estimate the loading condition and polyurethane material response by

using a direct finite element model and the Levenberg-Marquardt algorithm.
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1.3 Organization of the thesis

The analysis of flexible riser-bend stiffener top connection and multiple parameter

estimation in the riser/bend stiffener system are investigated in this thesis. Figure

1.6 illustrates the organization structure of the thesis. A literature review is given

in the Chapter 2, followed by the analytical model of riser-bend stiffener top con-

nection with I-tube interface in Chapter 3 and the inverse problem methodology in

Chapter 4, and the multiple parameter estimation with experimental measurements

is presented in Chapter 5. Finally, the conclusions of this work and suggestions to

future work are given in Chapter 6
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Figure 1.6: Overview of the organization structures of the thesis.

Chapter 2 reviews the literature on the analysis of the riser-bend stiffener top

connection system, monitoring techniques in the riser top connection in field appli-

cations, the Levenberg-Marquart (L-M) algorithm for parameter estimation, flexible

riser bending tests, and optical monitoring techniques. The riser/bend stiffener anal-

ysis is usually considered by an analytical model or finite element model based on

the large deflection beam. A number of monitoring techniques are currently avail-

able for the flexible riser in field or laboratory tests. The L-M algorithm is widely

regarded as a robust methodology for parameter estimation.

In Chapter 3, a large deflection beam model is developed to represent the riser

top connection with I-tube considering that the bellmouth transition area with the
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polymeric sleeve is represented by a straight rigid surface followed by a curved sec-

tion. The analytical model incorporates the riser nonlinear bending behavior and

the nonlinear elastic symmetric response of bend stiffener polyurethane. The mathe-

matical formulation of the statically indeterminate system is presented which results

in three systems of coupled differential equations combined with the corresponding

multipoint boundary conditions to be numerically solved by an iterative procedure.

The large deflection assessment of top connection with I-tube interface, and sleeve

geometry and I-tube length influence are investigated by a case study.

In Chapter 4, an inverse problem methodology for multiple parameter estimation

in the riser/bend stiffener system is proposed, consisting of gyrometers installed

along the bend stiffener length, the L-M algorithm, and the direct analytical model

proposed in Chapter 3. For the preliminary investigation purpose, the gyrometer

data is numerically estimated by Monte Carlo simulations followed by a case study

to investigate the number of sensors (up to 9) and arrangement influence on the

inverse parameters estimation and methodology application feasibility for different

loading conditions.

Chapter 5 presents the multiple parameter estimation in a bending-tension test

of the riser/bend stiffener system with optical measurements. A full-scale bending-

tension test of riser/bend stiffener system is conducted on the laboratory vertical rig.

The configurations of the riser and bend stiffener sample during the test is measured

by a proposed optical image-based technique. A finite element model is developed to

represent the bending-tension test. Simultaneous estimation of material parameters

and top tension in the riser/bend stiffener system is implemented based on the L-M

algorithm combined with the direct finite element model and optical configuration

measurements.
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Chapter 2

Literature Review

This chapter presents a literature review of the works relevant to the proposed

study in this thesis. Section 2.1 reviews the works on the analysis of flexible riser-

bend stiffener top connection. Section 2.2 reviews monitoring techniques used in

the riser top. Section 2.3 provides an overview of the inverse problem methodology

for parameter estimation, with an emphasis on the Levenberg-Marquardt method

which is adopted in this work. Previous studies on bending test of flexible risers are

reviewed in Section 2.4. Section 2.5 reviews experimental measurement techniques

used for the riser/bend stiffener system. Finally, Section 2.6 provides a summary of

the literature review.

2.1 Analysis of flexible riser-bend stiffener top

connection

Extreme and fatigue loading conditions have to be taken into account in the riser top

connection design with its ancillaries of the bend stiffener and I-tube bellmouth. The

riser bending in the top connection must be above the allowable MBR under extreme

loading conditions. A global dynamic analysis of the riser is generally implemented

by a global finite element model subjected to stochastic environment loading and

operational conditions. The resulting top tension and angle can be applied into

an intermediate local quasi-static model of riser top connection to calculate the

curvature distribution. The obtained top tensions and curvature distributions are

then applied to a local cross-section model to analyze the tensile armour wire stresses

for the riser lifetime (re)assessment (SMITH [23]). API 17J [21], API 17L1 [14] and

API 17L2 [15] establish the industry analysis considerations on static and dynamic

riser.

A quasi-static intermediate large deflection beam model is usually used to repre-

sent the bending of the flexible riser top connection with an attached bend stiffener.
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BOEF and OUT [24] developed an analytical beam model with large deflection

for the riser/bend stiffener system. LANE et al. [25] pointed out that a three-

dimensional finite element analysis of the riser/bend stiffener system is required for

the assessment of stress concentration points in the interfaces between the metallic

and polyurethane. VAZ et al. [16] extended the linear elastic symmetric material

to nonlinear elastic asymmetric material based on the large deflection beam model,

in which the neutral axis is eccentric due to shift from the cross-section centroid.

Meanwhile, the bend stiffener and riser were modeled separately, which allows the

calculation of the contact force. CAIRE et al. [26] studied the riser nonlinear bend-

ing curvature and moment relationship effect on the riser/bend stiffener system

response based on the linear elastic beam bending model. CAIRE et al. [18] ana-

lyzed the nonlinear viscoelastic responses of polyurethane in the riser/bend stiffener

system by using the large displacement beam bending model, and a steady-state

formulation with the nonlinear viscoelastic bend stiffener was presented by CAIRE

and VAZ [19]. The design optimization of bend stiffener for the riser top connection

has been implemented recently by SMITH [23], TANAKA et al. [27], SODAHL and

OTTESEN [28] and DROBYSHEVSKI [29]. MENICONI and LOPES [30] and DE-

MANZE et al. [31] proposed approaches for the bend stiffener lifetime assessment,

which is affected significantly by the interface between the polyurethane and the

inserted steel and body temperature.

The more realistic analysis approaches capturing the complex interaction of riser

with bend stiffener and I-tube interface were concerned and employed for the flex-

ible riser top connection analysis. Recently, CLEVELARIO et al. [3] presented a

dynamic riser top connection test to evaluate the wear between the polymeric sleeve

and riser outer sheath. PERDRIZET et al. [32] described a three-dimensional fi-

nite element model considering the riser end fitting effect and the interaction of

riser with bend stiffener combined with a full-scale riser/bend stiffener bending test.

ELOSTA et al. [33] proposed a finite element pipe-in-pipe model for the riser/bend

stiffener system, which represents the interaction between riser and bend stiffener

and captures the riser extended length.

2.2 Monitoring techniques in the riser top

A number of monitoring techniques were developed in the flexible riser top for a

continuous integrity assessment, considering the damages caused by stress concen-

tration, outer sheath abrasion, rupture of the tensile armors, fatigue failure due to

the operational water depth, and corrosions. The integrity assessment monitoring

techniques were employed or proposed in field (MARINHO et al. [8]): percolated

gas surface monitoring for the riser annular space pressure; nitrogen injection in
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the annular space and visual inspection through video camera for the riser outer

sheath damage and deformation; magnetic system or camera video to monitor the

riser torsion; electromagnetic stress measurement, acoustic emission or optical fiber

sensors for the monitoring of tensile armour wire rupture.

The direct monitoring of flexible riser parameters in its top region were also

applied to reduce lifetime assessment uncertainties. The tensile armor strain mea-

sured by optical fiber sensors and curvature estimation through strain gauges or

accelerometers were investigated previously. ANDERSEN et al. [34] demonstrated

the feasibility of using Fiber Bragg Grating sensing technology for strain monitor-

ing in flexible risers. Strain sensors were embedded into a groove with epoxy in

the inner tensile armour layer along its entire length in a full-scale test. WEPPE-

NAAR and KRISTIANSEN [35] described a system based on Fiber Bragg Grating

integrated in tensile armour wires, which would work as strain sensors at selected

points along the pipe, monitoring strain data at critical locations, such as top con-

nection. MORIKAWA et al. [36, 37] described the direct wire optical monitoring

system called MODA in offshore operation, where all the wires in the riser external

tensile armour layer were instrumented with Fiber Bragg Grating strain sensors.

A window in the polymeric outer sheath of the pipe was temporarily opened to

install the sensors and then repaired by a protective and anticorrosive layer. GAS-

PARETTO [38] presented results from MODA system installed near the top end

fitting to monitor the flexible riser end fitting fatigue life.

An alternative method is to monitor the curvature along the top connection

length of riser and use it as an input to riser local analytical or numerical models

to calculate the tensile armour stresses, which requires a certain number of sen-

sors to ensure the result accuracy. LYONS et al. [39, 40] and TRARIEUX et al.

[41] described the monitoring system called Foinaven Umbilical Monitoring Sys-

tem (FUMS) on the FPSO vessel Petrojarl IV. The sensors measured curvatures at

three locations in two orthogonal directions in the region of the umbilical bend stiff-

ener. Curvatures were detected by using strain gauges configured in pairs for each

location and direction to ensure tension and temperature effects were eliminated.

Subsequently, the acquired FUMS data were post-processed. ROBERTS et al. [42]

proposed a monitoring system by inserting the fiberoptic strain sensors into the

bend stiffener to determine the riser curvature along its length in the hang-off area.

ELOSTA et al. [33] presented a monitoring system called Morphopipe, developing a

dedicated polyurethane layer in an external riser annulus and embedding a network

of accelerometers MEMS (Micro Electronic Mechanics Sensor), to measure the three

dimensional curvature and twisting of pipes in topside dynamic area.

In the present work, a monitoring approach is proposed to measure the rota-

tion angles of riser top. For FPSO riser’s life extension in Bijupira-Salema oil field,
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Shell Brazil installed 3 motion sensors from 4Subsea [43] in order to acquire the

real data for riser and vessel motion. The motion sensor is an autonomous subsea

sensor and data logger containing a 3-axis MEMS accelerometer and 3-axis MEMS

gyroscope, with its operational frequencies from 10 Hz up to 1024 Hz. Chevron

Tahiti’s riser monitoring system in the riser hang-off region was designed by 2H Off-

shore [44] through several INTEGRIpod motion sensors [45], which measures axial

acceleration, planar angular velocity, linear displacement, and static and dynamic

inclination. For the three dimensional condition in field, the modified algorithms

combined with numerical global dynamic model can be incorporated in the moni-

toring system to transform the monitored data into a plane problem.

2.3 Inverse problem methodology

The inverse problem is a process of calculating the causal factors from a set of obser-

vations. In a direct problem, the solution is sought with known boundary and initial

conditions and all modeling parameters. Not all these parameters can be directly

observed in an inverse problem. Instead, discrete measurements of the dependent

variables in the same system can be used to estimate the unknown parameters.

Generally, inverse problems are solved by minimizing an objective function with

some stabilization techniques used in the estimation procedure. The regularization

method can be related to damped least squares methods, such as the one due to

Levenberg[46] and Marquardt[47]. The so-called Levenberg-Marquardt Method is

a powerful iterative technique for nonlinear parameters estimation, which provides

a compromise between the Steepest Descent and Gauss methods with the initial

iterations close to the Steepest Descent method and the final iterations close to the

Gauss method (BECK and ARNOLD [48]). The Steepest Descent method gives a

direction for the iterative step but not a step size. Since the step size is arbitrary,

this method can be very inefficient particularly as the minimum is approached. If

the problem is ill-conditioned, especially near the initial guess, it is difficult to use

the Gauss method for parameter estimations. The Levenberg-Marquardt method

introduces constraints into the minimization of the summation of squared residu-

als to damp oscillation and instabilities due to the ill-conditioned character of the

problem, by taking advantage of the Steepest Descent method.

The Levenberg-Marquardt method has been widely used in engineering problems

of parameter estimation. OZISIK and ORLANDE [49] introduced the Levenberg-

Marquardt method for parameter estimation in heat transfer problem. MOLIMARD

et al. [50] presented the identification of four orthotropic plate stiffness using a sin-

gle open-hole tensile test. FU et al. [51] described the parameter determination of

double-ellipsoidal heat source model and its application in the multi-pass welding
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process. SEON et al. [52] assessed the 3D shear stress-strain properties of composites

using digital image correlation and finite element analysis based on the Levenberg-

Marquart algorithm for minimization of weighted least squares error between the

measured and finite element model predicted strains. HUANG et al. [53] presented

the material parameter identification in functionally graded structures with mea-

sured displacements. The numerical results revealed that the Levenberg-Marquart

algorithm not only has high accuracy and stable convergence, but is also robust to

the effect of measured displacement noise. KAZEMI et al. [54] proposed an inverse

approach for load identification of a viscoplastic material with some unknown vis-

coplastic constants, where both of the unknown constants and the applied load are

simultaneously identified using two nested inverse algorithms. The damped Gauss

and the Levenberg-Marquart methods are used for the load identification and un-

known material parameters respectively.

2.4 Bending test of flexible pipe

Several full-scale flexible riser bending tests have been conducted in MARINTEK

(Norway) [55, 56], COPPE-UFRJ (Brazil)[57], and IFP (France) [32, 58, 59] respec-

tively. TAN et al. [55] presented a 4” flexible pipe bending test. The relationship

between the pipe bending curvature and moment was measured at three different

internal pressure levels. The extensometers were used to measure the strain in the

pipe. SAEVIK [56] presented a full-scale fatigue test of 8” flexible riser with a length

of 14.5 m. The horizontal test rig enables tension loading by a right end hydraulic

cylinder and bending moment by means of two hydraulic cylinders moving the rock-

erhead in the left end. A bellmouth made of two flat steel plates was applied to

control the curvature during dynamic bending. SOUSA et al. [57] presented a 2.5”

flexible pipe bending-tension test with a free span of 4.66 m and 1 up to 4 broken

wires in its outer tensile armour. Tensile and transverse loads are simultaneously

imposed on the pipe respectively by one hydraulic actuator in one end of pipe and

another transverse actuator resting on the pipe. Seven displacement transducers

were used to measure the axial displacements and the transverse displacement along

the pipe. LEROY et al. [58] presented a bending test of 6” flexible pipe with a

length of 8 m. One end fitting is anchored on the ground, and the other end fitting

was cyclically moved up and downwards in vertical plane. The curvature of pipe

was measured by a dedicated image treatment tool. LEROY and ESTRIER [59] in-

troduced a bending test of 4” flexible pipe with 8 m length. Imposed rotations and

translation in the end fittings were chosen to obtain constant variations of curvature

along the pipe. Parallel strain gauges were used to obtain both axial and transverse

strain variations. PERDRIZET et al. [32] presented a 8” riser bending-tension test
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with bend stiffener. The axial tension and bending cycles are respectively applied

by the end tension jack and the swinging table rotations.

2.5 Experimental measurements

The conventional techniques, LVDTs (linear variable displacement transformers),

potentiometers and strain gauges, to measure the structure displacements, rotations

or curvatures are considered to be complex and limited for the riser/bend stiffener

bending test. Potentiometers or LVDTs track the vertical or horizontal displace-

ment. The mounting of these devices requires a complex structure to ensure the

small influence of structure vibration. And the size of sensors is specialized which

depends on the sample displacement. Strain gauges are easier to mounting, while

its application in the bend stiffener may cause three dimensional or localized error

due to the conical shape of bend stiffener.

An image-based approach to track the displacements of riser/bend stiffener sys-

tem is proposed for the bending test applying image acquisition with luminescent

targets, and image processing and analysis. The advantages of the proposed method

are non-intrusive and allowing spatial and temporal measurements at custom posi-

tions and regions of interest. RAMESH et al. [60] pointed out the application of

binary images makes the vision system faster and less expensive than those operation

on color or gray-level images due to smaller memory and processing requirements.

After the binary of image, a following image analysis is implemented to computer

the shape properties of the objects. Morphological operations for the binary im-

age analysis were interested by medical application (SIRISHA et al. [61]), pattern

recognition (ZHANG [62]), and geoscience (GROVE and JERRAM [63]).

HERNÁNDEZ et al. [64] presented water elevation measurements using binary

image analysis for two-dimensional hydrodynamic experiments at the Ocean Tech-

nology Laboratory (LabOceano/COPPE-UFRJ). Lens correction and calibrations of

the acquired images were preformed with a circle pattern table using Open Source

Computer Vision Library (OpenCV[65]). The image processing and analysis were

developed in the ImageJ open-source software [66]. HERNÁNDEZ et al. [67] de-

scribed a three-dimensional image-based approach for imperfect structures surface

modeling. The procedure is illustrated by using two damaged tubular member sam-

ples reconstruction and a three-dimensional mapping of a ship panel.

2.6 Summary

A literature review of flexible riser top connection analysis, monitoring techniques

used in the riser top, parameter estimation methodology, bending test of flexible riser
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and experimental measurement techniques used for the riser/bend stiffener system

is presented in this chapter. A following summary based on the related literature

reviews is given for the proposed study in this thesis:

• A detailed modeling analysis of flexible riser top connection is required to

study the complex mechanical behavior of riser with bend stiffener and I-tube

bellmouth interface;

• For the field application, a number of monitoring techniques in the riser top

can be used for specialized objectives. A monitoring approach through ac-

celerometers/gyrometers installed along riser/bend stiffener length is proposed

to measure the rotation angles of riser top;

• A full-scale riser/bend stiffener bending-tension test is usually conducted to

study mechanical behaviors of riser top connection considering the correspond-

ing non-uniform curvature distribution along the pipe;

• The optical image-based approach is regarded as a suitable method to measure

the displacements of sample during the experimental test of riser/bend stiffener

system. However, for the field application of optical monitoring system in riser

top, the operational environment of camera devices is considered to be harsh;

• An inverse analysis based on the monitored rotation angles or configurations in

flexible riser top connection combined with the Levenberg-Marquart algorithm

can be employed to estimate the modeling uncertainties of the riser/bend stiff-

ener system: polyurethane hyperelastic response and top tension, for example.

And then the riser curvature can be calculated based on the estimations.
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Chapter 3

Modeling of Flexible Riser-Bend

stiffener Top Connection

This chapter presents a large deflection beam formulation for the flexible riser-

bend stiffener top connection with I-tube interface, considering that the bellmouth

transition area with the polymeric sleeve is represented by a straight rigid surface

followed by a curved section. In addition, the riser has a nonlinear bending behav-

ior represented by a bilinear moment vs curvature function and the bend stiffener

polyurethane material exhibits nonlinear elastic symmetric response represented by

a power law function. Section 3.1 presents the mathematical formulation of the stat-

ically indeterminate system consisting of three systems of coupled differential equa-

tions with corresponding multi-point boundary conditions. Section 3.2 presents the

iterative numerical procedure applied to solve the multiple-points boundary value

problem. Section 3.3 presents a case study with a 7” field applied water injection

riser protected by a 1.8 m bend stiffener connected to an I-tube with 7◦ inclination

and subjected to extreme loading conditions. Section 3.4 presents the conclusions

of this chapter.

3.1 Mathematical formulation

The flexible riser top connection protected by a bend stiffener and I-tube interface

is represented by a large displacement beam model subjected to a tip tension F ,

angle φL between the rise tangent and the vertical axis, and angle α between the

tension and the riser tangent, as schematically shown in Fig. 3.1(a). The riser is

fixed in the end fitting position located at point O and starts contacting the rigid

sleeve in point A. The sleeve consists of a curved section AB, with constant radius

RAB, followed by a straight section BC. It is considered to be fixed at point C and

rotated by an angle φ0 in relation to the Y axis of the Cartesian coordinates (X,
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Figure 3.1: (a) Riser-bend stiffener top connection system with I-tube interface
beam model; (b) Infinitesimal element; (c) Bend stiffener cross-section.

Y ). By assuming that there is no separation in the sleeve region, the riser exhibits

a constant curvature value κAB in the curved section AB and in the straight section

BC the riser is considered to have zero curvature until the bend stiffener starts at

point C. The mathematical formulation is based on the following assumptions and

simplifications,

• Euler-Bernoulli large deflection beam theory is employed;

• the beam is inextensible (neutral axis length is constant);

• the flexible riser has nonlinear bending behavior represented by a bilinear

moment vs curvature function;

• the bend stiffener polyurethane material exhibits nonlinear elastic symmetric

response represented by a power law function;

• self-weight, frictional forces and dynamic effects are disregarded;

• the gap between the riser and bend stiffener is disregarded;

• the polymeric sleeve in the I-tube transition area is considered to be rigid.

3.1.1 Geometrical relations

An infinitesimal element ds of the beam system is schematically shown in Fig. 3.1(b)

in the X and Y Cartesian coordinate system considering that there is no gap between
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the riser and bend stiffener. Applying trigonometrical relations to it and considering

the curvature as the slope angle rate of change with respect to the distance ds along

the neutral axis, leads to the following relations,

dX

ds
= cosφ(s) (3.1a)

dY

ds
= sinφ(s) (3.1b)

dφ

ds
= κ(s) (3.1c)

where s is the arc-length along the riser top connection system (0 ≤ s ≤ L), L is

the total length, X(s) and Y (s) are the deflected riser/bend stiffener coordinates,

φ(s) is the angle between the tangent to the beam axis and the X axis, and κ(s) is

the curvature.

3.1.2 Equilibrium of internal forces and moments

A schematic of the internal forces and moments in a riser and bend stiffener infinites-

imal element is also shown in Fig. 3.1(b). Eliminating multiplication of differential

terms, the equilibrium of normal and tangential forces and bending moments yields,

dVi
ds
− Ti

dφi
ds
− (−1)if = 0 (3.2a)

dTi
ds

+ Vi
dφi
ds

= 0 (3.2b)

dMi

ds
− Vi = 0 (3.2c)

where the subscripts i = 1 and 2 refer to the riser and bend stiffener, respectively,

Vi(s), Ti(s) and Mi(s) are the shear forces, axial forces and bending moments, and

f(s) is the contact force between the riser and bend stiffener, which is zero outside

bend stiffener and sleeve sections, assuming there is no flexible riser contact in the I-

tube region from point O to A. Contact force is positive “+” or negative “-” depend-

ing on its direction in the bending plane, as presented in Fig. 3.1(b). Algebraically

manipulating the horizontal and vertical infinitesimal equilibrium equations (3.2a)

and (3.2b), they may also be described according to,

Horizontal (Y-axis):
d

ds
(Ti cosφ+ Vi sinφ)− (−1)if sinφ = 0 (3.3a)

Vertical (X-axis):
d

ds
(Ti sinφ− Vi cosφ) + (−1)if cosφ = 0 (3.3b)
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3.1.3 Constitutive relations and pure bending formulation

Flexible riser

The bending behavior of a flexible riser is governed by interlayer friction mecha-

nisms leading to a hysteretic response when subjected to cyclic loading. The non-

linear bending moment and curvature relationship of flexible riser is shown in Fig.

3.2. For low values of curvature, the interlayer friction forces are able to prevent

tensile armours slippage, which results in a high bending stiffness EIns value. Slip-

page starts gradually between layers after the curvature reaches a certain critical

value, nonlinearly reducing the bending stiffness until the full slippage value EIfs is

reached. This nonlinear behavior and stiffness transition is highly affected by the in-

terlayer contact pressure resulting from axisymmetric loading (tension, internal and

external pressure), but in the present formulation, for simplification purposes, the

transition from the stick to the slip domain is simplified into a bilinear relationship,

as follows,

M1(s) =

EInsκ(s), |κ(s)| ≤ |κcr|

EIfsκ(s) + (EIns − EIfs)κcr, |κ(s)| > |κcr|
(3.4)

where κcr is the critical curvature at which the stiffness transition occurs, EIns is

the no-slip bending stiffness, and EIfs is the full-slip bending stiffness.

Moment

Curvature

EIns

EIfs

cr

Critical point

Smooth path

Figure 3.2: Nonlinear bending moment and curvature relationship of flexible riser.

Bend stiffener

The polyurethane employed for bend stiffener manufacture presents a nonlinear

mechanical behavior that is different under tension and compression and highly de-

pendent on temperature and loading rate. In general, higher rates lead to a stiffer

response and when this effect is disregarded, a hyperelastic modeling approach may
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be employed considering the material at a given constant temperature. Further sim-

plification can be employed for a beam bending formulation, where a general nominal

stress vs nominal strain function can be used to fit experimental data obtained from

uniaxial tensile tests. In the present work, the polyurethane nonlinear elastic be-

havior is considered to be symmetric (same response for tension and compression)

and represented by a two parameters power function defined by,

σ(ε) = sign(ε)Eq|ε|q (3.5)

where σ and ε are the nominal stress and strain respectively, and Eq and q are the

material parameters. The function sign(ε) is defined as ε/|ε| to determine positive

or negative strain under tension or compression, respectively. Tensile tests of typi-

cal bend stiffener polyurethane samples have been previously performed in a servo

hydraulic testing machine at a constant room temperature 24◦C with three different

stretch rates (5, 50 and 500 mm/min), as presented by [18]. In the present work,

the stress vs strain response obtained for the 50 mm/min loading rate, as shown in

Fig. 3.3, is selected for the case study and adjusted up to 15% by Eq. (3.5), leading

to the following material parameters: Eq = 20.19 MPa and q = 0.4738.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

St
re

ss
(M
Pa

)

Strain(%)

 Tensile test
 Nonlinear elastic model

Figure 3.3: Nominal stress versus nominal strain for the tensile test and nonlinear
elastic model (Eq=20.19 MPa and q=0.4738).

Considering Euler-Bernoulli beam bending theory for the riser/bend stiffener

system, the strain ε at a distance η from the neutral axis can be expressed by

ε(η, s) = ηκ(s). As the bend stiffener material is assumed to be nonlinear elastic

symmetric in tension and compression, the neutral axis coincides with the cross-

section centroid during bending. Consequently, the equilibrium of bending moment
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for the bend stiffener cross-section area yields,

M2(s) =

∫
ABS

σBSηdA = sign(κ(s))Eq|κ(s)|qIBS(s) (3.6)

with the geometrical function IBS(s) given by,

IBS(s) =

∫
ABS

|η|q+1dA = 2

[(
De(s)

2

)q+3

−
(
Di

2

)q+3
]∫ π

2

−π
2

| sin θ|q+1 cos2 θdθ

(3.7)

where, as shown in Fig. 3.1(c), the subscript BS refers to the bend stiffener cross-

section in the Cartesian coordinates (η, ξ). De(s) and Di are, respectively, the

external and internal diameters, dA is an infinitesimal element of area, and θ is the

angle of infinitesimal element position related to the ξ axis.

3.1.4 Governing equations

The top connection system governing equations may be separately obtained for

different sections and combined with appropriate multipoint boundary conditions.

The three sections adopted are schematically presented in Fig. 3.4 and defined as

follows,

1. Section I (0 ≤ s ≤ s1): flexible riser from fixed boundary condition at point

O up to the contact point A in the sleeve, with an arc-length given by s1;

2. Section II (s1 ≤ s ≤ s3): flexible riser contact region with the sleeve, from

point A to C. The distances s2 and s3 define the arc-lengths from point O

to B and C, respectively. The segment AB consists of a curved section with

constant radius RAB and arc-length given by sAB = s2 − s1. The straight

section BC has an arc-length defined by LBC = s3 − s2. The sleeve contact

constraint enforces a reaction force NA at point A and a reaction moment MB

at point B to the flexible riser, as shown in Fig. 3.4(a);

3. Section III (s3 ≤ s ≤ L): flexible riser/bend stiffer section CD with an arc-

length of LCD = L − s3. The arc-length s4 is defined from the point O to

the bend stiffener tip end. The bend stiffener has a total length of LBS. The

loading (F , φL, α) is applied to the end of the flexible riser segment at s = L.

Section I (0 ≤ s ≤ s1) - flexible riser extended section

Isolating the first section, where there is no contact force, the shear and tension

forces at point A can be respectively defined as, TA = T1(s1) and NA = V1(s1),
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Figure 3.4: Schematic of the riser-bend stiffener top connection model: (a) Configu-
ration of the extended riser section in the I-tube area; (b) Contact force of the riser
with the sleeve; (c) Configuration of riser/bend stiffener section.

with a neutral axis slope given by φ(s1) = φA. Integrating Eqs. (3.3a) and (3.3b)

considering these constants, leads to,

T1(s) sin(φ(s))− V1(s) cos(φ(s)) = TA sinφA −NA cosφA (3.8a)

T1(s) cos(φ(s)) + V1(s) sin(φ(s)) = TA cosφA +NA sinφA (3.8b)

Further manipulating Eqs. (3.8a) and (3.8b) yields the following shear force

equation,

V1(s) = TA sin(φ(s)− φA) +NA cos(φ(s)− φA) (3.9)

Introducing Eq. (3.9) into Eq. (3.2c) with the riser bending moment formulation

(3.4) yields,

dκ(s)

ds
=

 1
EIns

(TA sin(φ(s)− φA) +NA cos(φ(s)− φA)) , |κ(s)| ≤ |κcr|
1

EIfs
(TA sin(φ(s)− φA) +NA cos(φ(s)− φA)) , |κ(s)| > |κcr|

(3.10)

Equation (3.10) and the geometrical relations (3.1a) - (3.1c) form a system of

four first-order nonlinear differential equations for the coordinates X(s) and Y (s),

angle φ(s) and curvature κ(s) in the riser extended section.

Section II (s1 ≤ s ≤ s3) - flexible riser/sleeve contact region

The riser deflection in the sleeve contact region is assumed to follow the curved

sleeve geometrical shape in the segment AB followed by the straight segment BC,
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yielding the following angle relations,{
dφ(s)/ds = κAB, s1 ≤ s ≤ s2

φ(s) = φ0, s2 ≤ s ≤ s3

(3.11)

Introducing the constant curvature κAB into the flexible riser bending moment

vs curvature relation given by (3.4) and considering the flat sleeve region BC leads

to the following relation,

M1(s) =


{
EInsκAB, |κAB| ≤ |κcr|
EIfsκAB + (EIns − EIfs)κcr, |κAB| > |κcr|

, s1 ≤ s ≤ s2

0, s2 ≤ s ≤ s3

(3.12)

which from Eq. (3.2c) results in a zero shear force V1 distribution in this region

and employing Eq. (3.2b) a constant tension T1(s1) = T1(s3) = TA is obtained.

It should be noted that in the transition from the curved to the flat region in the

sleeve, the bending moment distribution drops from a constant value caused by the

concentrated reaction moment MB = M1(s2) to zero. The contact force between the

riser and the sleeve can be calculated employing Eq. (3.2a) considering the constant

curvature κAB in section AB and the zero curvature in section BC, as shown in Fig.

3.4(b), leading to,

f(s) =

{
TAκAB, s1 ≤ s < s2

0, s2 ≤ s ≤ s3

(3.13)

Section III (s3 ≤ s ≤ L) - flexible riser/bend stiffener

For the riser/bend stiffener section (segment CD) in Fig. 3.4(c), summing up Eqs.

(3.2a)-(3.2c) for the riser i = 1 and bend stiffener i = 2, yields,

dV

ds
− T dφ

ds
= 0 (3.14a)

dT

ds
+ V

dφ

ds
= 0 (3.14b)

dM

ds
− V = 0 (3.14c)

where M = M1 +M2 , T = T1 + T2 and V = V1 + V2 are the total bending moment,

tension and shear force of riser/bend stiffener section respectively. Considering the

tip loading condition defined by the force F and angles α and φL and integrating

Eqs. (3.3a) and (3.3b), leads to,

T (s) sin(φ(s))− V (s) cos(φ(s)) = F sin(φL + α) (3.15a)

T (s) cos(φ(s)) + V (s) sin(φ(s)) = F cos(φL + α) (3.15b)
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that can be solved to find the total shear force relation given by,

V (s) = −F sin(φL + α− φ(s)) (3.16)

Introducing Eq. (3.16) into Eq. (3.14c) with the bending moment formulations

(3.4) and (3.6) of the riser and bend stiffener, respectively, yields,

dκ(s)

ds
= −



1
EIns+Eqq|κ(s)|q−1IBS(s)

(
F sin(φL + α− φ(s)) + sign(κ(s))Eq|κ(s)|q dIBS(s)

ds

)
,

|κ(s)| ≤ |κcr|
1

EIfs+Eqq|κ(s)|q−1IBS(s)

(
F sin(φL + α− φ(s)) + sign(κ(s))Eq|κ(s)|q dIBS(s)

ds

)
,

|κ(s)| > |κcr|
(3.17)

Equation (3.17) and the geometrical equations (3.1a) - (3.1c) form the system

of four first-order nonlinear differential equations in the riser/bend stiffener section.

Generally, a geometrical discontinuity exists at the bend stiffener tip end due to the

tip thickness, which is taken into account by ensuring the total moment continuity

in the riser/bend stiffener section.

3.1.5 Geometrical compatibility

The arc-length sAB of the curved sleeve section may be written as a function of the

initial contact angle φA and the sleeve inclination φ0, as follows,

sAB = RAB(φ0 − φA) (3.18)

and arc-lengths of riser/sleeve and riser/bend stiffener sections can be described by

summations of riser extended arc-length s1, sAB, LBC and LBS,

s2 = s1 + sAB (3.19a)

s3 = s1 + sAB + LBC (3.19b)

s4 = s1 + sAB + LBC + LBS (3.19c)

and the length of riser/bend stiffener section is presented by,

LCD = L− s1 − sAB − LBC (3.20)

as schematically presented in Fig. 3.4. As the sleeve is fixed in the point C with given

coordinates, the coordinates of initial contact point A in the sleeve are geometrically
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related to RAB, φA and φ0 according to,

XA = XC − LBC cosφ0 −RAB(sinφ0 − sinφA) (3.21a)

YA = YC − LBC sinφ0 +RAB(cosφ0 − cosφA) (3.21b)

and the coordinates of point B yield,

XB = XC − LBC cosφ0 (3.22a)

YB = YC − LBC sinφ0 (3.22b)

The contact angle φA and the arc-length s1 are under the following system geo-

metrical restrictions:
√
XA

2 + YA
2 ≤ s1 ≤ XA + YA and 0 ≤ φA ≤ φ0.

3.1.6 Multipoint boundary conditions

The riser-bend stiffener top connection beam system is under multipoint boundary

conditions, which consists of a built-in point O in the end fitting position, fixed

constraints due to the sleeve curved section AB and straight section BC, a bend

stiffener rotation in the connection point C with the sleeve and a flexible riser tip

end rotation at point D. The boundary conditions are defined, for each point, as

follows,

i). Point O - fixed boundary condition in the end fitting position (s = 0):

X(0) = 0, Y (0) = 0 and φ(0) = 0 (3.23a-c)

ii). Point A - flexible riser initial contact point with the sleeve (s = s1):

X(s1) = XA, Y (s1) = YA, φ(s1) = φA and
dφ(s1)

ds
= κAB (3.24a-d)

where φA is the riser initial contact angle with the sleeve and (XA, YA) are the

contact point coordinates. The sleeve normal reaction force NA is applied to

the riser at this point.

iii). Point B - end of sleeve curved section (s = s2):

X(s2) = XB, Y (s2) = YB and φ(s2) = φ0 (3.25a-c)

where φ0 is the sleeve inclination and (XB, YB) are the coordinates of point B.

The sleeve reaction moment MB is applied to the riser at this point.
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iv). Point C - end of sleeve flat section and beginning of bend stiffener (s = s3):

X(s3) = XC , Y (s3) = YC and φ(s3) = φ0 (3.26a-c)

where (XC , YC) are the coordinates of point C and φ0 is the bend stiffener base

inclination relative to the X axis, which is the same as the sleeve inclination.

v). Point D - flexible riser tip (s = L):

φ(L) = φL (3.27)

where φL is the rotation angle in the riser tip end.

Table 3.1: Top connection system geometrical and loading parameters

Input data (XB, YB), (XC , YC) - sleeve coordinates
φ0 - sleeve rotation angle
RAB - sleeve radius (κAB = 1/RAB)
L, LBS and LBC - total riser, bend stiffener and sleeve flat segment length
F , φL and α - loading conditions

Unknowns s1 - arc-length of segment OA
φA - initial contact angle
NA - reaction force

3.2 Numerical solution procedure

The system of sections I, II and III coupled governing differential equations, sub-

jected to boundary conditions (3.23) - (3.27) and geometrical compatibility equations

(3.18) - (3.22) forms a multipoint boundary value problem (BVP) of the riser/bend

stiffener top connection system with I-tube. Table 3.1 summarizes the input and

unknown geometrical and loading parameters. The initial contact angle φA and

arc-length s1 of segment OA are geometrical unknown parameters. The riser initial

contact point coordinates (XA, YA) with the sleeve are unknown parameters that

can be calculated with Eq. (3.21) once the angle φA and arc-length s1 are itera-

tively found. The sleeve reaction force NA at contact point A is another unknown

to be solved. The Mathematica package [68] is employed for the iterative numerical

solution following the flowchart presented in Fig. 3.5 and detailed as follows:

i). Start the loop (m = 0) with initial values given by: angle φ0
A = φ0, arc-length

s0
1 =

√
X2
B + Y 2

B and tension T 0
A = F ;

ii). Calculate the riser/bend stiffener section length LmCD with Eq. (3.20);
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Figure 3.5: Flowchart of numerical solution procedure for flexible riser-bend stiffener
top connection system.

iii). Solve section III BVP with governing equations given by Eqs. (3.17), (3.1a)

- (3.1c) and boundary conditions (3.26a-c) and (3.27) with the shooting method, that

converts the BVP problem into an equivalent initial value problem (IVP). As there

is a curvature discontinuity at the bend stiffener tip, a modified shooting method is

employed to capture this effect, as follows: a) Guess an initial curvature κ(s3), and

integrate two differential equations (3.17) and (3.1c) with κ(s3) and φ(s3) = φ0 until

the bend stiffener tip, s4 = s3 +LBS. Therefore, curvature κ(s4)− and angle φ(s4) at

the left side of bend stiffener tip are obtained. Ensure the moment continuity at this

point, i.e., total moment at the left side of bend stiffener tip (composed of riser and

bend stiffener), M(s4) = M1(s4) +M2(s4), is equal to the total moment at the right

side of the tip (only riser). With this condition, the riser curvature discontinuity
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κ(s4)+ is calculated at the right side of bend stiffener tip,

κ(s4)+ =

 1
EIns

M(s4), |M(s4)| ≤ |Mcr|
1

EIfs
(M(s4)− (EIns − EIfs)κcr), |M(s4)| > |Mcr|

(3.28)

where Mcr = EInsκcr is the critical bending moment in the nonlinear riser bending

curvature and moment relationship. With angle φ(s4) and “ jumped” curvature

κ(s4)+, integrate two differential equations (3.17) and (3.1c) from the bend stiffener

tip s = s4 to the riser end s = L, and compare the calculated angle φ(L) with the

specified boundary condition φL; b) Update the initial curvature with the bisection

method and restart the process until the calculated angle φ(L) matches the specified

angle φL with a given convergence criteria φ(L)−φL
φL

≤ 10−5; c) After this BVP solution

is found, calculate T1(s) employing Eqs. (3.2c) and (3.2b) to update Tm+1
A = T1(s3);

iv). Check stop criteria with (Tm+1
A −TmA )/TmA after the first m loop. If satisfied

go to (v.). If not, set n = 1 and proceed with the Section I BVP loop as follows:

(a). Guess angle φnA, arc-length sn1 , reaction force Nn
A and set tension TA = Tm+1

A ;

(b). Solve section I BVP with governing equations defined by (3.10), (3.1a) - (3.1c)

and boundary conditions (3.23a-c) and (3.24c). The Mathematica FindRoot

function [68] is employed to search for a numerical solution to the simultaneous

equations until the roots are found to a specified accuracy;

(c). Update m = m+ 1 and set φmA=φnA and sm1 =sn1 . Return to ii.);

v). Calculate the moments Mi(s), shear forces Vi(s), axial forces Ti(s) and

contact force fi(s) with Eqs. (3.2a) - (3.2c);

vi). Calculate Section II with Eqs. (3.11) - (3.13).

3.3 Case study

A case study is carried out with a 7” flexible riser with a total arc-length of L1 +4m,

surrounded by a fixed sleeve inside the I-tube end and protected by a 1.8 m bend

stiffener, as presented in Fig. 3.6. An I-tube turning point with 7◦ inclination

occurs at L1, followed by a 1.2 m segment length up to the bend stiffener base.

The sleeve consists of a curved section with a constant bending radius RAB and a

straight section of 0.5 m. Two loading conditions on the riser-bend stiffener top

connection system are considered, corresponding to static and dynamic extreme

values, respectively: (F = 450 kN, φL = 10◦) and (F = 1200 kN, φL = 15◦),

both with a zero angle α. The following geometrical and material parameters are

generally considered in the case study:

28



7°

L1

1.2m

1.8m

R
A

B

0.5m

I-tube

7°

Bend stiffener
Sleeve

Riser

B C

OAB

4m

O

Figure 3.6: Riser-bend stiffener top connection with I-tube interface system
schematic drawing.

a. The riser bilinear bending behavior, presented in Eq. (3.4), is defined by the

following parameters: EIfs = 40 kNm2, EIns = 2800 kNm2 and κcr = 0.002

m−1 [69]. The flexible riser safely sustains a minimum bending radius (MBR)

of 2 m or higher, equivalent to a maximum curvature of 0.5 m−1.

b. The nonlinear elastic model presented in Eq. (3.5) is employed for the bend

stiffener polyurethane behavior with the following material parameters: Eq =

20.19 MPa and q = 0.4738. The bend stiffener geometrical parameters are

shown in Fig. 3.7, consisting of a 1.65 m conical shape followed by a 0.15 m

thin cylindrical tip. The riser/bend stiffener section length from bend stiffener

top to riser tip is described by LCD with a initial approximate straight length

LICD=2.8 m. And the coordinates of point C are given by,

XC = L1 + 1.2 cosφ0 (3.29a)

YC = 1.2 sinφ0 (3.29b)

0
.5
5
m

1.65m

1.8m

LCD

0
.3
m

0
.2
6
m

Figure 3.7: Geometry of the riser/bend stiffener section.
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3.3.1 Large deflection assessment of top connection with I-

tube interface

The riser-bend stiffener top connection response with I-tube interface is initially

assessed considering an I-tube length of L1 = 6 m and a sleeve curved section with

a radius of RAB = 8 m. The resulting configuration, angle, curvature, bending

moment, shear force and axial force distribution along the X axis are presented

in Fig. 3.8 and Fig. 3.9, for the two loading conditions (450 kN, 10◦) and (1200

kN, 15◦). The dotted lines define the coordinates of “I-tube”, “Sleeve” and “Bend

stiffener” sections.

Figure 3.8a and Figure 3.9a show that the riser slightly deflects along the I-tube

length up to the initial contact point with the sleeve, keeps contact with the sleeve

following its shape, and continues the deflection attached to the bend stiffener, as

no gap is considered. Along the riser/sleeve contact length, riser sustains a reaction

force from sleeve in the initial contact point A and the shear force of riser drops

to zero, and afterwards the moment of riser keeps constant following the curvature

of sleeve curved section until the sleeve straight section starts with zero moment,

which can be observed in the shear force and moment distribution in Figs. 3.8d-e

and Figs. 3.9d-e. It can be seen in the curvature distribution in Fig. 3.8c and Fig.

3.9c that the riser is a stiffer structure below the critical curvature while its flexibility

appears instantly after the critical point. The riser curvature, moment and shear

force become zero passing through the sleeve straight section with the inclination

7◦. For the dynamic extreme loading (1200 kN, 15◦), the maximum curvature 0.19

m−1 in the bend stiffener root is higher than the sleeve curvature κAB = 0.125 m−1.

The maximum curvature along the riser/bend stiffener section appears in the bend

stiffener tip with a curvature discontinuity for the static extreme loading (450 kN,

10◦). Higher tension and rotation angle lead to the larger displacement and higher

maximum curvature in the riser/bend stiffener section. The initial curvatures in the

riser end fitting are 0.002 m−1 and 0.017 m−1 for the loading cases (450 kN, 10◦)

and (1200 kN, 15◦) respectively. The bend stiffener sustains primarily the bending

moment and shear force, and the tension is small along the length of bend stiffener.

The contact force distributions along the riser/sleeve contact region and bend

stiffener length for two loading conditions are shown in Fig. 3.10. The contact forces

keep constant in the sleeve curved section and drop to zero in the straight sleeve

section. The larger loading conditions result in a larger contact force in both the

curved sleeve and riser/bend stiffener sections, as well as a longer contact length in

the curved sleeve section. The location of the maximum contact force also changes

with the loading conditions. For the larger loading conditions, the maximum contact

force is located at the base of bend stiffener; for the smaller loading conditions, the
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Figure 3.8: Top connection response for loading (450 kN, 10◦): (a) Configuration;
(b) Angle; (c) Curvature; (d) Bending moment; (e) Shear force and (f) Tension
distributions.
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Figure 3.9: Top connection response for loading (1200 kN, 15◦): (a) Configuration;
(b) Angle; (c) Curvature; (d) Bending moment; (e) Shear force and (f) Tension
distributions.
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maximum contact force is located near the tip end of bend stiffener.
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Figure 3.10: Contact force distribution along riser/sleeve and riser/bend stiffener
sections.

3.3.2 Sleeve geometry influence

The sleeve geometry influence in the top connection system response subjected to

loading conditions (450 kN, 10◦) and (1200 kN, 15◦) is assessed considering an I-tube

length of L1 = 6 m with the following sleeve geometrical parameters: i) Sleeve A
- straight section of 0.5 m without curved section; ii) Sleeve B - straight section of

0.5 m + curved section with sleeve radius varying from RAB = 1, 2, ..., 9, 10 m.

The initial contact angle φA, the arc-length s1, the reaction force NA, the riser

end-fitting curvature κ0, the riser/bend stiffener section length variation ∆LCD in

relation to the initial length LICD and the contact force fAB along section AB are

presented in Table 3.2 and Table 3.3, for both loading conditions, respectively. It

can be observed that φA, s1, NA, ∆LCD and fAB decrease as the sleeve radius

increases. The tension TA presents no variation with the sleeve radius and is given

by 449.9 kN and 1199.2 kN for both load cases, respectively. The smallest radius

results in the highest contact force between the riser and the sleeve. Figure 3.11

shows the initial contact angle φA and the end-fitting curvature κ0 versus the sleeve

radius RAB for both load cases. For the end-fitting curvature, higher sleeve radius

lead to smaller values of κ0 for both loading conditions, which may be an important

consideration for preliminary design purposes. In terms of the contact angle φA,

it can be observed that as the sleeve radius decreases below a certain limit value,

1.6m for (1200 kN, 15◦) and 2.6 m for (450 kN, 10◦), the riser does not interact with

the curved sleeve section and enters into direct contact with the straight section,

that presents an inclination angle of 7◦. Below this sleeve radius limit in sleeve B ,
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the riser curvature presents the highest values: 0.38 m−1 for (450 kN, 10◦) and 0.65

m−1 for (1200 kN, 15◦), observed in Fig. 3.12, as calculated for the straight sleeve

configuration A. The figure also presents the curvature distribution for other sleeve

geometries (RAB = 4, 7 and 10 m) where, as expected, higher sleeve radius lead to

lower curvature values in the curved section followed by zero curvature in the 0.5 m

straight section. It is important to highlight that the curvature distribution in the

bend stiffener region is not affected by the sleeve geometry.

Table 3.2: Sleeve radius influence in the top connection response (450 kN, 10◦)

Sleeve A RAB (m) of sleeve B
− 3 4 5 6 7 8 9 10

φA(◦) 7 6.14 4.70 3.80 3.18 2.72 2.34 1.99 1.68
s1 (m) 6.69 6.65 6.54 6.42 6.30 6.17 6.05 5.91 5.77

κ0 (m−1) 0.024 0.023 0.022 0.019 0.015 0.009 0.002 0.001 ≈ 0
NA (kN) 51.6 44.8 33.6 26.9 22.4 19.2 16.9 15.0 13.6

∆LCD (mm) 3.76 3.74 3.61 3.40 3.18 2.94 2.69 2.43 2.15
fAB (kN

m ) − 150.0 112.5 90.0 75.0 64.3 56.2 50.0 45.0

Table 3.3: Sleeve radius influence in the top connection response (1200 kN, 15◦)

Sleeve A RAB (m) of sleeve B
− 2 3 4 5 6 7 8 9 10

φA(◦) 7 5.79 4.02 3.11 2.53 2.12 1.81 1.56 1.34 1.13
s1 (m) 6.69 6.65 6.54 6.42 6.31 6.19 6.06 5.94 5.81 5.67

κ0 (m−1) 0.052 0.052 0.049 0.044 0.038 0.032 0.025 0.017 0.004 ≈ 0
NA (kN) 135.1 109.7 73.1 54.9 43.9 36.7 31.5 27.6 24.6 22.2

∆LCD (mm) 4.12 4.10 3.93 3.71 3.48 3.24 2.98 2.71 2.44 2.16
fAB(kN

m ) − 599.6 399.8 299.8 239.9 199.9 171.3 149.9 133.3 119.9
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3.3.3 I-tube length influence

To investigate the I-tube length influence in the top connection system response,

a sleeve geometry with a curved section radius given by RAB = 8 m and a 0.5 m

straight section is considered combined with the following values of I-tube lengths:

L1 = 2, 3, 4, ..., 8 m. The same loading conditions employed in the previous section

are used here. The initial contact angle φA, the arc-length s1, the reaction force

NA, the riser end-fitting curvature κ0 and the riser/bend stiffener section length

variation ∆LCD in relation to the initial length LICD are presented in Table 3.4 and

Table 3.5. The length variation presents a small influence in the reaction force NA

and a slight increase in the relative sliding ∆LCD is observed as the I-tube length

increases. The tension TA presents no variation with the I-tube length and is given

by 449.9 kN and 1199.2 kN for both load cases, respectively. As there is no variation

in the curvature and tension in the sleeve region, the contact force fAB is constant

and given by 56 kN/m and 150 kN/m for each load case, respectively. The flexible

riser curvature distribution in the I-tube and sleeve region is presented in Fig. 3.13

for both loading conditions. A decrease in the length between the end-fitting and

the riser initial contact point A with the sleeve leads to a larger curvature variation

in the region, which is highlighted in Fig. 3.14, demonstrating that the end-fitting

curvature κ0 decreases as the I-tube length increases.

Table 3.4: I-tube length influence in the top connection response (450 kN, 10◦)

L1 (m)
2 3 4 5 6 7 8

φA(◦) 2.91 2.61 2.47 2.40 2.34 2.28 2.25
s1 (m) 2.13 3.08 4.06 5.05 6.05 7.04 8.03

κ0 (m−1) 0.046 0.027 0.018 0.010 0.002 0.001 ≈ 0
NA (kN) 16.76 16.78 16.81 16.84 16.87 16.89 16.91

∆LCD (mm) 2.55 2.62 2.66 2.67 2.69 2.70 2.70

Table 3.5: I-tube length influence in the top connection response (1200 kN, 15◦)

L1 (m)
2 3 4 5 6 7 8

φA(◦) 2.16 1.84 1.69 1.61 1.56 1.52 1.50
s1 (m) 2.02 2.98 3.96 4.94 5.94 6.93 7.93

κ0 (m−1) 0.081 0.049 0.034 0.024 0.017 0.011 0.004
NA (kN) 27.39 27.46 27.52 27.57 27.59 27.61 27.61

∆LCD (mm) 2.58 2.66 2.68 2.71 2.71 2.72 2.73
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Figure 3.13: I-tube length influence in the curvature distribution (L1 = 2, 4, 6, 8 m).
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3.4 Conclusions

A large deflection beam formulation is developed for riser-bend stiffener top con-

nection with I-tube interface. The end-fitting is assumed clamped in the I-tube top

and the riser interacts with a straight rigid surface followed by a curved section in

the bellmouth region. The riser and bend stiffener are assumed to have the same

deflection as no gap is considered. The formulation incorporates the riser nonlinear

bending behavior and nonlinear elastic bend stiffener polyurethane, and allows the

calculation of the contact forces between the riser/sleeve and riser/bend stiffener sec-

tions. The mathematical formulation of the statically indeterminate system results

in three systems of coupled differential equations combined with corresponding mul-

tipoint boundary conditions. An iterative numerical procedure has been presented

and employed to solve the boundary value problem with the Mathematica package.

A case study is carried out with a 7” flexible riser protected by a 1.8 m bend

stiffener connected to an I-tube with 7◦ inclination and subjected to extreme loading

conditions. The results of large deflection assessment of riser top connection with

I-tube interface were validated by a FEM model [69] in a complementary numer-

ical study. A parametric assessment is performed to evaluate the influence of the

sleeve shape and I-tube length on the riser curvature distribution. The following

conclusions are obtained:

i). The curvature distribution in the bend stiffener region is not affected by the

sleeve geometry;

ii). The end-fitting curvature is affected by both parameters, where, a) as the

sleeve radius RAB increases, the initial curvature k0 decreases and, b) as the

I-tube length L1 is increased, the initial curvature decreases;

iii). The sleeve radius not only controls the initial contact angle and curvature

distribution in the contact region, but also that, below a given radius, the

riser does not interact with the curved section but directly contact the straight

sleeve region, which leads to a peak in the riser curvature;

iv). The contact force between the riser and the sleeve is highly affected by its

radius but is not influenced by the I-tube length.
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Chapter 4

Inverse Problem Methodology in

Riser/Bend Stiffener System

This chapter presents an inverse methodology for multiple parameter estimation in

the riser/bend stiffener system. A simplified analytical riser/bend stiffener model

based on the modeling analysis in Chapter 3 is considered in the inverse analysis

when the bend stiffener material behavior and top tension are the unknown mod-

eling uncertainties in the riser top connection system. If the bending behavior of

riser in the I-tube region is required, the more detailed direct model of riser-bend

stiffener top connection should be considered. A 4” flexible pipe protected by a 1.9

m bend stiffener, which has been adopted by several authors [16, 18, 24], is consid-

ered in this chapter. Section 4.1 describes the direct analytical model of riser/bend

stiffener system. Section 4.2 presents an inverse parameter estimation methodology,

which consists of the Levenberg-Marquardt algorithm, gyrometer monitoring rota-

tion angles along the riser/bend stiffener length and a direct analytical model of

riser/bend stiffener system. In Section 4.3, a case study of parameter estimations

investigates the influences of the direct riser/bend stiffener model, number of sen-

sors, sensor arrangement and loading conditions. Section 4.4 presents conclusions

of this chapter.

4.1 Direct analytical model of riser/bend stiffener

system

The analytical formulations of flexible riser-bend stiffener top connection are pre-

sented in Chapter 3, including the governing equations for the riser extended section,

riser/bellmouth sleeve contact region and riser/bend stiffener section, which con-

cludes the curvature distribution of riser in the bend stiffener region is not affected

by the sleeve geometry. In the present inverse analysis work, the isolated riser/bend
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stiffener analytical model is investigated considering the unknown polyurethane

hyperelastic response and effective top tension. The riser and bend stiffener are

clamped in the same top cross-section, and the initial inclination angle is disre-

garded. The riser/bend stiffener system with a total length of L is subjected to a

top tension F with a angle α and a rotation angle φL , as schematically shown in

Fig. 4.1.

Equation (3.17) and equation (3.1c) are decoupled from Eq. (3.1a) and Eq.

(3.1b) and, consequently, can be solved independently. Introducing Eq. (3.1c) into

Eq. (3.17) results in a second-order nonlinear differential equation for the angle:

d2φ

ds2
= −

F sin(φL + α− φ) + Eq
(
dφ
ds

)q (dIBS
ds

)
EIriser + Eqq

(
dφ
ds

)q−1
IBS

(4.1)

subjected to the following boundary conditions: φ(0) = 0 and φ(L) = φL. Here,

the formulation of riser/bend stiffener system only considers the full-slip bending

stiffness EIriser = EIfs of riser. For polyurethane linear elastic symmetric response,

q = 1 and the stress-strain relation becomes σ(ε) = EBSε. The total bending

moment vs curvature relation becomes M = EI(s)κ, with bending stiffness EI(s) =

EIfs + EIBS(s), and Eq. (4.1) is simplified into,

d2φ

ds2
= − 1

EIfs + EIBS

(
F sin(φL + α− φ) +

dφ

ds

dEIBS
ds

)
(4.2)

Equation (4.1) is solved by a central finite difference method with the arc-length

[0, L] divided into M subintervals (∆s = L/M) resulting in a system of M -1 non-
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linear algebraic equations as follows,

φm+1 − 2φm + φm−1

(∆s)2 = −
F sin(φL + α− φm) + Eq

(
φm+1−φm−1

∆s

)q (
dIBS(sm)

ds

)
EIfs + Eqq

(
φm+1−φm−1

∆s

)q−1

IBS(sm)

(4.3)

where φ0 = 0, φM = φL and sm = (m− 1)∆s (m = 1, 2, . . . ,M − 1). The numerical

solution to the simultaneous system of M − 1 equations (φ1, φ2, . . . , φM−1) is solved

by the Mathematica [68] package with the FindRoot function.

4.2 Inverse parameter estimation methodology

Combining a direct riser/bend stiffener model and a set of angle measurements

((s1, ψ1), (s2, ψ2), . . . , (sN , ψN)) obtained by gyrometers installed along bend stiff-

ener length, as schematically presented in Fig. 4.1, a number of model parameters

Pj can be estimated through an iterative non-linear least squares minimization algo-

rithm, observing that the total number of sensors N must be larger than the number

of parameters j. In the present work, to assess the proposed methodology feasibility

in retrieving uncertain data, the previously presented large deflection beam model

in Section 4.1 is adopted to obtain the effective tension (P1 = F ) and the bend

stiffener nonlinear elastic parameters (P2 = Eq and P3 = q), employing numerically

simulated gyrometer data.

4.2.1 Levenberg-Marquardt (L-M) methodology

The discrepancy between the numerically estimated angle distribution φi(F,Eq, q)

and the data measured by the gyrometers ψi (i = 1, .., N), may be expressed by the

summation of the squared residuals at N arc-length positions, as follows,

R(F,Eq, q) =
N∑
i=1

(ψi − φi(F,Eq, q))2 (4.4)

By minimizing Eq. (4.4), it is possible to estimate the values of unknown pa-

rameters Pj that best match the model to the measurements. The equation can be

generalized in matrix form, as follows,

R(P ) = [Ψ−Φ(P)]T [Ψ−Φ(P )] (4.5)

where the superscript T denotes the matrix transpose. P T = [F,Eq, q], Ψ and

Φ are the vectors of unknown parameters, measured angles and estimated angles
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respectively. To minimize the sum of squares R(P ), the gradient of R(P ) with

respect to the vector of parameters P equates to zero, consequently,

∆R(P ) = −2JT (P )[Ψ−Φ(P )] = 0 (4.6)

where J(P ) is the sensitivity matrix. The elements in the sensitivity matrix are

called sensitivity coefficients and are defined as the first derivative of the estimated

angle at the position si with respect to the unknown parameter Pj, as follows,

Jij =
∂Φi

∂Pj
,

i = 1, 2, ..., N and j = 1, 2, 3

(4.7)

Linearizing the vector of estimated angles with a Taylor series expansion around

the current solution P k at iteration k,

Φ(P ) = Φ(P k) + Jk[P − P k] (4.8)

where Φ(P k) and Jk are the estimated angles and sensitivity matrix at iteration

k respectively. Substituting Eq. (4.8) into Eq. (4.6) and incorporating a damping

factor µk to improve the convergence behavior, the following iterative procedure is

obtained to estimate the vector of unknown parameters, known as the Levenberg-

Marquardt (L-M) method [49],

P k+1 = P k + [(Jk)TJk + µkΩk]−1(Jk)T [Ψ−Φ(P k)] (4.9)

where Ωk = diag[(Jk)TJk] is a diagonal matrix. The value of damping factor µk

is then reduced gradually as the iteratively estimated parameters advance to the

convergent estimations. The following stopping criterion is employed to terminate

the iterative L-M procedure,∣∣∣∣Pjk+1 − Pjk

Pj
k

∣∣∣∣ < ε and j = 1, 2, 3 (4.10)

where ε are tolerances from the field application, here it is assumed 10−8.

4.2.2 Computational Algorithm

The L-M algorithm for the parameter estimations in riser/bend stiffener system

is presented in the flowchart of Fig. 4.2. In the first step, the initial unknown

parameters P 0 could be any set of reasonable values, and the initial damping factor

is set to µ0 = 0.001 [49]. The numerical model estimated angles Φ(P k) are obtained
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Figure 4.2: Flowchart of Levenberg-Marquardt computational algorithm.

at measurement locations by using the current estimations P k. The sensitivity

coefficients can then be numerically computed by central finite differences [49],
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and i = 1, 2, ..., N

(4.11)

where the small correction coefficient β = 10−4, which does not influence the con-

vergent estimated results but affect the number of iterations.

In the iteration step k, check the stopping criteria, and stop the iterative proce-

dure if criteria are satisfied, or compare R(P k+1) with R(P k). If R(P k+1) ≥ R(P k)

, enter into a subpath for iterative k and replace µk by 10µk, and recalculate P k+1,

Φ(P k+1), and R(P k+1) again until R(P k+1) < R(P k). And then accept the new

estimated P k+1 and replace µk by 0.1µk and go to iteration step k + 1. The itera-
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tions vary in each estimation program according to the measurement errors and the

initial guesses of unknown parameters, and the maximum number of iterations is

chosen to be 50 in the loop, which is found to be sufficient for the problem.

The choice of damping factor in the subpath of each iteration guarantees the

summation of squared residuals keep decreasing during the whole iterative process.

In the beginning of iterations, the L-M method tends to be the Steepest Descent

method with relative lager µkΩk, that is, a very small step is taken in the negative

gradient direction. The parameter µk is then gradually reduced as the iteration

procedure advances to the solution of parameter estimation, and then the L-M

method tends to be the Gauss method. The L-M algorithm has its advantage of the

local convergence comparing with the Gauss algorithm.

4.3 Case Study

A 4” flexible pipe protected by a 1.9 m long bend stiffener is employed in the present

case study, as previously adopted by Vaz et al. [16]. The geometric parameters of

the riser/bend stiffener are shown in Fig. 4.3. The riser bending stiffness is assumed

constant and given by EIfs = 10 kNm2. The applied top tension F varies from 62.5

to 500 kN and the tip angle φL from 0.5◦ to 30◦ with α = 0 to encompass a large

range of loading conditions. The following analyses are carried out to investigate the

influences of the number of sensors (up to N = 9), sensor distribution along length,

loading condition and top connection model on the inverse calculation of top tension

and bend stiffener material parameters (the subscript e stands for estimated):

a. Inverse calculation of top tension FLE
e and Young’s modulus ELE

e based on

simulated gyrometer data and linear elastic model (F = 125, 500 kN, φL=10◦).

b. Inverse calculation of top tension FNLE
e and material parameters ENLE

q,e , qNLEe

based on simulated gyrometer data and nonlinear elastic model:

(i). gyrometer arrangement assessment for a selected load case (F = 125 kN,

φL = 10◦);

(ii). top tension (F = 62.5, 125, 250, 500 kN, φL = 10◦) parametric assess-

ment with 4 sensors;

(iii). tip angle (φL = 2, 3, 4, 5, 6, 8, 10,...,28, 30◦, F = 125 kN) parametric

assessment with 4 sensors;
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(iv). tip angle (φL = 2, 3, 4, 5◦, F = 125 kN) parametric assessment with 9

sensors;

(v). tip angle (φL = 0.5, 1, 1.5, 2◦, F = 125 kN) parametric assessment with

4 sensors and considering known material properties.

1.7m0.2m

3.2m

0
.6

5
m

Bend Stiffener

Riser

0
.1

8
m

s1 s3 s5 s7 s9s4 s8s6s2

Figure 4.3: Geometric parameters of the bend stiffener system with nine sensors.

4.3.1 Gyrometer data - numerical simulation procedure

In this preliminary investigation of the proposed monitoring approach, the gyrometer

data ψi(si) is simulated atN points along top connection arc-length ( i = 1, 2, . . . , N)

by adding random errors to numerically calculated angles φi(si, F, Eq, q) with a set

of specified parameters, as follows,

ψi = φi(si, F, Eq, q) + δei

i = 1, 2, . . . , N
(4.12)

where δ is the sensor precision, assumed to be the same for all positions, and ei is

a random variable with standard normal distribution in which 99% of probability

lies in the range −2.576 < ei < 2.576. For the present case study, it is assumed

δ = 0.0002 rad, as previously described by sensor noise of gyrometers employed in

offshore applications [43]. The nonlinear elastic material parameters Eq = 20.19

MPa and q = 0.4738, as shown in Fig. 3.3, are employed for the data generation.

As the simulated sensor data contain random errors, the Monte Carlo approach is

adopted in all the subsequent simulations. For each sensor position i, 200 different

values of ei are randomly generated and, consequently, the unknown parameters

must be estimated 200 times for each analysis.

4.3.2 Inverse method based on linear elastic model

The first investigation consists in generating the sensor data ψi(si) with the nonlinear

elastic model given by Eq. (4.1), as described in the previous section, for two loading
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Figure 4.4: Parameters estimation procedure for the riser/bend stiffener system.

Table 4.1: The mean and standard deviation values of top tension Fe and Young’s
modulus Ee estimation by linear material model for two loading cases (F = 125, 500
kN, φL=10◦)

Load 125 kN 500 kN
Estimation Error(%) Estimation Error(%)

F̄LE
e (kN) 172.4 [33.1,44.5] 530.4 [-4.0,18.9]
σF,e (kN) 2.2 - 22.0 -

ĒLE
e (MPa) 463.6 - 232.4 -

σE,e (MPa) 6.3 - 9.7 -

conditions (F = 125, 500 kN, φL=10◦) and with nine (N = 9) sensor positions (0.32,

0.64, 0.96, 1.28, 1.60, 1.92, 2.24, 2.56, 2.88 m). The linear elastic model described

by Eq. (4.2) is then applied in the inverse estimation of the top tension FLE
e and

Young’s modulus ELE
e , as summarized in the flowchart presented in Fig. 4.4.

The mean and standard deviation values of estimated top tension Fe and Young’s

modulus Ee and the top tension errors, given by [(Fmin
e − F )/F , (Fmax

e − F )/F ],

are presented in Table 4.1. A larger top tension variation range of [33.1%, 44.5%]

is observed for the smaller loading magnitude, F = 125 kN. The nominal stress vs

nominal strain (up to 2%) of the nonlinear elastic response, adopted for sensor data

generation, and the envelope of the estimated Young’s modulus are presented in

Fig. 4.5. The envelope is defined by the maximum and minimum parameter values

obtained from the Monte Carlo simulations performed with 200 samples. It can be

observed that a stiffer polyurethane is obtained for the lower loading case, with a

very large variation between the two estimations.
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As the sensor data is numerically generated with the nonlinear elastic model,

a direct comparison between the “exact” angle and curvature distributions can be

made with the inverse method results. Figures 4.6, 4.7 and 4.8 present the angle,

curvature and maximum strain envelope distributions along arc-length, respectively.

Larger differences between the direct model and inverse calculations are observed

for F = 125 kN, as anticipated from the results presented in Table 4.1. It can

also be observed in Fig. 4.8 that, as the estimated maximum bend stiffener strain

increases, the deviation from the “exact” nonlinear model tends to increase, which

is in agreement with the stress vs strain curve presented in Fig. 4.5.
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Figure 4.5: Nominal stress vs. nominal strain of nonlinear elastic model and in-
verse method calculation envelope (simulated sensor data + linear elastic model) of
Young’s modulus for two loading conditions (F = 125, 500 kN, φL=10◦).
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Figure 4.6: Angle distribution of nonlinear elastic model and inverse method cal-
culation envelope (simulated sensor data + linear elastic model) for two loading
conditions (F = 125, 500 kN, φL=10◦).
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loading conditions (F = 125, 500 kN, φL=10◦).
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4.3.3 Inverse method based on nonlinear elastic model

For all the subsequent analyses, the nonlinear elastic model is employed for the

inverse parameter estimation. The effect of different sensor arrangements is initially

investigated, followed by the assessment of loading condition influence on the inverse

estimation of FNLE
e , ENLE

q,e and qNLEe .

Gyrometer arrangement assessment

A 125 kN top tension with a tip angle of 10◦ is defined as the reference load case in

this section. The angle along arc-length varies from a small value close to encastre to

a maximum value at tip, where its distribution depends on the loading condition and

system properties. As a consequence, the sensor arrangement has a direct impact in

the inverse methodology. In order to assess the influence that the number of sensors

and positioning have on the inverse parameters estimation, five arrangements are

investigated (A1-3 sensors (s6-s8), A2-3 sensors (s4-s6), A3-4 sensors (s3-s6), A4-5

sensors (s3-s7), A5-9 sensors (s1-s9)) with the number of sensors N ranging from 3

to 9, as described in Table 4.2.

The L-M sensitivity coefficients, defined in Eq. (4.7), may be employed to sup-

port the most efficient sensor positioning in terms of inverse method application.

The sensitivity matrix Jij (i = 1, 2, . . . , 9, and j = 1, 2, 3) is presented in Table 4.2

for the present load case, where it can be observed that the locations s3 to s7 are

more sensitive than s1, s2, s8, and the location s9 has the smallest values.

Table 4.3 presents the influence that the arrangement has on the mean and

standard deviation values of estimated top tension and material parameters. The

parameters errors are also presented, being defined by [(Pmin
j,e − Pj)/Pj, (Pmax

j,e −
Pj)/Pj] (j = 1, 2, 3). It can be observed, as expected, that the higher the number

of sensors the lower is the standard deviation and the deviation from the “exact”

value. Higher values of sensitivity coefficients indicate the best position for sensor

installation, which can be observed, for example, by comparing arrangements A1 and

A2. For the arrangement A1, where all the sensors are placed in the riser segment,

the sensitivity coefficients present lower magnitudes values and as a consequence,

the estimation accuracy is lower.

The probability distribution of the estimated parameters FNLE
e , ENLE

q,e and qNLEe

are shown in Figs. 4.9, 4.10 and 4.11, respectively, for two sensor arrangements (A3,

A5). When 9 sensors are employed, the distributions are more concentrated around

the exact values, which is also confirmed by the stress vs strain envelope results

presented in Fig. 4.12.
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Table 4.2: Sensor arrangement definition and sensitivity coefficient matrix
(F =125kN, φL=10◦)

s1 s2 s3 s4 s5 s6 s7 s8 s9
(0.32m) (0.64m) (0.96m) (1.28m) (1.60m) (1.92m) (2.24m) (2.56m) (2.88m)

Ji1 × 107 0.254 0.614 1.242 2.313 3.728 3.774 2.138 0.967 0.352
(rad/N)
Ji2 × 109 −0.163 −0.397 −0.814 −1.545 −2.526 −1.953 −0.630 −0.201 −0.059
(rad/Pa)
Ji3 0.023 0.055 0.107 0.186 0.272 0.193 0.062 0.020 0.006
A1 − − − − − s6 s7 s8 −
A2 − − − s4 s5 s6 − − −
A3 − − s3 s4 s5 s6 − − −
A4 − − s3 s4 s5 s6 s7 − −
A5 s1 s2 s3 s4 s5 s6 s7 s8 s9

Table 4.3: Sensor arrangement effect on the mean and standard deviation val-
ues of estimated top tension and material parameters (F = 125 kN, φL=10◦,
Eq =20.19MPa and q=0.4738)

FNLEe ENLEq,e qNLEe

F̄NLEe , σF,e, Error ĒNLEq,e , σEq,e , Error q̄NLEe , σq,e, Error
(kN),(kN),(%) (MPa),(MPa),(%) (%)

A1 (124.9, 2.0, [−4.4, 4.3]) (17.46, 0.19, [−16.0,−10.9]) (0.4441, 0.0020, [−7.4,−5.1])
A2 (124.9, 3.9, [−8.7, 9.6]) (20.20, 1.73, [−20.1, 30.5]) (0.4733, 0.0110, [−5.8, 7.2])
A3 (124.9, 3.4, [−8.7, 6.9]) (20.12, 1.29, [−17.6, 16.9]) (0.4729, 0.0080, [−4.8, 4.5])
A4 (124.8, 1.8, [−3.5, 3.1]) (20.15, 0.96, [−11.5, 13.9]) (0.4734, 0.0074, [−3.9, 4.1])
A5 (125.1, 1.6, [−3.4, 3.6]) (20.23, 0.85, [−11.2, 12.9]) (0.4738, 0.0062, [−3.8, 3.5])
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Figure 4.9: Probability distribution of estimated top tension FNLE
e for arrangements

A3 and A5.
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Top tension parametric assessment with 4 sensors (arrangement A3)

The sensor arrangement A3, with 4 sensors, is selected to investigate the effect

of four applied top tensions (62.5, 125, 250, and 500 kN, φL=10◦) on the inverse

parameters estimation.

The top tension effect on the sensitivity coefficients is presented in Fig. 4.13. It is

observed that top tension variation presents a larger influence on the force sensitivity

coefficient JF after bend stiffener termination. For the material parameters, the

largest values occur around s = 1.6 m. Table 4.4 presents the top tension effect

on the mean and standard deviation values of estimated top tension and material

parameters. The increase in top tension standard deviation follows the increase in

the loading application. For the material parameters, it can be observed that the

smallest standard deviation values occur for the F = 125 kN loading case.

The angle and curvature envelope distributions are respectively presented in Figs.

4.14 and 4.15 for two loading cases (F = 125, 500 kN). A very good correlation with

the “exact” distribution is observed. Figure 4.14 also presents the sensor error range

resulting from the Monte Carlo simulation with 200 values of ei (see Eq. (4.12)) and

the “exact” angle distribution for all the cases.
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Figure 4.13: Top tension influence on the sensitivity coefficients (φL=10◦).
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Table 4.4: Top tension influence on the mean and standard deviation values of
estimated top tension and material parameters (φL=10◦) with 4 sensors (A3)

Load 62.5 kN 125 kN 250 kN 500 kN

F̄NLE
e (kN) 63.0 124.9 250.4 500.8
σF,e (kN) 2.7 3.4 7.1 23.1

ĒNLE
q,e (MPa) 20.68 20.12 20.23 20.31
σEq,e (MPa) 2.25 1.29 1.39 2.96

q̄NLE
e 0.4758 0.4729 0.4734 0.4728
σq,e 0.0122 0.0080 0.0096 0.0277
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Figure 4.14: Angle distribution of nonlinear elastic model, sensors range and inverse
method calculation envelope (simulated sensor data + nonlinear elastic model) with
4 sensors (A3) for two loading conditions (F = 125, 500 kN, φL=10◦).
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Tip angle parametric assessment with 4 sensors (arrangement A3)

The sensor arrangement A3 with 4 sensors is now employed to investigate the effect

of a range of boundary end angles (2, 3, 4, 5, 6, 8, 10, ..., 28, 30◦, F = 125 kN) on the

inverse parameters estimation. The tip angle effect on the sensitivity coefficients is

presented in Fig. 4.16. A gradual distribution decrease can be observed by reducing

the tip angle, with a higher gradient in the middle position, for both top tension

and material parameters coefficients.
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Figure 4.16: Tip angle influence (φL = 2, 4, 10, 20, 30◦) on the sensitivity coefficients
(F =125 kN).

The influence that the tip angle has on angle and curvature envelope distributions

are respectively presented in Figs. 4.17 and 4.18 for two loading cases (φL=2, 30◦,

F = 125 kN). The sensor error range resulting from the Monte Carlo simulation with

200 values of ei is also presented in Fig. 4.17. A significant distribution variation

is observed for the smallest value of tip angle adopted (φL = 2◦), with the highest

difference occurring in the maximum curvature position. For the angle φL = 30◦, a

very good correlation is obtained.

The tip angle effect on the mean and standard deviation values of estimated top

tension and material parameters are presented in Figs. 4.19, 4.20 and 4.21 for FNLE
e ,

ENLE
q,e and qNLEe , respectively. A large increase in the standard deviation values for

all parameters can be observed for tip angles below 10◦. It is concluded that the

estimations using 4 sensors are good for large tip angles, but imprecise for small
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angles. Two approaches can be adopted to improve the inverse method accuracy:

a) increase the number of sensors or b) decrease the number of unknown parameters.

Both investigations are carried out in the next sections for small tip angle values.
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Figure 4.17: Angle distribution of nonlinear elastic model, sensors range and inverse
method calculation envelope (simulated sensor data + nonlinear elastic model) with
4 sensors (A3) for two loading conditions (φL=2, 30◦, F = 125 kN).
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Figure 4.19: Tip angle influence on the mean and standard deviation values of the
estimated top tension FNLE

e (F = 125 kN) with 4 sensors (A3).
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Figure 4.20: Tip angle influence on the mean and standard deviation values of the
estimated material parameter ENLE

q,e (F = 125 kN) with 4 sensors (A3).

4 8 12 16 20 24 28
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

 Estimated qNLE
e

 Estimated  q,e 

Angle L ( )

qN
LE

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

6 302

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

q,
e Exact q=0.4738

Figure 4.21: Tip angle influence on the mean and standard deviation values of the
estimated material parameter qNLEe (F = 125 kN) with 4 sensors (A3).
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Tip angle parametric assessment with 9 sensors (arrangement A5)

In this section, the number of sensors is increased from 4 to 9 sensors, employing

the arrangement A5. Small tip angles (φL=2◦, 3◦, 4◦ and 5◦) are investigated with

a fixed top tension of 125 kN. Table 4.5 presents a comparison of the top tension

and material parameters mean and standard deviation for the arrangements A3 (4

sensors) and A5 (9 sensors). It can be observed that, by increasing the number

of sensors from 4 to 9, the correlation between estimated and “exact” values is

considerably improved with smaller standard deviations.

Table 4.5: Number of sensors influence - Comparison of top tension and material
parameters mean and standard deviation for arrangements A3 and A5 (φL=2◦, 3◦,
4◦ and 5◦, F = 125 kN)

Angle φL 2◦ 3◦ 4◦ 5◦

Arrangement A3 A5 A3 A5 A3 A5 A3 A5

F̄NLE
e (kN) 141.5 125.4 127.5 125.2 127.3 125.0 124.8 125.1
σF,e (kN) 71.8 6.2 24.2 4.2 14.9 3.3 10.5 2.8

ĒNLE
q,e (MPa) 36.07 20.61 21.69 20.47 21.27 20.34 20.37 20.36
σEq,e (MPa) 78.77 4.99 9.86 3.44 5.81 2.22 4.11 1.99

q̄NLE
e 0.4783 0.4723 0.4709 0.4737 0.4744 0.4739 0.4728 0.4742
σq,e 0.0648 0.0289 0.0361 0.0209 0.0243 0.0141 0.0206 0.0133

Tip angle parametric assessment with 4 sensors (arrangement A3) and

known material properties

Instead of increasing the number of sensors to improve the inverse method accuracy,

the number of unknowns can be decreased by assuming that the polyurethane ma-

terial properties are known. This can be achieved by applying the inverse method

to calculate the hyperelastic material parameters in a period where the largest oper-

ational loading conditions are expected. Then, for continuous monitoring at milder

loading conditions, the top tension could be separately estimated with increased

accuracy.

The sensor arrangementA3 with 4 sensors is now investigated with quite small tip

angle values and F = 125 kN. Table 4.6 shows the estimated top tension mean and

standard deviation values for the following angles: φL=0.5◦, 1◦, 1.5◦ and 2◦. Good

mean correlations are observed even for the smallest tip angle adopted. The standard

deviation, however, increases for decreasing tip angle values, going from 2.2 kN at

φL=2◦ to 15.9 kN at φL=0.5◦. For the same loading condition (φL=2◦, F = 125kN),

a very large difference between the standard deviation of the top tension value is
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observed when comparing the results with 4 sensors for unknown (σF,e = 71.8 kN,

Table 4.5) and known (σF,e = 2.2 kN, Table 4.6) polyurethane material properties,

confirming the accuracy increase with known material properties.

Table 4.6: Small tip angle influence on the mean and standard deviation values of
estimated top tension with known material parameters (F = 125 kN) and 4 sensors
(A3)

Angle φL 0.5◦ 1◦ 1.5◦ 2◦

F̄NLE
e (kN) 125.2 124.6 125.1 125.0
σF,e (kN) 15.9 5.9 3.6 2.2

4.4 Conclusions

A monitoring approach has been proposed aiming at decreasing the uncertainties as-

sociated to bend stiffener mechanical response and the effective top tension employed

for flexible riser lifetime (re)assessment. It is composed of gyrometers installed along

riser/bend stiffener length and combined with an inverse problem methodology based

on the Levenberg-Marquardt algorithm and a direct riser/bend stiffener model. A

case study is carried out with numerically simulated sensor data and a top connec-

tion nonlinear elastic large deflection beam model, leading to the following main

conclusions:

i). the selection of the direct riser/bend stiffener model is an important aspect of

the proposed methodology and should represent the actual response as accu-

rately as possible;

ii). the sensor arrangement directly affects the inverse parameter estimation and

the sensitivity matrix may be employed to qualitatively support its positioning

along system length;

iii). the methodology accuracy decreases for small top connection tip angles. Two

approaches can be adopted for improvement: a) increase the number of sensors

or b) decrease the number of unknowns;

iv). the number of unknowns may be decreased by calculating the material param-

eters in a short period, where the largest operational loading conditions are

expected, followed by long term continuous effective top tension calculation at

milder conditions.

59



Chapter 5

Parameter Estimation in

Riser/Bend Stiffener System with

Optical Measurements

In this chapter, an inverse problem analysis is applied in a bending-tension test

system of the riser/bend stiffener combined with a direct finite element model

and optical configuration measurements to simultaneously estimate the top ten-

sion and material parameters of the bend stiffener. A full-scale bending-tension test

of the riser/bend stiffener system is conducted with unknown material parameters of

polyurethane. During the test, the configuration of the riser/bend stiffener sample is

measured by an optical image-based technique. Instead of the simplified riser/bend

stiffener analytical model employed in Chapter 4, a finite element model is devel-

oped to represent the full-scale bending-tension test, which can capture the gap

between riser and bend stiffener and the insert part of bend stiffener, and also simu-

late the loading method of bending-tension test. Section 5.1 describes the test setup

of the riser/bend stiffener system and the optical technique for the configuration

measurement. The finite element model for the riser/bend stiffener test is presented

in section 5.2. The inverse analysis methodology based on Levenberg-Marquardt

algorithm is presented in section 5.3. Finally, parameters estimation with optical

measurements for the riser/bend stiffener system is investigated in section 5.4.
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5.1 Bending-tension test of riser/bend stiffener

with optical measurements

5.1.1 Bending-tension test of riser/bend stiffener

A full-scale bending-tension test of the riser/bend stiffener system is conducted on

the vertical bending rig at the Ocean Structures Laboratory (NEO), COPPE/UFRJ.

The bending rig with a length of 14 m consists of a bottom bending table, a top

hydraulic cylinder tractor, and rig truss structures, as shown in Fig. 5.1. A 6”

riser/bend stiffener sample is installed upside down on the vertical rig. The extended

top end fitting of the riser and the top end of the bend stiffener are placed on

the bending table by extended connection structures, and the tip end fitting of

the riser is connected to the top tractor. The bending table fixed on the vertical

rig exerts a bending moment to the riser/bend stiffener sample by changing its

rotation angle, which is controlled by two side synchronous hydraulic actuators in

a same plane. An approximate length related to the rotation angle is imposed

on the hydraulic actuators simultaneously monitored by LVDTs. The top fixed

tractor applies a tension load on the tip end fitting of the riser, which is allowed

to rotate in the bending plane to compensate the system bending angle. For the

given loading condition (1200 kN, −15◦) with internal pressure of 10 MPa, five sets

of repeated tests are conducted, with each test containing ten rotation cycles with

a low frequency.

The configuration of the riser/bend stiffener bending-tension test in the vertical

rig is schematically shown in Fig. 5.1b. A global coordinate system is adopted, with

the coordinate origin (0, 0) at the rotation center of bending table. The geometrical

parameters of the riser/bend stiffener sample on the vertical rig are illustrated in Fig.

5.1. The distance between the rotation center and rig top is 13.87 m. The length

of the riser sample is 11.834 m. The extended lengths of the riser top end and the

bend stiffener top end are h1=0.625 m and h2=2.486 m respectively, measured from

the rotation center of the bending table. The total length of the hydraulic cylinder

tractor is 3.82 m, with its piston kept in the middle position. A support rod with a

length of 1.14 m is used to connect the riser tip end and the tractor.

5.1.2 Optical technique for configuration measurements of

riser/bend stiffener

To measure the configuration of the riser/bend stiffener sample, an image-based

technique is proposed in the present work. An optical monitoring system is used

to track photoluminescence targets in the riser and bend stiffener areas during the
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Figure 5.1: The vertical rig for the bending-tension test of riser/bend stiffener (NEO,
COPPE/UFRJ).

bending-tension test. The image-based technique is divided into three stages: (i)

Image digitization that defines the interested objects and the arrangement of op-

tical monitoring system; (ii) Image processing that includes all the segmentation

procedures to retrieve isolated targets from the rest of the scene; (iii) Image analysis

that applies morphological operations to retrieve real-unit measurements from the

segmented images. After the image analysis, the raw time series of the coordinates

of each target on the riser/bend stiffener sample are obtained.

Image digitalization

a) Image acquisition

The photoluminescence colored target used in the test is a circular PANTONE

807 C color marker with 19 mm of diameter. A total number of 21 effective targets

are placed along the bend stiffener central axis on the conical surface. Another

17 effective targets are placed along the riser central axis. The targets are equally

distributed with a separation of ∼ 50 ± 2 mm along the bend stiffener and riser

areas. A scheme of numbered target distribution in the bend stiffener and riser

areas is presented in Fig. 5.2a. The absolute coordinates of the first targets in the

bend stiffener and riser areas in relation to the bending table center are respectively

(0, 0.254 m) and (0, 1.705 m).

Two 5 Mpx digital RGB cameras with CMOS sensor and global area sampling,
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Figure 5.2: (a) Schematic of optical monitoring device arrangement and (b) region
of interest of the bend stiffener camera in the scene.

Table 5.1: Optical monitoring system hardware

Items Descriptions Quantity
Digital Camera (DC) 5 Mpx resolution, 1/3” CMOS sensor, RGB color, 2

global area sampling
Varifocal Lenses 2 mm to 50 mm focal length/C-mount. 2
PC Core i7 processor, 16 Gb RAM, 2 Tb HDD, 128 Gb SSD, 1

GigE x4 ports for communication
Communication wires Cat5e gigabit 100
Connectors RJ45/USB3/Borne 30
DC power supply 12 Volts/500 mA 2
Cameras fixation Magnetic tripod or gimbal mounting 3
support
Targets Photoluminescent targets with UV color 200

range of 300 nm to 400 nm

and two COMPUTAR varifocal lenses are used to capture the images of the targets

in the bend stiffener and riser areas during the test. The hardware components of

the optical monitoring system are listed in Table 5.1. Both cameras are fixed on a

vertical structure, as shown in Fig. 5.2a. The vertical rod is placed in front of the

central axis of the riser/bend stiffener sample with a working distance of Wd=1.65 m.

The cameras are arranged with capturing angles in the top-front of sample targets

with a perspective distortion due to the interference structures in front of the sample

in the scene. Cam1 and Cam2 represent the cameras for the bend stiffener and riser

regions of interest respectively. Figure 5.2b shows the full two-dimensional region of

interest (ROI) of the bend stiffener camera in the scene. The test illumination in the

scene is provided by two 100W LED reflectors light with color temperature of 6000K

(blue light) to supply enough luminosities to identify the photoluminescence targets.
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Figure 5.3: Image processing for bend stiffener and riser targets.

b) Lens correction and Image calibration

Firstly, lens correction and calibration of the acquired images are performed

by using a series of images of a circle pattern table that are captured to cover

the entire area of interest. Secondly, the camera/lens coefficients are determined.

Finally, the digitized images are rectified and then undistorted by using a perspective

correction. These steps are performed by using the IMAQ libraries provided by the

Vision Assistant software (National Instruments, 2014) [70].

Image processing

The undistorted stacks of riser and bend stiffener images are processed by using

the open-source software ImageJ [66] separately for five tests. Figure 5.3 presents

the image processing of the bend stiffener and riser targets. The image processing

procedure is as follows: (i) import the stacks of bend stiffener images of each ten

cycle test in ImageJ, for example 120 images in Test 1; (ii) set the image global scale

of 1.515 pix/mm related to the reference value of the diameter of target Dt = 19

mm; (iii) select a region of interest containing all the targets in the image stacks, and

then chop the images by the selected region; (iv) employ color threshold to filter the

targets in the image; (v) apply Otsu’s method [71] to transform the filtered channel

images into binary stack images with low level noise. The same processing approach

is used to the riser original images with a image global scale 2.15 pix/mm.
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Image analysis

The processed stacks of binary images are analyzed through morphological opera-

tions of the free-orientation metrics class (e.g., area and centroid position) at spec-

ified regions of interest. The considered method, named area fraction, describes

the density of pixels, with an intensity value of 1 or 0 (black or white respectively)

within a region of interest. In general, the time variation of the area fraction of the

target particles (density of black color pixels) inside ROIs is used to determine time

series of targets coordinates.

5.1.3 Data analysis of optical measurements

The relative coordinates of the targets on the riser/bend stiffener sample are recorded

in the bending plane by the optical monitoring system. A cubic interpolation is ap-

plied on the coordinates of the targets during ten cycle test after the image analysis.

Simultaneously, a calibrated rotary position sensor (RVIT15-60) with response fre-

quency of 0.5 Hz is placed on the rotation axis of the bending table to monitor the

rotation angle during the test. As the bending table rotation is controlled by two

side synchronous hydraulic actuators, there is a small difference between the oper-

ational and given loading conditions. For example, the rotation angles are within a

range of (0.83◦, −15.33◦) during the Test 1. The time series of rotation angle and

coordinates (X, Y ) are synchronized based on the simultaneous maximum rotation

angle and largest displacement.

All target coordinates are calculated in the global coordinate system by the

relative coordinates plus the first target values in the bend stiffener and riser re-

gions respectively. The coordinates of the targets at the zero rotation position are

calculated by the coordinate interpolation functions. To reduce the system error

by the target deviation, the configurations Xcentral of riser/bend stiffener central

axis in the maximum rotation is considered to be the relative coordinates of tar-

get configurations in maximum rotation related to the zero rotation configurations

X i
central = X i

max−X i
0, where X i

max and X i
0 are interpolated coordinates of targets in

maximum and zero rotations respectively. The optical measurements of 21 targets

on the bend stiffener central axis and 17 targets on the riser central axis and the

mean values of measurements in each position (Xmean,i, Ymean,i) for five tests are

presented in Fig. 5.4. The rotation angle, tension and internal pressure of the riser

at the maximum rotation for the five tests are given in Table 5.2.

The error of the optical measurements is identified during the image digitalization

and processing stages. The image digitalization error could be caused by the optical

monitoring system setup and lens distortion of the acquisition device. For the image

processing, the error is generated by losing pixels during the image digitalization.
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Figure 5.4: 21 and 17 target measurements on the bend stiffener and riser central
axes respectively and mean values of measurements in each position for five tests.

Table 5.2: Rotation angle, tension and internal pressure of riser at the maximum
rotation for five tests

Max. Rotation Tension Internal pressure
(◦) (kN) (MPa)

Test-1 15.33 1286 9.66
Test-2 15.37 1290 9.56
Test-3 15.34 1284 9.66
Test-4 15.33 1287 9.58
Test-5 15.34 1283 9.73

5.2 Finite element model of riser/bend stiffener

test

A finite element model (FEM) is employed to represent the bending-tension test

of the riser/bend stiffener system. To ensure the analysis accuracy with a reduced

computational time, the FEM model is constructed with following simplifications:

• The flexible riser is represented by a beam bending model with large deflection,

as the armour wire stresses are not considered in the present work;

• The bending table is represented by a reference point at its rotation center;

• The riser and bend stiffener top ends are rigidly connected to the reference

point directly;

• A metallic protection cylinder is placed outside of the bend stiffener top end

and tied with the polyurethane, instead of the connection of the flange and

bolt inserts with polyurethane;

• The gravity effect of riser is represented by an effective density.
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5.2.1 Finite element model

The FEM model for the riser/bend stiffener test is implemented by using the software

Abaqus [72], as shown in Fig. 5.5. The riser is represented by beam elements

(B31) in space, tied with contact surface elements (SFM3D4R) without stiffness.

A general beam section is adopted to define the linear bending, axial and torsional

behavior of the riser. Two end fittings of the riser are assumed to be metallic

rods with an equivalent diameter of 0.2 m. The bend stiffener is represented by

solid elements (C3D8R), including the polyurethane and top metallic connection

parts. The metallic part of bend stiffener is tied with the polyurethane part. The

bend stiffener and riser top ends are both rigidly connected to the reference point

at the rotation center of the bending table by employing multi-point constraint

(MPC) beams. The metallic support rod with a diameter of 0.1 m is represented

by beam elements (B31), tied to the tip end of riser and the hydraulic tractor.

A translator is applied to represent the axial hydraulic tractor. The translator

provides a slot constraint between two nodes and aligns their local directions. The

interaction between the riser and the bend stiffener is implemented by surface-to-

surface contacts with “Hard” contact and zero friction coefficient. The reference

point of the bending table and the translator top are both fixed in space except the

rotation degree of freedom in the bending plane.

The material of metallic rods for the riser end fitting and support structure is

defined by Young’s modulus 210 GPa and Poisson’s ratio 0.3. A reference point

rotation angle and a translator tension force are applied for the bending-tension

test. As the bending-tension test is conducted on the vertical rig, the gravity of

the riser/bend stiffener system is considered by its component densities, as shown

in Table 5.3. The gravity constant is 9.8 m/s2.

Table 5.3: Component densities ρ of riser/bend stiffener system

Metal part Polyurethane Riser

ρ (kg/m3) 7850 1150.4 4612

5.2.2 Hyperelastic behavior of polyurethane

There are a number of hyperelastic material models in the literature, proposed to

model isotropic elastomers, such as: Arruda-Boyce, Marlow, Mooney-Rivlin, neo-

Hookean, Ogden, Polynomial, Yeoh, among others, which were derived from strain

energy potentials. In the present work, Marlow and first order Polynomial forms

of strain energy potentials are considered to represent the hyperelastic response of
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Figure 5.5: Simplified finite element model for the bending-tension test of the
riser/bend stiffener system (Mesh 0.05 m).

the bend stiffener polyurethane. In Abaqus, the material coefficients C10 and C01

can be used to define first order Polynomial form of hyperelastic model with a small

compressibility coefficient D1. Meanwhile, the Marlow form of the strain energy

potential must be defined with test data. A power function is employed to represent

the hyperelastic response of polyurethane,

σ(ε) = sign(ε)Eq|ε|q, (5.1)

where σ and ε are nominal stress and strain respectively, Eq and q are material coeffi-

cients, and sign(ε) is the sign function. Equation (5.1) with two material parameters

Eq and q is used to generate the stress-strain data for the direct FEM model with

Marlow hyperelastic model as an input. The Poisson’s ratio is 0.45 in the hyperelas-

tic model. Table 5.4 summarize the material coefficients of two hyperelastic models

for bend stiffener polyurethane in this work.

68



Table 5.4: Material coefficients of the hyperelastic models of polyurethane

Models Material coefficients

Marlow (Eq, q) represents the test data
Polynomial (N=1) C10, C01

5.2.3 Mesh sensitivity analysis

Mesh convergence of riser/bend stiffener FEM model is analyzed for two load condi-

tions (1200 kN, 15◦) and (1500 kN, 15◦) with mesh sizes 0.02 m and 0.05 m for both

beam and solid elements. An industry used material of polyurethane is considered

for the bend stiffener for the mesh analyses, as shown in Fig. 3.3. Table 5.5 shows

the total element numbers of the FEM models and computational time. The cor-

responding configurations of the FEM models for two load conditions are presented

in Fig. 5.6, with no significant difference observed. The FEM model with mesh size

0.05 m is chosen in the following analysis, considering its less computational time.

Table 5.5: Mesh sensitivity analysis for the FEM model of the riser/bend stiffener
system

Mesh sizes Number of elements Computational time(s)
(1200 kN, 15◦) (1500 kN, 15◦)

0.02 m 105197 2804.5 2872.7
0.05 m 15520 351.3 363
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Figure 5.6: Configurations of the FEM models of the riser/bend stiffener with two
mesh sizes for loading conditions (a) (1200 kN, 15◦) and (b) (1500 kN, 15◦).
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5.3 Inverse problem methodology

During the riser/bend stiffener bending-tension test, material parameters of the

bend stiffener are unknown, which are greatly affected by the operational conditions.

In the present work, an inverse problem methodology is employed to numerically

estimate the hyperelastic response of polyurethane and the effective top tension,

based on the direct FEM model of the riser/bend stiffener and the configuration

measurements (Xm1, Xm2, ..., XmN), with N being the number of targets.

5.3.1 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (L-M) algorithm based on a damped least-square min-

imization approach is applied in the inverse analysis, as described in Eq. (4.9) in

Chapter 4. P1, P2, ..., PM represent the unknown material parameters and top ten-

sion in the riser/bend stiffener system, and M is the number of unknown parameters.

The summation of the squared residuals of the numerically estimated configuration

Xi(P1, P2, ..., PM) and measurements Xmi, i = 1, 2, ..., N , at N positions yields,

R(P1, P2, ..., PM) =
N∑
i=1

(Xmi −Xi(P1, P2, ..., PM))2 . (5.2)

The equation can be expressed in vectorial form,

R(P ) = [Xm −X(P)]T [Xm −X(P )], (5.3)

where P T = [P1, P2, ..., PM ] is the vector of unknown parameters, and Xm, X(P )

are the vectors of measurements and estimated configurations respectively. By the

least-square approach, the overall solution (P1, P2, ..., PM) minimizes the summa-

tion of the squared residuals R(P1, P2, ..., PM) which best matches the estimated

configuration and measurements. The L-M algorithm is given by,

P k+1 = P k + [(Jk)TJk + µkΩk]−1(Jk)T [Xm −X(P k)], (5.4)

where J is the Jacobian matrix, Ωk = diag[(Jk)TJk] is a diagonal matrix, µ is the

damping factor, and k is the iterative index number.

The L-M algorithm for riser/bend stiffener system is implemented by the Python

programming [73] with the Abaqus scripting interface [72]. A direct model function

XFEM(P1, P2, ..., PM) is defined to update the variables (P1, P2, ..., PM) in the FEM

model of the riser/bend stiffener, and then execute calculation of FEM model in

Abaqus package and output the corresponding calculated configuration. A cubic

interpolation is applied on the coordinates of the central axis nodes of the bend
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Figure 5.7: Flowchart of L-M algorithm for the parameter estimation in the
riser/bend stiffener system with optical measurements.

stiffener in the FEM model, and the estimated configurations (X1, X2, ..., XN) are

calculated in the measured vertical positions (Ym1, Ym2, ..., YmN) of all the targets

based on the interpolation function. The elements in the Jacobian matrix are defined

by Jij = ∂Xi/∂Pj, i = 1, 2, ..., N and j = 1, 2, ...,M , which are related to the

numbers of measurements and unknown parameters. The sensitivity coefficients in

the Jacobian matrix can then be numerically calculated by finite difference method,

Jkij
∼=
XFEM,i(P1, P2, ..., Pj + βPj, ..., PM)−XFEM,i(P1, P2, ..., Pj, ..., PM)

βPj
,

i = 1, 2, ..., N and j = 1, 2, ...,M

(5.5)

where the step difference coefficient is given by β = 10−4 .

The flowchart of L-M algorithm for parameter estimation in the bending-tension

test of the riser/bend stiffener system is presented in Fig. 5.7. The initial unknown

parameters P 0 can be any set of reasonable values, and the initial damping factor
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is set to be µ0 = 0.001. The following stopping criteria are employed to terminate

the iteration in the L-M algorithm,

R(P k+1) < ε1, (5.6a)∣∣∣∣Pjk+1 − Pjk

Pj
k

∣∣∣∣ < ε2 and j = 1, 2, ...,M (5.6b)

where ε1 and ε2 are tolerances of residuals and estimated parameters respectively.

Here, the termination tolerances are set to be ε1 = 10−6 and ε2 = 10−8. The

maximum number of iterations is chosen to be 50 in the loop, which is found to be

sufficient for the present problem. At each iterative step k, the direct FEM model of

the riser/bend stiffener is calculated at least 2+M times, X(P k), X(P k
1 , P

k
2 , ..., P

k
j +

βP k
j , ..., P

k
M), X(P k+1). During the subpath for each iteration, P k, X(P k), R(P k)

are kept with same values, while only X(P k+1) is recalculated by the direct model,

related to the variations of damping factor µk.

5.3.2 Inverse analysis for the riser/bend stiffener system

To verify the feasibility of inverse analysis methodology for bending-tension test of

the riser/bend stiffener system, a preliminary assessment is carried out with numer-

ically simulated measurements based on the direct FEM models. The configuration

measurements of 8 targets, BS11, BS12, . . . , BS18, of the riser/bend stiffener system

are used in the inverse analysis to simultaneously estimate the top tension (P1 = F )

and material parameters in nonlinear elastic equation (5.1) (P2 = Eq, P3 = q).

Simulated measurement errors are generated by a random number generator with

Gaussian distribution multiplying a noise level of the configuration measurements of

exact parameters. The measured configuration in each point is simulated by adding

the random error to the exact configuration value as follows,

XM
i = XExact

i +XExact
i aRandomi

Q

100
,

and i = 11, 12, ..., 18
(5.7)

where XExact
i is the exact configuration at ith point, Q% is the noise level related to

the exact configurations, and aRandomi are random numbers with Gaussian distribu-

tion between -1 and 1. The configuration measurements of 8 targets are generated

by the FEM model with exact parameters (F=1200 kN, Eq=15 MPa, q=0.7) adding

8 noise levels of 0%, 0.2%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% respectively, as shown

in Fig. 5.8.

As the simulated measurements are applied in the preliminary inverse analysis,

a larger termination tolerance of residuals ε1 = 10−5 is chosen to analyze the mea-

72



700 750 800 850 900 950 1000 1050 1100

98

100

102

104

106

108

110

X 
(m

m
)

Y (mm)

 0%
 0.2%
 0.5%
 1%
 1.5%
 2%
 2.5%
 3%

Noise level Q%

Figure 5.8: The simulated measurements of 8 targets in the bend stiffener region
with 8 noise levels.

Table 5.6: The estimated parameters (Fe, Eq,e, qe) of the riser/bend stiffener system
for the simulated measurements with 8 noise levels for exact parameters (1200 kN,
15 MPa, 0.7)

Estimated force Estimated material Residuals

Noise levels Fe - LM Error Eq,e- LM Error qe - LM Error R(F,Eq , q) Iterations
(kN) (MPa) (mm2)

0 1200 0.002% 15.00 0.0046% 0.700 0.0007% 4.5× 10−15 16

0.2% 1123 6.4% 14.48 3.4% 0.714 2.0% 0.042 3

0.5% 1038 13.4% 14.11 5.9% 0.737 5.3% 0.261 47

1.0% 1044 12.9% 14.16 5.5% 0.736 5.1% 1.10 9

1.5% 928 22.6% 13.44 10.3% 0.766 9.4% 2.43 26

2.0% 1032 14.0% 14.34 4.3% 0.744 6.4% 4.62 15

2.5% 889 25.9% 13.98 6.7% 0.797 13.9% 6.97 19

3.0% 791 34.0% 12.81 14.5% 0.817 16.7% 9.86 24

surement error effect. Table 5.6 shows the estimated parameters (Fe, Eq,e, qe), final

summations of squared residuals and numbers of iteration for the eight measurement

noise level cases. It can be seen that the estimated parameters (Fe, Eq,e, qe) show

an excellent agreement with the exact (F,Eq, q) with the final residual close to zero

when the simulated measurements are without error. The estimated parameters de-

viate significantly from the exact values if 1% or larger random experimental errors

are present. Larger final summations of squared residuals are obtained with higher

measurement noise levels.
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5.4 Parameter estimation with optical measure-

ments

Parameter estimation with optical configuration measurements is employed in the

bending-tension test of the riser/bend stiffener system, based on the L-M algorithm

combined with the direct riser/bend stiffener FEM model. Fig. 5.4 presents the

measured configurations of 21 targets and 17 targets along the bend stiffener and

riser central axes respectively, and mean values of measurements in each position

for five tests. The measurements of 8 targets close to the bend stiffener tip end,

BS11, BS12, . . . , BS18, shown in Fig. 5.9, are used to estimate the top tension and

polyurethane hyperelastic response in the inverse analysis. The remaining measure-

ments in bend stiffener and riser regions can be employed to validate the estimated

configurations of the bend stiffener and riser. In the following inverse analyses of the

riser/bend stiffener system, the hyperelastic response of polyurethane is estimated

firstly in Section 5.4.1; simultaneous estimation of material parameters and top ten-

sion is then presented in Section 5.4.2; and finally, a proposed multiple parameter

estimation of material parameters and constrained top tension is investigated in

Section 5.4.3.
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Figure 5.9: Configuration measurements of 8 targets on the bend stiffener central
axis and mean values of measurements in each position for five tests.

5.4.1 Estimation of material parameters

During the bending-tension test of the riser/bend stiffener system, the hyperelastic

response of bend stiffener polyurethane is unknown, which are greatly affected by

the ambient temperature and humidity. The average temperature and humidity are

around 29.5◦C and 70% respectively for the five repetition tests. Material parameters

of the bend stiffener are estimated firstly by the inverse analysis in this work. The
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measurements of 8 targets, shown in Fig. 5.9, are used to numerically estimate

the material coefficients (Eq, q) in nonlinear elastic equation (5.1). The estimated

parameters (Eq,e, qe), the final summations of squared residuals and numbers of

iteration are presented in Table 5.7 respectively for five tests and mean data. The

nominal strain-stress relations given by estimated material parameters (Eq,e, qe) are

shown in Fig. 5.10. A maximum strain of 6% is observed in the FEM models with

estimated material parameters. Meanwhile, the estimation of first order Polynomial

hyperelastic model (N=1) is implemented with the mean measurements of 8 targets.

The estimated coefficients are C10=27575439 and C01=-20036524, and the strain-

stress relation is presented in Fig. 5.10 in comparison with the nonlinear elastic

model (Eq,e, qe).

Table 5.7: The estimated material parameters (Eq,e, qe) of bend stiffener
polyurethane

Estimated material Residuals

Eq,e - LM qe - LM R(F,Eq, q) Iterations
(MPa) (mm2)

Test 1 14.54 0.653 0.672 4
Test 2 16.19 0.688 0.325 18
Test 3 14.02 0.648 0.561 5
Test 4 13.85 0.635 0.493 6
Test 5 14.93 0.665 0.148 3
Mean 15.49 0.676 0.295 8
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Figure 5.10: Nominal strain-stress relations by estimated material parameters for
two hyperelastic models of polyurethane.

Using the measured configurations of 8 targets for five tests and mean data,

the bend stiffener material behavior is estimated by two hyperelastic models of
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polyurethane. For the nonlinear elastic model (Eq,e, qe), the estimated strain-stress

curves are concentrated with small variations between repeated estimations. The

estimated Polynomial model (N=1) is close to the estimated nonlinear elastic model

(Eq,e, qe) in general, while the estimated strain-stress curve presents highly linear

elastic behavior. A soft material is obtained for the bend stiffener polyurethane in

the present work comparing to the nominal strain-stress relation with the laboratory

temperature 24◦C in Fig. 3.3 [18], which could be caused by the high ambient

temperature and hunidity during the bending-tension test. For all the subsequent

analyses, the nonlinear elastic model (Eq, q) is employed in the inverse parameter

estimation.

5.4.2 Estimation of material parameters and top tension

In this section, the configuration measurements of 8 targets, BS11, BS12, . . . , BS18,

as presented in Fig. 5.9, are applied in the inverse analysis of the riser/bend stiff-

ener system to simultaneously estimate the top tension and material parameters of

polyurethane (F,Eq, q). The measured tension forces are used to verify the multiple

parameter estimation for the riser/bend stiffener system. Table 5.8 presents the

estimated parameters (Fe, Eq,e, qe), the final summations of squared residuals and

numbers of iteration for five tests and the mean data. It can be seen that the esti-

mated forces are close to the measured forces with 4% and 2.8% errors respectively

for Test 1 and Test 4. The estimated forces are larger than the measured forces with

larger values of estimated material parameter Eq,e for Test 2, Test 3, Test 5 and the

mean data. The proposed inverse problem methodology is reliable for estimation

of the top tension and bend stiffener material parameters when the measurements

error is small, for example Test 1 and Test 4. With large measurement error, si-

multaneous estimation of material parameters and loading condition may lead to a

large deviation.

Table 5.8: Estimated parameters (Fe, Eq,e, qe) of riser/bend stiffener system

Measurements Estimated tension Estimated material Residuals

Rotation F Fe - LM Error Eq,e - LM qe - LM R(F,Eq, q) Iterations
(◦) (kN) (kN) (MPa) (mm2)

Test 1 15.33 1286 1234 4.0% 15.04 0.697 0.192 12
Test 2 15.37 1290 1491 15.6% 16.95 0.664 0.520 6
Test 3 15.34 1284 1432 11.5% 17.56 0.699 0.296 12
Test 4 15.33 1287 1323 2.8% 15.60 0.683 0.267 7
Test 5 15.34 1283 1427 11.2% 16.05 0.666 0.263 8
Mean 15.34 1286 1530 18.9% 18.32 0.693 0.163 8
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5.4.3 Estimation of material parameters and constrained

top tension

When the range of the top tension is known in a field application, the constraint

conditions of the unknown top tension can be incorporated in the inverse analy-

sis. The multiple parameter estimation of material parameters and constrained top

tension is proposed to reduce the effects of the measurement errors in the inverse

analysis of riser/bend stiffener system. The configuration measurements of 8 targets,

BS11, BS12, . . . , BS18, as presented in Fig. 5.9, are used in the inverse analysis

of riser/bend stiffener system for five tests and mean data, and the remaining mea-

surements in bend stiffener and riser regions are applied to verify the estimated

configurations of bend stiffener and riser. In the L-M algorithm of inverse analysis,

the termination tolerances are modified to be (i) ε1 = 10−6 , and (ii) ε2 = 10−8 or

Fe > 1300 kN or Fe < 1000 kN. L-M algorithm guarantees the summation of squared

residuals keep decreasing, R(P k+1) < R(P k), in the negative gradient direction dur-

ing the whole iterative process. When the tolerance ε1 = 10−6 m2 is obtained, the

summation of the squared residuals is considered small enough close to the mini-

mum solution. The following iterative parameter estimations will advance to the

minimization of the summation of the squared residuals. If the estimated force is

outside of constraint range 1000 kN ≤ Fe ≤ 1300 kN, the iterations will be termi-

nated, and the last estimated parameters are considered to be estimation solution

with smallest summation of the squared residuals. Otherwise, the iterations will

advance to the stopping tolerance ε2 = 10−8 with the minimum summation of the

squared residuals.

Table 5.9: Estimated material parameters and constrained tension (Fe, Eq,e, qe) of
riser/bend stiffener system

Measurements Estimated tension Estimated material Residuals

Rotation F Fe - LM Error Eq,e - LM qe - LM R(F,Eq, q) Iterations
(◦) (kN) (kN) (MPa) (mm2)

Test 1 15.33 1286 1234 4.0% 15.04 0.697 0.192 12
Test 2 15.37 1290 1225 5.0% 14.16 0.679 0.870 3
Test 3 15.34 1284 1296 0.9% 15.22 0.690 0.393 8
Test 4 15.33 1287 1242 3.5% 14.80 0.687 0.379 3
Test 5 15.34 1283 1185 7.6% 13.68 0.684 0.479 3
Mean 15.34 1286 1296 0.8% 15.06 0.679 0.360 6

The estimated parameters (Fe, Eq,e, qe), the final summations of squared resid-

uals and numbers of iteration for five tests are presented in Table 5.9. The final

summations of squared residuals of five tests and mean data for merely material

estimation, tension and material estimation, and constrained tension and material
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Figure 5.12: Estimated error of tension of five tests and mean data for two types of
parameter estimations.

estimation are shown in Fig. 5.11. The estimated errors of tensions of five tests

and mean data for the tension and material estimation and the constrained tension

and material estimation are given in Fig. 5.12. After a number of iterations, the

estimations are in the radius of convergence constrained by 1000 kN ≤ Fe ≤ 1300

kN, and the summations of squared residuals are reduced below than ε1 = 10−6. It

can be seen that the constraint on the range of the top tension improves significantly

the precision of the estimation of the top tension force over the unconstrained si-

multaneous estimation of the three parameters. The nominal strain-stress relations

given by estimated material parameters (Eq,e, qe) of bend stiffener for five tests and

mean data are shown in Fig. 5.13. The estimated material strain-stress curves from

constrained force and material estimation are closed to the estimated material in

78



0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

St
re

ss
 (
M
Pa

)

Strain (%)

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Mean

Figure 5.13: Nominal strain-stress relation by estimated material parameters of bend
stiffener in the material and constrained tension estimation case.

Section 5.4.1, while two material parameter estimation are more concentrated than

three parameter estimation of constrained tension and material for the repeated

estimations of five tests and mean data.

The configurations for bend stiffener and riser at the maximum rotation are

calculated by the FEM model, once the estimated tension and material parameters

(Fe, Eq,e, qe) are obtained. The estimated configurations of bend stiffener in FEM

model for five tests and mean data are shown in Fig. 5.14. The configurations of the

measurements and the results by the FEM model with estimated parameters agree

well. There are small deviations between configurations of measurements and FEM

models in the initial target positions of bend stiffener for all five tests and mean

data, which may be caused by the system error of optical system.
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Figure 5.14: Configurations of riser and bend stiffener of measurements and FEM
model for five tests and mean data.
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5.4.4 Riser curvature distribution

After the configuration of riser/bend stiffener system is obtained, the curvature

distributions of riser and bend stiffener can be calculated for the bending-tension

test. The plane curve of bend stiffener configuration can be represented by an

interpolated function y = f(x). The curvature at a point (x, y) can be expressed in

terms of the first and second derivatives of the function f(x),

κ =
f ′′(x)[

1 + (f ′(x))2]3/2 . (5.8)

The curvature of the riser is directly output from the FEM model by beam

element analysis. The curvature distribution of the bend stiffener is numerically

calculated by post-processing the bend stiffener configuration curve data. Figure

5.15 shows the curvature distributions of the riser and bend stiffener calculated

from FEM model and optical configuration measurements for Test 1. A interpolation

of 3 order is used with the configuration data for the curvature calculation of bend

stiffener in FEM model. For the optical configuration measurements on the riser and

bend stiffener axes, a cubic function is applied to fit the measurements firstly, and

then calculate curvature based on the fitted function. There is significant difference

between the riser and bend stiffener curvatures along the arc length. The riser bends

inside of the bend stiffener with a lower curvature distribution.
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Figure 5.15: Curvature distributions of riser and bend stiffener.

5.5 Conclusions

A full-scale bending-tension test of riser/bend stiffener system is presented for a

given loading conditions with five sets of repeated tests. The configurations of the
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riser/bend stiffener sample are measured by a proposed optical image-based tech-

nique. The photoluminescent color targets are placed in the riser and bend stiffener

regions of interest, which are tracked by the image digitization system and followed

by image process and analysis. After data synchronization and analysis, five con-

figurations of the riser/bend stiffener targets are obtained for the repeated tests.

A finite element model is developed to represent the riser/bend stiffener bending-

tension test with the top tension applied in the translator element and the rotation

angle employed in a reference point representing the bending table center, and the

ends of riser and bend stiffener in the same side both rigidly connected to the refer-

ence point. Mesh convergence analysis shows that the 0.05 m mesh is adequate for

the present problem. An inverse analysis using Levenberg-Marquardt approach is

applied in the riser/bend stiffener system with a direct finite element model and op-

tical configuration measurements to simultaneously estimate loading condition and

material parameters. A preliminary analysis of the parameter estimation methodol-

ogy for the riser/bend stiffener bending-tension system is employed by the simulated

measurements with 8 noise levels from the finite element model with exact parame-

ters. Finally, the obtained five sets of experimental configuration measurements of

8 targets are applied to estimate: i) the unknown material response and ii) simul-

taneous tension and material parameters in the riser/bend stiffener system. The

following conclusions are obtained:

i). The precision of parameter estimation is strongly affected by the level of exper-

imental errors in the measured configuration data. If there is no experimental

error, the tension and material properties can be estimated with very high pre-

cision. If 1% or larger random experimental errors are present, the estimated

parameters deviate significantly from the exact values.

ii). There are only slight differences between the material properties estimated by

using the two hyperelastic models for polyurethane, as the estimated strain-

stress curve by the first order Polynomial hyperelastic model presents highly

linear elastic behavior. Nonetheless, the nonlinear elastic model yielded esti-

mated strain-stress curves with smaller variations between repeated estima-

tions.

iii). When estimating simultaneously the top tension and two material property pa-

rameters, the constraint on the range of the top tension improves significantly

the precision of the estimation of the top tension force over the unconstrained

simultaneous estimation of the three parameters. There are very small varia-

tions between repeated estimated forces obtained by the constrained estima-

tion approach, which indicates that the proposed inverse analysis methodology
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with constrained top tension is reliable for the estimation of the tension and

material parameters in the riser/bend stiffener top system.

iv). The riser bends inside of the bend stiffener with a smaller curvature distribu-

tion, as shown by the curvature distributions of the riser and bend stiffener

calculated using the estimated parameters in the riser/bend stiffener system.
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Chapter 6

Conclusion and Suggestions

This thesis has mainly worked on the modeling and parameter estimation in flexible

riser-bend stiffener top connection, which allows a more realistic analysis of the

riser top response and can help reducing the lifetime (re)assessment uncertainties.

The original contributions, main conclusions and suggestions for future work are

presented in this chapter.

6.1 Main original contributions

The main original contributions in this thesis are summarized as follows:

1. A large deflection beam model was developed to represent the riser-bend stiff-

ener top connection with I-tube interface, considering that the bellmouth tran-

sition area with the polymeric sleeve is represented by a straight rigid surface

followed by a curved section. The beam model incorporates the riser bilinear

bending behavior and bend stiffener polyurethane nonlinear elastic symmetric

response.

2. Three systems of coupled differential equations for the riser-bend stiffener top

connection with I-tube interface combined with the corresponding multipoint

boundary conditions were presented. And the obtained multipoint boundary

value problem of riser top connection were numerically solved by an proposed

iterative procedure.

3. A monitoring approach has been proposed aiming at decreasing the uncer-

tainties associated to bend stiffener mechanical response and the effective top

tension employed for further flexible riser lifetime (re)assessment. It is com-

posed of gyrometers installed along bend stiffener/riser length and combined

with an inverse problem methodology based on the Levenberg-Marquardt al-

gorithm and a direct analytical model of riser/bend stiffener.
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4. A full-scale bending-tension test of the riser/bend stiffener system were pre-

sented. An image-based experimental monitoring technique was employed in

the bending-tension test to measure the sample configurations, which consists

of the image acquisition, processing and analysis, and the data synchronization

and analysis.

5. An inverse analysis using Levenberg-Marquardt algorithm was applied in the

full-scale bending-tension test of riser/bend stiffener system with a direct fi-

nite element model and optical configuration measurements to simultaneously

estimate measured tension and unknown material parameters. The curvature

distribution of riser was then calculated by the finite element model with the

estimated modeling parameters.

The analytical model of the riser-bend stiffener top connection with I-tube in-

terface allows a more realistic assessment of the flexible riser top connection re-

sponse, contributing to a better understanding of the complex riser interaction with

the bend stiffener and I-tube, which can also be employed for preliminary design.

The proposed monitoring approach combined with inverse problem methodology

can effectively reduce flexible riser lifetime (re)assessment uncertainties. For the

riser/bend stiffener bending-tension test with optical configuration measurements,

the riser curvature distribution inside of bend stiffener can be calculated in the finite

element model after the estimations of polyurethane material parameters. Simul-

taneous parameter estimation of loading condition and material parameters in the

riser/bend stiffener bending-tension test is aimed at providing a feasibility evidence

to the field application.

6.2 Main conclusions

The riser-bend stiffener top connection with I-tube interface was analyzed by a

large deflection analytical beam bending model. The I-tube bellmouth transition

region was considered with a straight rigid surface followed by a curved section.

The riser follows a nonlinear bending behavior described by a bilinear moment vs

curvature function and the bend stiffener polyurethane material exhibits nonlinear

elastic symmetric response represented by a power law function. It was assumed

that there is no gap between the riser and the bend stiffener and the riser is fixed

in the end-fitting position. The mathematical formulation of the statically indeter-

minate system results in three systems of coupled differential equations combined

with the corresponding multipoint boundary conditions to be numerically solved by

an iterative procedure. A case study was carried out with a 7” flexible riser pro-

tected by a bend stiffener connected to an inclined I-tube bellmouth. The system is
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subjected to extreme loading conditions and the influence of the sleeve shape and

I-tube length on the riser curvature distribution, including the end-fitting position,

and contact forces between the riser/sleeve and riser/bend stiffener sections were

assessed. The following conclusions were obtained:

• The curvature distribution in the bend stiffener region is not affected by the

sleeve geometry;

• The end-fitting curvature is affected by both parameters, where, i) as the sleeve

radius RAB increases, the initial curvature k0 decreases and, ii) as the I-tube

length L1 is increased, the initial curvature decreases;

• The sleeve radius not only controls the initial contact angle and curvature

distribution in the contact region, but also that, below a given radius, the

riser does not interact with the curved section but directly contact the straight

sleeve region, which leads to a peak in the riser curvature;

• The contact force between the riser and the sleeve is highly affected by its

radius but is not influenced by the I-tube length.

The proposed monitoring approach composed by gyrometers installed along flex-

ible riser/bend stiffener system length combined with an inverse problem method-

ology has been numerically investigated to estimate the polyurethane hyperelastic

response and effective top tension. The riser/bend stiffener system was modeled

using a large deflection beam bending model and the parameters were estimated

using a damped least-square minimization approach with the Levenberg-Marquardt

algorithm. For the preliminary feasibility investigation, the gyrometer experimental

data was numerically estimated through Monte Carlo simulations. A case study

was carried out to investigate the influences of the number of sensors, sensors ar-

rangement, loading conditions and top connection model on the inverse parameter

estimations, leading to the following main conclusions:

• The selection of a top connection model to represent the riser/bend stiffener

system is an important aspect of the proposed methodology and should rep-

resent the actual response as accurately as possible;

• The sensor arrangement directly affects the inverse parameter estimation and

the sensitivity matrix may be employed to qualitatively support its positioning

along system length;

• The methodology accuracy decreases for small top connection tip angles. Two

approaches can be adopted for improvement: a) increase the number of sensors

or b) decrease the number of unknowns;
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• The number of unknowns may be decreased by calculating the material param-

eters in a short period, where the largest operational loading conditions are

expected, followed by long term continuous effective top tension calculation at

milder conditions.

A riser/bend stiffener system bending test was conducted with unknown

polyurethane material parameters. During the bending test, the configuration of

riser/bend stiffener sample was measured by a proposed optical image-based tech-

nique. A finite element model was developed to represent the riser/bend stiffener

bending test. The inverse problem analysis using Levenberg-Marquardt approach

has been applied in the riser/bend stiffener bending test system with a direct finite

element model and optical configuration measurements to simultaneously estimate

loading condition and material parameters. A preliminary analysis of the param-

eter estimation methodology for the riser/bend stiffener bending-tension system is

employed by the simulated measurements with 8 noise levels from the finite element

model with exact parameters. Finally, the obtained five sets of experimental config-

uration measurements of 8 targets are applied to estimate: i) the unknown material

response and ii) simultaneous tension and material parameters in the riser/bend

stiffener system. The following conclusions are obtained:

• The precision of parameter estimation is strongly affected by the level of exper-

imental errors in the measured configuration data. If there is no experimental

error, the tension and material properties can be estimated with very high pre-

cision. If 1% or larger random experimental errors are present, the estimated

parameters deviate significantly from the exact values;

• There are only slight differences between the material properties estimated by

using the two hyperelastic models for polyurethane, as the estimated strain-

stress curve by the first order Polynomial hyperelastic model presents highly

linear elastic behavior. Nonetheless, the nonlinear elastic model yielded esti-

mated strain-stress curves with smaller variations between repeated estima-

tions;

• When estimating simultaneously the top tension and two material property pa-

rameters, the constraint on the range of the top tension improves significantly

the precision of the estimation of the top tension force over the unconstrained

simultaneous estimation of the three parameters. There are very small varia-

tions between repeated estimated forces obtained by the constrained estima-

tion approach, which indicates that the proposed inverse analysis methodology

with constrained top tension is reliable for the estimation of the tension and

material parameters in the riser/bend stiffener system;
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• The riser bends inside of the bend stiffener with a smaller curvature distribu-

tion, as shown by the curvature distributions of the riser and bend stiffener

calculated using the estimated parameters in the riser/bend stiffener system.

6.3 Suggestions for Future work

Some suggestions for future work are as follows:

i). The experimental uncertainties of optical measurements should be studied in

detail, and the actual noise level of the measured data should be presented

then;

ii). The gyrometer may be installed along riser/bend stiffener sample in the lab-

oratory bending test to measure the rotation angles instead of configurations.

The parameter estimation based on the direct finite element model and mea-

sured rotation angles may be applied for the riser/bend stiffener system to

verify the proposed gyrometer monitoring approach preliminarily;

iii). The riser hysteresis behavior of nonlinear curvature and moment relation-

ship may be estimated by the proposed inverse problem methodology in the

riser/bend stiffener system with the measured configurations or rotation an-

gles;

iv). An inverse analysis to estimate the stochastic loading conditions with the field

gyrometer rotation data may be implemented;

v). The estimated top tension and curvature distribution may be used as input into

a local cross-sectional analytical or numerical model to calculate the armour

wire stresses. The fatigue lifetime (re)assessment may be then implemented by

cycle counting the resulting irregular stress based on the Rainflow technique

with an appropriate S −N curve.

88



Bibliography

[1] NEWPORT, A., HAHEIM, S., MARTINEAU, E. “Espirito Santo: Operational

Feedback on the Use of Steel Risers on a Turret Moored FPSO”. In:

Offshore Technology Conference, Houston, Texas, 2014. OTC-25354-MS.

[2] API 17B. Recommended practice for flexible pipe. latest ed. Washington, Amer-

ican Petroleum Institute, 2014.

[3] CLEVELARIO, J., SHELDRAKE, T., PIRES, F., FALCAO, G., SOUZA, I.,

AQUINO, F. “Flexible Riser Outer Sheath Full Scale Wearing Simulation

and Evaluation”. In: Offshore Technology Conference, Houston, Texas,

2009. OTC-20099-MS.

[4] MUREN, J., EIDE, J., ENGELBRETH, K. I., CHRISTENSEN, H., NILSEN-

AAS, C. “Lifetime Extension of Flexible Risers Based On Field Experi-

ences”. In: Offshore Technology Conference, Houston, Texas, 2016. OTC-

26998-MS.

[5] TECHNIPFMC. A broad range of flexible pipe systems with advanced integrated

solutions. In: Report, TechnipFMC, 2019. Dispońıvel em: <http://www.
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M. C., ESPERANÇA, P. T. “Water elevation measurements using binary

image analysis for 2D hydrodynamic experiments”, Ocean Engineering,

v. 157, pp. 1335–1346, 2018.

[65] OPENCV. Camera calibration - opencv 3 documentation. In: Report, OpenCV,
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