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        In this work, two alkanolamines, DEA and MEA, were studied, respectively, to model an acid 

gas treatment system to reduce H2S content and to select the most suitable Equation of State (EoS) 

to be used in this system modeling. The EoS SRK, PR and CPA were applied for pure MEA 

parameter estimation using pure substance data. The EoS CPA presented better results than the 

other two, with a mean absolute deviation from the vapor pressure of 1.694% and, therefore, was 

chosen as the main thermodynamic model for the process modeling. The CPA was then applied for 

pure DEA parameter estimation, generating mean absolute deviation values in relation to vapor 

pressure of 0.3%, which indicates proximity of the values calculated by the model with the 

experimental data. It was proceeded to estimate the parameters of the main binary systems present 

in an acid gas treatment unit and these were then inserted in the Petrox simulator. For the 

parameters estimation the ThermOptimizer software was used, applying the optimization methods 

PSO and Simplex. The results of the simulations were evaluated via comparison with operational 
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Chapter 1  

Introduction 

 

1.1 Motivation 

Increasingly stringent environmental restrictions orientate oil refineries to adapt to 

new legal requirements, which demand that gases emitted into the atmosphere have to be 

cleaner and safer (JUNGE, 1963). In addition, the specification of the fuel gas (or refinery 

gas) to be used in the internal processes of the refinery (as furnace fuel gas and in the 

generation of hydrogen) is also deeply restricted, mainly due to corrosive attacks by acidic 

compounds and generation of pollutants during the gas burning. In order to adapt the gaseous 

product to the legal restrictions, processes of absorption of acid gases using amines are widely 

used. The treatment of acidic streams minimizes the generation of solid waste and generates 

revenue for the company (BASTOS et al., 2015). Removal of CO2 and others acidic 

compounds can occur through various treatments such as membrane separation processes, 

separation through the formation of emulsions, adsorption towers and, most commonly, 

amine treatment. Several amines have been used over the years in the acid gas treatment. One 

of the most important factors to be considered in the amine field is the solubility of the solute 

relative to the absorber solution. The solubility is required to be high enough to remove the 

acid gases from the process feed however the interaction may not be strong enough to prevent 

the amine recovery (ZARE; MIRZAEI, 2009). Within the amine group, the alkanolamines, 

which are compounds with low volatility, high reactivity and good thermal stability, stand 

out. These are excellent characteristics for a solvent. About the alkanolamines, the one that 

presents the best compromise between affinity with the solute and regeneration capacity, 

considering an industrial environment, is diethanolamine (DEA). 
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In this work, the absorber tower of a DEA plant is modeled, whose objective is the 

removal of hydrogen sulphide from an acid gas stream. 

In the literature there are several approaches for the equilibrium modeling  involving 

amine compounds (AVLUND et al., 2011; AVLUND; KONTOGEORGIS; MICHELSEN, 

2008; BARREAU et al., 2006; FARAMARZI et al., 2009; MANDAL; 

BANDYOPADHYAY, 2006; OLIVEIRA et al., 2011). A rigorous approach is the procedure 

through the mass transfer model, which takes into account the species diffusion coefficient 

in each phase. A less rigorous approach, which presents less complexity in terms of 

mathematical equation, is the method through thermodynamic models. In this approach it is 

considered that the system reaches the thermodynamic equilibrium and that there are no 

macro level transients. This is the most commonly utilized approach in the industrial 

environment where it is seeking for a better compromise between good predictions and 

simplicity. Among the different models available to characterize the thermodynamic 

equilibrium, it is highlighted the Cubic Equations of State (EoS), which has the advantage of 

simplicity and great application in several areas (ex: large amount of data available in the 

literature). The most utilized cubic EoS, Peng-Robinson (PR) and Soave Redlich-Kwong 

(SRK), do not take into account the association phenomena between species. The Cubic Plus 

Association (CPA) Equation takes this phenomenon into account without adding a high level 

of complexity to the equation (KONTOGEORGIS, GEORGIOS M, 2004). In the literature, 

there are several areas (FOLAS et al., 2005) that the CPA has already presented better 

performance when compared with classical EoS. 

Based on the study of the most suitable solvent for the gas absorption, a comparative 

analysis of the EoS mentioned is carried out. For this, the pure monoethanolamine (MEA) 

parameter estimation was performed, so that the EoS that presented the best results could be 

chosen as the standard thermodynamic model to be applied in the modeling and simulation 

of the absorber tower. 

The strategy for parameter estimation chosen is based on the most recent study of 

the subject (SANTOS et al., 2015). The tool adopted for parameter estimation was the 

ThermOptimizer software. 
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It was proceeded with the absorption process simulation, employing an operational 

plant data, with the usage of Petrox software, with the objective of comparing the simulation 

results with data from the industrial plant. 

 

1.2 Objective 

The objective of this dissertation is to apply a relatively higher complex EoS (CPA) 

in a known industrial system with the aim to verify if it presents better results than more 

widely used EoS (SRK and PR). It is seeking not only for better results, but also for no need 

for greater computational demand. In addition, a second objective is to verify if the CPA 

presents reasonable results on modeling the vapor-liquid equilibrium (VLE) of a system 

containing DEA, water, H2S and light hydrocarbons. 

As specific targets can be listed: 

• To study MEA with a proposed methodology and compare with literature 

results using different EoS. 

• Perform a parameter estimation for modelling pure DEA and binary mixtures – 

DEA-water, DEA-H2S. 

• Apply these data in a Process Simulator.  

• Study an industrial DEA absorption unit, analyze plant data and perform 

comparisons with a process simulation result.  

 

1.3 Text Organization 

This work is divided into 5 main chapters. The first chapter is the Introduction, 

which brings to the reader a brief work presentation, with the main points to be developed 

and possible subjects to be clarified and proven. In addition, it will be indicated how the work 

is organized and its main goals will be clearly stated.  The knowledge of the study objectives 

is important because it will guide the entire research throughout this work. 

The second chapter is the Literature Review, which presents the relevant theoretical 

aspects in order to help the reader to understand the technical considerations and some of the 

author’s conclusions. This chapter addresses the basics of gas absorption theory, including 
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the main alkanolamines used. A flowchart of a refinery alkanolamine treatment process is 

presented. 

 The third chapter indicates the mathematical tools and the parameter estimation 

strategy.  

 The fourth chapter presents the results and discussions while the fifth chapter deals 

with its conclusions and suggestions.  
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Chapter 2  

Literature Review 

 

 

2.1 Gas Absorption Theory  

2.1.1 Introduction 

The absorption is aimed at separating components from a gaseous mixture to obtain 

a purer product stream. This separation involves the transfer of a substance from the gaseous 

stream (process feed) to a liquid stream (solvent). The absorbed compound may undergo to 

physical (no chemical reaction) or chemical (with chemical reaction) absorption (KOHL; 

NIELSEN, 1997).  

 

2.1.2 Acid Gas Treatment  

At the refinery, the industrial units responsible for the treatment of sulfur streams 

are called the sulfur block, which is made up of the following industrial plants: sulfur 

recovery units, waste gas treatment, acid water treatment and gas treatment with amines. 

Figure 1 represents an acid gas absorption process flow chart in a typical Petrobras 

plant (INDIO DO BRASIL; ARAÚJO; SOUSA, 2012). 

The gas to be treated, containing H2S, as observed in Figure 1, passes through a 

vessel to remove liquids and entrained solids. This separator is called a knock-out vessel. 

After this step, this condensate free gas enters the absorption column bottom. In this column 

an aqueous amine solution flows counter-current to absorb the acidic compounds from the 

gas stream. The treated gas (leaving the top of the absorption column) then passes through a 

new separator, which will retain a possible amount of the amine solution that has been drawn. 
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This current then leaves the treatment unit. The fuel gas main destination is to make up the 

refinery fuel gas header. 

 

 
Figure 1 - Process Flow Chart - Amines Absorption 

(adapted from Petrobras Refinery Manual) 

 

A critical step in the process is the amine solution regeneration containing the acidic 

compounds (this stream is called the rich stream). This current is preheated. The heating 

occurs in a heat exchanger whose heating fluid is the regenerated amine itself, which leaves 

the absorbing tower. This heat exchanger is a point of industrial unit´s energy integration, 

which decreases its overall energy demand. In the regenerating tower, due to the increase in 

temperature and decrease in pressure, the acid gas is released from the amine solution upon 

entering in with the steam generated by the reboiler. The acid solution then comes out over 

the regenerating tower together with the water vapor. This current passes through a 

condenser, where the vapor condenses. The acid gas is sent to the SRU (Sulphur Recovery 

Unit). If the process feed has a highly content of hydrogen, before passing through the sulfur 

recovery unit, it will pass through a hydrogen production unit. 

The recovered amine, poor in acid gas, leaves the regenerator tower and is 

recirculated to the absorbing tower, completing the solvent cycle. 
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2.1.3 Amines Solvents 

Alkanolamines are the main chemical solvents used in the treatment of gas streams 

containing H2S. This group has an amine function that imparts an alkaline character to the 

group. Alkanolamines have a high affinity for polar compounds due mainly to the hydroxyl 

radical (-OH) present in their constitution (ZARE; MIRZAEI, 2009). 

In this group, the most commonly employed alkanolamines are monoethanolamine 

(MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA). Other less widely used 

alkanolamines are triethanolamine (TEA), 2-amino-2-methyl-1-propanol (AMP) and 

diglycolamine (DGA). The decision of which alkanolamine to be utilized in the absorption 

process depends on several factors such as  process feed composition, system operating 

conditions and output current desired purity (KOHL; NIELSEN, 1997). Alkanolamines are 

an excellent choice of absorbents since they are relatively low in cost and are produced in the 

ethylene oxide industry (MEDEIROS; BARBOSA; ARAÚJO, 2013). 

Amines can be classified into primary, secondary and tertiary amines depending on 

the amount of hydrogens presented into central nitrogen to be replaced by other radicals. The 

primary amines have higher affinity for acidic compounds but react almost irreversibly, 

making it difficult to regenerate the solvent. Secondary amines have moderate affinity to the 

acidic compounds (having a reversible reaction), which facilitates their regeneration 

(BULLIN; POLASEK; DONNELLY, 1990). Tertiary amines are the amines which have the 

lowest affinity with the acidic compounds and therefore their regeneration is the most 

facilitated (however, it is the alkanolamines that have the worst results for the acidic 

compounds removal). Thus, in general, the secondary amines present a better compromise 

between the ability to treat the gas stream and enable the solvent recovery. Figure 2 is an 

illustration of the main alkanolamines (KOHL; NIELSEN, 1997): 

 
Figure 2 - Main alkanolamines used as solvents for gas absorption 

(adapted from Kohl, 1997)  
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2.1.4 Alkanolamine Selection 

Some aspects should be taken into account when selecting an amine for the 

absorption of H2S from a gas stream (POLASEK; BULLIN, 1994): 

1º) Does the amine used conform to the reboiler and condenser ability to provide 

the energy needed for its purification? 

2º) The absorption of H2S can be optimized using a mixture of amines? 

3º) Could the amine employed promote corrosion in the system? Is there an amine 

(or amine mixture) that will lessen this impact? 

4º) Will the chosen amine need how much of the circulation rate? Is there any 

amine that will lessen this need? 

 

In a gas absorption plant with amines, between 50% -70% of the costs related to the 

initial investment are associated with the solvent circulation rate size. Another 10%-20% is 

associated with the plant's energy demand. About the operating costs, 70% is related to 

solvent regeneration (POLASEK; BULLIN, 1994). In this way, the selection of the most 

appropriate amine (or amine mixture) for the process impacts the plant costs. 

As already mentioned, each alkanolamine has its specific characteristics that 

influence the acid gas absorption. Because it has intermediary characteristics between 

primary and tertiary amines, DEA is often the alkanolamine chosen for industrial processes 

whose objective is the removal of primarily H2S (INDIO DO BRASIL; ARAÚJO; SOUSA, 

2012). Regularly the decision to choose the DEA is based on the MEA unfavorable 

characteristics (MEDEIROS; BARBOSA; ARAÚJO, 2013): high energy demand for 

recovery, corrosiveness, compound degradation and vapor losses. MDEA has among the 

three the lowest vaporization loss and the lowest energy demand for its recovery. However, 

it has the lowest affinity for the acidic compounds. 

 

2.1.5 Chemical Reactions 

The main chemical reaction involved in the absorption process of H2S with DEA 

are presented in Equation 1: 
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 (𝑪𝑯𝟐 − 𝑪𝑯𝟐 − 𝑶𝑯)𝟐𝑵𝑯 + 𝑯𝟐𝑺 ↔ (𝑪𝑯𝟐 − 𝑪𝑯𝟐 − 𝑶𝑯)𝟐𝑵𝑯𝟐
+ + 𝑯𝑺− 1 

H2S, in aqueous solutions, dissociate forming a weak acidic solution. Its reactions 

with amines are exothermic. The reaction is favored by low temperatures. The reaction with 

H2S occurs instantaneously and reversibly (MANDAL; BANDYOPADHYAY, 2006).  

Secondary reactions that need to be taken into account are (BARREAU et al., 2006) 

presented in Equations 2, 3 and 4. 

Dissociation of water: 

 𝑯+ + 𝑶𝑯− ↔ 𝑯𝟐𝑶 2 

Dissociation of hydrogen sulphide: 

 𝐇𝟐𝐒 + 𝐇𝟐𝐎 ↔ 𝐇𝐒− + 𝐇𝟑𝐎+ 3 

Dissociation of disulphide: 

 𝐇𝐒− + 𝐇𝟐𝐎 ↔ 𝐒𝟐− + 𝐇𝟑𝐎+ 4 

Reactions occurring in the liquid phase can be categorized into equilibrium-

controlled reactions and kinetic-controlled reactions. The chemical reactions determine the 

ionic species compositions in the liquid phase (ZARE; MIRZAEI, 2009). 

 

2.2 Thermodynamic Basis related to EoS 

2.2.1 Soave Redlich-Kwong EoS 

The SRK EoS (SOAVE, 1972) is a successful modification of the original Redlich-

Kwong EoS. This equation has great acceptance in the oil and gas industry mainly because 

of its relative simplicity and accuracy in VLE calculations. One complication with this EoS 

is the limitation in the prediction of liquid density values. The equation generally predicts 

higher values than those found in the literature (ECHEVERRY; ACHERMAN; LOPEZ, 

2017; JAVANMARDI; NASRIFAR; MOSHFEGHIAN, 2005). 
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Some authors have already suggested changes in the equation in order to generate 

better results without compromising the simplificity of the Equation (JI; LEMPE, 1997). 

It can be considered the system pressure as the sum of the pressure of attraction and 

repulsion. The SRK repulsion pressure (𝑃𝑅) is expressed by the van der Waals equation for 

the rigid sphere, Equation 5. 

 𝑷𝑹 =
𝑹𝑻

𝒗 − 𝒃
 5 

The term 𝑏 is related to the chemical species proper volume. In the case of hard-

sphere molecules, 𝑏 is represented in Equation 6. 

 𝒃 =
𝟐𝝅𝑵𝝈𝟑

𝟑
 6 

Where 𝜎  is the molecule diameter: 

The pressure of attraction (𝑃𝐴) can be expressed by the Equation 7. 

 𝑷𝑨 =
𝒂(𝑻)

𝒗(𝒗 + 𝒃)
 7 

The term 𝑎 is related to the intermolecular attraction forces (Equation 8). 

 𝒂(𝑻) = 𝒂𝟎 [𝟏 + 𝒄𝟏 (𝟏 − √
𝑻

𝑻𝒄
)]

𝟐

 8 

Where 𝑎0, 𝑏 and 𝑐1 are parameters of EoS. 

𝑎 and 𝑏 can be obtained through the substance’s critical properties. For pure 

substances, the Equations 9 and 10 represent the expressions 𝑎 and 𝑏 based on the critical 

parameters: 
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 𝒂 = 𝟎. 𝟒𝟐𝟕𝟖
𝑹𝟐𝑻𝒄

𝟐.𝟓

𝑷𝒄
 9 

 𝒃 = 𝟎. 𝟎𝟖𝟔𝟕
𝑹𝑻𝒄

𝑷𝒄
 10 

The parameter 𝑐1  can be obtained by the compound’s acentric factor, according to 

Equation 11: 

 𝒄𝟏 = 𝟎, 𝟒𝟖𝟓𝟎𝟖 + 𝟏, 𝟓𝟓𝟏𝟕𝟏𝒘 − 𝟎, 𝟏𝟓𝟔𝟏𝟑𝒘𝟐 11 

 

2.2.2 Peng-Robinson EoS 

The Peng-Robinson (PENG; ROBINSON, 1976) equation is also a cubic state 

equation, which is widely accepted in the oil and gas industry due to the quality of the results 

generated and its simplicity (KONTOGEORGIS, GEORGIOS M.; ECONOMOU, 2010) . 

The explicit equation in terms of pressure is given in Equation 12: 

 𝑷 =
𝑹𝑻

𝒗 − 𝒃
−

𝒂(𝑻)

𝒗(𝒗 + 𝒃) + 𝒃(𝒗 − 𝒃)
 12 

The PR EoS term 𝑏(𝑣 − 𝑏) is considered as an improvement of the attraction forces 

representation, which would cause the model to generate better liquid density results 

(ECHEVERRY; ACHERMAN; LOPEZ, 2017). 

In a noticeably complete review, Echeverry (ECHEVERRY; ACHERMAN; 

LOPEZ, 2017) presented the most important modifications of the parameters proposed for 

the Peng Robinson model over the years. 

 

2.2.3 Binary Parameters for SRK and PR 

The binary parameter 𝑘𝑖𝑗 is remarkably important to fit the EoS predictions against 

the experimental data. Ideally, this parameter is obtained through binary mixture 

experimental data. However, it is known that this type of data is limited and is not available 
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for all the binaries involved in the simulated process. One way to overcome this limitation is 

to use empirical correlation models for 𝑘𝑖𝑗 (COUTINHO; KONTOGEORGIS; STENBY, 

1994). 

The binary parameters can be  a function of temperature and depends on the 

experimental data quality (COUTINHO; KONTOGEORGIS; STENBY, 1994). 

Often the zero value for 𝑘𝑖𝑗 is used when mixing alkane pairs. However, for mixtures 

containing other types of compounds, these parameters are relevant.  

 

2.2.4  Molecular Based EoS 

Complex thermodynamic systems, such as the system under study, require modern 

approaches to their description. Local composition models (CHAO; LEET; LAFAYETTE, 

1983) and cubic EoS are not robust enough to describe a wide range of complex systems. 

Among the modern approaches its indispensable to mention those based on the theory of 

perturbation, based on the chemical theory and based on lattice theory (KONTOGEORGIS, 

GEORGIOS M., 2013). 

 

2.2.5  Perturbation Theory and SAFT 

The molecular association profoundly affects the phase equilibrium and the 

thermodynamic properties. Plentiful authors have attempted to explain and model this 

phenomenon, which occurs in several situations, such as polymer phases equilibrium, under 

high pressure conditions and supercritical conditions. One of these attempts is the Statistical 

Associated-Fluid Theory (SAFT), proposed by Chapman (CHAPMAN et al., 1990), based 

on the first order perturbation theory of Wertheim (WERTHEIM, 1984). 

Adopting a well-defined approach from Wertheim’s work, the Helmholtz energy is 

written as the sum of different terms according to Equation 13.  
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 𝐀𝐒𝐀𝐅𝐓 = 𝐀𝐢𝐝𝐞𝐚𝐥 𝐠𝐚𝐬 + 𝐀𝐡𝐚𝐫𝐝 𝐬𝐩𝐡𝐞𝐫𝐞 + 𝐀𝐜𝐡𝐚𝐢𝐧 + 𝐀𝐝𝐢𝐬𝐩𝐞𝐫𝐬𝐢𝐨𝐧 + 𝐀𝐚𝐬𝐬𝐨𝐜𝐢𝐚𝐭𝐢𝐨𝐧 13 

Equation 13 represents the EoS SAFT written as a sum of Helmholtz energy terms. 

The choice of explicitly specifying a term in the sum is particularly important for the quality 

of the results obtained in the research. 

Depending on how complex the EoS is, it can be quite laborious to transform it into 

terms derived from the Helmholtz energy. Bell and Jager (BELL; JÄGER, 2016) presented 

a way to transform cubic EoS (using a generic equation for such) in terms of Helmholtz 

energy, which they call the Helmholtz-energy-explicit EoS. 

A major literature review was made by Vegas and Llovell (VEGA; LLOVELL, 

2016) on the modeling of water and aqueous solutions using molecular based EoS. In this 

article the difficulties in modeling and the great importance in obtaining accurate and precise 

data considering the great industrial application of water were exposed. Three important 

models were discussed: Statistical Association Fluid Theory (SAFT), CPA 

(KONTOGEORGIS, G. M et al., 1996) and Group Contribution Plus Association (GPA) 

(GROS; BOTTINI; BRIGNOLE, 1996). The systems used as examples were those that 

currently have greater expressiveness in chemical and energy industries: binary mixtures of 

water with hydrocarbons, amines, CO2, alkanols and ionic liquids. An interesting point of 

attention of this review is that despite the large amount of experimental data and molecular 

parameters available in the literature, varied authors preferred the adequacy of their equation 

in relation to the experimental data, disfavoring the molecular theory involved. In this way, 

special care needs to be taken into account when using preconceived models. 

 

2.2.6  Association Sites 

The classical association schemes (1A, 2B, 3B and 4C) are widely applied in the 

models that use as basis the SAFT theory. The definition of these schemes is a fundamental 

step in the system thermodynamic modeling (KONTOGEROGIS; FOLAS, 2010). The 

association scheme follows the recommendations of nomenclature suggested by Huang and 

Radosz (HUANG; RADOSZ, 1990). Some compounds already have established molecular 

schemes that correspond greatly to reality (an example is water whose 4C scheme is the most 
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used) (GRENNER et al., 2007). However, for higher complex compounds, the need to apply 

further bold molecular schemes is open for debate (since the classic models consider only 

one, two, three or four association sites). Some authors have already proposed other schemes 

trying to overcome the classical structure limitations and approaching the proposed model of 

reality (AVLUND et al., 2011).This subject is considered one of the association theory area 

that deserves better examination (MOGENSEN, 2014). 

Eight types of association schemes were designed based on the number and types of 

active sites of each molecule. In general, Schemes 2B and 3B are applied for amines and 

alcohols. Scheme 4C is used for substances with high association rate, which have two 

receptor protons and donors per molecule (such as water) (KONTOGEORGIS, GEORGIOS 

M. et al., 2006). 

Understanding what types of association (cross-associating, self-associating and 

non-associating) are present in the system is imperative to avoid an excess of parameters to 

be estimated in addition to bad results. Getting this clear perception is not an easy task since 

the associations can be quite complex (KONTOGEORGIS, GEORGIOS M., 2013). 

Once the types of associations present in the mixture are determined and understood, 

it is important to choose how these interactions will be reflected in the model. One way is 

through mixing rules. 

 

2.2.7  CPA EoS 

It is notable that currently the most used cubic EoS are Peng-Robinson (PR) (PENG; 

ROBINSON, 1976) and Soave-Redlich-Kwong (SRK) (SOAVE, 1972), which represent an 

improvement of the EoS proposed by van der Waals. Unfortunately, these EoS are not 

designed to deal with molecules that have associating interactions (regardless of whether they 

are self-associating or cross-associating). This function is performed efficiently for several 

systems by CPA EoS, proposed by Kontogeorgis (KONTOGEORGIS, G. M et al., 1996). 

This EoS combines SRK EoS with an adaptation of SAFT to be able to take into account the 

association interactions. Considerable number of papers (FARAMARZI et al., 2009; 

KONTOGEORGIS, GEORGIOS M et al., 1999; LINDVIG et al., 2004; MOGENSEN; 

KONTOGEORGIS; THOMSEN, 2013; SANTOS  et al., 2015; TSIVINTZELIS; ALI; 

KONTOGEORGIS, 2015) prove the effectiveness of CPA in describing the thermodynamic 
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equilibrium of numerous systems. However, for some other systems, there is a need not only 

to accurately describe associative interactions but also the description of electrostatic 

interactions. A role that CPA alone, by its very conception, does not describe considerably 

(LIN, 2007). If it is desired to obtain results with great precision is important then to construct 

a thermodynamic model that establishes explicit these interactions and quantifies them. 

However, this is not the purpose of this work. 

The CPA considers the interactions between different molecules (cross-association 

and solvation) and between identical molecules (self-association). In systems that are cross-

association, there are associations between different compounds. However, the compounds 

may not be self-associating. The CPA association term is based on Wertheim's first-order 

thermodynamic perturbation theory (TPT-1) (KONTOGEORGIS, GEORGIOS M. et al., 

2006). 

The initial objectives of the CPA were to extend the cubic EoS for the modeling of 

compounds that associate / polar compounds (KONTOGEORGIS, GEORGIOS M., 2013). 

Another CPA objective was to properly model multicomponent mixtures based only on 

binary interaction parameters (KONTOGEORGIS, GEORGIOS M. et al., 2006). EoS SRK 

was used as the model physical basis; however, PR could also have been used. For the 

insertion in the model of a term that took into account the associations between the 

compounds, the Wertheim’s theory (or of the perturbation) was chosen, being considered 

more comprehensive than other theories (lattice-fluid or chemical theory) 

(KONTOGEORGIS, GEORGIOS M. et al., 2006). 

One question that can be asked is: “Why work with the CPA instead of another 

EoS?”. The answer is that CPA has proven to well describe common oil and gas industry 

systems over a wide range of temperature and pressure (KONTOGEORGIS, GEORGIOS 

M.; TASSIOS, 1997; KONTOGEORGIS, GEORGIOS M et al., 1999; LINDVIG et al., 

2004). Also, CPA can describe mixtures where the water is in substantially small amount 

solubilized in hydrocarbons (and vice versa) (KONTOGEORGIS, GEORGIOS M., 2013). 

In addition, CPA has been used in several industrial applications over the years (SANTOS et 

al., 2015). 

SRK and PR cannot describe systems with highly immiscible compounds using only 

1 interaction parameter. EoS in general, however, tend not to present as good results as 
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activity coefficient models when it comes to the prediction of condensed phase behavior 

(FREY; MODELL; TESTER, 2013). Both SRK and PR do not present satisfactory results 

for liquid phase densities. The results become worse as the study interval approaches the 

critical point (JI; LEMPE, 1997). The CPA can describe these systems over a wide range of 

temperatures using an interaction parameter, which is not temperature dependent. 

In this section it was discussed the theoretical aspects of CPA EoS. All the 

mathematical details of the equation are found in the Methodology chapter. 

 

2.2.8 Selection of Mixing Rules 

The application of CPA for mixtures requires the use of mixing rules for only the 

parameters of the SRK term. It applies the van der Waals rule one-fluid rules (Equations 14 

and 15): 

 𝒂 = ∑ ∑ 𝒙𝒊𝒙𝒋𝒂𝒊𝒋

𝒋𝒊

 14 

 𝒃 = ∑ ∑ 𝒙𝒊𝒙𝒋𝒃𝒊𝒋

𝒋𝒊

 15 

The classic combining rules are used (Equations 16 and 17): 

 𝒂𝒊𝒋 = √𝒂𝒊𝒂𝒋(𝟏 − 𝒌𝒊𝒋) 16 

 𝒃𝒊𝒋 =
𝒃𝒊 + 𝒃𝒋

𝟐
(𝟏 − 𝒍𝒊𝒋) 17 

𝑙𝑖𝑗 is a binary parameter, which in nearly all cases is set to zero. These parameters 

are not studied in this work. 

If there is a cross-association, it is necessary to use the combining rules. Studies 

(KONTOGEORGIS, GEORGIOS M. et al., 2006) have led to the conclusion that the CR-1 

and Elliot rules are satisfactory (Equations 18 and 19): 



 

 

17 

 

 𝝐𝑨𝒊𝑩𝒋 =
𝝐𝑨𝒊𝑩𝒊 + 𝝐𝑨𝒋𝑩𝒋

𝟐
 18 

 𝛃𝐀𝐢𝐁𝐣 = √𝛃𝐀𝐢𝐁𝐢 ∙ 𝛃𝐀𝐣𝐁𝐣 19 

In Elliot's combining rule, the geometric mean is used (Equation 20 ): 

 ∆𝐀𝐢𝐁𝐣= √∆𝐀𝐢𝐁𝐢 ∙ ∆𝐀𝐣𝐁𝐣  20 

For the application of EoS for mixtures it is essential to handle mixing rules to define 

the mixture parameters. It’s definition  is fundamental to the quality of the results obtained 

(MATHIAS; KLOTZ; PRAUSNITZ, 1991). The choice of the most appropriate mixing rule 

depends on the characteristics of the system studied (PATEL; ABOVSKY; WATANASIRI, 

1998) and it should be evaluated, among other things, whether the system is non-associating, 

cross-associating, self-associating or a combination of these. It's already known that the 

classic mixing rules are no longer sufficient to describe complex mixtures 

(KONTOGEORGIS, GEORGIOS M., 2013). 

There is a plethora of references (ADACHI; SUGIE, 1986; HURON; VIDAL, 1979; 

ORBEY; SANDLER, 1996; ZAVALA; AROCHE; BAZÚA, 1996) in the literature that have 

presented new ideas and strategies for mixing rules over the years. 

Several authors have developed their own mixing rules in order to better describe 

equilibrium system. Patel (PATEL; ABOVSKY; WATANASIRI, 1998) developed a mixing 

rule for the van der Walls EoS attraction parameter through perturbation theory. Their results 

showed a better description of hydrocarbons-alcohol and hydrocarbons-water systems. 

 

2.2.9 Derivative Properties 

The choice of thermodynamic properties to be generated by the model are 

fundamental to be judicious. It is known that the derived properties calculation (such as 𝐶v, 

𝐶p and sound velocity) does not offer the same reliability in the obtained information when 

compared with the information related to the phase equilibrium (ABILDSKOV; 

KONTOGEORGIS, 2004; MAIA et al., 2012) and  this signify  a limitation of association 
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theory. Kontogeorgis (KONTOGEORGIS, GEORGIOS M., 2013) states that cubic EoS such 

as SRK and CPA do not well represent some derivative properties. Different ways to get 

better results for these properties are by adding extra parameters to be estimated or actually 

improving model theory.  

 

2.2.10 Modeling of alkanolamines 

For the modeling of Acid Gases Absorption System by Alkanolamines, hereafter 

AGASA, there are several approaches. The most formal approach is one that considers the 

system's mass and heat transfer coefficients and their non-equilibrium, as mentioned in the 

Motivation. Chemical and mass transfer reactions can then be modeled using the Higbie 

Penetration Theory (MANDAL; BANDYOPADHYAY, 2006). Another strategy is the 

approach considering that the system has already reached the thermodynamic equilibrium.  

Among the various theories that can describe the absorption of acid gases by amines 

from the mass transfer point of view, the theories of penetration, film and renewable surface 

are the most expressive. These theories most often require the resolution of a system of partial 

or ordinary differential equations that describe the species' concentration profile 

(GLASSCOCK; ROCHELLE, 1993). 

In AGASA there is a molecular vaporized phase and a reactive liquid phase 

containing ionic and molecular species. 

The thermodynamic equilibrium approach is often chosen over a more formal (non-

equilibrium) approach (MEDEIROS; BARBOSA; ARAÚJO, 2013). The formal approach 

requires a large amount of information, such as chemical, physical and geometric parameters 

of the system, besides equilibrium constants, mass and heat transfer coefficients, kinetic 

constants, mass transfer coefficients / interfacial heat, kinetic coefficients, among others. It 

is then a challenge to implement this amount of information in process simulators 

(MEDEIROS; BARBOSA; ARAÚJO, 2013). 

For those who prefer to adopt the thermodynamic equilibrium approach, one option 

is to use an EoS to describe the vapor phase and an activity coefficient model to describe the 

liquid phase. In other words, the thermodynamic modeling can be homogeneous (phi-phi) or 

heterogeneous (gamma-phi). The first employs the same equation to describe both liquid and 
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vapor phases. In the second, an activity coefficient model is used to describe the liquid phase 

and an EoS to describe the vapor phase. 

For a broader purpose, Kontogeorgis (KAARSHOLM et al., 2005) first studied the 

behavior of pure amines and their binaries (with water, alcohols and alkanes). Knowing that 

amines are compounds that self-associate and that form hydrogen bonds when bound to 

alkanes, the author carried out a study with the intention of understanding better the behavior 

of these compounds. According to the author, primary and secondary amines are compounds 

that self-associate and form non-ideal solutions with organic compounds. Tertiary amines, 

on the other hand, are not capable of self-association. Given that the decision of which 

association scheme to be used in the amine studies is not conclusive, Kontogeorgis 

(KAARSHOLM et al., 2005) proposed a study to verify if for primary amines which of the 

2B or 3B schemes would be more appropriate. The results indicated a small difference when 

using either scheme. Other important results were that using any of the Elliott or CR-1 

combining rules it was possible to well describe the behavior of the VLE mixture of amines 

with alcohols using CPA. For the amine mixture with water the results were not satisfactory 

and the rule CR-1 performed better than the Elliot rule. Good results were obtained in the 

mixture of amines with alkanes using low values of 𝑘𝑖𝑗 . 

In his work, Barreau (BARREAU et al., 2006) adopted the heterogeneous approach, 

using PR to model the gas phase and NRTL to model the liquid phase. This approach was 

considered more adequate to model strongly asymmetric systems due to the particles 

electrolytic interactions. Zare (ZARE; MIRZAEI, 2009) used Electrolyte NRTL (for the 

liquid phase) and Amine Experimental EoS (for the gas phase). 

 An alternative to modeling is to combine the rigorous approach (from mass transfer) 

and the less rigorous approach (based on thermodynamic equilibrium). This was done by 

Glasscock (GLASSCOCK; ROCHELLE, 1993), who modeled the equilibrium using 

Electrolyte NRTL and proposed a general methodology for the absorption of acid gases 

considering chemical reactions. 

Another approach is to use EoS for the description of balance. In this context it is 

possible to implement different combining rules, such as Valleé (VALLÉE et al., 1999), 

which used the SRK associated with the Wong-Sandler mixing rule considering the 
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electrolytic interactions through a term based on the Mean Spherical Association Theory 

(MSA). 

 Medeiros (MEDEIROS; BARBOSA; ARAÚJO, 2013) in his work applied SRK 

and PR EoS to describe the behavior of liquid and vapor phases. The author models the 

system using an approach based on the Chemical Theory. In this approach he considered the 

formation of hypothetical non-volatile complexes in the liquid phase. 

In AGASA the liquid phase is composed primarily of water and alkanolamine. Thus, 

the ions present in the solution may influence its properties (MEDEIROS; BARBOSA; 

ARAÚJO, 2013). This ionic interaction can be translated as solvation energies and hydrogen 

bonds, for example. 

Some authors have modeled systems containing alkanolamines using CPA 

(AVLUND et al., 2011; AVLUND; KONTOGEORGIS; MICHELSEN, 2008; SANTOS et 

al., 2015; TSIVINTZELIS; ALI; KONTOGEORGIS, 2015). Avlund suggested the need to 

use other information to get the best set of parameters. Kontogeorgis suggested that among 

the possible additional information, liquid-liquid equilibrium (LLE) data are the most 

adequate to guarantee the best results in parameter estimation. 

However, there was not much discussion about the parameter estimation strategy to 

be used for modeling systems containing alkanolamines. Santos (SANTOS et al., 2015) then 

in her paper suggested two approaches to this estimation procedure (considering the 

utilization of LLE data in parallel or consecutively to the VLE information in each of the 

approaches). 

A difference in the approach adopted by Santos that is different from the one used 

by other authors (AVLUND et al., 2011; AVLUND; KONTOGEORGIS; MICHELSEN, 

2008)  is that in older works only a few parameters were checked against LLE experimental 

data, whereas in the methodology proposed by Santos (SANTOS et al., 2015), all parameters 

obtained through the VLE could be checked against the LLE data, and therefore is used here. 
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Chapter 3  

Methodology  

 

 

This chapter is dedicated to clarifying the mathematical models employed here. This 

chapter describes the optimization methods used, the parameter estimation strategy, the CPA 

mathematical model presented and the Moving Window methodology (used in the statistical 

treatment of operational data obtained). 

 

3.1 Optimization Methods 

3.1.1 Particle Swarm Method (PSO) 

The PSO algorithm is based on the collective intelligence of swarms. The 

methodology was described in 1995 by James Kennedy and Russel C. Eberhart 

(EBERHART; KENNEDY, 1995). 

For a determined problem, there is a number of pre-defined particles and interactions, 

which sought to find the best solution. For this, each particle has information of its current 

speed, its best position found and the best position found by the side. 

The particles evaluate the best solution where they were (particle minimum) and the 

best solution of the whole flock (global minimum). 

The model was generated considering a space where the particles have position and 

velocity. Its new position is determined according to a weighting of the inertial terms, 

individual and collective, according to Equations 21 and 22: 
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 𝒗𝒊𝒅
𝒕+𝟏 = 𝒘. 𝒗𝒊𝒅

𝒕 + 𝒄𝟏. 𝒘𝟏. (𝒑𝒊𝒅
𝒕 − 𝒙𝒊𝒅

𝒕 ) + 𝒄𝟐. 𝒘𝟐. (𝒑𝒈𝒅
𝒕 − 𝒙𝒊𝒅

𝒕 ) 21 

𝑣𝑖𝑑
𝑡+1 is the particle new velocity which is a function of 𝑤1 and 𝑤2 (which are random 

numbers between 0 and 1), the particle current speed 𝑣𝑖𝑑
𝑡 , the particle best position  𝑝𝑖𝑑

𝑡 , the 

particle current position 𝑥𝑖𝑑
𝑡 , the particle flock best position 𝑝𝑔𝑑

𝑡  , the acceleration factors  𝑐1 

and 𝑐2 (which increases the particle tendency to follow its best solution or the one of the 

flock) and the inertia factor 𝑤 which determines the particle's tendency to continue to explore 

a particular region of space and not to vary its velocity so much. 

 𝒙𝒊𝒅
𝒕+𝟏 = 𝒙𝒊𝒅

𝒕 + 𝒗𝒊𝒅
𝒕+𝟏 22 

𝑥𝑖𝑑
𝑡+1 is the particle new position, which is a function of its current position 𝑥𝑖𝑑

𝑡  and its 

new velocity 𝑣𝑖𝑑
𝑡+1. 

A new value of 𝑤 is calculated at each interaction to decrease the weight value of the 

inertial term, according to Equation 23: 

 𝒘 =
𝒘𝟎 + (𝒘𝒇 − 𝒘𝟎)(𝒌 − 𝟏)

𝑵𝒊𝒕𝒆𝒓 − 𝟏
 23 

𝑁𝑖𝑡𝑒𝑟 is the number of iterations, 𝑤0 is the initial inertia factor and 𝑤𝑓 is the final 

inertia factor. 

Larger inertia factors favor space exploration. Minor inertia factors cause the new 

particle positions to be determined primarily by the best individual and global positions. 

In all interactions it is checked whether the boundaries of the search region have 

been exceeded. If yes, the velocity is then updated to a new velocity with half the magnitude 

of the previous velocity, in the same orientation but in opposite directions (in the direction to 

return to the limits). 

 

3.1.2  Simplex Method 

The Simplex method (NELDER; MEAD, 1965) is a technique applied to determine, 

numerically, the optimal solution of a Linear Programming model. Simplex was chosen 

because it is a deterministic method relatively easy to implement. This method is used in 
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sequence of the application of a stochastic method (PSO), so its initial conditions will already 

be in theory close to a possible global minimum, facilitating the method convergence. 

In general, the simplex method considers a number of 𝑛 + 1 points that form a 

geometric figure when considering a plane of dimension n. Each of these geometric figures 

(or spatial coordinates) is formed by reflecting, contracting and/or expanding one of the 

points according to the objective function best direction. For such purpose, the method has 

three parameters, which represent each of the possible movements described (reflection 

parameter, contraction parameter and expansion parameter). 

 

3.2 Parameter Estimation 

3.2.1 Objective Function 

The objective function definition is crucial in order to obtain good results in 

parameter estimation (APIO; BOTELHO; TRIERWEILER, 2017). In this work, for the 

studies involving pure substance VLE data it was considered the objective function according 

to Equation 24: 

 𝑭𝒐𝒃𝒋 =
𝟏

𝑵𝒆𝒙𝒑
[ ∑

(𝑷𝒊
𝒄𝒂𝒍𝒄 − 𝑷𝒊

𝒆𝒙𝒑
)𝟐

(𝑷𝒊
𝒆𝒙𝒑

)
𝟐

𝑵 𝒆𝒙𝒑

𝒊=𝟏

+ ∑
(𝝆𝒊

𝒄𝒂𝒍𝒄 − 𝝆𝒊
𝒆𝒙𝒑

)𝟐

(𝝆𝒊
𝒆𝒙𝒑

)
𝟐

𝑵 𝒆𝒙𝒑

𝒊=𝟏

] 24 

Where 𝑃𝑖
𝑐𝑎𝑙𝑐 and 𝜌𝑖

𝑐𝑎𝑙𝑐 are the vapor pressure and liquid density, respectively, 

calculated by the EoS. 𝑃𝑖
𝑒𝑥𝑝

 and 𝜌𝑖
𝑒𝑥𝑝

 are the experimental information. 

The metric used for VLE calculations in mixtures is based on the bubble pressure 

calculation (Equation 25) 

𝑭𝒐𝒃𝒋 =
𝟏

𝑵𝒆𝒙𝒑
[ ∑

(𝑷𝒊
𝒄𝒂𝒍𝒄 − 𝑷𝒊

𝒆𝒙𝒑
)𝟐

(𝑷𝒊
𝒆𝒙𝒑

)
𝟐

𝑵 𝒆𝒙𝒑

𝒊=𝟏

] 25 

 

The metric used for LLE calculations is based on the alkanolamine composition in 

the organic phase and the hydrocarbon in the polar phase (Equation 26). 
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 𝑭𝒐𝒃𝒋 =
𝟏

𝑵𝒆𝒙𝒑
[ ∑

(𝒙𝒐,𝒊
𝑫𝑬𝑨,𝒄𝒂𝒍𝒄 − 𝒙𝒐,𝒊

𝑫𝑬𝑨,𝒆𝒙𝒑
)𝟐

(𝒙𝒐,𝒊
𝑫𝑬𝑨,𝒆𝒙𝒑

)
𝟐

𝑵 𝒆𝒙𝒑

𝒊=𝟏

+ ∑
(𝒙𝒑,𝒊

𝑯𝑪,𝒄𝒂𝒍𝒄 − 𝒙𝒑,𝒊
𝑯𝑪,𝒆𝒙𝒑

)𝟐

(𝒙𝒑,𝒊
𝑯𝑪,𝒆𝒙𝒑

)
𝟐

𝑵 𝒆𝒙𝒑

𝒊=𝟏

] 26 

 

Where 𝑥𝑜,𝑖
𝐷𝐸𝐴,𝑐𝑎𝑙𝑐

 is the alkanolamine composition in the organic phase and 𝑥𝑝,𝑖
𝐻𝐶,𝑐𝑎𝑙𝑐

 

is the hydrocarbon composition in the polar phase, calculated by the CPA EoS. While  

𝑥𝑜,𝑖
𝐷𝐸𝐴,𝑒𝑥𝑝

 and 𝑥𝑝,𝑖
𝐻𝐶,𝑒𝑥𝑝

 are the experimental data. 𝑁𝑒𝑥𝑝 is the number of experiments. 

The objective functions adopted in this work are the same as those adopted by 

Santos (SANTOS et al., 2015), since it is seeking to apply the same parameter estimation 

methodology proposed by this author. 

 

3.2.2 Equilibrium Calculations 

Regarding the parameter estimation strategy, Kontogeorgis (KONTOGEORGIS, 

GEORGIOS M. et al., 2006) assembles some observations: the energy of association can be 

considered equal to the enthalpy of hydrogen bonding (which can be obtained by 

spectroscopy or calorimetry). This information can be used to check association energy 

values. Another suggestion is the utilization of LLE data from binaries mixtures of associated 

compounds and non-associated compounds (such as hydrocarbons) to determine the best set 

of pure parameters of the associated compounds. Other information that may be handled is 

the second virial coefficient and the fraction of monomers (obtained by spectroscopy). 

However, the former does not always provide pure parameters that can easily be used in 

mixtures and the second presents insufficient data available. 

Avlund (AVLUND; KONTOGEORGIS; MICHELSEN, 2008) simulated 

hydrocarbon binaries mixtures with alkanolamines  (DEA, MEA and MDEA). In that work 

it was concluded that data related to VLE are not sufficient to satisfactorily model these 

mixtures. Thus, another type of information would be needed for the proper simulation of 

these mixtures. 
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The optimization method for EoS parameter estimation is not something that is 

widely discussed in the literature. Santos (SANTOS et al., 2015) proposed two parameter 

estimation strategies, both considering the LLE data of binaries mixtures (in the case of MEA 

with benzene and MEA with heptane). 

The calculation strategy to be used here for the VLE and LLE calculations is 

proposed by Santos (SANTOS et al., 2015), who has already proven that this strategy is 

effective for systems containing amines (Figure 3). 

In this the work, as the first step, the parameters for pure MEA were estimated, 

without LLE data, using saturation pressure and liquid density data. The MEA was chosen 

as a didactic example, since it was the same alkanolamine chosen by Santos (SANTOS et al., 

2015) and therefore experimental data were available for results comparison. 

 In a second step, for the DEA, the complete methodology was used, including the 

LLE data. 

In this methodology, after the selection of the best result sets using LLE data, a new 

comparison with the VLE data is studied, based on AAP% and AAρ% values. 

For this work, it was chosen the estimation strategy that considers the LLE data 

sequential to the estimation using VLE data. This strategy is shown in Figure 3: 
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Figure 3 - Methodology chosen for the Estimation of Parameters 

(obtained from (SANTOS et al., 2015)) 

 

Next, there is a detailed procedure on parameter estimation managed to obtain the 

best set of parameters: 

1º) To define the parameter search region, apply the PSO using a large range for 

the parameters. 

2º) According to the data experimental errors, define the maximum acceptable 

value for the objective function. For DEA, for example, DIPPR (Design Institute for Physical 

Properties) indicates errors less than 3% for vapor pressure and less than 5% for their liquid 

densities. As it is known, it is not possible for the model to present more reliable results than 

the experimental data. Therefore, if it is made the consideration that 𝑃𝑖
𝑐𝑎𝑙𝑐 = 1.05𝑃𝑖

𝑒𝑥𝑝
 and 

𝜌𝑖
𝑐𝑎𝑙𝑐 = 1.05𝜌𝑖

𝑒𝑥𝑝
  and apply them in Equation 24, it is obtained Equation 27: 

 𝑭𝒐𝒃𝒋 ≤ 𝟎. 𝟎𝟎𝟓𝟎 27 

Thus, objective function values below 0.0050 are statistically accepted (considering 

experimental errors). 
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3º) After obtaining the results using the VLE data, use the parameters considering 

the DEA and hydrocarbon LLE. The hydrocarbon is considered a compound that does not 

associate and its parameters are calculated based on its critical properties and acentric factor. 

An aliphatic hydrocarbon is the best solution because it can be considered an inert 

component, modeled by SRK. A consideration by Santos (SANTOS et al., 2015) was that 

the association parameter β (Equation 28). 

 𝜷𝒊𝒋 = 𝜷𝒑𝒐𝒍𝒂𝒓 28 

At this stage, the binary parameter 𝑘𝑖𝑗is equal to zero (Equation 29). 

 𝒌𝒊𝒋 = 𝟎 29 

 

4º) The 10 best results should be tested again using VLE data. The best selected 

one is used for 𝑘𝑖𝑗 estimation. 

 

3.3 CPA Mathematical Model 

The CPA Equation (KONTOGEORGIS, G. M et al., 1996) is composed by a sum 

of two terms, one referring to the  physical interactions, which is exactly the same as the SRK 

model. And the other term refers to the chemical association. The Equation 30 presents the 

equation: 

 𝑷 =
𝑹𝑻

𝑽𝒎 − 𝒃
−

𝒂(𝑻)

𝑽𝒎(𝑽𝒎 + 𝒃)
−

𝟏

𝟐

𝑹𝑻

𝑽𝒎
(𝟏 + 𝝆

𝝏𝒍𝒏𝒈(𝑽𝒎)𝒓𝒆𝒇

𝝏𝝆
) ∑ 𝒙𝒊 ∑(𝟏 − 𝑿𝑨𝒊

)

𝑨𝒊𝒊

 30 

Where T is the temperature, P is the pressure, R is the ideal gases universal constant, 

𝑉𝑚 is the molar volume, 𝑋𝐴𝑖
 is the mole fraction of molecules type  𝑖 not bounded with site 

type 𝐴 and 𝑥𝑖  is the mole fraction of component 𝑖, 𝑎(𝑇) the energy parameter of the physical 

part and b is the covolume. 

𝑎(𝑇)is calculated using Equation 31: 
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 𝒂(𝑻) = 𝒂𝟎[𝟏 + 𝒄𝟏(𝟏 − √𝑻𝑹)]
𝟐

 31 

𝑇𝑅is the reduced temperature. 

𝑋𝐴𝑖
 is calculated using Equation 32: 

 𝑿𝑨𝒊
=

𝟏

𝟏 +
𝟏

𝑽𝒎
∑ 𝒙𝒋 ∑ ∆𝑨𝒊𝑩𝒋

𝑩𝒋𝒋

 32 

Where ∆𝐴𝑖𝐵𝑗 is the intensity of association between the type 𝐴 site on molecule i 

and the type B site on molecule j. This term is calculated using Equation 33: 

 ∆𝑨𝒊𝑩𝒋= 𝒈(𝑽𝒎)𝒓𝒆𝒇 [𝐞𝐱𝐩 (
𝜺𝑨𝒊𝑩𝒋

𝑹𝑻
) − 𝟏] 𝒃𝒊𝒋𝜷𝑨𝒊𝑩𝒋  33 

𝜀𝐴𝑖𝐵𝑗 is the energy of association and 𝛽𝐴𝑖𝐵𝑗 is the volume of association. 𝑔(𝑉𝑚)𝑟𝑒𝑓 

is the radial distribution function for the reference fluid. The latter term can be calculated 

using Equations 34 and 35. 

 𝒈(𝑽𝒎)𝒓𝒆𝒇 =
𝟏

𝟏 − 𝟏. 𝟗𝝃
 34 

 𝝃 =
𝟏

𝟒𝑽𝒎
𝒃 35 

𝜉 is the fluid reduced density.  

 

3.4 Moving Window Methodology 

The moving window methodology is related to the characterization of the process 

in terms of steady state information. In the thermodynamic study, this non-stationary 

information is undesirable, since it is preferable that the chemical species are near the steady 

state and operational transients do not have great influence on the results. 

By calculating the variances and correlation coefficients of the data sets, the one 

with the lowest correlation coefficient is usually the best candidate of the analyzed period to 
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consider that the selected data set is near the steady state. It follows a numeric example for 

better understanding (Table 1).  

 

Table 1 - Numerical example of hypothetical operational data to simplify the understanding of 

the calculation of the correlation coefficient and its interpretation in the analysis of the 

interdependence between data.  

N° Date Temperature °C 

1 13-Apr-18 22:00:00 43.368 

2 13-Apr-18 22:20:00 43.185 

3 13-Apr-18 22:40:00 43.002 

4 13-Apr-18 23:00:00 42.966 

5 13-Apr-18 23:20:00 42.980 

6 13-Apr-18 23:40:00 42.993 

 

Considering a window composed of five data, through Table 1, it is possible to 

consider two data windows, one starting at 22:00 and ending at 23:20 (number 1 through 5) 

and the second window starting at 22:20 and ending at 23:40 (number 2 through 6). 

Comparing the two windows, the correlation coefficient is 0.900. Thus, the data above 

indicate transience and therefore are not the most suitable for the steady state system study. 

The correlation coefficient calculation is facilitated by the Excel function CORREL. 

The confidence interval indicates how close the obtained data is to the actual values 

(SCHWAAB; PINTO, 2007). When this range is large, numerous values are contained in 

these and the range of acceptable values is large. The results reliability is relatively low. 

When the confidence interval is narrower, the acceptable values are closer to the measured 

values and therefore their reliability is considerably high (SCHWAAB; PINTO, 2007). 

 

Table 2 - Numerical example of hypothetical operational data to simplify the understanding of 

confidence interval calculation.  95% of confidence level was considered. 

Moving Window Average Values Confidence Interval 

1 43.100 [42.884; 43.316] 

2 43.025 [42.913; 43.137] 
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Working with the already mentioned example, it is possible calculate the confidence 

intervals through the Excel’s function INT.CONFIANÇA.T. For this, the Student’s t 

corresponding to 95% confidence level is used. 

According to Table 2, it can be concluded that the moving window 2 presents more 

reliable data than those of moving window 1, since its confidence interval is narrower. In 

other words, the difference between the upper and lower limits of moving window 2 (0.224) 

is smaller than the difference in moving window 1 (0.432). 

It is important to mention that there are more complex and sophisticated statistical 

treatments to analyze the influence of transience on data, but nevertheless, for the industrial 

application, it was concluded that the moving window methodology was adequate for the 

operational data statistical treatment to be presented in Chapter 4. 

3.5 Process Simulation in Petrox 

 

The parameter estimation is performed in the ThermOptimizer software, which 

interface is according to Figure 4: 

 

Figure 4 - ThermOptimizer Software Interface 

(Software adopted in the parameter estimation in this work). 
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In order to proceed with parameter estimation, it was necessary to obtain 

experimental data from a reliable database. For this reason, data were extracted from the 

Design Institute for Physical Properties (DIPPR) database (DIADEM, 2004). 

 The mathematical strategy employed to obtain the global minimum of the objective 

function was to use a stochastic method (PSO) first with the subsequent application of a 

deterministic method (SIMPLEX). The PSO conducted a wide sweep in the parameters 

feasible region to search for the global minimum and map the local minimums. Thus, its best 

results were used as an initial condition so that the deterministic method could find the best 

set of values that minimized the objective function. 

A problem in the search for the global minimum is the presence of local minimums. 

One way to overcome this difficulty is to use a stochastic search method that scans through 

large regions looking for the global minimum and identifies the presence of local minimas 

(SCHWAAB; PINTO, 2007). This long-range scanning is not something characteristic of the 

deterministic method. Thus, adopting only the SIMPLEX Method, it would be possible that 

the results obtained did not correspond to the global minimum of the search region. 

The first modeled component was MEA, since there were available in the literature 

equilibrium data of this pure component associated to a proposed parameter estimation 

strategy. In addition, its parameter estimation procedure had a character of comparison 

between the different EoS (CPA, SRK and PR), adopting the same parameter estimation 

strategy for each EoS. It is important to note that the alkanolamine MEA is not present in the 

industrial gas absorption unit to be simulated. Its parameter estimation is didactic and 

comparative in relation to the efficiency of the thermodynamic equilibrium prediction using 

different EoS.  

After that, the DEA compound was studied, taking into consideration its modeling 

using VLE and LLE data (details will be demonstrated in the next sections). The parameters 

obtained in this step were inserted in the Petrox simulator. 

The Petrox software is a process simulator developed by Petrobras and in an article 

published in 2015 (SANTOS et al., 2015), the authors present the structure of this tool and 

the implementation procedure of EdE CPA in the software using the CERE / DTU dll. During 

this development, the DEA parameters were inserted into the PETROx database to expand 

the previously incorporated model.  
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Chapter 4  

Results and Discussion 

 

 

4.1 Pure MEA Parameter Estimation 

As mentioned, two optimization methods were adopted to estimate the parameters 

of the pure compounds (PSO and Simplex). In all simulations the same internal PSO 

parameters were used (excluding number of particles and number of iterations) and 

SIMPLEX. This information can be found in the  

Table 3 and Table 4. 

 

Table 3 - PSO parameters for EoS Analysis for Pure MEA parameter estimation.  

PSO Parameters 

Maximum number of iterations 200 

Maximum number of species 100 

Individual Factor 𝑐1 1 

Global Factor 𝑐2 0.1 

Inertia Factor 𝑤0 0.9 

Inertia Factor 𝑤𝑓 0.001 

Tolerance 0.0001 

 

The PSO parameters and Simplex parameters used are those that are part of the 

ThermOptimizer default. It was not the scope of this study to evaluate the impact of these 

numbers on the results obtained in the thermodynamic parameter estimation. 
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In order to compare the results between the different EoS, the same parameter limits 

for the EoS equations were used (𝑎0, 𝑏 and 𝑐1). The epsilon and beta parameters are only 

found in CPA EoS. It was necessary for the parameter limits to satisfy the three EoS (enabling 

the optimization method to converge). For that, tests were carried out that led to the set of 

intervals presented in Table 5. There was concern that no parameter was limited by the 

mathematical range imposed. The limits presented in Table 5 are those of ThermOptmizer 

default. 

 

Table 4 - SIMPLEX parameters for EoS Analysis for Pure MEA parameter estimation.  

SIMPLEX Parameters 

Maximum number of iterations 1000 

Reflection Factor Alpha 1 

Contraction Factor Beta 0.5 

Expansion Factor Gamma 2 

 

Table 5 - Parameters Constraints for the Cubic EoS and CPA for Pure MEA parameter 

estimation. Parameters 𝒂𝟎, 𝒃 and 𝒄𝟏were used for all equations and epsilon and beta 

parameters were used only for CPA. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 8 40 

𝑏 (L/mol) 0.01 0.1 

𝑐1 0.1 2.0 

𝜀/R (K) 100 2500 

𝛽.103 0.1 100 

 

As an additional way to compare the results of the executions using the different 

EoS, common in literature (AVLUND; KONTOGEORGIS; MICHELSEN, 2008; SANTOS 

et al., 2015; TSIVINTZELIS et al., 2011) and therefore managed in this work as a metric, is 

the Average Absolute Deviation of the Pressures (AAP%), defined according to Equation 36: 

 𝑨𝑨𝑷% = (
𝟏𝟎𝟎

𝑵𝒆𝒙𝒑
) ∑ |

(𝑷𝒌
𝒆𝒙𝒑

− 𝑷𝒌
𝒄𝒂𝒍𝒄)

𝑷𝒌
𝒆𝒙𝒑 |

𝑵𝒆𝒙𝒑

𝒌=𝟏
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𝑁𝑒𝑥𝑝 is the number of experiments. 
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𝑃 is the saturation pressure. 

Superscript 𝑒𝑥𝑝 means experimental and 𝑐𝑎𝑙𝑐 means calculated. 

The MEA parameters were estimated using the three EoS (CPA, SRK and PR) and 

the results are presented in Table 6: 

 

Table 6 - Comparison between three different EoS (CPA, SRK and PR). Pure MEA 

parameter estimation. Equilibrium data from DIPPR(DIADEM, 2004). 

EoS 
Optimization 

Method 

Parameters 

𝒂𝟎  𝒃  

𝒄𝟏 𝑭𝒐𝒃𝒋 AAP% Iterations 
(

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) 

PR 
PSO 17.670 0.055 1.218 5.150.E-3 - 76 

Simplex 17.671 0.055 1.218 5.150.E-3 5.276% 69 

SRK 
PSO 15.497 0.055 1.261 3.285.E-3 - 73 

Simplex 15.468 0.055 1.262 3.279.E-3 4.521% 79 

CPA 
PSO 9.332 0.055 1.338 2.089.E-3 - 74 

Simplex 13.874 0.056 0.946 5.620.E-4 1.694% 981 

 

According to Table 6, it can be concluded that CPA presented better results than the 

other two EoS, which means that CPA can possibly better predict MEA equilibrium behavior 

than the other equations. Therefore, the study continued using CPA EoS. One point of 

attention is that the parameters estimation using  CPA required a greater number of Simplex 

iterations than SRK and PR. An explanation for this fact may be the need to adjust 2 extra 

parameters (epsilon and beta) compared to the other two EoS. 

In order to validate the results generated in the chosen parameter estimation strategy, 

the results generated for MEA were compared with the literature (SANTOS, et al., 2015). 

Table 7 presents the results of this comparison. 

The comparison with the literature was satisfactory and thus validate the Pure MEA 

parameter estimation results. According to Table 7, the results were slightly better (1.694 %) 

than those in the literature (3.905 %), regarding the AAP% values. 
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Table 7 - Pure MEA parameter estimation results comparison with literature data (SANTOS 

et al., 2015). Parameter estimation applying the CPA EoS. Equilibrium data from 

DIPPR(DIADEM, 2004).  

 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺  

1000* 𝜷 AAP% 
(

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍
) 

MEA 

Estimate 
13.874 0.056 0.946 140.060 11.600 1.694% 

MEA 

Literature 
14.382 0.055 0.627 184.210 4.730 3.905% 

 

Next some graphs generated for the thermodynamic modeling contemplating the 

calculations of saturation pressure curves, liquid density and parametric analysis. 

 

 
(a) 

 

Figure 5 - Pure MEA using PR EoS. a) Saturation pressures b) Liquid Densities c) Saturation 

Curve. Solid line represents the data calculated by the thermodynamic model. The dotted line 

represents the experimental data. 100 experimental points were used between 0.42 - 0.90 𝑻𝑹. 

MEA experimental data from DIPPR(DIADEM, 2004). 
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(b) 

 

 
(c) 

Figure 5 (continuation)- Pure MEA using PR EoS. a) Saturation pressures b) Liquid Densities 

c) Saturation Curve. Solid line represents the data calculated by the thermodynamic model. 

The dotted line represents the experimental data. 100 experimental points were used between 

0.42 - 0.90 𝑻𝑹. MEA experimental data from DIPPR(DIADEM, 2004). 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 6 - Pure MEA using SRK EoS. a) Saturation pressures b) Liquid Densities c) 

Saturation Curve. The solid line represents the data calculated by the thermodynamic model. 

The dotted line represents the experimental data. 100 experimental points were used between 

0.42 - 0.90 𝑻𝑹. MEA experimental data from DIPPR(DIADEM, 2004). 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 7 - Pure MEA using CPA EoS a) Saturation pressures b) Liquid Densities c) 

Saturation Curve. The solid line represents the data calculated by the thermodynamic model. 

The dotted line represents the experimental data. 100 experimental points were used between 

0.42 - 0.90 𝑻𝑹. MEA experimental data from DIPPR(DIADEM, 2004). 
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Based on Figure 5, Figure 6 and Figure 7, it is possible to observe visually, not only 

by the numerical values commented on in the Table 7, that CPA has the potential to model 

polar compound, since it presents satisfactory results, compared with the other EoS. 

According to Santos(SANTOS et al., 2015), The DIPPR database indicates for 

MEA errors less than 10% in the vapor pressure and less than 3% in the liquid densities. 

Since it is not expected to have a model with more reliable data than the experimental data, 

assuming that the limit values for the experimental pressure is 𝑃𝑖
𝑠𝑎𝑡,𝑐𝑎𝑙𝑐 = 1.1𝑃𝑖

𝑒𝑥𝑝
 and for 

the experimental liquid density is 𝜌𝑖
𝑠𝑎𝑡,𝑐𝑎𝑙𝑐 = 1.03𝜌𝑖

𝑒𝑥𝑝
, the maximum acceptable value for 

the objective function is 0.0109 (applying this concept in Equation 36). 

Here are the graphs (Figure 8) generated with the CPA parametric analysis. These 

graphs were generated in the region where the maximum objective function is 0.0109, then 

all points in the graph are possible regions mathematically and thermodynamically speaking. 

 

 
(a) 

 
Figure 8 - Parametric Analysis of Pure MEA parameter estimation with CPA. (a) beta – 𝒂𝟎; 

(b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using optimization method PSO. Maximum 

number of 200 iterations and 200 particles. The maximum objective function value considered 

is 0.0190. 100 experimental points were used between 0.42 - 0.90 𝑻𝑹. Experimental data from 

DIPPR (DIADEM, 2004). 
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(b) 

 
(c) 

 
(d) 

Figure 8 (continuation) - Parametric Analysis of Pure MEA parameter estimation with CPA. 

(a) beta – 𝒂𝟎; (b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) 

beta – 𝒄𝟏; (i) eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using optimization method 

PSO. Maximum number of 200 iterations and 200 particles. The maximum objective function 

value considered is 0.0190. 100 experimental points were used between 0.42 - 0.90 𝑻𝑹. 

Experimental data from DIPPR (DIADEM, 2004). 
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(e) 

 
(f) 

 
(g) 

Figure 8 (continuation) - Parametric Analysis of Pure MEA parameter estimation with CPA. 

(a) beta – 𝐚𝟎; (b) 𝐛 – 𝐚𝟎; (c) 𝐜𝟏– 𝐚𝟎; (d) eps/R – 𝐚𝟎; (e) beta – 𝐛; (f) 𝐜𝟏– 𝐛; (g) eps/R – 𝐛; (h) 

beta – 𝐜𝟏; (i) eps/R – 𝐜𝟏; (j) beta – eps/R. Parameters estimated using optimization method 

PSO. Maximum number of 200 iterations and 200 particles. The maximum objective function 

value considered is 0.0190. 100 experimental points were used between 0.42 - 0.90 𝐓𝐑. 

Experimental data from DIPPR (DIADEM, 2004). 
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(h) 

 
(i) 

 
(j) 

Figure 8 (continuation) - Parametric Analysis of Pure MEA parameter estimation with CPA. 

(a) beta – 𝒂𝟎; (b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) 

beta – 𝒄𝟏; (i) eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using optimization method 

PSO. Maximum number of 200 iterations and 200 particles. The maximum objective function 

value considered is 0.0190. 100 experimental points were used between 0.42 - 0.90 𝑻𝑹. 

Experimental data from DIPPR (DIADEM, 2004). 

 



 

 

43 

 

In Figure 9 (a, c, d and e) it is possible to visualize the presence of local minimas. If 

only the Simplex method were used, it could find a local minima region and the method 

would converge in this area; unlike the PSO, which, through its various particles, searches 

for the best individual and flock result and thus is able to identify these regions. Hence it is 

clear the importance of using a stochastic method before using a deterministic one to identify 

these local minima and to find the global minimum. 

Once Pure MEA parameter estimation and its validation with the literature were 

completed, the DEA parameter estimation were then followed. 

 
(a) 

 
(b) 

Figure 9 - Parametric Analysis of Pure MEA parameter estimation with CPA. (a) 𝑭𝒐𝒃𝒋 – 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using 

optimization method PSO. Maximum number of 200 iterations and 200 particles. The 

maximum objective function value considered is 0.0190. 100 experimental points were used 

between 0.42 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(c) 

 
(d) 

 
(e) 

Figure 9 (continuation)- Parametric Analysis of Pure MEA parameter estimation with CPA. 

(a) 𝑭𝒐𝒃𝒋 – 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated 

using optimization method PSO. Maximum number of 200 iterations and 200 particles. The 

maximum objective function value considered is 0.0190. 100 experimental points were used 

between 0.42 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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4.2 Pure DEA Parameter Estimation 

In order to obtain the pure DEA final parameters, several simulations were carried 

out aiming to guarantee a global minimum. For this, the first estimates considered wide 

intervals of the parameters. In this way, the stochastic method, PSO, could search for a wide 

area, searching for the global minimum and also identifying local minima (which were 

visually recognized). At each new simulation, the parameter intervals became smaller and 

smaller, and so did the objective function. 

Once the final parameter interval was determined, a new simulation was carried out 

with a large number of particles and interactions, in order to guarantee greater accuracy in 

the estimated final parameters. 

 

4.2.1 A didactic way of understanding the simulations workflow 

In the parameter estimation step, hundreds of simulations were performed until the 

final parameters of each compound could be obtained. For the presentation in this work, key 

simulations were selected, which facilitate the step-by-step understanding of the 

methodology used to obtain the final ones. 

The 12 main simulations performed to estimate the pure DEA parameters are 

presented next. They can be sectorized into three types: 

1º) Initial simulations (simulations 1, 2 and 3), using several particles and iterations 

in the PSO, considering large parameters intervals. Its purpose is to map favorable search 

intervals and identify local minimas. 

2º) Simulations of trial and error (simulations 4, 5, 6, 7, 8, 9 and 10), where the 

intervals obtained through the initial simulations results is explored. This simulation provides 

possible better ranges for the parameters. 

3º) Final simulations (simulations 11 and 12), where a large number of particles 

and iterations is used in the PSO, using small intervals obtained through the trial and error 

simulations. Its objective is to obtain central values for the parameters, which is inserted in a 

range that takes into account the confidence interval based on the experimental errors. 
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4.2.2 Initial simulations 

The initial simulations, hereafter SIM (in tables), were routed in order to scan a large 

search area. These simulations used the following parameters of PSO and Simplex (Table 8 

and Table 9): 

 

 

Table 8 - PSO parameters for EoS Analysis for Pure DEA parameter estimation.  

Parameters SIM1 SIM2 and SIM3 

Maximum number of iterations 250 200 

Maximum number of species 1000 1000 

Individual Factor 𝑐1 1 1 

Global Factor 𝑐2 0.1 0.1 

Inertia Factor 𝑤0 0.9 0.9 

Inertia Factor 𝑤𝑓 0.1 0.1 

Tolerance 0.0001 0.0001 

 

Table 9 - Simplex parameters for EoS Analysis for Pure DEA parameter estimation.  

SIMPLEX Parameters 

Maximum number of iterations 1000 

Reflection Factor Alpha 1 

Contraction Factor Beta 0.5 

Expansion Factor Gamma 2 

Tolerance 10-7 

 

The parameters restrictions are presented in the Table 10, Table 11 and Table 12. 

 

 

Table 10 - SIM1 parameter constraints for pure DEA parameter estimation using CPA EoS 

considering only VLE data. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 5 100 

𝑏 (L/mol) 0.01 5 

𝑐1 1 5 

𝜀/R (K) 100 3000 

𝛽.103 10 200 
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Table 11 - SIM2 parameter constraints for pure DEA parameter estimation using CPA EoS 

considering only VLE data. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 5 50 

𝑏 (L/mol) 0.001 2 

𝑐1 1 2 

𝜀/R (K) 300 1800 

𝛽.103 20 100 

 

Table 12– SIM3 parameter constraints for pure DEA parameter estimation applying CPA 

EoS considering only VLE data.  Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 16.0 32.0 

𝑏 (L/mol) 0.0001 1.0 

𝑐1 1.2 2.0 

𝜀/R (K) 1100 2200 

𝛽.103 20 60 

 

 

 

A further way of comparing the parameter estimation results, which is also adopted 

here, is the Average Absolute Deviation of the Liquid Density (AAρ%), defined according 

to Equation 38: 

 𝑨𝑨𝝆% = (
𝟏𝟎𝟎

𝑵𝒆𝒙𝒑
) ∑ |

(𝝆𝒌
𝒆𝒙𝒑

− 𝝆𝒌
𝒄𝒂𝒍𝒄)

𝝆𝒌
𝒆𝒙𝒑 |

𝑵𝒆𝒙𝒑

𝒌=𝟏

 37 

 

The parameter estimation results are shown in Table 13: 
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Table 13 - SIM1, SIM2 and SIM3 Pure DEA parameter estimation results applying CPA EoS 

considering only VLE data. Equilibrium data  from DIPPR(DIADEM, 2004). 

Parameters 
SIM1 SIM2 SIM3 

PSO Simplex PSO Simplex PSO Simplex 

𝑎0 

(bar.L2/mol2) 
26.560 31.962 23.504 30.418 21.324 16.020 

𝑏 (L/mol) 0.096 0.093 0.095 0.094 0.095 0.093 

𝑐1 1.643 1.477 1.600 1.530 1.730 2.000 

𝜀/𝑅 (K) 876.878 100.011 1555.805 310.313 1574.023 1928.824 

1000* 𝛽 78.921 10 41.961 89.805 54.772 58.428 

𝐹𝑜𝑏𝑗 4.68.E-4 2.05.E-4 6.25.E-4 2.45.E-4 5.86.E-4 4.44.E-4 

AAP% 1.16% 1.13% 1.48% 1.05% 1.42% 1.34% 

AAρ% 1.40% 0.43% 1.54% 0.82% 1.50% 1.20% 

 

 

From Figure 10 to Figure 11 it can be seen the PSO graphs for SIM1 and SIM3 

that indicate the large search zone managed by the method: 

 
(a) 

Figure 10 - Parametric Analysis of the Initial Simulations (SIM1). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; 

(c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 200 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004) . 
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(b) 

 

 
(c) 

Figure 10 (continuation)- Parametric Analysis of the Initial Simulations (SIM1). (a) F_obj– 

a_0; (b) F_obj– b; (c) F_obj– c_1; (d) F_obj– eps/R; (e) F_obj– beta. Parameters estimated 

using CPA and optimization method PSO. Maximum number of 200 iterations and 1000 

particles. The maximum objective function value considered is 0.005. 100 experimental points 

were used between 0.55 - 0.90 T_R. Experimental data from DIPPR(DIADEM, 2004) . 
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(d) 

 
(e) 

Figure 10 (continuation)- Parametric Analysis of the Initial Simulations (SIM1). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 200 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 T_R. Experimental data from DIPPR(DIADEM, 2004) . 

 

Based on the possible global minimum obtained by simulations 1, 2 and 3, it was 

proceeded to the trial and error simulations. Special attention was given to the 𝛽 and epsilon 

parameters, since the simulations in Figure 11 indicated the presence of local minima. Thus, 

different ranges of intervals were studied for these parameters. 
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(a) 

 
(b) 

 
Figure 11 - Parametric Analysis of the Initial Simulations (SIM3). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; 

(c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 200 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(c) 

 
(d) 

 

Figure 11 (continuation)- Parametric Analysis of the Initial Simulations (SIM3). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 200 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(e) 

Figure 11 (continuation)- Parametric Analysis of the Initial Simulations (SIM3). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 200 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

4.2.3 Simulations of trial and error 

Simulations 4, 5, 6, 7, 8, 9 and 10 are considered trial and error simulations, where 

the regions indicated by simulations 1, 2 and 3 were tested. In these simulations, depending 

on each case, a different number of particles and iterations was applied for each interval 

studied. 

For simulations 4, 5, 6 and 7 the following sets of parameters for the PSO were used 

in Table 14. 

Table 14 - PSO parameters for the trial and error simulations SIM4, SIM5, SIM6 and SIM7 

considering Pure DEA parameter estimation.  

PSO Parameters 

Maximum number of iterations 1000 

Maximum number of species 1000 

Individual Factor 𝑐1 1 

Global Factor 𝑐2 0.1 

Inertia Factor 𝑤0 0.9 

Inertia Factor 𝑤𝑓 0.1 

Tolerance 0.0001 
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The parameters set for the SIMPLEX method are the same as those set in 

simulations 1, 2 and 3. In Table 15 are the results obtained for the 4 mentioned simulations. 

 

Table 15 - Results of trial and error simulations SIM4, SIM5, SIM6 and SIM7 considering 

Pure DEA parameter estimation applying CPA EoS considering only VLE data. Equilibrium 

data from DIPPR(DIADEM, 2004). 

Simulation 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 

1000* 𝜷 𝑭𝒐𝒃𝒋 AAP AAρ 
(

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

SIM4 
PSO 22.226 0.094 1.733 1418.766 61.971 5.72.E-4 1.39% 1.50% 

Simplex 18.600 0.094 1.785 1876.310 47.977 5.39.E-4 1.39% 1.42% 

SIM5 
PSO 23.470 0.095 1.610 1534.035 43.871 6.21.E-4 1.46% 1.54% 

Simplex 25.375 0.095 1.673 1005.463 76.109 4.82.E-4 1.23% 1.42% 

SIM6 
PSO 25.270 0.095 1.645 1128.696 62.534 5.11.E-4 1.29% 1.44% 

Simplex 28.500 0.095 1.567 750.326 61.228 3.63.E-4 1.15% 1.16% 

SIM7 
PSO 24.286 0.095 1.717 1088.616 78.944 5.11.E-4 1.27% 1.46% 

Simplex 28.500 0.095 1.602 500.000 110.000 3.24.E-4 1.04% 1.14% 

 

In Figure 12 it can be seen the PSO graphs for SIM7 that indicate the most restricted 

intervals set and the application of a relatively large number of particles in the global 

minimum search: 
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(a) 

 
(b) 

 
Figure 12 - Parametric Analysis of the Trial and Error Simulation (SIM7). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 

𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 1000 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(c) 

 
(d) 

 

Figure 12 (continuation)- Parametric Analysis of the Trial and Error Simulation (SIM7). (a) 

𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using 

CPA and optimization method PSO. Maximum number of 1000 iterations and 1000 particles. 

The maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004).  
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(e) 

Figure 12 (continuation)- Parametric Analysis of the Trial and Error Simulation (SIM7). (a) 

𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using 

CPA and optimization method PSO. Maximum number of 1000 iterations and 1000 particles. 

The maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004).  

 

 

It is evident the presence of different minima for the parameters 𝑎0, 𝑐1, epsilon and 

beta in the intervals established for simulation SIM7. This can be visualized in the modified 

Figure 13 (d), where it is possible to visualize these minimas (purple circles). 

The large number of particles allows a large area to be swept and thus both the 

possible global minimum and local minima are identified. 

Simulation 7 was the one that led to the lowest values of 𝐹𝑜𝑏𝑗, AAP% and AAρ%. 

The parameters estimated by this simulation were the basis of the intervals used in 

simulations 8, 9, and 10. These simulations used the following parameters of PSO and 

Simplex (Table 16). 

 

 

 



 

 

58 

 

Table 16 - PSO parameters for the trial and error simulations SIM8, SIM9 and SIM10 

considering Pure DEA parameter estimation.  

PSO Parameters 

Simulation SIM8 SIM9 SIM10 

Maximum number of iterations 500 300 200 

Maximum number of species 500 300 500 

Individual Factor 𝑐1 1 1 1 

Global Factor 𝑐2 0.1 0.1 0.1 

Inertia Factor 𝑤0 0.9 0.9 0.9 

Inertia Factor 𝑤𝑓 0.1 0.1 0.1 

Tolerance 0.0001 0.0001 0.0001 

 

 

 

 

Figure 13 - Modified Figure 12 (d) - 𝑭𝒐𝒃𝒋– eps/R. Highlights of the presence of local minimas 

(purple circles) in pure DEA parameter estimation. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 1000 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

The results of simulation 8, 9 and 10 are shown in Table 17. 
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Table 17 - Results of trial and error simulations SIM8, SIM9 and SIM10 considering Pure 

DEA parameter estimation applying CPA EoS considering only VLE data. Equilibrium data 

from DIPPR(DIADEM, 2004). 

Simulation 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 
1000*

 𝜷 
𝑭𝒐𝒃𝒋 AAP AAρ 

(
𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

SIM8 

PSO 26.381 0.95 1.626 977.435 66.126 4.61.E-4 1.23% 1.37% 

Simplex 30.000 0.94 1.508 750.000 35.053 3.21.E-4 1.22% 0.94% 

SIM9 

PSO 27.536 0.095 1.635 621.575 104.928 3.70.E-4 1.10% 1.24% 

Simplex 31.970 0.093 1.477 1.867 469.947 2.05.E-4 1.13% 0.43% 

SIM10 

PSO 9.925 0.089 2.121 2728.828 32.757 5.25.E-5 0.33% 0.50% 

Simplex 7.862 0.087 2.440 2825.685 34.430 1.10.E-5 0.14% 0.23% 

 

Simulation 10 presented the best results among the three simulations (SIM8, SIM 9 

and SIM10), obtaining satisfactory objective function, AAP% and AAρ% values. The 

parameters intervals determined in simulation 10 were the basis for the intervals used in the 

final simulations. It is worth to notice that the value of 𝜀/R is quite different in all the 

presented simulations, not clearly showing the convergence of the parameter to a definitive 

value (leading to a global minimum). 

In Figure 14, it can be seen the PSO graphs for SIM10 that indicate even more 

restricted intervals and lower objective function values: 
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(a) 

 
(b) 

 
Figure 14 - Parametric Analysis of the Trial and Error Simulation (SIM10). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 

𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 1000 iterations and 1000 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(c) 

 
(d) 

 

Figure 14 (continuation)- Parametric Analysis of the Trial and Error Simulation (SIM10). (a) 

𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using 

CPA and optimization method PSO. Maximum number of 1000 iterations and 1000 particles. 

The maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(e) 

Figure 14 (continuation)- Parametric Analysis of the Trial and Error Simulation (SIM10). (a) 

𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using 

CPA and optimization method PSO. Maximum number of 1000 iterations and 1000 particles. 

The maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

4.2.4 Final Simulations  

Simulations 11 and 12 aimed to obtain the final set of parameters for pure DEA, 

considering only VLE data. For this, a large number of particles (500) and iterations (1000) 

of the PSO associated with a narrow range of parameters were used.  

 

Table 18 - SIM11 and SIM12 parameter constraints for pure DEA parameter estimation 

applying CPA EoS considering only VLE data. Equilibrium data from DIPPR(DIADEM, 

2004). 

Parameters 
SIM11 SIM12 

Lower Bounds Upper Bounds Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 5.000 20.000 5.000 12.000 

𝑏 (L/mol) 0.075 0.115 0.080 0.110 

𝑐1 1.000 4.000 1.500 3.500 

𝜀/R (K) 1250.000 3500.000 2000.000 3500.000 

𝛽.103 5.000 150.000 20.000 80.000 
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The best results obtained in the trial and error simulations served as a basis for the 

intervals of simulation 11. The intervals obtained in simulation 11 served as the basis for the 

determination of the intervals set in simulation 12 (intervals which are more restrictive). In 

Table 18 are the intervals used in each simulation. 

The mentioned simulations results are in Table 19: 

 

Table 19 - Results of final simulations SIM11 and SIM12 considering Pure DEA parameter 

estimation applying CPA EoS considering only VLE data. Equilibrium data from 

DIPPR(DIADEM, 2004). 

Simulation 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 

1000* 𝜷 𝑭𝒐𝒃𝒋 AAP AAρ 
(

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

SIM11 
PSO 8.184 0.088 2.867 2455.415 57.308 1.09.E-4 0.84% 0.24% 

Simplex 7.946 0.087 2.392 2843.879 33.281 1.06.E-5 0.15% 0.23% 

SIM12 
PSO 9.447 0.0890 2.441 2542.973 44.790 7.17.E-5 0.63% 0.33% 

Simplex 7.948 0.087 2.392 2843.811 33.280 1.06.E-5 0.15% 0.23% 

 

The 𝐹𝑜𝑏𝑗, APP% and AAρ% values are the same up to the fifth decimal place. Since 

the results of the simulation SIM12 are similar to those of the simulation SIM11 but with a 

more restrictive interval, it was decided to consider the parameters estimated in SIM12 as the 

final parameters of the pure DEA, when considering only VLE data. 

Figure 15 represents the graphs of simulation 12. The maximum value indicated in 

the graphs is 0.0050 (highest statistically acceptable value for the objective function). Thus, 

all the points presented in these graphs are statistically correct. 
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(a) 

 

 
(b) 

 
Figure 15 - Parametric Analysis of the Final Simulation (SIM12). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 

𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and optimization 

method PSO. Maximum number of 1000 iterations and 200 particles. The maximum objective 

function value considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. 

Experimental data from DIPPR(DIADEM, 2004). 
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(c) 

 

 
(d) 

 

Figure 15 (continuation)- Parametric Analysis of the Final Simulation (SIM12). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 1000 iterations and 200 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(e) 

Figure 15 (continuation)- Parametric Analysis of the Final Simulation (SIM12). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; 

(b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO. Maximum number of 1000 iterations and 200 particles. The 

maximum objective function value considered is 0.005. 100 experimental points were used 

between 0.55 - 0.90 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

All the parameters presented in Figure 15 are statistically accepted since they lead 

to an objective function smaller than 5.10-3. A parametric analysis of the estimated 

parameters allows the identification of the range of statistically accepted parameters, 

indicated by the red simulated ellipse present in the graphs (Figure 16). 

Considering to the experimental errors of saturation pressure and liquid density, it 

is possible to obtain a statistically accepted region based on the results found in SIM12 (Table 

20). 

 

Table 20- Final parameter intervals generated from pure DEA parameter estimation applying 

CPA considering only VLE data. The parameter interval was generated considering the pure 

DEA experimental data error. 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 6.349 11.399 

𝑏 (L/mol) 0.084 0.094 

𝑐1 1.669 3.052 

𝜀/R (K) 2193.840 2881.620 

𝛽.103 26.343 70.328 

 



 

 

67 

 

These ranges of the pure DEA parameters are used in the next simulations, which 

also consider the LLE data, in accordance with the proposed complete methodology. 

 
(a) 

 
(b) 

 
Figure 16 - Parametric Analysis of the Final Simulation (SIM12). (a) beta – 𝒂𝟎; (b) 𝒃 – 𝒂𝟎; (c) 

𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) eps/R – 𝒄𝟏; (j) 

beta – eps/R. Parameters estimated using CPA and optimization method PSO. Maximum 

number of 1000 iterations and 200 particles. The maximum objective function value 

considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. Experimental 

data from DIPPR(DIADEM, 2004). 
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(c) 

 

 
(d) 

 

Figure 16 (continuation) - Parametric Analysis of the Final Simulation (SIM12). (a) beta – 𝒂𝟎; 

(b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO. 

Maximum number of 1000 iterations and 200 particles. The maximum objective function 

value considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. 

Experimental data from DIPPR(DIADEM, 2004). 
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(e) 

 

 
(f) 

 

Figure 16 (continuation) - Parametric Analysis of the Final Simulation (SIM12). (a) beta – 𝒂𝟎; 

(b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO. 

Maximum number of 1000 iterations and 200 particles. The maximum objective function 

value considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. 

Experimental data from DIPPR(DIADEM, 2004). 
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(g) 

 

 
(h) 

 

Figure 16 (continuation) - Parametric Analysis of the Final Simulation (SIM12). (a) beta – 𝒂𝟎; 

(b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO. 

Maximum number of 1000 iterations and 200 particles. The maximum objective function 

value considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. 

Experimental data from DIPPR(DIADEM, 2004). 
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(i) 

 

 
(j) 

 

Figure 16 (continuation) - Parametric Analysis of the Final Simulation (SIM12). (a) beta – 𝒂𝟎; 

(b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO. 

Maximum number of 1000 iterations and 200 particles. The maximum objective function 

value considered is 0.005. 100 experimental points were used between 0.55 - 0.90 𝑻𝑹. 

Experimental data from DIPPR(DIADEM, 2004). 
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4.3 Liquid-Liquid Equilibrium Simulation  

In order to comply with all the steps indicated in the parameter estimation 

methodology proposed, the parameter estimation was performed considering a binary 

mixture of DEA and Hexadecane. Any hydrocarbon could be utilized, since they do not 

associate. Hexadecane was used because of its availability for LLE experimental data with 

DEA. 

The pure hexadecane data were obtained through their critical conditions. It would 

be possible to estimate them through CPA (that would be reduced to SRK EoS, since this 

compound does not originate hydrogen bonds), however it is not this work’s objective to 

study the details of this compound simulation. 

 

4.3.1 Liquid-Liquid Equilibrium Simulations for mixing DEA and 

Hexadecane 

For the parameters estimation using both VLE and LLE data, it was decided to work 

with a multiobjective function, which is be the sum of the Equations 24 and 26, weighted by 

a factor 𝑤,  multiplied by the LLE objective function, according to Equation 38. 

 𝑭𝒐𝒃𝒋 = 𝑭𝒐𝒃𝒋𝑬𝑳𝑽
+ 𝒘. 𝑭𝒐𝒃𝒋𝑬𝑳𝑳

 38 

In this new procedure, adopting only the Simplex method, 5 parameters of pure DEA 

were estimated (𝑎0,𝑏,𝑐1,
𝜖

𝑅
 and 𝑏𝑒𝑡𝑎) and the binary parameter (𝑘𝑖𝑗)  was set to zero. The 

weight 𝑤 was varied from 10-3 to 1. The solely Simplex method application as the 

optimization method in this case occurred since it was considered that the intervals generated 

in Section 4.2 would provide good initial estimates. Despite this, this consideration is 

analyzed since the alkanolamines are especially complex compounds to be 

modeled(AVLUND; KONTOGEORGIS; MICHELSEN, 2008; SANTOS et al., 2015). 

The estimation of parameters using the weight (𝑤) is considered a sensitivity 

analysis, since the weights are set by the user and the influence of it in the estimation 

procedure as a whole is evaluated. 
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 After determining the best cases in the sensitivity analysis, the 𝑘𝑖𝑗 for these cases 

were estimated. It is important to explain the reason for not estimating 𝑘𝑖𝑗 at first. The 

objective of using the LLE data (in addition to adopting the proposed methodology 

completely) is to verify the quality of the estimated parameters by comparing the parameter 

estimation using as metric Equation 24 and Equation 26. As in pure DEA parameter 

estimation using VLE data, only 5 parameters were estimated, the number of estimated 

parameters should be maintained in the estimation with VLE and LLE data, for a fair 

comparison. 

The simulations generated a large dataset, but often when evaluating the objective 

function considering only the VLE data, it presented values above 5.10-3 (above the 

maximum statistically acceptable value, based on the quality of the pure DEA experimental 

data). Thus, the chosen metric is the acceptance of the set of parameters that minimizes the 

multiobjective function but that maintains the objective function of the VLE in a maximum 

of 5.10-3. Table 21 is a real example that illustrates the situation: 

 

Table 21 - Example of how best results of the multiobjective function do not generate a 

statistically acceptable result for the objective function VLE 

Example 𝒘 
𝑭𝒐𝒃𝒋 

(VLE+LLE) 

𝑭𝒐𝒃𝒋 

(VLE) 

𝑭𝒐𝒃𝒋 

(LLE) 
AAP AAρ 

AAXI-

II 

AAXII-

I 

Example 

1 
0.1 0.991 0.004 0.991 0.104% 1.609% 6.732% 95.012% 

Example 

2 
0.2 0.987 0.006 0.987 0.203% 2.590% 6.770% 94.939% 

 

In Table 21, AAXI-II and AAXII-I are the average absolute deviation for the 

compositions in LLE. They are defined by Equations 39 and 40: 
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 𝑨𝑨𝑿𝑰 − 𝑰𝑰 % = (
𝟏𝟎𝟎

𝑵𝒆𝒙𝒑
) ∑

(𝒙𝒐,𝒊
𝑫𝑬𝑨,𝒄𝒂𝒍𝒄 − 𝒙𝒐,𝒊

𝑫𝑬𝑨,𝒆𝒙𝒑
)𝟐

(𝒙𝒐,𝒊
𝑫𝑬𝑨,𝒆𝒙𝒑

)

𝑵 𝒆𝒙𝒑

𝒊=𝟏

 39 

 𝑨𝑨𝑿𝑰𝑰 − 𝑰 % = (
𝟏𝟎𝟎

𝑵𝒆𝒙𝒑
) ∑

(𝒙𝒑,𝒊
𝑯𝑪,𝒄𝒂𝒍𝒄 − 𝒙𝒑,𝒊

𝑯𝑪,𝒆𝒙𝒑
)𝟐

(𝒙𝒑,𝒊
𝑯𝑪,𝒆𝒙𝒑

)

𝑵 𝒆𝒙𝒑

𝒊=𝟏

 40 

Note that Example 2 leads to lower multiobjective function (Equation 38) value 

(0.987) while the VLE objective function value (0.006) is higher than the statistically 

accepted upper limit (0.005). Thus, the set of parameters estimated in Example 2 does not 

meet the criteria that establishes maximum value for the VLE objective function and thus the 

set of parameters estimated considering this weight are discarded. Example 1 however 

generates higher multiobjective function values (0.991) but lower VLE objective function 

value (0.004), which are in accordance with the acceptable limit and therefore the set of 

parameters are taken into account in the decision of the best set of parameters. The flowchart 

(Figure 17) illustrates the decision process for the best set of parameters. 

 

 
Figure 17- Decision flow diagram of the choice of the best sets of parameters based on the 

maximum value of the objective function VLE and on the analysis of the AAXI-II and AAXII-

I values. 
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While the objective function VLE has a maximum numerical limit (5.10-3), the 

AAXI-II and AAXII-I quality analysis is based on the set of parameters that minimizes these 

variables. 

In order to begin the sensitivity analysis, it is fundamental to define the parameter 

limits and to do this, the intervals presented in Table 20 are adopted. It was necessary to 

provide initial estimates for the parameters to be estimated. These initial values are deeply 

important because they can lead the optimization method to different convergence areas. Due 

to this fact, it was decided to use nine sets of values that approached the whole statistically 

accepted interval. Among these nine sets, four stand out because they were based on: 1. 

Statistically accepted interval lower values (Set A); 2. Statistically accepted interval higher 

values (Set B); 3. Statistically accepted interval mean values (Set C); and 4. Best set of 

parameters found in the last simulation performed in the estimation of the parameters of the 

pure DEA (using only VLE data), SIM12 (Set D). The other five sets of parameters are a 

combination of the values of the first four sets. All nine parameter sets are in accordance with 

the ranges informed in Table 20. This information is presented in Table 22: 

 

Table 22 - Initial guesses for the parameters to be estimated in the sensitivity analysis using 

VLE and LLE data 

Parameter 

Set 

𝒂𝟎 

(bar.L2/mol2) 
𝒃 (L/mol) 𝒄𝟏 𝜺/R (K) 1000* 𝜷 

Set A 6.349 0.084 1.669 2193.840 26.343 

Set B 11.399 0.094 3.052 2881.620 70.328 

Set C 9.673 0.091 2.722 2862.716 51.804 

Set D 7.948 0.087 2.392 2843.811 33.280 

Set E 7.000 0.087 2.000 2500.000 30.000 

Set F 9.200 0.092 2.500 2300.000 40.000 

Set G 8.000 0.087 2.300 2500.000 30.000 

Set H 7.000 0.092 2.700 2300.000 50.000 

Set I 10.000 0.090 2.700 2300.000 60.000 

 

The sensitivity analysis generated a considerable amount of results and each result 

presented the five estimated parameters and calculations of the multiobjective function, VLE 

objective function, LLE objective function, AAP%, AAρ%, AAXI-II% and AAXII-I%.  
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Table 23 is an example of a sensitivity analysis, varying the weight from 10-3 to 1, 

considering as initial values the lowest of the statistically accepted range. 

 

Table 23 - Example of a sensitivity analysis, varying the weight of 10-3 to 1, considering as 

initial estimates the smallest values of the statistically accepted interval determined. 

Equilibrium data from DIPPR(DIADEM, 2004) and Abdi (ABEDINZADEGAN ABDI; 

MEISEN, 1998). 

Weight 0.001 0.005 0.01 0.05 0.1 0.5 1 

𝑎0 

(bar.L2/mol2) 
9.829 7.383 7.485 9.976 6.350 7.992 8.047 

𝑏 (L/mol) 0.089 0.087 0.088 0.092 0.089 0.094 0.094 

𝑐1 1.956 2.495 2.476 1.992 3.052 3.050 3.053 

𝜀/R (K) 2876.98 2881.56 2881.49 2881.61 2783.31 2395.65 2331.71 

1000* 𝛽 26.716 33.242 32.947 26.343 42.125 64.823 70.323 

𝐹𝑜𝑏𝑗VLE 5.E-05 6.E-05 2.E-04 2.E-03 1.E-03 9.E-03 2.E-02 

𝐹𝑜𝑏𝑗LLE 1.163 1.124 1.111 1.055 1.070 0.977 0.961 

𝐹𝑜𝑏𝑗 

(VLE+LLE) 
0.001 0.006 0.011 0.054 0.108 0.497 0.981 

AAP% 0.202 0.179 0.189 0.437 0.714 5.471 10.326 

AAρ% 0.547 0.633 1.158 3.972 3.599 6.769 6.775 

AAXI-II% 96.198 97.254 97.214 96.121 97.282 94.549 93.893 

AAXII-I% 45.394 38.923 37.774 33.247 31.530 25.922 25.304 

 

In Table 23 only a few values of weights are presented between the interval of 10-3 

to 1 (because it is only an illustrative example). However, in ThermOptimizer software was 

possible for the user to set the desirable amount of points between the inferior interval and 

the superior interval. In this work, 100 points were used between the lowest weight (10-3) and 

the highest weight (1). 



 

 

77 

 

It is possible to notice that as the weight is increased the VLE 𝐹𝑜𝑏𝑗 values are 

increased, due to the greater significance of the LLE 𝐹𝑜𝑏𝑗 term influenced by the higher 

weight. Thus, an increase in AAP% and AAρ% and a decrease of AAXI-II% and AAXII-I% 

(liquid phase modeling improvement), with the increase in the weight conferred, can be 

observed. 

Aiming to illustrate the weight sensitivity according to the chosen metric, it follows 

the graphs of weights versus VLE objective function and versus the best results of AAXI-II 

and AAXII-I (Figure 18): 

 

 
(a) 

 

 
(b) 

 

Figure 18 - Results of the Sensitivity Analysis, using the 9 sets of initial estimates: (a) 

Multiobjective Function (b) Weight range selected for checking the difference in 

Multiobjective Function values depending on each weight (c) VLE 𝑭𝒐𝒃𝒋 (d) AAXI-II% (e) 

AAXII-I%. Equilibrium data from DIPPR(DIADEM, 2004) and Abdi(ABEDINZADEGAN 

ABDI; MEISEN, 1998). 
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(c) 

 

 
(d) 

 

 
(e) 

 

Figure 18 (continuation) - Results of the Sensitivity Analysis, using the 9 sets of initial 

estimates: (a) Multiobjective Function (b) Weight range selected for checking the difference in 

Multiobjective Function values depending on each weight (c) VLE 𝑭𝒐𝒃𝒋 (d) AAXI-II% (e) 

AAXII-I%. Equilibrium data from DIPPR(DIADEM, 2004) and Abdi(ABEDINZADEGAN 

ABDI; MEISEN, 1998). 
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It is possible to verify that with larger weights the calculated values of the 

parameters are the same, regardless the initial guess used. It is also possible to notice that 

AAXII-I% values performed better than AAXI-II% values, indicating better Hexadecane 

modeling in the aqueous phase than the DEA modeling in the organic phase. 

In the scale presented in Figure 18 (a) it is not viable to perceive difference in the 

calculated multiobjective function value considering the different sets of initial guesses. This 

is due to the small scale shown in this Figure. If a larger scale (Figure 18 (b)) is used for a 

selected range of weights, it is possible to recognize the different values of the objective 

function, for each weight considered. 

For each case presented in Table 22, two calculated parameters set were selected to 

be used for a 𝑘𝑖𝑗 parameter estimation procedure. Thus, 18 𝑘𝑖𝑗 were generated. The selection 

was performed according to two criteria: a) meeting the VLE objective function maximum 

value criteria (5.10-3) and b) presenting lower AAXI-II% and AAXII-I% values. It is 

important to note that in the methodology proposed by Santos(SANTOS et al., 2015), only 

the 10 best sets of parameters would have their 𝑘𝑖𝑗 estimated (Figure 3). However, during 

this estimation step, it was observed that there were potential results and the best 18 results 

were chosen (which does not impact to fulfill the methodology in a complete way). 

The binary mixture parameter estimation takes place applying the LLE objective 

function (Equation 26). Pure DEA parameters (obtained in the sensitivity analysis) and 

Hexadecane parameters (obtained analytically) are inserted. The only parameter to be 

estimated is the 𝑘𝑖𝑗 in this case. 

As there was no case that presented lower values of both AAXI-II and AAXII-I, it 

was decided to consider as best case the one that presented smaller values of the sum of 

AAXI-II and AAXII-I. According to Table 24, it is possible to verify that the value of 𝑘𝑖𝑗 

that confers smaller values of the sum of AAXI-II (92.1 %) and AAXII-I (23.4 %) is in 

simulation number eight, coming from Set D.  

It follows the graphs of the LLE curve, the mean deviations from the compound’s 

compositions in aqueous phase and organic phase and the behavior of the 𝑘𝑖𝑗 in relation to 

the LLE objective function (Figure 19). 
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Table 24 - 𝒌𝒊𝒋 parameter estimation for the binary mixture: DEA and Hexadecane. Sets of 

results obtained in the sensitivity analysis were estimated. Equilibrium data from 

DIPPR(DIADEM, 2004) and Abdi(ABEDINZADEGAN ABDI; MEISEN, 1998).  

N° 
Input Output 

Parameter 

Set 
𝒘 𝒌𝒊𝒋 

𝑭𝒐𝒃𝒋 (VLE + 

LLE) 
AAXI-II% AAXII-I% 

1 Set A 0.1 -0.006 9.73E-01 94.8% 22.9% 

2 Set A 0.09 -0.003 1.04E+00 96.0% 29.9% 

3 Set B 0.1 -0.003 1.07E+00 97.2% 30.1% 

4 Set B 0.003 -0.012 1.08E+00 97.0% 32.0% 

5 Set C 0.1 -0.006 9.73E-01 94.8% 22.9% 

6 Set C 0.02 -0.009 1.06E+00 97.0% 29.9% 

7 Set D 0.1 -0.006 9.73E-01 94.8% 22.9% 

8 Set D 0.001 -0.037 9.27E-01 92.1% 23.4% 

9 Set E 0.1 -0.006 9.73E-01 94.8% 22.9% 

10 Set E 0.09 -0.006 9.72E-01 94.8% 22.8% 

11 Set F 0.1 -0.003 1.07E+00 97.2% 30.1% 

12 Set F 0.001 -0.014 1.07E+00 96.9% 31.4% 

13 Set G 0.1 -0.006 1.01E+00 94.7% 28.5% 

14 Set G 0.06 -0.004 1.04E+00 96.0% 30.2% 

15 Set H 0.1 -0.006 9.73E-01 94.8% 22.9% 

16 Set H 0.09 -0.003 1.07E+00 97.2% 30.1% 

17 Set I 0.1 -0.006 9.73E-01 94.8% 22.9% 

18 Set I 0.07 -0.007 9.79E-01 94.6% 24.6% 
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(a) 

 

 
(b) 

 
Figure 19 -DEA-Hexadecane parameter estimation (a) Solute Mole fraction as a function of 

temperature (aqueous and organic phases) (b) AAXII-I (c) AAXI-II (d) 𝒌𝒊𝒋  as a function 

objective function. DEA_Tent1 is the file that pulls the balance data from the Pure DEA. n-

C16_Orig is the file that pulls the parameters of Pure Hexadecane. Equilibrium data from 

DIPPR(DIADEM, 2004) and Abdi(ABEDINZADEGAN ABDI; MEISEN, 1998) 
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(c) 

 

 
(d) 

Figure 19 (continuation)-DEA-Hexadecane parameter estimation (a) Solute Mole fraction as a 

function of temperature (aqueous and organic phases) (b) AAXII-I (c) AAXI-II (d) 𝒌𝒊𝒋  as a 

function objective function. DEA_Tent1 is the file that pulls the balance data from the Pure 

DEA. n-C16_Orig is the file that pulls the parameters of Pure Hexadecane. Equilibrium data 

from DIPPR(DIADEM, 2004) and Abdi(ABEDINZADEGAN ABDI; MEISEN, 1998) 

 

Thus, the final parameters of the pure DEA, applying the complete methodology 

suggested in the literature, are presented in Table 25: 
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Table 25 - Pure DEA Final parameters. Data obtained through parameter estimation using 

the complete methodology proposed in the literature (SANTOS et al., 2015). 

Compound 
𝒂𝟎 

(bar.L2/mol2) 
𝒃 (L/mol) 𝒄𝟏 𝜺/R (K) 1000* 𝜷 

DEA 9.607 0.089 2.522 2442.400 51.245 

 

It is important to note that these parameters are part of the range of parameters that 

are statistically accepted, based on the experimental errors of pure DEA vapor pressure and 

liquid density data. This set of parameters generates acceptable VLE objective function 

(1.1.10-4), AAP (0.8%) and AAρ (0.3%) values. 

There was interest in comparing the results obtained with the literature (AVLUND; 

KONTOGEORGIS; MICHELSEN, 2008), however due an issue with bibliographic 

reference, this validation was not possible. More details on this in Appendix A. 

 

 

4.3.2 Liquid-Liquid Equilibrium Simulations for mixing DEA and 

Octadecane 

As a measure to validate the pure DEA parameters estimated it was also performed 

the parameter estimation handling another hydrocarbon in equilibrium with the DEA, the 

Octadecane. Like the Hexadecane, the Octadecane parameters were obtained through its 

critical points and acentric factor. The DEA-Octadecane equilibrium data is from Abdi 

(ABEDINZADEGAN ABDI; MEISEN, 1996). 

 



 

 

84 

 

 
(a) 

 

 
(b) 

 
Figure 20 - DEA-Octadecane parameter estimation (a) Solute Mole fraction as a function of 

temperature (aqueous and organic phases) (b) AAXII-I (c) AAXI-II (d) 𝒌𝒊𝒋  as a function 

objective function. DEA_Tent1 is the file that pulls the balance data from the Pure DEA. n-

C18 is the file that pulls the parameters of Pure Octadecane. Equilibrium data from DIPPR 

(DIADEM, 2004) and Abdi (ABEDINZADEGAN ABDI; MEISEN, 1996). 
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(c) 

 

 
(d) 

  

Figure 20 (continuation) - DEA-Octadecane parameter estimation (a) Solute Mole 

fraction as a function of temperature (aqueous and organic phases) (b) AAXII-I (c) AAXI-II 

(d) 𝒌𝒊𝒋  as a function objective function. DEA_Tent1 is the file that pulls the balance data from 

the Pure DEA. n-C18 is the file that pulls the parameters of Pure Octadecane. Equilibrium data 

from DIPPR (DIADEM, 2004) and Abdi (ABEDINZADEGAN ABDI; MEISEN, 1996). 

 

In this case, since the parameters of pure DEA were already estimated, it was 

proceeded directly to 𝑘𝑖𝑗 estimation. The results are shown in Figure 20. 
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According to the results of both parameter estimation using different hydrocarbons, 

it was considered that the pure DEA estimated parameters were validated for the application 

of interest in the next step of the work (taking into account the high values of absolute 

deviations in the composition of the phases). However, it is important to mention that based 

on these results it is possible to conclude that some work can be performed in the CPA EoS 

to improve the organic phase modeling. 

As a next step, it was necessary to estimate the parameters of the main binaries 

present in the AGASA industrial unity under study.  

 

4.4 Parameter Estimation of main DEA Binary Systems 

Once the pure DEA parameters were defined, the second step was to perform some 

study in order to calculate 𝑘𝑖𝑗for the binary mixture that exist in the evaluated AGASA unity. 

The goal is to gather available information to conduct an acid gas absorber tower simulation. 

The main DEA binaries are considered as those whose components have the highest 

concentration in the process feed and will then produce the greatest difference in the 

equilibrium calculations. 

Unfortunately, experimental data of the desired binaries with DEA are scarce. Most 

of the experimental data found were ternary aqueous DEA solution with the desired 

compounds. For example, no data were found on the DEA-Methane binary data, but data 

from the ternary Water-DEA-Methane were acquired (LAWSON; GARST, 1976). This 

happened for all hydrocarbons and H2S. The only set of important experimental data on 

binary found was that of Water-DEA(ASPEN, 2018). 

The DEA-Water 𝑘𝑖𝑗 parameter estimation was carried out using mixing rule CR-1 

and the and the value obtained was 0.595 (Table 26). 

 

Table 26 - Parameter Estimation - DEA – Water Binary System. Pure DEA parameters from 

Table 19 and Pure Water parameters from DIPPR (DIADEM, 2004). 

Mixing Rule 𝒌𝒊𝒋 𝜷𝑨𝒊𝑩𝒋 𝝐𝑨𝒊𝑩𝒋 Fobj AAP 

CR-1 0.595 0.060 2222.830 2.30.E-1 41.612% 
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The objective function applied to estimate the Water-DEA binary mixture 

parameters is the same as in Equation 25. 

Experimental data of the pure compounds and important binaries that do not involve 

DEA were also investigated. Table 27 and Table 28 have the main binaries whose 

experimental data were searched in the literature (FROST et al., 2012). 

 

Table 27 - Thermodynamic parameters of the pure compounds present in the AGASA unity 

under evaluation. Pure compounds parameters obtained in literature(FROST et al., 2012). 

Compound Tc (K) 𝒃 (L/mol) 𝒂𝟎/(R.b) 𝒄𝟏 𝜺 /R (K) β.103 scheme 

H2O 647.29 0.015 1017.338 0.674 2003.248 69.2 4C 

Methane 190.56 0.029 959.028 0.447 x x x 

Ethane 305.32 0.043 1544.548 0.585 x x x 

Propane 369.83 0.058 1896.453 0.631 x x x 

n-Butane 425.18 0.072 2193.083 0.708 x x x 

n-Pentane 469.7 0.091 2405.105 0.799 x x x 

i-Butane 408.14 0.075 2078.622 0.702 x x x 

Nitrogen 126.2 0.026 634.070 0.499 x x x 

H2S 373.53 0.029 1590.102 0.502 654.271 58.32 3B 

 

Table 28 - Thermodynamic parameters of some binaries present in the AGASA unity under 

evaluation.  Binaries Parameters obtained in literature(FROST et al., 2012) 

Compound 1 Compound 2 𝒌𝒊𝒋 𝜷𝑨𝒊𝑩𝒋 𝝐𝑨𝒊𝑩𝒋 scheme 

H2O Methane 1.883-0.003*T x x 4C 

H2O Ethane 0.118 x x 4C 

H2O Propane 0.114 x x 4C 

H2O n-Butane 0.088 x x 4C 

H2O n-Pentane 0.062 x x 4C 

H2O H2S 0.191 0.030 108.780 4C/3B 

H2O CO2 0.114 0.016 142.000 4C/4C 

H2S Methane 0.076 x x 4C 

H2S Ethane 0.085 x x 4C 

H2S Propane 0.092 x x 4C 

H2S n-Butane 0.090 x x 4C 

H2S i-Butane 0.076 x x 4C 
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It can be seen from Table 27 that only H2O and H2S compounds have 𝜀 and β values, 

as these are the only compounds shown in this Table which present hydrogen bonds. 

 

4.5 Process Simulations at Petrox 

Once the pure DEA parameters and some of its binaries were estimated, these 

parameters were inserted in the Petrox process simulator (as explained in Section 3.5).  

It is important to clarify that at the time of absence of DEA and Water data the 

arbitrary 𝑘𝑖𝑗 value of the mixture of 0.153 was inserted in Petrox. The equilibrium data of 

this binary were obtained in a very advanced stage of this work and for that reason that the 

simulations presented in the next sections are considering the DEA-Water 𝑘𝑖𝑗  equals to 

0.153. In Section 4.5.4 are presented simulations considering the estimated DEA-Water 𝑘𝑖𝑗  

0.595 for the best scenario obtained in the first step. 

As a final step to reach the targets described in this work objective section (Section 

1.2), the absorber tower of an existing industrial gas absorption plant was modeled in Petrox 

software. Figure 21 extracted from Petrox shows the absorption column to be simulated and 

its process streams. 

DEAP is the “Poor DEA”, CARG is the Process Feed/ “Acid Gas” to be treated, 

GAST is the “Treated Gas”, DEAR is the “Rich DEA” and ABSV is the Absorbing Column. 

The simulated process streams are always accompanied by quotation marks, to differentiate 

from the actual process streams. The “Poor DEA” stream is also called Lean DEA. 

The four mentioned process streams are cited again several times. So, it is important 

to the reader to be clarified that the inlet streams are: “Poor DEA” and “Acid Gas” and the 

outlet streams are: “Treated Gas” and “Rich DEA”. 
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Figure 21 - Simulation of Absorbing Column at Petrox (extracted from Petrox) 

 

In order to conduct a careful analysis of two distinct operating units with specific 

feeds and operating conditions, they were evaluated for further study. To define the best 

industrial plant to be examined, the "quality" of the operational information provided by each 

of these was chosen as a metric. This quality was measured by the plant behavior in the steady 

state. To this end, the "Moving Window Methodology" (Section 3.4) was adopted. 

 

4.5.1 Moving Window Results 

Through the moving window methodology, it was evaluated a set of available data 

for the two AGASA industrial unity under analysis. The system that presented lower 

correlation coefficient values for the top and bottom temperatures of the absorption column 

(chosen metric for the evaluation) was selected as the study object, due to the supposed lower 

influence of transience in the evaluation period. After this step, once the industrial plant to 

be chosen was already determined, the confidence intervals of eight significant process 

variables were calculated. 

To facilitate the understanding, it is possible to divide the analyzed data into 3 

groups: variables related to the gaseous streams (1); to the liquid streams (2) and to the 
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absorption column (3). The behavior of these variables can be visualized in Figure 23, Figure 

24 and Figure 22. The confidence interval was calculated considering 95 % of confidence, 

employing INT.CONFIANCA.T Excel’s function. The study interval starts at 10:00 pm on 

April 2013 and ends at 7:40 a.m. on April 14, 2018. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 22 - Process variables related to the absorption column. (a) Absorber Pressure (b) 

Absorber Bottom Temperature (c) Absorber Top Temperature.  Each window with 30 

measurements, spaced by 20 minutes. The red and green line respectively indicate the 

minimum and maximum limits determined by the confidence interval, considering 95% of 

confidence 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 23 - Process variables related to the gaseous streams. (a) Acid Gas Volume Flow (b) 

Treated Gas Volume Flow (c) Acid Gas Temperature. Each window with 30 measurements, 

spaced by 20 minutes. The red and green line respectively indicate the minimum and 

maximum limits determined by the confidence interval, considering 95 % of confidence. 

 

 
(a) 

 

 
(b) 

 
Figure 24 - Process variables related to the liquid streams from the AGASA unity selected. (a) 

Rich DEA Volume Flow (b) Poor DEA Volume Flow. Each window with 30 measurements, 

spaced by 20 minutes. The red and green line respectively indicate the minimum and 

maximum limits determined by the confidence interval, considering 95 % of confidence 
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The confidence interval calculated were used for comparison with the results 

obtained from Petrox simulations. It was sought, as a form of results validation, that the future 

outcomes generated in the simulation were in agreement with the intervals generated by this 

statistical study. It should be recalled that the chosen metric to define the steady-state period 

of the industrial plant were the absorption column top and bottom temperatures behavior, 

shown in Figure 22. 

Details on the specificities in the application of the moving window methodology 

can be found in Appendix B.  

 

4.5.2 Absorbing Column technical data sheet 

The data presented below were obtained from the industrial unit operating manual. 

The industrial absorption column has a height of 22.95 meters, with a height of 19.95 meters 

of Pall 1.5" fillings (stainless steel). The tower diameter is 0.8 meters, its design operating 

pressure is 7.0 kgf/cm2, with pressure variation between the top and the bottom of the tower 

of 0.1 kgf/cm2. Design bottom and top temperatures are 50° C and 60° C respectively. 

To estimate the number of the column theoretical stages (KISTER, 1992), since this 

is an input parameter for the tower simulation, it is used the Equation 41: 

 𝒛 = 𝑵 . 𝑯𝑬𝑻𝑷 41 

𝑧 is the height of the filling, 𝑁 is equal to the number of theoretical stages and 𝐻𝐸𝑇𝑃 

a parameter that is a function of the type of packing utilized. 

According to the literature (KISTER, 1992), the 𝐻𝐸𝑇𝑃 for this type of filling is 2.17 

feet (or 0.661416 m). Considering 𝑧 = 19.95, 𝑁 was obtained approximately equal to 31 

stages. 

 

4.5.3 Current Operating Conditions Simulation  

The metric chosen for the simulation results validation of the plant current operating 

conditions was based on the results of available chemical analysis and operational data 

obtained through the plant instrumentation. 
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The industrial plant to be studied receives the process feed from at least 3 other 

process units and therefore its feed is not constant. Currently the largest feed contribution 

comes from a hydrotreatment unit which adopts hydrogen as a rectifier agent for diesel and/or 

aviation kerosene. And that's why the acid gas treatment unit process feed mostly has 

hydrogen (more than 80%). Thus, before going to the sulfur recovery unit, the treated gas, 

rich in hydrogen, will be routed to the hydrogen generating unit. For information, the 

rectification purpose is to remove light hydrocarbons from the products and thus to adjust 

their final quality in terms of initial boiling point or flash point. This hydrogen stream is then 

sent along with other fuel gas streams to the acid gas treating unit. 

As simulation input parameters it is necessary to define the composition of the acid 

gas to be treated and the Poor DEA stream composition. Unfortunately, no Acid Gas 

composition data was available. However, there was an analysis result of treated gas 

composition (the only analysis performed in the last 2 years) and from the result of this 

analysis an estimate of the “Acid Gas” composition was generated. 

 

Table 29 - Chemical Analysis of Treated Gas held on April 13, 2018 

Treated Gas Chromatographic Scanning   

Component Composition 

Hydrogen 89.96 

Methane 3.5 

Ethane 1.97 

Propane 1.98 

N-Butane 1.18 

Nitrogen 0.37 

I-Butane 0.35 

I-Pentane 0.29 

Oxygen 0.24 

C6+ 0.16 

H2S < 0.01 

 

It is empirically known that the composition of H2S in the process feed varies 

between 5% and 11% and therefore, 3 possible process feed compositions were estimated, 
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with different H2S molar concentrations (5 %, 8 % and 11 %). It is important to note that for 

this estimation, it was considered that only H2S was absorbed by the “Poor DEA” solution 

(no other compound was entrained by the liquid solution). The analysis results performed on 

04/13/18 can be seen in the Table 29. 

According to the treated gas analysis, the contribution of H2S respecting the pre-

established concentrations and maintaining the proportions of the species presented in the 

treated gas analysis (Table 30) was inserted the process feed was inferred: 

 

Table 30 – Possible “Acid Gas” molar compositions according to the inference made through 

the treated gas analysis, occurred on April 13, 2018. The hydrogen sulphide molar 

concentration varies from 5 % to 11 %.  

Possible Compositions of “Acid Gas” (H2S in concentrations of 5%, 8% and 11%) 

Component Composition (%) 

Hydrogen 85.462 82.763 80.064 

Methane 3.325 3.220 3.115 

Ethane 1.872 1.812 1.753 

Propane 1.881 1.822 1.762 

N-Butane 1.121 1.086 1.050 

Nitrogen 0.352 0.340 0.329 

I-Butane 0.333 0.322 0.312 

I-Pentane 0.276 0.267 0.258 

Oxygen 0.228 0.221 0.214 

C6+ 0.152 0.147 0.142 

H2S 5.0 8.0 11.0 

 

In the simulation, the set of C6+ components were replaced by the N-Hexane 

component. 

An important point of attention is that the acid gas treated today is possibly different 

from that predicted in the industrial plant design conditions. Mainly in relation to the content 

of hydrogen and methane (which in the design conditions was 62.6 % and 14.2 %, 

respectively). The design H2S content (11.1 %) adheres to the range of H2S concentration to 
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be simulated (5 % to 11 %). The detailed assessment of the selected AGASA industrial unity 

design conditions is presented in Appendix C. 

In Table 31 are the results referring to the “Poor DEA” process stream, carried out 

in 3 different days of April 2018. 

 

Table 31 - Chemical analysis history of “Poor DEA” stream. Data obtained from laboratory 

tests performed in April 2018 

Component 

Composition 

Analysis of April 24 
Analysis of 

April 19 

Analysis of 

April 10 

Composition 

adopted in the 

simulation 

H2S 0.08% 0.08% 0.04% 0.05% 

DEA 20.4% 18.5% 22.1% 20% 

H2O 79.52% 81.42% 77.86% 79.95% 

 

Considering that the data window established in the simulation refers to the interval 

between April 13 and 14, the “Poor DEA” stream composition adopted is based on the 

available analysis results (April 10, 19 and 24) and operation report. In the mentioned 

analysis the H2S molar concentration ranges from 0.04 % to 0.08 % and the operational report 

shows that the H2S content is 0.05 %. As all this information is aligned, it was decided to 

proceed with a concentration of 0.05 %. Likewise, operational information is that the DEA 

content in “Poor DEA” stream is set at 20% while analysis results indicate concentration 

ranging from 18.5 % to 22.1 %. As this information is also aligned, it was decided to proceed 

the simulation using 20 % DEA concentration. It is acknowledged that the analysis results 

are in accordance with the operational team reports for “Poor DEA” composition. 

One of the objectives and the importance of this work is, indirectly, to estimate the 

process feed H2S composition of the simulated industrial unit since, due to corrosive 

processes, inherent to this plant, it is difficult to maintain a composition analyzer in line. It is 

assumed, in this research, therefore, that this composition is unknown and three H2S 

conceivable molar compositions (5 %, 8 % and 11 %) are evaluated. 

 From the eight parameters that had their confidence interval calculated (Section 

4.5.1), six (1. “Poor DEA” Volume Flow; 2. “Acid Gas” Volume Flow; 3. “Acid Gas” 

Temperature; 4. Absorption Column Top Pressure; 5. Absorption Column Top Temperature 
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and; 6. Absorption Column Bottom Temperature) are process simulator input parameters. 

The ideal situation would be to analyze individually the impact of these variables variation 

on the simulation results, on the other hand this detailed procedure is quite laborious, 

especially considering that there are infinite numbers contained in each one of these 

confidence intervals and the combination of all of these numbers (which would form a 

specific scenario in process simulation) is not feasible. An expository example of the various 

possible scenarios is shown in Table 32: 

 

Table 32 - An expository example of the number of scenarios assembled when the process 

variables are change within the confidence interval. In this case, the “Poor DEA” Volume 

Flow was varied, keeping fixed the other variables. 

Petrox input Process Variables 

 “Poor DEA” “Acid Gas” Absorption Column 

 
Volume Flow 

(m3/h) 

Temperature 

(°C) 

Volume 

Flow 

(Nm3/h) 

Temperature 

(°C) 

Bottom 

Temperature 

(°C) 

Top 

Pressure 

(kgf/cm2) 

 Confidence Interval 

Scenario 
[36.837; 

36.990] 

[36.995; 

37.196] 

[5117.405; 

5118.437] 

[30.200; 

30.496] 

[43.103; 

43.187] 

[5.204; 

5.210] 

1 36.837 36.995 5117.405 30.200 43.103 5.204 

2 36.888 36.995 5117.405 30.200 43.103 5.204 

3 36.939 36.995 5117.405 30.200 43.103 5.204 

4 36.990 36.995 5117.405 30.200 43.103 5.204 

 

Table 32 presents simply 4 scenarios assembled from the change in “Poor DEA” 

Volume Flow Rate (all other fixed variables remaining). The number of possible scenarios 

varying all the process variables is significant. 

As aforementioned, performing the conjunction of all intervals is an impractical 

work and therefore it was decided to evaluate the influence of 4 variables minimum and 

maximum intervals (“Acid Gas” Temperature and Volume Flow and “Poor DEA” 

Temperature and Volume Flow). Regard to the fact that it is considered that the Absorption 

Column top temperature is equal to “Poor DEA” temperature. This consideration is in 
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accordance with the plant design conditions and with a typical contemplation made by the 

plant operation team. For the others, an average value of the interval was adopted.  

Hereafter, all the simulations performed with the CPA thermodynamic model use 

the parameters, association schemes and combining rules defined in Sections 4.3 and 4.4. 

A process variables sensitivity analysis addressing to verify their influence in the 

treated gas desired specification was carried out. Through Figure 25 it is possible to verify 

an example of this sensitivity analysis (considering CPA, SRK and PR EoS), where the 

analyzed variable is the "Acid Gas" temperature. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 25 - “Acid Gas” Temperature Sensitivity Analysis, considering "Acid Gas" H2S molar 

concentration of 5%, applying CPA, SRK and PR EoS: a) CPA b) SRK c) PR. 21 point were 

used in each case and the simulation took place at Petrox. 

 

Through Figure 25, it is possible to conclude that regardless of the applied EoS, the 

“Acid Gas” temperature did not demonstrate as a significant influential variable in the 
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“Treated Gas” desired specification. The temperature was varied by 20°C but even so the 

influence on “Treated Gas” H2S mole fraction was relatively negligible. 

A detailed current operating conditions simulation comparison when applying CPA, 

SRK and PR is found in Appendix D.  

It was decided to present in this section only the 13 best simulation results applying 

CPA EoS (since this thermodynamic model presented the best results among the compared 

EoS). The best scenario is obtained when it is considered 5 % of H2S in the process feed 

(Table 33). The simulations results considering 8 % and 11 % are presented in Appendix E. 

 

Table 33 – CPA - Operating Conditions (5% H2S in “Acid Gas”). It is represented 13 

operational conditions, all within the statistically calculated intervals 

 Input Results 

 “Acid Gas” “Poor DEA” 
“Treated 

Gas” 

N° 
Volume Flow 

(Nm3/h) 

Temperature 

(°C) 

Volume 

Flow (m3/h) 

Temperature 

(°C) 

H2S in 

“Treated 

Gas” 

1 5117.405 30.200 36.837 36.995 3.190% 

2 5117.405 30.200 36.990 36.995 3.183% 

3 5118.437 30.200 36.990 36.995 3.183% 

4 5118.437 30.200 36.837 37.196 3.198% 

5 5118.437 30.200 36.990 37.196 4.118% 

6 5117.405 30.200 36.990 37.196 3.190% 

7 5117.405 30.496 36.990 36.995 3.183% 

8 5117.405 30.496 36.990 37.196 3.191% 

9 5117.405 30.496 36.837 37.196 3.198% 

10 5117.405 30.496 36.837 36.995 3.191% 

11 5118.437 30.496 36.837 36.995 3.191% 

12 5118.437 30.496 36.990 36.995 3.043% 

13 5118.437 30.496 36.990 37.196 3.942% 

 

Table 34 presents the process streams molar flow for the best case, where the H2S 

content in the “Treated Gas” was 3.043 % (Simulation 12). 
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Table 34 - Process streams molar flow (kmol/h). “Acid Gas” H2S concentrations of 5%. The 

simulations were carried out in Petrox. 

 Input Output 

 Process Streams 

Component “Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 11.418 0.596 5.152 6.862 

Hydrogen 195.156 0.000 0.238 194.918 

Methane 7.593 0.000 0.081 7.512 

Ethane 4.275 0.000 0.145 4.130 

Propane 4.295 0.000 0.224 4.071 

I-Butane 0.760 0.000 0.077 0.683 

N-Butane 2.560 0.000 0.286 2.273 

I-Pentane 0.630 0.000 0.132 0.498 

H2O 0.000 953.361 950.390 2.971 

DEA 0.000 238.489 238.489 0.000 

Oxygen 0.521 0.000 0.002 0.518 

Nitrogen 0.804 0.000 0.003 0.801 

N-Hexane 0.347 0.000 0.107 0.240 

 

Through Table 34 it is possible to visualize that the model predicts the water 

migration from “Poor DEA” to the “Treated Gas”. In addition, a part of the hydrocarbons, 

hydrogen, oxygen and nitrogen migrate from the gas phase to the liquid phase. This behavior 

is possible but not desirable. Table 35 shows the “Treated Gas” composition for this best case 

(Simulation 12), and its comparison with the chemical analysis performed on April 13, 2018. 

With investigative character, the “Treated Gas” H2S composition was recalculated 

considering the hypothesis that the two undesirable phenomena had not happened (transfer 

of water to the gas phase and transfer of gases other than H2S to the liquid phase). The final 

molar composition of H2S in “Treated Gas” would be 1.484% (instead of 3.043% of the best 

case showed in Table 34). But even so, the final specification of H2S would not be achieved. 
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Table 35 - “Treated Gas” Molar Composition (H2S in concentrations of 5%).  Best result for 

the “Treated Gas” H2S molar composition (3,043%). Comparison with the chemical analysis 

performed on April 13, 2018. 

Component Analysis (%) Simulation Result (%) Relative Standard Deviation 

H2S 0.01 3.04 30334% 

Hydrogen 89.96 86.45 -4% 

Methane 3.50 3.33 -5% 

Ethane 1.97 1.83 -7% 

Propane 1.98 1.81 -9% 

I-Butane 0.35 0.30 -13% 

N-Butane 1.18 1.01 -15% 

I-Pentane 0.29 0.22 -24% 

H2O 0.01 1.32 13076% 

DEA 0.00 0.00 - 

Oxygen 0.24 0.23 -4% 

Nitrogen 0.37 0.36 -4% 

N-Hexane 0.16 0.11 -34% 

 

Even if the parameters were varied within the confidence interval, the results were 

not satisfactory for the reproduction of the treated gas chemical analyzes results (in which 

the treated gas is specified).   

 

 

4.5.4 Best Results Simulation with Estimated DEA-Water 𝒌𝒊𝒋  

As already mentioned, the simulations presented in Section 4.5.3 were calculated 

using an arbitrary 𝑘𝑖𝑗 (0.153) for the DEA-Water binary. The simulation to be presented 

below uses the estimated 𝑘𝑖𝑗 (0.595) based on VLE data obtained(ASPEN, 2018). Table 36 

shows the results considering input data from Petrox according to Simulation 12 from Table 

33: 
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Table 36- CPA - Operating Conditions (5% H2S in “Acid Gas”). New Simulation using the 

estimated DEA-Water 𝒌𝒊𝒋   

 Input Results 

 “Acid Gas” “Poor DEA” 
“Treated 

Gas” 

N° 
Volume Flow 

(Nm3/h) 

Temperature 

(°C) 

Volume 

Flow (m3/h) 

Temperature 

(°C) 

H2S in 

“Treated 

Gas” 

12 5118.437 30.496 36.990 36.995 0.649% 

 

Table 37 presents the process streams molar flow for this case. 

 

Table 37 - Process streams molar flow (kmol/h). “Acid Gas” H2S concentrations of 5%. The 

simulations were carried out in Petrox. 

 Input Output 

 Process Streams 

Component “Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 11.418 0.552 10.555 1.414 

Hydrogen 195.156 0.000 0.476 194.680 

Methane 7.593 0.000 0.199 7.394 

Ethane 4.275 0.000 0.500 3.775 

Propane 4.295 0.000 1.162 3.133 

I-Butane 0.760 0.000 0.596 0.165 

N-Butane 2.560 0.000 2.058 0.502 

I-Pentane 0.630 0.000 0.630 0.000 

H2O 0.000 881.841 876.364 5.477 

DEA 0.000 220.598 220.598 0.000 

Oxygen 0.521 0.000 0.005 0.516 

Nitrogen 0.804 0.000 0.008 0.796 

N-Hexane 0.347 0.000 0.347 0.000 

 

 

It is possible to verify that the modification of one binary parameter in the simulation 

made a lot of difference in the results. While in the best result using arbitrary DEA-Water 
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𝑘𝑖𝑗, the concentration of H2S in the treated gas was 3.043%, the (re)simulation of this scenario 

using an estimated DEA-Water  𝑘𝑖𝑗  obtained 0.6%; a difference of 80.6%. Thus it is clear 

that it is important to seek for more experimental data from the main DEA binaries and so 

enhance the simulation results. 

 

4.5.5 Lessons Learned from Process Simulation 

After exhaustive comparisons between the different EoS, it can be concluded that 

the results presented by CPA EoS were superior to those presented by the SRK and PR, in 

all spheres studied (parameter estimation and process simulation). The CPA prediction was 

shown to be better than expected by the other two models. In the industrial plant process 

simulation development as a whole, CPA was the model that performed (among those who 

were studied) and probably will best represent the phase equilibrium in DEA absorption and 

regeneration system. 

It is possible to summarize the lessons learned from the Petrox process simulation: 

1º) The plant operating conditions are not adherent to the design conditions. 

Through Table 38 this comparison becomes easier to understand.  

 

Table 38 - Main operating variables comparison considering design and operating conditions 

from April 14, 2018. The design information was obtained from the industrial plant operating 

manual. The operational conditions were obtained through chemical analysis and historical 

data. 

Main Operational Variables 
Design 

Conditions 

Operating 

Conditions 

Absorbing Column Pressure (kgf/cm2) 7.1 [5.204; 5.210] 

DEA Molar Concentration in “Poor DEA” (%) 4.14 [18.5; 22.1] 

H2S Molar Concentration in “Poor DEA” (%) 0.15 [0.04; 0.08] 

H2S Molar Concentration in “Acid Gas” (%) 11 [5; 11] 

“Poor DEA” Temperature (°C) 50 [36.995; 37.196] 

“Acid Gas” Temperature (°C) 39.3 [30.200; 30.496] 
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Design conditions do not greatly favor acid absorption. The DEA content foreseen 

in the project is notably low (4.14 %) compared to the concentration that is practiced in the 

DEA units (value around 18.5 % to 22.1 %). In this aspect, it is not recommended to approach 

the design condition. 

The Absorbing Column current pressure hinders the processes of gas absorption. 

The less the pressure is the more challenging the absorption process will be. The current 

operating pressure (5.2 kgf /cm2) is lower than the design pressure (7.1 kgf /cm2), which 

requires lower temperatures and more DEA available for gas absorption to take place the 

required extent. 

“Poor DEA” and “Acid Gas” design temperatures (50 °C and 39.3 °C respectively) 

are higher than the current operating conditions (37 °C and 30.2 °C respectively). As is well 

known, the gas absorption is favored by lower temperatures and, therefore, the design 

conditions inhibit this absorption. Therefore, it is not recommended to increase the 

temperature of these streams with the objective of reaching Treated Gas H2S specification. 

Such operational maneuver would further worsen the acid gas absorption by DEA aqueous 

solution. 

2º) The variables that most affect the gas absorption efficiency are the variables 

related to the poor DEA process stream (current temperature, DEA content and H2S content). 

The variables related to the “Acid Gas” process stream were not as sensitive to the absorption 

efficiency as those of poor DEA process stream. 

3º) The simulations indicate that the H2S composition in the treated gas does not 

conform to the final specification parameter (which is 300 ppm). Possible reasons for not 

specifying the final parameter are: 

• The available operational data are not reliable. 

• Non-knowledge of the process feed causes difficult to simulate this process. 

The process feed used was an estimate based on the treated gas analysis. 

• The thermodynamic model could not predict with accuracy the 

thermodynamic equilibrium in the Absorption Column, considering the plant data available. 

One hypothesis is that the absence of some 𝑘𝑖𝑗 of important binaries with DEA (e.g. DEA-

Hydrogen, DEA-Methane, DEA-Ethane) may have influenced the results lower accuracy. 
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4º) The adjustment of acid gas and the poor DEA flow rates is not considerably 

significant in the gas absorption results. 
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Chapter 5  

Conclusions and Suggestions 

 

 

The results indicated that CPA EoS is a useful tool to describe the thermodynamic 

of the acid gas absorption column. The CPA presented better results than SRK and PR in all 

aspects addressed in the research: pure MEA and pure DEA parameter estimation and in the 

process simulation. The latter took place at Petrox and it allowed to verify the absorption 

column thermodynamic limitations in the Treated Gas H2S specification. 

In Section 1.2, five specific objectives were proposed and finally completed. The 

parameter estimation step covered two of these objectives: the pure MEA parameter 

estimation (Section 4.1) and pure DEA parameter (Section 4.2) and its main binaries 

parameter estimation (Section 4.4), applying a methodology proposed in the literature. The 

results were satisfactory and allowed the conclusion of the third and fourth objectives: the 

results application in a process simulator and the equilibrium study in the absorption column 

of a DEA industrial plant (Section 4.5).  

The DEA modeling presented good results for VLE analysis. However, it has been 

confirmed through the methodology that the LLE with DEA and hydrocarbons (Hexadecane 

and Octadecane) could not be reproduced. Thus modifications in the thermodynamic model 

could be suggested to address this issue. 

As a suggestion for future work, it is proposed the simulation of the industrial plant 

as a whole, mainly because the purity requirements of DEA and H2S in the Treated Gas and 

Poor DEA generate an energy demand for the Regenerating Tower, which works inherently 

in tune with the Absorbing Tower. Another suggestion for future work is the application of 

a thermodynamic model that explicitly takes into account the electrolytic interactions 

between species and thus to verify the relevance of these interactions in the obtained results.  
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Appendix A  

Attempt to Reproduce Literature Data 

 

 

One of this work proposed goal was the data reproduction from a reliable 

bibliographic source. For such purpose, the paper by Ane Avlund and co-workers (Modeling 

Systems Containing Alkanolamines with the CPA Equation of State) was chosen as the most 

suitable for this reproduction, since the paper study system is comparable to the system found 

in the AGASA industrial unity under study. In addition, the thermodynamic model adopted 

in the parameter estimation was CPA, applied in an alkanolamine system. Another positive 

point is that the data source used by the author was the same employed in this work, the 

DIPPR. Based on what has already been stated, it was clear the usefulness of the mentioned 

article data reproduction for the development of this work. 

The pure DEA pure data reproduction was a success (which is explained in detail in 

the later Appendix sections). However, when attempting to reproduce the DEA-Hexadecane 

equilibrium data, the results obtained were far from the one explicit in the article. 

It is important to be aware that a laborious work of pure DEA parameter estimation 

using only VLE and LLE data was performed (when it was still sought to validate the results 

with the mentioned literature). In an advanced parameter estimation stage, when comparing 

the binary parameter 𝑘𝑖𝑗 estimated with that presented in the Avlund and co-workers paper, 

it was noticed that there was a problem of reference in the paper and therefore it did not make 

sense to validate the estimated parameters using that paper as a reference (and because of 

that it was decided to return to the first estimation step and redo all calculations). However, 

it is important to leave written all the methodology applied and the results obtained.  

The most important results are presented considering the 1. Pure DEA parameter 

estimation employing only VLE data and; 2. Pure DEA parameter estimation employing VLE 
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and LLE data, according to the complete methodology proposed by Santos(SANTOS et al., 

2015). The logic of presenting the simulations follows the same format already demonstrated 

in Section 4.2. 

 

A.1 Initial Simulations and Trial and Error Simulations 

Similarly, to the parameter estimation methodology presented in Section 4.2, to 

obtain the most adequate parameter ranges in the search for the global minimum, it was 

proceeded with the initial simulations (where large data ranges were swept and a large 

number of particle size) and trial and error simulations (where the intervals became narrower 

and the number of particles reduced). 

Following is Figure A. 1 and Figure A. 2 which exemplifies an initial simulation, 

where 500 particles and 1000 iterations were applied in the PSO method. 

 

 

 
(a) 

 

 
(b) 

 

Figure A. 1 - Parametric Analysis of the Initial Simulation (SIM1*). (a) 𝑭𝒐𝒃𝒋 – 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; 

(c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO, with maximum number of 1000 iterations and 500 particles. 100 

experimental points were used between 0.40 - 0.95 of 𝑻𝑹. Experimental data from 

DIPPR(DIADEM, 2004). 
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(c) 

 

 
(d) 

 

 
(e) 

 
Figure A. 1 (continuation) - Parametric Analysis of the Initial Simulation (SIM1*). (a) 𝑭𝒐𝒃𝒋 – 

𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; (c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA 

and optimization method PSO, with maximum number of 1000 iterations and 500 particles. 

100 experimental points were used between 0.40 - 0.95 of 𝑻𝑹. Experimental data from 

DIPPR(DIADEM, 2004). 

 

 

 
(a) 

 

 
(b) 

 
Figure A. 2 - Parametric Analysis of the Initial Simulation (SIM1*). (a) beta – 𝒂𝟎; (b) 𝒃 – 𝒂𝟎; 

(c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– b; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) eps/R – 𝒄𝟏; (j) 

beta – eps/R. Parameters estimated using CPA and optimization method PSO, with maximum 

number of 1000 iterations and 500 particles. 100 experimental points were used between 0.40 - 

0.95 of 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

 



 

 

116 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

 
(g) 

 

 
(h) 

 

 
(i) 

 

 
(j) 

 

Figure A. 2 (continuation) - Parametric Analysis of the Initial Simulation (SIM1*). (a) beta – 

𝒂𝟎; (b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– b; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO, 

with maximum number of 1000 iterations and 500 particles. 100 experimental points were 

used between 0.40 - 0.95 of 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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The idea of using large numbers of particles is to sweep large gaps and thus identify 

regions where the objective function is minimized. The main comments about the importance 

of working with a stochastic method such as PSO before employing a deterministic method 

such as Simplex in parameter estimation have already been mentioned in Section 4.2. 

The search intervals presented in Figure A. 1 and Figure A. 2 are in Table A. 1. The 

best results of this simulation are found in Table A. 2.  

 

Table A. 1 - SIM1* Parameter constraints for pure DEA parameter estimation using CPA 

EoS considering only VLE data. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 0.01 500 

𝑏 (L/mol) 0,001 10 

𝑐1 1 10 

𝜀/R (K) 10 4000 

𝛽.103 0.01 400 

 

Table A. 2 - SIM1* Pure DEA parameter estimation results applying CPA EoS considering 

only VLE data. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters 
Sim1* 

PSO Simplex 

𝑎0 (bar.L2/mol2) 9.994 31.369 

𝑏 (L/mol) 0.089 0.093 

𝑐1 3.209 1.475 

𝜀/𝑅 (K) 1438.588 35.653 

1000* 𝛽 241.154 384.368 

𝐹𝑜𝑏𝑗 7.039.E-03 1.072.E-03 

AAP% 9.212% 3.731% 

 

The simulation Sim1 * represents the initial simulation when trying to reproduce 

the literature data (AVLUND; KONTOGEORGIS; MICHELSEN, 2008). This is not the 

same simulation Sim1 presented in Section 4.2. 

After several simulations, a more precise interval for the parameters was fed in the 

final simulations. 
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A.2 Final Simulations  

The final simulations aimed to obtain the final set of parameters for pure DEA, 

considering only VLE data. For this, a large number of particles (from 300 to 1000) and 

iterations (from 300 to 500) of the PSO associated with a narrow range of parameters were 

used. In addition, the maximum iterations of the simplex method were also increased (from 

1000 to 5000 iterations). 

The intervals obtained in trial and error simulations served as the basis for the 

determination of the intervals set in final simulations (intervals which are more restrictive), 

Table A. 3. 

 

Table A. 3 – SIM2* Parameter constraints for pure DEA parameter estimation applying CPA 

EoS considering only VLE data. Equilibrium data from DIPPR(DIADEM, 2004). 

Parameters 
Sim2* 

Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 3.5 8.5 

𝑏 (L/mol) 0.05 0.1 

𝑐1 1.5 4.5 

𝜀/R (K) 2300 3600 

𝛽.103 15 80 

 

The results are in Table A. 4: 

 

Table A. 4 - Results of final simulations SIM2* considering Pure DEA parameter estimation 

applying CPA EoS considering only VLE data. Equilibrium data from DIPPR(DIADEM, 

2004). 

Parameters 
Sim2* 

PSO Simplex 

𝑎0 (bar.L2/mol2) 7.125 7.359 

𝑏 (L/mol) 0.086 0.087 

𝑐1 2.644 2.619 

𝜀/𝑅 (K) 2830.875 2799.256 

1000* 𝛽 36.403 37.342 

𝐹𝑜𝑏𝑗 7.505.E-05 6.591.E-05 

AAP% 0.476% 0.419% 
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The simulation Sim2 * represents the final simulation when trying to reproduce the 

literature data. This is not the same simulation Sim2 presented in 4.2. 

Following is Figure A. 3 and Figure A. 4, which exemplifies a final simulation, 

where 1000 particles and 1000 iterations were used in the PSO method. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
Figure A. 3 - Parametric Analysis of the Final Simulation (SIM2*). (a) 𝑭𝒐𝒃𝒋– 𝒂𝟎; (b) 𝑭𝒐𝒃𝒋– 𝒃; 

(c) 𝑭𝒐𝒃𝒋– 𝒄𝟏; (d) 𝑭𝒐𝒃𝒋– eps/R; (e) 𝑭𝒐𝒃𝒋– beta. Parameters estimated using CPA and 

optimization method PSO, with maximum number of 1000 iterations and 1000 particles. 100 

experimental points were used between 0.40 - 0.95 𝑻𝑹. Experimental data from 

DIPPR(DIADEM, 2004). 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

 
(g) 

 

 
(h) 

 

Figure A. 4 - Parametric Analysis of the Final Simulation (SIM2*). (a) beta – 𝒂𝟎; (b) 𝒃 – 𝒂𝟎; 

(c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) eps/R – 𝒄𝟏; (j) 

beta – eps/R. Parameters estimated using CPA and optimization method PSO, with maximum 

number of 1000 iterations and 1000 particles. 100 experimental points were used between 0.40 

- 0.95 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 
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(i) 

 

 
(j) 

 

Figure A. 4 (continuation) - Parametric Analysis of the Final Simulation (SIM2*). (a) beta – 

𝒂𝟎; (b) 𝒃 – 𝒂𝟎; (c) 𝒄𝟏– 𝒂𝟎; (d) eps/R – 𝒂𝟎; (e) beta – 𝒃; (f) 𝒄𝟏– 𝒃; (g) eps/R – 𝒃; (h) beta – 𝒄𝟏; (i) 

eps/R – 𝒄𝟏; (j) beta – eps/R. Parameters estimated using CPA and optimization method PSO, 

with maximum number of 1000 iterations and 1000 particles. 100 experimental points were 

used between 0.40 - 0.95 𝑻𝑹. Experimental data from DIPPR(DIADEM, 2004). 

 

Based on the ellipses identified in Figure A. 4, the pure DEA parameters ranges to 

be used in the next simulations (which considers the LLE data) were obtained. These ranges 

are shown in Table A. 5. 

 

Table A. 5 - Final parameter intervals generated from pure DEA parameter estimation 

applying CPA considering only VLE data, obtained by SIM2*. The parameter interval was 

generated based on the pure DEA experimental data estimated error. 

Parameters Lower Bounds Upper Bounds 

𝑎0 (bar.L2/mol2) 5.23 7.71 

b (L/mol) 0.080 0.092 

𝑐1 2.41 3.12 

𝜀/R (K) 2640 3080 

𝛽.103 26.99 52.73 

 

A.3 Comparison of the estimated parameters with the 

Literature 

The obtained results were then verified with the parameters obtained in the literature 

(AVLUND; KONTOGEORGIS; MICHELSEN, 2008). This comparison is in Table A. 6: 
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Table A. 6 - Comparison of pure DEA estimated parameters with Literature(AVLUND; 

KONTOGEORGIS; MICHELSEN, 2008). Equilibrium data from DIPPR(DIADEM, 2004). 

 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 

1000* 𝜷 𝑭𝒐𝒃𝒋 AAP% AAρ% 
𝑻𝑹 

range (
𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

Avlund 20.942 0.094 1.574 1943.481 33.2 - 1.56 1.60 
0.55-

0.9 

Sim2* 7.5251 0.087 2.570 2800.526 36.69 6.36.E-5 0.44 0.46 
0.41-

0.95 

 

It is possible to verify that the results obtained were slightly better (lower values of 

AAP% and AAρ%) than those presented by Avlund and co-workers. In addition, it was 

possible to obtain better results for a wider temperature range than in the Avlund study. The 

beginning of the range used in this research is the DEA triple point, which corresponds to 

41% of the critical temperature; while Avlund and co-workers worked with a narrower range, 

starting at 55% of 𝑇𝑅.  

By inserting Avlund final parameters values in the ThermOptimizer, adopting the 

same EoS (CPA), mixing rule (CR-1) and association scheme (4C) it was possible to 

reproduce with certain precision the results (Table A. 7). 

 

Table A. 7 - Calculation of pressure and liquid density deviations applying Avlund and co-

workers data(AVLUND; KONTOGEORGIS; MICHELSEN, 2008) in Pure DEA parameter 

estimation. 

 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 

1000* 𝜷 𝑭𝒐𝒃𝒋 AAP% AAρ% 
𝑻𝑹 

range (
𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

Reprod 

Avlund 
20.942 0.094 1.574 1943.481 33.2 6.43.E-5 1.49 1.57 0.55-0.9 

 

The parameters obtained by Avlund and co-workers in the 𝑇𝑅 range (0.41 – 0.95) 

considered in SIM2* were also applied (Table A. 8): 

 



 

 

123 

 

Table A. 8 - Calculation of pressure and liquid density deviations applying Avlund and co-

workers data(AVLUND; KONTOGEORGIS; MICHELSEN, 2008) in Pure DEA parameter 

estimation, with narrower temperature range (0.41-0.95). 

 

𝒂𝟎 𝒃 

𝒄𝟏 

𝜺/R 

1000* 𝜷 𝑭𝒐𝒃𝒋 AAP% AAρ% 𝑻𝑹 range 
(

𝒃𝒂𝒓 ∙ 𝑳𝟐

𝒎𝒐𝒍𝟐
) (

𝑳

𝒎𝒐𝒍
) (𝑲) 

Reprod

Avlund 
20.942 0.094 1.574 1943.481 33.2 - 469.87 251.23 0.41-0.95 

 

The results indicate that the parameters obtained by Avlund and co-workers do not 

meet a higher 𝑇𝑅 range (0.41-0.95) than those of this research (0.55-0.9). 

 

A.4 Liquid-Liquid Equilibrium Simulation  

As already explained in Section 4.3, in order to comply with all the steps indicated 

in the parameter estimation methodology used, the parameter estimation was performed 

considering a binary mixture of DEA and Hexadecane.  

The pure hexadecane data were obtained through their critical conditions.  

 

A.4.1. Reproduction of Literature Results considering the DEA-

Hexadecane Binary System 

In order to enable the possibility of comparing the future results when considering 

the LLE data, it was first pursued for the reproduction of Avlund’s LLE results. Due to a 

problem in the reproduction of this data, which led to an investigation into the origin of the 

bibliographic reference indicated in the literature (AVLUND; KONTOGEORGIS; 

MICHELSEN, 2008), this step was reassessed. It follows the detailed information about this 

step that generated several back and forth in the parameter estimation. 

The results obtained by Avlund and co-workers for the DEA LLE with Hexadecane 

are presented in graph form (Figure A. 5): 
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Figure A. 5 - Temperature versus phase composition (binary mixture DEA-Hexadecane)  

(Extracted from Avlund). The dots represent the experimental data and the solid line 

represents the model results. 

 

The experimental data obtained from the Avlund and co-workers reference is 

presented in Table A. 9: 

 

Table A. 9 - Experimental data obtained from Majid Abedinzadegan Abdi - Mutual Solubility 

of Hexadecane with Diethanolamine and with Bis (hydroxyethyl) piperazine 

DEA in organic phase Hexadecane in polar phase Temperature (K) 

0.018762943 - 378.55 

0.031965485 - 400.35 

0.041692784 - 413.65 

0.052335417 - 431.35 

0.053758608 - 436.65 

0.060034562 - 445.45 

0.076824016 - 463.65 

- 0.009386475 495.55 

- 0.006784987 483.65 

- 0.004574108 469.45 

- 0.003402663 455.45 

- 0.002607878 445.55 

- 0.001767921 429.45 

- 0.00088306 408.35 
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In an attempt to reproduce the Avlund and co-workers data, using the reference 

indicated in its article, the final parameters obtained are as follows (Table A. 10). 

 

Table A. 10 - Attempt to reproduce Avlund’s results considering Pure DEA parameter 

estimation. 

Reference 𝒌𝒊𝒋 𝑭𝒐𝒃𝒋 AAXI-II% AAXII-I% 

This Work -0.0940 9.57.E-2 21.83 12.83 

Avlund (2008) -0.149 Not informed Not informed Not informed 

 

 
Figure A. 6 - 𝒌𝒊𝒋 Estimation (Reproduction of Results). Equilibrium data from DIPPR 

(DIADEM, 2004) and Abdi (ABEDINZADEGAN ABDI; MEISEN, 1998). 

 

 
Figure A. 7 - LLE Results (Reproduction of Results). DEA_Lit is the file that pulls the balance 

data from the Pure DEA. n-C16_Orig is the file that pulls the parameters of Pure 

Hexadecane. Equilibrium data from DIPPR (DIADEM, 2004) and Abdi (ABEDINZADEGAN 

ABDI; MEISEN, 1998). 
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The final value of 𝑘𝑖𝑗 (-0.0940) is 36.92% lower than that obtained by Avlund and 

co-workers (0.146). In conclusion, using the experimental data of the cited reference, it was 

not possible to reproduce the paper data. 

As the experimental points for the binary mixture were not available, only the 

bibliographic reference from where they were obtained, it was decided to operate with 

“PegaPonto” software, which estimated the experimental data through analysis of Figure A. 

6 (Table A. 11): 

 

Table A. 11 - DEA - Hexadecane LLE Experimental data obtained through the "PegaPonto" 

Software. 

DEA in organic phase 
Hexadecane in polar 

phase 
Temperature (K) 

0.0044657 - 342.56 

0.0072436 - 354.36 

0.0121100 - 363.59 

0.0291000 - 384.10 

0.0540810 - 407.95 

0.0678440 - 418.97 

0.0890580 - 428.72 

0.1186900 - 442.31 

0.1534600 - 453.85 

- 0.0082992 413.33 

- 0.0128650 426.41 

- 0.0147400 430.00 

- 0.0205550 446.92 

- 0.0235500 455.64 

- 0.0299930 466.41 

 

 

Considering the experimental data obtained by “Pega Ponto”, it was possible to 

reproduce the Avlund data, obtaining 𝑘𝑖𝑗= -0.146. This value is 2 % lower than that found 

by Avlund and co-workers (Table A. 12). 
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Table A. 12 - Reproduction of Avlund’s results. LLE equilibrium data obtained through the 

"Pega Ponto" Software). Equilibrium data from DIPPR (DIADEM, 2004) and Abdi 

(ABEDINZADEGAN ABDI; MEISEN, 1998) 

Reference 𝑘𝑖𝑗 𝐹𝑜𝑏𝑗 AAXI-II% AAXII-I% 

This Work -0.146 1.314.E-1 23.65 17.82 

Avlund (2008) -0.149 Not informed Not informed Not informed 

 

 
Figure A. 8 - 𝒌𝒊𝒋 estimation (LLE equilibrium data obtained through the "PegaPonto" 

Software). Equilibrium data from DIPPR (DIADEM, 2004) and Abdi (ABEDINZADEGAN 

ABDI; MEISEN, 1998) 

 

 
Figure A. 9 - LLE Results (LLE equilibrium data obtained through the "PegaPonto" 

Software). DEA_Lit is the file that pulls the balance data from the Pure DEA. n-C16_Orig is 

the file that pulls the parameters of Pure Hexadecane. Equilibrium data from DIPPR 

(DIADEM, 2004) and Abdi (ABEDINZADEGAN ABDI; MEISEN, 1998). 

 

Thus, it was concluded that it was possible to reproduce the 𝑘𝑖𝑗 obtained by Avlund 

and co-workers only using the experimental data obtained by “PegaPonto”. It was not 

possible to reproduce them using the bibliographic reference indicated in the article.  
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The lack of success in reproducing Avlund's article data and the non-correspondence 

of the experimental data presented by Avlund and co-workers in their paper and their cited 

bibliographical reference generated doubts about the real origin of the experimental data. In 

contact with Professor Georgis Kontogeorgis (co-author of the Avlund’s paper), when the 

situation was explained, it was found with his help that there was a mistake made in the article 

reference and that the figure shown in the article was of another binary mixture (DEA and 

BHEP system instead of DEA and Hexadecane). 

Thus, new simulations were carried out, now considering the reference of 

experimental data of the DEA and Hexadecane binary system and no longer with the interest 

of reproducing the Avlund and co-workers data. 

Once the work would return to an earlier stage, it was also decided to modify the 𝑇𝑅 

range. The original range was 0.41 to 0.95. However, since for the DEA industrial application 

such temperature ranges are not used, it was decided to narrow the strip in order to better 

model the interval. The chosen 𝑇𝑅 range was 0.55 to 0.9, which is a more suitable range for 

DEA industrial application. 
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Appendix B  

The Moving Window Methodology 

 

 

In this section explains in detail the step-by-step moving window methodology 

applied. It was noticed the demand to apply this methodology for two major reasons: 1. 

Determine which process unit would be chosen as the study object; 2. Define the confidence 

intervals for the process variables evaluated. 

 

B.1 Moving Window Methodology Application  

In this methodology, a defined data set has its correlation coefficient calculated by 

considering data from this set and its subsequent (the two distanced from a certain time 

interval). Optimal values of correlation coefficient are less than 0.5. Values above 0.5 

indicate influence of transience on the data obtained (SCHWAAB; PINTO, 2007). 

The operational data were obtained in the process units' PIs. PI (plant information) 

is a software that allows a remote analysis of the different operational variables measured by 

field instruments, which communicate with the software. The PI allows to obtain data with 

different time intervals. Data were obtained at intervals of 5, 10, 15, 20, 30, 45 and 60 

minutes. 

It was then defined the absorber tower bottom and top temperatures variables to be 

monitored and studied.  

Once the data is collected, it is critical to determine the moving window size. 

Different sizes of windows in the search for the correlation coefficient lowest values were 

used. Windows of 60, 50, 40, 30 and 20 points were evaluated. 

Data were obtained from 01/01/2018 to 06/30/2018. 
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B.2 Moving Window Results 

From the two operational units evaluated in this work, one did not present any 

interval in which the correlation coefficients of both the top and bottom temperature of the 

absorber tower were lower than 0.75 (although it presented isolated intervals where only the 

top temperature or the bottom temperature had a correlation coefficient less than 0.5, but 

never both). In the other, intervals were obtained in which both correlation coefficients were 

smaller than 0.1. For this comparison the 5 minutes time interval was considered. Thus, it 

was decided to investigate the second industrial plant, located in the state of Rio de Janeiro. 

After this step, it was searched for laboratory analysis data of the chosen industrial 

plant process streams. Due to sample lines clogging problems in the plant, sporadic analyzes 

are performed and only the treated gas composition was available for the year 2018 (analysis 

of April 13) and Poor DEA composition data (Data of 10, 19 and 24 April). Note that there 

is no available analysis of the industrial unit process feed. Thus, the window chosen from 

01/01/2018 to 06/30/2018 might not necessarily represent the information of the process feed. 

Thus, the moving window step was revisited and it was decided that the study interval would 

be 24 hours before and after April 13. Thus, the new data range was restructured from April 

12 (0:00) until April 14 (24:00). The moving window best results are shown in Table B. 1.  

The data in Table B. 1 are still adequate for the study, since the correlation 

coefficients (0.574 and 0.450) are close to 0.5.  

Note that to be considered in steady state it was defined that both top and bottom 

temperature correlation coefficients shall be with values below (or near) of 0.5. 
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Table B. 1 - Best results of the moving window methodology applied in the AGASA unity 

under evaluation. The best data set refers to 30 points window with data spaced every 20 

minutes. The information was obtained in the PI. 

30-POINTS WINDOW (20-MINUTE INTERVALS) 

DATE 
BOTTOM TEMPERATURE 

(°C) 

TOP TEMPERATURE 

(°C) 

13-Apr-18 22:00:00 43.368 38.014 

13-Apr-18 22:20:00 43.185 37.816 

13-Apr-18 22:40:00 43.002 37.618 

13-Apr-18 23:00:00 42.966 37.420 

13-Apr-18 23:20:00 42.980 37.222 

13-Apr-18 23:40:00 42.993 37.086 

14-Apr-18 00:00:00 43.006 37.078 

14-Apr-18 00:20:00 43.020 37.070 

14-Apr-18 00:40:00 43.033 37.062 

14-Apr-18 01:00:00 43.047 37.054 

14-Apr-18 01:20:00 43.060 37.047 

14-Apr-18 01:40:00 43.073 37.039 

14-Apr-18 02:00:00 43.087 37.031 

14-Apr-18 02:20:00 43.100 37.023 

14-Apr-18 02:40:00 43.114 37.015 

14-Apr-18 03:00:00 43.127 37.007 

14-Apr-18 03:20:00 43.140 36.999 

14-Apr-18 03:40:00 43.154 36.991 

14-Apr-18 04:00:00 43.167 36.983 

14-Apr-18 04:20:00 43.181 36.975 

14-Apr-18 04:40:00 43.194 36.967 

14-Apr-18 05:00:00 43.207 36.959 

14-Apr-18 05:20:00 43.221 36.951 

14-Apr-18 05:40:00 43.234 36.943 

14-Apr-18 06:00:00 43.248 36.935 

14-Apr-18 06:20:00 43.261 36.927 

14-Apr-18 06:40:00 43.274 36.919 

14-Apr-18 07:00:00 43.288 36.911 

14-Apr-18 07:20:00 43.301 36.903 

14-Apr-18 07:40:00 43.315 36.895 

14-Apr-18 08:00:00 44.610 38.676 

MEAN VALUE 43.145 37.095 

STANDARD DEVIATION 0.112 0.270 

VARIANCE 0.013 0.073 

CORRELATION 

COEFFICIENT 
0.574 0.450 

CONFIDENCE INTERVAL 

95% 
[43.103;43.187] [37.196;36.995] 
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B.3 Moving Window Chosen Sets Statistical Treatment   

Once the data set to be studied was determined, other operational data were obtained 

through PI: Acid Gas Temperature, Acid Gas Volume Flow, Treated Gas Volume Flow, Poor 

DEA Volume Flow, Rich DEA Volume Flow, Absorption Column Top Pressure, Top 

Temperature and Bottom Temperature.  

The mean, standard deviation, variance and 95 % confidence interval of the obtained 

data were then calculated. The results are in Table B. 2, Table B. 3 and Table B. 4. 

 

Table B. 2 - Operational data obtained after applying the moving data window methodology- 

Related information of Poor DEA and Rich DEA Streams. The information was obtained 

from PI. 

Statistical 

Treatment 

RICH DEA 

VOLUME FLOW 

(m3/h) 

POOR DEA 

VOLUME FLOW 

(m3/h) 

POOR DEA 

TEMPERATURE 

(°C) 

MEAN 37.722 36.914 37.095 

STANDARD 

DEVIATION 
0.355 0.205 0.270 

VARIANCE 0.130 0.043 0.044 

CORRELATION 

COEFFICIENT 
0.377 0.685 0.450 

INTERVAL OF 

CONFIDENCE 95% 
[37.589; 37.854] [36.837; 36.990] [36.995; 37.196] 

 

It was considered that the temperature and supply of the Poor DEA stream is equal 

to the Absorption Column top temperature. There is no temperature measurement of this 

process stream. 

The confidence interval calculation allows to delimit a region in which the 

parameters satisfy the desired confidence level.  
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Table B. 3 - Operational data obtained after applying the moving data window methodology- 

Related information of Acid Gas (Process Feed) and Treated Gas Streams. The information 

was obtained from PI. 

Statistical 

Treatment 

TREATED GAS 

VOLUME FLOW 

(Nm3/h) 

ACID GAS 

VOLUME FLOW 

(Nm3/h) 

ACID GAS 

TEMPERATURE 

(°C) 

MEAN 4584.127 5117.921 30.348 

STANDARD 

DEVIATION 
3.943 1.382 0.397 

VARIANCE 14.546 1.786 0.129 

CORRELATION 

COEFFICIENT 
1.000 1.000 0.796 

INTERVAL OF 

CONFIDENCE 95% 
[4582.654; 4585.599] [5117.405; 5118.437] [30.200; 30.496] 

 

Table B. 4 - Operational data obtained after applying the moving data window methodology- 

Related information of Absorption Column. The information was obtained from PI. 

Statistical Treatment 

ABSORBER 

TOP PRESSURE 

(kgf/cm2 man) 

ABSORBER TOP 

TEMPERATURE 

(°C) 

ABSORBER 

BOTTOM 

TEMPERATURE 

(°C) 

MEAN 5.207 37.095 43.145 

STANDARD 

DEVIATION 
0.008 0.270 0.112 

VARIANCE 0.000 0.044 0.011 

CORRELATION 

COEFFICIENT 
0.900 0.450 0.574 

INTERVAL OF 

CONFIDENCE 95% 
[5.204; 5.210] [36.995;37.196] [43.103; 43.187] 

 

The operational data quality presented depends greatly on the field instrument 

integrity and calibration. Each instrument has its preventive inspection plan, however its 

realization is erratic (according to operational report), since instrumentalists availability in 

the refinery is scarce. In addition, many instruments require investment for their repair, a fact 

that creates a financial constraint. 
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Appendix C  

Plant Design Conditions Evaluation   

 

 

In this section is presented the evaluation of the selected AGASA industrial unity 

design conditions. 

 

C.1 Industrial Plant Design Conditions  

The process simulation first goal is to examine the absorbing column design 

conditions, focusing on verifying the H2S final specification viability in the treated gas and 

to learn more about the variable sensitivity. For example, are the results more sensitive to the 

process feed temperature modification or are they more sensitive to the H2S concentration in 

Poor DEA stream? These kinds of questions have been solved with these simulations. 

As one of this research objectives, the simulations are conduct using three different models 

(SRK, PR and CPA) for comparison. 

Table C. 1, Table C. 2 and Table C. 3 show the industrial plant design conditions: 

 

Table C. 1 Process variables of the streams that compose the acid gas Absorption Column 

operation, for use in process simulation at Petrox. Data obtained from the Plant Operation 

Manual. 

Stream Molar Flow (kmol/h) Temperature (°C) Pressure (kgf/cm2) 

“Acid Gas” 190 39.3 7.10 

“Treated Gas” 171 50.1 7.10 

“Poor DEA” 1353 50 7.10 

“Rich DEA” 1372 60.2 7.04 

 



 

 

135 

 

Table C. 2 - Molar flow of streams that constitute the acid gas Absorption Column operation, 

for use in process simulation at Petrox. Data obtained from the Plant Operation Manual. 

 Stream (kgmol/h) 

Component “Acid Gas” “Treated Gas” “Poor DEA” “Rich DEA” 

H2S 21 0 2 23 

H2 119 119 0 0 

Methane 27 27 0 0 

Ethane 8 8 0 0 

Propane 6 6 0 0 

I-Butane 3 3 0 0 

N-Butane 4 4 0 0 

N-Pentane 1 1 0 0 

H2O 1 2 1295 1294 

DEA 0 0 56 56 

Total 190 170 1353 1373 

 

Table C. 3 - Molar compositions of main streams that constitute the acid gas Absorption 

Column operation, for use in process simulation at Petrox. Data obtained from the Plant 

Operation Manual. 

 Stream (%) 

Component “Acid Gas” “Treated Gas” “Poor DEA” “Rich DEA” 

H2S 11.053% 0.000% 0.148% 1.675% 

H2 62.632% 70.000% 0.000% 0.000% 

Methane 14.211% 15.882% 0.000% 0.000% 

Ethane 4.211% 4.706% 0.000% 0.000% 

Propane 3.158% 3.529% 0.000% 0.000% 

I-Butane 1.579% 1.765% 0.000% 0.000% 

N-Butane 2.105% 2.353% 0.000% 0.000% 

N-Pentane 0.526% 0.588% 0.000% 0.000% 

H2O 0.526% 1.176% 95.713% 94.246% 

DEA 0.000% 0.000% 4.139% 4.079% 
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However, according to the plant's operating team, it never operated according to the 

design conditions (the reason for this fact is unclear). It is also known that the plant's current 

operating conditions are relatively distant from the design conditions, in order to specify H2S 

in the treated gas. As mentioned in Section 4.5.3, the AGASA industrial unity receives loads 

of at least 3 other industrial plants and thus its process feed is noticeably variable. A detailed 

comparison of these differences is found in Section 4.5.4. 

 

C.2 Design Conditions Simulation  

In the first simulations at Petrox, the plant design conditions were simulated. The 

purpose of these simulations is to verify the sensitivity of the operational variables in the 

obtained results. Thus, this evaluation could answer questions such as "In the context of H2S 

in the treated gas, what are the most relevant variables?". These responses facilitate plant 

simulations in accordance with current operating conditions and the actual conclusions of 

this work. 

The design parameters process simulation resulted in H2S content in the “Treated 

Gas” of 10.37 %. The absorption efficiency was lower (5.72 %) than the efficiency required 

(99.72 %) to specify the “Treated Gas” in a maximum of 300 ppm H2S. 

The design conditions were also simulated using the three thermodynamic models 

mentioned in Section 2.2 (CPA, SRK and PR) for comparison. By using the SRK and PR 

models it was not possible to obtain convergence in the simulation using the values presented 

in  

Table C. 1 and Table C. 2. In this way, it was necessary to apply modifications to 

the simulation input data, in order to obtain a condition in which the three models could be 

compared. It follows Table C. 4, with the parameters that had to be modified for the 

simulation convergence. Table C. 5 indicates a gas absorber simulation applying 3 different 

thermodynamic models: 
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Table C. 4 - Variables adjusted for Thermodynamic Models comparison (SRK, PR and CPA).  

Simulation 
Acid Gas Molar Flow 

(kgmol/h) 
H2S Concentration in Acid Gas 

Required Simulation Input 

Data Modifications 
110 9% 

Design Conditions 190 11% 

 

Table C. 5 - Molar composition of H2S in the “Treated Gas” for each concentration of H2S in 

the Acid Gas. The simulation took place in Petrox. 

Thermodynamic Model Molar composition of H2S in the “Treated Gas” 

CPA 9.97% 

SRK 11.76% 

PR 10.12% 

 

It is possible to verify that the CPA model showed the best results regarding the 

efficiency of absorption of H2S by DEA. However, the results are still far short of those 

reported in the industrial unit's operation manual. A possible hypothesis is that the plant can 

be far from the design conditions since the results indicate treated gas specification divergent 

from the purpose. This matter may suggest a plant design error.  

A variables sensitivity analysis was performed to verify the impact of the selected 

process variables on the final specification parameter. 

In the follow simulations presented all design parameters remain constant except for 

those presented in the Table C. 6 to Table C. 14. Since the results presented in Table C. 5 

indicate that CPA yields better results, this model was selected for the next steps. 

 

Table C. 6 - Variation in the “Acid Gas” Molar Flow (Design Conditions). The simulation 

took place in Petrox. 

“Acid Gas” Molar Flow (kgmol/h) Molar H2S in the “Treated Gas” 

110 9.99 % 

190 (Project) 10.37 % 

300 10.56 % 
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The decrease in the molar flow rate of the process feed facilitates the removal of 

H2S by the “Poor DEA”. It is worth noting that the concentrations of H2S in the “Acid Gas” 

were maintained according to the design condition (11.053 %) Table C. 3. 

 

Table C. 7 - Variation in the “Poor DEA” Molar Flow (Design Conditions). The simulation 

took place in Petrox 

Molar “Poor DEA” Flow (kgmol/h) Molar H2S in the “Treated Gas” 

811.8 10.58 % 

1353 (Project) 10.37 % 

1894.2 10.16 % 

 

The increase in the “Poor DEA” flow rate facilitates the removal of H2S from the 

“Acid Gas”. The concentrations of H2S in the “Poor DEA” were maintained according to the 

design condition (0.148 %) Table C. 3. 

 

Table C. 8 - Variation in Concentration of H2S in “Poor DEA” (Design Conditions). The 

simulation took place in Petrox. 

Concentration of H2S in the 

“Acid Gas” 

Molar H2S in the 

“Treated Gas” 

H2S Removal 

Efficiency 

6% 6.16 % -2.67% 

11 % (Project) 10.37 % 5.72% 

16% 14.21 % 11.19% 

 

The increase in H2S content in the “Acid Gas” facilitates the absorption of H2S by 

“Poor DEA” (Table C. 8). 

 

Table C. 9 - Variation in the Concentration of H2S in the “Poor DEA” (Design Conditions). 

The simulation took place in Petrox. 

Concentration of H2S in the “Poor DEA” Molar H2S in the “Treated Gas” 

0.04 % 9.66 % 

0.15 % (Project) 10.37 % 

0.30 % 11.30 % 
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The decrease of H2S concentration in the “Poor DEA” favors the absorption process 

of H2S in the “Acid Gas” (Table C. 9). 

 

Table C. 10 - Variation in the Concentration of DEA in the “Poor DEA” (Design Conditions). 

The simulation took place in Petrox. 

Concentration of DEA in the “Poor DEA” Molar H2S in the “Treated Gas” 

2.07 % 10.88 % 

4.14 % (Project) 10.37 % 

6.21 % 9.80 % 

 

The increase of DEA content in the “Poor DEA” stream facilitates the acid gas 

absorption process (Table C. 10). 

 

Table C. 11 - Variation in the Column Top Pressure (Design Conditions). The simulation took 

place in Petrox. 

Column Top Pressure (kgf/cm2) Molar H2S in the “Treated Gas” 

5 10.67 % 

7.1 (Project) 10.37 % 

10 9.88 % 

 

The simulation is according to theory, which clarifies that greater pressures facilitate 

the gas absorption. The solubility of the gas in the liquid is a function of the nature of both 

components, the temperature, the gas partial pressure in the gas phase and the liquid 

composition. Solubility decreases with temperature and increases with total pressure (KOHL; 

NIELSEN, 1997). 

 

Table C. 12 - Variation in the “Poor DEA” Temperature (Design Conditions). The simulation 

took place in Petrox. 

“Poor DEA” Temperature Molar H2S in the “Treated Gas” 

40 10.21 % 

50 (Project) 10.37 % 

60 9.45 % 
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As mentioned above, the decreasing the “Poor DEA” stream temperature facilitates 

gaseous absorption.  

 

Table C. 13 - Variation in the “Acid Gas” Temperature (Design Conditions). The simulation 

took place in Petrox. 

“Acid Gas” Temperature Molar H2S in the “Treated Gas” 

35 10.36 % 

39.3 (Project) 10.37 % 

45 10.38 % 

 

 

According to Table C. 13, it is possible to conclude that decreasing the “Acid Gas” 

stream temperature the gas absorption is facilitated. 

 

Table C. 14 - Variation in the Number of Theoretical Stages (Design Conditions). The 

simulation took place in Petrox. 

Number of Theoretical Stages Molar H2S in the “Treated Gas” 

15 10.37 % 

31 (Estimated) 10.37 % 

50 10.37 % 

 

 

The variation in the number of theoretical stages in the absorption column did not 

show any influence on the results of the specification parameter. 

Since the column design conditions simulation did not show good results in the H2S 

specification in the “Acid Gas”, it was proceeded to modify some parameters simultaneously 

in order to specify that stream. Only the design parameters that have changed in order to 

obtain results that reflect the environmental specifications for “Acid Gas” are listed in the 

Table C. 15.  
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Table C. 15 - Comparison of Simulations between the required simulation input data 

modifications scenario and design conditions. 

Design Variables 
Design 

Conditions 

Modified 

Scenario Best 

Simulation 

“Acid Gas” Temperature 39.3 25 

Column Top Pressure 7.1 10 

“Poor DEA” Temperature 50 30 

DEA Conc. In “Poor DEA” 0.15% 0.0015% 

H2S Conc. In “Poor DEA” 4.14% 20% 

Molar H2S in the “Treated Gas” (ppm) 103703 93 

 

It is possible to notice that several variables had to be manipulated concerning the 

acid gas specification. In general, the main design conditions that hinder the H2S specification 

are the “Poor DEA” temperature, DEA content in “Poor DEA” and the H2S content in “Poor 

DEA”. 
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Appendix D  

Operating Conditions Simulation 

Comparison applying CPA, SRK and PR 

EoS 

 

 

In this section a comparison of the current operating conditions is presented 

applying CPA, SRK and PR. Its objective is to verify which model best predicts the behavior 

of the final specification of the treated gas in relation to process variables fluctuations. 

 

D.1 Required Modifications for EoS Comparison  

For the simulations referring to the plant operational conditions, the conditions were 

first simulated using three thermodynamic models (CPA, SRK and PR). However, when the 

SRK and PR thermodynamic models were applied, the process simulator numerical method 

did not obtain any solution (did not converge). In this way, it was necessary to modify the 

simulation input data, so that the same conditions could be simulated for the three 

thermodynamic models and thus a comparison could be made. There was a concern to modify 

the simulation input data to a region as close as possible to the operating conditions. Table 

D. 1 shows the necessary modifications in each case.  
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Table D. 1 - Simulation input data for analysis of the operating conditions after required 

simulation input data modifications for thermodynamic models (CPA, SRK and PR) 

comparison.  

Concentration of H2S in 

“Acid Gas” 

Temperature of “Poor DEA” 

(°C) 

DEA in 

“Poor DEA” 

H2S in 

“Poor 

DEA” 

5% 36.60 27.27% 0.455% 

8% 33.40 20% 0.5% 

11% 34.25 23.81% 0.476% 

Oper. Cond. 36.837 - 36.990 20% 0.5% 

 

The variables that most affected the convergence or not of the method were, 

according to Table D. 1, the “Poor DEA” temperature and the DEA and H2S content in “Poor 

DEA”. The variables not shown are those that are equal to the operating conditions. 

 

D.2 Comparison Results 

The results for each simulated scenario of “Acid Gas” H2S molar concentration are 

shown in Table D. 2: 

 

Table D. 2 - Results of the thermodynamic model comparison for each molar composition of 

H2S in the “Acid Gas”. The composition of H2S in the “Treated Gas” for each H2S 

composition in the process feed (5%, 8% and 11%) is shown. The simulations took place with 

Petrox. 

 
H2S Molar composition in “Treated 

Gas” 

Thermodynamic Model 5% 8% 11% 

CPA 2.956% 0.048% 0.065% 

SRK 4.284% 0.070% 0.085% 

PR 1.017% 0.014% 0.021% 

 

It is extremely important to know that the PR model provided a lower mole fraction 

of H2S in the “Treated Gas” not because of better acid absorption but as a result of the 

aqueous phase migration to the gaseous phase to a great extent (large amount of water being 

carried by the gas phase), an unwanted condition. For a better understanding about this 
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explanation, it follows the streams total composition for each simulation. The compositions 

comparison for each case is shown in Table D. 3, Table D. 4 and Table D. 5. 

 

Table D. 3 - Mole Fractions of Process Streams in the Absorbing Tower (EoS CPA). The 

required simulation input data modifications scenario took place at Petrox. 

5% of H2S in the “Acid Gas” - CPA 

Component 
Input Data Output Data 

“Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 5.000 0.046 0.551 2.956 

Hydrogen 85.460 0.000 0.023 86.684 

Methane 3.325 0.000 0.009 3.338 

Ethane 1.872 0.000 0.019 1.823 

Propane 1.881 0.000 0.034 1.769 

I-Butane 0.333 0.000 0.011 0.291 

N-Butane 1.121 0.000 0.046 0.945 

I-Pentane 0.276 0.000 0.021 0.192 

H2O 0.000 72.682 72.093 1.347 

DEA 0.000 27.273 27.172 0.000 

Oxygen 0.228 0.000 0.000 0.230 

Nitrogen 0.352 0.000 0.000 0.356 

N-Hexane 0.152 0.000 0.020 0.069 

 

Table D. 4 - Mole Fractions of Process Streams in the Absorbing Tower (EoS SRK). The 

required simulation input data modifications scenario took place at Petrox. 

5% of H2S in the “Acid Gas” - SRK 

Component 
Input Data Output Data 

“Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 5.000 0.046 0.220 4.284 

Hydrogen 85.460 0.000 0.005 85.490 

Methane 3.325 0.000 0.002 3.319 

Ethane 1.872 0.000 0.011 1.830 

Propane 1.881 0.000 0.022 1.791 
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Table D. 4 (continuation) - Mole Fractions of Process Streams in the Absorbing Tower (EoS 

SRK). The required simulation input data modifications scenario took place at Petrox. 

5% of H2S in the “Acid Gas” - SRK 

Component 
Input Data Output Data 

“Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

I-Butane 0.333 0.000 0.004 0.315 

N-Butane 1.121 0.000 0.026 1.016 

I-Pentane 0.276 0.000 0.008 0.245 

H2O 0.000 72.682 72.426 1.010 

DEA 0.000 27.273 27.269 0.000 

Oxygen 0.228 0.000 0.000 0.227 

Nitrogen 0.352 0.000 0.000 0.352 

N-Hexane 0.152 0.000 0.008 0.121 

 

Table D. 5 – Process Streams Mole Fractions in the Absorbing Tower (EoS PR). The required 

simulation input data modifications scenario took place at Petrox. 

5% of H2S in the “Acid Gas” - PR 

Component 
Input Data Output Data 

“Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 5.000 0.046 0.647 1.017 

Hydrogen 85.460 0.000 0.019 16.859 

Methane 3.325 0.000 0.009 0.656 

Ethane 1.872 0.000 0.071 0.369 

Propane 1.881 0.000 0.196 0.369 

I-Butane 0.333 0.000 0.051 0.065 

N-Butane 1.121 0.000 0.301 0.218 

I-Pentane 0.276 0.000 0.110 0.053 

H2O 0.000 72.682 0.004 59.054 

DEA 0.000 27.273 98.437 21.197 

Oxygen 0.228 0.000 0.001 0.045 

Nitrogen 0.352 0.000 0.000 0.069 

N-Hexane 0.152 0.000 0.155 0.029 
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Attention that the input data is the same in the model comparison presented in Table 

D. 2 - Results of the thermodynamic model comparison for each molar composition of H2S 

in the “Acid Gas”. The composition of H2S in the “Treated Gas” for each H2S composition 

in the process feed (5%, 8% and 11%) is shown. The simulations took place with Petrox.. 

From Table D. 5, it is possible to identify that the PR model predicted the transfer of water 

from the liquid phase (“Poor DEA” stream) to the gas phase, which generated a high 

concentration of water in the “Treated Gas” (59,054 %), which caused a lower concentration 

of H2S in the “Treated Gas” similarly to what has been mentioned previously. 

Considering the Gas Absorption Efficiency (Equation D. 1): 

𝐆𝐚𝐬 𝐀𝐛𝐬𝐨𝐫𝐩𝐭𝐢𝐨𝐧 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 =
𝑴𝒐𝒍𝒂𝒓 𝑭𝒍𝒐𝒘 𝒐𝒇 𝑯𝟐𝑺 𝒊𝒏 𝑨𝒄𝒊𝒅 𝑮𝒂𝒔−𝑴𝒐𝒍𝒂𝒓 𝑭𝒍𝒐𝒘 𝒐𝒇 𝑯𝟐𝑺 𝒊𝒏 𝑻𝒓𝒆𝒂𝒕𝒆𝒅 𝑮𝒂𝒔 

𝑴𝒐𝒍𝒂𝒓 𝑭𝒍𝒐𝒘 𝒐𝒇 𝑯𝟐𝑺 𝒊𝒏 𝑨𝒄𝒊𝒅 𝑮𝒂𝒔
  D. 1 

 

It is possible to construct a comparative table (Table D. 6) considering the gas 

absorption efficiency for each thermodynamic model. It is possible to notice that the PR 

model presented the worst absorption among all the models. It was the only thermodynamic 

model that instead of predicting gas absorption by the DEA, it predicted the migration of H2S 

from the “Poor DEA” to the gaseous stream. 

 

Table D. 6 - Comparison between gas absorption efficiencies for each case simulated (H2S 

concentration) in the “Acid Gas”. 

Comparison between gas absorption efficiencies for each case of H2S concentration in 

the “Acid Gas” 

EoS 5% 8% 11% 

CPA 42% 41% 44% 

SRK 14% 13% 18% 

PR -3% -2% -1% 

 

This PR model behavior was repeated in all other cases regardless the H2S content 

in the “Acid Gas” (this same behavior occurred at concentrations of 8 % and 11 %). 

From these initial simulations, sensitivity analyzes were performed. In the ordinate 

axis, in all the graphs, is presented the “Treated Gas” H2S mole fraction, which is the main 

gas specification variable. 
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In the Figure D. 1 are presented the graphs related to the sensitivity analysis for 5 % 

of “Acid Gas” H2S molar concentration:  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure D. 1 - Sensitivity analysis considering "Acid Gas" H2S molar concentration of 5%, 

applying CPA, SRK and PR EoS. a) Global Absorption Column Efficiency b) “Acid Gas” H2S 

Mole Fraction c) “Poor DEA”  H2S Mole Fraction d) Absorption Column Top Pressure e) 

“Acid Gas” Temperature f) “Poor DEA”  Temperature g) “Acid Gas” Molar Flow h) “Poor 

DEA”  Molar Flow i) Absorption Colunm First Stage Thermal Load j) Absorption Colunm 
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Last Stage Thermal Load. Blue line represents the CPA EoS, red line represents the PR EoS 

and green line represents the SRK EoS. 21 points were used in each case. The simulations 

took place in Petrox.  

 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure D. 1(continuation) - Sensitivity analysis considering "Acid Gas" H2S molar 

concentration of 5%, applying CPA, SRK and PR EoS. a) Global Absorption Column 

Efficiency b) “Acid Gas” H2S Mole Fraction c) “Poor DEA”  H2S Mole Fraction d) 

Absorption Column Top Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature 

g) “Acid Gas” Molar Flow h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage 

Thermal Load j) Absorption Colunm Last Stage Thermal Load. Blue line represents the CPA 

EoS, red line represents the PR EoS and green line represents the SRK EoS. 21 points were 

used in each case. The simulations took place in Petrox.  

 

It can be seen from Figure D. 1 (b), (c) and (d) that the variables “Acid Gas” H2S 

Mole Fraction, “Poor DEA” H2S Mole Fraction and Absorbing Column Top Pressure are 

those that most influence the “Treated Gas” specification. The understanding of the influence 

of “Acid Gas” H2S Mole Fraction is more obvious, since the lower the Process Feed H2S 

content, the less it will be required of the gaseous absorption. Thus, naturally lower treated 

gas H2S concentration is expected. The “Poor DEA” H2S Mole Fraction is important for the 

extent of gas absorption because the lower the H2S content in this stream, the greater the 

driving force for mass transfer (this happens as a result of a H2S concentration differential 
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between the phases increase). On the Absorption Column Top Pressure, higher pressures 

facilitate the gas absorption and thus, when increasing the pressure of the Absorption Column 

a decrease in Treated Gas H2S concentration is foreseen. 

From the process variables inquiry, the ones that apparently have the least influence 

on the H2S specification in the “Treated Gas” are the 1. Global Absorption Column 

Efficiency (a mathematical parameter that influences the process simulator calculations); 2. 

“Acid Gas” Temperature; 3. “Acid Gas” molar flow and; 4. the “Poor DEA” molar flow. 

A possible explanation for the low influence of the “Acid Gas” temperature and 

molar flow is due to the fact the temperature that will dictate the extent of gas absorption are 

the Absorption Column top and bottom temperatures (which are a product of the energy 

balance between the streams and the release / absorption of energy occurring in the domain). 

The temperature and the flow of the “Acid Gas” are just terms of this energy balance 

composed of several variables. The “Acid Gas” flow becomes critical when it reaches 

considerably high values and that can cause the drag of the liquid stream by the top of the 

Absorption Column. 

For Figure D. 1 (c), (d), (f) and (i) results were only presented applying the CPA 

and SRK models since there was no simulation convergence when the thermodynamic model 

PR was applied. 

Looking at Figure D. 1 (h) it is possible to conclude that the “Poor DEA” molar flow 

does not have an important impact on the H2S content in the gas treatment. Nevertheless, 

from Figure D. 2, where each thermodynamic model is represented separately, it is possible 

to verify that there is a dependence but this is limited. 

Just as for the “Acid Gas” temperature and molar flow, the low influence of the 

“Poor DEA” molar flow can be associated to the fact that it is one term within a more complex 

energy balance. 

Figure D. 2 is related to the sensitivity analysis for 8 % of “Acid Gas” H2S molar 

concentration. 
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(a) 

 
(b) 

 
(c) 

Figure D. 2 - “Poor DEA” flow influence analysis on H2S composition in the “Treated Gas”, 

using three different EoS, CPA, SRK and PR. a) CPA b) SRK c) PR. 21 points were used in 

each case. The simulations took place in Petrox.  

 

 
(a) 

 
(b) 

Figure D. 3 - Sensitivity analysis considering "Acid Gas" H2S molar concentration of 8%, 

applying CPA, SRK and PR EoS. a) Global Absorption Column Efficiency b) Mole Fraction 

of H2S in “Acid Gas” c) Mole Fraction of H2S in “Poor DEA”  d) Absorption Column Top 

Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature g) “Acid Gas” Molar Flow 

h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage Thermal Load j Absorption 

Colunm Last Stage Thermal Load. Blue line represents the CPA EoS, red line represents the 

PR EoS and green line represents the SRK EoS. 21 points were used in each case. The 

simulations took place in Petrox. 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure D. 3 (continuation) - Sensitivity analysis considering "Acid Gas" H2S molar 

concentration of 8%, applying CPA, SRK and PR EoS. a) Global Absorption Column 

Efficiency b) Mole Fraction of H2S in “Acid Gas” c) Mole Fraction of H2S in “Poor DEA”  d) 

Absorption Column Top Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature 

g) “Acid Gas” Molar Flow h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage 

Thermal Load j Absorption Colunm Last Stage Thermal Load. Blue line represents the CPA 

EoS, red line represents the PR EoS and green line represents the SRK EoS. 21 points were 

used in each case. The simulations took place in Petrox.  

 



 

 

152 

 

 
(i) 

 
(j) 

Figure D. 3 (continuation) - Sensitivity analysis considering "Acid Gas" H2S molar 

concentration of 8%, applying CPA, SRK and PR EoS. a) Global Absorption Column 

Efficiency b) Mole Fraction of H2S in “Acid Gas” c) Mole Fraction of H2S in “Poor DEA”  d) 

Absorption Column Top Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature 

g) “Acid Gas” Molar Flow h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage 

Thermal Load j Absorption Colunm Last Stage Thermal Load. Blue line represents the CPA 

EoS, red line represents the PR EoS and green line represents the SRK EoS. 21 points were 

used in each case. The simulations took place in Petrox.  

 

The variables behavior when applied SRK EoS was similar to CPA’s, with the 

exception of Global Absorption Column Efficiency, which significantly affected the H2S 

content in the “Treated Gas”. However, the simulated values are hypothetical, since the 

column theoretical global efficiency should not exceed 1. 

Figure D. 4 is related to the sensitivity analysis for 11 % of “Acid Gas” H2S molar 

concentration. 

As explained above, the sensitivity analysis presented aims to verify the main 

process variables performance when applying different EoS. The variables behavior was 

delineated to be fairly coherent and concordant among the EoS.  

Working with CPA EoS, the operational conditions (without the input data 

modifications) were simulated, considering the minimum and maximum limits of each 

variable (calculated in the statistical treatment already presented in the Section 4.5.1. 

It is significant keep in mind that simulations when applying the SRK and PR 

models did not converge when the full operating ranges were employed (and that is why 

modifications were made to the simulation input data). 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure D. 4 - Sensitivity analysis considering "Acid Gas" H2S molar concentration of 11%, 

applying CPA, SRK and PR EoS. a) Global Absorption Column Efficiency b) Mole Fraction 

of H2S in “Acid Gas” c) Mole Fraction of H2S in “Poor DEA”  d) Absorption Column Top 

Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature g) “Acid Gas” Molar Flow 

h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage Thermal Load j) Absorption 

Colunm First Stage Thermal Load. Blue line represents the CPA EoS, red line represents the 

PR EoS and green line represents the SRK EoS. 21 points were used in each case. The 

simulations took place in Petrox.  
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(g) 

 
(h) 

 
(i) 

 
(j) 

Figure D. 4 (continuation) - Sensitivity analysis considering "Acid Gas" H2S molar 

concentration of 11%, applying CPA, SRK and PR EoS. a) Global Absorption Column 

Efficiency b) Mole Fraction of H2S in “Acid Gas” c) Mole Fraction of H2S in “Poor DEA”  d) 

Absorption Column Top Pressure e) “Acid Gas” Temperature f) “Poor DEA”  Temperature 

g) “Acid Gas” Molar Flow h) “Poor DEA”  Molar Flow i) Absorption Colunm First Stage 

Thermal Load j) Absorption Colunm First Stage Thermal Load. Blue line represents the CPA 

EoS, red line represents the PR EoS and green line represents the SRK EoS. 21 points were 

used in each case. The simulations took place in Petrox.  
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Appendix E  

Current Operation Conditions Simulation 

(8% and 11% of H2S in the Process Feed) 

 

 

 In this section is presented the process simulations considering the “Acid Gas” H2S 

content of 8 % and 11 %. The results of these simulations indicated “Treated Gas” H2S 

composition larger than when considering 5 % of H2S. However, it is relevant to present 

these simulations, since there is no certainty to the percentage of H2S in the process feed. 

Thus, it is important to study the entire composition possible range (from 5 % to 11 %). 

 

 

 

E.1 8% and 11% Results 

Similarly, as in Section 4.5.3, it is presented the Petrox simulation results applying 

the CPA, considering however 8 % and 11 % of H2S molar concentration in the “Acid Gas”. 

 Table E. 1 shows the results considering 8 % H2S molar concentration in the “Acid 

Gas”. 
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Table E. 1 - CPA - Operating Conditions (8% H2S in “Acid Gas”). It is represented 13 

operational conditions, all within the statistically calculated intervals. 

 Input Results 

 “Acid Gas” “Poor DEA” 
“Treated 

Gas” 

N° 
Volume Flow 

(Nm3/h) 

Temperature 

(°C) 

Volume 

Flow (m3/h) 

Temperature 

(°C) 

H2S in 

“Treated 

Gas” 

1 5117.405 30.200 36.837 36.995 5.046% 

2 5117.405 30.200 36.990 36.995 5.033% 

3 5118.437 30.200 36.990 36.995 5.034% 

4 5118.437 30.200 36.837 37.196 5.058% 

5 5118.437 30.200 36.990 37.196 5.046% 

6 5117.405 30.200 36.990 37.196 5.045% 

7 5117.405 30.496 36.990 36.995 5.035% 

8 5117.405 30.496 36.990 37.196 5.046% 

9 5117.405 30.496 36.837 37.196 5.058% 

10 5117.405 30.496 36.837 36.995 5.046% 

11 5118.437 30.496 36.837 36.995 5.047% 

12 5118.437 30.496 36.990 36.995 5.035% 

13 5118.437 30.496 36.990 37.196 5.047% 

 

Table E. 2 presents the process streams molar flow for the best case, where the H2S 

content in the “Treated Gas” was 5.033 % (Simulation 2). 

Through Table E. 2 it is possible to visualize that the model predicts the water 

migration from “Poor DEA” to the “Treated Gas” and the migration of undesirable gases 

from “Acid Gas” to the “Rich DEA”. Table E. 3 shows the “Treated Gas” composition for 

the best case (Simulation 2), and its comparison with the chemical analysis performed on 

April 13, 2018. 
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Table E. 2 - Process streams molar flow (kmol/h). “Acid Gas” H2S concentrations of 8%. The 

simulations were carried out in Petrox. 

 Input Output 

 Process Streams 

Component “Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 18.265 0.552 7.587 11.230 

Hydrogen 188.959 0.000 0.216 188.741 

Methane 7.352 0.000 0.073 7.279 

Ethane 4.137 0.000 0.130 4.008 

Propane 4.160 0.000 0.202 3.958 

I-Butane 0.735 0.000 0.069 0.666 

N-Butane 2.480 0.000 0.257 2.222 

I-Pentane 0.610 0.000 0.119 0.491 

H2O 0.000 881.841 878.854 2.988 

DEA 0.000 220.598 220.598 0.000 

Oxygen 0.505 0.000 0.002 0.503 

Nitrogen 0.776 0.000 0.003 0.773 

N-Hexane 0.336 0.000 0.096 0.239 

 

Table E. 3 - “Treated Gas” Molar Composition (H2S in concentrations of 8%). Best result for 

the “Treated Gas” H2S molar composition (5.033%). Comparison with the chemical analysis 

performed on April 13, 2018. 

Component Analysis (%) Simulation Result (%) Relative Standard Deviation 

H2S 0.01 5.033 50230% 

Hydrogen 89.96 84.600 -6% 

Methane 3.50 3.263 -7% 

Ethane 1.97 1.796 -9% 

Propane 1.98 1.774 -10% 

I-Butane 0.35 0.299 -15% 

N-Butane 1.18 0.996 -16% 

I-Pentane 0.29 0.220 -24% 

H2O 0.01 1.339 13290% 

DEA 0.00 0.000 - 

Oxygen 0.24 0.225 -6% 

Nitrogen 0.37 0.347 -6% 

N-Hexane 0.16 0.107 -33% 
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The “Treated Gas” H2S composition was recalculated, in the hypothetical situation 

that the undesirable phenomena had not occurred and the result of its final composition was 

of 2.429 % (instead of 5.033 % of the best case in Table E. 1). But even so, the desirable 

specification of H2S (300 ppm) would not be achieved. 

Table E. 4 shows the results considering 11 % H2S molar concentration in the “Acid 

Gas”. 

 

Table E. 4 - CPA - Operating Conditions (11% H2S in “Acid Gas”). It is represented 13 

operational conditions, all within the statistically calculated intervals. 

 Input Results 

 “Acid Gas” “Poor DEA” 
“Treated 

Gas” 

N° 
Volume Flow 

(Nm3/h) 

Temperature 

(°C) 

Volume 

Flow 

(m3/h) 

Temperature 

(°C) 

H2S in 

“Treated 

Gas” 

1 5117.405 30.200 36.837 36.995 6.976% 

2 5117.405 30.200 36.990 36.995 6.960% 

3 5118.437 30.200 36.990 36.995 6.961% 

4 5118.437 30.200 36.837 37.196 6.992% 

5 5118.437 30.200 36.990 37.196 6.976% 

6 5117.405 30.200 36.990 37.196 6.975% 

7 5117.405 30.496 36.990 36.995 6.961% 

8 5117.405 30.496 36.990 37.196 6.977% 

9 5117.405 30.496 36.837 37.196 6.993% 

10 5117.405 30.496 36.837 36.995 6.977% 

11 5118.437 30.496 36.837 36.995 6.978% 

12 5118.437 30.496 36.990 36.995 6.962% 

13 5118.437 30.496 36.990 37.196 6.977% 

 

Table E. 5 presents the process streams molar flow for the best case, where the H2S 

content in the “Treated Gas” was 6.961 % (Simulation 3). 
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Table E. 5 - Process streams molar flow (kmol/h). “Acid Gas” H2S concentrations of 11%. The 

simulations were carried out in Petrox. 

 Input Output 

 Process Streams 

Component “Acid Gas” “Poor DEA” “Rich DEA” “Treated Gas” 

H2S 25.167 0.552 10.376 15.344 

Hydrogen 183.176 0.000 0.211 182.962 

Methane 7.127 0.000 0.071 7.056 

Ethane 4.011 0.000 0.126 3.885 

Propane 3.706 0.000 0.180 3.526 

I-Butane 0.714 0.000 0.067 0.647 

N-Butane 2.402 0.000 0.250 2.153 

I-Pentane 0.490 0.000 0.096 0.394 

H2O 0.000 881.841 878.846 2.996 

DEA 0.000 220.598 220.598 0.000 

Oxygen 0.490 0.000 0.002 0.488 

Nitrogen 0.753 0.000 0.003 0.750 

N-Hexane 0.325 0.000 0.094 0.231 

 

Through Table E. 5 the same unsatisfactory phenomena of previous cases can be 

identified. Table E. 6 shows the “Treated Gas” composition for the best case (Simulation 3), 

and its comparison with the chemical analysis performed on April 13, 2018. 

It was recalculated the “Treated Gas” H2S molar composition, considering 

exclusively H2S mass transfer from the “Acid Gas” to DEA stream and the result was of 

3.319 % (instead of 6.961% of the best case in Table E. 4). 

It can be concluded that, if the process feed H2S concentration is 8 % to 11 %, the 

desirable H2S molar concentration in the Treated Gas would not be achieved. Suggestions 

for accomplishing the gas specification (300 ppm) were presented in Section 4.5.4. 
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Table E. 6 - “Treated Gas” Molar Composition (H2S in concentrations of 11%). Best result 

for the “Treated Gas” H2S molar composition (6.961%). Comparison with the chemical 

analysis performed on April 13, 2018. 

Component Analysis (%) Simulation Result (%) Relative Standard Deviation 

H2S 0.01 6.96 69499% 

Hydrogen 89.96 83.00 -8% 

Methane 3.50 3.20 -9% 

Ethane 1.97 1.76 -11% 

Propane 1.98 1.60 -19% 

I-Butane 0.35 0.29 -16% 

N-Butane 1.18 0.98 -17% 

I-Pentane 0.29 0.18 -38% 

H2O 0.01 1.36 13492% 

DEA 0.00 0.00 - 

Oxygen 0.24 0.22 -8% 

Nitrogen 0.37 0.34 -8% 

N-Hexane 0.16 0.11 -34% 

 

 


