

ANÁLISE DO COMPORTAMENTO DE TALUDES DE CALHAS FLUVIAIS SUBMETIDOS A VARIAÇÕES RÁPIDAS DO NÍVEL DE ÁGUA DO RIO – CASO DO RIO MADEIRA, PORTO VELHO-RO

Lis Eveline Athaydes Fadanelli

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil.

Orientador: Mauricio Ehrlich

Rio de Janeiro Outubro de 2019

ANÁLISE DO COMPORTAMENTO DE TALUDES DE CALHAS FLUVIAIS SUBMETIDOS A VARIAÇÕES RÁPIDAS DO NÍVEL DE ÁGUA DO RIO – CASO DO RIO MADEIRA, PORTO VELHO-RO

Lis Eveline Athaydes Fadanelli

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Examinada por:

Prof. Mauricio Ehrlich, D.Sc.

Prof. Willy Alvarenga Lacerda, Ph.D.

Prof. Leonardo De Bona Becker, D.Sc.

Prof. Denise Maria Soares Gerscovich, D.Sc.

RIO DE JANEIRO, RJ - BRASIL OUTUBRO DE 2019 Fadanelli, Lis Eveline Athaydes

Análise do comportamento de taludes de calhas fluviais submetidos a variações rápidas do nível de água do rio – caso do rio Madeira, Porto Velho-RO/ Lis Eveline Athaydes Fadanelli. – Rio de Janeiro: UFRJ/COPPE, 2019.

XII, 214 p.: il.; 29,7 cm.

Orientador: Mauricio Ehrlich

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2019.

Referências Bibliográficas: p. 103-105.

Rebaixamento Rápido. 2. Calha fluvial. 3.
Estabilidade de taludes. I. Muricio Ehrlich. II.
Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Civil. III. Título.

AGRADECIMENTOS

Acima de tudo, quero agradecer à Deus por iluminar meu caminho e me dar força para cumprir meus objetivos.

Agradeço ao professor Mauricio Ehrlich pela confiança e por ter me proporcionado uma excelente orientação, sempre paciente e dedicado às suas atividades.

Agradeço ao meu marido Rafael por me incentivar, me ajudar e me apoiar sempre.

Agradeço aos meus pais por me mostrarem a importância do conhecimento e batalharem para eu ter oportunidade de conquistar meus sonhos.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ANÁLISE DO COMPORTAMENTO DE TALUDES DE CALHAS FLUVIAIS SUBMETIDOS A VARIAÇÕES RÁPIDAS DO NÍVEL DE ÁGUA DO RIO – CASO DO RIO MADEIRA, PORTO VELHO-RO

Lis Eveline Athaydes Fadanelli

Outubro/2019

Orientador: Mauricio Ehrlich

Programa: Engenharia Civil

Este trabalho busca analisar os fatores que levaram a instabilidade de um talude de calha fluvial na margem direita do rio Madeira, situado a aproximadamente 24km a jusante do município de Porto Velho, capital do estado de Rondônia. O rio Madeira apresenta grandes variações de nível d'água entre os períodos de enchentes e de vazantes ao longo de um ano devido ao regime de chuvas característico da região amazônica. O talude foi instrumentado com inclinômetros, medidores de nível d'água e piezômetros e foram realizados ensaios de laboratório em amostras indeformadas dos solos. Análises de percolação e estabilidade realizadas nos programas SEEP/W e SLOPE/W em conjunto com os dados da instrumentação e resultados dos ensaios permitiram avaliar o comportamento do talude frente à variação do nível d'água. Pode se observar a ocorrência de um efeito de rebaixamento rápido como um dos fatores deflagradores da movimentação do talude.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

ANALYSIS OF FLUVAL SLOPE BEHAVIOR SUBMITTED TO QUICK VARIATIONS OF THE RIVER WATER LEVEL - RIO MADEIRA CASE, PORTO VELHO-RO

Lis Eveline Athaydes Fadanelli

October/2019

Advisors: Mauricio Ehrlich

Department: Civil Engineering

This work searches analyze the factors that led to the instability a fluvial slope on the right bank of the Madeira river, located approximately 24km downstream of the municipality of Porto Velho, capital of the Rondônia state. The Madeira river presents large variations of water level between the periods of floods and of ebbing for one year due to rainfall regime characteristic of the Amazon region. The slope was instrumented with inclinometers, water level gauge and piezometers and laboratory tests were performed on undisturbed soil samples. Percolation and stability analyzes performed in the SEEP / W and SLOPE / W programs together with the instrumentation data and test results allowed to evaluate the slope behavior in relation to water level variation. A rapid drawdown effect can be observed as one of the triggering factors of slope movement.

SUMÁRIO

1.	INTRODUÇÃO	1
1.1.	Objetivo	2
1.2.	Organização do trabalho	2
2.	REVISÃO BIBLIOGRÁFICA	3
2.1.	Algumas considerações pertinentes ao trabalho sobre o comportamento	
mecânic	o dos solos	3
2.2.	Movimentos de massa	11
2.2.1.	Tipos de movimentos de massa	12
2.2.2.	Fatores condicionantes	15
2.3.	Estabilidade de taludes	16
2.3.1.	Métodos de Análise de Estabilidade de Taludes	17
2.3.2.	Influência da água na estabilidade de taludes	21
2.3.2.1.	Efeito do rebaixamento rápido do nível d'água	22
2.3.3.	Programa computacional SLOPE/W	22
2.4.	Água nos solos	23
2.4.1.	Permeabilidade	23
2.4.2.	Fluxo d'água	25
2.4.2.1.	Equação de fluxo em meios porosos	26
2.4.3.	Programa computacional SEEP/W	28
2.5.	Instrumentação geotécnica	29
Medido	r de nível d'água	30
Piezôme	etro	31
Inclinôn	netro	32
3.	CARACTERIZAÇÃO DA ÁREA EM ESTUDO	34
3.1.	Dinâmica fluvial do rio Madeira	34
3.2.	Localização do talude em estudo e Dados Geográficos	37
3.3.	Aspectos Geológicos e Geomorfológicos	39
3.4.	Aspectos Geotécnicos	40
3.4.1.	Investigações de campo	40
3.4.2.	Ensaios de laboratório	43
3.4.2.1.	Ensaios de Caracterização	46

Granulo	metria por peneiramento e sedimentação 4	6		
Massa e	specifica real dos grãos4	6		
Umidad	e natural 4	7		
Limites	de Atterberg4	7		
3.4.2.2.	Ensaio de Adensamento Oedométrico 4	8		
3.4.2.3.	Ensaio Triaxial	;3		
4.	ANÁLISE DO COMPORTAMENTO DO TALUDE5	57		
4.1.	Instrumentação geotécnica5	57		
4.2.	Análises de percolação	54		
4.2.1.	Condições de Contorno	54		
4.2.2.	Condição inicial	57		
4.2.3.	Definição das propriedades hidráulicas7	'2		
4.2.4.	Resultados	7		
4.3.	Análises de estabilidade	30		
4.3.1.	Considerações	60		
4.3.1.1.	Início das Movimentações significativas do talude (01/05/2017)	32		
4.3.1.2.	Nível d'água do rio na cota mínima (25/09/2017)	88		
4.3.1.3.	Análises de estabilidade em intervalos de 15 dias	95		
5.	CONCLUSÕES 10)1		
6.	REFERÊNCIAS10)3		
ANEXO I - BOLETINS DE SONDAGENS 106				
ANEXO II - ENSAIOS DE LABORATÓRIO				
APÊNDICE A - INSTRUMENTAÇÃO				
APÊND	APÊNDICE B - ANÁLISES DE ESTABILIDADE			

LISTA DE FIGURAS

Figura 1- Critério de ruptura de Mohr Coulomb (GERSCOVICH, 2012)	5
Figura 2- Variação das poropressões e Fator de Segurança durante e depois da	
escavação em solo argiloso saturado (BISHOP E BJERRUM, 1960 apud LAMBE &	
WHITMAN, 1979).	7
Figura 3- Variação das poropressões, resistência ao cisalhamento Fator de Segurança	
nas etapas de construção, enchimento e rebaixamento rápido de uma barragem de terra	a
(BISHOP E BJERRUM, 1960 apud LAMBE & WHITMAN, 1979).	8
Figura 4- Variação das poropressões, resistência ao cisalhamento Fator de Segurança	
nas etapas de construção de um aterro sobre solo saturado (BISHOP E BJERRUM,	
1960 apud LAMBE & WHITMAN, 1979).	9
Figura 5- Caminhos de tensões efetivas e totais para um carregamento não drenado na	L
argila de Weald.(LAMBE & WHITMAN, 1979)	10
Figura 6- Caminhos de tensões efetivas para as condições de carregamento drenado	е
não drenado na argila de Weald. (LAMBE & WHITMAN, 1979)	11
Figura 7- Tensões cisalhantes mobilizadas e resistentes em uma massa de solo	18
Figura 8- Método das Fatias (Craig, 2004)	19
Figura 9- Medidor de nível d'água (CRUZ, 2004)	30
Figura 10- Cálculo dos deslocamentos com inclinômetro. adaptado de Wilson &	
Mikkelsen (1978) (GEORIO, 2000).	33
Figura 11 – Localização do rio Madeira, divisas dos países e características fisiográfic	ca.
RIBEIRO NETO (2006, apud TUCCI, 2007).	35
Figura 12 – Cotas "puras" e normatizadas – Estação fluviométrica 15400000 – Porto	
Velho-RO (MUNIZ, 2013)	36
Figura 13. Localização do talude em estudo (Fonte: Google Earth)	37
Figura 14. Talude na margem direita do rio Madeira, a montante de Porto Velho-RO.	38
Figura 15. Trincas no talude na margem direita do rio Madeira	38
Figura 16. Mapa geológico na região do talude em estudo. (Fonte: CPRM, 2007)	40
Figura 17. Planta com locação das sondagens (Nível d'água do rio Madeira em	
07/08/2017)	41
Figura 18. Perfil do subsolo	42
Figura 19- Procedimento para extração do solo do tubo de amostragem (Ladd &	
DeGroot, 2003)	44
Figura 20- Exemplo do procedimento de extração do solo do tubo de amostragem	
realizado nas amostras apresentadas neste trabalho. (Fonte: Pattrol Investigações	
Geotécnicas)	44
Figura 21-Ilustração da correção realizada nos gráficos.	49
Figura 22- Valores de cv obtidos – Amostras em 3,0 a 7,8m de profundidade	50
Figura 23- Valores de cv obtidos – Amostras em 9,9 a 15,45m de profundidade	51
Figura 24- Esquema de montagem do corpo de prova (THOMASI, 2000)	54
Figura 25. Locação dos instrumentos – Planta	58
Figura 26. Locação dos instrumentos – seção transversal ao talude (seção 1)	58
Figura 27. Deslocamentos indicados pelo inclinômetro 1 (eixo A-A). Leituras máxima	1S
mensais.	60
Figura 28. Deslocamentos indicados pelo inclinômetro 2 (eixo A-A). Leituras máxima	is
	60
Figura 29. Deslocamentos indicados pelo inclinômetro 3 (eixo A-A). Leituras máxima	is
mensais	61

Figura 30. Deslocamentos indicados pelo inclinômetro 8. Leitura máxima mensal Figura 31. Deslocamentos indicados pelos inclinômetros no mês de maio de 2017	61
(exceto inclinômetro 8 instalado em julho de 2017)	62
Figura 32 Deslocamentos acumulados indicados pelos inclinômetros até setembro de	02
2017 (exceto inclinômetro 8) referente a julho de 2017)	63
Figura 33 Deslocamentos acumulados indicados pelos inclinômetros até setembro de	05
2017 trinças de tração observadas em campo e provável superfície de rotura	64
Figura 34. Variação do nível d'água do rio Madeira y Tempo	65
Figura 35. Variação do nível d'água no Medidor de nível d'água 3 (NA 3) y Tempo	65
Figura 36. Condições de contorno anlicadas	66
Figure 27 Melhe de elementes finites	66
Figura 37. Malla de clementos mintos.	67
Figura 38. Ajuste para ciclo da vallação do nivel d'agua do 110.	0/ 60
Figura 39. Ajuste para cicio do medidor de miver d'agua NA 5	00
Figura 40. Variação do nível d'água no medidor de nível d'água NA 3 simulada nas	08
análises de percolação.	68
Figura 42- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-1A.	.69
Figura 43- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-1B.	.69
Figura 44- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2A.	.70
Figura 45- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2B.	70
Figura 46- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2C.	.70
Figura 47- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-3B.	71
Figura 48- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-3C.	.71
Figura 49- Curvas Características Típicas (SEEP, 2012).	72
Figura 50- Locação dos piezômetros.	73
Figura 51- Comparação entre resultados das leituras da instrumentação (PZ-1A) x	
resultados obtidos nas análises de percolação.	74
Figura 52- Comparação entre resultados das leituras da instrumentação (PZ-1B) x	
resultados obtidos nas análises de percolação.	74
Figura 53- Comparação entre resultados das leituras da instrumentação (PZ-2A) x	
resultados obtidos nas análises de percolação	75
Figura 54- Comparação entre resultados das leituras da instrumentação (PZ-2B) x	
resultados obtidos nas análises de percolação	75
Figura 55- Comparação entre resultados das leituras da instrumentação (PZ-2C) x	15
resultados obtidos nas análises de percolação	76
Figura 56- Intervalos típicos para cada tipo de solo (PINTO 2006): Parâmetros obtido	10
relos ensaios e valores adotados	א דד
Figure 57 Poropressões obtides pas apálises de fluxo em 14/12/2016	78
Figura 57 - Fotopressões obtidas nas análises de fluxo em 22/02/2017.	70 70
Figura 50- Poropressões obtidas nas análises de fluxo em 17/04/2017.	70 70
Figura 59- Polopiessoes oblidas nas análises de fluxo em 01/04/2017.	70
Figura 60- Poropressões obtidas nas análises de fluxo em 17/05/2017.	79
Figura 61- Poropressoes obtidas nas analises de fluxo em $1//0//2017$	79 70
Figura 62- Poropressoes obtidas nas analises de fluxo em 25/09/2017.	/9
Figura 63- Analise de estabilidade $01/05/2017$ – Parametros da camada de argila: c ² =1	10
$KPa \in \mathcal{O} = 51^{\circ}.$	82
Figura 64- Parametros na situação de inicio das movimentações significativas do taluc	ie
(01/05/2017).	83
Figura 65- Superficies de rotura críticas $(01/05/2017)$	84
Figura 66- Geometria da superfície intermediária (01/05/2017)	85

Figura 67- Fatores de Segurança obtidos em análises para cada par de parâmetros para suporfício intermediório definido (01/05/2017)	1 a 85
Figura 68 Resultantes das tensões cisalhantes mobilizadas e das resistâncias ao	65
rigula 08- Resultantes das tensões cisamantes mobilizadas e das resistencias ao	96
El sama física interne di cada analise $(01/03/2017)$.	00 7)
Figura 69- Poropressões $u0, ul e \Delta u$ ao longo da superficie intermediaria (01/05/2017) 87
Figura 70- Resistência do solo para $c=10$ kPa, $\emptyset^*=11^\circ$, $\Delta u=0$; $c'=10$ kPa, $\emptyset'=31^\circ$,	
$\Delta u = 25 \ kPa.$	88
Figura 71- Análise de estabilidade $25/09/2017$ – Parâmetros da camada de argila: c'=1 kPa e \emptyset '=31°	10 89
Figura 72- Parâmetros na situação de nível d'água do rio em sua cota mais baixa	07
(25/09/2017).	90
Figura 73- Comparação entre Parâmetros na situação de início das movimentações significativas do talude (01/05/2017) x nível d'água do rio em sua cota mais baixa	
(25/09/2017).	90
Figura 74- Superfícies de rotura críticas (25/09/2017)	91
Figura 75- Geometria da superfície intermediária	92
Figura 76- Fatores de Segurança obtidos em análises para cada par de parâmetros para	ıa
superfície intermediária definida (25/09/2017).	92
Figura 77- Resultantes das tensões cisalhantes mobilizadas e das resistências ao	
cisalhamento para cada análise (25/09/2017).	93
Figura 78- Poropressões $u0$, $ut \in \Delta u$ ao longo da superfície intermediária (25/09/2017	/)
	94
Figura 79- Resistência do solo para $c=10$ kPa, $\emptyset^*=19^\circ$, $\Delta u=0$; $c'=10$ kPa, $\emptyset'=31^\circ$,	
$\Delta u = 16 k P a.$	94
Figura 80- Fator de segurança x Tempo (a cada 15 dias)	95
Figura 81- Fator de segurança x Tempo (a cada 15 dias) e condição hipotética	96
Figura 82- Nível d'água do rio Madeira e cota piezométria medida no piezômetro PZ-	
1B	97
Figura 83- Valores de Ø* para fator de segurança próximo à unidade ao longo do	
tempo.	98
Figura 84- Fator de segurança x Tempo (a cada 15 dias) incluindo análise considerand	lo
Ø*=20°.	99

LISTA DE TABELAS

Tabela 1- Sistema de classificação dos movimentos de massa proposto por Varnes	
(1978)	12
Tabela 2 – Sistema de classificação de movimentos de massa proposto por Augusto	
Filho (1992).	13
Tabela 3- Fatores deflagradores dos movimentos de massa (VARNES, 1978)	15
Tabela 4- Fatores de segurança mínimos para deslizamentos (NBR 11682/2009)	17
Tabela 5- Lista de equações e incógnitas envolvidas no Método das Fatias	
(GERSCOVICH, 2012 adaptado)	20
Tabela 6- Características dos métodos de equilíbrio limite mais utilizados	
(GEORIO,2000)	21
Tabela 7- Identificação das amostras	43
Tabela 8- Critério de avaliação da qualidade da amostra (Oliveira, 2002)	45
Tabela 9- Avaliação da qualidade das amostras indeformadas segundo OLIVEIRA,	
2002	45
Tabela 10. Resultados dos ensaios de caracterização	47
Tabela 11. Dados obtidos através dos ensaios de adensamento oedométrico	50
Tabela 12. Valores dos coeficientes de permeabilidade (k) obtidos	52
Tabela 13. Execução dos ensaios - Fase de cisalhamento	55
Tabela 14. Parâmetros de resistência obtidos através dos ensaios triaxiais CIU	55
Tabela 15- Instrumentos instalados.	59
Tabela 16. Parâmetros de resistência considerados nas análises de estabilidade	81

1. INTRODUÇÃO

A variação do nível de corpos d'água em contato com taludes em um curto intervalo de tempo é considerada um fator preocupante para a estabilidade destes taludes uma vez que, quando o nível d'água externo desce rapidamente, o nível d'água no interior do talude pode não acompanhar o rebaixamento com a mesma velocidade e o fluxo de água se intensifica da parte de dentro para fora do talude. Esse fluxo de água implica em uma força de percolação desfavorável à estabilidade do talude. Além disso, ocorre uma perda do efeito estabilizante que a pressão d'água provocava sobre o talude inicialmente submerso. Este fenômeno, conhecido como rebaixamento rápido, depende da relação entre a permeabilidade dos materiais envolvidos e a velocidade de rebaixamento e é muito estudado no caso de barragens. Este efeito também pode ocorrer em calhas fluviais em função das variações sazonais dos níveis d'água dos rios.

O volume de água do rio Madeira aumenta consideravelmente durante a estação chuvosa da região amazônica devido à alta incidência de precipitações pluviométricas. Segundo Fisch *et al.* (1997), a distribuição das precipitações na bacia do rio Madeira possui sazonalidade bem definida, com período chuvoso ocorrendo durante os meses de novembro a abril, com precipitação mensal superior a 200 mm/mês, enquanto que, os meses de junho a agosto são extremamente secos, chegando a precipitações inferiores a 20 mm/mês. A influência das precipitações pluviométricas no nível d'água do rio Madeira é refletida em uma régua instalada na margem direita do rio, a jusante do município de Porto Velho-RO, cujas leituras realizadas apresentam variações de até 12m entre os valores extremos da cheia e da estiagem ao longo de um ano.

A variação do nível d'água do rio Madeira e consequente efeito de rebaixamento rápido é levantada como um dos possíveis fatores que levaram à instabilidade um talude de calha fluvial situado a jusante de Porto Velho que veio a apresentar trincas e movimentações.

Neste contexto, a proposta desta dissertação consiste em buscar um melhor entendimento sobre a influência da variação rápida do nível d'água nestes casos com base em instrumentação, ensaios de laboratório e demais investigações geotécnicas executadas para o talude em questão.

1.1. Objetivo

Este trabalho tem como objetivo o estudo do comportamento de um talude de calha fluvial situado na margem direita do rio Madeira, a jusante do município de Porto Velho-RO, sob a influência da variação do nível d'água do rio. Busca-se o entendimento do efeito do fenômeno de "rebaixamento rápido" sobre o talude por meio de análises dos dados gerados pela instrumentação instalada no local e ensaios de laboratório realizados.

1.2. Organização do trabalho

O trabalho está dividido em 5 capítulos, distribuídos da seguinte forma:

Capítulo 1: Capítulo introdutório onde é apresentada uma contextualização do comportamento do rio Madeira e sua influência em taludes situados em sua calha fluvial. Neste capítulo também são apresentados os objetivos da dissertação e a justificativa para desenvolvimento da mesma.

Capítulo 2: Capítulo onde é apresentada uma sucinta revisão bibliográfica, abordando os principais assuntos pertinentes ao tema da dissertação, tais como os tipos de movimento de massa e mecanismos de instabilização dos taludes, métodos de análise de estabilidade, fluxo de água nos solos, análises de fluxo, resistência ao cisalhamento e instrumentação geotécnica.

Capítulo 3: No terceiro capítulo são apresentadas as características da área de estudo, tais como caracterização geomorfológica, geológica, aspectos geotécnicos envolvendo investigações de campo e ensaios de laboratório realizados no local, bem como a dinâmica fluvial do rio Madeira.

Capítulo 4: Neste capítulo é realizada a análise do comportamento do talude em estudo. Aqui são apresentados os principais aspectos e considerações relativos à modelagem numérica do talude, descrevendo os parâmetros, premissas e condições de contorno adotados nas análises de fluxo e de estabilidade realizadas fazendo uso dos programas computacionais SEEP/W e SLOPE/W, respectivamente. Ainda neste capítulo são apresentados os resultados das análises.

Capítulo 5: Apresenta as conclusões deste estudo.

2. REVISÃO BIBLIOGRÁFICA

2.1. Algumas considerações pertinentes ao trabalho sobre o comportamento mecânico dos solos

As propriedades geotécnicas dos solos estão intimamente ligadas ao estado em que o solo se encontra, entendendo-se por estado, o arranjo relativo de suas partículas, mantidas em determinadas posições pela ação de forças de gravidade, forças elétricas, agentes cimentícios e pela forma em que a água e o ar ocupam seus vazios. Este estado do solo está sempre em equilíbrio com as tensões externas atuantes. Sempre que estas tensões se alterem ou que se estabeleça um fluxo de água ou de ar, o estado do solo se modifica (CRUZ, 2004).

Em solos saturados a pressão da água positiva nos poros age no sentido de reduzir a tensão atuante no esqueleto solido. Nesta situação, para definir o estado de tensões do solo é válido o princípio de tensões efetivas enunciado por Terzaghi (1936). Este princípio é composto de duas partes, conforme transcrito na sequência:

1ª Parte: As tensões em qualquer "ponto" de uma massa de solo podem ser computadas a partir das tensões principais totais σ_1 , $\sigma_2 e \sigma_3$ que atuam neste ponto. Se os vazios do solo estiverem preenchidos com água sob uma pressão u, as tensões principais consistem de duas parcelas. Uma parcela de valor u que age na água e na parte sólida, em todas as direções, com igual magnitude, é denominada pressão neutra (ou poropressão). As parcelas remanescentes $\sigma'_1 = \sigma_1 - u$, $\sigma'_2 = \sigma_2 - u$ e $\sigma'_3 = \sigma_3 - u$ são "sentidas" exclusivamente pelo esqueleto sólido do solo. Estas parcelas são denominadas tensões principais efetivas.

Desta forma, Terzaghi (1936) escreveu a equação fundamental do Princípio das Tensões Efetivas:

$$\sigma' = \sigma - u \tag{1}$$

Embora as tensões efetivas tenham sido definidas apenas para as direções principais, a equação apresentada vale para todas as direções já que a água não resiste às tensões cisalhantes.

2^a Parte: Todos os efeitos mensuráveis oriundos da variação do estado de tensões, tais como compressão, distorção e variação da resistência ao cisalhamento, são devidos exclusivamente à variação do estado de tensões efetivas.

Esta segunda parte do princípio das tensões efetivas implica que todas as vezes que houver variação do estado de tensões efetivas haverá no solo variação de volume, distorção ou variação de volume e distorção. Reciprocamente basta que haja distorção ou variação de volume (ou ambos ocorrendo simultaneamente) para afirmar que tais efeitos são oriundos da variação do estado de tensões efetivas.

Em solos não saturados o Princípio de Terzaghi não é válido, principalmente por conta do surgimento de uma pressão de água negativa nos poros, também chamada de sucção. Segundo Fredlund e Morgenstern (1977) a não saturação faz com que o estado de tensões seja diferente, devendo, então, ser considerada a influência de outras variáveis no comportamento dos solos não saturados. Como as movimentações do talude em estudo neste trabalho são comandadas principalmente pela resistência da parcela saturada dos solos, não serão abordadas maiores revisões sobre o comportamento mecânico da parcela não saturada.

Conforme enunciado por Terzaghi (1936), o comportamento dos solos saturados é determinado pelas tensões efetivas a que estão submetidos. Pinto (2006) destaca que para o conhecimento das tensões efetivas é necessário o conhecimento das poropressões, não só as devidas ao nível d'água e redes de percolação, como também as resultantes do próprio carregamento.

As poropressões devidas às condições de nível d'água e redes de percolação em meios saturados podem ser determinadas pelas análises de fluxo descritas no item 2.4. Excessos de poropressão gerados devido a alterações nas condições de carregamento, contudo, são de difícil determinação. Estes excessos estão geralmente relacionados a solos com baixos coeficientes de adensamento, em que as alterações nas tensões devidas às alterações no carregamento se manifestam inicialmente na água (excessos

4

poropressões positivas ou negativas) e só depois, a medida que ocorre um novo equilíbrio das poropressões, são transmitidas ao esqueleto sólido. Skempton (1954) propôs a estimativa destes excessos de poropressão através da equação:

$$\Delta u = B. \left[\Delta \sigma_3 + A. \left(\Delta \sigma_1 - \Delta \sigma_3 \right) \right] \tag{2}$$

Onde:

A e B são coeficientes determinados experimentalmente. B é igual a 1 para solos saturados e B < 1 para solos parcialmente saturados. A é função do tipo do solo, nível de tensões, história de tensões e trajetória de tensões.

Conhecidas as tensões efetivas é possível determinar a resistência ao cisalhamento dos solos através de critérios de ruptura. O critério de ruptura que melhor representa o comportamento dos solos é o de Mohr-Coulomb, o qual lineariza a envoltória de resistência traçada a partir dos círculos de Mohr. A envoltória é ajustada por uma reta definida pelo intercepto coesivo c' e inclinação Ø'. A Figura 1 ilustra o critério de ruptura de Mohr-Coulomb apresentado por Gerscovich (2012).

Figura 1- Critério de ruptura de Mohr Coulomb (GERSCOVICH, 2012).

A partir do critério de Mohr-Columb define-se a resistência ao cisalhamento (τ) por:

$$\tau = c' + (\sigma - u). tg\emptyset' \tag{3}$$

ou

$$\tau = c' + \sigma' . tg\emptyset' \tag{4}$$

Desta forma, a capacidade de um solo de resistir a uma determinada variação de tensões é proporcional às tensões efetivas.

Quando se avalia a estabilidade de um maciço que sofreu alteração nos carregamentos, deve-se levar em consideração o comportamento dos excessos de poropressão gerados pelo carregamento ao longo do tempo. Para exemplificar o comportamento dos excessos de poropressão ao longo do tempo estão reproduzidas nas Figuras 2 a 4 as mudanças de carregamento, poropressões e consequente resistência ao cisalhamento ao longo do tempo apresentadas por Bishop e Bjerrum (1960) *apud* Lambe & Whitman (1979). A Figura 2 apresenta uma escavação em solo saturado, a Figura 3 apresenta as etapas de construção, enchimento e rebaixamento rápido de uma barragem de terra e a Figura 4 apresenta a construção de um aterro sobre terreno saturado.

Figura 2- Variação das poropressões e Fator de Segurança durante e depois da escavação em solo argiloso saturado (BISHOP E BJERRUM, 1960 apud LAMBE & WHITMAN, 1979).

Figura 3- Variação das poropressões, resistência ao cisalhamento Fator de Segurança nas etapas de construção, enchimento e rebaixamento rápido de uma barragem de terra (BISHOP E BJERRUM, 1960 apud LAMBE & WHITMAN, 1979).

Figura 4- Variação das poropressões, resistência ao cisalhamento Fator de Segurança nas etapas de construção de um aterro sobre solo saturado (BISHOP E BJERRUM, 1960 apud LAMBE & WHITMAN, 1979).

Cabe ressaltar, conforme já exposto, que estas variações de excessos de poropressão são importantes em solos de baixa permeabilidade (baixo coeficiente de adensamento). Em solos com permeabilidade elevada, solos granulares, as variações de carregamento são transmitidas ao esqueleto sólido a medida que ocorrem.

Frente às dificuldades em se determinar os excessos de poropressão devido a alterações no carregamento, realizam-se, com frequência, análises para condição não drenada em termos de tensões totais (PINTO, 2006). Estas análises constituem uma simplificação na forma de se averiguar o comportamento de solos de baixa

permeabilidade e saturados, quando sujeitos a uma solicitação quase instantânea. Nestas análises são determinados os parâmetros em termos de tensões totais e admite-se, implicitamente, que as poropressões que surgirão no caso em estudo são equivalentes às geradas nas condições em que os parâmetros foram determinados. Por exemplo, equivalentes às geradas em um ensaio não drenado. Em outras palavras, traduzem-se nos parâmetros de resistência totais os efeitos devidos aos excessos de poropressão.

Os parâmetros de resistência em termos de tensões totais devem ser determinados em função das condições iniciais e do tipo de carregamento. As Figuras 2 a 4 ilustram que para diferentes tipos de carregamento as poropressões geradas são distintas.

A Figura 5 reproduzida de Lambe & Whitman (1979), apresenta os caminhos de tensões efetivas e totais (diagrama p'-q e p-q) para um carregamento não drenado na argila de Weald. Na figura observa-se a geração de poropressões crescente com o carregamento. O caminho de tensões efetivas, que, como visto, comanda a resistência ao cisalhamento, atinge a envoltória de ruptura com q igual a 60 kPa. Desta forma, para o carregamento em questão, a determinação da ruptura através da envoltória de resistência em termos de tensões efetivas e das tensões efetivas é equivalente à determinação através das tensões totais para uma envoltória de resistência definida por $\emptyset = 0$ e c = Su = 60 kPa, onde Su é a resistência não drenada na condição de análise.

Figura 5- Caminhos de tensões efetivas e totais para um carregamento não drenado na argila de Weald.(LAMBE & WHITMAN, 1979)

Na Figura 6 estão apresentados, para a mesma argila de Weald, os caminhos de tensão efetivos para as condições de carregamento drenado e de carregamento não drenado, onde se obteve as resistências de 124 kPa e 60 kPa, respectivamente. Para uma condição de carregamento equivalente associada a um comportamento parcialmente drenado (parte dos excessos de poropressão se dissipam durante o carregamento) ter-se-ia uma resistência entre os valores de 124 e 60 kPa.

Figura 6- Caminhos de tensões efetivas para as condições de carregamento drenado e não drenado na argila de Weald. (LAMBE & WHITMAN, 1979)

Em argilas muito sobreadensadas ocorre a geração de propressões negativas na fase de cisalhamento, podendo inclusive resultar em uma resistência não drenada maior do que a resistência drenada.

2.2. Movimentos de massa

Chama-se de talude a superfície inclinada que limita um maciço. Augusto Filho e Virgili (1998) explicam que os taludes podem ser originados de processos geológicos e geomorfológicos diversos ou pela ação humana.

O fenômeno em que uma porção do material de um talude se desloca em relação ao maciço restante é conhecido como movimento de massa. Avaliar e entender os diferentes mecanismos que envolvem os movimentos de massa é importante não só por estes se destacarem como um dos principais processos geomorfológicos responsáveis pela evolução do relevo, mas também pelo fato de poder causar prejuízos financeiros e perdas humanas.

2.2.1. Tipos de movimentos de massa

A classificação dos movimentos de massa permite associar cada tipo de movimento a um conjunto de características que, juntamente com o entendimento dos condicionantes, permite formular modelos para orientar na proposição de medidas preventivas e corretivas (AUGUSTO FILHO e VIRGILI, 1998).

Os movimentos gravitacionais de massa são classificados levando em consideração diferentes critérios, tais como a geometria da massa deslocada, o tipo de material envolvido e a cinética do movimento.

Entre os vários sistemas classificatórios de movimentos gravitacionais de massa em taludes naturais existentes na literatura (Terzaghi, 1950; Varnes, 1958 e 1978; Guidicini e Nieble, 1983; Augusto Filho, 1992), destaca-se o sistema proposto por Varnes (1978), utilizado internacionalmente por pesquisadores e profissionais da área. Nesta classificação (Tabela 1), os movimentos de massa são subdivididos em cinco grupos principais: quedas, tombamentos, escorregamentos, espalhamentos e corridas. Ainda existe um sexto grupo denominado "complexo" que inclui combinações de dois ou mais dos outros cinco grupos. Entre os critérios utilizados, tem-se o tipo de movimento e o tipo de material.

Tipo de movimento			Tipo de material			
			Basha	Solo		
			Rocha	Grosseiro	Fino de terra	
Quedas		de rocha	de detritos			
174	Tombamentos	0	de rocha	de detritos	de terra	
Escorregamentos	Rotacional	Poucas unidades	Abatimento e rocha de blocos rochosos	Abatimento de Detritos de Blocos de Detritos	Abatimento de Terra de Blocos de Terra	
	Translacional	Muitas unidades	de rocha	de Detritos	de Terra	
Expansões laterais			de rocha	de detritos	de terra	
Corridas/escoamentos			de rocha (rasteio	de detritos	de terra	
			profundo)	Rastejo de solo		
	Complexos: co	ombinação de 2 ou mai	is dos principais tipos o	de movimentos		

Tabela 1- Sistema de classificação dos movimentos de massa proposto por Varnes (1978).

Muitos dos sistemas de classificação de movimentos de massa foram propostos fundamentando-se nas condições geológicas e climáticas locais. No Brasil, Augusto Filho (1992) adaptou a classificação de Varnes (1978), ajustando as características dos tipos de movimentos de massa à dinâmica ambiental brasileira. Segundo o autor, os movimentos são apresentados em quatro grupos: rastejos, escorregamentos, quedas e corridas (Tabela 2).

Processos	Características do movimento, material e geometria					
Rastejo ou Fluência	Velocidades muito baixas (cm/ano) a baixas e descrescentes com a profundidade Movimentos constantes, sazonais ou intermitentes Solo, rocha alterada/fraturada					
	Geometria indefinida					
	Poucos planos de deslocamento					
	Velocidades médias a altas					
	Pequenos e grandes volumes de material					
Escorregamentos	Geometria e materiais variáveis					
	Planares solos pouco espessos, solos e rochas com um plano de fraqueza					
	Circulares solos espessos homogêneos e rochas muito fraturadas					
	Em cunha solos e rochas com dois planos de fraqueza					
	Movimentos tipo queda livre ou em plano inclinado					
	Velocidades muito altas					
	Material rochoso					
Quedas	Pequenos a médios volumes					
	Geometria variável: lascas, placas, blocos, etc					
	Rolamento de matacão					
	Tombamento					
	Movimento semelhante ao de um líquido viscoso					
	Desenvolvimento ao longo das drenagens					
Corridas	Velocidades médias a altas					
contracts	Mobilização de solo, rocha, detritos e água					
	Grandes volumes de material					
	Extenso alcance, mesmo em áreas planas					

Tabela 2 – Sistema de classificação de movimentos de massa proposto por Augusto Filho (1992).

a) Rastejo ou fluência

Rastejos são movimentos lentos e contínuos, que podem englobar grandes massas, sem que haja uma diferenciação clara entre o material em movimento e a região estável. Nos solos, estes movimentos podem ser sazonais ou contínuos (denominados fluência). Terzaghi (1950, apud Guidicini e Nieble, 1983) classificou o rastejo sazonal sendo o movimento gerado devido às variações de temperatura e umidade nas camadas mais superficiais; e contínuos quando o movimento ocorre apenas devido à ação da gravidade, abaixo da zona de variação sazonal, atingindo maiores profundidades.

b) Escorregamento

Escorregamentos são movimentos de massa rápidos, de curta duração, com superfície de ruptura bem definida entre a massa em movimento e o material estático. Conforme a superfície de ruptura, são divididos em escorregamentos rotacionais e translacionais.

Os escorregamentos rotacionais apresentam superfície de ruptura côncava e estão associados a materiais pouco heterogêneos e pouco anisotrópicos, aterros e depósitos mais espessos.

Os escorregamentos translacionais apresentam superfície de ruptura plana, normalmente relacionada a descontinuidades hidráulicas e/ou mecânicas e planos de fraqueza (falhas, fraturas, planos de estratificação, acamamento, contato solo/rocha, etc.). Geralmente apresentam superfícies de ruptura com profundidades rasas, de maior alcance que os escorregamentos rotacionais e podem ocorrer em taludes menos íngremes.

c) Quedas

Quedas são movimentos rápidos em que blocos rochosos ou lascas de rocha se destacam de encostas íngremes, de forma brusca, pela ação da gravidade, sem a presença de uma superfície de deslizamento. As quedas podem ocorrer por perda de sustentação dos blocos causada por erosão, variações térmicas no maciço rochoso, perda de desconfinamento lateral, etc. (GUIDICINI E NIEBLE, 1983).

d) Corridas

Corridas são movimentos de alta velocidade nos quais os materiais (solo, rocha ou detritos) perdem completamente as características de resistência e passam a se comportar como fluidos altamente viscoso. Guidicini e Nieble (1983) explica que a presença excessiva de água provoca a perda de atrito interno do material e destruição de sua

estrutura. Este tipo de movimento possui alto poder de transporte e podem atingir grandes extensões.

2.2.2. Fatores condicionantes

Os taludes tornam-se instáveis quando as tensões cisalhantes mobilizadas se igualam à resistência ao cisalhamento da massa. A ocorrência de movimentações de massa está associada a diversos fatores condicionantes que, segundo Varnes (1978), podem ser divididos em dois grupos: os que contribuem para o aumento das tensões cisalhantes e os que reduzem a resistência ao cisalhamento da massa. O primeiro grupo é composto por ações como a remoção de massa nas laterais no pé do talude, sobrecargas, solicitações dinâmicas e pressões laterais. O segundo grupo abrange as características mecânicas do material e fatores variáveis que tendem a diminuir a resistência ao cisalhamento do material. Na Tabela 3 é apresentado o resumo dos respectivos fatores.

Ação	Fatores	Fenômenos geológicos/ antrópicos
	Remoção de massa (lateral ou da base)	Erosão, escorregamentos Cortes
Aumento da solicitação	Sobrecarga	Peso de água de chuva, granizo, neve etc. Acúmulo natural de material (depósitos) Peso da vegetação Construção de estruturas, aterros, etc.
	Solicitações dinâmicas	Terremotos, ondas, vulcões, etc. Explosões, tráfego, sismos induzidos
	Pressões laterais	Água em trincas, congelamento, material expansivo, etc.
Redução da	Características inerentes ao material (textura, estrutura, geometria, etc.)	Características geomecânicas do material, estado de tensões iniciais
resistência	Mudanças nas características do material	Intemperismo, redução na coesão, ângulo de atrito Enfraquecimento devido ao rastejo progressivo Ação de raízes das árvores, etc.

Tahela 3-	Fatores	deflaorada	ores dos	movimentos	de massa	(VARNES	1978)
Tubeiu J-	ruiores	uejiugiuu	nes uos	movimentos	ue mussu	(VANINES,	12/0).

Augusto Filho e Virgili (1998) apontam os seguintes condicionantes de movimentos de massa como principais na dinâmica ambiental brasileira:

- Características climáticas, com destaque para o regime pluviométrico;
- Características e distribuição dos materiais que compõem os substratos dos taludes;
- Características geomorfológicas;
- Regime de águas de superfície e subsuperfície;
- Características de uso e ocupação do solo.

Em taludes de calhas fluviais, a estabilidade das margens pode ser condicionada pelas características geomorfológicas dos terrenos marginais, pela ocupação destas terras, pelo regime hídrico e pelo processo hidrodinâmico da sua calha. (BERNÁL, 2013).

2.3. Estabilidade de taludes

A análise de estabilidade visa avaliar o nível de segurança do talude em relação à ruptura. A condição de estabilidade do talude pode ser expressa de forma quantitativa por um fator de segurança (FS), definido como sendo a razão entre a resistência ao cisalhamento disponível do solo e a resistência mobilizada, sob efeito dos esforços atuantes:

$$FS = {\tau_r / \tau_m}$$
(5)

sendo:

FS = fator de segurança

 τ_r = tensão cisalhante resistente

 τ_m = tensão cisalhante mobilizada

Um talude é considerado instável quando as tensões cisalhantes atuantes se igualarem ou excederem a resistência ao cisalhamento do solo em uma determinada

superfície, resultando em um fator de segurança FS ≤ 1 . Quando o fator de segurança é maior que 1,0 o talude apresenta-se estável.

O valor admissível para o fator de segurança pode variar em função das consequências de uma eventual ruptura, no que diz respeito ao perigo de perda de vidas humanas e à possibilidade de danos materiais e ao meio ambiente. A Tabela 4 apresenta os valores de fatores de segurança mínimos admissíveis recomendados pela norma brasileira de estabilidade de encostas, NBR 11682/2009.

Tabela 4- Fatores de segurança mínimos para deslizamentos (NBR 11682/2009).

2.3.1. Métodos de Análise de Estabilidade de Taludes

Augusto Filho e Virgili (1998) dividem os métodos de análise de estabilidade em três grupos principais:

- Métodos analíticos: Envolvem os métodos baseados na teoria do equilíbrio limite e nos modelos matemáticos de tensão e deformação;

- Métodos experimentais: Empregam modelos físicos de diferentes escalas;

- Métodos observacionais: Calculados na experiência acumulada com a análise de rupturas anteriores (retroanálise, opinião de especialistas, etc.).

Entre estes métodos de análise, o método analítico empregando a Teoria de Equilíbrio Limite tem sido amplamente utilizado devido à abordagem simples e precisão dos resultados. Conforme apresentado por Massad (2010), este método parte dos seguintes pressupostos:

 O solo apresenta um comportamento rígido-plástico, isto é, rompe bruscamente sem que antes da ruptura haja sinais de deformação;

- As equações de equilíbrio estático são válidas até a iminência de ruptura;

- O fator de segurança é admitido constante em toda a superfície de ruptura.

Nos métodos baseados na Teoria do Equilíbrio Limite, arbitra-se uma superfície potencial de ruptura e a massa de solo acima da superfície é considerada um corpo livre. Considera-se que uma parcela da resistência do solo é mobilizada nessa superfície, de forma a manter o equilíbrio com as forças solicitantes devido ao peso da massa de solo. A Figura 7 ilustra a respectiva situação.

Figura 7- Tensões cisalhantes mobilizadas e resistentes em uma massa de solo.

Estes métodos podem ser divididos em três subgrupos: métodos que consideram a massa rompida como um corpo único; métodos que dividem a massa rompida em cunhas e métodos que dividem a massa rompida em fatias. Neste trabalho, utilizou-se o método das fatias.

O Método das Fatias consiste em subdividir a massa de solo em n fatias verticais, assumindo-se a base de cada fatia como linear e calcular o equilíbrio por meio de equações da estática. O equilíbrio das forças (vertical e horizontal) é analisado em cada fatia separadamente. Já o equilíbrio de momentos é analisado para a massa de solo como um todo, comparando-se o somatório dos momentos estabilizantes e instabilizantes. A tensão cisalhante mobilizada (τ_{mob}) é uma das incógnitas do problema.

A Figura 8 representa as forças que atuam em uma fatia genérica, sendo W o peso total da fatia ($W = \gamma. b. h$); N' a resultante das tensões efetivas normais à base da fatia ($N' = \sigma'. l$); U a resultante das poropressões na base da fatia (U = u. l); N a resultante das tensões totais normais à base da fatia (N = N' + U); T a resultante das tensões tangenciais mobilizadas na base da fatia ($T = \tau_m. l$); E_1 e E_2 componentes normais da resultante de forças entre fatias; $X_1 e X_2$ componentes tangenciais da resultante de forças entre fatias.

Figura 8- Método das Fatias (Craig, 2004).

b: largura da fatia;

l: comprimento da base da fatia;

h: altura da fatia;

- α : ângulo de inclinação da base da fatia com a horizontal;
- u = poropressão no centro da base da fatia.

No método das fatias o número de incógnitas é superior ao número de equações, se tratando, portanto, de um problema estaticamente indeterminado. Como pode ser visto na Tabela 5, as equações de equilíbrio e de resistência ao cisalhamento totalizam 4n equações, sendo n o número de fatias. As incógnitas envolvem não só o fator de segurança, como também os esforços atuantes na base e no contato entre as fatias, além do ponto de aplicação dessas resultantes. Com isso, o número de incógnitas (6n-2) é superior ao de equações (4n) (GERSCOVICH, 2012).

Equações:						
2n	Equilíbrio de forças					
n	Equilíbrio de momentos					
n	Envoltória de resistência (T=f(N))					
4n	TOTAL DE EQUAÇÕES					
	Incógnitas:					
1	Fator de segurança					
n	Força tangencial na base da fatia (T)					
n	Força normal na base da fatia (N)					
n	Ponto de aplicação de N					
n-1	Força tangencial entre fatias (X)					
n-1	Força normal entre fatias (E)					
n-1	Ponto de aplicação da força entre fatias (E)					
6n-2	TOTAL DE INCÓGNITAS					

Tabela 5- Lista de equações e incógnitas envolvidas no Método das Fatias (GERSCOVICH, 2012 adaptado).

Buscando-se solucionar este problema, diversos autores propuseram diferentes hipóteses simplificadoras com o objetivo de reduzir o número de incógnitas e tornar o método estaticamente determinado. Estas hipóteses simplificadoras deram origem a novos métodos de análise de estabilidade de taludes que podem ser classificados em rigorosos e simplificados. Os métodos rigorosos atendem a todas as equações de equilíbrio da estática, já os simplificados não.

As principais características dos métodos de equilíbrio limite mais utilizados são apresentadas na Tabela 6.

Tabela 6- Características dos métodos de equilíbrio limite mais utilizados (GEORIO,2000).

MÉTODOS SIMPLIFICADOS						
Método	Características					
	Superfície de ruptura circular. Assume que a resultante das forças entre fatias					
Fellenius (1936)	é paralela à base de cada fatia, razão pela qual pode apresentar erros					
Tenenius (1950)	significativos na determinação do fator de segurança, geralmente					
	subestimando-o.					
	Superfície de ruptura circular. Assume que a resultante das forças que atuam					
Bishop Simplificado	nas laterais das fatias é horizontal e obtém o fator de segurança através de					
(1955)	equilíbrio de forças verticais e momentos. Apesar de ser um método					
	simplificado tem boa acurácia.					
Jambu (1954)	Superfície de ruptura de formato qualquer. Assume que as forças laterais são					
Jamba (1934)	horizontais e obtém o fator de segurança através do equilíbrio de forças.					
	MÉTODOS RIGOROSOS					
Método	Características					
	Superfície de ruptura de formato qualquer. Assume que a inclinação das					
Spancer (1067)	forças laterais é a mesma para todas as fatias. A inclinação é determinada					
Spencer (1907)	durante o processo de cálculo de modo a satisfazer às condições de equilíbrio					
	de forças e momentos.					
	Superfície de ruptura de formato qualquer. Assume que a inclinação das					
Morgenstern e Price	forças laterais obedece a uma função f(x) prescrita. As inclinações são					
(1965)	determinadas durante o processo de cálculo para satisfazer às condições de					
	equilíbrio de forças e momentos.					

2.3.2. Influência da água na estabilidade de taludes

A dinâmica da água é considerada um dos principais fatores responsáveis pela instabilização de taludes. Entre os principais mecanismos de atuação da água se tem:

- Diminuição da coesão aparente

Em regiões não saturadas a água nos vazios do solo está sob uma pressão abaixo da pressão atmosférica. Nessa situação, ocorrem poropressões negativas (sucção). A presença da sucção pode elevar a coesão entre as partículas do solo (coesão aparente) resultando em um ganho de resistência do solo. Quando há saturação do solo a poropressão se torna positiva, eliminando os efeitos da coesão aparente.

- Aumento das poropressões

Com a variação do nível piezométrico, a elevação do nível d´água aumenta as poropressões, reduzindo as tensões normais efetivas e, consequentemente, a resistência ao cisalhamento do solo.

2.3.2.1. Efeito do rebaixamento rápido do nível d'água

Quando um talude total ou parcialmente submerso é submetido a uma redução do nível d'água externo ao talude que não é acompanhada pelo nível d'água no interior do mesmo, ou seja, o nível d'água externo é abaixado mais rapidamente do que a velocidade de percolação da água no solo, ocorre o fenômeno conhecido como rebaixamento rápido. O rebaixamento rápido não se dá simplesmente pela velocidade de redução do nível d'água externo ao talude e sim pela relação entre esta velocidade e a capacidade de drenagem do solo, estando em geral associado a solos de baixa permeabilidade.

Quando ocorre um rebaixamento rápido, cria-se uma condição de fluxo transiente e, então, um novo estado de poropressões no terreno que continuam elevadas ao passo que é perdida influência estabilizadora da pressão da água sobre o talude inicialmente submerso podendo levá-lo a condições de instabilidade.

O estudo de rebaixamento rápido é bastante difundido em maciços compactados de barragens de terra, mas se aplica também a quaisquer taludes, naturais ou construídos, submetidos às condições supracitadas.

2.3.3. Programa computational SLOPE/W

O programa SLOPE/W vem sendo utilizado mundialmente na área de Geotecnia como ferramenta computacional para realizar análises de estabilidade de taludes, fundamentando-se em análises de Equilíbrio Limite e suas formulações. Com o auxílio do programa é possível dividir a massa de solo em um número de fatias bastante elevado de forma a se obter maior precisão nos resultados e os cálculos são realizados com maior agilidade.

O programa possibilita ainda lidar com análises complexas, com estratigrafias diversas, diferentes condições de poropressões e diferentes formas de superfície de deslizamento. Para realização da análise é modelada a geometria do talude, a estratigrafia, condições de carregamento, condições de poropressão (análises em termos de tensões efetivas) e são atribuídos parâmetros ao solo (peso específico, coesão, ângulo de atrito interno). O programa realiza então diversas iterações, com busca dirigida de superfícies, fornecendo a superfície potencial de ruptura com o menor fator de segurança, denominada superfície crítica.

2.4. Água nos solos

Conforme visto no item 2.3.2, a água atua em diferentes processos de instabilização de taludes e, por este motivo, o conhecimento da distribuição das poropressões de água no talude é imprescindível para avaliar a estabilidade do mesmo.

2.4.1. Permeabilidade

O solo é constituído pelos grãos sólidos e por vazios preenchidos por água e ar. A água, quando submetida a diferenças potenciais, se desloca no interior do solo. A permeabilidade pode ser interpretada como a facilidade (ou a dificuldade) que o meio oferece à passagem da água pelos seus poros ou vazios. Um meio pouco permeável é um meio que oferece uma grande dificuldade à passagem do fluido, enquanto uma permeabilidade elevada oferece ao fluxo uma maior facilidade de movimento (CRUZ, 2004). O formato, distribuição granulométrica e arranjo das partículas do solo, bem como o grau de saturação e características do fluido, estão entre os principais fatores que influenciam na permeabilidade do solo.

A permeabilidade pode ser expressa numericamente por um coeficiente de permeabilidade (k). Quando os vazios dos solos estão totalmente preenchidos por água, condição saturada, esse coeficiente pode ser determinado através de ensaios in situ, ensaios com permeâmetros em laboratório ou ainda ser calculado por métodos indiretos.

Quando parte dos vazios é também preenchida por ar, condição não saturada, a determinação direta da permeabilidade, que também é função do grau de saturação, é complexa. Em função das dificuldades experimentais, diversos autores propuseram métodos de determinação da permeabilidade em meios não saturados a partir de modelos baseados na curva característica de sucção e na permeabilidade saturada, as quais são de mais fácil determinação experimental (VAN GENUCHTEN, 1980). Uma formulação de uso consagrado que expressa a relação entre a condutividade hidráulica do solo e a sucção foi apresentada por van Genuchten (1980). O autor descreve uma equação empírica para representar analiticamente a curva característica dos solos não saturados, em que:

$$\Theta(\psi) = \Theta_r + \frac{\Theta_s - \Theta_r}{[1 + (a\psi)^n]^m} \tag{6}$$

Onde:

ψ: sucção

 $\Theta(\psi)$: umidade volumétrica do solo

 Θ_s : umidade volumétrica do solo saturado

 Θ_r : umidade residual

m, n e *a*: parâmetros de ajuste da curva, sendo m = 1 - 1/n

E a permeabilidade em meios não saturados é expressa por:

$$K(\psi) = K_s \frac{\left[1 - (a\psi^{(n-1)})(1 + (a\psi^n)^{-m})\right]^2}{\left[(1 + a\psi)^n\right]^{m/2}} \tag{7}$$

Em que:

 $K(\psi)$: permeabilidade

 K_s : permeabilidade saturada
2.4.2. Fluxo d'água

Para que ocorra o movimento de água de um ponto a outro no interior do solo, é necessário que haja diferença de carga total entre esses dois pontos. A água fluirá de um ponto de maior carga total para um ponto de menor carga total.

Em fluxo permanente de fluído não viscoso e incompressível em que forças de atrito resultantes são desprezíveis, o Teorema de Bernoulli estabelece que a carga total, ou carga hidráulica, é igual à soma de três parcelas: carga altimétrica (z) + carga piezométrica (h_p) + carga cinética (h_v). A carga altimétrica corresponde à diferença de cota entre um ponto considerado e um plano horizontal de referência, a carga piezométrica é definida pela poropressão no ponto expressa em termos de coluna d'água e a carga cinética está relacionada com a velocidade de escoamento do fluido. Em meios porosos, devido à velocidade de escoamento ser muito baixa, a carga cinética pode ser desconsiderada sem perda de precisão. Portanto, em dois pontos A e B tem-se:

$$z_A + h_{p,A} = z_B + h_{p,B}$$
 (8)

Na situação de percolação de água em solos o atrito viscoso entre a água e as partículas sólidas faz com que ocorra uma perda de carga (Δ H). Entre dois pontos A e B, passa-se a ter, portanto:

$$z_A + h_{p,A} = z_B + h_{p,B} + \Delta H \tag{9}$$

Em fluxos de movimentação lenta, como é considerado o escoamento na maioria dos solos naturais, o fluxo é classificado como laminar. Nesta situação é válida a lei de Darcy, a qual estabelece que o fluxo ocorre pela ação de gradientes hidráulicos (i), definidos pela razão entre a carga que se dissipa na percolação (h) pela distância ao longo da qual a carga se dissipa (L). A vazão pode ser calculada pela seguinte equação:

$$Q = k. i. A \tag{10}$$

Em que:

Q: vazão

k: coeficiente de permeabilidade

i: gradiente hidráulico (i= h/L)

A: área da seção transversal ao escoamento

A vazão dividida pela área indica a velocidade de percolação (v). A equação fica sendo:

$$v = k.i \tag{11}$$

2.4.2.1. Equação de fluxo em meios porosos

A equação geral da percolação tridimensional em meios porosos pode ser estabelecida através da equação da continuidade. Tomando por base um ponto de um elemento de meio poroso infinitesimal sujeito a fluxo, definido por suas coordenadas cartesianas (x,y,z), considerando ainda que o solo é homogêneo e que os sólidos são incompressíveis e assumindo válida a lei de Darcy, obtém-se a seguinte equação:

$$k_x \frac{\partial^2 H}{\partial x^2} + k_y \frac{\partial^2 H}{\partial y^2} + k_z \frac{\partial^2 H}{\partial z^2} = \frac{1}{1+e} \left(S \frac{\partial e}{\partial t} + e \frac{\partial S}{\partial t} \right)$$
(12)

Em que:

k_x, k_y, k_z: coeficientes de permeabilidade nas direções x, y e z respectivamente

- S: grau de saturação
- e: índice de vazios

t: tempo

H: carga hidráulica total

Na engenharia geotécnica, a equação pode ser simplificada para a situação bidimensional já que, normalmente, a dimensão longitudinal do problema em análise é muito superior à sua seção transversal.

Para obtenção da solução de problemas de fluxo podem ser aplicados os seguintes métodos:

- Métodos analíticos ou matemáticos:

Consistem na solução matemática da equação de percolação para o caso bidimensional e de fluxo estacionário, considerando as condições de contorno do problema. Sua aplicação só é justificável em casos de problemas de geometria simples devido à complexidade de se expressar matematicamente as condições de contorno, o que inviabiliza sua utilização na maioria dos problemas práticos.

- Método gráfico:

O método gráfico constitui em obter graficamente redes de fluxo bidimensionais, traçando na região em que ocorre o fluxo dois conjuntos de linhas conhecidas como linhas de fluxo e linhas equipotenciais.

A trajetória percorrida pela água através da massa de solo saturado é representada pela linha denominada linha de fluxo. Para cada linha de fluxo, existe um ponto no qual a água já dissipou uma mesma porção de sua carga hidráulica. A linha que conecta todos esses pontos de mesma carga hidráulica é denominada linha equipotencial (TAYLOR, 1948). As famílias de linhas equipotenciais e de fluxo se interceptam em ângulos retos, formando a rede de fluxo.

- Método analógico:

Este método se baseia na semelhança entre a equação da percolação e as equações que governam outros fenômenos físicos tais como fluxo elétrico em um meio condutor e o fluxo térmico. As principais analogias empregadas são: analogia elétrica, analogia com o fluido viscoso e analogia térmica. - Modelo reduzido:

No modelo reduzido é possível simular problemas de fluxo reproduzindo a geometria e todas as condições de contorno do problema real. Esse modelo é geralmente utilizado na simulação de fluxo confinado, pois em caso de não confinados a capilaridade pode prejudicar a análise já que a franja capilar nos modelos é em geral desproporcionalmente maior que no protótipo.

- Método numérico:

Neste método a equação da percolação é solucionada de forma aproximada através de um conjunto de outras equações, fazendo uso de recursos computacionais. Os principais métodos numéricos utilizados na engenharia são os de diferenças finitas (MDF), dos elementos finitos (MEF) e de elementos de contorno (MEC). Entre estes métodos o MEF vem sendo bastante utilizado em análises de fluxo por fornecer soluções rápidas e com nível de aproximação razoável para problemas geotécnicos.

No MEF a solução é obtida dividindo o domínio do problema em elementos conectados em alguns pontos através dos quais interagem entre si. O comportamento do fluxo é estudado em cada um dos elementos, mediante formulações simples em função de sua geometria e propriedades e, posteriormente, reconectando todos os elementos para representar o comportamento como um todo. O MEF permite a simulação de casos com geometria complexa uma vez que a divisão do domínio pode ser qualquer. Também é possível solucionar casos heterogêneos, pois cada elemento pode ter propriedades próprias.

2.4.3. Programa computational SEEP/W

O SEEP/W é um programa bastante utilizado para modelar o movimento e a distribuição da pressão de água dentro de materiais porosos. O programa pode ser utilizado para modelar problemas de fluxo em meios saturados e não saturado, em fluxo de regime permanente, que considera condições de fluxo que não variam com o tempo, e de fluxo transiente, quando existe uma variação das condições de fluxo com o tempo.

Este programa utiliza o método de elementos finitos para a solução das equações que descrevem os problemas analisados.

A modelagem consiste, primeiramente, em definir a geometria do talude e das diferentes camadas de solo e determinar as propriedades hidráulicas dos materiais constituintes. Aqui são definidas as curvas de retenção de água e funções de condutividade hidráulica dos materiais. As regiões são discretizadas em elementos finitos automaticamente, entretanto, é possível alterar o tamanho dos elementos e a densidade da malha. Na sequência, são definidas as condições de contorno. Em caso de análise de fluxo transiente é incluído o tempo de duração da análise e há opção para inserir condições de contorno variáveis ao longo do tempo. O problema é resolvido por processo iterativo. Na solução é possível avaliar as poropressões e vazões no problema.

O programa SEEP/W pode ser acoplado ao programa SLOPE/W, de forma a possibilitar a realização de análises de estabilidade com as condições de poropressão fornecidas pela análise de percolação.

2.5. Instrumentação geotécnica

A instrumentação geotécnica, quando adequadamente projetada, instalada e interpretada, tem grande utilidade na avaliação das condições de segurança de um empreendimento e verificação das hipóteses adotadas em um projeto.

Em taludes, a implantação de um sistema de instrumentação possibilita a aquisição de dados que podem auxiliar na determinação de prováveis superfícies de ruptura, identificação de movimentos da massa instável, determinação da velocidade do movimento, além do monitoramento das poro-pressões e nível d'água.

Entre os instrumentos mais utilizados no monitoramento e instrumentação de taludes, tem-se o medidor de nível d'água, piezômetro e inclinômetro. Estes instrumentos cujas características estão detalhadas na sequência, foram utilizados para a elaboração deste trabalho.

Medidor de nível d'água

Trata-se de um instrumento utilizado para a determinação da posição da linha freática em maciços de solo ou rocha. Este instrumento determina um nível médio de água que chega a um equilíbrio dentro de um poço de pequeno diâmetro com revestimento permeável, que permite a comunicação vertical entre dois ou mais aquíferos, ou até num mesmo aquífero, quando há fluxos ascendentes ou descendentes.

Os medidores de nível d'água são constituídos de tubo de PVC perfurado inserido em um furo de sondagem, envolto por um material filtrante (usualmente geotêxtil ou tela de nylon) e outro drenante (areia), este último com a finalidade de impedir o fechamento do furo e permitir facilmente a infiltração da água para o interior do tubo. Para completar o instrumento é utilizado um "selo" para vedar o espaço entre o furo e o tubo, na superfície do terreno, e um sistema de proteção que evita a entrada de águas superficiais que podem inviabilizar a leitura correta do instrumento, além de proteger contra eventual vandalismo (ver Figura 9).

Figura 9- Medidor de nível d'água (CRUZ, 2004).

A leitura do nível d'água em relação a uma referência (boca do tubo, por exemplo), pode ser efetuada através equipamentos de leitura, como o pio elétrico que consiste em uma trena graduada acoplada em uma ponteira elétrica (pio) que emite sinais sonoros assim que entra contato com a água. Conhecendo a profundidade da água a partir das graduações no cabo, mede-se a distância entre a boca do tubo e o nível da água. A altura de coluna de água dentro do tubo é calculada pela subtração da entre a cota de boca do tubo e a leitura realizada.

Piezômetro

O piezômetro tem como função medir a poropressão ou a carga de pressão atuante no ponto em que foi instalado, a uma determinada profundidade. Por se tratar de um instrumento medidor de pressões pontual, é necessário selar a área em que a medida é feita.

Entre os tipos de piezômetros mais utilizados no meio geotécnico tem-se o de tubo aberto (Casagrande), o pneumático, o hidráulico, o elétrico de resistência e o elétrico de corda vibrante, todos classificados de acordo com o princípio de funcionamento.

O piezômetro é instalado em um furo de sondagem. Piezômetros como o tipo Casagrande são compostos por tubos de PVC com um elemento poroso na extremidade inferior. O espaço entre o elemento poroso e as paredes do furo devem ser preenchido com areia lavada, de forma a permitir que a água entre ou saia livremente. O nível da água no interior desta tubulação representa a carga piezométrica na posição da célula de areia. Um selo de bentonita evita que a leitura seja influenciada pelas condições piezométricas das camadas superiores à célula de areia. A leitura é realizada com um instrumento indicador de nível d'água que consta de um torpedo contendo uma chave elétrica, um fio graduado e um carretel. Quando o torpedo atinge a água do tubo de acesso, fecha-se um circuito elétrico que aciona uma buzina ou lâmpada instalada no carretel. A poropressão é igual à altura de coluna d'água no tubo vezes o peso específico da água. (GEORIO, 2000).

O funcionamento do piezômetro pneumático baseia-se no equilíbrio de pressões atuantes em um diafragma flexível: de um lado atua a água cuja pressão se deseja medir, e do outro atua um gás cuja pressão é variável e conhecida através de um manômetro. A conexão pneumática entre o piezômetro e o painel é feita com dois tubos flexíveis, denominados de alimentação e de retorno. A leitura do instrumento consiste em abrir gradualmente a válvula do recipiente que contém o gás comprimido, observar a indicação de retorno do mesmo ao painel de controle, fechar a válvula e aguardar a estabilização da pressão lida no manômetro do painel. O piezômetro hidráulico se diferencia do pneumático quanto ao funcionamento: utiliza-se como fluido para leitura a água, ao invés do gás e não existe membrana diafragma, consequentemente, a água contida nos vazios do solo ou nas fraturas da rocha fica em contato direto com a água contida no instrumento, tubos e painel. A leitura é realizada abrindo, um por vez, os registros que conectam cada um dos dois tubos provenientes do piezômetro no manômetro de leitura, e aguardando a estabilização do ponteiro (CRUZ, 2004).

O piezômetro elétrico monitora a pressão da água por meio de um transdutor de poropressão. Este tipo de piezômetro não necessita de entrada/saída de água em um tubo, o maciço precisa fornecer apenas um pequeno volume de água para fletir o diafragma do transdutor. O piezômetro elétrico mais empregado é o tipo "corda vibrante". O funcionamento deste aparelho baseia-se no princípio de que a frequência de vibração depende da tensão aplicada à corda. A corda é um fio metálico preso sob tensão a uma membrana que se deforma sob a pressão da água do solo, alterando a tensão aplicada na corda. O aparelho possui um medidor capaz de detectar a variação de frequência de vibração que é correlacionada à pressão da água (GEORIO, 2000). O valor de leitura fornecido é a cota piezométrica, que é a soma da carga de elevação mais a carga de pressão no ponto de instalação.

Inclinômetro

O inclinômetro é um instrumento utilizado para medir deslocamentos horizontais superficiais e em subsuperfície de uma massa de solo. Este instrumento permite localizar a profundidade de uma superfície potencial de ruptura e acompanhar a progressão dos movimentos de um talude ao longo do tempo.

O equipamento é constituído por um conjunto de segmentos de tubos de plástico ou de alumínio, montados em posição subvertical, com a extremidade inferior engastada em região isenta de movimentos. Os tubos possuem quatro ranhuras, duas a duas diametralmente opostas, que servem para guiar as rodas de um torpedo sensor de inclinação durante as leituras. Durante a instalação, os tubos são introduzidos em um furo, orientados de tal forma que um par de ranhuras (eixo A-A) fique paralelo à direção dos movimentos esperados. Concluída a instalação, o espaço anelar entre o tubo e as paredes do furo deve ser preenchido com calda de cimento bentonita. O sensor móvel fornece a inclinação em relação à vertical de cada ponto de leitura do tubo guia. As leituras são feitas em intervalos regulares, ao longo da profundidade, mantendo-se sempre os pontos preliminarmente escolhidos. Conhecendo a distância entre dois pontos de leitura e a diferença entre duas leituras de inclinação, o deslocamento horizontal é calculado por $\delta_h = L \sum sin\theta$ (Figura 10).

Figura 10- Cálculo dos deslocamentos com inclinômetro. adaptado de Wilson & Mikkelsen (1978) (GEORIO, 2000).

3. CARACTERIZAÇÃO DA ÁREA EM ESTUDO

3.1. Dinâmica fluvial do rio Madeira

O rio Madeira é um dos principais afluentes do rio Amazonas, com extensão total de aproximadamente 3315 km. Sua Bacia estende-se por três países da América do Sul: Bolívia (51%), Brasil (42%) e Peru (7%) (GUYOT, 1993 *apud* ANDRADE, 2008). Os principais formadores da Bacia são os rios Madre de Dios, Beni e Mamoré.

O rio Beni é um dos maiores afluentes do rio Madeira, nasce nas geleiras de Chacaltaya na Bolívia e segue até sua confluência com o rio Madre de Dios (TUCCI, 2007). As águas do deste rio são barrentas devida à grande carga de sedimentos provenientes da dissecação da cadeia andina, e um regime de fluxo turbulento resultante de maior aporte de descarga líquida proveniente de suas cabeceiras durante a estação chuvosa.

O rio Mamoré nasce na Serra de Cochabamba, Bolívia, e tem uma extensão muito superior à da registrada no rio Beni. O rio segue pela fronteira entre o Brasil e a República da Bolívia até encontrar o Rio Beni e formar o Rio Madeira em Nova Mamoré. O rio Mamoré caracteriza-se por águas claras e esverdeadas, apresentando baixa carga de sedimentos. (DANTAS e ADAMY, 2010).

A Figura 11 apresenta a localização destes rios.

Figura 11 – Localização do rio Madeira, divisas dos países e características fisiográfica. RIBEIRO NETO (2006, apud TUCCI, 2007).

O rio Madeira percorre diferentes formas de relevo. Avaliando o perfil longitudinal do seu curso fluvial, no seu alto curso, que se estende da confluência dos rios Beni e Mamoré até as proximidades da cidade de Porto Velho, apresenta uma geomorfologia condizente com rios de planalto, como alta declividade e um relevo rico em corredeiras, lajeados e cachoeiras. Já no seu curso médio-baixo (trecho restante até sua foz no rio Amazonas), apresenta-se como um típico rio de planície, com boas condições de navegabilidade devido à ausência de cachoeiras e corredeiras.

Sob o ponto de vista geológico, o rio Madeira é considerado jovem, com o curso em formação, que na busca do seu perfil de equilíbrio apresenta expressivos depósitos de sedimentos inconsolidados subrecentes formando ilhas ou margeando o seu leito. Seu atual curso se formou após meandramentos que foram se dando ao longo do tempo geológico, ocasionando o estabelecimento de terraços aluvionares em suas margens, com subsolos de camadas não consolidadas com espessuras, muitas vezes, expressivas. Segundo Andrade (2008) é possível observar grandes variações no curso do rio Madeira ao longo do tempo, como a erosão de dezenas a centenas de metros das margens, o desaparecimento de ilhas e o preenchimento de canais.

O regime fluvial do rio Madeira apresenta períodos de cheia e vazante bem estabelecido, fortemente influenciado pela distribuição das precipitações na bacia do rio

Madeira que apresentam sazonalidade bem definida. Durante a estação chuvosa da região amazônica, caracterizada pela alta incidência de precipitações pluviométricas, o volume de água do rio Madeira aumenta consideravelmente e no período de estiagem, há um sensível declínio. O período chuvoso ocorre durante os meses de novembro a abril, com precipitação mensal superior a 200 mm/mês, enquanto os meses de junho a agosto são extremamente secos, chegando a precipitações inferiores a 20 mm/mês (FISCH et al., 1997).

O gráfico da Figura 12 apresenta a variação das cotas fluviométricas diárias interanuais do rio Madeira durante os anos de 1980 a 2010, na estação fluviométrica de Porto Velho-RO (Estação 15400000 - Porto Velho (Madeira) – PVH), nas proximidades da área em enfoque neste trabalho. Os valores apresentados foram obtidos a partir da base dos dados hidrológicos provenientes da rede hidrometeorológica de responsabilidade da Agência Nacional de Águas - ANA, e base do Projeto ORE-HYBAM (Observatório de Pesquisas Ambientais da Bacia Amazônica), compilados por Muniz (2013).

Figura 12 – Cotas "puras" e normatizadas – Estação fluviométrica 15400000 – Porto Velho-RO (MUNIZ, 2013).

Muniz (2013) verificou que as séries de cotas interanuais apontam um único pico de cheia e vazante ao longo da série histórica. Os meses de maior ocorrência de águas altas é abril (60%) seguido de março (38%), esta estação apresenta o pico de cheia bem marcado com predomínio em abril. Para águas baixas isso também ocorre com o predomínio no mês de setembro (62%) seguido de outubro (28%). As cotas do nível do rio apresentadas por Muniz (2013) são condizentes com a sazonalidade das precipitações pluviométricas.

3.2. Localização do talude em estudo e Dados Geográficos

O talude objeto de estudo do presente trabalho está localizado a aproximadamente 24 quilômetros a jusante do município de Porto Velho, capital do estado de Rondônia, nas coordenadas UTM de longitude 412.057E e latitude 9.047.407S (WGS84 - Zona 20L). A Figura 13 indica sua localização.

Figura 13. Localização do talude em estudo (Fonte: Google Earth).

Trata-se de um talude de calha fluvial na margem direita do rio Madeira com aproximadamente 28 metros de altura e inclinação média de 19°. A área onde o talude está situado pertence a um terminal portuário que, para implementação de suas atividades, realizou a limpeza e remoção da vegetação local e fez alguns ajustes na geometria do talude (Figura 14).

Figura 14. Talude na margem direita do rio Madeira, a montante de Porto Velho-RO.

Nos últimos anos tem-se observado movimentações no local e, no ano de 2017, durante a descida do nível d'água do rio Madeira, pode se ver trincas que se agravaram quando o rio chegou a sua cota mínima (Figura 15), dando indícios de se encontrar em curso um processo de colapso.

Figura 15. Trincas no talude na margem direita do rio Madeira.

Nessa região, o rio Madeira comporta-se como um rio meandrante, com ampla planície aluvial. O relevo caracteriza-se por planícies e terraços de baixa declividade. O clima na bacia do rio Madeira na parte brasileira representa um clima tropical úmido de monção, correspondente à categoria "Am" da classificação de Köppen, caracterizado por uma grande precipitação pluviométrica anual acumulada e existência de pequeno período de seca.

3.3. Aspectos Geológicos e Geomorfológicos

De acordo com a classificação Morfoestrutural (BRASIL, 2009), a região em estudo é composta por Depósitos Sedimentares Quaternários, constituídos pelas áreas de acumulação representadas por planícies e terraços de baixa declividade e, eventualmente, depressões modeladas sobre depósitos de sedimentos horizontais a sub-horizontais de ambientes fluviais, marinhos, fluviomarinhos, lagunares e/ou eólicos.

O sistema fluvial do rio Madeira nesse trecho flui por terrenos de coberturas sedimentares cenozoicas, representadas pelas formações em terraços fluviais, depósitos aluvionares e coberturas detrito-lateriticas ferruginizadas. As coberturas cenozóicas de Rondônia compreendem depósitos terciários e quaternários continentais controlados por diversos fatores, com destaque para os fatores tectônicos, litológicos e climáticos. (QUADROS, 2010). Como unidade litoestratigráfica na região, ocorrem os Depósitos Aluvionares holocênicos (Q2a) (Figura 16), constituídos por sedimentos aluvionares e coluvionares, depositados nos canais fluviais e planícies de inundação dos sistemas de drenagem. Os sedimentos são compostos por materiais detríticos arenosos, siltosos e argilosos, com níveis de cascalho (CPRM, 2007).

Figura 16. Mapa geológico na região do talude em estudo. (Fonte: CPRM, 2007)

3.4. Aspectos Geotécnicos

Visando conhecer a área em estudo foram executadas sondagens a percussão e retiradas amostras de solo indeformadas para ensaios de laboratório.

3.4.1. Investigações de campo

Nove sondagens a percussão realizadas de acordo com a NBR 6484 permitiram conhecer a estratigrafia do local. A Figura 17 apresenta a planta com a locação das sondagens. Seus boletins são apresentados no Anexo I.

O perfil do subsolo é caracterizado basicamente por camadas alternadas de areias argilosas e areias siltosas, com valores de N com tendência crescente com a profundidade. Na parte superior do talude foram identificadas camadas de argila siltosa e silte argiloso, com valores de N_{SPT} variando entre 12 e 23 golpes, intercaladas com as

camadas arenosas. Foi identificada ainda uma camada de solo argiloso de baixa resistência, com valores de N_{SPT} inferiores a 5 golpes, com presença de matéria orgânica e espessura média de 8 m conforme apresentado na Figura 18.

Figura 17. Planta com locação das sondagens (Nível d'água do rio Madeira em 07/08/2017).

LEGENDA:

Figura 18. Perfil do subsolo.

3.4.2. Ensaios de laboratório

Os ensaios de laboratório apresentados neste trabalho foram realizados pela empresa Pattrol Investigações Geotécnicas para o desenvolvimento do projeto de estabilização do referente talude desenvolvido pela empresa PCE Projetos e Consultorias de Engenharia. Aqui são apresentadas as metodologias que foram adotadas pelas respectivas empresas para realização dos ensaios e os resultados obtidos. É efetuada ainda neste item uma análise independente dos resultados destes ensaios.

Para caracterização e obtenção de parâmetros geotécnicos do solo do local foram realizados ensaios de Caracterização completa, Adensamento Oedométrico e Triaxial CIU em amostras indeformadas coletadas junto aos furos das sondagens SP 301, SP 302 e SP 304 em camisas de amostradores tipo Shelby.

As amostras SP 301-AM3M e SP 302-AM3M foram coletadas em material mais próximo à superfície do terreno, cujos boletins de sondagens apontam solo aluvionar argilo siltoso cinza de baixa resistência. As amostras SP 301 – AM 6 M, SP 304 - AM 3 M e SP 304 - AM 6 M foram coletadas, de acordo com os boletins de sondagens, em areia fina argilosa aluvionar amarelada. A amostra SP 302 - AM 6 M foi coletada na transição entre os dois materiais citados. A identificação destas amostras e respectiva profundidade em que foram coletadas são apresentadas na Tabela 7.

Amostra (identificação)	Profundidade	Solo
SP 301 – AM 3 M	7,10 a 7,80 m	Argila siltosa cinza. N = 6 e 7
SP 301 – AM 6 M	10,10 a 10,80 m	Areia fina argilosa, pouco siltosa, amarela. N = 13 e 15
SP 302 - AM 3 M	3,00 a 3,80 m	Argila siltosa cinza. N = 3 e 5
SP 302 - AM 6 M	9,90 a 10,60 m	Areia fina argilosa, pouco siltosa, amarela. N = 4
SP 304 - AM 3 M	11,75 a 12,45 m	Areia fina argilosa, pouco siltosa, amarela. N = 10
SP 304 - AM 6 M	14,75 a 15,45 m	Areia fina argilosa, pouso siltosa, amarela. N = 14

Tabela 7- Identificação das amostras.

As amostras foram extraídas com amostrador tipo Shelby e posteriormente moldadas seguindo os procedimentos recomendados por Ladd & DeGroot (2003),

buscando-se minimizar perturbações no solo. O Shelby foi cortado transversalmente com uma serra fina, formando sub-amostras. Estas, por sua vez, foram separadas da parede do tubo com o auxílio de um fio de aço, extraída e, em seguida, moldada conforme requerido.

Figura 19- Procedimento para extração do solo do tubo de amostragem (Ladd & DeGroot, 2003).

Figura 20- Exemplo do procedimento de extração do solo do tubo de amostragem realizado nas amostras apresentadas neste trabalho. (Fonte: Pattrol Investigações Geotécnicas)

Buscando avaliar a qualidade das amostras indeformadas foi utilizado o critério de classificação de Oliveira (2002) adaptado para as argilas Brasileiras. Este critério faz uso da curva de compressão edométrica obtida pelo ensaio de adensamento oedométrico e do valor da relação $\frac{\Delta e}{e_0}$:

$$\frac{\Delta e}{e_0} = \frac{e_0 - e_{\nu_0}}{e_0} \tag{13}$$

Onde:

 e_0 : índice de vazios inicial do corpo de prova;

 e_{v0} : índice de vazios correspondente à tensão vertical efetiva de campo.

Tabela 8- Critério de avaliação da qualidade da amostra (Oliveira, 2002).

	Muito Boa a Excelente	Boa a Regular	Pobre	Muito Pobre
$\Delta e/e_0$	< 0,05	0,05 - 0,08	0,08 - 0,14	> 0,14

A Tabela 9 apresenta a avaliação da qualidade das amostras indeformadas utilizadas neste trabalho. A Tabela está organizada em função da profundidade em que as amostras foram coletadas.

Amostra (identificação)	Profundidade	Tensão vertical total (kPa)	Tensão vertical efetiva (kPa)	e ₀	e_{v0}	$\Delta e_{/e_0}$	Qualidade
SP 302 - AM 3 M	3,00 a 3,80 m	48,4	48,4	0,895	0,854	0,046	Muito boa a excelente
SP 301 – AM 3 M	7,10 a 7,80 m	112,7	93,2	0,782	0,730	0,066	Boa a regular
SP 302 - AM 6 M	9,90 a 10,60 m	138,8	85,0	1,035	0,919	0,112	Pobre
SP 301 – AM 6 M	10,10 a 10,80 m	153,9	104,4	0,834	0,757	0,092	Pobre
SP 304 - AM 3 M	11,75 a 12,45 m	180,1	61,1	0,793	0,729	0,081	Pobre
SP 304 - AM 6 M	14,75 a 15,45 m	228,5	77,5	0,779	0,717	0,079	Boa a regular

Tabela 9- Avaliação da qualidade das amostras indeformadas segundo OLIVEIRA, 2002.

Como pode ser visto, segundo o critério de Oliveira (2002), as amostras coletadas em material mais próximo à superfície do terreno, cujos boletins de sondagens apontam solo aluvionar argilo siltoso cinza de baixa resistência, são avaliadas como "muito boa a excelente" e "boa a regular".

Já as amostras coletadas na camada abaixo do solo de baixa resistência são avaliadas como "pobres", com exceção da amostra SP 304 - AM 6 avaliada como "boa a regular".

3.4.2.1. Ensaios de Caracterização

Os ensaios de caracterização compreenderam análise granulométrica por peneiramento e sedimentação, determinação de umidade natural (w_{nat}), densidade real dos grãos (Gs) e Limites de Atterberg. Os resultados destes ensaios são apresentados no Anexo II-1.

Granulometria por peneiramento e sedimentação

A análise granulométrica visa determinar as dimensões das partículas do solo e suas proporções em porcentagem. Os ensaios foram realizados seguindo a norma técnica NBR 7181/16 – ABNT. Para partículas de solo com tamanho superior a 0,075mm (peneira nº 200) o ensaio foi feito por peneiramento, passando a amostra do solo por uma série de peneiras de malhas quadradas e dimensões padronizadas. Para partículas de solo com tamanho menor que 0,075mm foi utilizado o método de sedimentação em meio líquido. As curvas granulométricas obtidas nos ensaios de granulometria são apresentadas em Anexo.

Massa especifica real dos grãos

A massa específica real dos grãos foi determinada seguindo os procedimentos definidos na norma NBR 6508/16 – ABNT. O método consiste basicamente em definir a característica dos solos determinada pela relação entre a massa dos grãos e seu volume. Os resultados dos ensaios são apresentados em Anexo, contendo a média de pelo menos duas determinações de massa específicas consideradas satisfatórias.

Umidade natural

O teor de umidade do solo foi determinado pelo método da estufa, cujo procedimento é normatizado pela NBR 6457/16 – ABNT. O teor de umidade de uma amostra de solo consiste na razão entre o peso da água (Pa) contido em certo volume de solo e o peso da parte sólida (Ps) existente nesse mesmo volume, expressa em porcentagem.

Limites de Atterberg

Os limites de Atterberg permitem determinar as fronteiras entre os diferentes estados de consistência que o solo pode ter em função da quantidade de água presente no mesmo. Os índices determinados nestes ensaios indicam a influência dos finos argilosos no comportamento do solo.

Objetivando a caracterização do solo segundo sua plasticidade determinou-se o limite de liquidez (LL) e o limite de plasticidade (LP), os quais são função da quantidade e do tipo de argila presente no solo. Estes ensaios foram realizados seguindo os procedimentos definidos na norma NBR 6459/16 e NBR 7180/16, respectivamente. A diferença numérica entre o limite de liquidez e o limite de plasticidade fornece o índice de plasticidade. Este índice, por ser máximo para as argilas e mínimo para as areias, torna-se importante para avaliação do caráter argiloso do solo.

Na Tabela 10 é apresentado o resumo dos resultados dos ensaios de caracterização, bem como as classificações destes solos de acordo com o Sistema Unificado de Classificação de Solos (SUCS) e com a Highway Research Board (HRB) e, também, o índice de atividade das argilas.

	Análise granulométrica					Limites de Atterberg			Classificação				
Identificação	Profundidade	Pedregulho (%)	Areia grossa (%)	Areia média (%)	Areia fina (%)	Silte (%)	Argila (%)	LL (%)	LP (%)	IP (%)	SUCS	HRB	Índice de atividade
SP 302 - AM 3 M	3,00 a 3,80 m	0	0	0,3	23,5	66	10,2	25,1	17,3	7,8	CL	A 4	0,76
SP 301 – AM 3 M	7,10 a 7,80 m	0	0	0,3	20,8	69,4	9,5	24,2	17,2	7	CL-ML	A 4	0,74
SP 302 - AM 6 M	9,90 a 10,60 m	0	0,1	0,2	4,9	81,9	13	32,9	14,9	18	CL	A 6	1,38
SP 301 – AM 6 M	10,10 a 10,80 m	0	0	0,1	6,4	83,3	10,2	29,6	17,8	11,8	CL	A 6	1,16
SP 304 - AM 3 M	11,75 a 12,45 m	0	0	0,2	15,5	73,5	10,8	27,5	13,6	13,9	CL	A 6	1,29
SP 304 - AM 6 M	14,75 a 15,45 m	0	0	0,3	17,4	71,7	10,6	25,4	15,8	9,6	CL	A 4	0,91

Tabela 10. Resultados dos ensaios de caracterização.

Os resultados dos ensaios mostram que se tratam de solos com elevada quantidade de material fino, sendo a maior porcentagem silte. De acordo com o sistema HRB estes solos são classificados em argilosos (A6) e siltosos (A4). Pelo Sistema Unificado (SUCS) são classificados em argilas de baixa compressibilidade.

Nas amostras SP 302-AM6M e SP 304-AM3M o índice de atividade é maior que 1,25 indicando que a argila presente nestes solos é considerada ativa. Nas demais amostras o índice de atividade encontra-se no intervalo em que a argila presente no solo é considerada normal.

3.4.2.2. Ensaio de Adensamento Oedométrico

O ensaio de Adensamento oedométrico, também conhecido como ensaio de adensamento convencional, tem por objetivo obter informações a respeito das características de compressibilidade do solo.

O ensaio baseia-se na teoria de adensamento desenvolvida por Terzaghi e Frohlich (1936) e consiste em colocar uma amostra de solo no interior de um anel rígido e o conjunto em uma célula de adensamento. No topo e na base são inseridas pedras porosas para permitir a drenagem do corpo de prova. O conjunto é levado à prensa e submetido a tensões verticais aplicadas em vários estágios de carregamento.

Os corpos de prova das amostras indeformadas foram talhados com diâmetro aproximado de 63 mm e altura aproximada de 25 mm. Os ensaios foram realizados em 8 estágios de carregamento, nas tensões de 5 kPa; 10 kPa; 20 kPa; 40 kPa; 80 kPa; 160 kPa; 320 kPa; 640 kPa e 4 estágios de descarregamentos, nas tensões de 320 kPa, 80 kPa, 20 kPa e 5 kPa. Foi utilizado o equipamento tipo prensa servo controlada. O ensaio foi inundado logo após a aplicação do primeiro carregamento, de 5 kPa.

O critério para aplicação de novo estágio de carga foi o da velocidade de deformação: um novo carregamento foi aplicado quando a velocidade de deformação atingiu o valor de 10^{-6} s⁻¹, sendo a velocidade de deformação dada por:

$$V = \frac{\Delta H/_H}{\Delta t} \tag{14}$$

Onde:

 ΔH : variação da altura do corpo de prova

H: altura do corpo de prova

 Δt : variação do tempo de ensaio

No final de todos os estágios de carregamento obteve-se a variação do índice de vazios em relação às tensões efetivas. e traçou-se as curvas para determinação do coeficiente de adensamento pelos métodos de Taylor e Casagrande. O tipo de prensa utilizada, prensa servo controlada, possui uma limitação no início dos carregamentos em que não consegue acompanhar a velocidade inicial de adensamento da amostra e, por conseguinte, não aplica o incremento de carga de forma instantânea no início do estágio. Posto isto, foi aplicada uma correção nos gráficos de modo a tentar compensar esta diferença. A Figura 21, a título de ilustração, apresenta o gráfico pelo método de Taylor obtido no ensaio e corrigido para a amostra SP 301 AM3M.

Figura 21-Ilustração da correção realizada nos gráficos.

As tensões de pré-adensamento foram calculadas pelo processo de Pacheco Silva. Os gráficos obtidos com os resultados dos ensaios são apresentados no Anexo II-2.

De acordo com a sondagem SP-304, a amostra SP 304-AM-3M foi coletada na transição entre dois tipos de solo diferentes, sendo, por este motivo, desprezada, pois o resultado do ensaio não é representativo para avaliação das características de

compressibilidade de cada material. O resumo dos resultados apresentado na Tabela 11 mostra que a camada de solo mais próxima à superfície, apontada como sendo solo aluvionar argilo siltoso cinza de baixa resistência (amostras SP 302-AM3M e SP 301-AM3M), se trata de solo sobre-adensado e na profundidade da amostra SP 302-AM6M o solo se mostrou praticamente normalmente adensado. Nas amostras coletadas em maiores profundidades, SP 301-AM6M e SP 304-AM6M, a interpretação resultou em tensões de sobre-adensamento menores do que as tensões verticais efetivas *in situ*. Esta divergência pode ocorrer por perturbações nas amostras geradas pela coleta em maiores profundidades (SP 301-AM6M – pobre e SP 304-AM6M – boa a regular, conforme Tabela 9). Ressalta-se também a incerteza na determinação da tensão vertical efetiva na profundidade de coleta em função dos excessos de poropressão gerados pelo efeito de rebaixamento rápido, que são objeto de discussão no item 4.2.

Identificação	Profundidade	eo	ρ (g/cm³)	w (%)	γs (kN/m³)	ɣ (kN/m³)	σv0 (kPa)	σvm (kPa)
SP 302 - AM 3 M	3,00 a 3,80 m	0.895	2.741	0.3218	26.89	14.24	48.4	133.0
SP 301 – AM 3 M	7,10 a 7,80 m	0.782	2.741	0.2807	26.89	15.13	93.2	135.0
SP 302 - AM 6 M	9,90 a 10,60 m	1.035	2.798	0.3619	27.45	13.54	85.0	96.0
SP 301 – AM 6 M	10,10 a 10,80 m	0.834	2.745	0.3037	26.93	14.73	104.4	83.0
SP 304 - AM 3 M	11,75 a 12,45 m	0.793	2.713	0.2844	26.61	14.89	61.1	-
SP 304 - AM 6 M	14,75 a 15,45 m	0.779	2.737	0.2845	26.85	15.14	77.5	50.0

Tabela 11. Dados obtidos através dos ensaios de adensamento oedométrico.

Os valores de c_v obtidos, calculados para cada estágio de carregamento, são apresentados na Figura 22 e Figura 23.

Figura 22- Valores de cv obtidos – Amostras em 3,0 a 7,8m de profundidade.

Figura 23- Valores de cv obtidos – Amostras em 9,9 a 15,45m de profundidade.

Nas amostras de solo argiloso (SP 302-AM3M e SP 301-AM3M) os valores de c_v variam entre 2,32 x10⁻⁰ cm²/s e 2,5 x10⁻² cm²/s. Nas demais amostras, varia entre 1,15 x10⁻⁰ cm²/s e 5,3 x10⁻³ cm²/s.

Para o estágio de carregamento de 5 kPa nos ensaios com as amostras SP 302-AM6M e SP 304-AM6M as curvas obtidas apresentaram comportamento muito diferente do esperado pela teoria, sendo por este motivo consideradas não representativas para o cálculo de c_{ν} .

O ensaio de adensamento oedométrico permitiu ainda estimar o valor do coeficiente de permeabilidade (k) indiretamente a partir do coeficiente de adensamento (c_v), fazendo consideração da seguinte equação:

$$c_{v} = \frac{k}{\gamma_{w} \cdot m_{v}} \therefore k = \gamma_{w} \cdot m_{v} \cdot c_{v}$$
(15)

Em que:

 m_v : coeficiente de variação volumétrica dado por $m_v = d\varepsilon_v/d\sigma_v$

 γ_w : peso específico da água

A Tabela 12 apresenta os valores dos coeficientes de permeabilidade obtidos.

Identificação	Profundidade	σv(kPa)	k (m/s)
		5	2.06E-07
		10	1.08E-06
		20	1.42E-08
	2 00 - 2 00	40	3.55E-08
SP 302 - AIVI 3 IVI	3,00 a 3,80 m	80	1.87E-08
		160	6.18E-08
		320	2.16E-08
		640	2.20E-08
		5	2.19E-07
SP 301 – AM 3 M		10	1.69E-06
		20	1.34E-08
	7 10 0 7 90 m	40	3.32E-08
SP 301 - AIVI 3 IVI	7,10 a 7,80 m	80	1.04E-08
		160.5	4.83E-08
		321	1.06E-08
		642	1.02E-08
		5	-
		10	1.63E-08
		40	5.23E-09
SP 302 - AM 6 M	9,90 a 10,60 m	80	8.04E-09
		160	3.90E-09
		320	4.37E-09
		640	5.94E-09
		5	6.69E-09
		10	6.21E-09
		20	7.32E-09
SP 201 - AM 6 M	10.10 - 10.80 m	40	1.33E-08
SF SUI - AIVI U IVI	10,10 a 10,80 m	80	8.08E-09
		160	6.71E-09
		319	3.63E-09
		638.5	5.07E-09
		5	-
		10	2.64E-08
		20	7.75E-08
SP 304 - AM 6 M	14 75 a 15 45 m	40	6.95E-08
	±-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	80.5	8.56E-08
		160.5	9.71E-08
		321	9.53E-08
		642	6.77E-08

Tabela 12. Valores dos coeficientes de permeabilidade (k) obtidos.

Os valores do coeficiente de permeabilidade das amostras de solo argiloso (SP 302-AM3M e SP 301-AM3M) variaram entre 1,69 $\times 10^{-6}$ m/s e 1,02 $\times 10^{-8}$ m/s. Nas demais amostras, variam entre 9,71 $\times 10^{-8}$ m/s e 3,63 $\times 10^{-9}$ m/s.

3.4.2.3. Ensaio Triaxial

A realização do ensaio de compressão triaxial tem por finalidade obter parâmetros de resistência ao cisalhamento e deformabilidade dos solos. O ensaio consiste em aplicar em um corpo de prova cilíndrico de solo, envolvido por uma membrana de látex, uma pressão de água denominada pressão confinante que atua em todas as direções, ficando o corpo de prova sob um estado hidrostático de tensões. Na sequência, é dado um carregamento axial de compressão. O carregamento axial pode ser feito de duas maneiras: por meio da aplicação de forças no pistão que penetra na câmara, chamado de ensaio com carga controlada; ou colocando-se a câmara em uma prensa que a desloca para cima, pressionando o pistão, chamado de ensaio de deformação controlada. Durante o carregamento, medem-se, a diversos intervalos de tempo, o acréscimo de tensão axial que está atuando e a deformação vertical do corpo de prova.

Durante o ensaio, a drenagem pode ser permitida ou não. Quando a drenagem não é permitida, a água ficará sob pressão em qualquer fase do ensaio e as poropressões induzidas pelo carregamento podem ser medidas. Três são os tipos de ensaios mais comumente realizados no que se refere às condições de drenagem: 1 - ensaios não adensados e não drenados (UU); 2 - ensaios adensados isotropicamente e não drenados (CIU) e 3 - ensaios adensados isotropicamente e drenados (CID).

O ensaio triaxial realizado com as amostras de solo do talude em discussão neste trabalho se trata do tipo CIU. Para realização do ensaio os corpos de prova das amostras foram talhados com diâmetro aproximado de 50 mm e altura de 100 mm e submetidos a três níveis de tensões de confinamento: 90, 140 e 190 kPa. A montagem dos corpos de prova foi feita similarmente ao disposto em Thomasi (2000) e consistiu em apoiar as extremidades do corpo de prova em membranas de látex untadas com graxa de silicone, conforme técnica das extremidades livres, descrita em Rowe e Bardem (1964). Estas membranas, por sua vez, foram apoiadas em discos de acrílico, sendo o inferior com orifício central preenchido por pedra porosa. Em seguida posicionou-se o corpo de prova sobre a pedra-porosa previamente saturada e envolveu lateralmente todo o conjunto com dois papéis-filtro. Colocou-se o top-cap, cobriu-se o corpo de prova com duas membranas de látex untadas por graxa de silicone, uma de cada vez, e, por fim, foram colocados os elásticos na base e no top-cap.

Figura 24- Esquema de montagem do corpo de prova (THOMASI, 2000).

O ensaio foi realizado em células de confinamento em amostras isoladas por papel filtro com características, dimensões e disposição de acordo com Bishop & Henkel (1962) e teve fases de saturação por percolação e saturação por contrapressão.

A embebição por percolação e a saturação por contra-pressão foram realizadas na própria prensa servo-controlada utilizando-se do seu próprio sistema de aplicação de pressão que também foi utilizado nas fases de adensamento e cisalhamento. Na fase de embebição por percolação foi monitorado o volume de água que entra no corpo de prova e o que sai para avaliação da absorção do corpo de prova.

Para o processo de saturação do corpo de prova por contrapressão, o valor utilizado foi o mesmo para todos os pontos do ensaio. A saturação por contrapressão foi efetuada com incrementos de 10 kPa e 1 kPa de diferença entra a sigma cell e a contrapressão. Estes incrementos foram mantidos até o valor do Parâmetro B atingir no mínimo 0,98.

Na fase de adensamento foi feita a leitura da resposta da poropressão, através de um transdutor de pressão acoplado na válvula ligada ao topo do corpo de prova, resultante da aplicação dos acréscimos das pressões totais de adensamento da amostra, com as válvulas de drenagem fechadas, para confirmar o parâmetro B de saturação e ser a referência de leitura para o acompanhamento da fase de adensamento. Nesta fase, aguardou-se a dissipação da poropressão e a estabilização volumétrica em cada pressão aplicada para prosseguimento como forma de confirmar o final do adensamento.

O adensamento foi feito em estágios de carga, iniciando com 90 kPa e aumentando até chegar-se na tensão de confinamento desejada. Desta forma, o segundo ponto possui dois estágios e o terceiro ponto três estágios.

Na fase de cisalhamento os ensaios foram executados conforme indicado na Tabela 13. Sendo a fase inicial dos ensaios, na velocidade de 0,01 %/min com duração de 300 minutos e a fase intermdiária, na velocidade de 0,001 %/min, com duração de 1500 minutos. O restante do ensaio, até a ruptura, ocorreu na velocidade de 0,01 %/min.

Ensaio	Velocidade Inicial (%/min)	Velocidade Intermediária (%/min)	Velocidade Final (%/min)	Tensão de Adensamento (kPa)
CIU-1	0,01	0,001	0,01	90
CIU-2	0,01	0,001	0,01	140
CIU-3	0,01	0,001	0,01	190

Tabela 13. Execução dos ensaios - Fase de cisalhamento.

As envoltórias de resistência obtidas através dos ensaios são apresentadas no Anexo II-3. Na Tabela 14 são apresentados os parâmetros de resistência em termos de tensões totais e efetivas obtidos pelos ensaios triaxiais CIU.

			-			
Idantificação	Drofundidada	Tensão	o Total	Tensão Efetiva		
Iuentincação	Prorunuluaue	c (kPa)	ø (°)	c' (kPa)	ø' (°)	
SP 302 - AM 3 M	3,00 a 3,80 m	11,3	16,5	9,69	31,9	
SP 301 – AM 3 M	7,10 a 7,80 m	13,9	18	11,8	30,5	
SP 302 - AM 6 M	9,90 a 10,60 m	14,7	20	0	35,1	
SP 301 – AM 6 M	10,10 a 10,80 m	19,7	16,5	5,56	30,5	
SP 304 - AM 3 M	11,75 a 12,45 m	0	22,1	0	35,1	
SP 304 - AM 6 M	14,75 a 15,45 m	22	15,6	12,9	30,5	

Tabela 14. Parâmetros de resistência obtidos através dos ensaios triaxiais CIU.

Nota: \emptyset = ângulo de atrito interno; c = intercepto coesivo.

Os ensaios triaxiais CIU realizados nas duas amostras de solo aluvionar argilo siltoso cinza, classificadas como qualidade "Muito boa a Excelente" (amostra SP 302-AM3M) e "Boa a Regular" (amostra SP 301-AM3M) forneceram parâmetros de coesão e

ângulo de atrito efetivo bastante próximos. Com bases nestes resultados pode se considerar o par de parâmetros c' = $10 \text{ kPa} \text{ e } \emptyset' = 31^{\circ}$ como representativos desta camada.

Para as demais amostras, classificada com qualidade inferior, não se observou convergência dos resultados.

4. ANÁLISE DO COMPORTAMENTO DO TALUDE

O presente estudo foi realizado com base nos ensaios de laboratório descritos no item 3.4.2 e na instrumentação de campo instalada de forma a possibilitar monitorar o comportamento do talude ao longo do tempo.

Primeiramente buscou-se simular as condições de fluxo da água no subsolo e a distribuição das poropressões no talude através do programa SEEP/W da GeoStudio, levando em consideração as leituras dos piezômetros e medidores de nível d'água instalados no talude. Em seguida foram realizadas análises de estabilidade através do programa SLOPE/W da GeoStudio, buscando-se compreender as movimentações indicadas pelos inclinômetros. Para as análises de estabilidade foram considerados os parâmetros dos materiais obtidos pelos ensaios de laboratório.

A avaliação do comportamento do talude é apresentada na sequência.

4.1. Instrumentação geotécnica

Com o objetivo de acompanhar o comportamento da variação do nível d'água no talude, variação de poropressão e avaliação de possíveis movimentações no talude foram instalados três medidores de nível d'água no terreno, sete piezômetros elétricos de corda vibrante e quatro inclinômetros. Devido às características do perfil do subsolo, os piezômetros foram instalados em níveis diferentes, buscando observar a poropressão em diferentes tipos de materiais.

A instalação dos instrumentos ocorreu entre os meses de novembro e dezembro de 2016, exceto o inclinômetro 8 que foi instalado em julho de 2017 (Tabela 15). A Figura 25 ilustra a locação dos instrumentos em planta e a Figura 26 em seção transversal.

Figura 25. Locação dos instrumentos – Planta.

Figura 26. Locação dos instrumentos – seção transversal ao talude (seção 1).

Instrumentos	Comprimento (m)	Cota de Topo (m)	Cota do Fundo de instalação	Data de instalação (dd/mm/aa)
	12.00	52.50	(11)	
NAI	13,98	52,58	38,6	29/11/2016
NA2	20,83	62,72	41,89	25/11/2016
NA3	30,43	70,22	39,79	25/11/2016
IN1	54	63,07	9,07	28/11/2016
IN2	45,4	62,87	17,47	24/11/2016
IN3	45,1	70,97	25,87	25/11/2016
IN8	60,7	43,051	1,56	12/07/2017
PZ1A	11	40 GE	38,65	10/12/2016
PZ1B	6	49,05	43,65	12/12/2016
PZ2A	25		36,3	06/12/2016
PZ2B	17	61,3	44,3	06/12/2016
PZ2C	10		51,3	06/12/2016
PZ3B	15	70.01	55,91	03/12/2016
PZ3C	10	70,91	60,91	05/12/2016

Tabela 15- Instrumentos instalados.

Nota: (NA) - Medidor de nível d'água; (IN) - Inclinômetro; (PZ) - Piezômetro.

Foram consideradas as leituras dos instrumentos realizadas a partir de dezembro de 2016, quando o nível d'água do rio se encontrava subindo, até setembro de 2017, quando a leitura do nível d'água do rio atingiu a cota mais baixa, antes de voltar a subir. A tabela resumo com as leituras dos instrumentos é apresentada no Apêndice A.

Durante este período os inclinômetros indicaram deslocamentos no talude. O inclinômetro mais próximo do leito do rio, denominado inclinômetro 8, foi danificado em agosto de 2017, de modo que só foram consideradas leituras para o mês de julho. No Apêndice A são apresentadas figuras ilustrativas da evolução dos deslocamentos acumulados obtidos nos eixos A-A (perpendicular ao rio) e B-B (paralelo ao rio) dos inclinômetros ao longo de todo o período em análise. O resumo do progresso dos deslocamentos máximos mensais indicados pelos inclinômetros na direção perpendicular à calha rio são apresentados nas Figuras 26 a 29. O modelo utilizado para medição dos deslocamentos possui precisão global da ordem de 6,00 mm para profundidade de 30 metros.

Figura 27. Deslocamentos indicados pelo inclinômetro 1 (eixo A-A). Leituras máximas mensais.

Figura 28. Deslocamentos indicados pelo inclinômetro 2 (eixo A-A). Leituras máximas mensais.

Figura 29. Deslocamentos indicados pelo inclinômetro 3 (eixo A-A). Leituras máximas mensais.

Figura 30. Deslocamentos indicados pelo inclinômetro 8. Leitura máxima mensal.

Como pode ser visto, a partir do mês de maio as leituras dos inclinômetros indicaram a ocorrência de deslocamentos horizontais perceptíveis, ultrapassando a precisão de 6mm, que seguiram aumentando ao longo do tempo.

A Figura 31 apresenta na seção os deslocamentos nos inclinômetros no mês de maio, data de início das movimentações significativas, e a Figura 32 apresenta os deslocamentos máximos indicados pelos inclinômetros até o mês de setembro de 2017, com exceção para o inclinômetro 8 cujo deslocamento indicado trata-se da data de 31/07/2017. Pode-se observar que os deslocamentos principais ocorreram na camada de material argiloso de baixa resistência.

Figura 31. Deslocamentos indicados pelos inclinômetros no mês de maio de 2017 (exceto inclinômetro 8, instalado em julho de 2017).

Figura 32. Deslocamentos acumulados indicados pelos inclinômetros até setembro de 2017 (exceto inclinômetro 8, referente a julho de 2017).

Na

Figura 33 está apresentado, juntamente com as leituras dos deslocamentos máximos indicados pelos inclinômetros até o mês de setembro de 2017, a região onde se observou a formação de trincas de tração no campo e a interpretação, a partir destes, da provável superfície de rotura. A superfície de rotura foi definida iniciando na região das trincas e passando pelos pontos de maiores de deslocamentos.

Figura 33. Deslocamentos acumulados indicados pelos inclinômetros até setembro de 2017, trincas de tração observadas em campo e provável superfície de rotura.

Os inclinômetros permitiram entender a geometria da movimentação ao passo que os medidores de nível d'água e piezômetros permitiram aferir os modelos de fluxo, subsidiando, desta forma, os estudos realizados conforme descrito nos itens em sequência.

4.2. Análises de percolação

As análises de percolação tiveram por finalidade reproduzir as condições de nível d'água e poropressões no talude devido às condições de fluxo. As análises foram realizadas por elementos finitos através do programa SEEP/W do pacote Geostudio 2012 na condição de fluxo transiente.

As análises foram realizadas para um ciclo de variação do nível d'água do rio Madeira, começando em 14 de dezembro de 2016, no período de subida do nível do rio, chegando ao nível máximo em 23 de março de 2017 e terminando em 25 de setembro de 2017, quando o nível d'água do rio atingiu a cota mais baixa, antes de voltar a subir.

4.2.1. Condições de Contorno

As análises tiveram por base duas condições de contorno principais: a variação do nível d'água do rio e o ponto de instrumentação mais elevado. Desta forma, a região de interesse, que está compreendida entre estes 2 pontos, foi modelada com condições de contorno bem conhecidas.

Na parte a jusante, com influência direta da variação do nível d'água do rio, foi aplicada a carga hidráulica em função das leituras da régua de medição de nível d'água existente nas proximidades da seção analisada. O gráfico da Figura 34 apresenta o nível d'água do rio em função do tempo, para o período de análise. Esta condição de contorno representa bem a influência da variação do nível d'água do rio no regime de fluxo do talude.

Figura 34. Variação do nível d'água do rio Madeira x Tempo.

Na parte a montante, foi aplicada a carga hidráulica lida no medidor de nível d'água 3 (NA 3). Esta condição de contorno representa o comportamento do lençol a montante do trecho analisado. O gráfico da Figura 35 apresenta a variação de nível do lençol freático junto ao medidor de nível d'água NA3 para o período de análise.

Figura 35. Variação do nível d'água no Medidor de nível d'água 3 (NA 3) x Tempo.

Uma possível influência de infiltração de água ou de evapotranspiração no intervalo entre a área de contato do talude com a água do rio e o medidor de nível d'água NA 3 foi desprezada pela pouca significância esperada para a mesma. A Figura 36 ilustra as condições de contorno aplicadas.

Figura 36. Condições de contorno aplicadas.

Figura 37. Malha de elementos finitos.

4.2.2. Condição inicial

Para a definição das poropressões na data de início das análises, simulou-se uma sequência contínua de 10 ciclos completos de variação do nível do rio (anuais), a partir de nível d'agua máximo arbitrado com base nas leituras dos medidores de nível d'água, até se observar a convergência do comportamento.

Na simulação dos 10 ciclos completos de variação do nível d'água, foram adotados como condições de contorno a variação de nível d'água no rio e no local do medidor de nível d'água NA 3 a partir de curvas simplificadas que reproduzem comportamento equivalente ao observado na instrumentação de campo, conforme apresentado nos gráficos das Figuras 38 e 39. A consideração de ciclos regulares é adequada uma vez que, conforme discutido no item 3.1, o regime fluvial do rio Madeira apresenta períodos de cheia e vazante bem definidos, com um único pico de cheia e um único ponto de vazante durante o ciclo.

Figura 38. Ajuste para ciclo da variação do nível d'água do rio.

Figura 39. Ajuste para ciclo do medidor de nível d'água NA 3.

As variações do nível d'água simuladas nas análises são apresentadas nas Figuras 40 e 41.

Figura 40. Variação do nível d'água do rio simulada nas análises de percolação.

Figura 41. Variação do nível d'água no medidor de nível d'água NA 3 simulada nas análises de percolação.

Os gráficos das Figuras 42 a 48 apresentam os resultados das análises nos pontos onde estão instalados os piezômetros para verificar a convergência do comportamento ao longo dos ciclos. Assumiu-se que as leituras dos piezômetros indicam somente as poropressões devidas às condições de fluxo, não estando localizados em pontos que retratassem excessos de poropressão resultantes das alterações de carregamento nos taludes.

Para efeito de verificação de convergência do comportamento, foram incluídos também os resultados obtidos nos locais dos piezômetros PZ-3B e PZ-3C que estão acima no nível d'água, todavia, não foi possível a aferição dos resultados nestes pontos por limitações do instrumento em solos não saturados.

Figura 42- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-1A.

Figura 43- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-1B.

Figura 44- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2A.

Figura 45- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2B.

Figura 46- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-2C.

Figura 47- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-3B.

Figura 48- Poropressões obtidas nas análises de fluxo no ponto do piezômetro PZ-3C.

Observa-se, pelas linhas de tendências em tracejado nos gráficos, que nos locais saturados a variação tendeu a se estabilizar após 2 ciclos ao passo que para os locais não saturados a variação tendeu a se estabilizar ao final dos 10 ciclos.

As condições de poropressão após a simulação de 10 ciclos, na data de 14 dezembro de 2016, foram adotadas como condição inicial de análise para o período de estudo.

4.2.3. Definição das propriedades hidráulicas

O problema em questão envolve principalmente a parcela saturada do talude, de modo que o bom conhecimento das poropressões na região saturada é fundamental para o entendimento do comportamento do talude ao longo dos ciclos de cheias e vazantes do rio.

Para a permeabilidade das parcelas de solo não saturado adotou-se a curva de permeabilidade versus umidade volumétrica proposta por Van Genuchten (1980) a partir das curvas características de sucção típicas do banco do banco de dados do programa SEEP/W, além do coeficiente de permeabilidade para o caso saturado. A Figura 49 apresenta as curvas características de sucção típicas constantes no banco de dados do programa SEEP/W.

Figura 49- Curvas Características Típicas (SEEP, 2012).

Para a definição dos parâmetros de permeabilidade no solo saturado foram avaliados os resultados dos ensaios de adensamento oedométrico em conjunto com retroanálises realizadas a partir da instrumentação instalada nos taludes.

Foram avaliados os parâmetros dos quatro solos que caracterizam o perfil do subsolo em estudo, conforme descrito em sequência.

- Solo A – Denominado Argila (2 ensaios de adensamento que resultaram em k entre 7,5 x 10^{-9} m/s e 9,7 x 10^{-8}).

- Solo B - Denominado Silte

- Solo C – Denominado Areia Argilosa (3 ensaios de adensamento que resultaram em k entre 4,0 x 10^{-9} m/s e 2,2 x 10^{-8}).

- Solo D – Denominado Areia.

A partir dos resultados dos ensaios de laboratório para os solos A e C e de parâmetros típicos para os solos B (siltes) e D (areias) procedeu-se uma série de retroanálises onde foram simulados, através do SEEP/W, os ciclos descritos no item 4.2.2. Nas retroanálises, foram impostas como condições de contorno a variação do nível d'água do rio e as poropressões medidas no medidor de nível d'água 3 e se ajustou iterativamente os coeficientes de permeabilidade até o resultado das análises numéricas retornarem valores coerentes com os medidos nos piezômetros PZ-1 e PZ-2. A Figura 50 ilustra a locação dos piezômetros. Os gráficos das Figuras 51 a 55 comparam os resultados das leituras da instrumentação com os obtidos nas análises de percolação para os piezômetros PZ-1A, PZ-1B, PZ-2A, PZ-2B e PZ-2C, respectivamente.

Figura 50- Locação dos piezômetros.

Figura 51- Comparação entre resultados das leituras da instrumentação (PZ-1A) x resultados obtidos nas análises de percolação.

Figura 52- Comparação entre resultados das leituras da instrumentação (PZ-1B) x resultados obtidos nas análises de percolação.

Figura 53- Comparação entre resultados das leituras da instrumentação (PZ-2A) x resultados obtidos nas análises de percolação.

Figura 54- Comparação entre resultados das leituras da instrumentação (PZ-2B) x resultados obtidos nas análises de percolação.

Figura 55- Comparação entre resultados das leituras da instrumentação (PZ-2C) x resultados obtidos nas análises de percolação.

A partir das análises efetuadas obtiveram-se os valores representativos de cada camada:

- Solo A 7 x 10^{-9} m/s
- Solo B 4 x 10^{-9} m/s
- Solo C 4 x 10^{-9} m/s
- Solo D 8 x 10^{-4} m/s

A Figura 56 apresenta os parâmetros representativos obtidos nas análises, juntamente com os resultados dos ensaios e os intervalos típicos para cada tipo de solo sugeridos por Pinto (2006). O comportamento observado na instrumentação, retroanalisado, resultou em valores de permeabilidade um pouco inferiores aos obtidos através dos ensaios. Uma possível razão para a diferença observada entre o comportamento de campo e os valores obtidos através dos ensaios é a imprecisão na determinação do coeficiente de adensamento em prensas servo-controladas, como as utilizadas na realização dos ensaios. Conforme discutido no item 3.4.2.2, este tipo de equipamento não consegue aplicar os incrementos de carga de forma instantânea no início de cada estágio de carregamento dos ensaios de adensamento. Esta limitação leva a

necessidade de correção nas leituras, o que leva a mais uma condição de imprecisão nos resultados.

Figura 56- Intervalos típicos para cada tipo de solo (PINTO, 2006); Parâmetros obtidos pelos ensaios e valores adotados.

4.2.4. Resultados

A partir das análises de percolação realizadas foi possível obter o comportamento das poropressões no talude ao longo do período de análise para subsidiar as análises de estabilidade. As Figuras 57 a 62 ilustram as poropressões obtidas nas datas de 14/12/2016 (subida do nível d'água do rio; início da leitura dos instrumentos), 23/03/2017 (nível d'água do rio atinge a cota máxima), 17/04/2017 (descida do nível d'água do rio), 01/05/2017 (início das movimentações; nível d'água do rio descendo), 17/07/2017 (situação intermediária entre 01/05/2017 e 25/09/2017) e 25/09/2017 (nível d'água do rio na cota mais baixa), respectivamente.

Figura 57- Poropressões obtidas nas análises de fluxo em 14/12/2016.

Figura 58- Poropressões obtidas nas análises de fluxo em 23/03/2017.

Figura 59- Poropressões obtidas nas análises de fluxo em 17/04/2017.

Figura 60- Poropressões obtidas nas análises de fluxo em 01/05/2017.

Figura 61- Poropressões obtidas nas análises de fluxo em 17/07/2017.

Figura 62- Poropressões obtidas nas análises de fluxo em 25/09/2017.

A partir das figuras 57 a 62 é possível observar o retardo na resposta das poropressões no interior do talude frente às variações do nível d'água do rio, em especial para a camada de Argila (Solo A). Constata-se que:

- Em 14/12/2016 o nível d'água do rio está em processo de subida antes das poropressões da cheia anterior terem equilibrado no nível mais baixo do rio. Observa-se o nível d'água na camada de argila em cotas superiores à do nível d'água do rio.

- Em 23/03/2016 o nível d'água do rio atinge a sua cota máxima, ao passo que o nível d'água no interior do talude ainda está em processo de ascensão (aumento das poropressões).

- Em 17/04/2017 e em 01/05/2017 (data de início das movimentações) o nível d'água do rio decresce, mas ainda está superior ao nível d'agua no interior do talude.

- Entre 01/05/2017 e 17/07/2017 o nível d'água interno e externo do talude passam por certo equilíbrio, sendo que em 17/07/2017 o nível d'água do rio já está abaixo do nível d'água no interior do talude.

- Em 25/09/2017 a diferença entre o nível d'água do rio (cota mínima) e o nível d'água no interior do talude fica mais expressiva, representando uma condição, em termos de rebaixamento rápido, crítica para o talude.

Como explicado no item 2.3.2.1, este retardo na resposta das poropressões é fruto do contraste entre a velocidade de variação do nível d'água do rio e a capacidade de drenagem do solo.

4.3. Análises de estabilidade

4.3.1. Considerações

Neste item é apresentado o estudo do comportamento do talude a partir de análises de estabilidade. Foram empreendidas análises de Equilíbrio Limite pelo método de Morgenstern-Price para diferentes situações de nível d'água do rio Madeira. As análises foram realizadas com auxílio do programa SLOPE/W do pacote Geostudio 2012. No modelo, foram consideradas as poropressões obtidas nas análises de percolação (fluxo transiente) apresentadas no item 4.2.

Assumiu-se que, a partir do início das movimentações medidas nos inclinômetros, existiram potenciais superfícies de rotura com Fator de Segurança próximo à unidade, que justifica tais movimentações. Conforme apresentado no item 4.1, as movimentações do talude ocorreram essencialmente na camada de argila. Posto isto, as discussões apresentadas em sequência envolvem principalmente esta camada.

Para a camada de argila foram considerados os parâmetros de resistência obtidos nos ensaios triaxiais CIU com medida de poropressão, c' = 10 kPa = 0' = 31° e parâmetros obtidos de retroanálises, denominados c e 0^* .

Nas retroanálises, além de buscar fatores de segurança próximos à unidade, procurou-se se validar a geometria das superfícies críticas a partir das observações de campo, a saber:

- Superfície crítica coincidente com as profundidades de maiores deslocamentos dos inclinômetros;

- Início das superfícies coincidente com a região do talude em que se observou a formação de trincas de tração.

Os parâmetros das demais camadas foram definidos com base nos ensaios triaxiais CIU realizados e em bibliografias, conforme apresentados na Tabela 16. Estes parâmetros são de relevância secundária, uma vez que as superfícies críticas observadas para as diferentes condições de carregamentos envolvem essencialmente a camada de argila, coerente com a instrumentação de campo.

SOLO	c' (kPa)	Ø' (°)
SILTE	25	20
AREIA ARGILOSA	25	20
AREIA	0	42

Tabela 16. Parâmetros de resistência considerados nas análises de estabilidade.

As análises de estabilidade estão divididas em três subitens. No subitem 4.3.1.1 estão apresentadas análises de estabilidade e discussões para a data de início das movimentações (01/05/2017). No subitem 4.3.1.2 estão apresentadas análises e discussões para o período de nível d'água do rio em sua cota mínima, em 25/09/2017. Por fim, no subitem 4.3.1.3 estão apresentadas análises de estabilidade e discussões ao longo do período de análise, em intervalos de 15 dias.

4.3.1.1. Início das Movimentações significativas do talude (01/05/2017)

Conforme apresentado no item 4.1, as leituras dos inclinômetros indicaram que o início de movimentações perceptíveis no talude ocorreu em 01/05/2017, data em que os deslocamentos medidos ultrapassaram 6 mm (precisão do equipamento).

Considerando os parâmetros da camada de argila obtidos nos ensaios triaxiais, a saber, intercepto coesivo (c') igual a 10 kPa e ângulo de atrito interno (\emptyset ') igual a 31°, realizou-se uma análise de estabilidade nesta data em termos de tensões efetivas. A Figura 63 apresenta o resultado da análise em questão.

Figura 63- Análise de estabilidade 01/05/2017 – Parâmetros da camada de argila: c'=10 kPa e Ø'=31°.

Como pode ser visto, a análise resultou em um Fator de Segurança igual a 1,88. Para valores de Fator de Segurança desta ordem de grandeza não seriam esperados deslocamentos significativos no talude, o que indica que o modelo não representou adequadamente o comportamento do mesmo. Para as características da camada em análise, que é de matriz argilosa, isto pode se dar em função dos deslocamentos gerados pela alteração no equilíbrio de forças durante o rebaixamento do rio não terem sido suficientemente lentos a ponto de as variações de poropressões devidas a estas alterações não poderem ser desprezadas, resultando, por conseguinte, em uma redução da resistência ao cisalhamento não considerada nas análises.

Realizou-se, então, uma série de análises de sensibilidade para verificar quais pares de parâmetros de resistência c e $Ø^*$ poderiam ser imputados para representar melhor as condições do estudo. Foram adotados valores para c de 2,5; 5,0; 7,5; 10; 12,5; 15,0; e 17,5 kPa e, para cada valor de c foi ajustado iterativamente o valor de $Ø^*$ até obter um fator de segurança próximo à unidade. O gráfico da Figura 64 apresenta os valores obtidos e a Figura 65 suas correspondentes superfícies de rotura críticas.

Figura 64- Parâmetros na situação de início das movimentações significativas do talude (01/05/2017).

Figura 65- Superfícies de rotura críticas (01/05/2017).

A geometria de cada uma das superfícies críticas apresentadas na Figura 65 foi discretizada em coordenadas x e y. A partir da média dessas coordenadas foi possível definir uma superfície intermediária. Tendo a superfície de par de parâmetros c =17 kPa e $\emptyset^* = 0^\circ$ se apresentado bastante diferente das demais, esta foi desprezada no cálculo da média. A Figura 66 apresenta a geometria da superfície intermediária na data da análise (01/05/2017).

Figura 66- Geometria da superfície intermediária (01/05/2017).

Considerando a superfície intermediária, foram realizadas novamente análises de estabilidade para cada par de parâmetros c e \emptyset^* . Os gráficos das Figuras 67 e 68 apresentam, respectivamente, os Fatores de Segurança obtidos nas análises para cada par de parâmetros para a superfície intermediária definida e as resultantes das tensões cisalhantes mobilizadas e das resistências ao cisalhamento para cada análise.

Figura 67- Fatores de Segurança obtidos em análises para cada par de parâmetros para a superfície intermediária definida (01/05/2017).

Figura 68- Resultantes das tensões cisalhantes mobilizadas e das resistências ao cisalhamento para cada análise (01/05/2017).

Como pode ser visto nas Figuras 67 e 68, para todos os sete pares de parâmetros obtidos nas análises, não são observadas diferenças significativas nas tensões cisalhantes e resistências ao cisalhamento mobilizadas na superfície intermediária. Posto isto, a superfície intermediária obtida representa bem a situação em análise independentemente do par de parâmetros adotado.

Uma vez que não se observou uma ruptura com separação total da massa de solo, não se pode afirmar que o Fator de Segurança chegou à unidade na data em análise, de modo que as resistências disponíveis podem ser um pouco maiores do que as indicadas. Contudo, o estudo permite observar que as resistências disponíveis são significativamente menores do que as que seriam obtidas com os parâmetros de resistência do ensaio triaxial CIU em condições drenadas. A partir das resistências ao cisalhamento na base de cada fatia e das poropressões obtidas nas análises numéricas de percolação, procurou-se avaliar a ordem de grandeza dos excessos de poropressão que justificam esta diferença de resistência. Tomando a resistência ao cisalhamento como:

$$\tau = c' + (\sigma_N - u_t) \cdot tg(\emptyset')$$
(16)

Onde:

 σ_N : tensão normal total na base da fatia, obtida da análise de Equilíbrio Limite;

 u_t : poropressão total atuante na base da fatia, dada como $u_t = u_0 + \Delta u$; u_0 : poropressão obtida a partir das análises de fluxo; Δu : excesso de poropressão gerado na data em análise.

O comportamento esperado para Δu pode ser dado por:

$$\Delta u = \sigma_N + \frac{c' - \tau}{tg(\emptyset')} - u_0 \tag{17}$$

O gráfico da Figura 69 apresenta os valores de Δu , calculados pela equação acima, na base das fatias, considerando os seguintes valores:

c' igual a 10 kPa (do ensaio triaxial CIU);

Ø' igual a 31° (do ensaio triaxial CIU);

 σ_N obtido na análise de Equilíbrio Limite para a superfície intermediária com c = 10 kPa e $\emptyset^* = 11^\circ$;

 τ obtido na análise de Equilíbrio Limite para a superfície intermediária com c = 10 kPa e $Ø^* = 11^\circ$;

 u_0 obtido através da análise fluxo.

Figura 69- Poropressões u_0 , $u_t e \Delta u$ ao longo da superfície intermediária (01/05/2017)

Na retroanálise considerando a coesão do solo igual a 10 kPa, a variação do ângulo de atrito de 31° para 11° pode ser explicada por um valor médio de $\Delta u = 25$ kPa. No caso, como pode ser visto na Figura 70, obtém-se a mesma resistência para o solo considerando c=10 kPa, Ø*=11° e Δu =0 ou c'=10 kPa, Ø'=31° e Δu =25 kPa.

Figura 70- Resistência do solo para c=10 kPa, $\emptyset^*=11^\circ$, $\Delta u=0$; c'=10 kPa, $\emptyset'=31^\circ$, $\Delta u=25$ kPa.

O valor de Δu =25 kPa pode ser tomado como um limite superior para a média, uma vez que caso o fator de segurança real seja um pouco acima da unidade, a mesma sequência de cálculo resultaria em valores de Δu menores.

4.3.1.2. Nível d'água do rio na cota mínima (25/09/2017)

Em 25/09/2017 o nível d'água do rio Madeira chegou a sua cota mínima. Nesta data as leituras dos inclinômetros indicaram movimentações expressivas no talude de modo a ser possível observar formação de trincas de tração.

A Figura 71 apresenta o resultado da análise de estabilidade nesta data em termos de tensões efetivas, considerando os parâmetros da camada de argila obtidos nos ensaios triaxiais (c' =10 kPa e \emptyset '= 31°).

Figura 71- Análise de estabilidade 25/09/2017 – Parâmetros da camada de argila: c'=10 kPa e Ø'=31°.

A análise resultou em um Fator de Segurança igual a 1,40. Para valores de Fator de Segurança desta ordem de grandeza também não seriam esperados deslocamentos significativos no talude, o que indica que o modelo não representou adequadamente o comportamento do mesmo. Nas condições em cena, em que os inclinômetros indicaram deslocamentos máximos de 8,5cm, além de terem sido observadas trincas de tração na superfície do talude, tem-se o fator de segurança marginalmente acima da unidade.

De forma análoga à data de início das movimentações, 01/05/2017, foram realizadas para as condições de 25/09/2017 análises de sensibilidade para verificar quais pares de parâmetros de resistência c e Ø* poderiam ser imputados para representar melhor as condições do estudo. Nas análises foram adotados os valores para c de 2,5; 5,0; 7,5; 10; 12,5; 15,0; e 17,5 kPa e, para cada valor de c foi ajustado iterativamente o valor de Ø* até obter um fator de segurança próximo à unidade. O gráfico da Figura 72 apresenta os valores obtidos.

Figura 72- Parâmetros na situação de nível d'água do rio em sua cota mais baixa (25/09/2017).

Na Figura 73 são comparados os parâmetros obtidos para obter fator de segurança próximo à unidade nas situações de início das movimentações significativas do talude (01/05/2017) e de nível d'água do rio em sua cota mais baixa (25/09/2017).

Figura 73- Comparação entre Parâmetros na situação de início das movimentações significativas do talude (01/05/2017) x nível d'água do rio em sua cota mais baixa (25/09/2017).

Na Figura 74 são apresentadas as superfícies de rotura críticas correspondentes aos pares de c e $Ø^*$ apresentados na Figura 72.

Figura 74- Superfícies de rotura críticas (25/09/2017).

Assim como feito para a situação em 01/05/2017, a geometria de cada uma das superfícies críticas apresentada na Figura 74 foi discretizada em coordenadas x e y. A partir da média dessas coordenadas foi definida uma superfície intermediária. A Figura 75 apresenta a geometria da superfície intermediária para as análises na situação de 25/09/2017.

Figura 75- Geometria da superfície intermediária.

O gráfico da Figura 76 apresenta os Fatores de Segurança obtidos ao se realizar novamente análises para cada par de parâmetros considerando a superfície intermediária definida. Na Figura 77 são apresentadas as resultantes das tensões cisalhantes mobilizadas e das resistências ao cisalhamento para cada análise.

Figura 76- Fatores de Segurança obtidos em análises para cada par de parâmetros para a superfície intermediária definida (25/09/2017).

Figura 77- Resultantes das tensões cisalhantes mobilizadas e das resistências ao cisalhamento para cada análise (25/09/2017).

Como pode ser visto nas Figuras 76 e 77 para todos os sete pares de parâmetros obtidos nas análises, não são observadas diferenças significativas nas tensões cisalhantes e resistências ao cisalhamento mobilizadas na superfície intermediária. Posto isto, a superfície intermediária obtida representa bem a situação em análise independentemente do par de parâmetros adotado.

Corrobora com a geometria obtida, as trincas observadas no talude que estão em cotas entre 60 e 62, equivalentes às do ponto de início da ruptura. Além disto, a superfície coincide com as profundidades de maiores deslocamentos dos inclinometros.

A partir da equação apresentada no item 4.3.1.1 foram calculados os valores de Δu que justificam as diferenças de resistências obtidas na análise com c' = 10 kPa e \emptyset' = 31° e as obtidas na análise com c = 10 kPa e \emptyset^* = 19°. Os valores obtidos para Δu então apresentados no gráfico da Figura 78.

Figura 78- Poropressões u_0 , $u_t \in \Delta u$ ao longo da superfície intermediária (25/09/2017)

Na retroanálise considerando a coesão do solo igual a 10 kPa, a variação do ângulo de atrito de 31° para 19° pode ser explicada por um valor médio de Δu = 16,5 kPa. No caso, obtém-se a mesma resistência para o solo considerando c=10 kPa, Ø*=19° e Δu =0 ou c'=10 kPa, Ø'=31° e Δu =16kPa (Figura 79).

Figura 79- Resistência do solo para c=10 kPa, Ø=19°, Δu=0; c'=10 kPa, Ø'=31°, Δu=16kPa.*

Obteve-se, para 25/09/2017, valores de Δu ao longo da superfície de rotura mais uniformes do que em 01/05/2017.

4.3.1.3. Análises de estabilidade em intervalos de 15 dias

Tendo como objetivo visualizar o comportamento da resistência ao longo do período de estudo foram realizadas análises de estabilidade em intervalos de aproximadamente 15 dias considerando as condições de nível d'água do rio e poropressões obtidas nas análises de percolação para cada data.

Foram realizadas inicialmente análises em tensões efetivas considerando duas condições:

1^a) Parâmetros de resistência efetivos c'=10 kPa e Ø'=31°, obtidos no ensaio triaxial CIU. Esta condição não leva em consideração a geração de excessos de poropressão devido a carregamentos e descarregamentos.

2^a) Parâmetros de resistência c=10 kPa e Ø*=11°, obtidos na retroanálise para a data de 01/05/2019, sob a hipótese de fator de segurança próximo à unidade nesta data. Esta condição, conforme discutido no item 4.3.1.1, representa a condição equivalente de Δu para FS igual a 1 na data da retroanálise.

O gráfico da Figura 80 apresenta os fatores de segurança obtidos, para cada uma das duas condições de parâmetros de resistência descritas, em função do tempo.

Figura 80- Fator de segurança x Tempo (a cada 15 dias).

No gráfico da Figura 81, foi incluída uma curva de fator de segurança hipotética que busca representar o comportamento observado nas margens do rio, considerando uma dissipação parcial das poropressões, Δu , geradas pelo processo de cisalhamento do solo:

- No período de nível d'água máximo do rio, onde as condições de estabilidade são favoráveis, fator de segurança próximo ao valor para condição drenada com os parâmetros efetivos obtidos no ensaio triaxial CIU;

- Fator de Segurança tendendo a 1,0 no período em que o talude apresentou deslocamentos significativos (maiores do que 6mm).

Para facilitar a interpretação, na Figura 82 estão apresentados o nível d'água do rio e a cota piezométrica medida no piezômetro PZ-1B.

Figura 81- Fator de segurança x Tempo (a cada 15 dias) e condição hipotética.

Figura 82- Nível d'água do rio Madeira e cota piezométria medida no piezômetro PZ-1B.

Pode se observar que:

- Até aproximadamente 20/03/17, o nível d'água do rio subiu atingindo sua cota máxima, que ficou aproximadamente constante até 17/04/2017;
- As poropressões medidas no local do PZ-1B refletiram a variação do nível d'água do rio, porém com um retardo, atingindo sua cota máxima em torno de 17/04/2017;
- 3. No período entre 23/03/17 e 17/04/2017, apesar do nível d'água do rio estar aproximadamente constante, as análises de estabilidade indicaram uma redução do fator de segurança, inclusive para valores menores do que os obtidos para datas anteriores a 23/03/2017. Este fato é justificado pelo aumento das poropressões em busca do equilíbrio com o NA do rio e consequente redução na resistência ao cisalhamento. Isto mostra que a condição com nível d'água do rio máximo durante períodos longos podem resultar em condições mais críticas do que as da fase em que o nível d'água do rio está subindo;
- As movimentações começaram logo após o início da descida do nível d'água do rio, em 01/05/2017;
- 5. Entre 01/05/2017 e 15/07/2017 o talude apresentou uma redução no fator de segurança para um mesmo par c e Ø*. Considerando que em 01/05/2017, para

ocorrer as movimentações, o fator de segurança já se encontrava próximo à unidade e como não existiu uma rotura completa, ocorreu ganho de resistência neste período. Uma possível explicação é uma dissipação parcial do excesso de poropressão gerado pelas alterações nos carregamentos.

- 6. Após 15/07/2017 os fatores de segurança se mostraram aproximadamente constantes, indicando um equilíbrio entre as condições de estabilidade, mesmo sem a consideração da variação de excessos de poropressão que possam existir em função das alterações nos carregamentos.
- 7. Nenhum dos dois pares de parâmetros foi capaz de descrever o comportamento ao longo do tempo de maneira satisfatória. Os parâmetros efetivos c' = 10 kPa e Ø' =31° resultaram em valores de fator de segurança iguais ou superiores a 1,4 em todo período de análise, ao passo que os parâmetros c = 10 kPa e Ø* = 11° resultarem em valores menores do que a unidade, da ordem de 0,7 para datas posteriores a partir de 17/07/2017.

O gráfico da Figura 83 apresenta uma nova sequência de análise, onde se verificou qual deveria ser o valor de \emptyset^* , para que, com c =10 kPa, o talude apresentasse uma condição próxima ao equilíbrio (FS \cong 1,0) entre 01/05/2017 e 25/09/2017 (período entre o início dos deslocamentos e o nível d'água mínimo do rio).

Figura 83- Valores de Ø* para fator de segurança próximo à unidade ao longo do tempo.

Observa-se que o valor de \emptyset^* tende a 20° partir de 17/07/2017, mesmo com a contínua alteração nas condições de fluxo. Este par de parâmetros representa uma resistência marginalmente superior à obtida nas análises apresentadas no item 4.3.1.2, onde se verificou que a condição de fator de segurança igual a unidade para a data de 25/09/2017 é obtida com pares de parâmetros c = 10 kPa e $\emptyset^* = 19^\circ$. Posto isto, os parâmetros c = 10 kPa e $\emptyset^* = 20^\circ$ também justificam perfeitamente as movimentações observadas em 25/09/2017 podendo ser considerados representativos desta data.

A Figura 84 reproduz o gráfico apresentado na Figura 81 com a inclusão dos resultados de análises de estabilidade para os pares de parâmetros c=10 kPa e $Ø^*=20^\circ$.

Figura 84- Fator de segurança x Tempo (a cada 15 dias) incluindo análise considerando $\emptyset^*=20^\circ$.

Os parâmetros c=10 kPa e $\emptyset^*=20^\circ$ foram os que melhor representaram o comportamento do talude, em especial no período crítico de estabilidade, entre 01/05/2017 e 25/09/2017. Para explicar o comportamento do talude, não se observa a necessidade de considerar variações significativas dos valores de excessos de poropressão gerados por alterações nos carregamentos após 15/05/2017, data em que o fator de segurança atingiu o valor de 1,2, já possibilitando a ocorrência das movimentações observadas. Em 01/05/2017, no início das movimentações começam as gerações de poropressão e ao passo que começa também a dissipação das mesmas. Tem-se um comportamento parcialmente drenado que reduz os excessos de poropressões gerados pelas variações nos carregamentos.

Se considerar, de forma simplificada, que a dissipação dos excessos de poropressão devidos a alterações nos carregamentos ocorrem de maneira independente das poropressões devidas ao rebaixamento rápido e que esta se dá essencialmente no sentido de menor dimensão da camada, podendo ser descrita pelo coeficiente de adensamento vertical c_v , tem-se para U = 99%:

$$t = \frac{T_{99}.H_d^2}{c_v}$$
(18)

Com H_d igual a 4,00 m (metade da espessura da camada) e c_v igual a 6,5 x 10⁻² cm²/s (obtido nos ensaios de adensamento para os níveis de tensões reinantes na camada de argila)

$$t = \frac{1,781.(400 \text{ cm})^2}{6,5.10^{-2} \text{ cm}^2/\text{s}} \therefore t \cong 50 \text{ dias}$$
(19)

Desta forma verifica-se que ocorre de forma contínua e significativa dissipação de poropressões durante os 6 meses de rebaixamento do nível d'água, assim como, ocorre também de forma contínua a geração de excessos de poropressões devido a alterações nos carregamentos com a descida do mesmo, configurando um comportamento parcialmente drenado. O contraste entre a velocidade dos carregamentos e de dissipação das poropressões não justificam um tratamento para condição drenada, nem tão pouco não drenada.

Verifica-se que o par de valores c=10 kPa e $Ø^*=20^\circ$ se mostra adequado para a adoção em projetos de engenharia que visem a estabilização do talude em estudo.

5. CONCLUSÕES

Analisou-se o comportamento de um talude de calha fluvial situado na margem direita do rio Madeira que vem sofrendo deslocamentos que se tornam mais expressivos nos períodos de vazantes. Os resultados evidenciaram que:

- Observa-se que a movimentação ocorre basicamente na camada superficial de granulometria fina (cerca de 80% passante na peneira #200).

- As análises de fluxo transiente realizadas por elementos finitos demonstraram serem capazes de reproduzir bem as poropressões no interior do maciço, verificando-se uma boa consistência entre os resultados medidos e calculados. Foi possível, através das mesmas e das medições, observar a existência de uma defasagem significativa entre a velocidade de variação de nível d'água do rio e do interior do maciço tanto na subida, quanto na descida do nível d'água do rio. O tempo não é suficiente para equalização nem na ocasião da máxima cheia, tampouco na de vazante. Durante o período de descida do nível d'água do rio fica evidente a ocorrência do efeito de "rebaixamento rápido".

- As análises de estabilidade por equilíbrio limite permitiram avaliar o comportamento do talude frente às variações de nível d'água do rio e das poropressões. Verificou-se consistência entre as superfícies críticas obtidas nas análises de equilíbrio limite e as movimentações medidas no campo por inclinometria e as trincas de tração na face do talude.

- Com base nas observações de campo, admitiu-se Fator de Segurança próximo à unidade no período em que o talude apresentou movimentações significativas. A diferença entre os parâmetros retroanalisados (c=10 kPa e $Ø^*=20^\circ$) e os obtidos nos ensaios triaxiais CIU (c'=10 kPa e $Ø^*=31^\circ$) é explicado pelos excessos de poropressão gerados pelas alterações nos carregamentos.

- As análises permitem concluir que o talude não se comporta de forma perfeitamente drenada e que o efeito de "rebaixamento rápido" é condicionante à estabilidade do mesmo. Análises em solos com valores de coeficiente de adensamento baixos frente às velocidades de carregamento devem levar em consideração possíveis excessos de poropressão. O valor médio do excesso de poropressão que explicaria o observado é da ordem de 16 kPa. Tais resultados indicam que medidas que favorecessem

à drenagem tenderiam a resistências maiores para o solo melhorando a estabilidade do local.

6. REFERÊNCIAS

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2016, NBR 6457 Amostras de solo — Preparação para ensaios de compactação e ensaios de caracterização. Brasil.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2016, NBR 6458 Grãos de pedregulho retidos na peneira de abertura 4,8 mm - Determinação da massa específica, da massa específica aparente e da absorção de água. Brasil.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2016, NBR 6459 Solo - Determinação do limite de liquidez. Brasil.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2016, NBR 7180 Solo — Determinação do limite de plasticidade. Brasil.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2016, NBR 7181 Solo – Análise granulométrica. Brasil.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT), 2009, NBR 11682 Estabilidade de encostas. Brasil.
- ANDRADE, C. D., 2008, Análise Pluviométrica da Bacia Transfronteiriça do Rio Madeira. Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- AUGUSTO FILHO, O., "Caracterização Geológico-Geotécnica Voltada à Estabilização de Encostas: Uma Proposta Metodológica", In: *1^a Conferência Brasileira sobre estabilidade de encostas* (COBRAE), v. 2 pp. 721-733, Rio de Janeiro, Brasil, nov. 1992.
- AUGUSTO FILHO, O.; VIRGILI, J. C., "Estabilidade de Taludes". In: OLIVEIRA, A. M. S.; BRITO, S. N. A. (eds.) *Geologia de Engenharia*, 1 ed., capítulo 15, São Paulo, Brasil, Oficina de textos, 1998.
- BERNAL, F. H., 2013, Determinação de parâmetros para avaliação da estabilidade de taludes marginais em leito de rio. Tese de Doutorado, UFSM, Santa Maria, RS, Brasil.
- BISHOP, A. W., HENKEL, D.J., 1962, *The Measurement of Soil Properties in the Triaxial Test*. 2 ed. Londres, Edward Arnold.
- BRASIL, 2009, *Manual Técnico de Geomorfologia*. 2 ed. Rio de Janeiro, IBGE Instituto Brasileiro de Geografia e Estatística.
- COMPANHIA DE PESQUISA DE RECURSOS MINERAIS (CPRM), 2007, *Mapa geológico e de recursos minerais do estado de Rondônia*. Brasil. Disponível em: <u>http://www.cprm.gov.br/publique/media/geologia_basica/plgb/rondonia/rondonia_ctge ologica.pdf. Acessado em 26/04/2018</u>.
- CRAIG, R. F., 2004, Craig's soil mechanics. 7 ed. New York, Spon Press.

- CRUZ, P. T., 2004, 100 Barragens Brasileiras: Casos históricos, materiais de construção, projeto. 2 ed. São Paulo, Brasil, Oficina de Textos.
- DANTAS, M. E.; ADAMY, A., "Compartimentação do relevo". In: ADAMY. A. (org.) *Geodiversidade do estado de Rondônia*, capítulo 3, Porto Velho, Brasil, CPRM, 2010.
- FREDLUND, D. G; MORGENSTERN, N. R., 1977, "Stress State Variables for Unsaturated Soils", *Journal of the Geotechnical Engineering Division*, v. 103, n. GT5, pp. 447-466.
- FIORI, A. P; CARMIGNANI, L., 2009, *Fundamentos de Mecânica dos Solos e das rochas: Aplicação na estabilidade de Taludes*. 2 ed. Curitiba, Brasil, Editora UFPR.
- FISCH, G.; LEAN, J.; WRIGHT, I. R.; NOBRE, C. A., 1997, "Simulações Climáticas do Efeito do Desmatamento na Região Amazônica: Estudo de um Caso em Rondônia", *Revista Brasileira de Meteorologia*, v. 12, n. 1, pp. 33-48.
- GEORIO, 2000, *Manual Técnico de encostas*. v. 1, Rio de Janeiro, Brasil, Prefeitura da cidade do Rio de Janeiro.
- GEOSTUDIO, 2012, User's guide: Seepage Modeling with SEEP/W. GEO-SLOPE INTERNATIONAL LTD.
- GEOSTUDIO, 2012, User's guide: Stability Modeling with SLOPE/W. GEO-SLOPE INTERNATIONAL LTD.
- GERSCOVICH, D., 2012, *Estabilidade de Taludes*. 1 ed. São Paulo, Brasil, Oficina de Textos.
- GUIDICINI, G.; NIEBLE, C. M., 1983, *Estabilidade de Taludes Naturais e de Escavação*. 2 ed. São Paulo, Brasil, Edgard Blücher.
- LADD, C. C., DEGROOT, D. J., "Recommended Practice for Soft Ground Site Characterization". In: 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, pp. 3-57, MIT, USA, jun. 2003.
- LAMBE, T.W.; WHITMAN, R.V., 1979, *Soil Mechanics*. SI Version. New York, United States, Copyright.
- MASSAD, F., 2010, Obras de Terra. 2 ed. São Paulo, Brasil, Oficina De Textos.
- MUNIZ, L. S., 2013, Análise dos Padrões Fluviométricos da Bacia do Rio Madeira Brasil. Dissertação de Mestrado, UFAM, Manaus, AM, Brasil.
- OLIVEIRA, J.T.R., 2002, A Influência da Qualidade da Amostra no Comportamento Tensão-Deformação-Resistência de Argilas Moles. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- PINTO, C. de S., 2006, Curso Básico de Mecânica dos Solos. 3 ed. São Paulo, Brasil,

Oficina De Textos.

- QUADROS, M. L. E. S., "Contexto geológico". In: ADAMY. A. (org.) *Geodiversidade do estado de Rondônia*, capítulo 2, Porto Velho, Brasil, CPRM, 2010.
- ROWE, P. W.; BARDEN, L., 1964, "Importance of free ends in triaxial testing", *Journal* of Soil Mechanics and Foundations Division, v. 90, n. SM1, pp. 1-27.

SKEMPTON, A. W., 1954, "The pore-pressure coefficients A and B", *Geotechnique*, v. 4, n. 4 (dec.), pp.143-147.

- TAYLOR, D.W., 1948, Fundamentals of Soil Mechanics. New York, John Wiley e Sons.
- TERZAGHI, K., 1936, "The Shearing Resistance of Saturated Soils and The Angle between the Planes of Shear", In: *Proceedings of 1st Int. Conf. Soil Mechanics Foundations Engineering*, v. 1, pp. 54-56.
- TERZAGHI, K; FROHLICH, O.K., 1936, *Theorie der setzung von tonschichten*. Viena, Austria, Leipzig, Wien, Franz Deuticke.
- THOMASI, L., 2000, Sobre a Existência de uma Parcela Viscosa na Tensão Normal Efetiva. Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- TUCCI, C. E. M., 2007, Análises dos Estudos Ambientais dos Empreendimentos do Rio Madeira. IBAMA - Instituto Brasileiro de Meio Ambiente, Brasil. Disponível em: <u>http://philip.inpa.gov.br/publ_livres/Dossie/Mad/Documentos%20Oficiais/Ali%20Sult</u> <u>an%20report/sultan_relatorio_tucci.pdf</u>
- VAN GENUCHTEN, M. T., 1980, "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", *Soil Science Society of America Journal*. n. 44, pp. 892-898.
- VARNES, D. J., 1978, "Slope movement types and processes". In: SCHUSTER, R. L.; KRIZEK, R. J. (eds.) Landslides Analysis and Control, chapter 2, Washington, National Academy of Sciences.

ANEXO I - BOLETINS DE SONDAGENS

					FL	JRO	SP	30	1		
TOPO DE AVANCO Encernenti	20-02-02	366-M005 300-M	CDTA E NA	Profilinguade con Blacad a 300A 30 Fund	S P T N DE GOLPES P/3000 	R D C GRAU DE FRATURAMENTO	: Н А ЈДR	PRCFUMIDADE DAS PACENCEDE	100301030 11.8034	DESC	R I C A D D G I C A
	2 2 3 3 3 3 4 4 4 6 6 6 6 10 11 3 9 11 6 10 7 8 7 9	2 2 3 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34/Ju/72	0,00 0,45 0,90 1,36 1,80 2,25 2,70 3,15 3,80 4,05 4,95 5,40 5,85 6,30 6,75 7,20 7,56 8,10 8,55 9,00 10,00 11,00 11,00 12,00 13,00 14,00 15,00 18,00 18,00 18,00 18,00 19,00 11				8,10 9.05		ARGILA SILTOBA, POUC GNZA ESCURA (ALUVU ALUVU AREIA FINA ARGLOSA, RMA, AMARELA (ALUVI	o Arenosa, ngle a nedn (0), Pouco Siltosa, medna a Ad).
										REL N* DATA 22/01/2018 ENG* RESP. PROF. 20,45m INICIO 23/10/2017	DES. ESC. 1/100 COORDENADA N. 9.047.471,068 E. 412.075,517 TERRENO 54,814 FURON*
										TÉRMINO 24/10/2017 VISTO	SP - 301

								F	ΞL	JF	20	C		S	SF)	3	0	1		
THO IS AVANCE	PROCEEDED	SCGAROS Store	CUTA E NA	PROFUNDADE CON Relação a boca do fund	H* 1 1(X	SE GE INIC INIC INIC INIC INIC INIC INIC INI	PT IUPE2 IIAL D 3 ECUPI ESTE	0 4 0 4 0040/	ND ND ND	G FRA	RAU TUR 10		0 0 10	5 H	С А 5	9.R 90	0	PACE-UNDICATE DAS PACSATENS	PERFIL. CETL DEICO	DESCR GEOLO	1 C A D G I C A
	a 11 13	10		18,00														20,45		LMITE DE SONDA DETALHES DA S TC - 0.00 LY - 9.45 RV - 8.00 NA - 8.60	AGEN ONDAGEN 9.00 20.00
								10												REL. N* D - DATA E 22/01/2018 1, ENG*. RESP. C N PROF. T 20,45m 5 INICIO 23/10/2017 F TÉRMINO 24/10/2017 VISTO	SC. /100 XOORDENADA . 9.047.471,068 . 412.075,517 ERRENO 4,814 URON SP - 301

				FL	JRO	SF) 3	0	2		
REVESTORNED FEVESTORNE REVESTORNE	SCONDOS	COTA E NA	PROFUNDIDADE CON Elacad a soca so fued	S P T H" 35 G2LPGS P/20cH [NDC3A,F3NA LD 20 30 40 X DE RECUPERNON 32 DE RECUPERNON 32 DE RECUPERNON	R D (ана 10	ar ar	PHOFUNDITADE DAS PACENCINE	DCODD DDDD TL R CH	DESC Geol	RICAD DGICA
5 5 5 4 4 4 3 2 4 3 4 4 5 5 6 4 6 6 6 7 4 2 8 8 8 8 11 8	8 6 5 4 3 5 4 4 5 6 5 4 4 5 6 5 4 4 5 6 5 7 7 7 8 4 2 13 12 9 12	27/19/2017	0,00 0,45 0,90 1,35 1,40 2,25 2,70 3,15 2,70 4,95 5,40 5,40 5,45 5,40 5,45 5,40 5,45 5,40 5,45 5,40 5,45 5,40 5,45 5,40 5,45 5,40 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,2					10,30		ARELA SILTUSA, POUC DNZA (ALUVIÃO).	POUDO SETIDSA, FDFA, A.
										REL. N* - DATA 22/01/2018 ENG*. RESP. PROF. 20,45m INICIO 25/10/2017 TERMINO 27/10/2017 VISTO	DES. ESC. 1/100 CCOORDENADA N. 9.047.502,522 E. 412.119.036 TERRENO S4,170 FURO N* SP - 302

							I	=ι	JR	C)	S	5F	2	3	0	2		
TOPO DE AVANCO Devenuento	PEONEDRINS Social	SEGARUIS 30cm	CUTA E NA	PREFLACEDINE CON RELACAD A 300A 30 FURD	ы л л х 1 20	S P E GDL/ <u>INICI/</u> 20 DE RECO DE RECO DE TES	T ES P/ 30 UPDRAC TEMUN		Gi FRAI	RAU TURN	20 26 45410 15 a		4 H 3	94R	9	PACETACIDADE DAS PACEDASTAS	PDIFL.	D E S C G E D L	R I C A D D G I C A
	10	12		16.00 18,00 20,00												20,45		UNITE DE 50 DETAUNES D TC - 0,00 LV - 8,45 RV - 8,00 NA - 4,87	SNDAGEN A SONDAGEM - 0,00 - 20,00
							_											REL. N* - DATA 22/01/2018 ENG* RESP.	DES. ESC. 1/100 COORDENADA N. 9.047.502.522
																	-	PROF. 20,45m INÍCIO 25/10/2017 TÉRMINO 27/10/2017 VISTO	E. 412.119,036 TERRENO 54,170 FURON* SP - 302

					FL	JRO	SP 3	30	3		
ILPU DE AVANCI	PROFENCIS	SECONADES	CUTA E NA	PREFLADIDADE CON	S P T Nº 3E GOLMES P/30cm INICIAL PINA 3P 2P 30 49 3 DE RECUPERAGAD DE TESTEMUNHO	R D C	C H A	PROFLACIDALE DAS PASSAGENS	POF D.	DESC GEOL	R] C A D D G I C A
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 3 3 2 3 4 5 7 9 8 6 6 6 6 7 7 4 4 4 6 5 10 12 14 13 17		200 0,43 1,36 1,60 2,25 2,70 3,15 3,60 4,05 4,25 3,40 4,25 3,40 4,25 3,40 4,25 3,40 4,25 3,40 4,25 3,40 4,25 3,40 4,25 3,40 10,00 11,000 11,000				10,60		ARGLA SILTOSA, POUC GNZA (ALDVÃO).	POUDO SILTOSA, POUDO A A, AMARELADA (ALUMIÃO).
										- DATA 22/01/2018 ENG* RESP.	ESC. 1/100 CCORDENADA N. 9.047.480,092
										PRDF. 20,45m INICIO 08/11/2017 TÉRMINO 09/11/2017 VISTO	E 412.068,269 TERRENO 51,594 FURO N* SP - 303

								F	ΞL	JF	20	C		S	βP)	3	0	3		
TUPO DE AVANCO E Revestidento	PROKCIROS Jaco	SEGUNDOS SOCT	COTA E NA	PREFLACIONADE CON Relación a soca so fued	N" (1(X	S E GL INIC I I I I I I I I I I I I I I I I I	P T LPES TAL I 3 ECUPI ESTE	0 4 ERACA MUNH	Rich 70144 0	(1941 0 5		R I	0 C	H	A 18	R	0	PROFUNCTIANE DAS PASSAGTAS	LTRUT	D E S C I G E D L I	RICAD DGICA
	13 14 16	16 20 21		18,00														19,00		CONPACTA.	IDAGEN SCNDAGEM - 6,0D - 20,00
																				REL. N DATA 22/01/2018 ENIG. RESP. PROF. 20,45m INICIO 06/11/2017	DES. ESC. 1/100 COORDENADA N. 9.047.480,092 E. 412.068,259 TERRENO 51,594 FURO N*
																				TÉRMINO 09/11/2017 VISTO	SP - 303

					FL	JRO	SP 3	30	4		
TOPO TE AVARED REVESTDRIVED	PRONCING Solary	JEGANDOS JUCN	CDTA E NA	Protrugionole con Elacad a boca do fund	S P T N° DE GLIPES P/300 	RDC GRAUDE FRATURANEOND	H A LBR	PREFUNDIDADE DAS PASSAEDES	11.20130	D E S C G E D L	R [C A D D G I C A
	3 2 2 2 2 2 2 2 4 6 4 6 4 6 4 6 4 6 4 6 4	3 3 3 2 2 3 4 6 6 6 8 8 10 8 10 8 10 8 11 14 14 14 15	8 L 105/01/0E	0,00 0,45 0,90 1,35 1,80 2,27 3,15 3,40 4,95 6,30 6,75 8,00 10,00 11,00 12,05 14,00 14,00 15,00 14,00 15,00 12,05 10,00 11,00 12,05 14,00 12,05 14,00 12,05 14,00 12,05 14,00 10,000 11,000				9.85		AREIA SLTOBA POLO GNZA ESCURO (ALUM) AREIA FINA ARGLOSA POJCO DONPACTA, AN NEDIAMENTE COMPACTA	O ARENOSA, MOLE A MEDIA (0). POUCO SILTOSA, FOFA A ARELADA (ALUMAQ). A A COMPACTA.
										REL Nº - DATA 22/01/2018 ENG*. RESP.	DES. ESC. 1/100 COORDENADA N. 9.047.511.308 E. 412.113,115 TERRENO
									3	20,45m INICIO 27/10/2017 ТЕЯМINO 30/10/2017 VISTO	48,810 FURON* SP - 304

							ł	=ι	JR	20)	1	S	Ρ	5	3	04	4		
TCPU DE AVANEO Estrestinenti	PROPERTIS	2EGUNDD2 30CM	COTA E NN	PROFUNDIDATE COM RELACAD A BOLA DO FURD	N" D 10 X :	5 P E GOLF _DNJC(/ 20 DE REC DE REC DE TES	T 20 20 70 70 70 70 70 70 70 70 70 70 70 70 70	30cm FINAI 40 40 80	G FRA	RAU TURA	13 15 16 16 16 16		н	A عمر 50	R		SNEEWEENE	HCHETL.	DESC GEOL	R I C A D D G I C A
	15 16 17	19 20 23		18,00 19,00 20,00												2	x0.4 5		UNITE DE S DETALHES D TC - 0,00 LV - 6,45 RV - 8,00 NA - 1,82	ONDAGEM A \$ONDAGEM) - 6,00 ; - 20,00)
																			REL N* - DATA 22/01/2018 ENG*. RE8P. PROF. 20,45m INÍCIO 27/10/2017 TÉRMINO 30/10/2017 VISTO	DES. ESC. 1/100 COORDENADA N. 9.047.511,308 E. 412.113,115 TERRENO 48,810 FURO N* SP - 304

							1	FL	JR	0)	S	Ρ	1	0	1		
TIPD DE AVANCO E AVANCO REVESTIMENTO	PRIMEIROS 30cm	SEGUNDOS 30cm	CUTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	N* DE 10 20	S P GOLI INICI 20 E REC 20 E REC 20 20	T PES P, AL 30 :UPERAG STEMUN 60	/30cm FINAL 40 :AD HD 80	GR FRAT D 5	R AU DE URAME	0 0 5 20	с н	A LQ.R 50	D	PRDFUNDIDADE DAS PASSAGENS	PERF1L GEOLOGICO	DESC GEDL	C R I C A D D G I C A
			LAMINA D'ÁGUA	1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00							1. 2 9 1				0.75		INTERVALO LIVRE	
	5 5 4	5 6 5		12,00 13,00 14,00 15,00											13,00	2 -	ARGILA SILTOSA, MOLE TADA (ALUVIÃO).	A MÉDIA, MARROM ACIZEN-
	5	8		16,00											16,75		REL. N° DATA 12/07/2017 ENG°. RESP. PROF. 35,09m INICIO 01/07/2017 TÉRMINO 02/07/2017 VISTO	DES. ESC. 1/100 COORDENADA N. 9,047.513,650 E. 412.072,017 COTA 52,641m FURO N* SP - 101

					FL	JRO	SP 1	L01		
TIPO DE AVANCO E REVESTIMENTO	P RIMETROS 30cm	SEGUNDOS 30cm	COTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm 	R [] C GRAU DE FRATURAMENTO 0 5 10 15 20	H A 1.0.R 100 50	PROFUNDIDADE DAS PASSAGENS PERFIL GEOLOGICO	D E S C G E D L	: R I C A 🗆 . 🗆 G I C A
	з	4		17,00	// 			16,75	ARGILA SILTOSA, MOLE TADA (ALUVIÃO). AREIA FINA SILTOSA, P MARROM AMARELADA (A MÉDIA, MARROM ACIZEN- OUCO ARGILOSA, FOFA, ALUVIÃO).
	5	9		18,00	· + + + - + + - + + + + +			26,00	MEDIAMENTE COMPA	CTA,
	7	11		19,00) <u> </u>					
	7	12		20,00						
	8	13		21,00						
	10	14		22,00	}					
	9	12		23,00	}					
	8	10		24,00	}- <u> </u>					
	8	9		25,00						
	10	12		26,00	}			26,80	SILTE ARENOSO, POUCO DIAMENTE, COMPACTO, A) ARGILOSO, POUCO A ME- AVERMELHADO/ CINZA
	4	8		27,00	ŀ <i>{</i> /				(ALUVIÃO).	
	4	5		28,00	}¥					
	10	17		29,00	, ` <u>`</u> }					
	18	27		30,00	·			30,00	Сомраста а минто	COMPACTA.
	25	41		31,00						
	22	52		32,00	}					
									REL. Nº	DES.
									- DATA 12/07/2017	ESC.
									ENG [•] . RESP.	COORDENADA N. 9.047.513,650 E. 412.072.017
									PROF.	COTA 52.641m
									INÍCIO 01/07/2017	FURO Nº
									TÉRMINO 02/07/2017 VISTO	SP - 101

						FL	JR	0	Ś	SP	1	.0	1		
TIPD DE AVANCO REVESTIMENTO PRIMEIRDS 30cm	SEGUNDOS 30cm	COTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	N* DE IN 10 % DE DE 20	S P T GOLPES ICIAL 20 3 RECUPE TESTE	FINA FINA 0 40 RACAD MUNHD 0 80	GRA FRATU	R D U DE RAMENT 0 15	C H	H A 1.0.4 50	R	PROFUNDIDADE DAS PASSAGENS	PERFJL		
32 30 30/9	50 48 -		33,00 34,00 35,00							9		35,09	2	UMITE DE S	SONDAGEM
														DETALHES (TC = 0,00 RV = 12,0 LV = 13,0 NA = LAM	DA SONDAGEM 0 DO DO – 35,00 IINA D'ÁGUA
														REL. N° DATA 12/07/2017 ENG°. RESP. PROF. 35,09m INICIO 01/07/2017 TÉRMINO 02/07/2017 VISTO	DES. ESC. 1/100 COORDENADA N. 9.047.513,650 E. 412.072,017 COTA 52,641m FURO N' SP - 101

							FL	JRO	SP	102		
TIPD DE AVANCD E REVESTIMENTD	PRIMEIRDS 30cm	SEGUNDOS 30cm	CDTA E NA	PRDFUNDIDADE COM RELACAD A BOCA DO FURD	N* DE G 20 4	P T DLPES CIAL 20 30 RECUPE TESTEN 40 60	P/30cm FINA) 40 RACAD 40NHD) 80	R D GRAU DE FRATURAMENTO D 5 10 15 8	C H A LQ.R 20100 50	A PROFUNDIDADE DAS PASSAGENS PERFIL	DES GEDI	C R I C A D _ D G I C A
										0,75	ARGILA SILTOSA, C ACINZENTADO (ALU	OM DETRITOS VEGETAIS VIÃO).
	1/55	-	1,14	1,00							MOLE CINZA ESCUP	OUCO ARENOSA, MUITO RA (ALUVIÃO).
	2	2	/06/20	2,00	<u> </u>							
	2	2	27	3,00	i							
	2	3		4,00								
	2	3		5,00	 							
	3	4		6,00						6,00	MOLE,	
	3	5		7,00	i) 							
	3	4		8,00						7,80	AREIA MEDIA A GR	OSSA SILTOSA, FOFA,
	3	4		9.00	 	+-+					AMARELA.	
	5	8		10,00	- <u>+</u>)		_			10,00	POUCO A MEDIAME	NTE COMPACTA.
	4	7		11,00						11,00		Α.
	3	5		12,00	₩		+			12,00		Α.
	8	10		13,00	·					13 10		
	7	9		14,00							AREIA FINA SILTOS COMPACTA, AMARE	A, ARGILOSA, MEDIAMENTE LADA.
	7	12		15,00								
	7	10		16,00						15,90	AREIA FINA ARGILO	SA. POUCO SILTOSA.
	13	16		17,00	N						MEDIAMENTE COMP.	ACTA, AMARELADA.
											REL. Nº	DES.
											30/06/2017 ENG ^e . RESP.	1/100 COORDENADA N. 9.047.482,861
											PROF.	COTA
											35,24m INÍCIO 26/06/2017	54,232m FURO Nº
											TÉRMINO 29/06/2017 VISTO	SP - 102

FURO SP 102											
TIPD DE AVANCO EREVESTIMENTO PRIMEIROS	30cm SEGUNDDS 30cm	CDTA E NA	PROFUNDEDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIALFINA 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHD 20 40 60 80	R D C GRAU DE FRATURAMENTD D 5 10 15 20	H A I.Q.R 100 50 1	PRDFUNDIDADE DAS PASSAGENS PERFIL GEOLOGICO	D E S C G E D L	C R I C A D - D G I C A		
10	0 13		18,00		-						
7	11		19,00	{							
12	16	10.002	20,00		-		19,60	AREIA FINA SILTOSA MEDIAMENTE COMPA	A, POUCO ARGILOSA ACTA, AMARELADA.		
11	15	2	21,00								
12	16		22,00								
13	18		23,00		-						
13	17	12/12	24,00		-		23,50	AREIA FINA SILTOS/ MEDIAMENTE COMPA	A, POUCO ARGILOSA, ACTA, AMARELA ESCURA.		
13	18		25,00		-						
44	60		26,00				26,00	MUITO COMPACTA.			
12	19		27,00				26,80	ARGILA SILTOSA, RI	JA A DURA, CINZA CLARA.		
318	15	1	28,00								
14	20		29,00		-						
15	21		30,00		-						
14	22		31,00		-						
27	34		32,00								
39/:	27 -		33,00				32,80	SILTE POUCO ARGIL	OSO DURO AMARELADO.		
53/2	28 -		34,00				34,00	IDEM, VERMELHO.			
								REL. Nº	DES.		
								DATA 30/06/2017	ESC. 1/100		
								ENG'. RESP.	COORDENADA N. 9.047.482,861 E. 412.095,901		
								PROF. 35,24m	COTA 54,232m		
								INÍCIO 26/06/2017	FURO Nº		
								TÉRMINO 29/06/2017 VISTO	SP - 102		

FURO SP 102														
TIPD DE AVANCO REVESTIMENTO PRIMEJROS 30cm	SEGUNDOS 30cm CDTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURO	S F N* DE GOL INICI 10 20 % DE REG DE TE 20 40	PES P/30 ALFI 30 40 CUPERACAD STEMUNHD 60 80	ICR INAL J FR	A 10.R 50	e PROFUNDIDADE DAS	PASSAGENS	PERFIL	D E S G E D	C R I C A D L D G I C A			
55/24	-	35,00								35	5,24		LIMITE DE DETALHES TC - 0,(RV - 3, LV - 2, NA - 1,1	SONDAGEM DA SONDAGEM 00 - 2,00 00 45 - 35,00 4
	REL. N° DES. DATA ESC. 30/06/2017 1/100 ENG°. N. 9.047.482.861 E. 412.095,901 PROF. S5,24 54,232m INICIO 26/06/2017 TÉRMINO 29/06/2017 VISTO SP - 102													

	FURO SP 103												
TIPO DE AVANCO E REVESTIMENTO	PRIMEIRUS 30cm	SEGUNDOS 30cm	COTA E NA	PRDFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIALFINA 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHD 20 40 60 80	R D (GRAU DE FRATURAMENTD D 5 10 15 20	D100 50	e PROFUNDIDADE DAS PASSAGENS PERFIL GEON DATO	D E S (G E D I	C R I C A D -			
	1/77	j.		1,00		-			MOLE, MARROM VERME	U ARENUSA, MUITU MOLE A LHA, (ALUVIÃO).			
	2	3		2,00	\								
	4	5		3,00	- <u>}</u> +-+-+								
	3	6		4,00	il			4,00	MEDIA.				
	24	33		5,00				5,00	RIJA A DURA.				
	16	19		6,00									
	6	7		7,00				6,90	AREIA MEDIA A GROSS COMPACTA, CINZA AMA	A, POUCO ARGILOSA, POUCO RELADO, (ALUVIÃO).			
	17	19		8,00				8,00	MEDIAMENTE COMPA	CTO A COMPACTO.			
	10	12	9,00	9,00									
	12	15	7/2017	10,00									
	13	15	11/0	11,00									
	7	7		12,00				11,80	AREIA FINA SILTOSA, F MEDIAMENTE COMPACTA	OUCO ARGILOSA, POUCO A A, MARROM AMARELADA.			
	13	15		13,00									
	6	10		14,00									
	7	12		15,00									
	12	15		16,00	$ -\rangle\rangle+-+-+-$								
	9	10		17.00					REL. Nº	DES.			
									- DATA 07/08/2017 ENG*. RESP. PROF. 40,45m INICIO 05/07/2017 TÉRMINO 11/07/2017 VISTO	ESC. 1/100 COORDENADA N. 9.047.474,205 E. 412.111,455 COTA 61,854 FURO N* SP - 103			

FURO SP 103															
TIPO DE AVANCO E REVESTIMENTO	PRIMEIRUS 30cm	SEGUNDOS 30cm	COTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIAL FINAL 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHO 20 40 60 80	R D (GRAU DE FRATURAMENTO D 5 10 15 20	La.R	erdFUNDIDADE DAS PASSAGENS PERFIL GEDIDGICD	DES(GEDU	C R I C A 🗆 _ 🗆 G I C A					
	6	9		18,00											
	6	8		19,00											
	6	9		20,00)										
	7	10		21,00	i ++++										
	6 9 22,00														
	5 4 23,00 FOFA.														
	10	14		24,00				24,00	MEDIAMNETE COMPA	СТА А СОМРАСТА.					
	11	16		25,00											
	11	16		26,00											
	9	12		27.00	·										
	11	14		28,00		9. S									
	13	18		29,00											
	14	18		30,00											
	15	20		31,00											
	11	16		32,00)										
	14	20		33,00	, + _ ++										
	27	33		34.00											
									REL. Nº -	DES.					
									19/07/2017	ESC. 1/100					
									RESP.	N. 9.047474,205 E. 412.111,455					
									PROF.	COTA					
									40,45m INÍCIO 05/07/2017	FURO Nº					
									TÉRMINO 11/07/2017 VISTO	SP - 103					

FURO SP 103															
TIPU DE AVANCID REVESTIMENTO	PRIMEIROS 30cm	SEGUNDOS 30cm	CDTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURO	S N* DE GI 10 2 X DE R DE 1 20 4	P T DLPES P/ CIAL 0 30 4 ECUPERAC FESTEMUNH	30cm . FINAL 10 40 30	GRAU FRATUR		D100	A LOR 50	PROFUNDIDADE DAS	PERFIL GEOLOGICO	DESC GEOL	C R I C A D . D G I C A
	29	35		35,00											
	29	39		36,00		-+-)	+								
	30	35		37,00											
	30	39		38,00											
	28	34		39,00								38,8	so	ARGILA SILTOSA, POUC (ALUMÃO).	O ARENOSA,DURA, CINZA
	29	36		40,00		-41						40,4	5		
														DETALHES I TC = 0,01 RV = 4,01 LV = 4,44 NA = 9,01	DA SONDAGEM 0 - 4,00 0 - 5 - 40,00 0
	REL. N* DES. DATA ESC. 19/07/2017 1/100 ENG*. N. 9.047.474,205 RESP. N. 9.047.474,205 E. 412.111,455 PROF. OCTA 61,854 INICIO 05/07/2017 TÉRMINO 11/07/2017 VISTO SP - 103														

	FURO SP 104											
TIPD DE AVANCO REVESTIMENTO	PRIMEIRUS 30cm	SEGUNDOS 30cm	CDTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIALFINAL 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHO 20 40 60 80 0	R C C GRAU DE FRATURAMENTO 5 10 15 20	100 50	PROFUNDIDADE DAS PASSAGENS PERFIL				
	12	19		1,00					AVERMELHADA (ALUV	IÃO).		
	15	23		2,00	+}}							
	7	12		3,00								
	10	13		4,00								
	13	16		5,00								
	13	16		6,00								
	10	12		7,00								
	10	10		8,00		8		7,80	AREIA FINA SILTOSA, COMPACTA A COMPA	POUCO ARGILOSA MEDIAMENTI CTA, AMARELA AVERMELHADA,		
	13	20		9,00					(ALUVIAO).			
	8	9		10,00								
	28	23		11,00								
	18	24		12,00	-+- <i> </i> -+							
	11	16		13,00		2		12,70	ARGILA SILTOSA, POU AMARELA, (ALUVIÃO)	JCO ARENOSA, RIJA, CINZA -		
	12	14		14,00				13.60	AREIA FINA A MEDIA. MEDIAMENTE COMPAC	. POUCO ARGILOSA, TA, CINZA (ALUVIÃO).		
	11	13		15,00				14,95	ARGILA SILTOSA, POU AVERMELHADA (ALUX	JCO ARENASA, RIJA 140)		
	22	18		16,00				16,00	RIJA A DURA.	OSA. POUCO SILTOSA.		
	12	18		17.00				16,75	MADIAMENTE COMPAC AMARELADA, (ALUVIÀ REL. Nº	DES.		
									- DATA 07/08/2017 ENG'. RESP. PROF. 40,45m INICIO 11/07/201 TÉRMINO 15/07/201 VISTO	ESC. 1/100 COORDENADA N. 9.047.445,528 E. 412.129,130 COTA 70,777 7 FURO N* 7 SP - 104		

FURO SP 104											
TIPD DE AVANCO REVESTIMENTD	PRIMETROS 30cm	SEGUNDOS 30cm	CDTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURO	S P T N DE GOLPES P/30ch INICIAL FINAL 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHO 20 40 60 80	R D C GRAU DE FRATURAMENTD D 5 10 15 20	H A 1.0.R	e PRDFUNDTDADE DAS PASSAGENS PERFIL	C E D E S	C R I C A D L D G I C A	
	38	33	17.35	18,00							
	22	26	15/07	19,00							
	15	18		20,00)+						
	18	20		21,00							
	11	8		22,00	}∯-+-+-+			21,90	AREIA FINA ARGILOSA COMPACTA, MARROM	A, POUCO SILTOSA MEDIAMENTE AMARELADA, (ALUVIÃO).	
	9	12		23,00							
	11	13		24,00							
	9	11		25,00							
	10	13		26,00	+						
	9	11		27,00	·						
	8	10		28,00							
	8	9		29,00	h-#						
	8	8		30,00							
	11	15		31,00							
	16	24		32,00	, <u>`</u> ,}			32,00	MEDIAMENTE COMP	ACTA A COMPACTA.	
	14	18		33,00	, <u>{</u>						
	22	28		34.00							
									ATA	DES.	
									19/07/2017 ENG".	1/100 COORDENADA	
									PROF.	E. 412.129,130 COTA	
									40,45m	70,777	
									TÉRMINO 15/07/2013 VISTO	SP - 104	

	FURO SP 104													
TIPD DE AVANCD E REVESTIMENTD	PRIMETRDS 30cm	SEGUNDOS 30cm	COTA E NA	PRDFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPE INICIAL 10 20 2 DE RECUP DE TEST 20 40	S P/30cm FINA 30 40 PERACAD EMUNHD 60 80	GRAL FRATUR	R [(2 H	A LQ.R 50	O PROFUNDIDADE DAS PASSAGENS	PERFIL GEOLDGICD	D E S C G E D L	R I C A D D G I C A
	28 31 30 31 35	34 36 32 34 39		35,00 36,00 37,00 38,00 39,00	· · · · · · · · · · · · · · · · · · ·		-							
	32	36		40,00							40,45		LIMITE DE S DETALHES D TC - 0,00 RV - 2,00 LV - 2,45 NA - 17,3	ONDAGEM (A SONDAGEM) - 2,00) 5 - 40,00 5
					1 1 1								REL. N° - DATA 19/07/2017 ENG°. RESP. PROF. 40,45m INÍCIO 11/07/2017 TÉRMINO 15/07/2017 VISTO	DES. ESC. 1/100 COORDENADA N. 9.047.445,528 E. 412.129,130 COTA 70,777 FURO N* SP - 104

	FURO SP 105											
TIPD DE AVANCO REVESTIMENTO	PRIMEIROS 30cm	SEGUNDOS 30cm	COTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIALFINAL 10 20 30 40 2 DE RECUPERACAD DE TESTEMUNHD 20 40 60 80	R D C GRAU DE FRATURAMENTO D 5 10 15 20	H A LQ.R 100 50	e PROFUNDIDADE DAS PASSAGENS PERF1L GEDLDIGED	D E S G E D	C R I C A 🗆 L 🗆 G I C A		
	12 17 16 14	19 26 20 22	/07/2017 1	1,00 2,00 3,00 4,00					AVERWELHADA (ALUVI)	ju arenosa, rija a dura, Ao).		
	14 12 11	20 16 14	61	5,00 6,00 7,00				6,85	AREIA FINA ARGILOSA, COMPACTA , AVERMEL	, POUCO SILTOSA MEDIAMENTE HADA (ALUVIÃO).		
	13 10 16 12	16 13 18 16		8,00 9,00 10,00 11,00				9,60	AREIA DE FINA A MED COM PRESENÇA DE PE MEDIAMENTE COMPACT AMARELADA (ALUVIÃO)	DIA SILTOSA, POUCO ARGLOSA EDREGULHOS FINOS (CANGA) A A COMPACTA, MARROM).		
	7 13 39 17	10 15 56 22		12,00 13,00 14,00 15,00				13,80	ARGILA SILTOSA, POU AVERMELHADA (ALUV	CO ARENOSA, DURA, AMARELA NÃO).		
	26 17	37 34		16,00 17,00				16,75	AREIA MEDIA A GROSS AMARELA AVERMELHAD REL. Nº	SA SILTOSA, COMPACTA, DA (ALUVIÃO). DES.		
									DATA 07/08/2017 ENG*. RESP. PROF. 40,45m INÍCIO 15/07/2017 TÉRMINO 19/07/2017 VISTO	ESC. 1/100 COORDENADA N. 9.047.432,664 E. 412.138,310 COTA 70,699 FURO N* SP - 105		

	FURO SP 105											
TIPU DE AVANCU E REVESTIMENTU	PRIMEIRDS 30cm	SEGUNDOS 30cm	COTA E NA	RELACAD A BOCA DD FURD	S P T E GOLPES P/30 _INICIALFI 0 20 30 40 DE RECUPERACAD DE TESTEMUNHO 0 40 60 80	RAL GRAU I FRATURAM	C)E IENTO 15 201	H A I.D.R 00 50	PRDFUNDIDADE DAS PASSAGENS	PERFJL GEOLDGICO	D E G E	S C R I C A D D L D G I C A
	25 23 19 25 15 14 12 9 10 9 14 15 16 17 13	40 36 31 15 16 15 14 11 10 9 16 18 25 28 20		18,00 19,00 20,00 21,00 23,00 25,00 26,00 28,00 30,00 31,00 33,00					22,60		AREIA FINA ARGILI COMPACTA A COM (ALUVIÃO).	DSA, POUCO SILTOSA MEDIAMENT PACTA, MARROM AMARELADA,
	19	28		34,00							REL N° DATA 19/07/2017 ENG°- RESP. PROF. 40,45m INICIO 15/07/2	DES. ESC. 1/100 COORDENADA N. 9.047.432,664 E. 412.138,310 COTA 70,699 017 FURO N°
											TÉRMINO 19/07/2 VISTO	SP - 105

	FURO SP 105											
TIPD DE AVANCO E REVESTIMENTO	PRIMEIRUS 30cm	SEGUNDDS 30cm	CDTA E NA	PROFUNDIDADE COM RELACAD A BOCA DO FURD	S P T N* DE GOLPES P/30cm INICIALFINAI 10 20 30 40 % DE RECUPERACAD DE TESTEMUNHO 20 40 60 80	R D C GRAU DE FRATURAMENTO	E H A	PRDFUNDIDADE DAS PASSAGENS PERFIL	D E S (G E D L	C R I C A D _ D G I C A		
	26 31 35 33 35 33	31 35 42 37 41 39		35,00 36,00 37,00 38,00 39,00 40,00				37,00	LIMITE DE S DETALHES TC - 0,0 RV - 12,4 LV - 2,4 NA	TO COMPACTA. 50NDAGEM DA SONDAGEM 0 – 2,00 00 5 – 40,00		
									REL. N' - DATA 19/07/2017 ENG*. RESP. PROF. 40,45m INÍCIO 15/07/2017 TÉRMINO 19/07/2017 VISTO 19/07/2017	DES. ESC. 1/100 COORDENADA N. 9.047.432,664 E. 412.138,310 COTA 70,699 FURO N' SP - 105		

						BAGEND E PAR	OLO NDAÇÕES I	LIDA		Cliente: Grupo Amage Obra: Portochuelo Local: Terminal de	gi Expedição de Grãos - Porto Velho/RO
g	ção	R.N.	4		ξε			(E)	Relatório	de Sondagem	N° 00398-0001
Revestimen	Método crava	Cota relação I	Cota do N./	Amostras	Índice de SI iniciais/30c	İndice SP1 finais/30cn	Amostras	Prof. Camadas	Furo SP 01 SPT - Stand Camadas - Cl	Cota 0,00 art Penetration Test assificação dos solos	30 cm finais 30 cm iniciais 0 10 20 3
÷		1.0		1	1	0	4	8	A STATE OF		
			_	2	2	1	-	3	THE GALL		N
				з	2	2	Ш.				N N
				4	2	1	₩-		Argila orgânica pouco com fragmentos	arenosa de cor acinzentad de material orgânico.	
		ŵ		5	2	2	-	15	Consistência:	muito mole a rija.	V
				6	2	2		-1			
				7	3	3	╢	8	Star Maria		
				8	8	11	₩	8,00	Areia fina a grossa	no siltosa amarelada *	
				9	4	5	╫	8,70	Areia fina siltos	a de cor amarelada.	
-		-10		10	5	4		3 5.	Compacidade: pouco	compacta a medianamente	
				11	9	11		- 11,00	Areia fina a médi	a pouco siltosa de cor	- <u>)</u>
				12	11	12	۳.	•2) •• •• ••	amarelada. Compa	acidade: medianamente	
				13	10	12	H-	13,00			- <u>/</u>
				14	14	18	t –	-2	It can marked a first of L	HE TTL STRUCTURE	
		15		16	11	15	53	•0.			\rightarrow
		10		17	15	19	11	-25			
				18	17	19	1	•CC			
				19	18	21		6 5			
				20	18	20	1	8	Areia fina siltos	a de cor amarelada	
				21	15	17	1	38	Compacidade: me	dianamente compacta.	11
		-20		22	16	18	T	-35			
				23	13	14	Π	-48 	· 建金石 化二、 化 化 化 化 化 化		
				24	14	20	2				
				25	20	25		38	STATE 1		
				-26	19	25					
		-25		27	14	17		- 27.00	and Standard and State		1
				28	12	15		in an	Areia fina pouco silto	oca de cor amarelada com	1
				29	14	15	22	3	veios avermelh	ados. Compacidade:	
-				30	14	15	₩.	13.	medianam	ente compacta.	
				31			₩-	30,45	† Térm	ino do furo	Ī
		-30		32				52.	*Compacidade:	pouco compacta.	
				33				-			
				34				8			
				35		<u>)</u>	-	-			
				36				12			
		35		37				9			
-	Ní	vel d	'agua	38			Amo	strador	Reves	timento Ø 03 "	Data de execução
Inicial			m	11			ø	interno	35 mm	Peso 65,0 kg	Inicio 06/12/2016
Final	1,9	95	m				Øe	externo	51 mm Altu	ura de queda 75,0 cm	término 07/12/2016
(Obs:										
Sondador		Mari	val Ri	ibeiro	1			Engo	Esaú Freitas		13/12/2016 Folha 01

										Cliente: Geobrasileira Obra: Terminal de Grãos PortoChuello - AMAGGI Local: Porto Velho					
8	00	NN.			k e			(m)	Relatório de S	iondagem	Nº 003	07-0001			
Revestment	Método crava	Cota rebção F	N OP BOD	Amostas	Indce de Si nidaig/30g	Indice SPT finals/30cm	Amostas	Prof. Carmedas	Furo SP 01 Co SPT - Standart Per Camadas - Classifica	ota 0,00 netration Test ação dos solos					
		38		1	13	15		0,60	Aterro - Argila com piça	arra avermelhada.	7 T-				
2.0		5	2	2	15	17			Solo natural - Argila de	e cor amarelada e	1	\			
				3	13	17			avermelhada com fragmentos de laterita. Consistência: rija.		1	1			
			4	11	17	0	3,80			1					
				5 6 7 8	11	16			Argila pouco arenosa de cor avermelhada.		1				
			2		11	15		6.00	Consistência	a: rija.					
		-20 -15 -10			11	12		0.00	Areia fina pouco argilosa de cor amerelada. Compacidade: medianamente compacta.		1/				
					10	10		8.00			1				
				9	9	12 15					Á				
				10	10						11				
1 1				11	11 7	9		8	Areia fina pouco argilosa de cor avermelhada. Compacidade: medianamente compacta.		1/				
				12	10	14					11				
				13 10	15	Π	12,60								
				14	7	12					11	-			
				15	10	13		a X			11				
				16	10	13		-	Silte argiloso de cor varie	gada com blocos de					
				17	10	13			laterita. Consist	encia: rija.					
				18	10	15		8							
				19	8	12		18.80			11				
			20	13	15			Areia fina e média de cor variegada.		1.1					
				21	11	13			Compacidade: mediana	imente compacta.	11				
				22	14	17			in the literation	and a second second	1	<			
				23	14 17										
				24	15	19			2012-011-0221	the Later and	1				
				25	16	21			HE HELE CARTE						
		-30		26	13	18									
				27 13 17	17			Areia fina e média siltosa de cor amarelada.			1				
				28	18	22 22			Compacidade: mediana	mente compacta a	1	1			
				29	18										
				30	21	27						1			
				31	21	29		_							
				32	21	29			1997年1月1日以及東京						
	- 3			33	22	32									
				34	18	20		33,60		And the stand of the local states		1			
				35 18 21 36 20 23 37 20 25	1										
		5			20	23			Silte arenoso de cor avermelhado. Compacidade:			11			
							compac								
		-35	38	22	28		38.00		A Grand and						
	Ni	ivel d	agua			Amo	strador	Revestimento Ø 03 *		D	lata de execução				
Inicial	21,	40	m	06/12	/2014	Øinterno			35 mm	Peso 65,0 kg	Inicio 06/12/2014				
Final	21,	Não	m foi ∼	09/12	recupe	eran as an	nostr	externo	51 mm Altura de	e queda 75,0 cm	ten	mino 09/12/2014			
Sondador Francisco Loreto								Enge	Daniel Damasceno	12/12/2014 Folha 01					

SERVSOLO PROMISECULE PRIMACORE LERA											Cliente: Geobrasileira Obra: Terminal de Grãos PortoChuello - AMAGGI Local: Porto Velho							
8	8	C.N.			te			(E)	Re	latório de	Sondage	m		Nº 003	07-0001			
timent	etodo crava	ação F	do NJ	stras	de Sa	/30an	stras	adas	Furo SP	01	Cota (0,00			_ 30 cm fin	als Islais		
Reves		ta rela	8	Amo	indice	finals	Amo	S.	SPT	- Standart I	Penetration T	est		30 cm iniciais				
-	ž	8			_			Po	Cama	adas - Classi	ficação dos se	olos	9	10	20	30	40	
0.0		44		35	22	30	4		Silte an	enoso de c	or avermell	hado.						
				40	22	30	₽-		Con	npacidade	: compacto							
					ļ	<u> </u>	╟	40,43					1					
						<u> </u>	╇											
		ю			<u> </u>		-										_	
					<u> </u>		╉											
							╟								_			
				-			╉										_	
					-	<u> </u>	₩-										_	
		10			<u>.</u>		╇										_	
		*		2		<u> </u>	╟											
							-	e										
						<u> </u>	╟									_		
				2			╉─										_	
						<u> </u>	╟										_	
		-15				<u> </u>	╟─								_		_	
							-									_	_	
				j.		<u> </u>	╉						-			_	_	
				-			╟─	3										
						<u> </u>	₽						-	_		_		
		-20				<u> </u>	╟									_	_	
						<u> </u>	╉										_	
					<u> </u>	<u> </u>	╟										_	
							₩-						-			_	_	
				3	. <u></u>	<u> </u>	╟	•					<u> </u>					
		50					╉	2					-				_	
		-2		3	<u> </u>	<u> </u>	╟	-					-			_	_	
					<u> </u>	<u> </u>	₩-	6					-		_	_	_	
							╟─	• 1										
				4		<u> </u>	╉								_		_	
				3			╟	-					-	_	_	-	_	
		8		3	-		╋	2					-		_	_	_	
						<u> </u>	╫─	• 1					-				_	
							╉─						-					
						-	╉						-	_	_	_		
							╟─											
		32					-											
		in al d	2011		L		Amo	thadar		Revention	ento a	0.2 *	1		lata da ava	aurão.		
Inicial	0.0	verd 00	m	06/17	/2014		Ø	interno	35 mm	Nevestim	Peso	65.0 kg	Inicio 06/12/20					
Final	Enal 0.00 m 09/12/2014						Ø	externo	51 mm	Altura	de queda	75,0 cm		término 09/12/2014				
(Obs:										1							
Sondador Francisco Loreto					0			Eng ^o	Daniel Dan	nasceno				12/12/2	2014 Folha	02		
						SERVS MOACENA E POR	OLO	T0.4		Cliente: G Obra: T Local: P	ieobrasileira ierminal de Grã orto Velho	os PortoChuelk	- AMAGGI					
-----------	-------------	-----------	------------	----------	----------------------------	--------------------------	----------	------------------	--	---	--	----------------	--					
8	8	L.N.	1		t e		а.	(m)	Relatório de	e Sondagen	n	Nº 003	07-0002					
Revestmen	Método dava	ගස පේදේබා	CODE do NJ	Amostras	Indice de S Inclais/300	Indice SP1 finals/300	Amostras	Prof. Camada	Furo SP 02 SPT - Standart Camadas - Classi	Cota Penetration Te Ificação dos so	63,668 st kos 0	10	_ 30 cm finais _ 30 cm iniciais 					
		28		1	6	7			Aterro - Argila pouco are	enosa com pi	çarra de cor							
2,0				2	6	8		2,00	avermelhada. Cor	nsistência: m	védia.	1						
				3	8	9			Solo natural - Areia	fina argilosa	de cor	11						
				4	8	10		4,00	avermeinada, Compac comp	bidade: medi bacta,	anamente	1						
		10		5	8	11												
		-		6	7	9			Areia fina argilosa	de cor amar	elada.	1/						
				7	2	2			Compacidade: medianar	mente comp	acta a fofa.	j'						
				8	2	2		8,00		and and								
				9	11	17	-		Argila pouco arenosa d	de cor esbrar	nguicada e	No. 10						
		0		10	13	21			avermelhada, com fra	agmentos de	e laterita.	1						
		-		11	14	22		11,00	Consistencia	. rija a dura.	200104	1)					
				12	11	14		17		ilan da ma	in the second se	11						
				13	11	14			Compacidade: media	namente cor	npacta a							
				14	12	15			comp	oacta.		1 i						
		-		15	15	20		14,60		COLUMN AND ADD	COLUMN STATES	1						
		-15		16	15	20	-											
				37	16	20			Areia média argilosa d	le cor amare	lada, com							
				18	16	22		8	fragmentos de laterita. C	Compacidade	compacta.							
				13	17	24		1										
				20	21	30	-	19,70										
		20		21	21	32	-	8 B	Areia amera de cor esbra	omicada (ampacidades							
		-		22	21	32	-		compacta a median	namente con	npacta.							
				23	22	23	-	22.50					- i					
				24	12	16		23,30	In the second second second second	1		5	~					
				25	14	18		8				1						
		5		28	15	20	╉	2	Areia média aroilosa	a de cor ama	relada.		1					
		5		27	16	21	+	8	Compacidade: media	anamente co	mpacta.							
				28	16	21					- Contractor							
				23	15	17			attellities and		and the second		(
				30	15	1/		29,80	and the states of the		F. 10 10 10 19							
		See.		27	10	10		2	A CARLEND									
		.30		34	10	20	-	1					ì					
				33	10	20			Silte arenoso de cor aver	melhado. G	omoacidade:							
				10	20	20		8	comp	xacta,			1					
				-	20	24		1			14							
				37	20	25		8	T US I STATE		17 House							
		-35		50	22	28		20			And the second second							
	N	ivel d	agua				Amos	38.00 strador	1 Révesion	Adadurog	03 "	D	ata de execução					
Inicial	15	.00	m	02/12	/2014		Ø	interno	35 mm	Peso	65,0 kg	Ir	nicio 02/12/2014					
Final	15	20	m	05/12	/2014		Øe	externo	51 mm Altura	de queda	75,0 cm	térn	nino 05/12/2014					
Cond d	Obs:	Não	toi pr	ossive	l recupe	erar as ar	nostra	s nos n	netros 12 à 14 e 20 à 23.	3		12/12/2	014 Falls 01					
DOLIGACOL	-	rian	CISCO	Loret	0			cing	Darlier Damasceno			14/12/2	UTA LOUIS 01					

						SERVS	SOLO	TD4				Cliente: Obra: Local:	Geobrasi Terminal Porto Vel	leira de Gri lho	ãos Porto	Chuello -	AMAGGI		
8	8	N.			t e			(E)		Re	latório d	le Sondage	em		N	· 00307	7-0002		
Iment	Cara	sção R	AN OF	\$ras	de SP 9/30 m	IS OUT	\$ras	nadas	Furo	SP	02	Cota	63,668	2			30 cm finai	s	
leves	page	1 1 1	COB	M	ncial	finds	Amo	E.		SPT	- Standart	Penetration	Test				30 cm inic	1815	
	ž	8					_	Pro		Carna	das - Clas	sificação dos s	solos	(10	20	30	4
0'0		44		39	22	29			s	ilte an	enoso de	cor averme	lhado.						
				40	23	33			12736	Cor	mpacidad	le: Compact	.0.				N		
					<u> </u>		₩.,	40,43			† Términ	o do furo							
							₩-												
		чP			<u> </u>		-												_
																	_		_
							₩-												
				-	ļ,		-												
					<u> </u>		₩-										_		_
		10			<u> </u>	-													_
		+		ł			₩										_		_
				ł			╋╌											_	_
				ł											-			-	_
				ł		-												_	_
				ł			1											_	_
		-15		ł			╋╌											_	_
				ł			₩-											_	_
				ł															_
				ł			₩-											_	_
				ł															-
		-20		ł			₩											_	_
				ł			H	,										_	-
				ł	-	2	+												_
				ł	<u> </u>														-
				ł			₩-												-
		10		ł			-	,											_
		17		ł				;										_	-
				ł															-
				ł			1											_	-
				ł			-	•										_	-
				ł															
		-30		ł												-	-		-
				ł				•											-
				ł															
				ł	<u> </u>			•									_		-
				ł														1	
		-35		ł				-											
	Ni	ivel d	agua				Amo	strador			Revesti	mento Ø	03			Data	a de exec	ução	
Inicial	0,0	00	m	02/12	/2014		Ø	interno	35	mm		Peso	65,0	kg		Inic	io 02/12/	2014	
Final	0,0	00	m	05/12	/2014		Øe	externo	51	mm	Altur	a de queda	75,0	cm		térmir	no 05/12/	2014	
(Obs:	-						F . C		10				-		100/00/00	4.5.7		
sondador		rian	CISCO	Loret	0			eng	Dani	el Dan	lasceno				-	12/201	14 roina	02	

						SERVS	EOLO MEACORT	TDM		Cliente: Obra: Local:	Geobrasileira Terminal de Grã Porto Velho	os PortoChi	uello - AM	IAGGI		
	*	z			F.c.			E	Relatór	io de Sondag	gem	Nº 0	0307-0	003		
ment	1 See	So R	AN O	tras	10 C	SPT	the second	ST BL	Furo SD 03	Cota	49.25		30 (m finais		
Ness I	opo	ela:	0 EQ	Amos	dice	ndior Vision	Amos	6		dard December No.	Ted		30	cm inick	ais	
Re	Mél	8	a		- E.			Prof.	Camadas -	classificação do	s solos 0	10	20	30	40	50
0		40		1	29	40	П		Sector Sector			-	-	+		-
0					20	42	1	-2	Silte arenoso de cor	avermelhado.	Compacidade:		_	:	1	
					23		11-	40,45	compacto	a maice comp			_	-	/	
					<u> </u>	<u> </u>	H -	-			-		_	-		-
						-	1 -	•					_	_	_	_
		sр			<u> </u>	-	₩-	22			-					_
							₩-	•								
						~	₩									
							₩									
							4									
		0														
		-1														
								-								
								•••								
		2					1	-						-		
							1	•0.						-		
							1									
							1	5						-		
					<u> </u>	-	H -	-23					_			-
					<u> </u>	<u> </u>	╋╌	•					_	_	_	-
		-20				<u> </u>	₩-	•						_		_
						-	₩-							_	_	_
						<u> </u>	₩-						_	_	_	
							₩	-					_	_	_	
							4									
		-25														
								24 20								
		0														
		ė					1	-2								
								•3								
								2								
								•						-		
					<u> </u>			-0						-		-
		32					-							-	_	_
		and of					1	- hered		ortimorte d			Det			_
Tele I	0	no no	agua				Amo	interno	2E mm	escimento (0 650 km		Inicio	29/11/1	ça0 2014	
IniCal Final	0,	00	m				0	externo	51 mm	ltura de qued	a 75.0 cm		término l	01/12/2	2014	
rinal	Obs:						D.C.	AUCT NO	34 HILL P	india de queb						
Sondador		Fran	cisco	Loret	0			Eng ^e	Daniel Damasce	no		12/1	2/2014	Folha	02	

						SERVS	OLO MARCERI	пъя	Cliente: Geobrasileira Obra: Terminal de O Local: Porto Velho	irãos PortoChuello - AMAGGI
0	8	N						(iii)	Relatório de Sondagem	Nº 00307-0004
Iment	D ava	sção R	AN OF	\$rds	de Sp 430an	e SPT (30am	stras	seper	Furo SP 04 Cota 41,30	30 cm finais
levest	opq	ta rela	000	Amo	ncial	Indo	Amo	-B	SPT - Standart Penetration Test	30 cm iniciais
	M	8			-	199		Prof	Camadas - Classificação dos solos	0 10 20 30 4
				1	5	7				
				2	5	7			Areia fina argilosa de cor preta. Compacidade:	
				3	5	6		3	Pouco compacta à compacta.	
				4	17	22		4.00		and the second
		36,3		-	15	16		4,80	Areia grossa cor variegada.Compacidade:*MdC	
				s	15	16		8		
				7	15	17				
				8	16	17			Areia grossa e média de cor amarelada.	
				9	16	17			Compacidade: Medianamente compacta.	
		2		10	14	15		-		
		31		31	11	13		11.00		1
				12	7	9				
				13	6	7				
				14	5	3				
				15	1	0		-	Areia fina argilosa de cor preta. Compacidade:	
		6.3		16	1	0		8	Medianamente compacta à Fofa.	1
				17	1	0				
				18	1	0			State of the second state of the second	
				19	11	13		18,50		
				20	12	16			Areião de cor variegada. Compacidade:	I III
		m		21	14	18		•	Medianamente compacta.	
		21,		22	14	18		. 21,00		
					16	19		5		
				24	16	10		•	Auris free surface do ese second de	
				20	17	10		-0	Compacidade: Medianamente compacta à	
1					10	22			compacta.	
		6,3		2	10	22		-3		
		-			15			27.60		
				1	15	10	1	•		if it
				2	15	1/				1
					22	30		•		
		10		31	22	31		8		
		11.		34	22	31		8	Silte arennen de cor avermelhada. Compacidades	
				3	22	31		•	Medianamente compacta à compacta.	
				34	18	25	-	6		
				35	20	28		•		
				36	21	29				
		2		37	23	31		1		<u> </u>
	N	0	-	38	24	32	Amo	38,00	Reportingento di A.S. I	Data da avagueño
Inicial	0.0	veld 10	m				Ø	interno	35 mm Peso 65.0 km	Inicio 24/11/2014
Final	0,0	0	m				0	externo	51 mm Altura de queda 75.0 cm	término 28/11/2014
(Obs:	Lam.	ďág	jua: 7	,95 / An	nostras 1	8 a 20) não re	cuperadas. *MdC - Medianamente compacta / Co	ta da lâmina d'água: 49,25.
Sondador		Fran	cisco	Loret	0			Eng ^e	Daniel Damasceno	12/12/2014 Folha 01

						SERVS	NEMCÉRI A	TDA		Cliente: Obra: Local:	Geobrasileira Terminal de O Porto Velho	Grãos PortoCh	uello - AMAGG	Ξ
8	8	N.			te		÷	(E)	Relatório	de Sondage	m	N° (00307-0004	L.
stment	lo dava	elação R	AN OD B	mostras	ce de S ^o ais/300	dice SPT %4/3.0cm	nostras	amadas	Furo SP 04	Cota	41,30		30 cm fin 30 cm in	ais iclais
Rev	Métoc	80	8	A	ind in	38	A	Prof. C	SPT - Standa Camadas - Cla	rt Penetration T	rest	0 10	20 30	40 5
				35	25	35	П			anna agus ass s			1	
				40	26	38			The state of the				1	\mathbf{X}
				41	29	40			1.1.1.10	- 22			1	
				42	29	42			Silte arenoso de cor av Compacta à	ermelhada. O muito compa	Compacidade: cta.			
		36,3		43	29	44			S. Mark					$\langle \rangle$
				44	30	45	╟		The State of the					
				45	32	46	-	45,45		- 1- 6	1.2.2.2.2	-	1	
				-			╢		T Termi	no do turo				
				ł		<u> </u>								
		31,3		ł										
				ł			1	•						
				ł										
								•						
		26,3		[
							-							
							╇							
		21,3		-			⊬							
						<u> </u>								
						<u> </u>	H-							
				ł										
				ł										
		16,3												
		11,3						2						
													_	
						<u> </u>								
		6,3												
	Ni	vel d	agua	6			Amo	strador	Revest	imento Ø	03 *		Data de exe	cução
Inicial	0,0	00	m				Ø	interno	35 mm	Peso	65,0 kg		Inicio 24/1	1/2014
Final	0,0	00	m				Øe	externo	51 mm Alta	ira de queda	75,0 cm	U	término 28/1	1/2014
Sondador	ODS:	Fran	cisco	Loret	D			Eng ^o	Daniel Damasceno			12/	12/2014 Folha	02

ANEXO II - ENSAIOS DE LABORATÓRIO

1. ENSAIOS DE CARACTERIZAÇÃO

AMOSTRA SP 301 – AM 3 M

Profundidade: 7,10 a 7,80m

	UMIDADE	HIGROSCO	ÓPICA					PENEI	RAMENTO				
Cápsula no.	(g.)	178	250	280	PENE	IRAS		MATERIAL R	ETIDO	% (QUE	-	
Solo umido +	tara (g.)	88,05	84,16	81,51	A.B.	N.T.	Peso	P.acumul	%	PASSA:	amostra	Fa	ixa
Solo seco + ti	ara (g.)	87,53	83,70	81,06	N 0.	mm.	(gr.)	(gr.)	acumul	to	tal		
l ara da caps	ula (g.)	11,68	13,32	10,92	4"	101,8				-			
Agua	(g.)	0,52	0,46	0,45	3 .1/2 "	88,9	2	2 8					
Solo Seco	(g.)	/5,85	70,38	70,14	3	76,2	-	-		+			
l eor de umid	ade (%)	0,7	0,7	0,6	2.1/2	63,5	-			-			
Unidade Med	ula (%)	2	0,7		2	50,6	1						
				1	1.1/2	30,1	-	2 8		-			
AN Antonia Tata	NOSTRA TO	TAL SECA	4 004 70	1	1	25,4				-			
Amostra Tota	ii Umida (g)	(-)	1.001,70	1	3/4	19	-	š		- 6: 			
Solo Seco ret	udo na # 10	(g)	0,00	1	1/2	12,7	5	de Esta					
Solo Umido p	assa na # 1	u (g)	1.001,70	1	3/8	9,5				-	9		
solo Seco pa	issa na # 10	(g)	995,13	1	1/4	6,3		1					
Amostra Tota	ai Seca (g)		995,13	1	4	4,8	A			+		<u> </u>	
			e)	ř	0	2,4	2			40	0.0		
AIVIN	USTRA PAR	CIAL SEU	70.00	1	10	2	0.00			10	0,0		
Amostra men	or #10 eeca	a (g)	60.54	1	30	1,2	0,00	. 8		10	0,0		
interior de Lieu	ioi #10 3608	(9)	00,04	1	30	0,0	0,00	-		10	0,0		
umite de Liqu	uldez		24,2	1	40	0,42	0,00	0.1	0.1	10	0,0		
nuice de Plas	Suciuade		7,0	Í.	100	0,25	0,08	0,1	0,1	95	,,J		
			. 1	1	100	0,15	0,19	0,3	0,4	99	7,0 0.0	-	
MAS	SOA ESPEC	IFICA REA		1	200	0,075	7,50	7,8	11,2	88	o,d	ļ	
ricnometro, r	(%0)	17.4	17.4	Í -									
Pie + érrer		700.57	707.47	Í	(1) (1)			î		28 	ç		
Fic.+ agua +	solo (ĝ)	50.00	50.00	1		anaimat C	ç î.	12		$K = \frac{c}{c}$	=	1,5	575
Solo Umido(g	0	50,00	50,00	ł –	L De	msimetro n.º		12		0.	- 1		
5010 Seco (g))	49,67	49,67	i i									
ric.+ agua (g) ada (a`	669,05	6/5,86	i i									
ngua Desloca	aua (g)	18,15	18,06	i i									
Neer de umid	ade (%)	0 00000	0.0000	Í -									
Massa Espe	cifica Peal	2,734	0,9988	1	2 1.000 m					<u> </u>			
ndood Espec	t_/3-	2,134	2,141	l I	% da	amostra parcia	al=A x K x	LC		A	=	0,0	144
ρ	[g/cm ⁻]	2,7	41	i i		n. n.c.vo.2296 ()				L			
					OCDU IS	NTACÃO CON	DEEL OCT						
922.944	T.	T	h		SEDIME	INTAÇÃO COM	DEFLOCU	LANIE	A12			-	
Data	Temp.	Tempo	norârio	Leit.	-	Correções		Leit.	Altura de	%	%	1	E
04/00/00 10	°c	min.	h	(L)	temperatura	menisco	defloculant	e corrig.	Queda	parcial	total	m	m
01/06/2018	19,9	0,5	8:40	40,0	-3,7	0,5	-2,0	34,8	10,4	/8,8	/8,8	0,0	598
01/06/2018	19,9	1	8:41	35,0	-3,7	0,5	-2,0	29,8	11,2	67,5	67,5	0,0	442
01/06/2018	19,9	2	8:42	27,0	-3,7	0,5	-2,0	21,8	12,5	49,4	49,4	0,0	332
01/06/2018	19,9	5	8:45	21,0	-3,7	0,5	-2,0	15,8	13,5	35,8	35,8	0,0	219
01/06/2018	19,8	10	8:50	18,0	-3,7	0,5	-2,0	12,8	14,0	28,9	28,9	0,0	158
01/06/2018	19,6	20	9:00	16,0	-3,8	0,5	-2,0	10,7	14,4	24,2	24,2	0,0	113
01/06/2019	19,6	40	9:20	14,0	-3,8	0,5	-2,0	8,7	14,7	19,7	19,7	0,0	081
01100/2010		00	10:00	13,0	-3,8	0,5	-2,0	7,7	14,9	17,4	17,4	0,0	058
01/06/2018	19,6	00	40.40	11,0	-3,7	0,5	-2,0	5,8	15,2	13,1	13,1	0,0	034
01/06/2018	19,6 19,8	240	12.40	and the second se	 Internet (1990) 11 		2.0	4.0	15.4	10.0	 Control (CC) 	0.0	023
01/06/2018 01/06/2018 01/06/2018	19,6 19,8 19,8 19,9	240 540	12:40	10,0	-3,7	0,5	-2,0	4,8	10,4	10,9	10,9	0,0	01.0
01/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018	19,6 19,8 19,9 19,9 19,8 19,9 19,8	240 540 1440	16:40 8:40	10,0 8,0	-3,7 -3,7	0,5	-2,0	4,8	15,7	10,9 6,3	10,9 6,3	0,0	014
01/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018	19,6 19,8 19,8 19,9 19,8	240 540 1440	16:40 8:40	10,0 8,0	-3,7 -3,7	0,5 0,5	-2,0	4,8	15,7	10,9 6,3	10,9 6,3	0,0	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018	19,6 19,8 19,8 19,9 19,8 19,8 Pedre	240 540 1440	12:40 16:40 8:40 Areia	10,0 8,0 Grossa	-3,7 -3,7 Areia I	0,5 0,5 Média	-2,0 -2,0 Areia	4,8 2,8 a Fina	15,7 Silte	6,3	10,9 6,3	0,0 0,0 Argila	014
01/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018	19,6 19,8 19,9 19,9 19,8 19,8 19,9 19,8 19,8 0	240 540 1440 gulho	12:40 16:40 8:40 Areia (10,0 8,0 Grossa .0	-3,7 -3,7 Areia I 0,	0,5 0,5 Média 3	-2,0 -2,0 Areia	4,8 2,8 a Fina 0,8	15,7 15,7 Silte 69,4	6,3	10,9 6,3	0,0 0,0 Argila 9,5	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018 Tipo % total	19,6 19,8 19,8 19,9 19,9 19,9 19,9 Pedre 0 0	240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia 0	10,0 8,0 Grossa ,0	-3,7 -3,7 Areia 0, 2	0,5 0,5 Média 3 1,1	-2,0 -2,0 Areia 2	4,8 2,8 a Fina 0,8	15,7 15,7 Silte 69,4 69,4	6,3	10,9 6,3	0,0 0,0 Argila 9,5 9,5	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 Fipo % total	19,6 19,8 19,8 19,9 19,8 19,8 19,8 19,8 0 0	240 240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia (10,0 8,0 Grossa ,0	-3,7 -3,7 Areia 0, 2	0,5 0,5 Média 3 1,1	-2,0 -2,0 Areia	4,8 2,8 a Fina 0,8 Pene	15,7 15,7 Silte 69,4 69,4	6,3	10,9 6,3	0,0 0,0 Argila 9,5 9,5	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018	19,6 19,8 19,8 19,9 19,8 19,8 19,8 0 0	240 240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia 0	10,0 8,0 Grossa ,0	-3,7 -3,7 Areia I 0, 2	0,5 0,5 Média 3 1,1	-2,0 -2,0 Areia 2	4,8 2,8 a Fina 0,8 Pene	15,7 Silte 69,4 69,4	6,3	10,9 6,3	0,0 0,0 Argila 9,5 9,5	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018 fipo % total	19,6 19,8 19,8 19,9 19,8 19,8 19,8 0 0	au 240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia 0	10,0 8,0 Grossa ,0	-3,7 -3,7 Areia I 0, 2	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 40	4,8 2,8 a Fina 0,8 Pene	15,7 Silte 69,4 69,4 iras	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5	014
01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 fipo 6 total 6 total	19,6 19,8 19,8 19,9 19,8 19,8 19,8 0 0	240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia 0	10,0 8,0 Grossa ,0	-3,7 -3,7 Areia 0, 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 40	4,8 2,8 a Fina 0,8 Pene 0 20 0	15,7 Silte 69,4 69,4 iras 10 4 0 4	3/8 1,	10,9 6,3	0,0 0,0 Argila 9,5 9,5 11/2 2*	014 0-0-0
01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 7/06/2018 02/06/2018	19,6 19,8 19,9 19,9 19,8 19,8 Pedre 0 0	240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia (10,0 8,0 Grossa ,0	3.7 3.7 Areia 0, 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 20 60 44	4,8 2,8 a Fina 0,8 Pene 0 20	15,7 15,7 Silte 69,4 69,4 iras 10 4 0 0	3/8 1	10,9 6,3	Argila 9,5 9,5 11/2 2"	014 0-0-0
01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 02/06/2018 6 total	19,6 19,8 19,8 19,9 19,9 19,8 19,8 Pedre 0 0	240 540 1440 gulho 0 0	12:40 16:40 8:40 Areia (0	10,0 8,0 Grossa ,0	-3.7 -3.7 Areia 1 0, 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 20 60 44	4,8 2,8 a Fina 0,8 Pene	15,7 Silte 69,4 69,4 10 4 0 4	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2"	014 0 -0-0
1/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 ipo % total 100 90 80	19,6 19,8 19,8 19,9 19,8 19,9 19,8 Pedre 0 0 0	240 240 540 1440 0 0 0	12:40 16:40 8:40 Areia (10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 22 60 40	4,8 2,8 a Fina 0,8 Pene 0 20	15,7 15,7 Silte 69,4 69,4 iras 10 4 0 4	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2"	014 0-0-0
100/07/016 01/06/2018 01/06/2018 01/06/2018 02/06/2018 100 6 total 100 90 80	19,6 19,8 19,8 19,9 19,8 19,8 Pedre 0 0 0	240 240 540 1440 0 0 0	12:40 16:40 8:40 Areia (10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 44	4,8 2,8 a Fina 0,8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2*	014 0-0-0
1/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 into an intervention of the second	19,6 19,8 19,8 19,8 19,8 19,8 0 0	240 540 1440 gulho 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 44	4.8 2.8 a Fina 0.8 Pene 0 20	15,7 Silte 69,4 69,4 10 4 0 4 0 4	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5 11/2 2" 0 0 0 0 0 0 0 0 0 0 0 0 0	014
1100/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 100 % total 100 90 80 70 70	19,6 19,8 19,8 19,8 19,9 19,8 19,8 19,8 0 0 0 0	240 540 1440 gulho 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areii 2 60 44	4.8 2.8 a Fina 0.8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3 /2 1*	0,0 0,0 9,5 9,5 11/2 2*	014
100/02/018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 02/06/2018 100 % total 100 90 80 70 60	19,6 19,8 19,8 19,9 19,8 19,8 Pedre 0 0 0	240 240 540 1440 gulho 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 44 -0 6	4.8 2.8 a Fina 0.8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2*	014
100/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 6 total 6 total 90 90 80 80 80 80 80 80 80 80 80 80 80 80 80	8 19,6 9 19,8 9 19,8 9 19,8 19,8 19,8 Pedre 0 0 0	240 240 540 1440 gulho 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 2 60 44	2,8 a Fina 0,8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3 /2 1*	0,0 0,0 Argila 9,5 9,5 9,5 11/2 2 [*] 0 0 0 0 0 0 0 0 0 0 0 0 0	014
1106/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 ippo % total 100 90 80 70 80 50	19,6 19,8 19,8 19,8 19,8 19,8 19,8 19,8 0 0 0 0	240 240 540 1440 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100 9	-2,0 -2,0 Areia 22 60 44	4,8 2,8 a Fina 0,8 0,8 9 0 20 0 0	15,7 Silte 69,4 69,4 10 4 0 4 0 0	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2* 0 0 0 0 0 0 0 0 0	014
100/02/01 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 02/06/2018 00 % total 100 90 80 (%) 70 00 01 01/06/2018 00 90 80 00 00 00 00 00 90 80 00 00 01	19,6 19,8 19,8 19,8 19,9 19,8 19,8 19,8 0 0 0 0	240 240 540 1440 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa 	-3.7 -3.7 Areia 0. 2 200	0,5 0,5 Média 3 1,1 140 100 0 0	-2,0 -2,0 Areia 2: -2,0 -2,0 -2,0 -2,0 -2,0 -2,0 -2,0 -2,0	2,8 a Fina 0,8 Pene 0 20 C	15,7 Silte 69,4 69,4 69,4 10 4 0 4 0 4 0 1 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5 9,5 11/2 2 [*] 0 0 0 0 0 0 0 0 0 0 0 0 0	014
1006/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 02/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 00/	19,6 19,8 19,8 19,9 19,8 Pedre 0 0 0	240 240 540 1440 0 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa ,0	-3.7 -3.7 Areia 0. 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 22	4.8 2.8 a Fina 0.8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 11/2 2*	014 0 0 0 0
100/02/018 01/06/2018 00/00000000	19,6 19,8 19,8 19,8 19,8 19,8 Pedre 0 0 0	240 240 540 1440 gulho 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 2 60 44	4,8 2,8 3 Fina 0,8 Pene 0 20 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5 9,5 11/2 2* 0 0 0 0 0 0 0 0 0 0 0 0 0	014
100/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 00/0	19,6 19,8 19,8 19,8 19,8 19,8 19,8 19,8 19,8 Pedre 0 0	240 240 540 1440 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 2 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 2 60 44	4,8 2,8 a Fina 0,8 D.8 Pene D 20 O O	15,7 15,7 Sitte 69,4 69,4 10 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	3/8 1	10,9 6,3	0,0 0,0 9,5 9,5 9,5 11/2 2* 0 0 0 0 0 0 0 0 0	9-00
100/2016 01/06/2018 01/06/2018 01/06/2018 02/06/2018 02/06/2018 00 % total 100 90 80 (%) 70 80 60 30 30 20	19,6 19,8 19,8 19,8 19,9 19,8 19,8 19,8 0 0 0 0	240 240 540 1440 0 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2: 60 44	2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8	15,7 Silte 69,4 69,4 69,4 10 4 0 4 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	3/8 1	10,9 6,3	0.0 0.0 Argila 9,5 9,5 9,5 11/2 2° 0 0 0 0 0 0 0 0 0 0 0 0 0	014
100/07/01 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 00/06/2018 01/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 00/06/2018 <td< td=""><td>8 19,6 9 19,8 9 19,8 9 19,8 19,8 19,8 0 0 0 0 0</td><td>240 240 540 1440 0 0 0</td><td>12:40 16:40 8:40 Areia (0</td><td>10,0 8,0 Grossa .0</td><td>-3.7 -3.7 Areia 0. 20 200</td><td>0,5 0,5 Média 3 1,1 140 100 0 0 0 0 0 0 0</td><td>-2,0 -2,0 Areia 22</td><td>4.8 2.8 a Fina 0.8 Pene 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>15,7 15,7 Silte 69,4 69,4 10 4 0 0 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>3/8 1</td><td>10,9 6,3</td><td>0,0 0,0 Argila 9,5 9,5 9,5 11/2 2[*] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>014</td></td<>	8 19,6 9 19,8 9 19,8 9 19,8 19,8 19,8 0 0 0 0 0	240 240 540 1440 0 0 0	12:40 16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 20 200	0,5 0,5 Média 3 1,1 140 100 0 0 0 0 0 0 0	-2,0 -2,0 Areia 22	4.8 2.8 a Fina 0.8 Pene 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5 9,5 11/2 2 [*] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	014
100 0106/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 00 90 % total 0 90 80 90 80 90 50 88 40 90 30 20 10	19,6 19,8 19,8 19,9 19,9 19,8 Pedre 0 0 0	240 240 540 1440 0 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0, 200	0,5 0,5 Média 3 1,1 140 100	-2,0 -2,0 Areia 2 60 44	2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8	15,7 15,7 Silte 69,4 69,4 10 4 0 0 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3/6 1	10,9 6,3	0.0 0.0 Argila 9,5 9,5 11/2 2* 0 0 0 0 0 0 0 0 0 0 0 0 0	014
100 0106/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 01/06/2018 0 100 90 % total 0 90 80 90 50 80 0 20 10 10 0	8 19,6 9 19,8 9 19,9 9 19,9 9 19,9 9 19,9 19,9 19,9 19,9 0 0 0 0 0 0 0 0 0 0 0 0 0	240 240 540 1440 0 0 0	16:40 8:40 Areia (0	10,0 8,0 Grossa .0	-3.7 -3.7 Areia 0. 2 200	0,5 0,5 Média 3 1,1 140 100 0	-2,0 -2,0 Areia 2 2 60 44	4,8 2,8 a Fina 0,8 0.8 0 0 20 0 0	15,7 15,7 Silte 69,4 69,4 10 4 0 0 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3/8 1	10,9 6,3	0,0 0,0 Argila 9,5 9,5 11/2 2° 0 0 0 0 0 0 0 0 0 0 0 0 0	014

		LIMITE DE LIQ	UIDEZ - NBR 6459/2	016		
Cápsula nº)	11	12	13	14	15
Peso da Ca	ápsula + Solo Úmido (g)	22,70	23,74	23,24	21,22	21,81
Peso da Ca	ápsula + Solo Seco (g)	19,91	20.87	20,70	18,97	19,35
Peso da Ág	gua (g)	2,79	2,87	2,54	2,25	2,46
Peso da Ca	ápsula (g)	8,73	9,18	10,25	9,53	8,91
Peso do Se	olo Seco (g)	11,18	11,69	10,45	9,44	10,44
Teor de Ur	midade (%)	25,0	24,6	24,3	23,8	23,6
Nº de Golp	es	15	21	25	31	35
		LIMITE DE PLAST	ICIDADE - NBR 718	0/2016	8	
Cápsula nº	•	11	12	13	14	15
Peso da Ca	ápsula + Solo Úmido (g)	7,44	7,59	7,22	7,10	7,50
Peso da Ca	ápsula + Solo Seco (g)	7,12	7,26	6,90	6,77	7,22
Peso da Ág	gua (g)	0,32	0,33	0,32	0,33	0,28
Peso da Ca	ápsula (g)	5,32	5,35	5,10	4,92	5,48
Peso do Se	olo Seco (g)	1,80	1,91	1,80	1,85	1,74
Teor de Ur	nidade (%)	17,8	17,3	17,8	17,8	16,1
Valor Aceit	lo?	SIM	SIM	SIM	SIM	NÃO
		6	GRÁFICO			
					RESULTADOS	
				LIMITE DE LIQU	IDEZ(%)	24,2
				LIMITE DE PLAS	STICIDADE(%)	17,2
				ÍNDICE DE PLAS	STICIDADE(%)	7,0
TEORDE UMIDADE(%)	24,8 24,6 24,4 24,2 24,0 23,8					
	23,6		>			
	10	20	30 40	50 6	0 70 80	90
2	17 1	NÚMERO DE GOLPES	5			

AMOSTRA SP 301 – AM 6 M

Profundidade: 10,10 a 10,80m

Cánordo	UMIDADE H	IIGROSCO	DPICA					PENEI	RAMENTO				_
sapsula no.	(g.)	126	139	154	PENE	EIRAS	1	MATERIAL F	RETIDO	% 0	DUE		_
Solo umido + t	ara (g.)	99,12	79,98	91,16	A.B.	.N.T.	Peso	P.acumul	%	PASSA	amostra	Fa	lixa
Solo seco + tar	a (g.)	98,70	79,67	90,81	N 0.	mm.	(gr.)	(gr.)	acumul	tol	tal		_
Tara da capsul	a (g.)	13,19	12,82	14,73	4"	101,8				-		-	
Agua Sala Car	(g.)	0,42	0,31	0,35	3 .1/2 "	88,9	-			-		1	
Solo Seco	(g.)	85,51	66,85	76,08	3	76,2				-			
Inidade Médi	uer (%)	0,5	0,5	0,5	2.1/2*	50.0						1	
	- ()0]	2	0,0	100	1 1/2 "	38.1				-		-	
AMO	OSTRA TOT	AL SECA		S (1"	25.4		-					
Amostra Total	Úmida (g)		463,62		3/4 *	19							-
Solo Seco retic	do na # 10 (g)	0,00		1/2*	12,7			-				_
Solo Úmido pa	issa na # 10	(9)	463,62		3/8''	9,5							
Solo Seco pas	sa na # 10	(g)	461,44		1/4"	6,3							
Amostra Total	Seca (g)		461,44	I. I	4	4,8							
					8	2,4						<u> </u>	
AMO	STRA PAR	CIAL SECA	4		10	2				100	0,0		
Amostra meno	r #10 úmida	(g)	70,00	0	16	1,2	0,00		2	100	0,0	-	
mostra meno	1 #10 56C8 (91	09,67		30	0,6	0,00			100	0,0	-	
Indice de Dice	lieidada		29,6		40	0.95	0,00	0.0	0.1	100	0,0		
nuice de mast	BUBDIN		11,8		100	0.15	0,04	0,0	0,1	99			_
MAS	SAESPECÍ	FICA REA		ř i	200	0,075	0,51	0.7	0.9	99	.1		_
Picnômetro nº		17	18		L 200	3,010	0,01		0,0	33	,.	<u> </u>	_
Temperatura (°c)	17,1	17,1										
Pic.+ água + s	olo (g)	764,10	754,93							r 8	5	21	
Solo úmido(g)		50,00	50,00	1 0	D	ensimetro n.º	0	2		$K = \frac{1}{\delta}$	- 1 =	1,3	313
Solo Seco (g)		49,77	49,77	1					8	19 1			
Pic.+ água (g)		732,43	723,29	1									
Agua Deslocad	la (g)	18,09	18,12	1									
Teor de umida	de (%)	0	,5										
Massa Especi Massa Especi	fica Real	0,9988	0,9988	į.					2	100 m		<u>82</u>	
nassa Especii	la(cm ³)	2,140	2,143		% da	amostra parcia	al=AxKx	LC		A	=	0,0	14
ų	Birrin 1	2,1	-10	12 2					la de la della			L	
					SEDIME	NTAÇÃO COM	DEFLOCU	LANTE		1.0			_
Dete	Temp.	Tempo	horário	Leit.		Correções		Leit	Altura de	%	%		F
Data	°c	min.	h	(L)	temperatura	menisco	defloculante	corrig.	Queda	parcial	total	п	ım
01/06/2018	19,9	0,5	8:47	46,0	-3,7	0,5	-2,0	40,8	9,4	92,1	92,1	0,0	56
01/06/2018	19,9	1	8:48	41,0	-3,7	0,5	-2,0	35,8	10,2	80,8	80,8	0.0	41
01/06/2018	19,9	2	8:49	36,0	-3,7	0,5	-2,0	30,8	11,1	69,5	69,5	0,0	30
01/06/2018	19,9	5	8:52	28,0	-3,7	0,5	-2,0	22,8	12,4	51,5	51,5	0,0	20
01/06/2018	19,8	10	8:57	23,0	-3,7	0.5	-2,0	17,8	13,2	40,1	40,1	0,0	115
01/06/2018	19,6	20	9:07	19,0	-3,8	0,5	-2,0	13.7	13,9	30,9	30,9	0,0	11
01/06/2018	19,6	40	9:27	16,0	-3,8	0,5	-2,0	10,7	14,4	24,2	24,2	0,0	108
01/06/2018	19,6	240	10:07	14,0	-3,8	0,5	-2,0	6,/	14,7	19,7	19,7	0,0	05
01/06/2018	19,8	24U 540	12:47	12,0	-3,/	0,5	-2,0	0,8	15,0	10.9	15,3	0,0	03
01/06/2019	19.8	1440	8:47	9.0	-3,7	0,5	-2,0	3.8	15,4	8.5	85	0,0	02
01/06/2018	and the second se	1140	0.11	010	5,1	010	0,12	0,0	1010	0,0	010	0,0	01
01/06/2018 02/06/2018					-	Módia	Areia	Fina	Silte	6		Argila	-
01/06/2018 02/06/2018	Pedrec	ulho	Areia (Grossa	Areia	MCUIA							
01/06/2018 02/06/2018 Tipo % total	Pedreç 0,0	julho)	Areia (0	Grossa ,0	Areia 0	,1	6	,4	83,3	6	1	10,2	
01/06/2018 02/06/2018 Tipo % total % total	Pedreç 0,0	julho))	Areia (0	Grossa ,0	Areia 0	1 6,5	6	,4	83,3 83,3	6		10,2 10,2	_
01/06/2018 02/06/2018 Tipo % total % total	Pedreg 0,1 0,1	gulho))	Areia (0,	Grossa ,0	Areia 0	6,5	6	,4 Penei	83,3 83,3 ras			10,2	
01/06/2018 02/06/2018 Tipo % total % total	Pedreg 0,1	gulho))	Areia (0,	Grossa ,0	200	140 100	60 40	A Penei 20	83,3 83,3 ras	3/8 1/2	1"	10,2 10,2 11/2 2'	0
01/06/2018 02/06/2018 Tipo % total % total	Pedreg 0,1 0,1	gulho)	Areia (0	Grossa ,0	200	140 100	60 40	A Penei 20 O	83,3 83,3 ras	3/8 1/2	t"	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total	Pedreş 0,1	gulho	Areia (0	Grossa ,0	200	140 100	60 40	Penei	83,3 83,3 ras	3/8 1/2	1" 0 0	10,2 10,2 11/2 2*	о
01/06/2018 02/06/2018 Tipo % total % total	Pedre; 0,1	gulho	Areia (0	Grossa ,0	Areia 0	140 100	60 40	Penei:	83,3 83,3 ras	3/8 1/2	1" 0 0	10,2 10,2 11/2 2*	θ-
01/06/2018 02/06/2018 Tipo % total % total	Pedre	julho	Areia (Grossa ,0	200	140 100	60 40	Penei	83,3 83,3 ras	3/8 1/2	1" 0 0	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total	Pedre; 0,1 0,1	guiho))	Areia (Grossa ,0	200	140 100	60 40	Penei	83,3 83,3 10 4	3/8 1/2		10,2 10,2 11/2 2'	0
01/06/2018 02/06/2018 Tipo % total % total	Pedre: 0,1 0,1	julho))	Areia (0	Grosse ,0	200	140 100	60 40	Penei	83,3 83,3 ras	3/8 1/2	1" 1"	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedre: 0,1 0,1	guiho	Areia (0	Grosse ,0	200	140 100	60 40	Penei	63,3 83,3 ras	3/8 1/2 9	1" O O	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total	0,	guiho	Areia (0		200	140 100 	60 40 O O	20 0	83,3 83,3 10 4 0 0	3/8 1/2	1" O O	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedre; 0,/ 0,/	guiho D			200	140 100 	60 40	20 9	83,3 83,3 10 4 0 0	3/8 1/2	1" 0 0	10,2 10,2	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedre; 0, 0,	guiho D			200	140 100 - 0 0	60 40	4 Penei: 20 •	83,3 83,3 ras	3/8 1/2	urva Granulo	10,2 10,2	Q
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedre; 0, 0,	guiho			200	140 100 	6 40 • •	4 Peneii	83,3 83,3 ras	3/8 1/2	1" O O	10,2 10,2 11/2 2'	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedrej 0,j 0,1	guiho D			200		60 40	4 Penei 20 0	63,3 83,3 ras	3/8 1/2	urva Granulo	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedrej 0,j 0,				200		60 40 0 0	A Penei	83,3 83,3 10 4 0 0	3/8 1/2	urva Granuk	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total					200		60 40	A Penei	83,3 83,3 ras 10 4 0 0	3/8 1/2	arva Granulo	10,2 10,2 11/2 2*	0
01/06/2018 02/06/2018 Tipo % total % total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					200		60 40 0 0	A Penei	83,3 83,3 10 4 0 0	3/8 1/2	1" 1"	10.2 10,2 11/2 2*	0
01/06/2018 02/06/2018 71/po % total % total % total					200		60 40	A Penei:	83,3 83,3 10 4 0 0	3/8 1/2	arva Granulo	10,2 10,2 11/2 2' 	0

AMOSTRA SP 302 – AM 3 M

Profundidade: 3,0 a 3,80m

-	UMIDADE	HIGROSC	ÓPICA]				PENEI	RAMENTO				
Cápsula no.	(g.)	77	141	245	PENE	IRAS		MATERIAL F	RETIDO	% (DUE		
Solo umido + t	ara (g.)	95,44	105,03	102,79	A.B.	N.T.	Peso	P.acumul	%	PASSA:	amostra	Fa	ixa
Solo seco + ta	ra (g.)	94,80	104,33	102,12	N 0.	mm.	(gr.)	(gr.)	acumul	to	tal	<u> </u>	
Tara da capsu	la (g.)	10,98	13,01	12,15	4"	101,8	-			-		ļ	
Agua Rala R asa	(g.)	0,64	0,70	0,67	3.1/2	88,9			-	-			
Teor de umide	(9.) de (%)	03,62	0.8	0.7	2 1/2*	63.5		-		1			
Umidade Médi	a (%)	0,0	0.8	0,1	2"	50.8		-		-		-	
	1.12/		-10		1.1/2 "	38.1	1					<u> </u>	
AM	OSTRA TO	TAL SECA		1	1"	25,4	1		Ŭ.				
Amostra Total	Úmida (g)		712,96	1	3/4 "	19]		0	Ĵ.			-
Solo Seco reti	to na # 10 (g)	0,00		1/2*	12,7							
Solo Úmido pa	ssa na # 10) (g)	712,96		3/8"	9,5			[<u> </u>	
Solo Seco pas	sa na # 10	(g)	707,59		1/4"	6,3				6		<u> </u>	
Amostra Total	Seca (g)		707,59		4	4,8	-	5	8	19	ä	<u> </u>	
4110				í -	8	2,4	-		8	10			
Amostra meno	s #10 úmid	CIAL SEC	70.00		10	12	0.02	0.0	0.0	10	0,0	<u> </u>	
Amostra meno	r #10 umio. r #10 seca	(g)	69.47		30	0.6	0.00	0,0	0.0	10	0.0	-	
imite de Liqui	dez	(3)	25.1		40	0.42	0.00	0.0	0.0	10	0.0		
ndice de Plas	icidade		7.8	1	60	0.25	0.04	0,1	0.1	99	.9	<u> </u>	
					100	0,15	0,36	0,4	0,6	99	,4		
MAS	SA ESPEC	FICA REA	L]	200	0.075	8,70	9,1	13,1	86	.9		
Picnômetro. nº		15	16										
Temperatura (°c)	17,1	17,1							10			
Pic.+ àgua + s	olo (g)	671,43	652,06				1			$K = -\frac{\delta}{2}$	<u> </u>	1.5	574
Solo úmido(g)	_	50,00	50,00		De	ensimetro n.º	0	2		δ.	-1	200	9426 S
Solo Seco (g)		49,62	49,62										
Aque Doctor	ia (c)	19.07	620,53										
Agua Desloca Teor de umida	1a (g) de (%)	18,07	18,10										
Massa Espec	ifica (H2O)	0.9988	0.9988	1									
Massa Especi	ica Real	2,743	2,739									0.00	
ρ	[g/cm ³]	2,	741	1	% da	amostra pare	al=A xKx	LC		A	-	0,0	144
					55				21 21	(e)			
					SEDIME	NTAÇÃO CO	M DEFLOCU	LANTE					
Data	Temp.	Tempo	horário	Leit.		Correções	1.000	Leit.	Altura de	%	%	f	ť
2007120 5	*с	min.	h	(L)	temperatura	menisco	defloculante	corrig.	Queda	parcial	total	m	m
01/06/2018	19,8	0,5	8:54	39,0	-3,7	0,5	-2,0	33,8	10,6	76,5	76,5	0,0	804
01/06/2018	19,8	1	8:55	33,0	-3,7	0,5	-2,0	27,8	11,6	62,9	62,9	0,0	449
01/06/2018	19,8	2	8:56	27,0	-3,7	0,5	-2,0	21,8	12,5	49,3	49,3	0,0	333
01/06/2018	19,8	5	8:59	23,0	-3,7	0,5	-2,0	17,8	13,2	40,3	40,3	0,0	210
01/06/2018	10.6	20	9.04	16.0	-3,0	0,5	-2,0	10,7	10,9	24.3	24.3	0,0	113
01/06/2018	19.6	40	9:34	15.0	-38	0.5	-2.0	9.7	14.5	22.0	22.0	0.0	081
01/06/2018	19,6	80	10:14	13,0	-3.8	0,5	-2,0	7,7	14,9	17,5	17,5	0.0	058
01/06/2018	19,8	240	12:54	11,0	-3,7	0,5	-2,0	5,8	15,2	13,1	13,1	0,0	034
01/06/2018	19,9	540	16:54	10,0	-3,7	0,5	-2,0	4,8	15,4	10,9	10,9	0,0	023
02/06/2018	19,8	1440	8:54	9,0	-3,7	0,5	-2,0	3,8	15,5	8,5	8,5	0,0	014
		n		·	1911 - 1917 - 19 19	· ···		10 20 1		1997 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -		s	
Тіро	Pedre	gulho	Areia	Grossa	Areia	Média	Areia	Fina	Silte	č.	1	Argila	
% total	0,	0	0	,0	0,	3	23	3,5	66,0			10,2	
% total	0,	0			2	3,8		201005	66,0	8		10,2	
								Pene	eiras				
					200	140 10	0 60 40	20	10 4	3/8 1/	2 t*	11/2 2*	
100						1	0 0 0		• •	•			000
90													
					1								
80						-							+++
2					1								
%) 70					/						urva Granule	métrica	
60	-		_		1								
e P.													
B 50					¢							_	
40				/									
de 40				/									
2 30 -				1			_				_	_	
Po			and	8									
20		-											
10		-											
0									2				
0,001			0,01		(0,1		1		10			1
0,001			0,01),1 Diâmetr	o dos Grãos (1 (mm.)		10			

		LIMIT	TE DE LIQUIDE	Z - NBR 6459/2	2016		
Cápsula n	0		1	2	3	4	5
eso da C	apsula + Solo Úmido (g)		22,68	24,44	22,78	25,35	22,28
eso da C	ápsula + Solo Seco (g)		19,90	21,40	19,99	22,32	19,90
eso da Á	gua (g)	1	2,78	3.04	2,79	3,03	2,38
eso da C	ápsula (g)	1	9,57	9,80	8,94	9,80	9,95
eso do S	olo Seco (g)	1	10,33	11,60	11,05	12,52	9,95
or de U	midade (%)	1	26,9	26,2	25,2	24,2	23,9
de Gol	pes		15	19	25	30	35
		LIMITE	DE PLASTICID.	ADE - NBR 718	0/2016	1	
ipsula n	0		1	2	3	4	5
eso da C	àpsula + Solo Úmido (g)		7,02	6,77	7,14	6,46	6,78
eso da C	apsula + Solo Seco (g)		6,80	6,56	6,93	6,35	6,52
so da Á	gua (g)		0,22	0,21	0,21	0,11	0,26
so da C	apsula (g)		5,56	5,30	5,72	5,60	5,18
so do S	iolo Seco (g)	1	1,24	1,26	1,21	0.75	1,34
or de U	midade (%)	1	17,7	16,7	17,4	14,7	19,4
lor Acei	ito?		SIM	SIM	SIM	NÃO	NÃO
					ÍNDICE DE PLA	STICIDADE(%)	7,8
TEORDE UNIDADE(%)	27,0 26,5 26,0 25,5 25,0 24,5 24,0						
	23,5						
	10	20	3	0 44	0 50 0	60 70 80	90
		NUMER	O DE GOLPES				

AMOSTRA SP 302 – AM 6 M

Profundidade: 9,90 a 10,6m

	UMIDADE	HIGROSC	ÓPICA					PENEI	RAMENTO			
Cápsula no.	(g.)	77	174	245	PENE	IRAS	N	ATERIAL R	RETIDO	% (QUE	
Solo umido + t	tara (g.)	80,59	84,20	89,78	A.B.	N.T.	Peso	P.acumul	%	PASSA:	amostra	Faixa
Solo seco + ta	ira (g.)	80,29	83,90	89,49	N o.	mm.	(gr.)	(gr.)	acumul	to	al	
Tara da capsu	ila (g.)	10,98	12,02	12,15	4"	101,8		_				
Água	(g.)	0,30	0,30	0,29	3 .1/2 "	88,9						
Solo Seco	(g.)	69,31	71,88	77,34	3"	76,2				_		
Teor de umida	ade (%)	0,4	0,4	0,4	2 .1/2 "	63,5				_		
Umidade Méd	ia (%)		0,4		2"	50,8						
r					1.1/2 *	38,1						
AM	OSTRA TO	TAL SECA		1	1"	25,4				_		
Amostra Total	Úmida (g)		737,03	3	3/4 "	19						
Solo Seco reti	do na # 10 (g)	0,00		1/2 "	12,7						
Solo Úmido pa	assa na # 10) (g)	737,03		3/8"	9,5						
Solo Seco pas	ssa na # 10	(g)	734,03	4	1/4"	6,3						
Amostra Total	Seca (g)		734,03	4	4	4,8						
20			100.00000000		8	2,4						
AMC	STRA PAR	CIAL SEC	A		10	2				10	0,0	
Amostra meno	or #10 ůmida	a (g)	70,00		16	1,2	0,01	0,0	0,0	10	0,0	
Amostra meno	or #10 seca	(g)	69,72	2	30	0,6	0,03	0,0	0,1	99	,9	
Limite de Liqu	idez		32,9		40	0,42	0,02	0,1	0,1	99	,9	
Índice de Plas	ticidade		18,0		60	0,25	0,08	0,1	0,2	99	,8	
10.				2	100	0,15	0,08	0,2	0,3	99	,7]
MAS	SA ESPEC	FICA REA	L		200	0,075	0,31	0,5	0,8	99	,2	
Picnômetro. nº	0	23	24									
Temperatura ((°c)	18,9	19,1									
Pic.+ água + s	olo (g)	700,76	707,65							n 1		1.550
Solo úmido(a)	107	50.00	50.00		De	ensímetro n.º	02	2		$K = \frac{1}{\delta}$	-1 =	1,556
Solo Seco (a)		49.80	49.80									
Pic.+ água (g)	í i	668.77	675.59	5								
Água Desloca	da (o)	17.81	17.74	3								
Teor de umida	de (%)	0	4									
Massa Espec	lifica (H2O)	0.9985	0.9984	() ()								
Massa Especi	fica Real	2,792	2,803	<i>)</i>						1		
	Ia/cm ³ 1	2	709	2	% da	amostra parci	ial = A x K x L	C		A	=	0,0143
L P	[Brown]	-,	150	:0	2					10		
C					SEDIME	NTACÃO CO		ANTE				
C	Temn	Tempo	boràrio	Loit	GEDIWE	Correcões	NIDEI LOGOL	Loit	Altura de	0/_	0/_	f
Data	remp.	rempo	norano	Leit.	tomporatura	Coneções	deflecutente	Leit	Altura de	70	70 total	12
05/00/0040	G	min.	n	(L)	temperatura	menisco	defloculante	corng.	Queda	parcial	total	mm
05/06/2018	20,0	0,5	9:22	47,0	-3,7	0,5	-2,0	41,8	9,2	93,4	93,4	0,0550
05/06/2018	20,0	1	9:23	44,0	-3,7	0,5	-2,0	38,8	9,7	86,7	86,7	0,0401
05/06/2018	20,0	2	9:24	41,0	-3,7	0,5	-2,0	35,8	10,2	80,0	80,0	0,0292
05/06/2018	20,0	5	9:27	36,0	-3,7	0,5	-2,0	30,8	11,0	68,8	68,8	0,0193
05/06/2018	19,8	10	9:32	31,0	-3,7	0,5	-2,0	25,8	11,9	57,5	57,5	0,0142
05/06/2018	19,7	20	9:42	26,0	-3,8	0,5	-2,0	20,7	12,7	46,3	46,3	0,0104
05/06/2018	19,7	40	10:02	21,0	-3,8	0,5	-2,0	15,7	13,5	35,1	35,1	0,0076
05/06/2018	19,9	80	10:42	17,0	-3,7	0,5	-2,0	11,8	14,2	26,3	26,3	0,0055
05/06/2018	20,1	240	13:22	13,0	-3,6	0,5	-2,0	7,9	14,8	17,6	17,6	0,0033
05/06/2018	20,7	540	17:22	11,0	-3,4	0,5	-2,0	6,1	15,1	13,6	13,6	0,0022
06/06/2018	20,2	1440	9:22	10,0	-3,6	0,5	-2,0	4,9	15,3	10,9	10,9	0,0014
	a			10 - 10 0			10 - 10 - 10					
Тіро	Pedre	guiho	Areia (Grossa	Areia I	Média	Areia	Fina	Silte	K (Argila
% total	0,	D	0	,1	0,	2	4,9	9	81,9	F.		13,0
% total	0,	0			5	5,2			81,9	6		13,0
								Peneira	s			
					200	140 100	60 40	20 1	0 4	3/8 1/2	1" 11/2	2"
100					200	140 100	0 40			-0-0		0.00
100								l i		IN T		
90					1							
					1							
80	_			1								
-				/								
8 70				1						-O-Curvel	Tranulomátri	
8										-o-Cuiva (Jianuiometti	ca
Pas 00			ø									
¥ 50			1									
bu			1									
8 40												
at a			1									
2 30	-	1										
Po		1										
20		/										
	-											
10 6							and the second sec			1.1.1		the second se
	-											
	-											
0			0.01		0.1					10		100

		LIMITE DE LIQUIDE	- HOR 040012	010		
ápsula n	0	61	62	63	64	65
eso da C	Cápsula + Solo Úmido (g)	26,36	21,52	24,26	25,27	23,37
eso da C	Cápsula + Solo Seco (g)	22.67	18,56	20,56	21,59	19.98
so da Á	vgua (g)	3,69	2,96	3,70	3,68	3,39
so da C	Cápsula (g)	10,74	9,43	9,52	10,74	10,27
so do S	Solo Seco (g)	11,93	9,13	11,04	10,85	9,71
or de U	Imidade (%)	30,9	32,4	33,5	33,9	34,9
de Gol	pes	36	29	24	20	15
		LIMITE DE PLASTICIDA	ADE - NBR 718	0/2016	-	
psula n	lo .	61	62	63	64	65
so da C	Cápsula + Solo Úmido (g)	6,37	6,43	<mark>6,8</mark> 6	6,59	6,84
so da C	Cápsula + Solo Seco (g)	6.21	6,27	6,70	6,40	6,66
so da A	igua (g)	0,16	0,16	0,16	0,19	0,18
so da C	Cápsula (g)	5,11	5,22	5,65	5,23	5,44
so do S	iolo Seco (g)	1,10	1,05	1,05	1,17	1,22
or de U	Imidade (%)	14,5	15,2	15,2	16,2	14,8
lor Ace	ito?	SIM	SIM	SIM	NÃO	SIM
				1	RESULTADOS	
				LIMITE DE LIQU	RESULTADOS	00.0
						14.0
				ENVITE DE FLAS		14,9
	35,5					
	38.5		J			
	35,5 35,0 34,5					
0A.DE(%)	35,5 35,0 34,5 34,0					
DE UMIDADE(%)	35,5 35,0 34,5 34,0 33,5					
TEORDE UMIDADE (%)	35,5 35,0 34,5 34,0 33,5 33,0					
TEORDE UMIDADE(%)	35,5 35,0 34,5 34,0 33,5 33,0 32,5					
TEORDE UMIDADE(%)	35,5 35,0 34,5 34,0 33,5 33,0 32,5 32,0					
TEORDE UNIDADE(%)	35.5 35,0 34,5 34,0 33,5 33,0 32,5 32,0 31,5					
TEOR DE UMIDADE (%)	35,5 35,0 34,5 34,0 33,5 33,0 32,5 32,0 31,5 31,0					
TECRDE UNIDADE(%)	35,5 35,0 34,5 34,0 33,5 33,0 32,5 32,0 31,5 31,0 30,5					
TEORDE UNIDADE(%)	35,5 35,0 34,5 34,0 33,5 33,0 32,5 32,0 31,5 31,0 30,5 10	20 3			0 70 80	90

AMOSTRA SP 304 – AM 3 M

Profundidade: 11,75 a 12,45m

	UMIDADE	IGROSCO	PICA					PENEI	RAMENTO				
Cápsula no. (g.) 289 236		236	239	PENE	IRAS		MATERIAL RETIDO		% QUE				
Solo umido + t	tara (g.)	95,28	80,95	79,09	A.B.	N.T.	Peso	P.acumul	%	PASSA	amostra	Faix	ka
Solo seco + ta	ira (g.)	94,70	80,47	78,71	N o.	mm.	(gr.)	(gr.)	acumul	to	tal		
Tara da capsu	ila (g.)	14,76	12,08	13,98	4"	101,8		-					
Agua	(g.)	0,58	0,48	0,38	3.1/2 *	88,9							
x010 Seco	(g.)	79,94	68,39	64,/3	3	76,2		-		1			
eor de umida	ade (%)	0,7	0,7	0,6	2.1/2	63,5	-			1			
micade medi	10 (70)		0,7		1 1/2 "	29.1	-	-		2		-	
AM	OSTRA TO	AL SECA			1.02	25.4		-					
mostra Total	L'imida (a)	THE DEON	812 67		3/4 *	19							
Solo Seco reti	do na # 10 (a)	0.00		1/2*	12.7				1			
Solo Úmido pa	assa na # 10	(q)	812,67		3/8"	9,5				1			
Solo Seco pas	sa na # 10	(g)	807,25		1/4"	6,3				Ú.			
Amostra Total	Seca (g)	0111	807,25		4	4,8							
					8	2,4							
AMO	STRA PAR	CIAL SEC/	1		10	2				10	0,0		
Amostra meno	or #10 úmida	n (g)	70,00		16	1,2	0,00			10	0,0		
Amostra menor #10 seca (g)		69,53		30	0,6	0,01	0,0	0,0	10	0,0	-		
Limite de Liquidez		27,5		40	0,42	0,02	0,0	0,0	10	0,0	2		
ndice de Plasticidade 1:		13,9		60	0,25	0,03	0,1	0,1	99	9,9			
				100	0,15	0,14	0,2	0,3	99	9,7			
MASSA ESPECIFICA REAL				200	0,075	3,27	3,5	5,0	9	5,0			
ricnometro. nº	(P=1	21	22										
emperatura (Dic + ácura d	c)	702.04	743 76		3		1	5			s		
Fic.+ agua + solo (g) /02,04		50.00	50.00		D	anelmotro o G		02		$K = \frac{o}{S-1} =$		1,584	
Solo Seco (a) 40 67		49.67	49.67		Di	a latinou u n.*	1			0	15.50		
Pic.+ água (g)		670.73	712.29										
oua Deslocar	da (o)	18.35	18.20										
leor de umida	ade (%)	0	7										
Massa Espec	ifica (H2O)	0,9985	0,9985										
Massa Especit	fica Real	2,702	2,725		Dí da	amaatra aarai	ial = A w K u	10			2	0.01	44
ρ	[g/cm ³]	2,7	13		7e 0a	amostra parci		10		-	-	0,01	***
	1			8	10			309		22		92 92	
					SEDIME	NTAÇÃO CON	M DEFLOCU	LANTE		1	L		
Data	Temp.	Tempo	horário	Leit.		Correções	1312 000	Leit.	Altura de	%	%	f	
	°c	min.	h	(L)	temperatura	menisco	defloculant	e corrig.	Queda	parcial	total	mn	n
05/06/2018	19,8	0,5	9:29	42,0	-3.7	0.5	-2,0	36.8	10,1	83,7	83.7	0,05	93
05/06/2018	19,8	1	9:30	34,0	-3,7	0,5	-2,0	28,8	11,4	65,5	65,5	0,04	49
05/06/2018	19,8	2	9:31	29,0	-3,7	0,5	-2,0	23,8	12,2	54,1	54,1	0,03	30
05/06/2018	19,8	5	9:34	10.0	-3,7	0,5	-2,0	10,8	13,4	38,2	38,2	0,02	59
05/06/2018	10.7	20	9.39	16.0	-5,6	0,5	-2,0	10.7	14.4	24.5	24.5	0,01	14
05/06/2018	19.7	40	10:09	14.0	-3.8	0.5	-2,0	8.7	14.7	19.9	19.9	0.00	82
0010012010	10,7	00	10:49	13.0	-3.7	0.5	-2.0	7.8	14.9	17.8	17.8	0.00	58
05/06/2018	19.9	00		11.0	-3.6	0.5	-2.0	5.9	15.2	13.4	13.4	0.00	34
05/06/2018	19,9	240	13:29			0.5	-2.0	51	15.3	11.5	44.5		22
05/06/2018 05/06/2018 05/06/2018	19,9 20,1 20,7	240 540	13:29 17:29	10,0	-3,4						11,5	0,00	
05/06/2018 05/06/2018 05/06/2018 06/06/2018	19,9 20,1 20,7 20,2	240 540 1440	13:29 17:29 9:29	10,0 9,0	-3,4 -3,6	0,5	-2,0	3,9	15,5	8,9	8,9	0,00	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018	19.9 20,1 20,7 20,2	240 540 1440	13:29 17:29 9:29	10,0 9,0	-3,4 -3,6	0,5	-2,0	3,9	15,5	8,9	8,9	0,00	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018	19,9 20,1 20,7 20,2 Pedre	240 540 1440	13:29 17:29 9:29 Areia (10,0 9,0 Grossa	-3,4 -3,6 Areia I	0,5 Viédia	-2,0	3,9 a Fina	15,5 Silte	8,9	8,9	0,00 0,00 Argila	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018	19,9 20,1 20,7 20,2 Pedre 0,	240 540 1440 guilho	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I	0,5 Média 2	-2,0 Arei	3,9 a Fina 5,5	15,5 Silte 73,5	8,9	8,9	0,00 0,00 Argila 10,8	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 Fipo % total % total	19,9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 gulho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I 0, 1	0,5 Média 2 5,7	-2,0	3,9 a Fina 5,5	15,5 Silte 73,5 73,5	8,9	8,9	0,00 0,00 Argila 10.8 10,8	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 Fipo % total % total	19,9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guilho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I 0,	0,5 Média 2 5,7	-2,0	3,9 a Fina 5,5 Pene	15,5 Silte 73,5 73,5 eiras	8,9	8,9	0,00 0,00 Argila 10,8 10,8	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 7/po 6 total 6 total	19,9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guilho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I 0, 1	0,5 Média 2 5,7 140 100	-2,0 Areia 1	3,9 a Fina 5,5 Pene 0 20	15,5 Silte 73,5 73,5 ziras	8,9	/2 14	0,00 0,00 Argila 10.8 10,8 10,8	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 7/po 6 total 6 total 100	19,9 20,1 20,7 20,2 Pedre 0, 0,	00 240 540 1440 gulho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei 1	a Fina 5,5 Pene 0 20	15,5 Silte 73,5 73,5 2iras	3/8 1	/2 1*	0,00 0,00 Argila 10,8 10,8 11/2 2* 0 0 6	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018	19,9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 gulho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	3,4 3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	a Fina 5,5 Pene 0 20	15,5 Silte 73,5 73,5 2iras	3/8 1	/2 1 [•]	0,00 0,00 Argila 10,8 10,8 11/2 2* 0 0 0	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 7/06/2018 7/06/2018 7/06/2018 7/06/2018 7/06/2018 7/06/2018 7/06/2018	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Aroia (0	10,0 9,0 Grossa .0	3,4 3,6 Areia I 0, 1 200	0,5 Módia 2 5,7 140 100	-2,0 Arei	a Fina 5,5 Pene 0 20	15,5 Silte 73,5 73,5 2iras	3/8 1	/2 1*	0,00 0,00 Argila 10,8 10,8 11/2 2* 9 9 6	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 Fipo & total 100 90 80	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Módia 2 5,7 140 100	-2,0	a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 2iras 10 4 0 0	3/8 1	/2 14	0,00 0,00 Argila 10,8 10,8 11/2 2*	14) 0 0
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 Fipo % total 100 90 80	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 gulho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100 0 0 0 0 0 0 0 0 0 0 0 0	-2,0 Arei 1	3,9 a Fina 5,5 Pene 0 20 0 0	15,5 Silte 73,5 73,5 2iras	3/8 1	/2 1*	0,00 0,00 Argila 10.8 10,8 10,8	14 > 0 0
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 90 80 80 80 70	19.9 20,1 20,7 20,2 Pedre 0, 0,	ou 240 540 1440 200 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 2073 10 4 0 0	3,9	/2 1*	0,00 0,00 Argila 10.8 10.8 10.8 11/2 2* 0 0 6	14 > • • •
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 90 80 80 80 80 80 80 80 80 80 8	19.9 20,1 20,7 20,2 Pedre 0, 0,	ou 240 540 1440 0 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 10 4 9 0	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10.8 10.8 11/2 2* 0 0 6 0	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 \$ total \$ total \$ total \$ total \$ 00 \$	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia I 0,	0,5 Módia 2 5,7 140 100 0 0 0 0 0 0 0 0 0 0 0 0	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 73,5 10 4 0 0	3/8 1	/2 1*	0,00 0,00 Argila 10,8 10,8 11/2 2* 0 0 6 0 0 0	14 • 0 0
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 4 total 100 90 80 80 80 80 80 80 80 80 80 8	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Aroia (0	10,0 9,0 Grossa 0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 2iras 10 4 0 0	3/8 1	/2 1*	0,00 0,00 Argila 10,8 10,8 11/2 2* 0 0 6 0 métrica	14
05/06/2018 05/06/2018 05/06/2018 05/06/2018 06/06/2018 100 % total 100 90 80 80 80 80 80 80 80 80 80 8	19,9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 0 0	13:29 17:29 9:29 Arola (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei 1	3,9 a Fina 5,5 Pene 0 20 0 0	15,5 Silte 73,5 73,5 Diras 10 4 0 0	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10,8 11/2 2* 0 0 6 0 0 0	14 > 0 0
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 90 80 80 80 80 80 80 80 80 80 8	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Penc 0 20 0 20	15,5 Silte 73,5 73,5 10 4 0 0	36 1	/2 1*	0,00 0,00 Argila 10,8 10,8 11/2 2* 0 0 6	14
05/06/2018 05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 90 80 80 80 80 80 80 80 80 80 80 80 80 80	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Areia 0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100 0 0 0 0 0 0 0 0 0 0 0 0	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 0 20	15,5 Silte 73,5 73,5 2017 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 1	/2 1*	0,00 0,00 Argila 10.8 10.8 11/2 2* 0 0 G	14 > 0 0
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 % total 100 90 80 (% 70 80 (% 70 80 80 90 80 80 80 80 80 80 80 80 80 8	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 guiho 0	13:29 17:29 9:29 Areia (0	10,0 9,0 3rossa 0	-3,4 -3,6 Areia I 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 O	15,5 Silte 73,5 73,5 73,5 10 4 9 0	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10,8 11/2 2* 0 0 6 0 0 métrica	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 % total 100 90 80 (% 70 80 (% 70 80 60 90 80 20 20	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 0 0	13:29 17:29 9:29 Areia (0	10,0 9,0 3rossa .0	-3,4 -3,6 Areia I 0, 1 200	0,5 Módia 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 0 0	15,5 Silte 73,5 73,5 10 4 0 0	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10,8 11/2 2* 0 0 6 0 0 0 0 0 0 0 0 0	
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 % total 100 90 80 (2) 70 80 80 90 80 20 20	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 0 0	13:29 17:29 9:29 Aroia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Média 2 5,7 140 100	-2,0 Arei	3,9 a Fina 5,5 Pene 0 20 0 20	15,5 Silte 73,5 73,5 2iras 10 4 9 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10,8 11/2 2* 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 + e e
05/06/2018 05/06/2018 05/06/2018 05/06/2018 06/06/2018 100 % total 100 90 80 90 80 90 80 90 80 90 80 20 10 10	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 0 0	13:29 17:29 9:29 Arola (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Módia 2 5,7 140 100 0 0 0 0 0 0 0 0 0 0 0 0	-2,0 Arei	3,9 a Fina 5,5 Penc 0 20 9	15,5 Silte 73,5 73,5 tiras 10 4 0 0	3/6 1	/2 1*	0,00 0,00 Argila 10.8 10.8 11/2 2* 0 0 6 0 0 0	14
05/06/2018 05/06/2018 05/06/2018 06/06/2018 06/06/2018 100 90 80 80 80 80 80 80 80 80 80 8	19.9 20,1 20,7 20,2 Pedre 0, 0,	240 540 1440 00	13:29 17:29 9:29 Areia (0	10,0 9,0 Grossa .0	-3,4 -3,6 Areia 1 0, 1 200	0,5 Módia 2 5,7 140 100 0 0 0 0 0 0 0 0 0 0 0 0	-2,0 Arei	3,9 a Fina 5,5 Penc 0 20 0 20	15,5 Silte 73,5 73,5 10 4 0 0	36 1	11,3 8,9 12 1*	0,00 0,00 Argila 10.8 10.8 11/2 2* 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 + + + + + + + + + + + + + + + + + + +

AMOSTRA SP 304 – AM 6 M

Profundidade: 14,75 a 15,45m

Cápsula no. Solo umido + t Solo seco + tar Fara da capsul Água Solo Seco Faor de umido		IGROSCO	PICA	1				PENEI	RAMENTO					
Solo umido + t Solo seco + tar Tara da capsul Água Solo Seco Feor de umido	Cápsula no. (g.) 147 245 Solo umido ± tara (g.) 83.53 87.13		177	PENE	IRAS	MATERIAL RETIDO		RETIDO	% (
Solo seco + ta Fara da capsul Água Solo Seco Feor de umida	ara (g.)	83,53	87,13	85,28	A.B.I	Ν.Т.	Peso	P.acumul	%	PASSA:	amostra	E	aixa	
Tara da capsu Agua Solo Seco Teor de umido	ra (g.)	82,38	85,91	84,11	No.	mm.	(gr.)	(gr.)	acumul	tot	al			
Agua Solo Seco Leor de umida	la (g.)	12,19	12,15	11,89	4"	101,8		B CONCRETE						
Solo Seco	(g.)	1,15	1,22	1.17	3 .1/2 "	88,9								
Teor de umida	(g.)	70,19	73,76	72,22	3"	76,2								
Con or united	de (%)	1,6	1,7	1,6	2 .1/2 "	63,5								
Jmidade Médi	а (%)		1,6		2"	50,8								
					1.1/2 *	38,1	2							
AMO	OSTRA TOT	AL SECA			1"	25,4								
Amostra Total	Úmida (g)		804,46		3/4 "	19								
Solo Seco retic	do na # 10 (g)	0,00		1/2 "	12,7]			
Solo Úmido pa	issa na # 10	(g)	804,46		3/8"	9,5	2							
Solo Seco pas	sa na # 10	(g)	791,50		1/4"	6,3	2	5						
Amostra Total	Seca (g)		791.50		4	4.8		1						
					8	2,4	-							
AMO	STRA PAR	CIAL SEC/			10	2				10),0			
Amostra meno	r #10 úmida	(g)	70,00		16	1,2	0,01	0,0	0,0	100),0			
Amostra menor #10 seca (g)		(g)	68,87		30	0,6	0,01	0,0	0,0	100	0,0			
Limite de Liquidez		25,4		40	0,42	0,02	0,0	0,1	99	,9				
ndice de Plasticidade		9,5		60	0,25	0,02	0,1	0,1	99	,9				
				100	0,15	0,32	0,4	0,6	99	,4				
MAS	SA ESPECÍ	FICA REAL			200	0,075	4,79	5,2	7,5	92	,5			
^o icnômetro. nº		23	24		-									
l'emperatura ('	°c)	18,7	18,7		2				3					
Pic.+ água + solo (g) 699,98		699,98	706,96							v 8		1 670		
Solo úmido(g)		50,00	50,00		De	ensimetro n.º	0	2		$\Lambda = \frac{1}{\delta}$	-1	1.	510	
Solo Seco (g)		49,19	49,19											
Pic.+ água (g)		668,80	675,64											
Água Deslocad	da (g)	18,01	17,88											
l'eor de umida	de (%)	1	6											
Massa Especi	ifica (H2O)	0,9985	0,9985	1										
Massa Especif	fica Real	2,727	2,748		1 1 1 1					-	3			
ρ	[g/cm ³]	2,7	37		% da	amostra parci	al=A x K x	LC		A	5	U,I	1145	
					1				8	64 				
					SEDIME	NTAÇÃO COM	M DEFLOCUL	LANTE						
2.1	Temp.	Tempo	horário	Leit.		Correções		Leit.	Altura de	%	%		f	
Data	°c	min.	h	(L)	temperatura	menisco	defloculante	corrig.	Queda	parcial	total	r	nm	
05/06/2018	19.8	0.5	9:36	41,0	-3.7	0.5	-2.0	35.8	10,2	81,8	81.8	0.0	3594	
05/06/2018	19,8	1	9:37	35,0	-3,7	0,5	-2,0	29,8	11,2	68,1	68,1	0,0	3443	
05/06/2018	19.8	2	9:38	29.0	-37	0.5	-2.0	23.8	12.2	54.4	54.4	0.0	1328	
05/06/2018	19.8	5	9:41	22.0	-3.7	0.5	-2.0	16.8	13.4	38.4	38.4	0.0	1218	
05/06/2018	19.7	10	9.46	19.0	-3.8	0.5	-2.0	13.7	13.9	31.4	31.4	0.0	0157	
05/06/2018	10.7	20	0.56	17.0	.2.9	0.5	2.0	11.7	14.2	26.0	26.0	0,0	1112	
05/06/2018	10,7	40	10:16	15.0	-3.8	0,5	-2.0	9.7	14.5	20,0	22,3	0,	1081	
05/06/2018	10.0	90	10.10	13,0	-3,5	0,5	-2,0	7.9	14,5	17.0	17.0	0,0	1069	
05/06/2018	19,5	240	10.00	11.0	-0,7	0,5	-2,0	7,0	14,5	17,9	17,9	0,0	0000	
05/06/2018	20,1	240	13.30	11,0	-3,0	0,5	-2,0	5,9	15,2	13,4	13,4	0,0	0034	
05/06/2018	20,3	540	17:36	10,0	-3,6	0.5	-2,0	4,9	15,3	11,3	11,3	0,0	023	
06/06/2018	20,2	1440	9.30	9,0	-3,0	0,5	-2,0	3,9	10,0	0,9	9,9	0,0	JU 14	
Line	Denter	nulle -	Aug 10	200000		ládia		Fine	20.0	8		Armite		
Pedregulho Areia		arossa 0	Areia	Areia		Silte	6	Argila						
% total 0,0		0,0 0,0			0,3 17,4			,4	71,7	10,6		10,6	6	
% total	0,0)			17,8				71,7	8	10,6			
								Pen	eiras					
					200	140 100		20	10 4	200 11				
					200	140 100	00 40	20	-0 -0	3/8 1/2		0 0	0.00	
100						-			T TT					
100					r									
100 90														
100 90														
100 90 80					1				_					
100 90 80					1									
100 90 80 (2) 70					1						rva Granule	métrica		
100 90 80 (%) ess					/					- Cu	rva Granule	métrica		
100 90 80 60 60					/					- Cu	rva Granule	métrica		
100 90 80 70 50 50					/					- Cu	rva Granule	métrica		
100 90 80 70 60 50					/					- Cu	rva Granule	métrica		
100 90 80 (%) 80 60 50 40				/	/					- Cu	rva Granule	métrica		
100 90 80 70 60 60 40 40				/	/					- Ci	rva Granulo	métrica		
100 90 90 80 80 60 50 50 40 30					/					- - Cu	rva Granulo	métrica		
100 90 90 80 80 60 00 60 00 30 00 20					/					- - Cu	rva Granule	métrica		
100 90 80 (%) 70 60 40 40 30 20					/						rva Granule	métrica		
100 90 80 70 60 40 40 20 20 10					/						rva Granulo	métrica		
100 90 80 (%) 70 60 50 40 40 20 10	9				/					- Cu	rva Granule	métrica		
100 90 80 60 60 40 30 20 10 0					/					Cu	rva Granulo	métrica		

2. ADENSAMENTO OEDOMÉTRICO

AMOSTRA SP 301 – AM 3 M

Profundidade: 7,10 a 7,80 m

AMOSTRA SP 301 – AM 6 M

Profundidade: 10,10 a 10,80 m

AMOSTRA SP 302 – AM 3 M

Profundidade: 3,0 a 3,80m

AMOSTRA SP 302 – AM 6 M

Profundidade: 9,90 a 10,6m

AMOSTRA SP 304 – AM 6 M

Profundidade: 14,75 a 15,45m

3. TRIAXIAL CIU

AMOSTRA SP 301 – AM 3 M

Profundidade: 7,10 a 7,80 m

AMOSTRA SP 301 – AM 6 M Profundidade: 10,10 a 10,80 m

AMOSTRA SP 302 – AM 3 M

Profundidade: 3,0 a 3,80m

AMOSTRA SP 302 – AM 6 M Profundidade: 9,90 a 10,6m

AMOSTRA SP 304 – AM 3 M

Profundidade: 11,75 a 12,45m

AMOSTRA SP 304 – AM 6 M Profundidade: 14,75 a 15,45m

APÊNDICE A - INSTRUMENTAÇÃO

1. Leituras dos medidores de nível d'água

MEDID	OR DE NÍ	VEL D'ÁGU	A 1
Data	Horário	Leitura	Cota (m)
12/12/2016	08:00	13.42	49.17
13/12/2016	08:00	13.39	49.88
14/12/2016	08:00	13.36	49.91
15/12/2016	08:00	13.31	49.96
16/12/2016	16:00	13.33	49.94
1//12/2016	08:00	13.35	49.92
20/12/2016	08:00	13.24	50.03
20/12/2010	08:00	13.25	50.04
22/12/2016	08:00	13.10	50.11
23/12/2016	08:00	13.08	50.10
26/12/2016	08:00	13.07	50.20
27/12/2016	08:00	13.01	50.26
28/12/2016	08:00	12.98	50.29
29/12/2016	08:00	12.94	50.33
30/12/2016	08:00	12.89	50.38
03/01/2017	08:00	12.61	50.66
04/01/2017	08:00	12.51	50.76
05/01/2017	08:00	12.45	50.82
06/01/2017	14:00	12.36	50.91
07/01/2017	15:00	12.37	50.90
09/01/2017	15:30	12.23	51.04
10/01/2017	15.00	12.25	51.02
12/01/2017	13.00	12.19	51.08
13/01/2017	14:40	11.91	51.36
14/01/2017	14:00	11.78	51.49
16/01/2017	14:40	11.66	51.61
17/01/2017	15:40	11.63	51.64
18/01/2017	15:50	11.6	51.67
19/01/2017	16:00	11.6	51.67
20/01/2017	15:20	11.59	51.68
21/01/2017	11:00	11.54	51.73
23/01/2017	16:00	11.52	51.75
24/01/2017	15:00	11.51	51.70
25/01/2017	15:30	11.49	51.76
28/01/2017	14:30	11.55	51.72
30/01/2017	15:30	11.42	51.85
31/01/2017	15:30	11.28	51.99
01/02/2017	15:30	11.22	52.05
02/02/2017	12:30	11.18	52.09
03/02/2017	15:30	11.17	52.10
04/02/2017	15:30	11.14	52.13
06/02/2017	15:30	11.11	52.16
08/02/2017	15:30	11.07	52.20
09/02/2017	15:30	10.97	52.30
10/02/2017	15:30	10.98	52.29
13/02/2017	15.30	10.94	52.33
14/02/2017	15.30	10.77	52.50
15/02/2017	15:20	10.67	52.60
16/02/2017	15:40	10.63	52.64
17/02/2017	15:30	10.53	52.74
18/02/2017	<u>11:0</u> 0	10.45	52.82
20/02/2017	11:00	10.19	53.08
21/02/2017	14:00	10.09	53.18
22/02/2017	14:00	9.98	53.29
23/02/2017	14:00	9.94	53.33
24/02/2017	14:00	9.90	53.37
25/02/2017	14:00	9.82	53.45
27/02/2017	10:20	9.5/	53./U
20/02/201/	10.20	3.4Z	33.63

MEDI	DOR DE N	IVEL D'AG	UA 2
Data	Horário	Leitura	Cota (m)
12/12/2016	08:00	12.79	49.94
13/12/2016	08:00	12.72	50.01
14/12/2016	08:00	12.72	50.01
15/12/2016	08:00	12.70	50.03
16/12/2016	16:00	12.72	50.01
17/12/2016	08:00	12.73	50.00
19/12/2016	08:00	12.64	50.09
20/12/2016	08:00	12.62	50.11
21/12/2016	08:00	12.58	50.15
22/12/2016	08:00	12.54	50.19
23/12/2016	08:00	12.51	50.22
26/12/2016	08:00	12.49	50.24
2//12/2016	08:00	12.43	50.30
20/12/2010	08.00	12.41	50.32
29/12/2010	08:00	12.37	50.30
02/01/2017	08.00	12.51	50.42
03/01/2017	08:00	12.10	50.05
04/01/2017	08.00	11.05	50.70
06/01/2017	14.00	11.90	50.77
07/01/2017	14.00	11.99	50.85
09/01/2017	15:30	11.00	50.00
10/01/2017	15:00	11.74	50.98
11/01/2017	15:00	11.70	51.03
12/01/2017	14:40	11.63	51.10
13/01/2017	14:40	11.47	51.26
14/01/2017	14:00	11.34	51.39
16/01/2017	14:40	11.22	51.51
17/01/2017	15:40	11.19	51.54
18/01/2017	15:50	11.16	51.57
19/01/2017	16:00	11.13	51.60
20/01/2017	15:20	11.12	51.61
21/01/2017	11:00	11.03	51.70
23/01/2017	16:00	10.97	51.76
24/01/2017	15:00	10.97	51.76
25/01/2017	15:30	10.94	51.79
26/01/2017	16:30	10.99	51.74
28/01/2017	14:30	10.95	51.78
30/01/2017	15:30	10.87	51.86
31/01/2017	15:30	10.76	51.97
01/02/2017	15:30	10.70	52.03
02/02/2017	12:30	10.66	52.07
03/02/2017	15:30	10.64	52.09
04/02/2017	15:30	10.59	52.14
06/02/2017	15:30	10.55	52.18
00/02/2017	15.30	10.52	52.21
10/02/2017	15.30	10.42	52.31
11/02/2017	15.30	10.45	52.30
12/02/2017	15.30	10.37	52.50
14/02/2017	15:30	10.23	52.50
15/02/2017	15:30	10.10	52.55
16/02/2017	15:40	9.89	52.62
17/02/2017	15:30	9.82	52.69
18/02/2017	11:00	9.75	52.76
20/02/2017	11:00	9.49	53.02
21/02/2017	14:00	9.42	53.09
22/02/2017	14:00	9.32	53.19
23/02/2017	14:00	9.27	53.24
24/02/2017	14:00	9.2	53.31
25/02/2017	14:00	9.11	53.40
27/02/2017	14:00	8.88	53.63
28/02/2017	10:30	8.73	53.78

MEDI	DOR DE N	ÍVEL D'ÁG	UA 3
Data	Horário	Leitura	Cota (m)
12/12/2016	08:00	21.02	49.20
13/12/2016	08:00	21	49.22
14/12/2016	08:00	20.96	49.26
15/12/2016	08:00	20.94	49.28
15/12/2016	16:00	20.93	49.29
19/12/2016	08:00	20.35	49.27
20/12/2016	08:00	20.87	49.35
21/12/2016	08:00	20.83	49.39
22/12/2016	08:00	20.81	49.41
23/12/2016	08:00	20.78	49.44
26/12/2016	08:00	20.75	49.47
27/12/2016	08:00	20.7	49.52
28/12/2016	08:00	20.69	49.53
29/12/2016	08:00	20.66	49.56
02/01/2017	08:00	20.0	49.02
03/01/2017	08:00	20.44	49.78
05/01/2017	08:00	20.30	49.92
06/01/2017	14:00	20.21	50.01
07/01/2017	15:00	20.22	50.00
09/01/2017	15:30	20.08	50.14
10/01/2017	15:00	20.09	50.13
11/01/2017	15:00	20.05	50.17
12/01/2017	14:40	19.99	50.23
13/01/2017	14:40	19.87	50.35
14/01/2017	14:00	19.77	50.45
15/01/2017	14:40	19.64	50.58
18/01/2017	15:40	19.57	50.65
19/01/2017	16:00	19.55	50.07
20/01/2017	15:20	19.48	50.74
21/01/2017	11:00	19.45	50.77
23/01/2017	16:00	19.35	50.87
24/01/2017	15:00	19.37	50.85
25/01/2017	15:30	19.32	50.90
26/01/2017	16:30	19.38	50.84
28/01/2017	14:30	19.34	50.88
31/01/2017	15:30	19.25	50.97
01/02/2017	15:30	19.10	51.00
02/02/2017	12:30	19.06	51.12
03/02/2017	15:30	19.02	51.20
04/02/2017	15:30	18.98	51.24
06/02/2017	15:30	18.93	51.29
08/02/2017	15:30	18.9	51.32
09/02/2017	15:30	18.81	51.41
10/02/2017	15:30	18.8	51.42
12/02/2017	15:30	18.70	51.40
14/02/2017	15:30	18.02	51.63
15/02/2017	15:20	18.51	51.71
16/02/2017	15:40	18.46	51.76
17/02/2017	15:30	18.38	51.84
18/02/2017	11:00	18.34	51.88
20/02/2017	11:00	18.11	52.11
21/02/2017	14:00	18.05	52.17
22/02/2017	14:00	17.94	52.28
23/02/2017	14:00	17.87	52.35
24/02/2017	14:00	17.8	52.42 52 E1
23/02/2017	14:00	17.71	52.51
28/02/2017	10:30	17.36	52.86

MEDIL	OR DE NI	VEL D'AGU	A1
Data	Horário	Leitura	Cota (m)
01/03/2017	10:30	9.32	53.95
02/03/2017	10:30	9.18	54.09
03/03/2017	10:30	9.09	54.18
04/03/2017	10:30	9.00	54.27
06/03/2017	10:30	8.83	54.44
07/03/2017	10:30	8.74	54.53
08/03/2017	10:30	8.62	54.65
09/03/2017	10:30	8.54	54.73
10/03/2017	10:30	8.43	54.84
13/03/2017	10:30	8.28	54.99
14/03/2017	10:30	8.25	55.02
15/03/2017	10:30	8.18	55.09
16/03/2017	10:00	8.15	55.12
17/03/2017	10:00	8.09	55.18
18/03/2017	10:40	8.02	55.25
20/03/2017	09:30	7.93	55.34
21/03/2017	10:45	7.85	55.42
22/03/2017	13:30	7.73	55.54
23/03/2017	11:30	7.63	55.64
24/03/2017	11:00	7.55	55.72
25/03/2017	10:50	7.50	55.77
27/03/2017	10:30	7.42	55.85
28/03/2017	08.00	7 39	55.88
29/03/2017	11:45	7 34	55.00
30/03/2017	10:45	7.34	55.97
31/03/2017	11.15	7.30	55.97
01/04/2017	11.15	7.30	56.00
02/04/2017	11.30	7.27	50.00
08/04/2017	10.45	7.10	50.09
10/04/2017	10.45	6.02	50.22
10/04/2017	11.00	6.95	50.54
24/04/2017	00:00	6.72	50.55
24/04/2017	09.00	0.79	50.46
01/05/2017	08:00	0.82	56.45
08/05/2017	08:00	7.26	56.01
15/05/2017	11:30	7.84	55.43
22/05/2017	11:40	7.73	55.54
29/05/2017	10:40	7.86	55.41
05/06/2017	10:40	7.95	55.32
0//06/2017	11:50	8.29	54.98
12/06/2017	10:50	8.87	54.40
19/06/2017	10:50	9.07	54.20
26/06/201/	11:50	9.44	53.83
03/07/2017	11:50	10.08	53.19
11/07/2017	11:50	10.43	52.84
17/07/2017	11:50	10.94	52.33
24/07/2017	13:00	11.39	51.88
31/07/2017	11:00	11.62	51.65
07/08/2017	09:00	12	51.27
14/08/2017	09:00	12.34	50.93
21/08/2017	09:00	12.61	50.66
28/08/2017	11:00	12.51	50.76
04/09/2017	11:00	12.84	50.43
11/09/2017	11:00	13.14	50.13
18/09/2017	11:00	13.24	50.03
25/09/2017	11:00	13.20	50.07

MEDI	DOR DE N	ÍVEL D'ÁG	UA 2
Data	Horário	Leitura	Cota (m)
01/03/2017	10:30	8.61	53.90
02/03/2017	10:30	8.5	54.01
03/03/2017	10:30	8.4	54.11
04/03/2017	10:30	8.32	54.19
06/03/2017	10:30	8.14	54.37
07/03/2017	10:30	8.06	54.45
08/03/2017	10:30	7.94	54.57
09/03/2017	10:30	7.84	54.67
10/03/2017	10:30	7.76	54.75
13/03/2017	10:30	7.57	54.94
14/03/2017	10:30	7.53	54.98
15/03/2017	10:30	7.47	55.04
16/03/2017	10:00	7.4	55.11
17/03/2017	10:00	7.37	55.14
18/03/2017	10:40	7.3	55.21
20/03/2017	09:30	7.22	55.29
21/03/2017	10:45	7.14	55.37
22/03/2017	13:30	7.01	55.50
23/03/2017	11:30	6.89	55.62
24/03/2017	11:00	6.81	55.70
25/03/2017	10:50	6.75	55.76
2//03/201/	10:30	6.65	55.86
28/03/2017	08:00	6.63	55.88
29/03/2017	11:45	6.59	55.92
30/03/2017	10:45	0.53	55.98
31/03/2017	11:15	6.52	55.99
01/04/2017	11:50	6.49	56.02
03/04/2017	11:25	6.39	56.12
10/04/2017	10.45	6.15	50.24
10/04/2017	11:00	0.15 E 0E	50.50
24/04/2017	09.00	6.02	56.49
24/04/2017	09.00	6.04	56.43
01/05/2017	08:00	0.04 E.6	50.47
15/05/2017	11.20	7.02	55.40
22/05/2017	11.30	6.92	55 59
22/05/2017	10.40	7.07	55.44
20/05/2017	10:40	7.07	55.33
05/06/2017	11.50	7.10	55.03
12/06/2017	10.20	8.45	54.06
19/06/2017	10:50	8 23	54.00
26/06/2017	11:50	8.6	53.91
03/07/2017	11:50	9.17	53 34
11/07/2017	11:50	9.5	53.01
17/07/2017	11:50	9.97	52.54
24/07/2017	13:00	10.41	52.10
31/07/2017	11:00	10.62	51.89
07/08/2017	09:00	10.99	51.52
14/08/2017	09:00	11.34	51.17
21/08/2017	09:00	11.61	50.90
28/08/2017	11:00	11.55	50.96
04/09/2017	11:00	11.79	50.72
11/09/2017	11:00	12.07	50.44
18/09/2017	11:00	12.21	50.30
25/09/2017	11:00	12.19	50.32

MEDI	DOR DE N	ÍVEL D'ÁG	UA 3
Data	Horário	Leitura	Cota (m)
01/03/2017	10:30	17.24	52.98
02/03/2017	10:30	17.13	53.09
03/03/2017	10:30	17.03	53.19
04/03/2017	10:30	16.95	53.27
06/03/2017	10:30	16.75	53.47
07/03/2017	10:30	16.66	53.56
08/03/2017	10:30	16.55	53.67
09/03/2017	10:30	16.45	53.77
10/03/2017	10:30	16.36	53.86
13/03/2017	10:30	16.17	54.05
14/03/2017	10:30	16.14	54.08
15/03/2017	10:30	16.05	54.17
17/02/2017	10:00	15.97	54.25
18/03/2017	10.00	15.94	54.20
20/03/2017	10.40	15.79	54.33
20/03/2017	10:45	15.75	54.43
22/03/2017	13:30	15.6	54.62
23/03/2017	11:30	15.48	54.74
24/03/2017	11:00	15.41	54.81
25/03/2017	10:50	15.33	54.89
27/03/2017	10:30	15.24	54.98
28/03/2017	08:00	15.23	54.99
29/03/2017	11:45	15.15	55.07
30/03/2017	10:45	15.09	55.13
31/03/2017	11:15	15.07	55.15
01/04/2017	11:50	15.03	55.19
03/04/2017	11:25	14.95	55.27
08/04/2017	10:45	14.82	55.40
10/04/2017	08:00	14.71	55.51
17/04/2017	11:00	14.52	55.70
24/04/2017	09:00	14.54	55.68
01/05/2017	08:00	14.57	55.65
08/05/2017	08:00	14.13	56.09
15/05/2017	11:30	15.5	54.72
22/05/201/	11:40	15.43	54.79
29/05/2017	10:40	15.54	54.68
30/05/2017	10:40	15.64	54.58
12/06/2017	11:50	15.84	54.38
10/06/2017	11.50	16.40	52.57
26/06/2017	11:50	17.02	53.20
03/07/2017	11.50	17.02	52.63
11/07/2017	11:50	17.93	52.03
17/07/2017	13.00	18.39	51.83
24/07/2017	11:00	18.83	51.39
31/07/2017	09:00	18.95	51.27
07/08/2017	09:00	19.29	50.93
14/08/2017	09:00	19.62	50.60
21/08/2017	11:00	19.89	50.33
28/08/2017	11:00	19.83	50.39
04/09/2017	11:00	20	50.22
11/09/2017	11:00	20.26	49.96
18/09/2017	11:00	20.42	49.80
25/09/2017	11:00	20.42	49.80

2. Leitura dos piezômetros

	PIEZ	ZÔMETRO 1/	۹.				PIE	ÔMETRO 1	В					
Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)				
12/12/2016	08.20	10.24	102.40	48.00		12/12/2016	16:20	6.47	64.70	FO 12				
12/12/2010	08:20	10.34	103.40	48.99		12/12/2010	16:30	5.47 E 2E	64.70 E2 E0	40.00				
14/12/2016	08.20	10.45	104.30	49.08		14/12/2016	08:20	5 37	53.30	49.00				
15/12/2016	16:00	10.40	104.00	49.05		15/12/2016	16:00	5.34	53.40	48.99				
16/12/2016	16:00	10.39	103.90	49.04		16/12/2016	16:00	5.33	53.30	48.98				
17/12/2016	08:00	10.38	103.80	49.03		17/12/2016	08:00	5.32	53.20	48.97				
19/12/2016	08:00	10.51	105.10	49.16		19/12/2016	08:00	5.46	54.60	49.11				
20/12/2016	08:00	10.50	105.00	49.15		20/12/2016	08:00	5.43	54.30	49.08				
21/12/2016	08:00	10.56	105.60	49.21		21/12/2016	08:00	5.52	55.20	49.17				
22/12/2016	08:00	10.65	106.50	49.30		22/12/2016	08:00	5.61	56.10	49.26				
23/12/2016	08:00	10.67	106.70	49.32		23/12/2016	08:00	5.66	56.60	49.31				
20/12/2010	08.00	10.00	100.80	49.55		20/12/2010	08.00	5.57	55.70	49.22				
28/12/2016	08:00	10.72	107.60	49.41		28/12/2016	08:00	5.68	56.80	49.33				
29/12/2016	08:00	10.81	108.10	49.46		29/12/2016	08:00	5.71	57.10	49.36				
30/12/2016	08:00	10.81	108.10	49.46		30/12/2016	08:00	5.71	57.10	49.36				
03/01/2017	08:00	11.14	111.40	49.79		03/01/2017	08:00	6.54	65.40	50.19				
04/01/2017	08:00	11.28	112.80	49.93		04/01/2017	08:00	6.82	68.20	50.47				
05/01/2017	08:00	11.34	113.40	49.99		05/01/2017	08:00	6.94	69.40	50.59				
06/01/2017	14:00	11.42	114.20	50.07		06/01/2017	14:00	7.13	71.30	50.78				
07/01/2017	15:00	11.45	114.50	50.10		07/01/2017	15:00	7.14	71.40	50.79				
09/01/2017	15:30	11.51	115.10	50.16		09/01/2017	15:30	7.20	72.00	50.85				
10/01/2017	15:00	11.51	115.10	50.10		10/01/2017	15:00	7.17	73.60	50.82				
12/01/2017	13:00	11.00	117.20	50.37		12/01/2017	14:40	7.61	76.10	51.01				
13/01/2017	14:40	11.90	119.00	50.55		13/01/2017	14:40	8.05	80.50	51.20				
14/01/2017	14:40	12.01	120.10	50.66		14/01/2017	14:40	8.29	82.90	51.94				
16/01/2017	14:40	12.11	121.10	50.76		16/01/2017	14:40	8.50	85.00	52.15				
17/01/2017	15:40	12.14	121.40	50.79		17/01/2017	15:40	8.51	85.10	52.16				
18/01/2017	15:50	12.16	121.60	50.81		18/01/2017	15:50	8.52	85.20	52.17				
19/01/2017	16:00	12.15	121.50	50.80		19/01/2017	16:00	8.36	83.60	52.01				
20/01/2017	15:20	12.18	121.80	50.83		20/01/2017	15:20	8.36	83.60	52.01				
21/01/2017	11:00	12.22	122.20	50.87		21/01/2017	11:00	8.39 9.25	83.90	52.04				
23/01/2017	15:00	12.20	122.00	50.91		23/01/2017	15:00	8.09	80.90	51.90				
25/01/2017	15:30	12.22	122.20	122.20	50.87	50.87	50.87	50.87	50.87	25/01/2017	15:30	8.03	80.30	51.68
26/01/2017	16:30	12.19	121.90	50.84		26/01/2017	16:30	7.92	79.20	51.57				
28/01/2017	14:30	12.25	122.50	50.90		28/01/2017	14:30	7.92	79.20	51.57				
30/01/2017	15:30	12.31	123.10	50.96		30/01/2017	15:30	7.92	79.20	51.57				
31/01/2017	15:30	12.48	124.80	51.13		31/01/2017	15:30	8.35	83.50	52.00				
01/02/2017	15:30	12.52	125.20	51.17		01/02/2017	15:30	8.38	83.80	52.03				
02/02/2017	12:30	12.55	125.50	51.20		02/02/2017	12:30	8.39	83.90	52.04				
03/02/2017	12.30	12.50	125.00	51.21		03/02/2017	15.30	0.41 8 /0	04.1U 8/1 00	52.00				
04/02/2017	15:30	12.59	125.30	51.24		04/02/2017	15:30	8.40	84.00	52.03				
08/02/2017	15:30	12.61	126.10	51.26		08/02/2017	15:30	8.13	81.30	51.78				
09/02/2017	15:30	12.71	127.10	51.36		09/02/2017	15:30	8.24	82.40	51.89				
10/02/2017	15:30	12.73	127.30	51.38		10/02/2017	15:30	8.32	83.20	51.97				
11/02/2017	15:30	12.75	127.50	51.40		11/02/2017	15:30	8.29	82.90	51.94				
13/02/2017	15:30	12.76	127.60	51.41		13/02/2017	15:30	8.30	83.00	51.95				
14/02/2017	15:30	12.96	129.60	51.61		14/02/2017	15:30	8.62	86.20	52.27				
15/02/2017	15:20	13.00	130.00	51.65		15/02/2017	15:20	8.66	86.60	52.31				
17/02/2017	12:40 12:30	13.02	131 /0	51.0/ 51.70		17/02/2017	15:40	0.50 8 81	03.0U 88.10	52.21				
18/02/2017	11:00	13.14	132.60	51.79		18/02/2017	11:00	9,07	90.70	52.70				
20/02/2017	14:00	13.50	135.00	52.15		20/02/2017	14:00	9.40	94.00	53.05				
21/02/2017	14:30	13.58	135.80	52.23		21/02/2017	14:30	9.67	96.70	53.32				
22/02/2017	15:40	13.67	136.70	52.32		22/02/2017	15:40	9.83	98.30	53.48				
23/02/2017	15:40	13.74	137.40	52.39		23/02/2017	15:40	9.89	98.90	53.54				
24/02/2017	15:40	13.76	137.60	52.41		24/02/2017	15:40	9.82	98.20	53.47				
25/02/2017	11:00	14.02	140.20	52.67		25/02/2017	11:00	9.98	99.80	53.63				
2//02/2017	15:20	14.08	140.80	52.73		2//02/2017	15:20	10.34	103.40	53.99				
20/02/201/	10:20	14.49	144.90	55.14		20/02/201/	12:20	10.46	104.60	54.11				

				PIEZ	ÌMETRO 1						
	PIE	ZÔMETRO 1/	4				PIE	ZÔMETRO 1	В		
Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)	
01/03/2017	15:00	14.32	143.20	52.97		01/03/2017	15:00	10.66	106.60	54.31	
02/03/2017	15:20	14.44	144.40	53.09		02/03/2017	15:20	10.81	108.10	54.46	
03/03/2017	15:20	14.55	145.50	53.20		03/03/2017	15:20	10.86	108.60	54.51	
04/03/2017	10:20	14.62	146.20	53.27		04/03/2017	10:20	10.88	108.80	54.53	
06/03/2017	14:40	14.78	147.80	53.43		06/03/2017	14:40	11.00	110.00	54.65	
07/03/2017	15:00	14.87	148.70	53.52		07/03/2017	15:00	11.08	110.80	54.73	
08/03/2017	15:10	15.01	150.10	53.66		08/03/2017	15:10	11.27	112.70	54.92	
09/03/2017	15:20	15.08	150.80	53.73		09/03/2017	15:20	11.30	113.00	54.95	
10/03/2017	14:30	15.10	151.60	53.81		10/03/2017	14:30	11.31	113.10	54.90	
13/03/2017	14:30	15.30	153.00	53.95		13/03/2017	14:30	11.23	112.30	54.88	
15/03/2017	14.30	15.34	154.00	54.05		15/03/2017	14.30	11.29	112.90	54.94	
16/03/2017	14:30	15.47	154.70	54.12		16/03/2017	14:30	11.34	113.40	54.99	
17/03/2017	14:30	15.49	154.90	54.14		17/03/2017	14:30	11.35	113.50	55.00	
18/03/2017	11:00	15.55	155.50	54.20		18/03/2017	11:00	11.31	113.10	54.96	
20/03/2017	11:00	15.64	156.40	54.29		20/03/2017	11:00	11.38	113.80	55.03	
21/03/2017	10:15	15.74	157.40	54.39		21/03/2017	10:15	11.53	115.30	55.18	
22/03/2017	11:15	15.84	158.40	54.49		22/03/2017	11:15	11.64	116.40	55.29	
23/03/2017	11:00	15.94	159.40	54.59		23/03/2017	11:00	11.75	117.50	55.40	
24/03/2017	11:30	16.01	160.10	54.66		24/03/2017	11:30	11.84	118.40	55.49	
25/03/2017	10:50	16.08	160.80	54.73		25/03/2017	10:50	11.83	118.30	55.48	
27/03/2017	11:00	16.10	161.00	54.75		27/03/2017	11:00	11.63	116.30	55.28	
28/03/2017	10:45	16.14	161.40	54.79		28/03/2017	10:45	11.71	117.10	55.30	
30/03/2017	11:45	16.15	162 10	54.86		30/03/2017	11:45	11.03	115.90	55.20	
31/03/2017	11:15	16.24	162.40	54.89		31/03/2017	11:15	11.64	116.40	55.29	
01/04/2017	11:15	16.26	162.60	54.91		01/04/2017	11:15	11.53	115.30	55.18	
03/04/2017	11:15	16.33	163.30	54.98		03/04/2017	11:15	11.63	116.30	55.28	
08/04/2017	11:25	16.54	165.40	55.19		08/04/2017	11:25	11.76	117.60	55.41	
10/04/2017	08:00	16.54	165.40	55.19		10/04/2017	08:00	11.80	118.00	55.45	
17/04/2017	10:00	16.75	167.50	55.40		17/04/2017	10:00	12.08	120.80	55.73	
24/04/2017	11:08	16.65	166.50	55.30	-		24/04/2017	11:08	11.69	116.90	55.34
01/05/2017	10:08	16.63	166.30	55.28		01/05/2017	10:08	11.73	117.30	55.38	
08/05/2017	11:08	16.64	166.40	55.29		08/05/2017	11:08	11.75	117.50	55.40	
15/05/2017	11:08	15.65	156.50	54.30		15/05/2017	11:08	10.36	103.60	54.01	
22/05/2017	11.20	15.75	157.50	54.40		22/05/2017	11.20	10.05	105.30	54.50	
05/06/2017	10.28	15.05	152 10	52.86		25/05/2017	10.28	0.04	105.40 00.10	53 56	
07/06/2017	16:28	15.02	150.20	53.67		07/06/2017	16:28	9.71	97.10	53.36	
12/06/2017	11:28	14.64	146.40	53.29		12/06/2017	11:28	9.14	91.40	52.79	
19/06/2017	12:28	14.46	144.60	53.11		19/06/2017	12:28	9.03	90.30	52.68	
26/06/2017	12:28	14.06	140.60	52.71		26/06/2017	12:28	8.44	84.40	52.09	
03/07/2017	14:00	13.41	134.10	52.06		03/07/2017	14:00	7.36	73.60	51.01	
12/07/2017	11:00	13.09	130.90	51.74		12/07/2017	11:00	6.98	69.80	50.63	
17/07/2017	11:00	12.55	125.50	51.20		17/07/2017	11:00	6.48	64.80	50.13	
24/07/2017	12:00	12.11	121.10	50.76		24/07/2017	12:00	6.01	60.10	49.66	
31/07/2017	12:00	11.74	117.40	50.39		31/07/2017	12:00	5.86	58.60	49.51	
0//08/2017	12:00	11.29	100 50	49.94		0//08/2017	12:00	5.62	56.20	49.27	
21/08/2017	10.30	10.95	107.50	49.00 49.11		21/08/2017	10.30	5 52	55 20	49.08 49.18	
28/08/2017	11:30	10.70	107.00	49.50		28/08/2017	11.30	5.60	56.00	49.10	
04/09/2017	11.30	10.05	104.40	49.00		04/09/2017	11.30	5.65	56.50	49.20	
11/09/2017	11:30	10.44	104.40	49.09		11/09/2017	11:30	5.39	53.90	49.04	
18/09/2017	14:30	10.08	100.80	48.73		18/09/2017	14:30	5.50	55.00	49.15	
25/09/2017	12:30	10.12	101.20	48.77		25/09/2017	12:30	5.76	57.60	49.41	
02/10/2017	14:00	9.99	99.90	48.64		02/10/2017	14:00	6.54	65.40	50.19	
09/10/2017	09:00	9.87	98.70	48.52		09/10/2017	09:00	5.79	57.90	49.44	
16/10/2017	12:00	9.73	97.30	48.38		16/10/2017	12:00	5.65	56.50	49.30	
23/10/2017	12:00	9.66	96.60	48.31		23/10/2017	12:00	5.70	57.00	49.35	
30/10/2017	12:00	9.71	97.10	48.36		30/10/2017	12:00	5.22	52.20	48.87	
06/11/2017	12:00	10.06	100.61	48.71		06/11/2017	12:00	5.47	54.70	49.12	
13/11/2017	12:00	10.20	102.03	48.85		13/11/2017	12:00	5.64	56.40	49.29	
20/11/2017	11:30	10.65	106.46	49.30		20/11/2017	11:30	5.84	58.40	49.49	
27/11/2017	11:00	10.66	106.64	49.31		27/11/2017	11:00	5.89	58.90	49.54	

PIEZÔMETRO 2																
	PIE	ZÔMETRO 2	A	1			PI	EZÔMETRO 2	2B	1			PIE	ZÔMETRO 2	2C	1
Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)
12/12/2016	08:30	12.67	126.70	48.97		12/12/2016	08:30	4.67	46.70	48.97		12/12/2016	08:30	-0.01	-0.10	51.29
13/12/2016	08:30	12.68	126.80	48.98		13/12/2016	08:30	4.68	46.80	48.98		13/12/2016	08:30	0.00	0.00	51.30
14/12/2016	08:30	12.76	127.60	49.06		14/12/2016	08:30	4.74	47.40	49.04		14/12/2016	08:30	-0.09	-0.90	51.21
15/12/2016	16:00	12.72	127.20	49.02		15/12/2016	16:00	4.71	47.10	49.01		15/12/2016	16:00	-0.13	-1.30	51.17
16/12/2016	16:00	12.73	127.30	49.03		16/12/2016	16:00	4.71	47.10	49.01		16/12/2016	16:00	-0.12	-1.20	51.18
17/12/2016	08:00	12.72	127.20	49.02		17/12/2016	08:00	4.71	47.10	49.01		17/12/2016	08:00	-0.11	-1.10	51.19
19/12/2016	08:00	12.82	128.20	49.12		19/12/2016	08:00	4.81	48.10	49.11		19/12/2016	08:00	-0.10	-1.00	51.20
20/12/2016	08:00	12.81	128.10	49.11		20/12/2016	08:00	4.81	48.10	49.11		20/12/2016	00:80	-0.11	-1.10	51.19
21/12/2016	08:00	12.86	128.60	49.16		21/12/2016	08:00	4.84	48.40	49.14		21/12/2016	08:00	-0.14	-1.40	51.16
22/12/2010	08.00	12.95	129.50	49.23		22/12/2010	08.00	4.91	49.10	49.21		22/12/2010	08.00	-0.11	-1.10	51.19
26/12/2016	08:00	12.97	129.70	49.27		26/12/2016	08:00	4.96	49.60	49.26		26/12/2016	08:00	-0.10	-1.00	51.20
27/12/2016	08:00	13.01	130.10	49.31		27/12/2016	08:00	4.99	49.90	49.29		27/12/2016	08:00	-0.12	-1.20	51.18
28/12/2016	08:00	13.07	130.70	49.37		28/12/2016	08:00	5.02	50.20	49.32		28/12/2016	08:00	-0.08	-0.80	51.22
29/12/2016	08:00	13.10	131.00	49.40		29/12/2016	08:00	5.05	50.50	49.35		29/12/2016	08:00	-0.08	-0.80	51.22
30/12/2016	08:00	13.16	131.60	49.46		30/12/2016	08:00	5.10	51.00	49.40		30/12/2016	08:00	-0.07	-0.70	51.23
03/01/2017	08:00	13.42	134.20	49.72		03/01/2017	08:00	5.30	53.00	49.60		03/01/2017	08:00	-0.06	-0.60	51.24
04/01/2017	08:00	13.51	135.10	49.81		04/01/2017	08:00	5.39	53.90	49.69		04/01/2017	08:00	-0.04	-0.40	51.26
05/01/2017	08:00	13.56	135.60	49.86		05/01/2017	08:00	5.44	54.40	49.74		05/01/2017	08:00	0.00	0.00	51.30
05/01/2017	14:00	13.64	136.40	49.94		06/01/2017	14:00	5.49	54.90	49.79		06/01/201/	14:00	-0.03	-0.30	51.27
00/01/2017	15:00	13.08	130.80	49.98		0//01/2017	15:00	5.50	55.60	49.80		00/01/2017	15:00	0.00	0.00	51.30
10/01/2017	15:00	13.74	137.40	50.04		10/01/2017	15:00	5.62	56.20	49.91		10/01/2017	15.00	0.00	0.00	51.30
11/01/2017	15:00	13.75	137.30	50.03		11/01/2017	15:00	5.68	56.80	49.92		11/01/2017	15:00	0.03	0.30	51.33
12/01/2017	14:40	13.93	139.30	50.23		12/01/2017	14:40	5.76	57.60	50.06		12/01/2017	14:40	0.12	1.20	51.42
13/01/2017	14:40	14.08	140.80	50.38		13/01/2017	14:40	5.91	59.10	50.21		13/01/2017	14:40	0.34	3.40	51.64
14/01/2017	14:00	14.19	141.90	50.49		14/01/2017	14:00	6.03	60.30	50.33		14/01/2017	14:00	0.50	5.00	51.80
16/01/2017	14:40	14.28	142.80	50.58		16/01/2017	14:40	6.13	61.30	50.43		16/01/2017	14:40	0.57	5.70	51.87
17/01/2017	15:40	14.32	143.20	50.62		17/01/2017	15:40	6.17	61.70	50.47		17/01/2017	15:40	0.61	6.10	51.91
18/01/2017	15:50	14.35	143.50	50.65		18/01/2017	15:50	6.19	61.90	50.49		18/01/2017	15:50	0.61	6.10	51.91
19/01/2017	16:00	14.34	143.40	50.64		19/01/2017	16:00	6.20	62.00	50.50		19/01/2017	16:00	0.63	6.30	51.93
20/01/2017	15:20	14.35	143.50	50.65		20/01/2017	15:20	6.30	63.00	50.60		20/01/2017	15:20	0.65	6.50	51.95
23/01/2017	16:00	14.42	144.20	50.60		23/01/2017	16:00	6.32	63.20	50.62		23/01/2017	16:00	0.03	7.60	52.06
24/01/2017	15:00	14.45	144.50	50.75		23/01/2017	15:00	6.31	63.10	50.61		24/01/2017	15:00	0.74	7.40	52.00
25/01/2017	15:30	14.45	144.50	50.75		25/01/2017	15:30	6.32	63.20	50.62		25/01/2017	15:30	0.75	7.50	52.05
26/01/2017	16:30	14.43	144.30	50.73		26/01/2017	16:30	6.30	63.00	50.60		26/01/2017	16:30	0.74	7.40	52.04
28/01/2017	14:30	14.49	144.90	50.79		28/01/2017	14:30	6.35	63.50	50.65		28/01/2017	14:30	0.79	7.90	52.09
30/01/2017	15:30	14.57	145.70	50.87		30/01/2017	15:30	6.42	64.20	50.72		30/01/2017	15:30	0.87	8.70	52.17
31/01/2017	15:30	14.71	147.10	51.01		31/01/2017	15:30	6.52	65.20	50.82		31/01/2017	15:30	0.97	9.70	52.27
01/02/2017	15:30	14.73	147.30	51.03		01/02/2017	15:30	6.56	65.60	50.86		01/02/2017	15:30	1.03	10.30	52.33
02/02/2017	15:30	14.77	147.70	51.07		02/02/2017	15:30	6.59	65.90	50.89		02/02/2017	15:30	1.04	10.40	52.34
03/02/2017	15:30	14.79	147.90	51.09		03/02/2017	15:30	6.63	66.50	50.93		03/02/2017	15:30	1.08	11.20	52.38
06/02/2017	15.30	14.01	147.90	51.09		06/02/2017	15.30	6.66	66.60	50.90		06/02/2017	15.30	1.13	11.30	52.43
08/02/2017	15:30	14.85	148.50	51.15		08/02/2017	15:30	6.71	67.10	51.01		08/02/2017	15:30	1.20	12.00	52.50
09/02/2017	15:30	14.95	149.50	51.25		09/02/2017	15:30	6.80	68.00	51.10		09/02/2017	15:30	1.30	13.00	52.60
10/02/2017	15:30	14.96	149.60	51.26		10/02/2017	15:30	6.81	68.10	51.11		10/02/2017	15:30	1.30	13.00	52.60
11/02/2017	15:30	14.99	149.90	51.29		11/02/2017	15:30	6.84	68.40	51.14		11/02/2017	15:30	1.33	13.30	52.63
13/02/2017	15:30	15.14	151.40	51.44		13/02/2017	15:30	6.97	69.70	51.27		13/02/2017	15:30	1.45	14.50	52.75
14/02/2017	15:30	14.98	149.80	51.28		14/02/2017	15:30	7.01	70.10	51.31		14/02/2017	15:30	1.47	14.70	52.77
15/02/2017	15:20	15.25	152.50	51.55		15/02/2017	15:20	7.08	70.80	51.38		15/02/2017	15:20	1.57	15.70	52.87
16/02/2017	15:40	15.26	152.60	51.56		16/02/2017	15:40	7.11	71.10	51.41		16/02/2017	15:40	1.62	16.20	52.92
1//02/2017	11:00	15.38	153.80	51.68		18/02/2017	11:00	7.19	/1.90	51.49		18/02/2017	11:00	1.68	17.00	52.98
20/02/2017	14.00	15.48	157.20	52.02		20/02/2017	14.00	7.20	75.20	51.90		20/02/2017	14.00	2.70	20.90	53.00
21/02/2017	14:30	15.80	158.00	52.02		21/02/2017	14:30	7.59	75.90	51.89		21/02/2017	14:30	2.03	21.70	53.47
22/02/2017	15:40	15.89	158.90	52.19		22/02/2017	15:40	7.68	76.80	51.98		22/02/2017	15:40	2.24	22.40	53.54
23/02/2017	15:40	15.95	159.50	52.25		23/02/2017	15:40	7.73	77.30	52.03		23/02/2017	15:40	2.31	23.10	53.61
24/02/2017	15:40	16.00	160.00	52.30		24/02/2017	15:40	7.80	78.00	52.10		24/02/2017	15:40	2.39	23.90	53.69
25/02/2017	11:00	16.09	160.90	52.39		25/02/2017	11:00	7.89	78.90	52.19		25/02/2017	11:00	2.39	23.90	53.69
27/02/2017	15:20	16.30	163.00	52.60		27/02/2017	15:20	8.10	81.00	52.40		27/02/2017	15:20	2.68	26.80	53.98
28/02/2017	15:20	16.45	164.50	52.75		28/02/2017	15:20	8.24	82.40	52.54		28/02/2017	15:20	2.85	28.50	54.15

PIEZÔMETRO 2																
	PIE	ZÔMETRO 2	A	1			PI	EZÔMETRO	2B	1			PIE	ZÔMETRO 2	20	
Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)
01/03/2017	15:00	16.54	165.40	52.84		01/03/2017	15:00	8.35	83.50	52.65		01/03/2017	15:00	2.97	29.70	54.27
02/03/2017	15:20	16.66	166.60	52.96		02/03/2017	15:20	8.45	84.50	52.75		02/03/2017	15:20	3.07	30.70	54.37
03/03/2017	15:20	16.77	167.70	53.07		03/03/2017	15:20	8.54	85.40	52.84		03/03/2017	15:20	3.18	31.80	54.48
04/03/2017	10:20	16.84	168.40	53.14		04/03/2017	10:20	8.62	86.20	52.92		04/03/201/	10:20	3.25	32.50	54.55
05/03/2017	14:40	17.00	170.00	53.30		05/03/2017	14:40	8.78	87.80	53.08		05/03/2017	14:40	3.42	34.20	54.72
08/03/2017	15:10	17.10	172.20	53.40		08/03/2017	15.00	8.99	89.90	53.29		08/03/2017	15.00	3.66	36.60	54.81
09/03/2017	15:20	17.31	173.10	53.61		09/03/2017	15:20	9.07	90.70	53.37		09/03/2017	15:20	3.74	37.40	55.04
10/03/2017	14:30	17.39	173.90	53.69		10/03/2017	14:30	9.16	91.60	53.46		10/03/2017	14:30	3.82	38.20	55.12
13/03/2017	14:30	17.54	175.40	53.84		13/03/2017	14:30	9.32	93.20	53.62		13/03/2017	14:30	3.99	39.90	55.29
14/03/2017	14:30	17.59	175.90	53.89		14/03/2017	14:30	9.36	93.60	53.66		14/03/2017	14:30	4.02	40.20	55.32
15/03/2017	14:30	17.63	176.30	53.93		15/03/2017	14:30	9.42	94.20	53.72		15/03/2017	14:30	4.10	41.00	55.40
16/03/2017	14:30	17.72	177.20	54.02		16/03/2017	14:30	9.50	95.00	53.80		16/03/2017	14:30	4.18	41.80	55.48
17/03/2017	14:30	17.74	177.40	54.04		17/03/2017	14:30	9.52	95.20	53.82		17/03/2017	14:30	4.21	42.10	55.51
18/03/2017	11:00	17.81	178.10	54.11		18/03/2017	11:00	9.59	95.90	53.89		18/03/2017	11:00	4.31	43.10	55.61
20/03/2017	10.15	17.9	179.00	54.20		20/03/2017	10:15	9.08	96.80	54.07		20/03/2017	10.15	4.41	44.10	55.71
22/03/2017	11.15	18.00	180.00	54 39		22/03/2017	11.15	9.87	98.70	54 17		22/03/2017	11.15	4 59	45.90	55.89
23/03/2017	11:00	18.19	181.90	54.49		23/03/2017	11:00	9.96	99.60	54.26		23/03/2017	11:00	4.71	47.10	56.01
24/03/2017	11:30	18.27	182.70	54.57		24/03/2017	11:30	10.05	100.50	54.35		24/03/2017	11:30	4.86	48.60	56.16
25/03/2017	10:50	18.33	183.30	54.63		25/03/2017	10:50	10.11	101.10	54.41		25/03/2017	10:50	4.83	48.30	56.13
27/03/2017	11:00	18.38	183.80	54.68		27/03/2017	11:00	10.17	101.70	54.47		27/03/2017	11:00	4.92	49.20	56.22
28/03/2017	08:30	18.41	184.10	54.71		28/03/2017	08:30	10.20	102.00	54.50		28/03/2017	08:30	4.95	49.50	56.25
29/03/2017	10:45	18.46	184.60	54.76		29/03/2017	10:45	10.27	102.70	54.57		29/03/2017	10:45	5.01	50.10	56.31
30/03/2017	11:45	18.49	184.90	54.79		30/03/2017	11:45	10.30	103.00	54.60		30/03/2017	11:45	5.04	50.40	56.34
31/03/2017	11:15	18.53	185.30	54.83		31/03/2017	11:15	10.32	103.20	54.62		31/03/2017	11:15	5.08	50.80	56.38
01/04/2017	11:15	18.55	185.50	54.85		01/04/2017	11:15	10.36	103.60	54.66		01/04/2017	11:15	5.11	51.10	56.41
03/04/2017	11:15	18.03	188.40	55 1/		03/04/2017	11:15	10.43	104.30	54.73		03/04/2017	11:15	5.18	51.80	56.72
10/04/2017	08:00	18.84	188.40	55.14		10/04/2017	08:00	10.69	106.90	54.99		10/04/2017	08:00	5.43	54.30	56.73
17/04/2017	10:00	19.05	190.50	55.35		17/04/2017	10:00	10.84	108.40	55.14		17/04/2017	10:00	5.65	56.50	56.95
24/04/2017	11:08	18.96	189.60	55.26		24/04/2017	11:08	10.78	107.80	55.08		24/04/2017	11:08	5.59	55.90	56.89
01/05/2017	10:08	18.95	189.50	55.25		01/05/2017	10:08	10.76	107.60	55.06		01/05/2017	10:08	5.58	55.80	56.88
08/05/2017	11:08	18.98	189.80	55.28		08/05/2017	11:08	10.78	107.80	55.08		08/05/2017	11:08	5.59	55.90	56.89
15/05/2017	11:08	17.99	179.90	54.29		15/05/2017	11:08	9.80	98.00	54.10		15/05/2017	11:08	4.51	45.10	55.81
22/05/2017	11:28	18.07	180.70	54.37		22/05/2017	11:28	9.88	98.80	54.18		22/05/2017	11:28	4.62	46.20	55.92
29/05/2017	11:28	17.99	179.90	54.29		29/05/2017	11:28	9.80	98.00	54.10		29/05/2017	11:28	4.52	45.20	55.82
05/06/2017	10:28	17.56	1/5.60	53.86		05/06/2017	10:28	9.36	93.60	53.66		05/06/2017	10:28	4.02	40.20	55.32
12/06/2017	10.28	17.56	175.60	53.00		12/06/2017	11.28	9.19	91.90 88.20	53.49		12/06/2017	11.28	3.05	34.40	54.74
19/06/2017	12.28	16.81	168 10	53.51		19/06/2017	12.28	8.64	86.40	52.94		19/06/2017	12.28	3 21	37.10	54 51
26/06/2017	12:28	16.42	164.20	52.72		26/06/2017	12:28	8.64	86.40	52.94		26/06/2017	12:28	2.84	28.40	54.14
03/07/2017	14:00	15.81	158.10	52.11		03/07/2017	14:00	7.75	77.50	52.05		03/07/2017	14:00	2.36	23.60	53.66
12/07/2017	11:00	15.49	154.90	51.79		12/07/2017	11:00	7.47	74.70	51.77		12/07/2017	11:00	2.07	20.70	53.37
17/07/2017	11:00	14.96	149.60	51.26		17/07/2017	11:00	7.01	70.10	51.31		17/07/2017	11:00	1.58	15.80	52.88
24/07/2017	12:00	14.52	145.20	50.82		24/07/2017	12:00	6.59	65.90	50.89		24/07/2017	12:00	1.13	11.30	52.43
31/07/2017	12:00	14.17	141.70	50.47		31/07/2017	12:00	6.28	62.80	50.58		31/07/2017	12:00	0.81	8.10	52.11
07/08/2017	12:00	13.77	137.70	50.07		07/08/2017	12:00	5.92	59.20	50.22		07/08/2017	12:00	0.43	4.30	51.73
14/08/2017	10:30	13.42	134.20	49.72		14/08/2017	10:30	5.92	59.20	50.22		14/08/2017	10:30	0.00	0.00	51.30
21/08/2017	10:30	13.22	132.20	49.52		21/08/2017	10:30	5.20	52.60	49.56		21/08/2017	10:30	-0.13	-1.30	51.17
20/00/2017	11.50	13.23	132.90	49.39		20/00/2017	11.50	5.35	53.50	49.09		20/00/2017	11.50	-0.20	-2.00	51.10
11/09/2017	11:30 11:30	13.01	130.10 127.10	49.31 49.01		11/09/2017	11:30 11:30	4.86	48.60	49.46 49.16		04/09/2017	11:30 11:30	-0.18	-1.80	51.12
18/09/2017	14:30	12.60	126.00	48.90		18/09/2017	14:30	4.69	46.90	48.99		18/09/2017	14:30	-0.23	-2.30	51.07
25/09/2017	12:30	12.64	126.40	48.94		25/09/2017	12:30	4.72	47.20	49.02		25/09/2017	12:30	-0.20	-2.00	51.10
02/10/2017	14:00	12.45	124.50	48.75		02/10/17	14:00	4.55	45.50	48.85		02/10/17	14:00	-0.27	-2.70	51.03
09/10/2017	09:00	12.35	123.50	48.65		09/10/17	09:00	4.46	44.60	48.76		09/10/17	09:00	-0.23	-2.30	51.07
16/10/2017	12:00	12.23	122.30	48.53		16/10/17	12:00	4.36	43.60	48.66		16/10/17	12:00	-0.22	-2.20	51.08
23/10/2017	12:00	12.12	121.20	48.42		23/10/17	12:00	4.22	42.20	48.52		23/10/17	12:00	-0.23	-2.30	51.07
30/10/2017	12:00	12.09	120.90	48.39		30/10/17	12:00	4.17	41.70	48.47		30/10/17	12:00	-0.28	-2.80	51.02
06/11/2017	12:00	12.09	120.90	48.39		06/11/2017	12:00	4.45	44.50	48.75		06/11/2017	12:00	-0.22	-2.20	51.08
13/11/2017	12:00	12.53	125.30	48.83		13/11/2017	12:00	4.55	45.50	48.85		13/11/2017	12:00	-0.25	-2.50	51.05
20/11/2017	11:30	12.91	129.10	49.21		20/11/2017	11:30	4.87	48.70	49.17		20/11/2017	11:30	-0.24	-2.40	51.06
2//11/2017	11:00	12.97	129.70	49.27		2//11/2017	11:00	4.96	49.60	49.26		2//11/2017	11:00	-0.23	-2.30	51.07

				PIEZÔMETR	03					
	PIE	ZÔMETRO 3E	3				PIEZ	ÔMETRO 3	С	
		corgo pioz		coto nioz				carga		cota
Data	Horário	(m c a)	u (kPa)	(m)		Data	Horário	piez.	u (kPa)	niez (m)
		(111.0.0.)		(11)				(m.c.a.)		piez. (iii)
12/12/2016	08:30	0.06	0.60	55.97		12/12/2016	08:30	-0.24	-2.40	60.67
13/12/2016	08:30	0.07	0.70	55.98		13/12/2016	08:30	-0.23	-2.30	60.68
14/12/2016	08:30	0.15	1.50	56.06		14/12/2016	08:30	-0.18	-1.80	60.73
15/12/2016	16:00	0.08	0.80	55.99		15/12/2016	16:00	-0.25	-2.50	60.66
16/12/2016	16:00	0.08	0.80	55.99		16/12/2016	16:00	-0.23	-2.30	60.68
17/12/2016	08:00	0.08	0.80	55.99		17/12/2016	08:00	-0.22	-2.20	60.69
19/12/2016	08:00	-0.01	-0.10	55.90		19/12/2016	08:00	-0.25	-2.50	60.66
20/12/2016	08:00	-0.06	-0.60	55.85		20/12/2016	08:00	-0.25	-2.50	60.66
21/12/2016	08:00	-0.06	-0.60	55.85		21/12/2016	08:00	-0.27	-2.70	60.64
22/12/2016	08:00	-0.05	-0.50	55.86		22/12/2016	08:00	-0.24	-2.40	60.67
23/12/2016	08:00	-0.03	-0.30	55.88		23/12/2016	08:00	-0.20	-2.00	60.71
26/12/2016	08:00	-0.06	-0.60	55.85		26/12/2016	08:00	-0.18	-1.80	60.73
27/12/2016	08:00	-0.09	-0.90	55.82		27/12/2016	08:00	-0.20	-2.00	60.71
28/12/2016	08:00	-0.11	-1.10	55.80		28/12/2016	08:00	-0.24	-2.40	60.67
29/12/2016	08:00	-0.12	-1.20	55.79		29/12/2016	08:00	-0.21	-2.10	60.70
30/12/2016	08:00	-0.11	-1.10	55.80		30/12/2016	08:00	-0.22	-2.20	60.69
03/01/2017	08:00	-0.12	-1.20	55.79		03/01/2017	08:00	-0.17	-1.70	60.74
04/01/2017	08:00	-0.12	-1.20	55.79		04/01/2017	08:00	-0.2	-2.00	60.71
05/01/2017	08:00	-0.14	-1.40	55.77		05/01/2017	08:00	-0.2	-2.00	60.71
07/01/2017	14:00	-0.13	-1.30	55.78		07/01/2017	14:00	-0.21	-2.10	60.70
0//01/2017	15:00	-0.12	-1.20	55.79		0//01/2017	15:00	-0.15	-1.50	60.76
10/01/2017	15:30	-0.14	-1.40	55.77		10/01/2017	15:30	-0.23	-2.30	60.68
10/01/2017	15:00	-0.14	-1.40	55.77		10/01/2017	15:00	-0.19	-1.90	60.72
11/01/2017	14:40	-0.14	-1.40	55.77		12/01/2017	15:00	-0.2	-2.00	60.71
12/01/2017	14.40	-0.15	-1.50	55.76		12/01/2017	14.40	-0.2	-2.00	60.71
14/01/2017	14.40	-0.09	-0.90	55.62		13/01/2017	14.40	-0.15	-1.30	60.75
16/01/2017	14.00	-0.08	-0.80	55.83		16/01/2017	14.00	-0.10	-1.00	60.75
17/01/2017	14.40	-0.08	-0.80	55.83		17/01/2017	14.40	-0.21	-2.10	60.70
18/01/2017	15.40	-0.08	-0.30	55.84		18/01/2017	15.40	-0.2	-1.00	60.71
19/01/2017	16:00	-0.07	-0.70	55.86		19/01/2017	16:00	-0.15	-1.50	60.72
20/01/2017	15.20	-0.04	-0.40	55.87		20/01/2017	15:20	-0.22	-2.00	60.69
21/01/2017	11:00	0.03	0.40	55.94		21/01/2017	11:00	-0.26	-2.60	60.65
23/01/2017	16:00	0.06	0.60	55.97		23/01/2017	16:00	-0.2	-2.00	60.71
24/01/2017	15:00	0.04	0.40	55.95		24/01/2017	15:00	-0.27	-2.70	60.64
25/01/2017	15:30	0.02	0.20	55.93		25/01/2017	15:30	-0.31	-3.10	60.60
26/01/2017	16:30	0.02	0.20	55.93		26/01/2017	16:30	-0.32	-3.20	60.59
28/01/2017	14:30	0.01	0.10	55.92		28/01/2017	14:30	-0.26	-2.60	60.65
30/01/2017	15:30	0.03	0.30	55.94		30/01/2017	15:30	-0.32	-3.20	60.59
31/01/2017	15:30	0.08	0.80	55.99		31/01/2017	15:30	-0.21	-2.10	60.70
01/02/2017	15:30	0.11	1.10	56.02		01/02/2017	15:30	-0.21	-2.10	60.70
02/02/2017	15:30	0.11	1.10	56.02		02/02/2017	15:30	-0.25	-2.50	60.66
03/02/2017	15:30	0.11	1.10	56.02		03/02/2017	15:30	-0.3	-3.00	60.61
04/02/2017	15:30	0.12	1.20	56.03		04/02/2017	15:30	-0.32	-3.20	60.59
06/02/2017	15:30	0.11	1.10	56.02		06/02/2017	15:30	-0.31	-3.10	60.60
08/02/2017	15:30	0.14	1.40	56.05		08/02/2017	15:30	-0.27	-2.70	60.64
09/02/2017	15:30	0.11	1.10	56.02		09/02/2017	15:30	-0.25	-2.50	60.66
10/02/2017	15:30	0.1	1.00	56.01		10/02/2017	15:30	-0.25	-2.50	60.66
11/02/2017	15:30	0.11	1.10	56.02		11/02/2017	15:30	-0.31	-3.10	60.60
13/02/2017	15:30	0.14	1.40	56.05		13/02/2017	15:30	-0.28	-2.80	60.63
14/02/2017	15:30	0.14	1.40	56.05		14/02/2017	15:30	-0.38	-3.80	60.53
15/02/2017	15:20	0.14	1.40	56.05		15/02/2017	15:20	-0.36	-3.60	60.55
16/02/2017	15:40	0.12	1.20	56.03		16/02/2017	15:40	-0.34	-3.40	60.57
17/02/2017	15:30	0.12	1.20	56.03		17/02/2017	15:30	-0.33	-3.30	60.58
18/02/2017	11:00	0.14	1.40	56.05		18/02/2017	11:00	-0.34	-3.40	60.57
20/02/2017	14:00	0.13	1.30	56.04		20/02/2017	14:00	-0.33	-3.30	60.58
21/02/2017	14:30	0.11	1.10	56.02		21/02/2017	14:30	-0.34	-3.40	60.57
22/02/2017	15:40	0.11	1.10	56.02		22/02/2017	15:40	-0.3	-3.00	60.61
23/02/2017	15:40	0.1	1.00	56.01		23/02/2017	15:40	-0.34	-3.40	60.57
24/02/2017	15:40	0.11	1.10	56.02		24/02/2017	15:40	-0.25	-2.50	60.66
25/02/2017	11:00	0.12	1.20	56.03		25/02/2017	11:00	-0.32	-3.20	60.59
27/02/2017	15:20	0.17	1.70	56.08		27/02/2017	15:20	-0.29	-2.90	60.62
28/02/2017	15:20	0.19	1.90	56.10		28/02/2017	15:20	-0.32	-3.20	60.59

				PIEZÔMETR	03					
	PIE	ZÔMETRO 3E	3				PIEZ	2ÔMETRO 3	С	
Data	Horário	carga piez. (m.c.a.)	u (kPa)	cota piez. (m)		Data	Horário	carga piez.	u (kPa)	cota piez. (m)
01/03/2017	15:00	0.24	2.40	56.15		01/03/2017	15:00	-0.36	-3.60	60.55
02/03/2017	15:20	0.23	2.30	56.14		02/03/2017	15:20	-0.31	-3.10	60.60
03/03/2017	15:20	0.26	2.60	56.17		03/03/2017	15:20	-0.33	-3.30	60.58
04/03/2017	10:20	0.29	2.90	56.20		04/03/2017	10:20	-0.36	-3.60	60.55
06/03/2017	14:40	0.38	3.80	56.29		06/03/2017	14:40	-0.34	-3.40	60.57
07/03/2017	15:00	0.42	4.20	56.33		07/03/2017	15:00	-0.27	-2.70	60.64
08/03/2017	15:10	0.68	6.80	56.59		08/03/2017	15:10	-0.32	-3.20	60.59
09/03/2017	15:20	0.74	7.40	56.65		09/03/2017	15:20	-0.34	-3.40	60.57
10/03/2017	14:30	0.77	7.70	56.68		10/03/2017	14:30	-0.28	-2.80	60.63
13/03/2017	14:30	0.82	8.20	56.73		13/03/2017	14:30	-0.28	-2.80	60.63
14/03/2017	14:30	0.84	8.40	56.75		14/03/2017	14:30	-0.32	-3.20	60.59
15/03/2017	14:30	0.85	8.50	56.76		15/03/2017	14:30	-0.35	-3.50	60.56
16/03/2017	14:30	0.87	8.70	56.78		16/03/2017	14:30	-0.28	-2.80	60.63
17/03/2017	14:30	0.89	8.90	56.80		17/03/2017	14:30	-0.32	-3.20	60.59
18/03/2017	11:00	0.92	9.20	56.83		18/03/2017	11:00	-0.34	-3.40	60.57
20/03/2017	11:00	0.97	9.70	56.88		20/03/2017	11:00	-0.31	-3.10	60.60
21/03/2017	10:15	1.01	10.10	56.92		21/03/2017	10:15	-0.33	-3.30	60.58
22/03/2017	11:15	1.04	10.40	56.95		22/03/2017	11:15	-0.27	-2.70	60.64
23/03/2017	11:00	1.09	10.90	57.00		23/03/2017	11:00	-0.32	-3.20	60.59
24/03/2017	11:30	1.14	11.40	57.05		24/03/2017	11:30	-0.33	-3.30	60.58
25/03/2017	10:50	1.17	11.70	57.08		25/03/2017	10:50	-0.36	-3.60	60.55
27/03/2017	08.20	1.19	11.90	57.10		27/05/2017	11.00	-0.55	-5.50	60 EE
20/03/2017	10.30	1.19	12.30	57.10		20/02/2017	10.30	-0.30	-3.00	60.62
29/03/2017	10.45	1.22	12.20	57.13		30/03/2017	10.45	-0.28	-2.80	60.03
31/03/2017	11.45	1.22	12.20	57.13		31/03/2017	11:45	-0.32	-3 30	60.55
01/04/2017	11.15	1.23	12.30	57.15		01/04/2017	11.15	-0.35	-3 50	60.56
03/04/2017	11.15	1.24	12.40	57.13		03/04/2017	11.15	-0.32	-3.20	60.50
08/04/2017	11:25	1.38	13.80	57.29		08/04/2017	11:25	-0.35	-3.50	60.55
10/04/2017	08:00	1.38	13.80	57.29		10/04/2017	08:00	-0.38	-3.80	60.53
17/04/2017	10:00	1.33	13.30	57.24		17/04/2017	10:00	-0.33	-3.30	60.58
24/04/2017	11:08	1.21	12.10	57.12		24/04/2017	11:08	-0.36	-3.60	60.55
01/05/2017	10:08	1.04	10.40	56.95		01/05/2017	10:08	-0.37	-3.70	60.54
08/05/2017	11:08	1.11	11.10	57.02		08/05/2017	11:08	-0.32	-3.20	60.59
15/05/2017	11:08	0.53	5.30	56.44		15/05/2017	11:08	-0.38	-3.80	60.53
22/05/2017	11:28	0.41	4.10	56.32		22/05/2017	11:28	-0.38	-3.80	60.53
29/05/2017	11:28	0.18	1.80	56.09		29/05/2017	11:28	-0.87	-8.70	60.04
05/06/2017	10:28	0.18	1.80	56.09		05/06/2017	10:28	-0.39	-3.90	60.52
07/06/2017	16:28	0.01	0.10	55.92		07/06/2017	16:28	-0.41	-4.10	60.50
12/06/2017	11:28	-0.22	-2.20	55.69		12/06/2017	11:28	-0.34	-3.40	60.57
19/06/2017	12:28	-0.36	-3.60	55.55		19/06/2017	12:28	-0.38	-3.80	60.53
26/06/2017	12:28	-0.47	-4.70	55.44		26/06/2017	12:28	-0.37	-3.70	60.54
03/07/2017	14:00	-0.54	-5.40	55.37		03/07/2017	14:00	-0.37	-3.70	60.54
12/07/2017	11:00	-0.41	-4.10	55.50		12/07/2017	11:00	-0.34	-3.40	60.57
17/07/2017	11:00	-0.41	-4.10	55.50		17/07/2017	11:00	-0.39	-3.90	60.52
24/07/2017	12:00	-0.37	-3.70	55.54		24/07/2017	12:00	-0.37	-3.70	60.54
31/0//2017	12:00	-0.38	-3.80	55.53		31/0//2017	12:00	-0.32	-3.20	60.59
0//08/2017	12:00	-0.39	-3.90	55.52		0//08/2017	12:00	-0.39	-3.90	60.52
14/08/2017	10:30	-0.39	-3.90	55.52		14/08/2017	10:30	-0.41	-4.10	60.50
21/08/2017	10:30	-0.35	-3.50	55.50		21/08/2017	10:30	-0.38	-3.80	60.53
28/08/2017	11:30	-0.45	-4.50	55.46		28/08/2017	11:30	-0.42	-4.20	60.49
04/09/2017	11:30	-0.46	-4.60	55.45		04/09/2017	11:30	-0.38	-3.80	60.53
11/09/2017	11:30	-0.36	-3.60	55.55		11/09/2017	11:30	-0.35	-3.50	60.56
18/09/2017	14:30	-0.40	-4.00	55.51		18/09/2017	14:30	-0.43	-4.30	60.48
25/09/2017	12:30	-0.39	-3.90	55.52		25/09/2017	12:30	-0.39	-3.90	60.52
02/10/2017	14:00	-0.47	-4.70	55.44		02/10/17	14:00	-0.36	-3.60	60.55
09/10/2017	09:00	-0.21	-2.10	55.70		09/10/17	09:00	-0.43	-4.30	60.48
16/10/2017	12:00	-0.17	-1.70	55.74		16/10/17	12:00	-0.41	-4.10	60.50
23/10/2017	12:00	-0.18	-1.80	55.73		23/10/17	12:00	-0.40	-4.00	60.51
30/10/2017	12:00	-0.24	-2.40	55.67		30/10/17	12:00	-0.40	-4.00	60.51
06/11/2017	12:00	-0.16	-1.60	55.75		06/11/2017	12:00	-0.38	-3.80	60.53
15/11/2017	11:20	-2.11	-21.10	53.80		15/11/2017	11:20	-0.46	-4.60	60.45
20/11/2017	11:30	-0.19	-1.90	55.72		20/11/2017	11:30	-0.45	-4.50	60.46
2//11/2017	11:00	-0.18	-1.80	55.73		2//11/2017	11:00	-0.45	-4.50	60.46

3. Inclinômetros

APÊNDICE B - ANÁLISES DE ESTABILIDADE

PARÂMETROS DE RESISTÊNCIA EFETIVOS (c'=10 kPa e Ø'=31°)

- 55

- 50

- 35 - 30

- 25

-5

Elevação

