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“There is a driving force more powerful than steam, electricity 

and nuclear power: the will.” (Albert Einstein) 

“I learned that courage was not the absence of fear, but the 

triumph over it. The brave man is not he who does not feel afraid, 

but he who conquers that fear.” (Nelson Mandela) 

“If you can't fly then run, if you can't run then walk, if you can't 

walk then crawl, but whatever you do you have to keep moving 

forward.” (Martin Luther King Jr.) 

“Say no to protectionism. It is like locking yourself in a dark room. 

Wind and rain are kept out, but so are light and air.” (Xi Jinping, 

Chinese President at the World Economic Forum in Davos) 

“When the wind of change blows, some build walls, while others 

build windmills.” (Chinese Proverb) 

“If you do not push the boundaries, you will never know 

where they are.” (T. S. Eliot) 

“Time flies over us, but leaves its shadow behind.” 

(Nathaniel Hawthorne) 
“The place I love, Brazil, is a three-legged dog. Everyone who's 

ever loved a three-legged dog knows you can love that dog more 

than one with a handsome pedigree.” (Adapted from the book 

The Hard Way on Purpose)  

 “Serenity now. Insanity later.” (159th episode of Seinfeld) 

 “Já que se há de escrever... que ao menos não se esmaguem com 

palavras as entrelinhas.” (Clarice Lispector) 

“Eu sei que não sou nada e que talvez nunca tenha tudo. Aparte isso, 

eu tenho em mim todos os sonhos do mundo.” (Fernando Pessoa) 

 “The key to realizing a dream is to focus not on success but on 

significance — and then even the small steps and little victories 

along your path will take on greater meaning.” (Oprah Winfrey) 

“Dream big, work hard, stay humble.” (Brad Meltzer) 
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        Este trabalho desenvolve ciclos de produção de petróleo multi-Hubbert e 

assimétricos para analisar a produção de petróleo no pós-sal offshore brasileiro. Um 

modelo híbrido emprega a análise de regressão para explicar o desvio da produção de 

petróleo em relação à curva de Hubbert. A partir da teoria da curva creaming, esta tese 

avalia o potencial para descobertas de petróleo no Brasil. Uma variante da curva creaming 

emprega o tamanho das descobertas dos campos considerando um mesmo fator de 

recuperação para campos de uma bacia sedimentar. Essa suposição é necessária devido à 

confidencialidade da informação de reservas de um campo. Além disso, esta tese analisa 

o número de poços de desenvolvimento no pré-sal aplicando técnicas econométricas de 

cointegração e modelagem de correção de erros para séries temporais. Após um aumento 

no risco-país e o colapso do preço do petróleo em 2014, o número de poços de 

desenvolvimento completados nas zonas do pré-sal é analisado considerando o efeito do 

preço do petróleo, da volatilidade dos preços, da produtividade e do risco-país. Os 

resultados mostram os efeitos negativo e positivo de se elevar, respectivamente, o risco-

país e a produtividade para o número de poços de desenvolvimento no pré-sal. 
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 This work develops multi-Hubbert and asymmetrical oil production cycles to 

analyze the Brazilian post-salt oil production offshore. A hybrid model employs 

regression analysis to explain the deviation of crude oil production rate from the Hubbert 

curve. By looking at the creaming phenomenon, this thesis evaluates the potential for 

future oil discoveries in Brazil. A creaming curve variant employs the fields’ size of 

discoveries based on the assumption that the recovery factor is the same for all fields 

within a sedimentary basin. This assumption is necessary because the size of the fields’ 

reserves is confidential data. In addition, this thesis analyzes the number of development 

wells completed in the pre-salt zones by using time series econometric techniques of 

cointegration and error correction modeling. Following an increase in the country risk, 

and the 2014 oil price collapse, this thesis analyzes the number of development wells 

drilled in the pre-salt zones by identifying the effect of oil price, price volatility, 

productivity, and country risk. Results show the negative and positive effect of raising, 

respectively, the country risk and productivity for the number of pre-salt development 

wells. 
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1. Introduction 

The oil sector has significant relevance for national and worldwide economies, with a 

privileged position in the political and economic agenda of countries, especially 

concerning energy security policies. The issue of energy security frequently leads to 

assessments of oil and gas reserves and resources (Pickering, 2008; Sorrell et al., 2010). 

Such reserves evaluation can support the elaboration of development scenarios for 

countries and companies. 

The nations’ dependence on fossil fuels, together with the reliance on oil exports revenue, 

and the attempt to reduce the vulnerability of net-import oil countries are among the 

traditional issues of geopolitics (Greene, 2010; Greene e Liu, 2015; Sovacool, 2007; 

Vivoda, 2009). Today, the geopolitics of energy face new realities in assessing the energy 

system, such as: (i) the changing patterns of economic growth, (ii) the development of 

new methods to extract oil resources (particularly from tight and deepwater formations), 

(iii) environmental pressures, (iv) emerging technologies that will enable the commercial 

use of renewable energy sources, (v) actions to address climate change, and (vi) the 

efficiency (or lack thereof) of national oil companies (NOCs) (Harvard, 2018).  

The hypothesis that peak oil has already occurred is inconsistent with observations 

especially in the United States (US). After seeming to peak in the early 1970s, oil 

production in the US rises from 5.4 million barrels per day (mbd) in January 2010 to 11.9 

mbd in November 2018 mostly due to tight formations’ production (EIA, 2018a). In this 

same period, Brazilian oil1 production from the pre-salt (deep-lying oil underneath an 

                                                 
1 Information disclosed by the Brazilian petroleum regulatory agency, ANP, adopts the petroleum term as 

the sum of oil and condensate (e.g. the Monthly Oil and Natural Gas Production Bulletin (ANP, 2018a) and 

the data of petroleum imports (ANP, 2018b), not including Natural Gas Liquid (NGL). This work as well 
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extremely thick layer of salt) increases by 1.4 mbd (ANP, 2018a). This rise occurs despite 

a decline in oil prices, which dropped from $100 per barrel in June 2014 to $30 per barrel 

at the beginning of 2016.  

Greater output seems to shift the paradigm from the age of (perceived) scarcity to a period 

of abundance. Such abundance leads the OPEC+ group – Organization of the Petroleum 

Exporting Countries and country allies, as Russia – to choose between an 

‘accommodation' strategy and a 'squeeze strategy.' In the accommodation strategy, the 

OPEC + group reduce production to defend higher prices, whereas in a ‘squeeze' strategy 

they maintain production to reduce non-OPEC output and increase consumption 

(Manescu and Nuño, 2015; Ansari, 2017; Behar and Ritz, 2017) and/or dampen the 

development of alternatives, such as renewables.  

The new energy bonanza is characterized by comparatively low oil prices, but price spikes 

still occur given that many factors affect oil prices (O’Sullivan, 2017). After the 2014 

price collapse, the price for Brent increases to 81 dollars per barrel in October 2018 

(highest level since 2014). At the 4th OPEC and non-OPEC Ministerial Meeting in June 

2018, the OPEC+ group decided to increase output. This decision occurs during a period 

of growing demand, supply disruptions in Venezuela and Libya, US sanctions against 

Iran, infrastructure bottlenecks in the US tight oil production and new regulations on ship 

sulfur emissions. All these episodes have the potential to increase oil prices (Reuters, 

2018a, 2018b; Smith, 2018; Cunningham, 2018).  

                                                 
does not include NGL in its petroleum term. Considering the small amount of condensate produced in 

Brazil compared to crude oil (ANP, 2018a), this work assumes there are no major differences between the 

amount of crude oil and petroleum for the case of Brazil and uses the term oil as a general definition. EIA 

(2013) defines NGL and lease condensate.  
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The chance of oil and gas companies shrinking their investment budget in the wake of the 

2014 price drop makes a price spike in the coming years possible. However, such a spike 

would likely mild in the short-term if the production of tight oil responds quickly to higher 

oil prices (O’Sullivan, 2017). Furthermore, oil price fluctuations likely represent a more 

profound long-run structural transformation in oil demand, that reduces the likelihood 

that price will recover to previous levels (Waterworth and Bradshaw, 2018).  

To develop pre-salt, Petrobras’ investments in the upstream sector increased substantially 

as well as Petrobras’ total debt (Petrobras, 2018a, 2018b). For the last five years, 

production and development have had a share of more than 70% from investments in the 

upstream sector (with a focus on the development of pre-salt), according to the Business 

and Management Plans2 of Petrobras. In light of the oil price drop, budget constraint and 

the high productivity from the pre-salt layer, Petrobras3 focus on the production and 

development of pre-salt and place the revitalization of post-salt offshore production at a 

disadvantage. Even though the output from post-salt offshore zone declines since 2010, 

it still represents 41% of the total oil production in Brazil (1.05 mbd in 2018).  

Despite an increasing tendency in the output from the pre-salt layer, the 2014 price 

collapse jeopardized the oil production landscape, as well as the financial situation of 

Petrobras and the Brazilian economy. In the wake of an economic recession, Brazil and 

Petrobras lose its investment-grade rating in 2015. In this same year, the Organization for 

                                                 
2 It was considered the CAPEX 2019-2023, CAPEX 2018-2022, CAPEX 2017-2021, CAPEX 2015-2019 

and CAPEX 2014-2018 of Petrobras’ Business and Management Plans.  
3
 Petrobras is a mixed capital company: partially state-owned enterprise and partially private. Petrobras’ 

shares have been traded in the New York Stock Exchange (US) and BOVESPA Stock Market (Brazil).  
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Economic Co-operation and Development (OECD) increases the score for Brazil’s risk 

from 3 to 4 (followed by another increase from 4 to 5 in 2016).   

With that in mind, this thesis zooms in on details of the Brazilian oil production and oil 

discovery forecasts and develops a curve-fitting methodology to assess production and 

discovery cycles in order to overcome some modeling issues. Such analysis took on 

board: 

1) the adaptation of an asymmetric Hubbert model based on a Gaussian curve, 

developed by Brandt (2007)4, to the original Hubbert model. This study assesses 

the influence of techno-economic parameters to the post-salt oil production in 

Brazil by using a regression model to explain the differences between the Hubbert 

model and observed production data, inspired by Kaufmann (1991)5. After that, a 

logistic curve is fitted to pre-salt historical oil production using different scenarios 

of ultimately recoverable resources (URR) as a preliminary (and plain) effort to 

estimate the peak of oil production in the pre-salt province.  

2) the use of a creaming curve variant model (plotted as the cumulative discovery 

against the number of new field wildcats) to assess the potential for increasing 

reserves from known fields and future discoveries6. To estimate the fields' size of 

discoveries, this variant assumes the recovery factor is the same for all fields 

within a sedimentary basin. Such an assumption is necessary because the size of 

                                                 
4 This asymmetric Hubbert model is based on the paper “Curve-fitting variants to model Brazil's crude oil 

offshore post-salt production” published in 2017 by the Journal of Petroleum Science and Engineering co-

authored with Alexandre Salem Szklo, Amaro Olímpio Pereira Júnior and Johannes Schmidt. 
5 This regression model is based on the paper “Curve-fitting variants to model Brazil's crude oil offshore 

post-salt production” published in 2017 by the Journal of Petroleum Science and Engineering co-authored 

with Alexandre Salem Szklo, Amaro Olímpio Pereira Júnior and Johannes Schmidt. 
6 The creaming curve analysis is based upon the paper “Assessing the exploratory potential in Brazil by 

applying a creaming curve variant” published in 2019 by Energy Policy, co-authored with Alexandre Szklo. 
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the fields' reserves is confidential data. Moreover, in light of reduced investments 

for exploratory activities in previous Petrobras’ Business and Management Plans, 

high oil prices volatility and the greater time interval between discovery and 

production for offshore projects, assessing oil discovery cycles becomes of great 

importance.   

Proceeding on this track, this thesis estimates a series of models to quantify how crude 

oil prices, price volatility, productivity, and country risk affect the number of 

development wells that are completed in the pre-salt zones of Brazil7.  This thesis extends 

the work of Ansari and Kaufmann (2019) by including the country risk as a variable into 

the models. Specifically, this thesis extends previous efforts in several ways:  

3) The identification of the break-even price (BEP) for petroleum production in pre-

salt formations by specifying a range of values and determining the BEP that 

generates the ‘most accurate’ model. The BEP also is used to modify the way 

firms perceive volatility. This work postulates that volatility has its greatest effect 

when prices are near the BEP (Ansari and Kaufmann, 2019). As prices move 

below or above the BEP, price volatility has a smaller effect because prices are 

too low to justify exploration and development (E&D) or so high that volatility 

has little effect on economic returns. These effects are represented by calculating 

a variable termed ‘perceived volatility.’  

4) This work explores the price used to drill development wells by estimating models 

that specify spot prices and futures contracts with a range of maturities for two 

                                                 
7 This analysis follows the paper “The Effect of Productivity and Country Risk on Development in the 

Brazilian Pre-salt Province” published in 2019 by the journal Energy Sources, Part B: Economics, Planning, 

and Policy, co-authored with Robert K. Kaufmann and Alexandre Szklo. 
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benchmark crude oils: West Texas Intermediate (WTI) and Brent. This thesis 

explicitly represents the effect of productivity in oil-producing wells, both as a 

stand-alone measure and how it interacts with the price to affect net revenue.  

5) The models include country risk, which represents the willingness of foreign 

investors to fund E&D in the pre-salt zone.  According to this thesis’ literature 

review, none econometric technique has been applied before to analyze the 

development of the pre-salt province in Brazil. 

The higher output from post-salt and pre-salt zones occurred in December 2016, when 

the oil production reached 2.7 mbd. Since then, the oil output remains stable at about 2.6 

mbd. As a consequence of the large pre-salt discoveries, previous scenarios proposed the 

production of oil in Brazil would reach in 2018: (i) 3.2 mbd, according to Petrobras’ 2014-

2018 Business and Management Plan; (ii) 3.5 mbd, according to IEA (2013, p. 369); and 

(iii) between 3.3 mbd and 5.5 mbd, respectively, from the Ten-Year Energy Expansion 

Plan – PDE 2015-2024 and the Ten-Year Energy Expansion Plan – PDE 2011-2020, 

according to the Energy Research Office (EPE in its Portuguese acronym). Remarkably, 

all these noticeable institutions overestimated the oil production in Brazil, which 

underscores how complicated oil production forecast can be.   

This complexity lies in the fact that all procedures to model supply curves for oil 

production have strengths and weaknesses. The principal methodologies are summarized 

by Sorrell et al. (2010) and Brandt (2010). According to them, curve-fitting methods are 

simple to implement and therefore broadly used. However, they require a suitable 

theoretical basis and neglect essential variables. Simulation models do not predefine the 

form of the production curve but generate it by simulating the interaction of physical and, 
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sometimes, economic factors. This approach requires many data, which are not always 

publicly available. Bottom-up models are promising for short to medium term 

projections, but restricted by their dependence on proprietary data, lack of transparency, 

uncertainty over significant variables and the need to consider various premises. 

Economic models focus on investments, optimal extraction paths and effects of oil prices 

rather than focusing on physical or technological aspects. This approach can be 

unsatisfactory because it does not account for critical geological conditions that become 

important in the long-term.  

This thesis describes the development of curve-fitting and econometric methods to model 

oil production in Brazil due to the viability of data for developing these approaches. 

Through these analyses, this thesis sets out to address the following overarching 

questions: 

1) How much does the pre-salt production have to increase in order to offset the 

declines in post-salt production? 

2) How much time does it take to the post-salt oil production in Brazil adjust to 

changing price levels? 

3) What is the potential for increasing the recovery factor and discoveries in Brazil?  

4) How do oil prices, oil prices’ volatility, productivity, and country risk affect oil 

development in the pre-salt zone in Brazil? 

However, before moving on to the description of the methodology and the results, it is 

essential to provide some background in the form of a literature review.  
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2. Historical and technical background  

2.1. Historical background 

2.1.1. Historical development of oil production in Brazil 

Globally, offshore oil production accounted for about 30% of total oil production over 

the past decade (EIA, 2016) and accounted for an estimated 20% of the world's oil 

reserves (Total, 2015). 

Offshore production is subdivided into three categories: shallow-water, deep-water and 

ultra-deepwater. EIA (2016) defines the three categories as follows: water-depth up to 

125m refers to shallow-water production; water-depth between 125m and 1500m refers 

to deep-water production, and water-depth above 1500m refers to ultra-deep-water 

production.  

Morais (2013) and Sallh et al. (2015) consider 300m of water-depth as the threshold 

between shallow water and deep water, but they also consider 1500m of water-depth as 

the limit for ultra-deepwater. 

The majority of deep-water or ultra-deep-water production occurs in four countries: 

Brazil, the US, Angola, and Norway, being Brazil and the US in charge of more than 90% 

of global ultra-deep-water production (EIA, 2016).    

In Brazil, the first discoveries of offshore oil fields occurred in the coastal waters of the 

Northeast region in 1968-1973, followed by shallow waters’ discoveries in Campos Basin 

in 1974 (Morais, 2013). In the following decades, the advancement of exploration 

activities and innovations in maritime production systems enabled the exploitation of 

hydrocarbon deposits at longer distances from the coast and in deeper waters. These 
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advancements led to discoveries of giant and super-giant fields in Santos and Campos 

basins ‒ 500 million barrels and 5 billion barrels of recoverable oil (or equivalent gas) are 

the cutoffs, respectively, for giant and supergiant oil fields. The oil production progress 

to deeper waters can be observed in Figure 1.  

 
Figure 1: Oil production water-depth versus the year of production start in Brazil 
Source: Based on ANP (2016) 

As Brazilian oil production evolved into deeper water depths, the national outlook of oil 

reserves altered substantially (Figure 2).  
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Figure 2: National Historical Proved Reserves - ANP/SPE Criteria 

Source: Based on Petrobras (2018c) 

Besides the increase of reserves, the progress of technologies into deep and ultra-deep 

waters allowed a significant reduction in the dependence of oil imports. 

The Brazilian oil industry dates from the first half of the 20th century. Exploration of oil 

fields began onshore in Brazil, where the first oil field was discovered in 1941 at 

Recôncavo basin. Afterward, a period targeting the reduction of the dependence on oil 

imports began. Although significant oil fields were discovered onshore, Brazil still 

imported two-thirds of its consumption in the mid-1960s (Morais, 2013). At that time, the 

offshore oil discoveries were insufficient to change the landscape of high dependence on 

imported oil in Brazil. Offshore exploration started evolving in the 1960s. The first 

discoveries of oil fields off the coast occurred in the Northeast region in 1968-1973, 

followed by shallow waters’ discoveries in Campos Basin in 1974 (Morais, 2013). In the 

following decades, significant oil fields were discovered (e.g., Albacora, Marlim, 

Albacora Leste, Marlim Leste and Marlim Sul in the 1980s, and Barracuda and Roncador 

in the 1990s). These discoveries were carried out by Petrobras; the Brazilian state-

controlled oil company. The advancement of exploration activities and innovations in 
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maritime production systems enabled the exploitation of hydrocarbon deposits at longer 

distances from the coast and in deeper waters. In the last three decades, these 

advancements led to discoveries of giant and super-giant fields in Santos and Campos 

basins in the so-called post-salt layers.  

The first oil discovery in the Campos Basin in the mid-1970s started a decisive phase of 

discoveries that reduced the country’s import dependence gradually. Brazil achieved the 

self-sufficiency regarding crude oil volume for the first time in 2006 when the oil 

production of 100 million cubic meters exceeded the oil consumption of 99 million cubic 

meters (EPE, 2015, p. 44). Despite the self-sufficiency in volume terms occurred in 2006, 

the oil export revenue still accounted for 75% of import expenditures this year. The self-

sufficiency in monetary terms was achieved in 2009 (ANP, 2018b), although Brazil still 

relies on imported oil to achieve a higher-quality blend for oil refining processes (Saraiva 

et al., 2014).  

Currently, Brazil holds the 16th position in the rank of crude oil exporting countries (CIA, 

2018; Workman, 2018). Brazil’s gross oil exports increased from 631 thousand barrels 

per day (kbd) in 2010 (when Lula field’s commercial oil production began) to 997 kbd in 

2017. In this period, the net positive oil exports almost tripled: from 292.7 kbd to 847.3 

kbd.  

Brazil´s oil production is meaningful on a global scale ‒ around 2.69 mbd of oil in 

December 2018 (ANP, 2018a). Oil and oil products still account for the leading share of 

domestic energy supply, although their share may reduce from 38% in 2015 to 35% in 

2024, because of gasoline replacement by ethanol and fuel oil by natural gas (EPE, 2015a, 

p. 437). 
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Figure 3 shows the significant share of the offshore oil production in Brazil, the new oil 

production cycle in the pre-salt and the decline of oil production in the Brazilian post-salt 

offshore.  

 
Figure 3: Onshore and offshore oil production curves 

Source: Based on ANP (2016, 2018a) 

Brazil´s post-salt oil production offshore history can be divided into two periods: one that 

reached its peak in the mid-1980s and another one that began to decline around 2010. The 

first cycle includes the shallow water producing fields (water-depth up to 250m) and the 

second cycle includes the deep-water producing fields (water-depth deeper than 250m)8. 

The post-salt oil production offshore in shallow water is characterized by a slowly 

declining curve for more than three decades. Figure 4 shows that after 1986 (the peak 

production year) some fields increased their oil production expressively, thus contributing 

to an asymmetric cycle profile.  

                                                 
8 Differently from all the above definitions, this thesis considers 250m of water-depth as the threshold 

between shallow water and deep water, without differentiating between deep and ultra-deep water.   
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Figure 4: Post-salt oil production offshore in shallow waters ordered by fields date of start-up production 

Source: Based on ANP (2016) 

Deep-water post-salt fields started to be discovered in the mid-1980s and accounted for 

almost 90% of the Brazilian post-salt production in 2015. In the deep-water post-salt 

cycle, a few giant fields9 in ultra-deep waters have been discovered. However, Figure 5 

shows that no post-salt field with representative production started producing after 2010 

when the offshore deep-water post-salt peak production occurred.  

 

                                                 
9 Giants fields include Albacora, Marlim and Barracuda (Morais, 2013), whose oil production started, 

respectively, in 1987, 1991 and 1997 (ANP, 2016). 
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Figure 5: Post-salt oil production offshore in deep waters ordered by fields´ date of start-up production 

Source: Based on ANP (2016) 
Observation: There is a small error in the production numbers related to fields mainly producing in post-salt but also 

producing in pre-salt to some extent. 

Post-salt declining oil production off the coast still represents a representative share of 

the Brazilian production (41% in 2018). However, in times of budget constraint, 

revitalizing it may be a second-order strategy, as pre-salt production is more promising 

(Ferreira, 2016). The decline in output from post-salt fields has been offset by the 

increasing pre-salt production, which accounts for 55% of Brazil’s oil production in 2018.  

2.1.2. Recent changes in the Brazilian petroleum institutional arrangements  

Brazil has continental-size, but less than 5% of the sedimentary areas are contracted for 

the exploration and extraction of oil (Oddone, 2018). There are still frontier areas 

completely unexplored, such as Pernambuco-Paraíba offshore basin and Madre de Deus 

onshore basin, where no wildcat well has been drilled yet, and only two basins (Santos 

and Campos basins) produce 95% of Brazil’s oil production in December 2018 (ANP, 

2018a). As such, Brazil’s exploration intensity indicator, which consists of the ratio 

between the sedimentary area and the number of exploratory wells drilled, varies from 
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around eight km2/ExpW (square kilometers/exploratory well) in the Recôncavo onshore 

basin to 6,602 km2/ExpW in the Parnaíba onshore basin (Table 1).  

Table 1: Exploration intensity indicator for selected sedimentary basins in Brazil 

Sedimentary 

Basin 
Area (km2) 

Exploratory 

Wells 
km2/ExpW 

Onshore 

Recôncavo 9,082 1,194 8 

Espírito Santo 10,875 561 19 

Potiguar 26,725 1,075 25 

Tucano Sul 7,700 104 74 

Camamu-Almada 8,101 37 219 

Rio do Peixe 1,500 5 300 

Solimões 1,210,000 206 5874 

Parnaíba 673,400 102 6602 

Offshore 

Campos 174,000 1,241 140 

Espírito Santo 109,599 224 489 

Sergipe-Alagoas 163,273 318 513 

Santos 307,800 443 695 

Potiguar 196,000 243 807 

Ceará 170,000 139 1223 

Source: Based on Almeida and Arruda (2017) 

Pre-salt resources were first discovered in Brazil’s offshore Santos basin in 2005, and 

further exploration revealed an estimated five to eight billion barrels of oil equivalent in 

this layer (EIA, 2017). Pre-salt oil deposits are located off the Brazilian coast under deep, 

thick layers of rock and salt. To develop such important discoveries, the Brazilian state-

controlled oil company, Petrobras increased its investments substantially in the upstream 

sector (Petrobras, 2018b), what led to a steep rise in its debt (Petrobras, 2018a). In the 

wake of the oil price drops (first in 2008 and again in 2014), the company diminished its 

investments in exploratory activities to focus on production and development activities. 

For the last five years, production and development have had a share of more than 70% 

from investments in the upstream sector, according to the Business and Management 
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Plans10 of Petrobras. In this context, the number of exploratory wells in Brazil declined 

from 239 in 2011 to 26 in 2017 (ANP, 2018c, 2018d). In contrast, the US has drilled 

hundreds to thousands of exploratory wells yearly since 1949 (EIA, 2018c).  

However, budget contraction is not limited to Petrobras. The oil industry reduced 

investment in the wake of the 2014 price collapse, making additional investment 

fundamental to spur supply growth after 2020 (IEA, 2018a). In a market environment of 

moderate oil prices, capital constraints and declining access to ‘easy oil’ (i.e. conventional 

and cheap to produce), international oil companies (IOCs) are increasingly careful to 

invest in oil ventures, especially for the exploration and development in extreme 

environments (e.g. Brazilian pre-salt and Arctic oil) (Waterworth and Bradshaw, 2018). 

This scenario of constrained capital and need for foreign investment can make fiercer the 

competition for capital between different prospective development (e.g., deep-water 

offshore in Brazil, onshore tight oil and shale gas in the US and Argentina).  

Also, since 2010, exploration cycles in Brazil follow an institutional arrangement based 

on three simultaneous fiscal systems, depending on the type of area to be explored. 

Besides, bid rounds base the exploratory activities in Brazil– i.e., areas with similar 

geological factors are organized in exploratory blocks in bid rounds to promote 

competition between companies. As detailed by Braga and Szklo (2014), the Petroleum 

Law (Federal Law No.9,478/1997) opened the upstream petroleum activity in Brazil to 

private companies under the concession (royalty/tax) regime11. Later, the production 

                                                 
10 It was considered the CAPEX 2019-2023, CAPEX 2018-2022, CAPEX 2017-2021, CAPEX 2015-2019 

and CAPEX 2014-2018 of Petrobras’ Business and Management Plans.  
11 Under the concession agreement, the concessionaire takes on all risks and investments in exploration and 

production. In case a commercial discovery happens, the concessionaire shall pay the Union, in cash, taxes 

levied on income, plus the applicable government take. After the Union receives the payments, the 

concessionaire is entitled to the exclusive property of the oil and natural gas production lifted from a block. 
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sharing agreement (PSA) was also established by the Pre-salt Law (Federal Law 

No.12,351/2010) within pre-salt and strategic areas, considered of low exploratory risk12. 

Besides, the Law of Onerous Assignment (Federal Law No. 12,276/2010) established the 

onerous transfer of rights: a unique petroleum agreement in the world. This last fiscal 

regime allowed the Government to onerously assign Petrobras, without bidding round, to 

produce five billion barrels of oil equivalent in pre-salt formation for forty years. This 

Law authorized the Government to sign for Petrobras’ joint-stock shares and pay for them 

with federal public debt securities13.  

These laws introduced a mixed regulatory regime in Brazil, coexisting PSA and onerous 

assignment agreements, in addition to the before existing concession agreements14. The 

fields discovered in pre-salt before the PSA establishment in 2010 are being developed 

by consortiums under the concession agreement (e.g., Lula, Sapinhoá, Lapa, Berbigão, 

Carcará, and Sururu). Lula field is responsible for 60% of the oil production in the pre-

salt layer and one-third of the entire Brazilian oil production in December 2018 (ANP, 

2018a). The beginning of Lula’s commercial oil production in Santos Basin was in 2010. 

Afterward, other important pre-salt fields started to produce in the Santos Basin. For this 

reason, pre-salt oil productivity jumps from the average 370 barrel/day/well between 

                                                 
12 Under the production sharing agreement, if there is a commercial discovery, the company or consortium 

receives in kind, as compensation, the production volumes corresponding to their exploration cost (the so-

called cost-oil). Besides the oil cost, it also gets production volumes corresponding to the royalties due and 

profit oil. In the bidding process, whoever offers the Union the largest profit oil share is the winner. 
13 The onerous transfer of rights agreement allowed the government to capitalize Petrobras by granting the 

company 5 billion barrels of unlicensed pre-salt oil reserves in exchange for a larger ownership share. Wells 

drilled into the pre-salt fields, under the onerous transfer of rights agreement, are developed by Petrobras 

so far. 
14 Under the concession agreement, the concessionaire takes on all risks and investments in exploration and 

production. In case a commercial discovery happens, the concessionaire shall pay the Union, in cash, taxes 

levied on income, plus the applicable government take. After the Union receives the payments, the 

concessionaire is entitled to the exclusive property of the oil and natural gas production lifted from a block. 
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January 2007 and May 2009 (period before the Extended Well Test starts in Lula) to 

3,400 barrel/day/well in 2010 (the beginning of Lula’s production commercially) and 

16,500 barrel/day/well in 2017 (after other pre-salt fields start to produce in Santos 

Basin).  

After the PSA establishment in 2010, the 1st Production Sharing Bidding Round took 

place in 2013, offering blocks of Mero field (the former Libra prospect). Four years after, 

the 2nd PSA and 3rd
 Production Sharing Bidding Rounds took place in 2017, followed by 

the 4th, and 5st Production Sharing Bidding Rounds in 2018 (Tables 2 and 3). The 6th, 7th 

and 8th Production Sharing Bidding Rounds are planned to happen, respectively, in the 

triennium 2019-2021, according to the Brazilian petroleum regulatory agency, ANP. 
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Table 2: Summary PSA Bidding Rounds 
Year 2013 2017 2017 

Round 1st PSA 2nd PSA 3rd PSA 

Sedimentary 

Basin 
Santos Campos Santos Santos Campos 

Offered blocks Libra 

Sudoeste 

Tartaruga 

Verde 

Sul de 

Gato do 

Mato 

Entorno 

de 

Sapinhoá 

Norte de 

Carcará 
Pau Brasil Peroba 

Alto de Cabo 

Frio - Oeste 

Alto de Cabo 

Frio - Central 

# Offered blocks 1 1 1 1 1 1 1 1 1 

Bidded blocks 1 No offers 1 1 1 No offers 1 1 1 

Minimum 

exceeding (profit) 

oil (%) 

41.65%  11.53% 10.34% 22.08%  13.89% 22.87% 21.38% 

Offered 

exceeding (profit) 

oil (%) 

41.65%  11.53% 80.00% 67.12%  76.96% 22.87% 75.86% 

Average Local 

Content 

Requirement – 

Exploratory 

Phase 

37% 55.0% 38.0% 35.0% 35.0% 18.0% 18.0% 18.0% 18.0% 

Average Local 

Content 

Requirement – 

Development 

Phase 

55% 65.0% 60.0% 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 

Consortium 

Petrobras 

(40%), 

Shell 

(20%), 

Total 

(20%), 

CNPC 

(10%) and 

CNOOC 

(10%) 

 

Operator 

Shell 

(80%) and 

Total 

(20%) 

Operator 

Petrobras 

(45%), 

Shell 

(30%) and 

Repsol 

Sinopec 

(25%) 

Operator 

Statoil 

(40%), 

Petrogal 

(20%) 

and 

ExxonMo

bil (40%) 

 

Operator 

Petrobras 

(40%), 

CNODC 

(20%) and 

BP (20%) 

Operator Shell 

(55%), 

CNOOC 

(20%) and 

Qatar 

Petroleum 

(25%) 

Operator 

Petrobras 

(50%) and BP 

(50%) 
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Table 3: Summary PSA Bidding Rounds (Continuation) 

Year 2018 2018 

Round 4st PSA 5st PSA 

Sedimentary 

Basin 
Santos Campos Santos Campos 

Offered blocks 
Três 

Marias 
Uirapuru Itaimbezinho 

Dois 

Irmãos 
Saturno Titã Pau-Brasil 

Sudoeste de 

Tartaruga Verde 

# Offered blocks 1 1 1 1 1 1 1 1 

Bidded blocks 1 1 No offers 1 1 1 1 1 

Minimum 

exceeding (profit) 

oil (%) 

8.32% 22.18%  16.43% - - - - 

Offered 

exceeding (profit) 

oil (%) 

49.95% 75.49%  16.43% 70.20% 23.49% 63.79% 10.01% 

Average Local 

Content 

Requirement – 

Exploratory 

Phase 

18.0% 18.0% 18.0% 18.0% 18.0% 18.0% 18.0% 18.0% 

Average Local 

Content 

Requirement – 

Development 

Phase 

30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 30.0% 

Consortium 

Operator 

Petrobras 

(30%), 

Chevron 

(30%) and 

Shell 

(40%) 

Operator 

Petrobras 

(30%), 

Petrogal 

(14%), 

Statoil 

(28%) and 

Exxon 

(28%) 

 

Operator 

Petrobras 

(45%), 

Statoil 

(25%) and 

BP (30%) 

Operator 

Shell 

(50%), 

Chevron 

(50%) 

Operator 

Exxon 

Mobil 

(64%), QPI 

(36%) 

Operator BP 

(50%), 

Ecopetrol 

(20%), 

CNOOC 

(30%) 

Petrobras 

(100%) 

 

 



21 

 

Therefore, ANP and the Federal Government have been conducting regulatory changes to 

make Brazil´s oil industry more attractive in the country, expand exploration areas and 

encourage new investors (ANP, 2018e)15.  As non-technical uncertainties can be greater 

inhibitors to investment, some works have analyzed the regulatory framework and fiscal 

regime in Brazil (Braga and David, 2018; Costa et al., 2018; Mariano et al., 2018a). Costa et 

al. (2018) argue that regulatory issues may retard investments in the upstream sector: 

unitization, local content, arbitration, and government take. According to Braga and David 

(2018), technical, legal and commercial factors dampen the unitization process, which is 

further complicated in the Brazilian pre-salt zone by those three fiscal regimes mentioned 

earlier — production-sharing agreements, concession agreements, and onerous assignment 

agreements. Mariano et al. (2018) highlight the regulatory challenge of establishing criteria 

for the unitization and individualization of production in pre-salt areas already tendered 

before fields start to produce; otherwise, it could bring damages to the reservoirs resulting in 

lower recovery factors.  

Moreover, the Federal Law No. 13,365/2016 excluded the obligation of Petrobras to act as 

the exclusive pre-salt operator while setting out Petrobras's pre-emptive right. Upon 

exercising the pre-emptive right, the minimum share in the consortium would be 30%. In 

May 2017, Federal Decree No. 9,041 regulated the preference of Petrobras to act as operator 

in the consortia formed for the exploration and production of blocks to be contracted under 

                                                 
15

Among these changes, they have eased some rules for the latest bid round of blocks, such as the removal of 

the minimum local content as a basis of offer in the bidding criteria; distinct royalties for new frontier areas and 

mature basins of more substantial risks; and incentives to increase the participation of small and medium-sized 

companies. Besides, ANP has established the open acreage, which consists of the permanent offer of 

relinquished fields (or in the process of relinquishment) and exploration blocks offered in past bids that were 

not awarded. 



22 

 

PSA. On March 28, 2017, the Industry and Competitiveness Development Secretariat of the 

Brazilian Ministry of Industry and Foreign Trade (MDIC) published Resolution No. 1 

proposing reforms to the Local Content Requirements for the 3rd Production Sharing Bidding 

Round. The reforms have lowered the percentage of Brazilian-made goods and services 

required for oil and gas E&D.  

Furthermore, at the end of 2017, the tax legislation applied to the Brazilian oil and gas 

industry was reviewed. This study summarizes Brazil’s latest tax legislation updates for the 

oil and gas industry, obtained from ITR (2018). The Federal Law No. 13,586/2017 extended 

the suspension and relief of federal taxes and administrative fees levied on the importation 

of goods used in oil and gas activities until December 31, 2040 (both formerly scheduled to 

end on December 31, 2020). It also establishes a new special tax regime waiving federal taxes 

on importation, on a permanent basis, of goods to be used in E&D activities. The Normative 

Instruction No. 1,781/2017 introduced this new special tax regime and the so-called “new 

Repetro (Repetro-Sped),” according to which some equipment would benefit from tax relief 

in permanent importation only, and others would benefit from tax relief on permanent or 

temporary importation.  

Then, through the ICMS Agreement No.3, the National Council of Fiscal Policy authorized 

at the beginning of 2018 the Brazilian states to grant reductions in the basis of calculation 

and exemption from ICMS — State Tax on Circulation of Goods and Services — levied on 

transactions involving goods used in upstream activities and carried out under Repetro-Sped.  

These tax exemption measures are in line with Kleinberg et al. (2018), who states that when 

oil prices fall, Governments tend to make tax concessions to maintain the viability of their 
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industry, and not to drive producers out of business or to other countries. On the other hand, 

the increasing social problems in Brazil in the light of an economic recession and 

commitments to a low carbon agenda arise the question if these fiscal incentives are 

genuinely needed to make pre-salt projects economically attractive.  

Pedra and Szklo (2018) show that, given the current long-lasting fiscal incentives to the 

industry in Brazil, there are projects that do not need any fiscal incentives to be profitable, 

resulting in extra rent to the contractor in detriment of the State (or the Brazilian society). 

2.1.3. Analysis of driven factors for well development  

In the last decade, Brazil has become a significant producer of crude oil.  By 2016, Brazilian 

oil production surpasses the output of Mexico and Venezuela (BP, 2017), which makes Brazil 

the largest oil producer in Latin America. Combined with increases in the price, crude oil is 

the second most crucial good (in value) exported by Brazil in 201816 (MDIC, 2018). 

Currently, Brazil is the world’s tenth-largest producer of oil and the third-largest in the 

Americas (BP, 2018). Much of this success is due to the development of deep-water and 

ultra-deep-water projects, especially those in the pre-salt layer (EIA, 2016). Brazilian 

petroleum (oil and condensate) production from the pre-salt layer increases by 1.45 mbd 

between 2010 and 2018 (ANP, 2018a, 2018f). According to IEA (2018a), rising oil 

production from the US, Brazil, Canada, and Norway can supply the market through 2020.  

                                                 
16 First data available for 2019 indicate crude oil became the first good (in value) exported by Brazil (MDIC, 

2019). 
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After 2020, more investments will be necessary to maintain growth. However, additional 

investments can be disrupted by many factors such as financial issues, regulatory 

enforcement, cost of regulatory compliance, quality of infrastructure, quality of the 

geological database, legal system, uncertainty over environmental regulations and trade 

barriers (Stedman and Green, 2017).  

In Brazil, a variety of elements can slow the development of an abundant resource base. 

These include the volatility of oil prices (Raza et al., 2016), which affect the market value of 

Brazilian companies (Raza et al., 2016). Hurn and Wright (1994) argue that after discovering 

a field, economic factors influence the decision to develop it. Oil production in the post-salt 

zones off the Brazilian coast deviates from the Hubbert curve based on oil prices with a lag 

of 4 to 5 years, which suggests that oil production from this layer adjusts slowly to oil prices 

(Hallack et al., 2017). Starting in September 2014, crude oil price volatility spills over onto 

sovereign credit risk (Pavlova et al., 2018). This result is corroborated by Bouri et al. (2018), 

who document significant effects of oil price volatility on sovereign risk in Brazil, Russia, 

India, and China (BRIC). Nevertheless, sovereign credit risk also depends on the efficiency 

of collecting fiscal revenues, which is referred to as government effectiveness (Jeanneret, 

2018). 

Understanding the factors that influence investment decisions is critical to offshore drilling 

in Brazil. There, the rig count for offshore wells, offshore wells completions, and completion 

of exploratory wells off the coast, decline since 2011 (Table 4). Despite these declines, 

production from the pre-salt zone increases with the number of oil producing wells (ANP, 

2018f, 2018g).  
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Table 4: Rigs and wells drilled offshore in Brazil 

 Rigs 

offshore 

Wells concluded 

offshore 

Exploratory wells 

concluded 

offshore 

Development 

wells concluded 

offshore 

Pre-salt 

development 

wells concluded 

2010 434 212 92 120 1 

2011 556 242 135 107 5 

2012 502 219 106 113 21 

2013 491 213 60 153 22 

2014 317 156 48 108 35 

2015 259 126 30 96 53 

2016 140 93 12 81 39 

2017 132 63 6 57 33 

Source: Based on (Baker Hughes, 2018; ANP, 2018c, 2018f, 2018g) 

Although there is no inherent contradiction between resource abundance and economic 

development, there are economic and political challenges (Oliveira, 2011). Unless 

institutions and governments are constrained by strong institutions, rents from the oil industry 

can generate adverse economic and political outcomes (Oliveira, 2017).  

After the first significant discovery in a pre-salt layer in August 2006 (the Lula field), Brazil 

raises its perspective with the boom of commodities, overcoming global crisis’ effects in 

2009. Brazil outperforms the other BRIC nations in some aspects: “it is a democracy, it has 

no insurgents, no ethnic and religious conflicts, it exports more than oil and arms and treats 

foreign investors with respect” (The Economist, 2009). The positive characteristics are 

codified in a country of risk 3 (from a scale of 0 to 7) between 2007 and 2015 by the OECD.  

After a period of strong growth (2002-2013), a drop in commodities prices, consumption, 

and investment (Société Générale, 2018) cause a recession, which slows economic growth in 

Brazil between the second quarter of 2014 and the fourth quarter of 2016 (IPEA, 2018), when 

the Gross Domestic Product (GDB) shrinks about 8%. This economic recession, corruption 
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scandals, and loss of investment grade (The Economist, 2016), increases the score for 

national risk from 3 to 4 to 5 between 2016 and 2017 (OECD, 2018). 

Despite the potential for the price, price volatility, productivity, and country risk to affect 

development in the deep-water pre-salt zone in Brazil, their effects have not been fully 

quantified. Much of this effort follows the methodology described by Ansari and Kaufmann 

(2019). The novelty of this thesis lies in the inclusion of the country credit risk as a measure 

of governance to estimate the cointegrated vector autoregressive (CVAR) models and the use 

of two benchmark crude oils to measure prices. 

2.2.Technical background 

2.2.1. Reserves and resources  

The proper classification and categorization between reserves and resources are fundamental 

because this classification derives indicators that subsidize the company's business plan, 

information for investors and country’s policies. 

The Stock-Tank Oil Initially in Place (STOIIP) 17 refers to the total volume of oil stored in a 

reservoir prior to production measured at surface pressure and temperature (as opposed to 

reservoir conditions). The recovery factor (RF) is the recoverable fraction of STOIIP.   

The multiplication between STOIIP and RF results in the URR of oil, which represents the 

amount of oil from a region or field that is estimated to be recovered over time. This term 

includes any volumes that are estimated to be undiscovered, are not recoverable with current 

                                                 
17 The HCIIP is an acronym for Hydrocarbons Initially in Place, and analogously GIIP is an acronym for Gas 

Initially in Place. To calculate the STOIIP, it is considered the bulk volume of the reservoir rock, the net/gross 

ratio of formation thickness, the porosity, the water saturation and the oil formation volume factor.  
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technology, and are not currently economic but which are expected to become so before 

production ceases (McGlade, 2013). That is, the URR is equivalent to the sum of cumulative 

production, the remaining reserves and resources already discovered and the estimated 

recoverable resources from undiscovered deposits (generally termed as ‘yet-to-find’). 

The remaining recoverable volumes are the recoverable reserves and resources which have 

not yet been produced, i.e., the difference between the URR for a given region and that 

region’s cumulative production. The oil that is not expected to become recoverable is not 

included in the URR but within the STOIIP. Figure 6 illustrates the different components of 

the URR.  

 
Figure 6: The relationship between reserves and resources 

Source: Adapted from McGlade (2013) 

The final subset of resources is ‘reserves.’ This term refers to the volume of discovered 

hydrocarbons (oil or gas) technically possible and economically feasible to recover and 
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estimated to have a specific probability of being produced at a given time in the productive 

life of a reservoir. The term ‘resources’ refers to the volume of hydrocarbons, whether 

discovered or not, which are dependent on economic viability or technology development.  

The Petroleum Resources Management System (PRMS) classifies and categorizes all 

hydrocarbon reserves and resources according to the chance of commerciality and the range 

of uncertainty in the quantities that are forecasted to be produced and sold in the future from 

a development project (SPE et al., 2018). The distinction between the three classes (reserves, 

contingent resources, and prospective resources) is based on the definitions of uncertainty 

and commerciality for projects (Figure 7).  

 
Figure 7: Resources classification framework from the PRMS 

Source: Based on SPE et al. (2018) 
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Reserves may be assigned to projects that must satisfy four requirements: discovered, 

recoverable, commercial, and remaining18 based on the development project(s) applied. 

Contingent Resources may be assigned for projects that have an associated chance of 

development. Contingent Resources are those quantities of petroleum estimated to be 

potentially recoverable from known accumulations, by the application of development 

project(s) not currently considered to be commercial owing to some contingency.  

Prospective Resources may be assigned to those quantities of petroleum estimated to be 

potentially recoverable from undiscovered accumulations by application of future 

development projects. Prospective Resources have both an associated chance of geologic 

discovery and a chance of development. 

Unrecoverable Resources are those volumes of either discovered or undiscovered petroleum-

initially-in-place (PIIP) evaluated to be unrecoverable by the currently defined project(s). “A 

portion of these quantities may become recoverable in the future as commercial 

circumstances change, technology is developed, or additional data are acquired. The 

remaining portion may never be recovered because of physical/chemical constraints 

represented by subsurface interaction of fluids and reservoir rocks” (SPE et al., 2018). 

According to SPE et al. (2011, p. 12), volumes are unrecoverable in two situations: (1) when 

the technology has been demonstrated to be commercially viable in other reservoirs that are 

not analogous, and there is no pilot project currently planned to demonstrate commerciality 

                                                 
18 Cumulative production forecast from the effective date forward to cessation of production. 
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for this reservoir, (2) when the technology has not been demonstrated to be commercially 

viable and is not currently under active development, and/or there is not yet any direct 

evidence to indicate that it may reasonably be expected to be available for commercial 

application within five years.  

As estimates of URR depends on assumptions about commercial viability and technical 

feasibility, it changes over time due to oil prices variation, geological knowledge 

improvement, and better knowledge of a technology that leads to RF increasing.  

In oil companies, oil production forecast is often made individually for each reservoir based 

on geological models submitted to a flow simulator, which represents in detail the entire 

dynamic of the fluids (oil, gas, and water) in the reservoir. 

Geologists, geophysics and engineering professionals are required to develop such models, 

as well as information from wells drilled in the area, seismic, laboratory tests, formation 

testing, as well as all information on surface facilities (e.g., platform capacity, manifolds, and 

pipelines). The use of these models considers the strategy of fields’ exploitation: some 

producing and injecting wells, injected fluids (such as water, gas, and CO2), well location, 

well geometry, use of advanced recovery methods, among other aspects. 

These models need a refined view of the area, as they are used as a day-to-day decision-

making tool for the field, and strategic decisions to optimize production. 

As more knowledge about a region is gained, information becomes more accurate for the 

production forecast. The geological uncertainties are worked for each field probabilistically, 

generating production curves P10, P50 and P90, or deterministically, generating optimistic, 
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base and pessimistic production curves. When the range of uncertainty is represented by a 

probability distribution, a low, best and high estimate shall be provided such that:  

i) There should be at least a 90% probability (P90) that the quantities recovered will 

equal or exceed the low estimate;  

ii) There should be at least a 50% probability (P50) that the quantities recovered will 

equal or exceed the best estimate; 

iii) There should be at least a 10% probability (P10) that the quantities recovered will 

equal or exceed the high estimate. 

In this context, besides the geological uncertainties, the reserve estimation process requires 

several judgments: how much is technically possible to extract and how much is 

economically feasible to extract.  

Thompson et al. (2009) describe the following steps and uncertainties inherent in the reserve 

estimation process: geological assessment, engineering assessment, economic assessment, 

institutional influences, and political and market influences. 

Within the geological assessment, geologists involved in the exploration and discovery stage 

make the initial estimate of oil contained in a reservoir. The most geologically promising 

regions for the existence of oil are identified. Then, an exploratory well is drilled in that 

region, allowing the verification of the existence of oil and the estimation of rocks properties. 

However, with the drilling of an exploratory well, it is necessary to judge the extent and size 

of the reservoir or field discovered. 
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This point can be very controversial since an area with several disconnected reservoirs can 

be interpreted as having a single larger field or several smaller fields. Moreover, this 

judgment may change over time, with previously distinct fields being merged into a larger 

field, and larger fields being divided into smaller ones.  

Sorrell et al. (2009) define a field as an area consisting of a single reservoir or multiple 

reservoirs all related to a single geological structure, whereas a reservoir is defined as a 

subsurface accumulation of oil and gas which is physically separated from other reservoirs 

and which has a single natural pressure system. However, in the case of Brazil, the definition 

of a field is not geological, requiring only the sharing of production systems (Article 6 of the 

Law 9,478/1997). 

However, the interpretation of a field’s size affects the payment of government take, 

especially the special participation tax19, which affects the cash flow of a field and 

consequently the estimation of the volume of reserves. Divergences between Petrobras and 

ANP are observed in Lula and Cernambi fields in Santos Basin (Ordoñez, 2014) but also in 

Parque das Baleias’ fields (the Whale Park), in which ANP considers the concessions of 

Baleia Anã, Baleia Azul, Baleia Franca, Cachalote, Caxaréu, Jubarte and Pirambu as a single 

field (Petrobras, 2015a, 2015b). Such latter divergence resulted in an agreement between 

                                                 
19 The special participation tax (the so called Participação Especial ‒ PE) is considered a kind of Windfall 

Profit Tax, which is associated with Ricardian rents (Goldemberg et al., 2014). Such payments are calculated 

based on a reference oil price informed by ANP, which depends mainly on the quality of the oil from each 

producing field (Goldemberg et al., 2014). “Ricardian rent is a type of economic rent basically created by 

variation in resource quality” (Szklo et al., 2007). “Economic rent is a payment to a factor of production or 

input in excess of that which is needed to keep it employed in its current use” (Szklo et al., 2007). Essentially, 

windfall tax is a tax levied by governments when economic conditions allow industries to experience excess 

profits.  
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Petrobras and ANP on the unification of Parque das Baleias fields (Petrobras, 2019). These 

episodes reveal the geological assessment can lead to regulatory and legal issues.  

Within the engineering assessment, petroleum engineers seek to estimate the RF after the 

estimation of STOIIP by geologists. Reserves estimation is based on existing technologies, 

but with the development of new technologies or with a better knowledge of reservoir 

response to the application of technology, reservoir’s productivity and recovery can rise. 

Hite et al. (2003) clear up some definitions concerning recovery techniques: primary 

recovery, secondary recovery, tertiary recovery, Enhanced Oil Recovery (EOR) and 

Improved Oil Recovery (IOR).  

Fluids contained in a rock-reservoir must have natural energy so that they can be produced 

by the primary recovery mechanism, the main ones being: solution-gas drive, gas-cap drive, 

and water drive. In the production process, there is a dissipation of the primary energy by the 

decompression of the reservoir fluids and the resistances encountered as they flow towards 

the production wells.  

Secondary recovery is the oil obtained by supplementing this primary energy. This additional 

energy derives from the use of injectants that re-pressurize the reservoir and displace oil to 

producers, usually by waterflooding, although gas reinjection for pressure maintenance is 

also possible.  

Chemical, miscible and thermal flooding processes were developed for oil left behind or not 

recovered by the secondary recovery (usually waterflooding), referred to as tertiary recovery. 

Hite et al. (2003) consider the tertiary recovery as referring to the third round of recovery 
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processes to be developed. EOR refers to the same tertiary methods, but it can be used as the 

first or second recovery process. For this reason, the concept of EOR has replaced tertiary 

recovery. IOR refers to any practice to increase oil recovery. It can include EOR processes, 

as well as practices for increasing sweep such as infill drilling, horizontal wells, and 

polymers.  

The characterization, simulation, monitoring, management and control of reservoirs are 

considered support activities for any recovery method, although they can increase the RF and 

involve new technologies (Ferreira, 2016).  

The critical point is that all these techniques mentioned are directed to reservoirs with specific 

characteristics, that is, not all techniques are appropriate or even implementable in all 

reservoirs. Moreover, the RF can vary widely, and even if it is estimated a minimum RF from 

technology, there is still uncertainty concerning the STOIIP (Thompson et al., 2009).  

Within institutional influences, the different criteria used for the estimation of reserves and 

the different interpretations of the same criterion may lead to variations in the estimates of 

reserves of a country and a company. 

In Brazil, Petrobras’ reserves are disclosed accordingly to the guidelines of Resolution no. 

47 disclosed by ANP (2014), which establishes that the criteria for classification as reserves 

and resources should follow the PRMS (SPE et al., 2011, 2018). Petrobras also estimates its 

proved reserves according to the criteria of the Securities and Exchange Commission ‒ SEC 

(2008).  
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In 2017 Petrobras' petroleum proved reserves were 10,533 billion barrels according to the 

Society of Petroleum Engineers (SPE) and ANP criteria, whereas according to the SEC 

criteria proved reserves were 8,435 billion barrels. 

Within economic assessment influences, the analysis of economic viability required to 

classify a volume as a reserve depends on the current and anticipated future price of oil, but 

also the estimated operational costs and required investments.  

The oil price considered in calculating the economic feasibility of reserves is the main 

difference between ANP/SPE and SEC criteria volumes of proved reserves in 2017, 

according to Petrobras (2018d).     

Another economic aspect that may interfere in the estimation of reserves is the level of 

aggregation in which the economic analysis is done. For example, analysis of cash flow at 

the field level may result in different reserve volumes than when this analysis is done by the 

level of the platform producing this field. 

Within political and market influences, Thompson et al. (2009) comment that privately-

owned companies can be subject to market incentives since reserve estimates and the rate of 

reserve additions can affect their share price. National Oil Companies (NOCs) and 

International National Oil Companies (IOCs) 20 have no similar responsibility to shareholders 

                                                 
20 NOCs concentrate on domestic production and IOCs have both domestic and a significant international 

operation. These categories cover companies that are fully or majority-owned by national governments. Among 

the privately-owned companies This thesisdistinguish seven large international oil companies (referred to as 

the “Majors”) from the rest (referred to as “Independents”) (IEA 2013).  
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but may have political motives for choosing a particular definition or interpretation of 

reserves.  

McGlade (2013) defines ‘political reserves’ as the volumes of oil announced by a country or 

company that do not coincide to the reserves it has but preferably those which it would like 

to communicate to the rest of the world.  

Besides political interests and market influences, other political aspects can disrupt oil 

production. Bøe et al. (2018) argue that political factors can be particularly important because 

of the close link between politics and crude oil. They find that political instability21 increases 

the expected time to invest, i.e., the time lag between discovery and government approval to 

develop a field. Bøe et al. (2018) assess political stability by The International Country Risk 

Guide (ICRG) Political Risk. The ICRG Political Risk includes twelve weighted variables 

covering both political and social attributes, such as corruption, the military in politics, 

religious tensions, socioeconomic conditions, ethnic tensions, and democratic accountability. 

Al-Kasim et al. (2013) review of the resource curse and oil production literature indicates the 

theoretical feasibility of a connection between instances of corruption and suboptimal oil 

production. Beyond political instability, Oliveira et al. (2018) highlight the political and 

economic crisis in Brazil makes it more challenging to predict sources of risk in the period 

2014 to 2016. 

                                                 
21 Political stability can be defined as a predictable political environment. Feng (1997) investigates the 

interactions between democracy, political stability and economic growth. He differentiates between three types 

of political instability: ‘irregular’ government change (regime-level change); ‘major regular’ (within-regime) 

government change; and ‘minor regular’ (within-regime) government change. 
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2.2.2. Hubbert 

Hubbert’s theory of oil depletion (Hubbert, 1956) is the pioneer curve-fitting model. 

Hubbert’s well-known projection of the US future oil production, proposed in the late 1950s, 

used a bell-shaped curve and showed to be accurate once US oil production in the lower 48 

states peaked in 1970 (Laherrère, 1997) and, therefore, motivated a variety of Hubbert-like 

curve fitting models.  

Hubbert’s theory for modeling oil production is based on physical phenomena. He assumes 

that the first discovery well is drilled, and oil production begins. Then, as additional wells 

are drilled and the rate of production increases, further exploration is stimulated, and new 

fields are discovered. However, as more and more fields are discovered, and the number of 

fields is fixed, the last fields are the most expensive and the smallest ones. Finally, the 

undiscovered fields become too scarce to justify exploratory drilling (Hubbert, 1982).  

Hubbert assumes the cumulative discovery cycle has the same format as the cumulative 

production cycle, both following a logistic function, with the former preceding the latter by 

some time interval (Figure 8). Thus, when the discovery rate begins to decline, as the 

production rate continues to rise, the reserve additions (until then increasing) start to 

decrease, and when production rates overpass the discovery rate, then reserve additions (until 

then positive but already decreasing) become negative (Figure 8). 
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Figure 8: Hubbert’s relationship between discoveries, production, and reserves as a function of time 

 

Besides the symmetrical and single cycle production profile considered by the Hubbert 

logistic model, Hubbert (1982) recognized that the curve could have more than a single 

maximum or be asymmetrical. 

Several authors have used Hubbert models (or their variants) to forecast world oil production 

(Al-Jarri and Startzman, 1997; Bartlett, 2000; Brecha, 2012; Campbell and Laherrère, 1998; 

Gallager, 2011; Hubbert, 1962; Maggio and Cacciola, 2009; Nashawi et al., 2010; Rehrl and 

Friedrich, 2006; Reynolds, 2014; Wang et al., 2011) and some of these studies are based on 

Hubbert to assess the production in single countries or regions in parallel with worldwide 

projections (Table 5). 

Table 5: Studies that used the Hubbert methodology to project a country's oil production 

Country Reference 

US Hubbert (1956) 

The former Soviet Union Laherrère (2002) 

France and the Netherlands Laherrère (1997) 

Brazil D. Ferreira (2005); Szklo, Machado, and Schaeffer (2007); 

Rueda et al. (2013); Saraiva, Szklo, and Chavez-Rodriguez 

(2014) 

Main fields of the North Sea Blanchard (2000) 

Nigeria Kingsley-Akpara and IIedare (2014) 

Organization of the Petroleum 

Exporting Countries (OPEC) 

Nashawi, Malallah, and Al-Bisharah (2010); Ebrahimi and 

Ghasabani (2015) 

Colombia Mahecha (2014) 

Peru Chavez-Rodriguez, Szklo, and Lucena (2015) 

The United Kingdom and Norway Fiévet et al. (2015) 
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As the Hubbert theory of oil depletion states that oil production in large regions follows a 

bell-shaped curve over time, Brandt (2007) tested the quality of fit of Gaussian, linear and 

exponential models, being symmetric or asymmetric, to oil production data of 139 producing 

areas. The results showed that the asymmetrical exponential model is the most useful model 

and that they show better fits than the symmetric models in most cases, with slower rates of 

decline than rates of increase.  

The multi-Hubbert cycle analysis of oil production in the US developed by Patzek (2008) 

emphasizes the existence of new populations of reservoirs, in which the main cycle provides 

the original Hubbert estimate of URR. The smaller cycles describe the new populations of 

reservoirs, for example in Alaska, the Gulf of Mexico, the Austin Chalk and the California 

Diatomites, and new recovery processes, such as waterflood, EOR, and horizontal wells. In 

this regard, multi-cycles can be especially useful to model new reservoirs.  

Multi-cycle approaches can explain the production patterns in many countries, which have 

more than one peak in their production profiles, as shown by Nashawi, Malallah, and Al-

Bisharah (2010). Nevertheless, these authors recognize that oil production is affected by 

ecological, economic, and political factors over the years. Hubbert’s theory embodies the 

physical aspects of oil formation, but economic and political events may cause annual rates 

of production to deviate from Hubbert’s curve in a systematic way (Kaufmann, 1991). Once 

little effort is spent to explore and produce oil resources unless a cost-effective recoverability 

can be expected, all discovery and production cycles depend on the expected profitable 

recoverability of the oil resources (Rehrl and Friedrich, 2006).  
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According to Kaufmann and Cleveland (1991), much of the success of Hubbert's approach 

could be explained by the fact that the price of oil (benchmark), the average cost of 

production, and the decisions of the Railroad Commission of Texas (RCT) (2016) have 

evolved in a way to allow for a symmetrical bell-shaped curve of production over time in the 

US. A different pattern of any of these variables would have resulted in a curve different 

from a bell-shaped curve. In brief, the study highlights the importance of economic and 

institutional aspects of oil production dynamics. 

Pesaran and Samiei (1995) argue that when economic factors ─ the same analyzed by 

Kaufmann and Cleveland (1991) ─ are considered, estimates of URR vary over time and are 

higher than those obtained when the economic aspects are neglected, i.e., as in the traditional 

Hubbert model.  

Kaufmann (1991) proposes a two-stage approach to analyze the impact of geological, 

economic, political, and institutional variables on the production of 48 American states by 

combining the Hubbert curve fitting with econometric methods. The first stage consists of 

fitting cumulative oil production data and a logistic curve based on the methodology 

developed by Hubbert. In the second stage, the difference between actual rates of production 

and rates of production predicted by the bell-shaped production curve is used as a dependent 

variable in an econometric model in which political and economic factors attempt to explain 

the deviation of the actual production data in relation to the Hubbert model, i.e., these factors 

serve as independent variables.  

A single Hubbert approach was proposed by Szklo, Machado, and Schaeffer (2007) for 

Brazil. Furthermore, Saraiva, Szklo, and Chavez-Rodriguez (2014) estimated Brazil’s oil 
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production curves with different URR scenarios by adding productive cycles following a 

Hubbert variant proposed by Maggio and Cacciola (2009).  

To improve the previous analyses and test a variant of the Hubbert model for the case of 

Brazil ─ that could also be adopted in other countries ─ this study developed:  

i) Primarily, single and multi-cycle Hubbert models to project Brazilian post-salt oil 

offshore production,  including asymmetrical production cycles  ─ based on the 

adapted methodology proposed by Brandt (2007) ─ to estimate endogenously the 

URR in post-salt oil offshore production cycles;  

ii) Secondly, a hybrid model ─ based on the methodology developed by Kaufmann 

(1991) ─ that considers the influence of techno-economic parameters to 

production cycles seeking to understand how these parameters influence the 

residuals of the Hubbert model.  

iii) Thirdly, a single Hubbert model to estimate the pre-salt oil production peak 

accordingly to different scenarios of URR.  

The classic Hubbert methodology was improved in this study by considering the asymmetry 

of production, which arises if the ramp-up does not follow the same dynamics as the decline 

in production. Additionally, a hybrid model considering techno-economic aspects aims to 

explain the deviation of the crude oil production rate from the prediction of the Hubbert curve 

employing regression analysis. Preliminary estimates of pre-salt production peak are 

obtained from URR scenarios derived from different RF.  
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2.2.3. Creaming curves 

Creaming curves can assist to understand the exploratory cycles (e.g., to propose multiple 

cycles or to identify influences leading to deviations from the logistic form) and indicate the 

marginally decreasing productivity of an exploratory cycle (e.g., to forecast future 

discoveries). The creaming curve format is presented by the cumulative discovery cycle in 

Figure 8.  

Such curves have been used concerning plotting the cumulative size of discoveries over time 

or against the number of new field wildcat wells. Some authors, in contrast, consider ‘the 

true creaming curve’ as the cumulative discovery against the number of new field wildcats, 

to eliminate the ups and downs of exploration when plotting versus time (Laherrère, 2004; 

Bentley et al., 2007).  

Cumulative discoveries result from the sum of cumulative production and reserves. It consists 

of the amount of discovered oil that is estimated to be recovered over time. Reserves refer to 

the volume of hydrocarbons technically possible and economically feasible to recover, and 

that is estimated to be produced at a given time in the productive life of a reservoir with a 

certain probability.  

The extrapolation of cumulative discoveries anticipates the yet-to-find discoveries. However, 

it does not consider the phenomenon of reserve growth, by which fields ultimately produce 

more oil than was initially estimated as reserves (Sorrell et al., 2009). McGlade (2013) 

presents the principal drivers of reserve growth, among them: i) growth due to improvements 

in, or the application of new production technologies; ii) better understanding of the reservoir 
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geology; iii) upward changes in oil prices or reductions in production costs; iv) reserves 

definitions changing and/or the inclusion of new/revised data in reporting estimates.  

Sorrell et al. (2009) indicate that the extrapolation of discovery trends should provide more 

reliable estimates of the URR than production trends because the discovery cycle is more 

advanced, so discoveries’ data are available sooner than production data. Since the peak rate 

of discovery anticipates the peak in production, identification of the former allows for 

predicting the later (Sorrell et al., 2009). On the other hand, discovery data is less accessible 

than production data, and it is estimated according to different levels of confidence ‒ the 

uncertainty in the potential recovery from a project leads to the subdivision of reserves into 

a low (1P), best (2P) and a high (3P) estimate22.  

The curve-fitting methods have an essential role to play when field-level data is not 

accessible and also have much in common with more sophisticated techniques (Sorrell et al., 

2009). Such methods are better applied to geologically homogenous and well-explored areas 

(Sorrell et al., 2009). Consequently, this thesis relies on fields within the same basin and the 

basins where there have been a reasonable number of wildcat wells concluded. 

Although some limitations of ‘curve-fitting’ methods, several curve-fitting studies have 

applied the Hubbert model to predict future trend in fossil fuel production worldwide 

(Laherrère, 1997; Blanchard, 2000; Laherrère, 2002; Mohr and Evans, 2009; Maggio and 

Cacciola, 2009; Höök et al., 2010; Nashawi et al., 2010; Maggio and Cacciola, 2012; 

                                                 
22 This thesisclarify that 1P reserves refer to proven reserves (or P90 estimate, whereby there is an estimated 90% probability 

that the actual Reserves will lie somewhere between the P90 and the P0 (maximum) outcomes). Analogously, 2P reserves 

refer to proven and probable reserves (P50), and 3P to proven, probable and possible reserves (P10). 
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Kingsley-Akpara and IIedare, 2014; Chavez-Rodriguez et al., 2015; Fiévet et al., 2015; 

Ebrahimi and Ghasabani, 2015), including Brazil (Szklo et al., 2007; Saraiva et al., 2014; 

Hallack et al., 2017), but just a few have assessed the exploration history through creaming 

curves (Bentley et al., 2007; Laherrère, 2008, 2009; Soderbergh et al., 2009; Beglinger et al., 

2012; Hackley and Karlsen, 2014; Korsvold, 2015; Chavez-Rodriguez et al., 2016). 

Bentley et al. (2007) show Germany’s oil creaming curve has been flattening out since about 

1960. Soderbergh et al. (2009) notice that the fields discovered in Norway are getting smaller 

and smaller by applying a creaming curve for Norwegian gas discoveries. Laherrère (2008)  

applies a creaming curve for four fields shared with the United Kingdom: Frigg, Statfjord, 

Peik, Alpha. Assuming a new significant cycle is unlikely, he finds the yet-to-find oil and 

gas discoveries will be of small size. Laherrère (2009) plots creaming curves by continents, 

but at the time of his study, no pre-salt discoveries in Brazil were used as input within Latin 

America’s curve of historical discoveries. Beglinger et al. (2012) made predictions on the 

remaining potential for yet undiscovered hydrocarbons accumulations in West African South 

Atlantic basins. They find that the Douala basin appears to be under-explored with relatively 

small discoveries. The Rio Muni basin potential remains poorly defined. In the North Gabon 

syn-rift section and the post-rift section of South Gabon, explorations appear to be immature. 

Basin future discoveries are expected mainly in ultra-deep waters for the Lower Congo. 

Exploration in the Congo Fan basin is immature for both oil and gas. Kwanza basin remains 

substantially undrilled. For the onshore northern Gulf of Mexico basin (in the US), Hackley 

and Karlsen (2014) find that cumulative discovered oil volumes follow a mature creaming 

curve with the size of discoveries decreasing with advancing exploration. Korsvold (2015) 
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proposes an analysis of the creaming phenomenon as a way of indicating government 

influence through past exploration trends in Norway. Chavez-Rodriguez et al. (2016) observe 

the shape of the creaming curve for Bolivia denotes its immaturity concerning exploration.  

It is observed that the bulk of literature regarding the creaming curve method is skewed 

towards developed countries. To partly fills this research vacuum, this thesis assesses future 

exploration potential in Brazil building ‘true creaming curves.’ 

2.2.4. Econometric theory 

Some studies have applied econometric models of oil supply (Table 6), although its use has 

not been popular worldwide.  

Table 6: Studies applying an econometric methodology  

Country Reference 

World (major oil producers) Pickering (2008) 

UK Pesaran (1990); Pickering (2002) 

US Uri (1982) 

US- Lower 48 states 
Kaufmann (1991); Pesaran and Samiei (1995); Moroney 

and Berg (1999); Kaufmann and Cleveland (2001) 

 

This section describes briefly the econometric basis which supports the application of two 

techniques. The first one is a regression model to assess the influence of techno-economic 

parameters to the post-salt oil production in Brazil, inspired by Kaufmann (1991). The second 

one is a series of CVAR models to quantify how prices, price volatility, well productivity, 

and country risk affect the number of development wells that are completed in the pre-salt 

zones of Brazil, inspired by Ansari and Kaufmann (2019).  

Econometric datasets come in a variety of types, one of them is time series data. A time series 

data set consists of observations on a variable or several variables over time. The influence 

of past events on future events and the prevalence of lags in the social sciences make time an 
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essential dimension in a time series data set (Wooldridge, 2013). A sequence of random 

variables23 (i.e., its values cannot be controlled or known a priori) indexed by time is called 

a stochastic process. The stochastic process is stationary if its mean and variance are constant 

over time and the value of the covariance between two periods depends only on the distance 

or lag between the two periods and not on the actual time at which the covariance is 

computed.  

The econometric theory below is presented according to Gujarati and Porter (2009). 

Symbolically, letting Yt represent a stochastic time series, it is stationary if the following 

conditions are satisfied:  

Mean: 𝐸(𝑌𝑡) = 𝜇 (1) 

Variance: 𝐸(𝑌𝑡 − 𝜇)2 = 𝜎2 (2) 

Covariance: 𝛾𝑘 = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇)] (3) 

Where 𝛾𝑘, the covariance at lag k, is the covariance between the values of 𝑌𝑡 and 𝑌𝑡+𝑘, that 

is, between two values of Y, k periods apart.  

A non-stationary time series has a time-varying mean or a time-varying variance or both. In 

this case, its behavior can only be studied for the period under consideration, not being 

possible to generalize it to other periods. Therefore, using trending variables in regression 

analysis may result in spurious results, in the sense that superficially the results look good, 

but on further investigation they are suspicious.  

                                                 
23 If there is at least one value of r for which 0<p(y=r)<1, a discrete variable is said to be random variable. If 

there is some r for which p(y=r)=1, y is deterministic rather than random.  



47 

 

Among some tests of stationarity, the unit root test has become widely popular over the past 

several years. Letting Yt represent the stochastic time series of interest, that is:  

𝑌𝑡 = 𝜌𝑌𝑡−1 + 𝑢𝑡 -1≤ 𝜌 ≤1 (4) 

𝑌𝑡 − 𝑌𝑡−1 = (𝜌 − 1)𝑌𝑡−1 + 𝑢𝑡  (5) 

∆𝑌𝑡 = δ𝑌𝑡−1 + 𝑢𝑡  (6) 

∆𝑌𝑡 = 𝛽1 + δ𝑌𝑡−1 + 𝑢𝑡  (7) 

∆𝑌𝑡 = 𝛽1 + 𝛽2𝑡 + δ𝑌𝑡−1 + 𝑢𝑡  (8) 

Where 𝑢𝑡 is a white noise error term.24 The Dickey-Fuller (DF) test is used to find out if the 

estimated coefficient of 𝑌𝑡−1 in Equation 6 is zero. Dickey and Fuller have shown that under 

the null hypothesis that δ=0 (i.e. 𝜌 = 1), the t value of the estimated coefficient of 𝑌𝑡−1 in 

Equation 6 follows the τ (tau) statistic. The DF test is estimated under three different null 

hypotheses, presented by Equation 6, 7 and 8. In each case, the null hypothesis is that δ=0, 

which is another way of saying there is a unit root and the time series is nonstationary. The 

alternative hypothesis is that δ is less than zero. If the null hypothesis is rejected, it means 𝑌𝑡 

is a stationary time series with zero mean (case of Equation 6), 𝑌𝑡 is stationary with a nonzero 

mean (case of Equation 7), and that 𝑌𝑡 is stationary around a deterministic trend (case of 

Equation 8). In the DF test, it was assumed that the error term 𝑢𝑡 was uncorrelated. In case 

𝑢𝑡 are correlated, the augmented Dickey-Fuller (ADF) test is used. This test is conducted by 

“augmenting” the three previous equations by the lagged values of the dependent variable 

∆𝑌𝑡. In this case, the ADF test consists of estimating the following regression: 

∆𝑌𝑡 = 𝛽1 + 𝛽2𝑡 + δ𝑌𝑡−1 + ∑ 𝛼𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡
𝑚
𝑖=1  (9) 

                                                 
24 An error term with the following properties is called a white noise error term: E(𝑢𝑡)=0; var(𝑢𝑡)=𝜎𝑢

2; cov(𝑢𝑡, 

𝑢𝑡+𝑠)=0, s≠0. That is, a sequence 𝑢𝑡 is a “white-noise process if each value in the sequence has a mean of zero, 

a constant variance, and is serially uncorrelated” (Enders, 1995). 
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Where 𝜀𝑡 is a pure white noise error term and ∆𝑌𝑡−1 = (𝑌𝑡−1 − 𝑌𝑡−2), ∆𝑌𝑡−2 = (𝑌𝑡−2 − 𝑌𝑡−3), 

and so on. In the ADF test, whether δ=0 is still the null hypothesis verified. 

An important assumption of the classical linear regression models is that the variance of each 

disturbance term 𝑢𝑡 is some constant number equal to 𝜎2, that is the assumption of 

homoscedasticity. Symbolically, var(ut)= 𝜎2, t=1, 2…, n. Applying the method of ordinary 

least squares (OLS) in the presence of heteroscedasticity are likely to give inaccurate results 

because the confidence intervals based on the variance of OLS estimators will be 

unnecessarily larger leading to t and F tests’ incorrect results. In short, if the usual testing 

procedures carry on to be used despite heteroscedasticity, whatever conclusions may be 

misleading (Gujarati, 2003). 

The Breusch-Pagan (BP) tests for heteroskedasticity in a linear regression model. It tests 

whether the variance of the errors from a regression is dependent on the values of the 

independent variables, in this case, heteroskedasticity is present. If the test statistic has a p-

value below an appropriate threshold (e.g., p<0.05) then the null hypothesis of 

homoskedasticity is rejected, and heteroskedasticity assumed.  

Another assumption of the classical linear regression models is that there is no correlation 

between the two error terms ui and uj (disturbances). This means that given any two X values, 

Xi and Xj, the correlation between any two ui and uj is zero. Symbolically, cov(ui,uj|Xi, Xj)=0, 

where i and j are two different observations, and cov stands for covariance. In other words, 

the classical model assumes that the disturbance term relating to any observation is not 

influenced by the disturbance term relating to any other observation. “Under both 

heteroscedasticity and autocorrelation, the usual OLS estimators, although linear, unbiased, 
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and asymptotically normally distributed, are no longer minimum variance among all linear 

unbiased estimators. Put differently; they are not efficient relative to other linear and 

unbiased estimators. As a result, the usual t, F and 𝜒2 may not be valid” (Gujarati and Porter, 

2009, p. 413).  

A two-variable regression model can illustrate the Breush-Godfrey (BG) test of 

autocorrelation (also known as the LM test) (Equation 10).  

𝑌𝑡 = 𝛽1 + 𝛽2𝑋𝑡 + 𝑢𝑡 (10) 

If the error term 𝑢𝑡 is assumed to follow the pth-order autoregressive, AR(p) scheme as 

follows (Equation 11):  

𝑢𝑡 = 𝜌1𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯+ 𝜌𝑞𝑢𝑡−𝑝 + 𝜀𝑡 (11) 

In which 𝜀𝑡 is a white noise error term. The null hypothesis H0 to be tested is that H0: 𝜌1=𝜌2 =

⋯ = 𝜌𝑝 = 0. That is, there is no serial correlation of any order.  

However, any heteroscedasticity or autocorrelation test has yet been judged to be 

unequivocally more potent in the statistical sense. Therefore, this study applied the BP test 

and BG test to detect, respectively, heteroskedasticity and autocorrelation. The Newey-West 

method can be applied to obtain standard errors of OLS estimators that are corrected for 

autocorrelation and heteroskedasticity.  

The classical linear regression models also assume that there is no perfect multicollinearity, 

that is, there are no perfect linear relationships among the explanatory variables. The term 

multicollinearity refers to the existence of a “perfect” (Equation 12) or “not perfectly so” 
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(Equation 13) linear relationship among some or all explanatory variables of a regression 

model.  

𝜆1𝑋1 + 𝜆2𝑋2+⋯+ 𝜆𝑘𝑋𝑘 = 0 (12) 

𝜆1𝑋1 + 𝜆2𝑋2+⋯+ 𝜆𝑘𝑋𝑘 + 𝜈𝑖 = 0 (13) 

Where 𝜈𝑖 is a stochastic error term. If multicollinearity is perfect (Equation 12), the regression 

coefficients of the X variables are indeterminate, and their standard error is infinite. If 

multicollinearity is less than perfect (Equation 13), the regression coefficients, although 

determinate, possess large standard errors which means the coefficients cannot be estimated 

with high precision or accuracy.  

Despite the problems that multicollinearity poses to the classical linear regression models, 

multicollinearity does not lead to imprecise estimates of the cointegration relations (Juselius, 

2018). The CVAR theory ‒ cointegrated vector autoregressive ‒ forthcoming is presented 

according to Enders (1995) and based on Kaufmann and Juselius (2013). For more detailed 

information about the CVAR model, see Juselius (2007). 

Due to the obstacles posed by strong correlations among trending variables to a better 

understanding of economic systems, economists developed statistical techniques based on 

the idea of cointegration and error correction. This approach allows evaluating whether 

correlations among trending variables correspond to statistically meaningful long-run 

relations as measured by the cointegrating relations and to detect the dynamics by which 

variables adjust to deviations from these long-run relations back to equilibrium after having 
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been pushed away by exogenous shocks, as measured by the error correction. The power of 

this methodology is the basis for Clive Granger’s 2003 Nobel Prize in economics.  

Cointegration is a statistical concept defined as a stationary linear combination among 

nonstationary variables. A cointegration has the property that it eliminates a common 

stochastic trend among stochastically trending variables.  

Stochastic trends can be eliminated partly by differencing, that removes the long-run 

information, and partly by cointegration (linear combinations of time series that cancel the 

stochastic trend), that ensures the long-run information is preserved.  The CVAR model built 

by combining the first difference terms and cointegration describes short-run adjustment and 

long-run relation in the data. It enables the correct use of standard inference based on (χ2, F, 

t), and ensures the validity of R2.  

Briefly, it is possible to summarize two advantages of the CVAR model over the classical 

linear regression models: (1) there can be multicollinearity among explanatory variables, and 

(2) it eliminates a common stochastic trend among trending variables preserving the long-

run information.  

The conventional wisdom was to differentiate all nonstationary variables used in a regression 

analysis so nonstationary (trending) series could become stationary by differencing. It is now 

recognized that is possible there to be a linear combination of integrated variables that is 

stationary; these variables are said to be cointegrated. According to Enders (1995), “any 

equilibrium relationship among a set of nonstationary variables implies that their stochastic 

trends must be linked”. Such an equilibrium relationship means that the variables cannot 

move independently from each other (Enders, 1995, p. 355).  
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To illustrate the theory of CVAR models, Equation 14 specifies the first example for the 

number of wells drilled in a region.  

𝑤𝑡 = 𝛽0 + 𝛽1𝑝𝑡 + 𝛽2𝑦𝑡 + 𝛽3𝑟𝑡 + 𝑒𝑡 (14) 

Where 𝑤𝑡 is the long-run number of wells drilled, 𝑝𝑡 is the oil price level, 𝑦𝑡 is the yield, 𝑟𝑡 

is the interest rate, 𝑒𝑡 is the stationary disturbance term and 𝛽𝑖 are parameters to be estimated, 

being the variables price level, yield and interest rate nonstationary integrated of order one25, 

I(1). The theory expressed in Equation 14 asserts that there exists a linear combination of 

these nonstationary variables that is stationary, shown in Equation 15.  

𝑒𝑡 = 𝑤𝑡 − 𝛽0 + 𝛽1𝑝𝑡 + 𝛽2𝑦𝑡 + 𝛽3𝑟𝑡 (15) 

The linear combination of integrated variables in the right-hand side of Equation 15 must be 

stationary since {𝑒𝑡} is stationary. Such a linear combination of nonstationary variables 

illustrates the concept of cointegration.  Equation 16 presents when a set of economic 

variables are in long-run equilibrium, according to Engle and Granger (1987).  

𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + ⋯+ 𝛽𝑛𝑥𝑛𝑡 = 0 (16) 

In which 𝛽 denotes the vector (𝛽1, 𝛽2, 𝛽3, … 𝛽𝑛) and 𝑥𝑡 denotes the vector 

(𝑥1𝑡 , 𝑥2𝑡, 𝑥3𝑡 , … , 𝑥𝑛𝑡)′. The system is in long-run equilibrium when 𝛽𝑥𝑡=0. The deviation 

from long-run equilibrium is called equilibrium error (𝑒𝑡), so that:  

𝛽𝑥𝑡 = 𝑒𝑡 (17) 

                                                 
25 If a nonstationary time series has to be differenced d times to make it stationary, that time series is said to be 

integrated of order d, I(d).  
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The components of the vector 𝑥𝑡 are said to be cointegrated of order d, b, denoted by CI(d,b) 

if all components of 𝑥𝑡 are integrated of order d and there exists a vector 𝛽 such that the 

linear combination 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + ⋯+ 𝛽𝑛𝑥𝑛𝑡 is integrated of order (d-b), where 

b>0. The vector 𝛽 is called the cointegrating vector. In terms of Equation 15, the variables 

price level, yield and interest rate are cointegrated of order (1,1), that is CI(1,1), if  𝑒𝑡 is 

stationary and such variables are nonstationary I(1).  

If 𝑥𝑡 has n components, there may be as many as n-1 linearly independent cointegrating 

vectors. The number of cointegrating vectors is known as the cointegrating rank of 𝑥𝑡. A 

characteristic of cointegrated variables is that their time paths are influenced by the deviation 

from long-run equilibrium, which influences the short-run dynamics. This dynamic model is 

the one of error correction. Deviation from equilibrium influences the short-term dynamics 

of variables in a system. For instance, Equation 18 and Equation 19 illustrates a simple error 

correction model.  

∆𝑟𝑠𝑡 = 𝛼𝑆(𝑟𝐿𝑡−1 − 𝛽𝑟𝑆𝑡−1) + 𝜖𝑆𝑡 𝛼𝑆, 𝛽 > 0 (18) 

∆𝑟𝐿𝑡 = −𝛼𝐿(𝑟𝐿𝑡−1 − 𝛽𝑟𝑆𝑡−1) + 𝜖𝐿𝑡 𝛼𝐿 , 𝛽 > 0 (19) 

Where 𝑟𝐿𝑡 and 𝑟𝑠𝑡 are the long- and short-term interest rates, respectively. The terms 𝜖𝑆𝑡, 𝜖𝐿𝑡 

are white-noise disturbance terms, and by assumption ∆𝑟𝑠𝑡 and ∆𝑟𝐿𝑡 are stationary. The 

Equation 18 shows that the short-term interest rate changes in response to the stochastic 

shock 𝜖𝑆𝑡 and to the previous period’s deviation from long-run equilibrium. Everything else 

equal, if 𝑟𝐿𝑡−1 − 𝛽𝑟𝑆𝑡−1 > 0 the short-term interest rate would rise, and the long-term interest 

rate would fall. The long-run equilibrium is observed when 𝑟𝐿𝑡 = 𝛽𝑟𝑆𝑡. Notice that 𝛼𝑆 and 
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𝛼𝐿 interprets the speed of adjustment parameters; the larger 𝛼𝑆 is (in absolute terms), the 

greater the response of 𝑟𝑠𝑡 to the previous period deviation from long-run equilibrium. In the 

case of Equation 18, if the speed of adjustment coefficient 𝛼𝑆 is considered statistically equal 

to zero, then the {∆𝑟𝑠𝑡} is unaffected by the long-term interest rate. Enders (1995) generalizes 

the relationship between cointegration, error correction, and cointegration rank, resulting in 

Equation 20: 

𝑥𝑡 = 𝐴1𝑥𝑡−1 + 𝜖𝑡 (20) 

Where 𝑥𝑡 is a (n x 1) vector (𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑛𝑡)′, 𝜖𝑡 is the (n x 1) vector (𝜖1𝑡, 𝜖2𝑡, … , 𝜖𝑛𝑡)′, 𝐴1 

is an (n x n) matrix of parameters. Subtracting 𝑥𝑡−1 from each side of Equation 21 and letting 

I be an (n x n) identity matrix, it is obtained:  

∆𝑥𝑡 = −(𝐼 − 𝐴1)𝑥𝑡−1 + 𝜖𝑡 = 𝜋𝑥𝑡−1 + 𝜖𝑡 (21) 

Where 𝜋 is the (n x n) matrix −(𝐼 − 𝐴1) and 𝜋𝑖𝑗 denotes the element in row i and column j 

of 𝜋. If the rank of the (n x n) matrix 𝜋 is zero, then Equation 21 becomes equivalent to an 

n-variable VAR in first differences. If the rank is one (r=1), there is a single cointegrating 

vector given by any row of the matrix 𝜋. In this case, each sequence  {𝑥𝑖𝑡}  can be written in 

the error-correction form (Equation 22):  

∆𝑥1𝑡 = 𝜋11𝑥1𝑡−1 + 𝜋12𝑥2𝑡−1 + ⋯+ 𝜋1𝑛𝑥𝑛𝑡−1 𝜖1𝑡 (22) 

This work applies a CVAR model to evaluate the role that oil prices, oil price’s volatility, 

well productivity and country risk play in the development of pre-salt using the ideas of 

cointegration and equilibrium error correction. To quantify the oil price’s volatility, this 

thesis estimates Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) 

models of crude oil prices.  
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To quantify the oil price’s volatility, this thesis estimates GARCH models of crude oil prices. 

That is, just as the error term 𝑢𝑡 follows the pth-order autoregressive AR(p) scheme presented 

by Equation 11, there can be autocorrelation in the variance of the error term at time t with 

the squared values of the error term lagged one or more periods. The idea is similar to the 

autocorrelation of the error term, but in the Autoregressive Conditional Heteroskedastic 

(ARCH) model “it is the (conditional) variance of ut that depends on the (squared) previous 

error terms, thus giving the impression of autocorrelation” (Gujarati and Porter, 2009, p. 

794).  

The variance of the disturbance term is assumed to be constant in conventional econometric 

models. However, the assumption of a constant variance (homoskedasticity) is inappropriate 

for several econometric time series that exhibit periods of large volatility and tranquility. In 

these cases, one approach that helps to forecast the variance is to introduce an independent 

variable (Equation 23).  

𝑦𝑡+1 = 𝜖𝑡+1𝑥𝑡 (23) 

Where 𝑦𝑡+1 is the variable of interest, 𝜖𝑡+1 is a white-noise disturbance term with variance 

𝜎2, 𝑥𝑡 is an independent variable that can be observed at period t. When the realizations of 

the {𝑥𝑡} sequence are not all equal, the variance26 of 𝑦𝑡+1 conditional on the observable value 

of 𝑥𝑡 is Var(𝑦𝑡+1|𝑥𝑡)=𝑥𝑡
2𝜎2.  

                                                 
26 Let X be a random variable, 𝑉𝑎𝑟(𝑋) =  𝜎𝑋

2 = 𝐸[𝑋 − 𝐸(𝑋)]2. The expected value of yt+1, yt+2…, conditioned 

in the observed values of y1 through yt is a conditioned mean or expected value of yt+i. This is denoted by 

Et(yt+i|yt,yt-1,…,y1) or Etyt+i. 
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Considering that {𝜖𝑡̂} denotes the estimated residuals from the model 𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 +

𝜖𝑡. The conditional variance of yt+1 is represented by Equation 24:  

𝑉𝑎𝑟(𝑦𝑡+1|𝑦𝑡) = 𝐸𝑡[(𝑦𝑡+1 − 𝑎0 − 𝑎1𝑦𝑡)
2] = 𝐸𝑡𝜖𝑡+1

2  (24) 

Thus far, the variance of 𝜖𝑡+1 is a constant equal to 𝜎2. Equation 25 models the condition 

variance as an AR(q) process using the square of the estimated residuals.  

𝜖𝑡̂
2 = 𝛼0 + 𝛼1𝜖𝑡̂−1

2 + 𝛼2𝜖𝑡̂−2
2 + ⋯+ 𝛼𝑞𝜖𝑡̂−𝑞

2 + 𝑣𝑡 (25) 

In which 𝑣𝑡 is a white-noise process. If all values of 𝛼𝑖 are equal to zero, the estimated 

variance is constant and equal to  𝛼0. Otherwise, Equation 26 represents how to forecast the 

conditional variance at time t according to an autoregressive process given by Equation 25.   

𝑉𝑎𝑟(𝑦𝑡|𝑦𝑡−1) = 𝐸𝑡𝜖𝑡̂
2 =  𝛼0 + 𝛼1𝜖𝑡̂−1

2 + 𝛼2𝜖𝑡̂−2
2 + ⋯+ 𝛼𝑞𝜖𝑡̂−𝑞

2 = 𝛼0 + ∑𝛼𝑖𝜖𝑡̂−𝑖
2

𝑞

𝑖=1

 (26) 

Equation 25 is called an ARCH model, but this linear specification (Equation 25) is not 

considered the most convenient. It is “more tractable to specify 𝑣𝑡 as a multiplicative 

disturbance” (Enders, 1995, p. 142). Engle's (1982) proposes Equation 27 as the simplest 

example from the class of multiplicative conditionally heteroskedastic models (an ARCH(1) 

process). 

𝜖𝑡 = 𝑣𝑡√𝛼0 + 𝛼1𝜖𝑡−1
2  (27) 

Where 𝑣𝑡 is a white-noise process such that 𝜎𝑣
2 = 1, 𝑣𝑡 and 𝜖𝑡−1 are independent of each 

other, and 𝛼0 and 𝛼1 are constants such that 𝛼0>0 and 0 < 𝛼1 < 1. The ARCH process given 

by Equation 27 has been extended, resulting in ARCH (q) processes (Equation 28): 
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𝜖𝑡 = 𝑣𝑡√𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑞

𝑖=1

 (28) 

Bollerslev (1986) extended Engle's (1982) work by developing the generalized ARCH (p,q) 

model, called GARCH(p,q). Equation 29 represents the error process in a GARCH model.   

𝜖𝑡 = 𝑣𝑡√ℎ𝑡 = 𝑣𝑡√𝛼0 + ∑𝛼𝑖𝜖𝑡−𝑖
2

𝑞

𝑖=1

+ ∑𝛽
𝑖
ℎ𝑡−𝑖

𝑝

𝑖=1

 (29) 

Where 𝜎𝑣
2 = 1, {𝑣𝑡} is a white-noise process independent of past realizations of 𝜖𝑡−𝑖, 

E𝜖𝑡=E𝑣𝑡√ℎ𝑡=0 and the conditional variance of 𝜖𝑡 is given by ℎ𝑡. The main idea is that the 

conditional variance of 𝜖𝑡   depends on the squared error term in the previous periods (as in 

the ARCH(q) model) but also on its conditional variance in the previous periods (Equation 

30).  

𝐸𝑡−1𝜖𝑡
2 = ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

+ ∑𝛽
𝑖
ℎ𝑡−𝑖

𝑝

𝑖=1

 (30) 
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3. Methodology 

This thesis addresses three different models seeking to answer the questions stated in the first 

chapter of this work (Figure 9).  

 
Figure 9: Process flow chart 

3.1.Database for the Hubbert model 

To forecast Brazil’s oil production with a single-cycle and multi-cycle Hubbert model, to 

back-test Hubbert’s model, and to explain residuals of Hubbert model, annually observations 

between 1954 and 2015 for the offshore oil production at field level by water-depth were 

obtained from ANP (2016). The Brent oil price (deflated to dollar 2015) was obtained from  

BP (2016).  

However, oil production of some Brazilian oil fields, such as Marlim, Barracuda, Caratinga 

and Marlim Leste, comes from both post-salt and pre-salt layers. Thus, the production of the 

post-salt deep-water oil fields was obtained by reducing the offshore production in deep 

waters by pre-salt production ─ obtained from the Monthly Oil and Natural Gas Production 
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Bulletin disclosed by ANP (2018a) ─ once all pre-salt producing oil fields are in deep water 

(water-depth deeper than 250m). 

Pre-salt fields’ STOIIP are obtained from the Development Plan summaries disclosed by 

ANP (2018h) to estimate the oil production peak from the pre-salt zone. 

Eleven pre-salt fields with STOIIP available (Table 7) are used to estimate the STOIIP from 

the pre-salt zone. This study considers the sum of STOIIP from the following pre-salt fields: 

Lula, Sapinhoá, Jubarte, Mero, Lapa, Búzios, Sépia and Itapu. Fields which produce in pre-

salt but mostly from post-salt are not included as it not possible to differ the STOIIP from 

pre-salt and post-salt layer: Marlim Leste, Barracuda, and Caratinga.  

Table 7: STOIIP from pre-salt fields  

Pre-salt producer fields* STOIIP (Mbbl of oil)2 

Percentage of 

production from 

the pre-salt layer 

Lula 17,791  

Sapinhoá 3,311  

Jubarte1 9634.58 63% 

Lapa 1,676.86  

Baleia Franca1 ─ 89% 

Baleia Azul ─  

Búzios 29,889  

Marlim Leste1 5,804.6 27% 

Sururu ─  

Barracuda1 3,053 6% 

Caratinga1 2,255 22% 

Voador ─  

Marlim1 ─ 1% 

Pirambu ─  

Pre-salt non-producers’ fields  STOIIP (Mbbl of oil)2  

Sépia 4,959.8  

Itapu 1,316.14  

 URR (Mbbl of oil)  

Mero** 3,300  

*Information from the Monthly Oil and Natural Gas Production Bulletin (ANP, 2018a) - July 2018 

**Total recoverable volume of Mero obtained from Petrobras (2017a) 
1Fields that produce from both pre-salt and post-salt layer 
2Information of STOIIP available in the Development Plan disclosed by ANP (2018h) 
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3.2.Hubbert model 

Except for the pre-salt analysis (in section 3.2.4), the methodology within section 3.2 is the 

same applied by Hallack et al. (2017). Following the discussion in section 2.1.1, the Brazilian 

offshore post-salt oil production was therefore divided into two classes: shallow water (up to 

250m water depth) and deep water (more than 250m water depth). The asymmetric Hubbert 

model based on a Gaussian curve, developed by Brandt (2007), was adapted to the original 

Hubbert model. It allows the curve-fitting of the post-salt oil production at shallow water as 

this production profile presents a long enough smooth decline. Then, this study uses a 

regression model to explain the differences between the Hubbert model and observed 

production data, inspired by Kaufmann (1991).  After that, a logistic curve is fitted to pre-

salt historical oil production using different scenarios of URR to estimate pre-salt peak.  

The following sections give a detailed insight into the applied methodology.  

3.2.1. Forecasting Brazil’s oil production with a single-cycle and multi-cycle Hubbert 

model  

This study estimates the production profile and the URR for offshore post-salt oil production 

in Brazil. The annual production Q’t is represented by the first differential of cumulative 

production Qt as shown by Equation 31 (Sorrell and Speirs, 2009). 

Q’t =
𝑑𝑄𝑡

𝑑𝑡
=

𝑎𝑄∞𝑒−𝑎(𝑡−𝑡𝑚)

(1+𝑒−𝑎(𝑡−𝑡𝑚))
2 (31) 

Three parameters are used to explain the cumulative production 𝑄𝑡: the URR is represented 

by 𝑄∞, a is the “steepness” of the curve, t is the variable time (year), and tm is the midpoint 

of the growth trajectory.  
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A single cycle model may however not be appropriate for the case of Brazil. This study 

developed a curve that shows the cumulative oil produced (Np) for each field in the year of 

its discovery accumulated until 2015, aiming to capture the evolution of the size of 

discoveries over time. As shown in Figure 10, a new cycle of post-salt discoveries started in 

the mid-1980s. This cycle results from deepwater discoveries. 

 
Figure 10: Np accumulated until 2015 (Mbpd) from offshore oil fields separated in shallow and deep water 

Source: Based on ANP (2016) 

It can be observed in Figure 9 that a new cycle of deep-water discoveries brought a significant 

increase in Np in the mid-1980s due to the technological development of exploration and 

production in deep waters.  

As the Hubbert’s theory considers that the production cycle follows the same format of the 

discovery cycle, it can be inferred that the technological development of exploration and 

production in deep waters, which occurred in the 1980s, may have contributed to deviate 

observed production from the estimates of the single cycle Hubbert curve. Also, it can be 

inferred that the deep-water technology caused the beginning of a new discovery and 

production cycle.  



62 

 

The multi-Hubbert model applied to the Brazilian oil production, therefore, results from the 

sum of curves from two cycles, in which ‘i’ represents a cycle and ‘N’ represents the total 

number of cycles (i.e., two) modeled ─ see Equation 32 and Equation 33: 

Q′t  = ∑
aiQ∞ie

−ai(t−tmi)

(1 + e−ai(t−tmi))2

N

i=1

 (32) 

URR = ∑Q∞i

N

i=1

 (33) 

The total production 𝑄′𝑡 is explained by the following variables: Q∞i, which is the URR of a 

cycle, 𝑎𝑖, which is the “steepness” of a cycle curve, and tmi, which is the time when production 

reaches a cycle peak.   

Brandt (2007) evaluated some models (Gaussian, linear and exponential, symmetrical and 

asymmetrical) fitting them to production data. Among the models tested by Brandt (2007), 

there is the asymmetrical Gaussian curve of production in which a different standard 

deviation on the increasing and decreasing sides of the production curve is allowed. 

To adapt the Brandt (2007) formulation to the logistic curve hitherto used (Equation 31), a 

parameter ‘a’ in function of time and a ‘k’ factor was adopted, as shown in Equation 34. The 

parameter ‘a’ derives from the slope of the curve to the left (𝑎𝑖𝑛𝑐)  and right (𝑎𝑑𝑒𝑐) side of 

peak production and the ‘k’ factor represents the transition between the left and right side of 

peak production.  
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𝑎(𝑡) = 𝑎𝑑𝑒𝑐 −
𝑎𝑑𝑒𝑐−𝑎𝑖𝑛𝑐

1+𝑒𝑘(𝑡−𝑡𝑚) , so that: 

t<<tm → a(t)= ainc; 

t>>tm → a(t)= adec; 

t=tm→ a(t)= 
1

2
 (ainc + adec) 

(34) 

This yields a new formulation of the asymmetric Hubbert model (Equation 35).  

Q′t  =
dQt

dt
=

a(t)Q∞e−a(t)(t−tm)

(1 + e−a(t)(t−tm))2
 (35) 

As reported by Sorrell and Speirs (2009), geology and techno-economic factors affect the 

URR, which can only be estimated to a reasonable degree of confidence when exploration is 

well advanced. For less-explored regions, estimates must rely upon geological analysis.  

Thus, the dynamics of economic and political change becomes nontrivial for the estimation 

of the URR. Many curve-fitting models are based on URR scenarios to mitigate this 

weakness. However, the difficulty in anticipating future discoveries and production cycles 

cannot be sufficiently mitigated by URR scenarios. Therefore, this study endogenously 

estimates the URR, which is possible in a stable way as both cycles, i.e., shallow and deep-

water offshore production, have passed their production peak already.  

Also, the importance of pre-salt development in a post-salt declining context is evaluated by 

determining the average annual growth rate of pre-salt oil production, which is necessary to 

maintain the offshore oil production volume at the level of 2015.  This thesis first estimates 

how much pre-salt production must increase to compensate for the decline in post-salt 

production in absolute levels and subsequently derive the annual growth rate for the period 

2016-2025 necessary to achieve this production volume. 
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A nonlinear least-squares approach was used minimizing the root-mean-square of the errors 

(RMSE) of the historical oil production data and the Hubbert curves. For that purpose, this 

thesis used the function nls (nonlinear least squares) in the software R. The quality of the fit 

is assessed by determining the coefficient of variation (CV) factor, defined as the ratio of the 

RMSE to the estimated peak in oil production of the cycle i ( 𝑄′𝑖peak): 

𝐶𝑉 =
𝑅𝑀𝑆𝐸

𝑄′𝑖
  𝑝𝑒𝑎𝑘

 (36) 

3.2.2. Back-testing Hubbert’s model  

The descriptive effect of the Hubbert curve can be observed by comparing the single and 

multi-cycle curves with the actual observed post-salt offshore production. However, the 

stability of the Hubbert forecast over time remains to be tested. This test is performed by the 

application of the back-testing technique, computed each year, for each period T. Back-test 

steps are: 

1. The production data, Pi to PN, is truncated at a specific date in the past T; 

2. The extrapolation of the oil production rate is made based on the truncated historical 

data Pi to PT; 

3. The future production predicted by extrapolation is compared to the actual production 

from the date T in the past up to the present date N;  

4. The average relative error is calculated for date T; 

5. The URR is estimated; 

6. The steps above are repeated until the T=N. 
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The percentage error (Equation 37) is obtained by the sum of the relative differences, in 

absolute terms, between the Hubbert oil production forecast (using historical data from 1954 

until T) and the observed oil production data (from 1954 to 2015).  

𝐸𝑟𝑟𝑜𝑟(𝑇) = ∑𝑡=1954
2015 ⃒ 𝑃𝑇,𝑡

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑃𝑡⃒

𝑃𝑡
 ; in which T є [2000;2015] (37) 

The back-test permits to compare the stability of endogenously estimated URR from all oil 

production cycles: post-salt offshore (single cycle), shallow water post-salt offshore 

(symmetrical and asymmetrical first cycle), and deep-water post-salt offshore (symmetrical 

and asymmetrical second cycle).   

3.2.3. Explain the residuals of the Hubbert model with Kaufmann’s hybrid approach 

The impact of Hubbert's work inspired the incorporation of economic, institutional and 

technological variables to the original model, resulting in hybrid models to forecast oil 

production (Kaufmann, 1991; Kaufmann and Cleveland, 2001; Pesaran and Samiei, 1995).  

Therefore, aiming at finding the main reasons of deviation between the Hubbert single-cycle 

and multi-cycle models related to the historical oil production in post-salt offshore in Brazil, 

this study applied a methodology inspired by Kaufmann (1991) for the period 1954-2015.  

The relative difference between the observed annual oil production Pt and the annual oil 

production estimated by Hubbert 𝑸′𝒕  generates the residue 𝑹𝒕 (Equation 38).  

𝑅𝑡 =
𝑃𝑡 − 𝑄′𝑡

𝑄′𝑡
 (38) 
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The residue is used as a dependent variable to identify the factors that might have caused the 

difference between modeled and observed production (Equation 39). 

This study focuses on the most important economic factor for oil production to explain these 

differences, i.e., the oil price, on structural factors that estimate the role of symmetry in the 

Hubbert curve, and on a term that controls past changes in production levels. Other economic 

factors, such as the GDP or the exchange rate of the Brazilian Real against the Dollar would 

have been highly interesting to analyze. However, consistent time-series for these indicators 

are only available for a very short time, which would have made statistical analysis spurious. 

The original regression equation is shown in the following: 

Rt = α + ∑i=0
L βiBP(t−i) + βL+1 PC′t + βL+2∆Pt + ϵ𝑡 (39) 

Where α is the intercept coefficient. 𝑩𝑷(𝒕−𝒊) is the Brent oil price at year t-i, deflated to 2015-

dollars. Different lags in the dollar price are allowed to test the time of adjustment necessary 

to adapt production to price changes. 𝐏𝐂′𝐭 is a dummy variable to test the symmetry of the 

production curve (the variable is zero before the peak in the production curve, and after the 

peak, it is equal to the difference between the production in the year next to the peak and the 

peak). ∆𝐏 denotes the absolute production variation between two consecutive years (in a 

million barrels), and ϵ is the error term. 

Therefore, 𝐏𝐂′𝐭 evaluates if the production curve modeled should be altered in a way to 

capture the asymmetry of the production curve. In other words, if the slope of the curve to 

the left and right side of peak production is different, 𝐏𝐂′𝐭 will take it into account. If the 



67 

 

applied Hubbert model itself is asymmetric, it is expected that the corresponding coefficient 

is insignificant, as the asymmetry is already captured by the original model. 

The ∆𝐏𝐭 variable aims to capture the actual inertia effect on production. In other words, it 

would be the natural tendency of oil production to continue the previous years’ profile 

without a sharp break behavior, as this usually requires massive investment volumes. 

This study uses the Augmented-Dickey Fuller (ADF) test to check stationarity of the involved 

time-series. If necessary, it takes differences of the time-series to obtain stationary ones. 

Additionally, it checks for heteroscedasticity and autocorrelation in the residuals of the 

regression with the Breusch-Pagan (BP) and Breusch-Godfrey (BG) tests (Wooldridge, 

2013). If heteroscedasticity and auto-correlation cannot be rejected, this study includes a 

lagged 𝑅𝑡 to reduce auto-correlation and applies the heteroscedasticity and auto-correlation 

robust estimator by Newey and West (1987) subsequently. 

3.2.4. Preliminary effort to estimate the oil production peak from the pre-salt province 

This study estimates the pre-salt peak of production using different scenarios of URR as a 

constraint for fitting the pre-salt historical oil production to a logistic curve.  

According to ANP (2017), there is a 20% RF for deep water in Brazil and a 30%-60% RF 

range for the primary/secondary recovery mechanism. For that reason, four different URR 

scenarios are elaborated according to different scenarios of RF: i) 15% RF in the pessimistic 

scenario; ii) 20% RF in the base scenario; iii) 30% RF in a primary recovery scenario; iv) 

60% RF in a secondary recovery scenario (optimistic). The 𝑈𝑅𝑅𝑝𝑟𝑒−𝑠𝑎𝑙𝑡 is estimated for each 

RF scenario as shown in Equation 40. After that, each URR scenario is used to fit pre-salt 
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historical oil production to the logistic curve. The 𝑈𝑅𝑅𝑀𝑒𝑟𝑜 is added separately into Equation 

40 because ANP does not disclose the Development Plan summary for Mero field. Thus, the 

information of STOIIP for Mero is not publicly disclosed. On top of that, Mero is the only 

field developed under the PSA regime within the dataset. For this reason, this thesis includes 

separately the information of total recoverable volume of Mero field obtained from Petrobras 

(2017a), as shown in Table 7.  

𝑈𝑅𝑅𝑝𝑟𝑒−𝑠𝑎𝑙𝑡 = (∑𝑆𝑇𝑂𝐼𝐼𝑃𝑓𝑖𝑒𝑙𝑑) 𝑥 𝑅𝐹 + 𝑈𝑅𝑅𝑀𝑒𝑟𝑜 (40) 

3.3.Database for the creaming curve model 

The number of wildcat wells concluded by basin are disclosed by the Brazilian petroleum 

regulatory agency, ANP (2018c). The fields’ STOIIP are obtained from the Development 

Plan summaries provided by ANP (2018h). The field’s date of discovery is obtained from 

the Development Plan summaries (ANP, 2018h) as well as by ANP (2016). The accumulated 

production of oil from onshore and offshore fields is obtained from ANP (2016). Such 

information is also disclosed by ANP (2019). Between August 2016 and December 2017, the 

accumulated production is obtained by basin from ANP (2018a). The basin in which the field 

is located is obtained from the Development Plan summaries (ANP, 2018h) as well as by 

ANP (2016). The 1P and 3P reserves by basin are provided by ANP (2018i). The term ‘oil’ 

referred by this study does not embed natural gas resources, i.e., oil equivalent is not 

considered by this study.  

3.4.Creaming curve model 

This methodology is obtained from Hallack and Szklo (2019).  
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In several ways, this study extends previous exploratory efforts analysis in Brazil (Szklo et 

al., 2007; Almeida and Arruda, 2017). This thesis measures the exploratory effort by the 

number of wildcat wells constructed. First, this thesis identifies the basins that concentrate 

most of the exploratory effort and discovered STOIIP. Secondly, this thesis infers the 

potential to increase discoveries from known fields by improving recovery factors in the four 

basins that concentrate 95% of the discovered STOIIP. Thirdly, this thesis weights the 

STOIIP data with the estimated recovery factor to estimate the size of discoveries and build 

the creaming curves. To estimate the size of discoveries, this thesis calculates the recovery 

factor using the historically accumulated production and reserves 1P and 3P. The choice of 

reserves 1P and 3P relies exclusively on the availability of data, as the information of 2P 

reserves is not disclosed by the Brazilian petroleum regulatory agency, ANP. Finally, the 

creaming curve is fitted by three different functions, which are extrapolated to allow a 

projection of what is likely to be discovered in the future vs. increasing wildcat wells drilled, 

as well as to identify frontier areas in Brazil. Besides, this thesis compares the creaming 

curves’ shape and the three function’s extrapolation for the four basins.  

The estimated recovery factor for each basin in the analysis is derived as shown in Equation 

41.   

𝑅𝐹𝑗
𝑏𝑎𝑠𝑖𝑛 =

𝑗_𝑅𝑒𝑠𝑏𝑎𝑠𝑖𝑛 + ∑ 𝑃𝑟𝑜𝑑𝑡,𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛

𝑡,𝑓𝑖𝑒𝑙𝑑

∑ 𝑂𝑂𝐼𝑃𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛

𝑓𝑖𝑒𝑙𝑑

 
(41) 

in which j can be 1P reserves or 3P reserves,  𝑗_𝑅𝑒𝑠𝑏𝑎𝑠𝑖𝑛 represents the volume of j reserves 

by basin, 𝑅𝐹𝑗
𝑏𝑎𝑠𝑖𝑛 is the recovery factor for a basin considering j reserves, 𝑃𝑟𝑜𝑑𝑡,𝑓𝑖𝑒𝑙𝑑

𝑏𝑎𝑠𝑖𝑛  
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represents the field’s historical petroleum production at time t assembled by basin and 

𝑆𝑇𝑂𝐼𝐼𝑃𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛 represents the fields’ STOIIP grouped by basin.    

To estimate the size of discovery for each field (𝑈𝑅𝑅𝑗,𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛 ) this work multiplies its STOIIP 

(𝑆𝑇𝑂𝐼𝐼𝑃𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛) by the previously estimated recovery factor of the respective basin 𝑅𝐹𝑗

𝑏𝑎𝑠𝑖𝑛, 

as shown in Equation 42: 

𝑈𝑅𝑅𝑗,𝑓𝑖𝑒𝑙𝑑
𝑏𝑎𝑠𝑖𝑛 = 𝑆𝑇𝑂𝐼𝐼𝑃𝑓𝑖𝑒𝑙𝑑

𝑏𝑎𝑠𝑖𝑛 ∗ 𝑅𝐹𝑗
𝑏𝑎𝑠𝑖𝑛   (42) 

After the size of discovery is identified for each field, this thesis builds the creaming curves. 

For each basin, this thesis plots the cumulative number of wildcat wells drilled in the abscissa 

axis and the cumulative fields’ size of discoveries in the ordinate axis.  

Then, this thesis fits the creaming curve to three functions: logistic, Gaussian and Gompertz 

(see Appendix B). The choice of these functions relies on the fact that the curve starts at zero 

and exhibits asymptotic behavior. Moreover, these functions were applied in a previous 

curve-fitting analysis (Brandt, 2007; Sorrell et al., 2009; Brandt, 2010). After that, this thesis 

extrapolates the function’s curve to estimate the potential for yet-to-find discoveries in each 

basin. For that purpose, this thesis uses the function predict in the RStudio software 

(Version 1.1.463).  

As proposed by Nashawi, Malallah, and Al-Bisharah (2010) for assessing the fit of different 

Hubbert models, the goodness of the fit for the different basins is appraised using the 

coefficient of variation (CV𝑗
𝑏𝑎𝑠𝑖𝑛) factor. Such a coefficient is defined by that work as the 

ratio of the square root of the estimated variance of the random error (𝜎𝑗
𝑏𝑎𝑠𝑖𝑛) to the parameter 
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representing the asymptote (𝑎𝑠𝑦𝑚𝑗
𝑏𝑎𝑠𝑖𝑛), as presented in Equation 43. Because higher values 

of discovery data result in higher variances regardless of the quality of fit, the use of a ratio 

becomes fundamental to overcome this issue. 

CV𝑗
𝑏𝑎𝑠𝑖𝑛 = 

𝜎𝑗
𝑏𝑎𝑠𝑖𝑛

𝑎𝑠𝑦𝑚𝑗
𝑏𝑎𝑠𝑖𝑛

  
 (43) 

Finally, this work obtains the uncertainty in the yet-to-find estimative from the standard error 

of the asymptote parameter within the non-linear least squared estimates derived from the 

function nls at the stats package in the RStudio software.  

3.5.Database for the CVAR model 

This thesis compiles monthly observations for the price of crude oil, the number of petroleum 

producing wells and completed development wells, and production in the pre-salt zone. 

Significant rates of production in the pre-salt region start in 2010. Therefore, models are 

estimated from a sample that includes observations from January 2010 to March 2018 (Figure 

11). 
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Figure 11: Brazil’s country risk measured by OECD and Pre-salt’s Average Well Productivity (mbd) over 

time 

Monthly observations for the petroleum production in the pre-salt zone are obtained from the 

Monthly Oil and Natural Gas Production Bulletin (ANP, 2018a). Monthly observations for 

the number of petroleum producing wells are derived from the Brazilian petroleum regulatory 

agency, ANP (2018f, 2018g). Information for the number of offshore development wells is 

provided by ANP (2018c). Petrobras27 operates all development wells drilled in the pre-salt 

layer, according to the information provided by ANP (2018c). 

This thesis compiles a time series for well completions in the pre-salt layer using observations 

from Santos and Campos Basin. To separate offshore development wells between the pre-

salt and post-salt layers, this work considers the geological group/formation and the pre-salt 

fields. According to ANP (2018g), wells in the geological group/formation Guaratiba and 

                                                 
27 The Brazilian state-controlled oil company ‒ initially a state-owned monopoly ‒ historically certifies about 

95% of its reserves by the U.S. Securities and Exchange Commission (SEC) criteria. Currently, the certifying 

company is DeGolyer and MacNaughton (D&M) (Petrobras, 2018a). Petrobras is controlled by the Federal 

Government, which is the majority shareholder, and shall be governed by the terms and conditions of the 

Corporation Law. Its Board of Directors has autonomy to define the pricing policy, and the Federal Government 

has decision-making power in the Company's Fiscal Council Board. 
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Lagoa Feia, respectively, in Santos Basin and Campos Basin are from the pre-salt layer. This 

thesis also considers the pre-salt fields that possess development wells: Lula, Sapinhoá, 

Búzios, Lapa, Sururu, Mero, Sépia, Sul de Lula, Itapu, Atapu, Sul de Berbigão, and Berbigão 

(Petrobras, 2014; Braga and David, 2018; ANP,  2018c). 

Prices for crude oil (dollars per barrel) are measured by spot and future prices (contracts with 

maturity dates of one-month, six-month, one year and two years) for both WTI and Brent 

crudes. Monthly averages for the spot price of crude oil are measured by the WTI Free on 

Board (FOB) Price at Cushing Oklahoma, and the spot price of Brent is measured by the 

Europe FOB Price. Prices for WTI and Brent futures contracts measure monthly averages for 

the end-of-day price. Prices for WTI come from future contracts that are traded in the New 

York Mercantile Exchange, whereas prices for Brent come from futures contracts that are 

traded in the ICE Futures Europe Commodities. All prices inputted into the model are 

deflated (base year 1982) by monthly values of the U.S. city average for all items 

(CUUR0000SA0) that is obtained from the Bureau of Labor.  

This thesis seeks to identify the BEP by estimating models that specify BEP’s that vary 

between $5 and $50 (real 1982 dollars) per barrel at $5 increments28. These values are used 

to calculate proxies for profitability, net revenue, and perceived volatility although these 

calculations treat BEP as a constant, BEP changes over time as a function of technology and 

reservoir quality. Some of these changes are proxied by the productivity of oil-producing 

wells. As such, the BEP represents a break-even price at the average sample value for 

                                                 
28 It represents a BEP varying between about $12.5 and $125 per barrel (in 2018 prices) at $12.5 increments. 
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productivity (and other independent variables). This thesis’ top-down estimate for the BEP 

represents a price that generates proxies for profitability, net revenue, and perceived volatility 

that best describe the number of development wells drilled in pre-salt formations per month. 

In other words, it represents how the industry responds to oil prices (and price volatility, 

technology and reservoir quality, and country risk).  

To proxy for the cost of borrowing foreign capital, this thesis uses the measure for the country 

risk that is compiled by the Organization for Economic Cooperation & Development (OECD) 

for Brazil (Figure 11). This index measures the country credit risk and the likelihood that a 

country will service its external debt. In other words, the OECD country risk weighs the 

chance that a government would “prevent an entity from converting local currency into 

foreign currency and/or transferring funds to creditors located outside the country” (OECD, 

2019). Based on this definition, this thesis expects that this measure of country risk has a 

negative relation with well completions in the pre-salt zones in Brazil because an increase in 

risk increases the cost of borrowing foreign capital. 

3.6. CVAR Model 

3.6.1. Overview 

This thesis estimates a series of models to quantify how prices, price volatility, productivity, 

and country risk affect the number of development wells that are completed in the pre-salt 

zones of Brazil.  

This methodology is obtained from Hallack et al. (2019), which extends the work of Ansari 

and Kaufmann (2019) by including the country risk analysis into the models. Nonetheless, 
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we analyze the number of development wells in the pre-salt layer as the endogenous variable 

in the CVAR model, whereas Ansari and Kaufmann (2019) analyze the number of rigs active 

to drill oil and gas wells in tight formations. 

To explore the effect of price volatility on the number of development wells completed in 

the pre-salt zones of Brazil, This thesis uses Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models (Bollerslev, 1986; Schaeffer et al., 2012) of crude oil 

prices to estimate conditional volatilities from monthly observations of real rates of return. 

The use of GARCH-class models to characterize crude oil price volatility is widely observed 

in the literature (Sadorsky, 2006; Narayan and Narayan, 2007; Agnolucci, 2009; Kang et al., 

2009; Mohammadi and Su, 2010; Wei et al., 2010; Hou and Suardi, 2012; Klein and Walther, 

2016; Bos et al., 2018). Because GARCH models have a good record in providing accurate 

estimates for the volatility of returns from financial time series data (Agnolucci, 2009), this 

thesis proxy the volatility of oil prices by using the plain GARCH model. Tests of the 

residuals from the GARCH (1,1) model suggest that it can be used to proxy the volatility of 

oil prices (Appendix D.1).  

Prices are measured using spot and future contracts with different maturities for two 

benchmark crude oils: WTI and Brent. To quantify the effect of price, this thesis calculates 

profitability per barrel and net revenue. Both variables require a BEP, which is unknown. To 

identify a BEP, this thesis uses a range of values. For each BEP and measure of price, this 

work calculates proxies for profitability, net revenue, and perceived volatility. This thesis 

uses these variables along with productivity and country risk to estimate a series of CVAR 

models (Johansen, 1996; Gebre-Mariam, 2011; Naser, 2015) for the number of development 
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wells completed in the pre-salt zone of Brazil. The nature of these variables (endogenous or 

weakly exogenous) and their long- and short-run relations are determined using statistical 

criteria. For each CVAR, this work calculates an in-sample simulation for the monthly 

change in development wells. The accuracy of these simulations is used to identify the 

measure of price and BEP which best explains the number of development wells completed 

in the pre-salt zones of Brazil.  

3.6.2. Modelization 

To explore the effect of price volatility on the number of wells drilled, this thesis follows 

standard econometric practice (e.g., Enders (1995)) and use a standard general autoregressive 

conditional heteroskedasticity GARCH (1,1) model. The general specification of a GARCH 

(p,q) model is given by Equation 44.  

𝑌𝑡 = 𝜀𝑡 = 𝜎𝑡𝑧𝑡   (44) 

in which 𝑌𝑡 represents the return (
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
) to real prices for crude oil associated with the price 

on the spot or future market, the disturbance term 𝜀𝑡 is normally distributed with zero mean, 

and the variance of 𝜀𝑡 follows a GARCH (p,q) process, 𝑧𝑡 is i.i.d. – independent and 

identically distributed – with zero mean and mean unit variance.  

Equation 45 specifies the conditional variance of a GARCH (p,q) process, 𝜎𝑡
2: 

𝜎𝑡
2 = 𝜇 + ∑𝛼𝑖𝜎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑𝜔𝑗𝜀𝑡−𝑗
2

𝑞

𝑗=1

 (45) 
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In which the constants 𝜇 > 0, 𝛼𝑖 ≥ 0, 𝜔𝑗 ≥ 0.  √𝜎𝑡
2 represents the conditional volatilities of 

the underlying price series (Vol), which vary by the time till maturity. For all measures of oil 

prices, volatility increases in 2008/2009 and again after the price drops from about $100 per 

barrel at the end of 2014 (Figure 12).  
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Figure 12: Oil price volatility for WTI and Brent.  

The volatility estimated by the GARCH model (Equation 45) from the spot price of Brent crude oil (dark blue line),  

the price on the future contract with a maturity of 1 month (light blue line), 6 months, (green line),  

12 months (orange line), and 24 months (orange line) and the real Brent spot price of crude oil (black line). 
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Volatility declines as the maturity of the futures contract increases. The volatility of Brent 

and WTI generally are similar, although the peak values for Brent are slightly greater. After 

a price drop at the end of 2014, the increase in volatility for Brent shows greater persistence. 

This thesis postulates that the effect of price volatility on well completions is modified by 

how firms perceive volatility. Perceptions of volatility may increase when prices are near the 

BEP, as opposed to periods when the price for crude oil is much higher than or less than the 

BEP. For example, a price increase from $55 per barrel to $60 per barrel at a BEP of $50 per 

barrel means the profit increases from $5 per barrel to $10 per barrel, which represents a 

100% increase. That same $5 increase represents a 10% and 12.5% increase in profit for a 

BEP of $5 and $95 per barrel respectively.  

To create a proxy for how this perception alters the effect of volatility, this thesis weights the 

volatility quantified by the GARCH model with a perception index that is based on the 

difference between the current price and the BEP. This perception index is calculated using 

a normal distribution in which the mean is the BEP, and the variance of this normal 

distribution is the variance of the price for oil over the previous 24 months (Figure 13). 
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Figure 13: Normalized perception index.  

The shape of this index changes across CVAR models based on the break-even price and changes over time-

based on the variance of prices over the previous 24 months. The value of the normalized perception index at 

a price at time t is multiplied by the GARCH estimate for volatility at time t to calculate perceived volatility 

(PerVol) at time t. 

The price at time t (𝑃𝑡) is used as the abscissa value to identify the ordinate value of the 

normalized perception index that is multiplied by the volatility estimated by the GARCH 

model. This product PV represents ‘perceived volatility.' Perceived volatility equals volatility 

from the GARCH model Vol when the price at time t equals the BEP. However, when the 

price at time t is far from the BEP (𝑃𝑡<<BEP or 𝑃𝑡>>BEP), the normalized perception index 

is well below one, which reduces PV relative to Vol.  

In addition to PV, this thesis uses BEP to calculate two other variables that represent the 

economic return associated with drilling an oil well. Equation 46 approximates the 

profitability (dollars per barrel), 𝑃𝑟𝑡:  
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𝑃𝑟𝑡 = (𝑃𝑡 − 𝐵𝐸𝑃) (46) 

In which profitability at time t (𝑃𝑟𝑡) is the difference between the real price of oil at time t 

(𝑃𝑡) and the real BEP. Equation 47 calculates the net revenue, 𝑅𝑣𝑡:  

 𝑅𝑣𝑡 = (𝑃𝑡 − 𝐵𝐸𝑃) ∗ 𝐴𝑊𝑃𝑡 = 𝑃𝑟𝑡 ∗ 𝐴𝑊𝑃𝑡 (47) 

The average productivity of wells drilled into pre-salt zones (𝐴𝑊𝑃), which is measured by 

barrels per day per well, is presented by Equation 48:  

𝐴𝑊𝑃𝑡 =
𝑃𝑟𝑜𝑑𝑡

𝑊𝑡
 

(48) 

In which Prod is the production from the pre-salt zone (barrels per day), and W is the number 

of petroleum producing wells in the pre-salt zone. This proxy represents the effect of 

technology and reservoir quality. 

To eliminate the effects of inverting matrices with elements that differ greatly in size due to 

different units of measure, each of the time series described above is standardized as follows 

(Equation 49):  

𝑛𝑡 = 
(𝑦𝑡 − 𝑦̅)

√𝑉𝑎𝑟(𝑦)
 

(49) 

In which 𝑦𝑡 is the value (in original units), 𝑦̅ is the average value over the sample period, and 

𝑉𝑎𝑟(𝑦) is the variance over the sample period.  

To explore the relation among pre-salt development wells (W), price volatility (Vol), 

perceived volatility (PV), proxies for economic returns (Pr, Rv), proxies for technology and 

reservoir quality (AWP), and country credit risk (Risk) for each of ten BEP and ten measures 
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of price (five measures for Brent and five measures for WTI), this work estimates 100 CVAR 

models (50 for Brent prices and 50 for WTI prices). The general form of a CVAR model is 

given by Equation 50:  

∆𝑥𝑡 = 𝐴0∆𝑤𝑡 + 𝐴1∆𝑤𝑡−1 + 𝛤11∆𝑥𝑡−1 + 𝛱(𝑥𝑡−1, 𝑤𝑡−1) + 𝜇0 + 𝛩𝑀 + 𝜀𝑡  (50) 

In which 𝑥𝑡 is a vector of p endogenous variables whose behavior is being modeled, 𝑤𝑡 is a 

vector of e exogenous variables, 𝜇0 is a vector of constant terms, M is a vector that includes 

eleven monthly dummy variables (Jan-Nov), 𝐴0, 𝐴1, 𝛤11, 𝛩, and 𝛱 are matrices of regression 

coefficients, ∆ is the first difference operator (∆𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1), and ε is Niid (0, Ω).  

When the time series 𝑥𝑡 are nonstationary, the long-run matrix 𝛱 can be formulated as 

presented in Equation 51:  

𝛱 = 𝛼𝛽′ (51) 

Where 𝛼 is a p x r matrix of adjustment coefficients and β is an r x (p + e) matrix of 

cointegration coefficients that define stationary deviations from long-run equilibrium 

relationships, and r is the number of long-run cointegrating relations. For more information 

about the CVAR model, see Juselius (2007). 

To minimize the degree to which biases affect the statistical estimates of the CVAR model, 

this work uses a standard set of ‘rules’ to identify each model. First, This thesis determines 

the number of cointegrating relations using the likelihood-based trace test (Johansen, 1996). 

Based on the number of cointegrating relationships, this thesis tests whether each variable is 

weakly exogenous. Weakly exogenous variables are assigned to 𝑤 (Equation 50); if the null 

hypothesis is rejected, then they are are weakly exogenous, and assigned to 𝑥.  
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For combinations of BEP and price measures that generate CVAR with one or more 

cointegrating relations and reject the null hypothesis that W is weakly exogenous (i.e., W is 

in the 𝑥 vector), this thesis imposes overidentifying restrictions. This thesis imposes the 

highest number of restrictions that as a group do not reject the null hypothesis that (1) the 

restrictions do not change the number of stationary relations (evaluated against a 𝜒2 

distribution) and (2) rejects the null hypothesis that the coefficient in 𝛽′ equals zero 

(evaluated against a t distribution).   

After the model is identified, this thesis recovers the sample residuals (𝜀𝑡 in Equation 50). 

The residuals are used to calculate an in-sample forecast for the monthly change in well 

completions, which is the endogenous variable in the CVAR model, as presented by Equation 

52:  

∆𝑊𝑡̂ = ∆𝑊𝑡 − 𝜀𝑡 (52) 

In which ∆𝑊𝑡 is the first difference of the (normalized) W time series and ∆𝑊𝑡̂ is the 

forecasted first difference of wells (normalized).  

The in-sample forecasts are used to identify the price measure and the BEP that generates the 

most accurate simulation. To determine the CVAR model that simulates ∆𝑊𝑡 most 

accurately, this thesis uses a general-to-specific automatic model selection procedure 

(Hendry and Doornik, 2014). This procedure retains/eliminates in-sample simulations based 

on statistics that measure the retention of irrelevant variables and the retention of relevant 

variables. Besides, the procedure tracks mean squared errors before and after model selection. 

Because the number of models is large (fifty models use Brent prices, and fifty models use 
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WTI prices) relative to the number of observations (99 between January 2010 to March 

2018), identifying the most accurate model occurs in three steps. In the first step, the 

automatic model selection procedure compares all fifty in-sample simulations to determine 

the most accurate model. That uses either Brent or WTI. In the second step, this most accurate 

model is compared to the other 49 models in a head-to-head comparison. If another model is 

more accurate than the previous one, this thesis repeats the head-to-head comparisons until 

This thesis identifies the most accurate model that measures price using WTI and Brent. In 

the third step, this thesis recognizes the single most accurate model by comparing the most 

accurate model that measures oil prices using WTI to the most accurate model that measure 

oil prices using Brent. 

Figure 14 includes all steps explained in this section up to now in order to obtain the data 

necessary to identify the CVAR models.  

 
Figure 14: Flowchart that summarizes the steps to obtains the data to identify the CVAR models 
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Figure 15 shows the main steps to identify the CVAR models and obtain the most accurate 

one.  
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Figure 15: Flowchart that summarizes the steps to identify the CVAR models and obtain the most accurate one 
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4. Results 

4.1. Hubbert 

4.1.1. Results from post-salt Hubbert models and back-testing 

Figure 16 shows the comparison of the three models with the observed production data. Figure 

A1 in Appendix A additionally shows the comparison of the three models with the accumulated 

observed production data. It can be observed that the three models have a good fit for the oil 

production data. In addition, it can be recognized the two-cycle models better estimate the 

production peak (in 2010), but that all the three models fail to capture it fully. The asymmetric 

two-cycle model additionally was better able to capture the deviation from a normal logistic 

curve in the 1980s due to a slower decrease in production from the shallow water offshore oil 

fields. The asymmetrical model has, in the long-term, a slower decline than the symmetrical 

model and the single cycle model.   

 
Figure 16: Post-salt offshore oil production compared with variants of the Hubbert curve. 

The URR estimates of the Hubbert curve, the peak year, and the residual standard error of the 

three models are shown in Table 8. The asymmetrical two cycle model estimates the highest 

URR of all models, the single cycle model comes in second, and the two-cycle symmetrical 
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model third. According to the three models, between 56% and 78% of the URR of Brazil´s 

post-salt has already been produced up to 2015. The estimated decline rate of Brazil’s post-salt 

hover between 6.7% and 13.7% per year in the period 2016-2025 (see Table 8). The lower 

decline rates (from the single and two cycle asymmetric models) are below the average decline 

rate of 13% based on a global database of 603 offshore oil fields (Sallh et al., 2015). 

Moreover, the necessary annual growth rate in pre-salt to maintain current offshore production 

levels hovers between 7.1% and 8.9%, depending on the model. This statement answers the 

first question established in the introduction of this thesis. This annual growth rate is well below 

the observed average increase in the production rate of pre-salt oil, which was 54% in the period 

2010 to 2015. Another option (alternative or complementary) would be to start a new cycle in 

the post-salt basins based on EOR, as happened in the US (Alvarado and Manrique, 2010; 

Manrique et al., 2010). The post-salt peak year is estimated to be around 2010/2011 by all 

models. The asymmetric two cycle model has a slightly lower RMSE than the one cycle model, 

while the two-cycle symmetric model has the lowest RMSE, and the CV of 3%-4% indicates 

a coherent fit of all three models. 
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Table 8: Summarized results from Hubbert cycles 

 
Single Cycle 

Model 

Two-Cycle Model 

Symmetric 

Two-Cycle 

Model 

Asymmetric 

URR (BBO) 18.4 15.2 21.0 

Np/URR 64% 78% 56% 

Remaining recoverable offshore 

post-salt oil reserves (BBO) 
6.6 3.4 9.1 

tm (year) 2011 2010 2010 

RMSE 25E6 20E6 24E6 

CV (%) 4% 3% 4% 

Average necessary annual growth 

rate of pre-salt to maintain 2015 

offshore production levels in the 

period 2016-2025 

7.4% 8.9% 7.1% 

Annual decline rate estimated for 

post-salt offshore oil production 

in the period 2016-2025 

6.7% 13.7% 7.2% 

The individual results for the two-cycle models are shown in Table 9. This table shows that the 

asymmetrical model estimates a considerable higher URR for shallow and deep water than the 

symmetrical one. In any case, the remaining recoverable offshore post-salt oil reserves in 

shallow water reservoirs are lower in absolute and relative terms than in deep water. The peak 

for shallow water in the asymmetrical model is earlier, by three years, while the RMSE is 

significantly lower. The estimate of the peak in deep water production (2010) is the same as 

the peak in total post-salt offshore production shown in Table 8. The RMSE in shallow water 

is lower than in deep water, which is consistent with the lower levels of oil production from 

shallow water. However, shallow water cycles have higher CV levels than deep-water cycles, 

which indicates the goodness of fit for deep water is better than for shallow water. Figure A2 

in Appendix A shows the three models fail to capture the production peak fully. 

Table 9: Detailed results for two-cycle models 

 Shallow Water Deep Water 

Model type Symmetrical Asymmetrical Symmetrical Asymmetrical 

URR (BBO) 3.78 4.30 11.47 16.68 

Np / URR 92% 81% 73% 50% 

Remaining recoverable 

offshore post-salt oil reserves 

(BBO) 

0.3 0.8 3.1 8.3 

tm (year) 1994 1991 2010 2010 

RMSE 21E6 14E6 25E6 22E6 

CV (%) 17% 10% 4% 4% 
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The application of the back-testing methodology allows deriving the relative error (Figure 17) 

and the URR (Figure 18) from the Hubbert estimates. The relative error declines almost 

invariably the longer the time-series. URR declines for the single cycle model from 2004 on 

but increases (significantly) before and proves to be unstable. Figures A3-A5 in Appendix A 

show in detail the forecasts and the overshoot of the single and two cycle models in some years. 

Figures A6-A7 in Appendix A show in detail the fit of the two cycles for the symmetrical and 

the asymmetrical model.  

The two-cycle models are much more stable and URR increases (except for the first two years), 

when the used time series is extended. This clearly shows the advantage of multi-cycle models 

over single-cycle ones and demonstrates the limitations of estimating a Hubbert curve with a 

short time series of historical production data. This applies, for example, to the Brazilian pre-

salt oil production, which has recently started production.  

 
Figure 17: Relative error defined by the production from time T to 2015. 

 

 
Figure 18: Estimated URR defined by the production from time T to 2015. 
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4.1.2. Results from Kaufmann’s approach 

As outlined in the methodological section, this study first applies the ADF test to the non-

differenced time-series to test for stationarity. None of the tested time-series is stationary. 

Hence, this study uses the first difference to estimate the model. For the first differences, the 

ADF test rejects the null hypothesis of nonstationary on a 10% significance level for all 

variables. After estimating the regression model in differences, this study tested for auto-

correlation and heteroscedasticity in the residuals of the models. As no auto-correlation in the 

residuals was rejected by the BG-test, this study included the differenced Rt with lag 1 in the 

model. In the resulting models, the BG-test does not reject the null hypothesis that there is no 

serial correlation and neither the BP-test rejects the null hypothesis of homoskedasticity. Table 

10 shows the respective results. This study, therefore, estimated coefficients with the standard 

OLS (ordinary least squares) estimation procedure. In total, this study estimated three models: 

one for each of the three Hubbert variants. As the F-statistic (p-value) of the overall significance 

test is less than 5% for the three models, the null hypothesis that the fit of the intercept-only 

model is equal to this model is rejected.  

In general, the estimates of the three models are similar: the first lag of Rt is highly significant, 

as is ∆𝑃𝑡, which controls for the change in production from year to year. The oil price is 

significant on lags 5, and partly on lag 4 – except for the asymmetrical model. Still, these results 

indicate that with a delay of 4-5 years, oil production starts to deviate from the Hubbert estimate 

in the direction of the oil price change. This statement answers the second question established 

in the introduction of this thesis.  



92 

 

All coefficients are positive, except for the one-year lag of the oil price, which is however not 

significant. The factor 𝑃𝐶′𝑡 controls for the asymmetry of the curve. The asymmetry is more 

evident in the first cycle; however, it is not significant for any of the models.  

Table 10: Results of regression. Observation: all variables in first differences 

 Single Cycle Model Two-Cycle Model 

Symmetric 

Two-Cycle Model 

Asymmetric 

 Coefficient Estimate+ Coefficient Estimate+ Coefficient Estimate+ 

Intercept 9.20E-04  2.92E-03  6.61E-03  

𝑅𝑡−1 5.53E-01 *** 6.23E-01 *** 4.65E-01 *** 

𝐵𝑃(𝑡) 5.46E-04  2.22E-04  3.38E-04  

𝐵𝑃(𝑡−1) -1.12E-04  -2.70E-04  -5.36E-04  

𝐵𝑃(𝑡−2) 4.14E-04  1.95E-04  1.52E-04  

𝐵𝑃(𝑡−3) 7.84E-04  3.58E-04  2.93E-04  

𝐵𝑃(𝑡−4) 1.70E-03 . 1.02E-03 . 8.98E-04  

𝐵𝑃(𝑡−5) 3.49E-03 * 2.18E-03 * 1.95E-03 * 

𝑃𝐶′𝑡  6.72E-03  -3.28E-03  6.45E-03  

∆𝑃𝑡 2.65E-03 *** 2.38E-03 *** 2.23E-03 *** 

      

BG-test# 0.28 0.40 0.10 

BP-test# 0.78 0.61 0.99 

Adjusted R2 0.53 0.63 0.16 

F-statistic 

(p-value) <0.0001 <0.0001 0.0337 
+ Auto-correlation and heteroscedasticity robust estimator by Newey and West (1987) 
#BP-test: p-value of Breusch-Pagan test, BG: p-value of Breusch-Godfrey test.  

***,*,. indicate significance on the 0.001, 0.05, and 0.1 levels   

 

4.1.3. Results from preliminary pre-salt Hubbert models  

Lula, Sapinhoá, Jubarte, Mero, Lapa, Búzios, Sépia and Itapu hold a STOIIP of 68.6 billion 

barrels of oil. After applying the different scenarios of RF and adding the URR from Mero 

field, four scenarios of URR for pre-salt are obtained: 14, 17, 24 and 44 billion barrels of oil 

(Figure 19).  



93 

 

 
Figure 19: Pre-salt oil production curves 

In the four scenarios analyzed, the peak of pre-salt production would occur up to the next 

decade, when it would start to decline. In the pessimistic and base scenarios (respectively, 15% 

RF and 20% RF), the peak of production would be about 4 mbd of oil in 2022-2023 and in the 

most optimistic scenario (60% RF) the peak of oil production would be around 11 mbd of oil 

in 2026. The year of peak hover between 2022 and 2026. It is worth mentioning that the 

production from pre-salt is approximately 1.4 mbd of oil in December 2018. The high degree 

of variability is expected since the uncertainty is expressed through four highly different 

scenarios of RF (from 15% to 60%) to estimate the 𝑈𝑅𝑅𝑝𝑟𝑒−𝑠𝑎𝑙𝑡. Even though a 60% RF is not 

considered reasonable for production in ultra-deep-water, it is possible to infer from this plain 

effort that there is potential for pre-salt production at least double over the next decade.  

4.1.4. Discussion 

Standard classification of oil resources regarding the probability of recovery considers barriers 

to the commercialization of projects.  This approach, therefore, generates ranges of uncertainty 

for oil production forecasts (SPE et al., 2018). However, this study did not evaluate the 

uncertainty at a project level once it has applied a top-down methodology, where these bottom-
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up level data are not used. Therefore, no classification of resources concerning the probabilities 

of recovery is made by this study.   

The top-down approach proposed by Hubbert is well established to obtain an aggregate 

production scenario, but it does not permit to analyze individual oil fields. In this case, a 

bottom-up approach deriving from the combination of all individual field behaviors would be 

necessary to forecast non-trivial oil production profiles. This would reflect more closely the 

reality of each field as well as the whole system. Also, a fragility of this study lies in not 

considering future cycles deriving from post-salt EOR/IOR projects. This study does not 

compare the cost-benefits of pre-salt or EOR/IOR development: both alternatives involve high 

cost, ultra-deep-water development, new technologies, and risks.  

The econometric analysis of the residuals of oil production from the Hubbert model was limited 

to a few variables: the oil price and structural variables. Nevertheless, significant coefficient 

estimates were obtained for the lagged oil price. This indicates that future deviations of oil 

production levels from the Hubbert curve may be forecasted with today’s oil prices. Further 

work in that direction seems to be promising. 

The stability analysis obtained from the back-test shows the URR of Brazil´s post-salt stabilizes 

around 21 billion barrels in the asymmetrical two-cycle model and 15 billion barrels for the 

symmetrical two cycle model, while the single cycle model is in-between. Table 11 presents 

the estimated Brazilian offshore post-salt URR obtained from previous studies based on similar 

Hubbert models. Oddly, the more recent study (Saraiva et al., 2014) ‒ presented in Table 11  ‒

estimates a much higher URR than this analysis and an earlier study by Ferreira (2005). 

Saraiva et al. (2014) consider probabilistic scenarios for the Brazilian crude oil URR according 

to the probabilities of adding reserves in deep waters (including EOR). The different URRs 
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estimated by Saraiva et al. (2014) result from three scenarios of remaining recoverable 

resources based on USGS (2000) data and the sum of cumulative production. Differently, this 

study estimates endogenously and deterministically the URR deriving only from historical oil 

production data.   

More recently, USGS (2012) re-developed the geological assessment of undiscovered 

conventional technically recoverable oil and gas resources in Brazil’s sedimentary basins, 

according to their associated probabilities. However, the geology-based assessment 

methodology did not separate resources into onshore and offshore neither post-salt and pre-

salt, which makes comparison difficult. The post-salt remaining resources off the coast were 

estimated from Sergipe-Alagoas Basin, Espírito Santo Basin, Campos Basin, and Santos Basin, 

although it includes pre-salt and coastal resources. The URR is the sum of post-salt cumulative 

production and the post-salt remaining recoverable resources. From the remaining oil 

assessment mean, the pre-salt reservoirs have an estimated 55.6 billion barrels of oil (USGS, 

2012), resulting in approximately 32.7 billion barrels of URR from post-salt (offshore and 

onshore). 

As EOR processes barely occurred in the post-salt layer, the URR  endogenously estimated by 

this work does not consider the EOR potential (differently from Saraiva et al. (2014), who 

estimate the URR including the EOR potential based on based on USGS (2000). For this 

reason, this analysis is mostly coherent with Ferreira (2005), who assumed the offshore peak 

production occurs in 2010.  

Table 11: Previous URR estimates of post-salt offshore production based on Hubbert methodology for Brazil 

Source Scenario URR (billion barrels) 

USGS (2012) Mean+ 32.7 

Saraiva et al. (2014) 

P95 27.7 

P50 46.3 

P5 105.0 

Ferreira (2005)  17.5 
+ Includes offshore and onshore post-salt resources 
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Some simulation models optimize oil production dynamics in Brazil (Castro and Filho, 1998; 

Oliveira, 2006; Junior, 2010; Santana, 2012; Paiva, 2012; Nascimento, 2013). However, these 

previous simulation models were more concerned about the dynamics of the oil production 

systems than estimating the expected oil to be recoverable for offshore post-salt production. 

Comparing this work’s results to those is therefore not possible.  

Other studies do not report the URR, but published decline rates instead. This study therefore 

also determined decline rates from the fitted curves and compared them to published ones. 

However, there is no published information on the total post-salt decline rate - instead, this 

work used the decline rate from the Campos Basin (Table 12). For that basin, Ferreira (2016) 

estimates that the rate of decline of fifteen oil fields (consisting of the twenty biggest producing 

oil fields in Campos Basin), weighted by the production in 2015, was 12.6%. Petrobras (2016) 

indicates in its Strategic Plan 2017-2021 that the oil production in the Campos Basin has a 

stable decline rate of around 9% (below the industry average of 12% for deep-water wells). 

Canheu and Sobreira (2014) show the decline rate for the Campos Basin varies with time, being 

dependent on well maturity. The average rate of decline for the offshore oil production hovers 

around 8% per year.  This analysis derived from the Hubbert estimates results in a decline rate 

of 6.7%-13.7%, depending on the chosen model (see Table 8). This is well in line with the 

three results presented below.  

Table 12: Previous rate of decline estimates for the Campos Basin 

Source The annual rate of decline (%) 

Ferreira (2016) 12.6 

Petrobras (2016) 9.0 

Canheu and Sobreira (2014)* 8.0 

*Calculated considering an oil production of 1800 kbd in 2010 and oil production of 400 kbd in 2020.  

This study estimates the peak of pre-salt production using the classic Hubbert methodology 

due to the increasing and representative amounts of reserves and oil production from the pre-
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salt layer. Even though, fitting Hubbert models at such an early stage of production can 

generate unstable results. 

This study estimates the peak of pre-salt production considering the data available for the 

STOIIP. Some fields were not included in this estimative due to the lack of public information 

of STOIIP. Even though the Hubbert curve takes into account the possibility of future 

discoveries, the possible lack of information for past discoveries may drive to inaccurate fits 

and thus to misleading forecasts. For this reason, results can be considered conservatives. 

Moreover, this preliminary analysis does not include any political, regulatory, economic and 

technological aspects which can affect the pre-salt cycle of production.  

4.1.5. Conclusion 

This study estimated Brazilian post-salt offshore oil production curves using single- and multi-

cycle Hubbert models. It concluded that technological advances in E&D in deep water 

contributed to deviating the real production from a single cycle-fitted Hubbert curve. This 

thesis’ URR estimates hover in between 15 and 21 billion barrels and show that pre-salt 

production must increase by around 7%-9% per year to offset the declines in post-salt 

production (without considering EOR/IOR in this case).  

The analysis clearly shows that the applied multi-cycle models are more stable than the single 

cycle model. The two-cycle model symmetric produces lower estimates of URR than the 

single-cycle model, indicating that the URR can be slightly slower than estimated in previous 

works.  However, this may be partially explained by the fact that this study does not consider 

the possibility of reserve additions through EOR/IOR. With a lag of 4-5 years, the deviation of 

oil production from the Hubbert curve follows oil prices changes. That means that a significant 

amount of time elapses before oil production in Brazil adjusts to changing price levels. 
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Considering the STOIIP from the pre-salt fields Lula, Sapinhoá, Jubarte, Mero, Lapa, Búzios, 

Sépia and Itapu, the analysis based on the classical model of Hubbert show the peak of 

production from this layer may occur between 2022 and 2026.  

4.2. Creaming curves 

This thesis hypothesizes the reason why a significant amount of time elapses before oil 

production in Brazil adjusts to changing oil prices in the Hubbert model is related to the long-

term effect of the oil prices for investments in new projects. This thesis hypothesizes that four-

to-five years elapse after a discovery happens to start-up its production. In order to better 

understand the exploratory cycles and assess potential oil exploration in Brazil, this thesis 

develops creaming curves.  

4.2.1. Results 

The number of wildcat wells concluded by basin are shown in Figure 20, where it is observed 

the exploratory effort of drilling wildcat wells is concentrated in a dozen basins.  

 

Figure 20: Number of wildcat wells drilled per basin in Brazil 
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From the Development Plan summaries, this thesis obtains that there are few basins with 

STOIIP discoveries. Among them, four basins concentrate 95% of the STOIIP discovered: 

Campos, Santos, Recôncavo, and Potiguar (Figure 21). This study focuses on the analysis of 

these basins.  

 

Figure 21: Volume of STOIIP per basin 

The estimated recovery factor, respectively, for Campos, Potiguar, Recôncavo and Santos 

basins results is i) 𝑅𝐹1𝑃
𝑏𝑎𝑠𝑖𝑛 of 21%, 18%, 26%, 13%; ii) 𝑅𝐹3𝑃

𝑏𝑎𝑠𝑖𝑛 of 24%, 20%, 27%, 26%.  

The accumulated size of discoveries over exploratory effort is fitted by a Gaussian, Gompertz 

and logistic functions. As the size of fields’ discoveries derives from a basin’s recovery factor, 

the curve-fitting obtained from 1P reserves and 3P reserves results in the same curve shape, 

only one being a shift from the other. This fact can be observed through the same coefficient 

of variation between 1P and 3P reserves within the same basin. Figure 22 presents the curve-

fitting derived from 3P reserves.  
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Figure 22: ‘True’ creaming curves per basin
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Tables C1-C6 (in Appendix C) present the statistics of the three functions fitting derived 

from 1P and 3P reserves. The accuracy of the fitting results in the CV𝑗
𝑏𝑎𝑠𝑖𝑛 factor of 4.1%-

4.7%, 4.4%-4.6%, 4.8%-6.0%, 4.6%-4.9%, respectively, for Campos, Santos, Recôncavo, 

and Potiguar basins (Table 1), which shows a reasonable match to the data. For the fit of the 

rate of production to a Hubbert curve, Maggio and Cacciola (2009) and Saraiva et al. (2014) 

obtain relative errors around 2.5%, Nashawi, Malallah, and Al-Bisharah (2010) obtain 

relative errors ranging from 0.59% to 6.57%, whereas Maggio and Cacciola (2012) achieve 

relative errors from 2.3% to 11.8%. Hallack et al. (2017) obtain relative errors ranging from 

3% to 4% for single-cycle, multi-cycle, and deep water; nevertheless, it ranges between 10% 

to 17% for shallow water.  

The potential for yet-to-find discoveries is obtained by the difference between the total 

cumulative volume of discoveries and the cumulative volume already discovered. This 

difference is negative for Recôncavo basin regarding the three functions fitted. This 

difference is also negative for Potiguar basin regarding the logistic and Gaussian functions, 

whereas the Gompertz function results in a slight potential of yet-to-find discoveries. Such 

negative difference also suggests a fragility of the method, once the curve extrapolated results 

in a misleading forecast of discoveries.  

For Campos and Santos basins, this thesis estimates a yet-to-find oil potential of, 

respectively, 233-1336 million barrels (MMbbl) and 314-1350 MMbbl considering 1P 

reserves (Table 13). If 3P reserves are considered, this thesis estimates a yet-to-find potential 

of 267-1534 MMbbl and 615-2644 MMbbl, respectively, for Campos and Santos basins 

(Table 13).   
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For Santos and Campos basins the uncertainty in the yet-to-find discoveries is more 

significant; for Rôncavo and Potiguar basins, a small uncertainty in the yet-to-find estimative 

is obtained (Table 13).  

Table 13:  Summary of results of model fitting  

j Basin 

Total URR (MMbbl) 
Uncertainty 

(MMbbl) 

Historical 

number of 

wildcats 

𝑪𝑽𝒃𝒂𝒔𝒊𝒏 Current 

URR 

Yet-to-find 

discoveries 

Logistic function 

1P 

Campos 17,563 429 ±295 691 4.1% 

Santos 8,100 435 ±292 282 4.6% 

Recôncavo 1,784 -96 ±16 740 5.9% 

Potiguar 1,124 -25 ±13 823 4.9% 

3P 

Campos 20,157 493 ±339 691 4.1% 

Santos 15,859 852 ±573 282 4.6% 

Recôncavo 1,860 -100 ±17 740 5.9% 

Potiguar 1,210 -27 ±13 823 4.9% 

Gaussian function 

1P 

Campos 17,563 233 ±295 691 4.3% 

Santos 8,100 314 ±286 282 4.5% 

Recôncavo 1,784 -103 ±16 740 6.0% 

Potiguar 1,124 -32 ±12 823 4.8% 

3P 

Campos 20,157 267 ±338 691 4.3% 

Santos 15,859 615 ±561 282 4.5% 

Reconcavo 1,860 -108 ±16 740 6.0% 

Potiguar 1,210 -35 ±13 823 4.8% 

Gompertz function 

1P 

Campos 17,563 1,336 ±502 691 4.7% 

Santos 8,100 1,350 ±588 282 4.4% 

Reconcavo 1,784 -70 ±15 740 4.8% 

Potiguar 1,124 5 ±15 823 4.6% 

3P 

Campos 20,157 1,534 ±576 691 4.7% 

Santos 15,859 2,644 ±1,151 282 4.4% 

Reconcavo 1,860 -73 ±16 740 4.8% 

Potiguar 1,210 5 ±16 823 4.6% 
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For Campos basin, this work predicts a yet-to-find potential of 233 ± 295 MMbbl to 1336 ± 

501 MMbbl, respectively, for Gaussian function and Gompertz function considering 1P 

reserves, whereas a yet-to-find potential of 267 ± 338 MMbbl to 1534 ± 576 MMbbl is 

predicted considering 3P reserves.  

For Santos basin, this work predicts a yet-to-find potential of 314 ± 286 MMbbl to 1350 ± 

588 MMbbl, respectively for Gaussian function and Gompertz function considering 1P 

reserves, whereas This thesis predicts a yet-to-find potential of 615 ± 561 MMbbl to 2644 ± 

1151 MMbbl considering 3P reserves.  

4.2.2. Discussion 

The estimated 𝑅𝐹1𝑃
𝑏𝑎𝑠𝑖𝑛 and 𝑅𝐹3𝑃

𝑏𝑎𝑠𝑖𝑛 for each basin results, respectively, in an average 

recovery factor of 20% and 24%. Such result is coherent with ANP (2017), which estimates 

a recovery factor of 19% (for 1P reserves) and 25% (for 3P reserves) in reservoirs with any 

historical production in Brazil. The average recovery factor suggests potentials to increase 

reserves from known fields at Recôncavo, Santos, Campos, and Potiguar basins if it is 

considered that the average recovery factor in the North Sea (specifically in Norway and the 

United Kingdom) is 46% due to the intense use of EOR/IOR projects (ANP, 2017). A critical 

simplification was made by assuming that the recovery factor is the same for all fields in the 

same sedimentary basin.  

The highest number of wildcat wells drilled among the analyzed basins are in Recôncavo and 

Potiguar basins (which reserves are mostly from onshore), where findings do not indicate a 

potential for yet-to-find discoveries (except a slight potential identified for the Potiguar basin 
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by the Gompertz function). Their creaming curves have been flattening out over the last 

drilled wells, which is coherent with the onshore oil production decline in Brazil. Such curve 

behavior suggests incremental additions are small and exploration success rates decline, 

leading to declining prospectivity and higher risks associated with exploration (Kaiser and 

Narra, 2018). 

In Santos and Campos basins the findings suggest an increase in exploratory investments 

could promote the incorporation of yet-to-find discoveries. Despite the last considerable 

volumes of discoveries in the Santos basin, findings show it can still be promising to invest 

in exploration therein because the discovery curve is rising steeply. Such curve behavior 

suggests exploration is efficient and prospectivity is high because vast reserves are being 

found quickly (Kaiser and Narra, 2018). This result is consistent with the fact Brazil’s 

exploration intensity indicators suggest its sedimentary basins are still frontier exploration 

areas (Szklo et al., 2007). 

The URR estimated for Campos’ basin is 17.5-22.3 billion barrels of oil, respectively for 1P 

reserves fitted to the Gaussian function and 3P reserves fitted to the Gompertz function. 

These URR estimates (17.5-22.3 billion barrels) are calculated as the sum of current URR 

plus estimated yet-to-find discoveries including uncertainties. 

Considering that most pre-salt resources are located in Santos basin and the majority of post-

salt offshore resources are located in Campos basin, this thesis can infer that this estimation 

is coherent with the 15-21 billion barrels of oil estimated for the post-salt offshore layer by 

Hallack et al. (2017). 
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The yet-to-find potential estimated by this study for Campos and Santos Basin is much lower 

than the mean of the geological assessment of undiscovered technically recoverable oil 

estimated by USGS (2012): 14,736 MMbbl of oil and 59,689 MMbbl of oil, respectively, for 

Campos and Santos basins. This thesis infers that this difference can be due to three reasons. 

The first one is the lack of data regarding the size of some discoveries that are consequently 

affecting the fit of the logistical curve. The second one is the use of a historical recovery 

factor, which does not consider possible future increments in the recoverability by the 

application of EOR/IOR techniques. The third one is the application of the creaming curve 

methodology, which results in more conservative estimates than predicted by the USGS’ 

geology-based methodology. 

For Santos basin (where huge discoveries are situated, and which holds around 95% of the 

petroleum pre-salt production), the yet-to-find potential estimated may be more prominent 

as important discoveries were not included in the creaming curve ‒ e.g., Júpiter and Carcará 

prospects did not declare commerciality yet, and Mero field (the former Libra prospect) does 

not have its Development Plan disclosed. For Campos Basin, important pre-salt discoveries 

were not included in the creaming curve as well, because they did not declare commerciality 

yet ‒ e.g., Gávea, Pão de Açúcar, and Seat (within the block BM-C-33) (Wood Mackenzie, 

2018).  

The resulting yet-to-find discoveries and URR estimates are almost comparable for two 

functions (logistic and Gaussian), but very different (higher) in the case of Gompertz 

function. The Gompertz approach provides more optimistic results (for the four Brazilian 

basins investigated) because this functional form is asymmetric; the right-hand period 
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(between the inflection and the final asymptote) is approached much more gradually by the 

curve than the left-hand period (between the first asymptote and the inflection). According 

to Sorrell and Speirs (2009), the point of inflection is around 35-40% of the asymptotic for 

the Gompertz curve. This behavior is in contrast to the logistic and Gaussian functions, in 

which the asymptotes are approached by the curve symmetrically.  

The differences in the estimates by using different functions are not negligible. Despite the 

application of the findings of this paper to prediction efforts are less certain, the results of 

this work give an overall picture of the exploration history and potential in Brazil. Moreover, 

it highlights the uncertainty in URR estimates, which is typical in the oil and gas industry, 

especially for oil frontier areas. Indeed, estimating this uncertainty provides additional 

information for policymakers.  

Overall, the strength of this work lies in its relevance. Brazil is the main frontier of deep-

water oil resources (EIA, 2016) and there is a need for scientific studies embedding Brazil's 

pre-salt oil resources. The creaming curves technique is well studied and depicted in the 

literature, however, this is one of the few studies with a transparent methodology available 

for Brazil. 

This study has several limitations. The four basins focused on this study (Campos, Santos, 

Recôncavo, and Potiguar) represent 97% of 3P reserves in Brazil (ANP, 2018i). However, it 

uses a sample of 357 fields in which the information of STOIIP and date of discovery is 

publicly available. Some discoveries were not included due to the lack of information within 

the Development Plan summaries, because it is not disclosed or the field’s commerciality 

declaration was not made yet. 
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Hubbert assumes the cumulative discovery cycle has the same format as the cumulative 

production cycle, both following a logistic function (Hallack et al., 2017). Firstly, Kaufmann 

(1991) assumes economic and political events may cause annual rates of production to 

deviate from Hubbert’s curve systematically. Secondly, Korsvold (2015) suggests the 

creaming curves of a petroleum province take a logistic form when they are not affected by 

technical, economic, geological, and political variables. Thirdly, the curve fitting technique 

does not allow for anticipating future cycles of discoveries, and it can be susceptible to the 

selection of functional form (Sorrell and Speirs, 2009; Sorrell et al., 2009). Fourthly, this 

thesis neglects the effect of reserve growth, which leads to changes in the shape of the 

creaming curve (Sorrell et al., 2009; McGlade, 2013). 

Though this thesis recognizes many aspects can have an influence on the creaming curve’s 

shape, this study aimed at examining the general behavior of discoveries through the 

exploratory effort in Brazil.  

4.2.3. Conclusion 

This thesis shows that a few basins concentrate the exploratory effort and there is an unknown 

potential to be explored in Brazil. The developed methodology permits to model the yet-to-

find discoveries by basin. Due to the lack of information for reserves’ size by field, this 

methodology proposes and applies a creaming curve variant that can be suited by many other 

countries within this issue. Such variant applies an average recovery factor at a basin-level 

to estimate the discoveries’ size by field.  

This study highlights that different functional forms fit the data well and similarly, but they 

lead to different estimates of remaining resources. This work observes that Santos basin 



108 

 

estimates are the most uncertain regarding the choice of the function (considering 3P 

reserves). This greater uncertainty is coherent with the fact that Santos basin is the most 

recent frontier exploration area in Brazil. Besides this, it is observed that the uncertainty in 

reserves estimates has an essential role in the uncertainty of yet-to-find discoveries. For 

Campos basin, where there are not many differences between 1P and 3P reserves, the choice 

of the function plays a significant role in the estimate of remaining resources.  

Even though the Santos basin has a broader range of yet-to-find discoveries, most remaining 

resources are identified there for all scenarios of reserves and functions used as input to fit 

the creaming curve. The proposed estimate enables one to design a policy that meets the 

challenges to accelerate the development of this basin.  

The steep rise in the discovery curve for Santos basin is coherent with the new exploratory 

cycle of pre-salt discoveries. This identification enforces the need to set up an appropriate 

regulatory framework for such an essential cycle of discoveries.  

The results can benefit financial institutions interested to invest in exploratory activities in 

Brazil as well as experts concerned about applying the creaming curve variant for other 

countries where field-level data is not accessible. In the light of increasing social problems 

and a recent period of economic recession in Brazil, the estimates of remaining resources 

provide further information for policymakers and help them to envision the revenues that can 

derive from fostering this activity in the country.  

Finally, policymakers can adjust the fiscal regimes that encompass the petroleum exploratory 

activities in order to represent better the discovery potential of different areas and what 

should be done in there. As mentioned before, in Brazil three fiscal regimes co-exist. 
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However, for oil frontier areas the most relevant are the concession (tax/royalty) and the 

production sharing regimes. The concession regime is also relevant for mature basins 

requiring EOR/IOR. By better knowing remaining oil resources and understanding the 

creaming phenomena, policymakers can attract more investments and even refine the terms 

of contracts to different types of oil operators. For instance, this study has shown that without 

EOR/IOR mature areas in Brazil have no addition in remaining resources. Nevertheless, these 

areas can still be attractive to specialized minor operators, whose investment capacity and 

focus are not associated with very productive areas that require a lot of fixed investment, 

such as the Brazilian pre-salt.  

4.3. CVAR Models  

This thesis proposes an econometric model for a better understanding of how some variables 

affect the number of pre-salt development wells. The primary reason for choosing an 

econometric model lies on the fact that curve fitting is not suitable for pre-salt layer since 

pre-salt oil has only recently been started to produce and curve fitting models at such an early 

stage generate unstable results (Sorrell and Speirs, 2009). The secondary reason lies in the 

fact that there are advantages of the CVAR model over the classical linear regression models. 

Moreover, findings from the creaming curve show potential for further discoveries in the two 

basins where there are pre-salt fields.  

4.3.1. Results - CVAR Models for development wells 

Of the one hundred CVAR models for development wells, all models reject the null 

hypothesis of zero cointegrating relations and the null hypothesis that pre-salt development 
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wells (W) are weakly exogenous. These results indicate that the 100 CVAR models contain 

a statistically meaningful long-run relationship for the endogenous variable, W.  

4.3.2. Results - Most accurate models 

Comparisons of the in-sample forecasts identify a single ‘most accurate’ model for ∆𝑊𝑒𝑙𝑙. 

For CVAR models that use WTI to measure prices, the ‘most accurate’ has an r2 of 0.79 and 

uses prices from a future contract with six-month maturity and a BEP of $62 per barrel in 

2018 prices ($25 in 1982 dollars) (Table 14). For models that use Brent to measure oil prices, 

the most accurate has an r2 of 0.74 and uses prices from a future contract with one-year 

maturity and a nominal BEP of $25 per barrel in 2018 prices ($10 in 1982 dollars) (Table 

15). Of these two models, the more accurate uses WTI to measure oil prices. The most 

accurate model that measure oil prices using Brent is illustrated in the Appendix D.2. 
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Table 14: Regression results for the CVAR model chosen as the most accurate 

Price WTI 

BEP $25 

Price measure Six months 

Over-identifying restrictions χ2(3) = 1.856 

α -0.857 

 CR #1 

Π  

Well 1** 

AWP -0.705** 

Profit -- 

Revenue -- 

PerVol -0.32** 

Vol -- 

Risk 0.443** 

𝜇0(Constant) -0.497* 

Alpha  

CR #1 -0.857** 

Γ11  

∆Wellt-1 -0.238** 

A0  

∆Well -- 

∆AWP -0.472 

∆Profit -0.261 

∆Revenue 0.930* 

∆PerVol 0.507* 

∆Vol -0.443** 

∆Risk 0.675* 

A1  

∆Wellt-1 -- 

∆AWPt-1 -0.546+ 

∆Profitt-1 -0.643 

∆Revenuet-1 -0.549 

∆PerVolt-1 -0.745** 

∆Volt-1 -0.206 

∆Riskt-1 0.598* 

Diagnostics statistics  

ARCH χ2(2) = 4.289 [0.117] 

Normality χ2(2) = 3.191 [0.203] 

R2 0.788 

Test statistics reject the null hypothesis at the **1%, *5%, +10% level. 
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Table 15: Regression results for the CVAR Brent model chosen as the most accurate 

Price Brent 

BEP $10 

Price measure 12 months 

Over-identifying 

restrictions 
χ2(8) = 7.954 

 CR #1 CR #2 

Π   

Well 1** -- 

AWP -0.7** -- 

Profit -- -- 

Revenue -- -1.247* 

PerVol -- 1** 

Vol -- -3.596** 

Risk 0.198* -- 

Alpha ∆Well ∆PerVol ∆Vol 

CR #1 -0.799** 0.241** 0.093 

CR #2 -0.064** 0.036* 0.101** 

Γ11    

∆Wellt-1 -0.293** -0.011 0.109 

∆AWP t-1 -- -- -- 

∆Profit t-1 -- -- -- 

∆Revenue t-1 -- -- -- 

∆PerVol t-1 0.216 -0.056 -0.199 

∆Vol t-1 -0.59** 0.038 0.241* 

∆Risk t-1 -- -- -- 

A0    

∆Well -- -- -- 

∆AWP -0.779 0.234 0.086 

∆Profit 0.218 -0.691 -0.917 

∆Revenue 0.567 -0.198 -0.201 

∆PerVol -- -- -- 

∆Vol -- -- -- 

∆Risk 0.868* -0.007 -0.006 

A1    

∆Wellt-1 -- -- -- 

∆AWPt-1 0.310 0.670 1.586** 

∆Profitt-1 0.104 0.102 -0.157 

∆Revenuet-1 -0.927+ -0.518 -1.251** 

∆PerVolt-1 -- -- -- 

∆Volt-1 -- -- -- 

∆Riskt-1 1.115** -0.351 -0.325 

Diagnostics 

statistics 

   

ARCH χ2(2) = 1.243 [0.537] χ2(2) = 26.741 [0.000] χ2(2) = 4.487 [0.106] 

Normality χ2(2) = 6.451 [0.04] χ2(2) = 103.318 [0.000] χ2(2) = 5.597 [0.061] 

R2 0.739 0.409 0.581 

Test statistics reject the null hypothesis at the **1%, *5%, +10% level 
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4.3.2.1.The most accurate WTI model 

In this most precise model, the cointegrating relation for W has a negative long-run 

relationship with country risk and a positive long-run relation with the perceived volatility 

and productivity; overidentifying restrictions eliminate the other variables.  

The negative relation between well completions and country risk is consistent with 

expectations. However, this effect is offset by a positive short-run relationship given by the 

element of Ao that is associated with Risk. This short-run effect slows the rate of adjustment 

but does not alter the equilibrium level of well completions that are associated with country 

risk. In other words, the negative long-run relation between well completions and risk 

prevails. 

The positive relation between well completions and perceived volatility is the opposite of 

that expected. This positive relation is offset by a substantial and precisely measured negative 

relationship between the lagged first difference of PV in the A1 matrix (Table 14). This short-

run effect slows the rate of adjustment but does not alter the equilibrium level of well 

completions. In other words, the positive long-run relation between well completions and 

perceived volatility prevails.    

Deviations from equilibrium are eliminated relatively quickly; the point estimate for error 

correction term (𝛼) is -0.857. This point estimate is not statistically different from -1.0 (t = -

1.4944, p > 0.14) which implies an instantaneous rate of adjustment. This rapid adjustment 

seems inconsistent with the long-term planning horizon for drilling in deep-water in general 

and the pre-salt zone in particular. The notion of ‘drilling queue may explain this seeming 

contradiction' and the small number of pre-salt development wells completed per month 
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(average 2.22 and a standard deviation of 1.74). At any point in time, several projects are in 

the queue, and the number of projects in the queue that are initiated is based on current 

conditions.   

4.3.2.2. The most accurate Brent model 

The most accurate model that measures oil prices using Brent uses the price from a future 

contract with a one-month maturity and has a nominal BEP of $25 per barrel (Table 15). The 

long- and short-run relations are similar to the most accurate model that uses WTI to measure 

price. The cointegrating relationship for W has a negative long-run relationship with risk and 

a positive long-run relation with productivity; overidentifying restrictions (𝜒  2(8) = 7.954, 

p > 0.438) eliminate the other variables. The negative long-run relation with risk is offset by 

a positive relationship with the lagged first difference in risk. Similarly, disequilibrium in the 

long-run relation among W, Risk, and AWP is eliminated quickly: the point estimate for error 

correction term (𝛼) is -0.799, which is not statistically different from -1.0 (t = -1.745, p > 

0.085).  

A second cointegrating relation includes perceived volatility, volatility, and revenue and 

represents the long-run relationship for perceived volatility, as indicated by the element of 

the 𝛼 matrix associated with perceived volatility. Disequilibrium in this second cointegrating 

relation also loads into the equation W as shown by the component of the matrix 𝛼 associated 

with W -0.064. This component indicates that W has a negative short-run relation with PV 

and a positive short-run relationship with Rv and Vol. The negative association with PV and 

the positive relation with Rv is consistent with expectations. The positive short-run relation 
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with Vol in the second cointegrating relation is offset by the negative relationship with the 

lagged first difference in volatility in the matrix 𝛤11 (Table 15).   

4.3.3. Discussion 

4.3.3.1.Measuring oil prices 

At first glance, it is surprising that the most accurate CVAR model uses WTI to measure oil 

prices. Brazilian exports of crude oil to the US decline during the sample period while exports 

to the Asia-Pacific region (mainly to China) increase. The Asia-Pacific region is the largest 

(54%) export market for Brazilian crude, and China purchases 42% of exports (442 thousand 

barrels per day) in 2017 (ANP, 2018j). Due to the increasing prevalence of Brent in the 

consumption patterns of Asian refiners (Platts, 2011), Ohara (2014) uses the price of Brent 

to calculate the break-even price for exports of crude oil from the pre-salt zone to China. 

Europe imports another 10% of Brazilian crude oil exports in 2017. Petrobras uses the price 

of Brent in presentations to investors and within the Business and Management Plan. 

Together, this suggests that Petrobras uses the price of Brent to plan development in the pre-

salt zone.  

Instead, the accuracy of the CVAR model that uses WTI may be associated with Brazil’s role 

in the international oil market: more than one-third (38%) of Brazilian crude oil production 

is exported in 2017 (ANP, 2018j). In 2017, the US is the second-largest importer of Brazilian 

crude oil (17%). Furthermore, the US is the largest (51%) source of Brazil’s petroleum 

product imports, about 314 thousand barrels per day in 2017 (ANP, 2018j). Finally, the 

Brazilian oilfield service sector purchases many services in US dollars. These trade patterns 
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suggest that the dollar value of crude oil is critical and is the reason that this work does not 

convert US dollars to local currency units in this econometric analysis.  

Finally, the CVAR model for WTI may be more accurate because the number of endogenous 

variables is equal to the number of cointegrating relations (i.e., the model is full rank). Under 

these conditions, the stochastic trends in the weakly exogenous variables fully account for 

the stochastic trends in the endogenous variable; the number of wells drilled into the pre-salt 

zone.  Conversely, the most accurate CVAR model for Brent is not full rank; the number of 

cointegrating relations is less than the number of endogenous variables. As such, the 

stochastic trends in the weakly exogenous variables do not account for all of the stochastic 

trends in the endogenous variables. The unmodeled trends may be associated with 

shortcomings in the OECD measure for country credit risk, which does not capture all factors 

that may dampen investments in the upstream oil and gas sector. Unfortunately, it is difficult 

to quantify some qualitative factors that may affect investments in the upstream oil and gas 

sector, such as concerns over regulatory enforcement and uncertainty over environmental 

regulations. 

4.3.3.2.Break-even prices 

The ‘most accurate’ CVAR model has a nominal BEP of $62 per barrel ($25 in 1982 dollars). 

This BEP represents a top-down empirical estimate for the price that firms use to schedule 

drilling in the pre-salt zone. This $62 BEP is greater than recent bottom-up estimates (see 

Table 16). This thesis’ higher estimate may be caused by ongoing changes in productivity, 

price volatility, and country risk. As mentioned previously, the BEP that generates the most 

accurate model represents an average for the sample period. Over the latter portions of the 
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sample productivity increases, which reduces the BEP relative to the sample average. 

Furthermore, ‘bottom-up’ engineering estimates ignore the negative effects of country risk 

and volatility, which may cause them to understate the BEP. Conversely, the BEP in the 

‘most accurate’ CVAR model that uses Brent to measure price has a BEP of $25 per barrel 

in 2018 prices.  

Table 16: Estimated BEP for pre-salt 

Estimate ($/barrel) According to Reference 

29-49 Strata Advisors (2016) Strata Advisors (2016) 

30 (for Portfolio 

2017) 
Petrobras (2017b) Petrobras (2017b) 

~ 30-40 IHS Markit and Petrobras Parente (2018) 

35 Ricardo Bedregal Sreeharsha (2017) 

40 (below) Shell and Equinor (formerly Statoil) 
Solbraekke and Nysveen (2016); 

Paraskova (2017); Shell (2016) 

40-55 
Brazilian Ministry of Mines and 

Energy, Petrobras and Pré-Sal Petróleo 

Noon (2016); Leahy and Adams (2016); 

Stevenson (2018) 

45 in Libra field Wood Mackenzie Paganie (2018) 

47 (mostly around) Deloitte (2018) Deloitte (2018) 

47-59 in Libra field OpenOil (2014) OpenOil (2014) 

45* Pedra and Szklo (2018) Pedra and Szklo (2018) 

65-84 McKinsey (2014) McKinsey (2014) 

*Based on a thorough cash flow analysis, using an Internal Rate of Return (IRR) of 11.3% p.y., and applied to 

the largest oil fields in pre-salt. It also accounts for the price discounts of the typical pre-salt oil to Brent. 

Accordingly, smaller and less productive fields in pre-salt would deal with higher BEPs, around 60 US$/bbl 

(Brent Basis). 

 

4.3.3.3.Determinants of Pre-salt Well Completions  

In this section, this thesis evaluates how changes in prices, volatility, technology, and country 

risk affect the number of wells completed in the pre-salt zone. Their individual effects are 

quantified by simulating the CVAR model in which the variable of interest follows its 

historical evolution while holding the value of the other variables remain constant at their 

sample mean (Figure 23). For example, this thesis evaluates the effect of country risk by 

simulating the CVAR model using the observed value for Risk while holding Pr, Rv, AWP, 

Vol, and PV at their sample mean.  



118 

 

Simulations by the two most accurate models indicate that changes in technology and 

reservoir quality, as proxied by AWP, have the most significant effect on pre-salt 

development wells. As expected, increases in AWP generally are responsible for the 

increasing number of wells completed in the pre-salt zone during the sample period.   

The effect of country risk varies between the two models. Country risk has a more significant 

impact on the model that uses WTI to measure oil prices than in the most accurate model that 

uses Brent to measure oil prices. The effect of country risk is most notable during the end of 

the sample period when higher risk depresses the number of wells drilled. This negative effect 

is consistent with recent analyses, which indicate that poor governance can offset the effect 

of an abundant resource base. Kaufmann and Banerjee (2014) find that governance, as 

measured by country risk, influence whether crude oil is part of a unified world oil market. 

Specifically, the price for crude oil’s from nations with a high country risk is less likely to be 

part of a unified market. Kaufmann (2016) finds that crude oils from nations with a higher 

country risk suffer a price penalty.  

Except for 2015, when volatility increases the number of wells modeled, volatility and 

perceptions of the volatility generally have a small impact. This modest effect may be caused 

by the long lifetime of wells drilled into the pre-salt zone. A long-lifetime implies that 

volatility at the time of E&D will have relatively little effect on the net present value of the 

revenue stream over a long period. However, this hypothesis is disrupted by Kleinberg et al. 

(2018), who argue that uncertainty about future oil prices poses a higher risk to deepwater 

offshore projects because of their long construction schedules and extended production 

lifetimes compared to tight oil wells.  
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Prices can affect the development of pre-salt wells through Pr and Rv. Figure 4 indicates that 

significant changes in Pr and Rv have little effect on the number of wells completed. This 

behavior is consistent with BEP’s that are less than or equal to the current price. The small 

impact of prices may be generated by Petrobras, which focuses on investments in the pre-salt 

layer based on its high and increasing well-productivity (Sandrea and Goddard, 2016). These 

increases are generated by technical improvements (Petrobras, 2015c) and the high quality 

of reservoirs.  

Across the two most accurate models, changes in technology and reservoir quality, as proxied 

by AWP, have the most significant effect on Wells simulated by the model (Figure 23). 

Additionally, Figures A8-A12 in Appendix  A shows the effect of each variable on Wells 

simulated by the model. 
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Figure 23: Determinants of pre-salt development wells for WTI and Brent.  

The effect of volatility (light blue line), prices (blue line), average well productivity (green line), risk (orange line), and all variables (dark pink line) that is simulated 

by the CVAR model more accurate between Brent models and WTI models for pre-salt development wells by holding all other variables at their sample mean. 

Observed values for pre-salt development wells are givens by the black line. 
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4.3.4. Conclusion 

Although prices for WTI and Brent dropped in 2014, the output from the pre-salt zone 

continues to increase. This increase may be associated with lower costs due to continued 

learning and standardization (Mariano et al., 2018b). The positive effect of productivity 

highlights the importance of research and technological development policies for 

petroleum development in offshore oil frontier areas. This result is consistent with 

Petrobras’ strategy of emphasizing technological development and competence building 

(Waterworth and Bradshaw, 2018).  

Nevertheless, technology and reservoir quality are not the sole determinants of investment 

decisions in the upstream sector. This thesis’ results also indicate that when Brazil's fiscal 

situation deteriorates (i.e., credit risk rises), economic conditions worsen, the level of 

indebtedness increases, and oil production slows. Despite technological gains, as 

measured by average productivity, the most accurate model (and the most accurate model 

that measures oil prices using Brent) indicates that increases in country risk for Brazil 

slow the rate at which development wells are drilled into the pre-salt zone. This result 

suggests that governance in Brazil (measured by the OECD country credit risk) affects 

pre-salt development. Because pre-salt development is affected by the country credit risk, 

Petrobras’ risk level probably correlates with sovereign risk, as stated by the credit rating 

agency Standard & Poor's (Petrobras, 2018e).  

The stable outlook and slight upgrade in the Petrobras’ credit rating by Moody’s and 

Standard & Poor's in the last years (between 2016 and 2018) reflects the ability of the 

company to improve liquidity and reduce debt.  
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However, Fitch downgrades Petrobras’ credit rating at the beginning of 2018, which 

suggests something else can prevent Petrobras’ credit rating improvement. In this context, 

a further orientation of Petrobras’ policies towards maximizing profit is needed to weaken 

the market’s perception of the correlation between the company’s risk level and the 

sovereign risk. It also indicates that for NOCs or even state-controlled oil companies 

(partially open capital), the country risk can affect a company’s investment-grade rating 

and its pace of development.  

Given China reliance on petroleum imports (as the country is the current world's largest 

crude oil importer), the higher output from the pre-salt layer creates a favorable landscape 

for cooperation between China and Brazil (as well as between Brazil and other major 

crude oil-importing countries) in the oil sector.  

The partnership between these countries should not be limited to increasing participation 

on crude oil imports; China imported 13% of Brazil’s crude oil exports in 2008, and this 

share rose to 42% in 2017. Chinese oil companies participate in the first, third and fifth 

consortium of companies formed by the previous pre-salt bid rounds. The recent new 

wave of liberalization in the oil and gas industry sector in Brazil can pave the way for 

more significant participation of the Chinese oil companies in the next pre-salt bidding 

rounds.  
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5. Conclusion and Future Researches 

This thesis described the development of curve-fitting and econometric methods to model 

oil production in Brazil. This work focused on the economic assessment and political 

influences inherent to the reserve estimation process because the geological and 

engineering assessments require much more specific data for its evaluation. On top of 

that, the models developed by this study did not address reserves’ criteria defined by 

different institutions.   

This thesis modeled the Brazilian oil production considering asymmetric and multi-cycles 

adapted from the classical Hubbert model. The developed asymmetric Hubbert model 

derived from Brandt (2007) based on an asymmetrical Gaussian curve. Inspired by 

Kaufmann (1991), this thesis used a regression model to explain the differences between 

the Hubbert model and the observed production data by assessing the influence of techno-

economic parameters to the post-salt offshore oil production in Brazil.  

Firstly, this thesis indicated that an annual average growth rate by around 7%-9% per year 

in the pre-salt oil fields can compensate for the decline in post-salt offshore oil production 

for the period 2016-2025. Additionally, the deviation of the crude oil production rate from 

the Hubbert curve followed changes in oil price with a four-to-five-year lag. Hence, this 

thesis hypothesizes that exists a lag of four-to-five-years between discovery and 

production for post-salt offshore projects in Brazil.  

Taking that into account, this thesis used a creaming curve plotted as the cumulative 

discovery against the number of new field wildcats to assess the potential for further 

discoveries. The novelty of this methodology lies in the assumption that the recovery 
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factor is the same for all fields within a sedimentary basin to estimate the fields’ size of 

discoveries.  

Secondly, the current low recovery factor of 24% in Brazil (compared to the average 

recovery factor of 46% in Norway and the United Kingdom due to intense use of 

EOR/IOR projects) will indicate a potential to increase reserves from known fields 

provided that EOR/IOR projects satisfy reserves’ requirements.  

The findings did not suggest a potential for further discoveries in the Recôncavo neither 

the Potiguar basin, whereas an increase in exploratory investments could promote the 

incorporation of new reserves in Santos and Campos basins. The shape of the creaming 

curve for the Santos basin indicated its immaturity regarding exploration. Even though 

the coefficient of variation factor is similar for Santos and Campos basins, the reliability 

over Santos estimates is lower due to the early stage of exploration in this basin (reflected 

by the lower number of wildcat wells drilled). Therefore, the volumes associated with 

further discoveries in the Santos basin (estimated by the three functions in analysis and 

for 1P and 3P reserves applying creaming curves) are more uncertain than in the Campos 

basin. 

Proceeding on this track, this thesis estimated the dynamic relationship between crude oil 

prices, price volatility, productivity, and country risk and their effect on the number of 

development wells that are completed in the pre-salt zones of Brazil.  This relation is 

examined using time series econometric techniques of cointegration and error correction 

modeling. Such method is more appropriate to analyze the pre-salt development than the 

curve-fitting method since important volumes of pre-salt discoveries are located in Santos 

basin and the curve-fitting method is better applied to well-explored areas (Sorrell et al., 
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2009). Moreover, the technique of cointegration and error correction modeling poses 

some advantages over the classical linear regression models. 

Thirdly, this thesis analyzed the production of oil in the pre-salt layer ‒ which represents 

55% of Brazil’s oil production in 2018 ‒ twelve years after the discovery of the Lula field. 

This analysis is conducted in the light of an economic recession, an increase in the country 

credit risk, and the oil price collapse in 2014. This thesis identified: (1) the break-even 

price (BEP), (2) the measure of prices (spot or future contract) that can be more accurately 

used to plan development, (3) the effect of oil price volatility, productivity, oil price and 

country risk on wells drilled in the pre-salt province.  

The most accurate model measured price using the six-months futures contract for WTI 

and has a BEP of $62 per barrel in 2018 prices ($25 in 1982 dollars). This model indicated 

that perceived volatility, productivity, and country risk affect the number of development 

wells drilled into the pre-salt zone, whereas price plays a relatively minor role. The most 

accurate model that used Brent to measure oil prices had a BEP of $25 per barrel in 2018 

prices ($10 in 1982 dollars) and used the twelve-month future contracts and also indicated 

that productivity and country risk affected the number of development wells drilled in the 

pre-salt zone.   

Despite oil prices collapse in 2014, the oil price did not show a significant role in the 

observed changes for the number of pre-salt development wells. This result could be due 

to Petrobras’ strategy to concentrate investments in the development of pre-salt, revealed 

by its recent Business and Management Plans. It could also show the beginning of pre-

salt development was carried by high productivity projects with lower BEP, in which the 

level of prices was not a severe enough constraint to halt pre-salt projects under 

development. Moreover, albeit oil prices dipped in 2014, the technological learning curve 
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and the process standardization led to reductions in costs in the pre-salt zone (Mariano et 

al., 2018a). It is also possible to speculate some reasons for such increase in the average 

productivity of wells drilled into pre-salt zones: wells drilled in better positions due to 

greater geology knowledge of the pre-salt region; results of water and gas injections; 

improved acidification (stimulation) of pre-salt wells. 

The most accurate model (which uses WTI) had a better coefficient of determination (r2) 

of 0.79 whereas the most accurate model that used Brent to measure oil prices had an r2 

of 0.74. Although the most accurate model used WTI to measure oil prices, the difference 

of 5% in the coefficient of determination suggests the importance of the Brent price for 

the Brazilian oil industry as well. It is also possible to hypothesize that the deviation of 

Brazilian oil exports from the US to China in the last decade was not wholly captured by 

the model applied in this thesis.  

Due to the differences in Vol, PerVol, Profit, and Revenue between different measures of 

prices for Brent and WTI models, the lower BEP of $25 per barrel in 2018 prices ($10 in 

1982 dollars) from the most accurate Brent model can be partially justified by the 

prevalence of higher Brent price levels since 2010, especially in the period 2011-2014.  

The abundant increase in light tight oil production from the US contributes to WTI prices 

discounts relative to Brent due to the costs of moving WTI from Cushing, Oklahoma to 

overseas markets where it might compete with Brent (EIA, 2015). Such differential to 

Brent crude became broader and more volatile after 2010 (EIA, 2014). This trend may 

continue, as EIA (2018b) expects Brent oil prices will average about $6 per barrel higher 

than WTI prices in 2018 and 2019.  

Future research to estimate CVAR models that analyze the behavior of exploratory effort 

in the pre-salt layer as well as the E&D in the post-salt layer would improve the 
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knowledge of the dynamic of E&D in the Brazilian oil industry and could evidence the 

interconnections among the different producing zones. This methodology could still be 

applied to other countries. Another future topic would be a scenario analysis for pre-salt 

development by evaluating the individual effect of the country risk, as its increase 

depresses the number of development wells in the pre-salt zone. Also, a future task would 

be to estimate CVAR models by evaluating the impact of inflation as a proxy for the 

Brazilian economy effect.  These analyses should be part of upcoming model 

development efforts.  

The availability of existing data was and continues to be a challenge for the accurate 

representation of Hubbert models, creaming curves and the CVAR models for Brazil. 

These models overcome the unavailability of data in Brazil, which can be considered as 

an advantage of this work. However, some previously unavailable data became disclosed 

by ANP throughout this thesis, which shows some improvement in the availability of 

data. 

Another challenge was to obtain available historical data able to quantitatively represent 

some of the many factors that undermine investments in the upstream oil and gas sector, 

such as concerns over political stability, uncertainty over regulatory obligations, and 

environmental regulations.  

Because Petrobras operates all the pre-salt development wells within the period in the 

analysis, it will be compelling to review the development of pre-salt in the future (e.g., 

next five years) considering the arrival of new major players in Brazil’s oil market, as 

well as new operators in the pre-salt zone.  
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The new age of energy abundance shifts the power from sellers to buyers (O’Sullivan, 

2017). On the one hand, the US is now the most significant global crude oil producer, and 

fossil fuels will continue to be the primary source of energy for the foreseeable future 

(O’Sullivan, 2017). On the other hand, China, the current world’s largest crude oil 

importer and the main destination of Brazilian crude oil exports, has strong policy push 

towards electric vehicles (EV) deployment and strong momentum in EV sales is expected 

up to 2030 by IEA (2018b, 2018c).  

Within the context of increasing crude oil exports from Brazil to China (from 13% in 

2008 to 57% in 2018), future studies could analyze new opportunities of cooperation 

between these countries, given the higher output from pre-salt layer, the growing 

dependence of China on the Middle East and the technological developments that will 

enable the world to move away from fossil fuels towards cleaner energy sources. 

Further to this, the events over the last decade evidence the dynamicity of the oil industry. 

Regarding the national panorama, the increasing amounts of oil exports in Brazil reveal 

the Brazilian economy is becoming more vulnerable to the oil price volatility and oil price 

level.  Future studies could analyze the use of oil exports revenues to invest in the 

Brazilian trade balance diversification away from commodities to the extent possible by 

increasing the share of technological goods. The ‘resource curse’ is not so much a product 

of an abundance of resources but rather the dependence on them (Waterworth and 

Bradshaw, 2018).  
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Appendix A 

 
Figure A1: Post-salt offshore cumulative oil production fitted to variants of the Hubbert curve. 

 

 

 
Figure A2: Annual production versus cumulative projected production 
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Figure A3: Backcasting of single cycle model.  

Observation: The black line shows the observed data, while the colored lines show the fit of the single cycle 

model, using only data up to the indicated year (i.e., Predict 2000 uses production data from 1954-2000 to 

fit the model). 

  
Figure A4: Backcasting of two cycles symmetrical model.  

Observation: The black line shows the observed data, while the colored lines show the fit of the two-cycle 

symmetrical model, using only data up to the indicated year (i.e., Predict 2000 uses production data from 

1954-2000 to fit the model). 
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Figure A5: Backcasting of the two-cycle asymmetrical model.  

Observation: The black line shows the observed data, while the colored lines show the fit of the two-cycle 

asymmetrical model, using only data up to the indicated year (i.e., Predict 2000 uses production data from 

1954-2000 to fit the model). 

 

 

 
Figure A6: Symmetrical Hubbert forecast with two cycles 
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Figure A7: Asymmetrical Hubbert forecast with two cycles. 

 

 

 
 

 

 



146 

 

  
Figure A8: Determinants of pre-salt development wells for WTI and Brent. The effect of all variables (dark pink line). 

 

  
Figure A9: Determinants of pre-salt development wells for WTI and Brent. The effect of volatility (light blue line). 
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Figure A10: Determinants of pre-salt development wells for WTI and Brent. The effect of average well productivity (green line). 

 

  
Figure A11: Determinants of pre-salt development wells for WTI and Brent. The effect of risk (orange line). 
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Figure A12: Determinants of pre-salt development wells for WTI and Brent. The effect of prices (blue line). 
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Appendix B - Mathematical formulation 

B.1. Logistic function 

This thesis fits the creaming curve to a logistic function using the function SSlogis in the 

RStudio software. Equation A.1 represents the logistic function.  

𝑌 =
𝐴𝑠𝑦𝑚

(1 + exp (
(𝑥𝑚𝑖𝑑 − 𝑥)

𝑠𝑐𝑎𝑙
))

 
(B.1) 

Where Asym is a numeric parameter representing the asymptote, xmid represents 

the x value at the inflection point of the curve and scal is a numeric scale parameter on 

the input axis (RDocumentation, 2019). 

B.2. Gaussian function 

The Gaussian function is defined as follows:  

𝑌 = 𝑎𝑠𝑦𝑚 ∗ 0.5 ∗ [1 + 𝑒𝑟𝑓 (
𝑥 − 𝑚𝑖

𝜎√2
)] 

(B.2) 

Where asym is a scale factor representing the asymptote, mi is the mean, the deviation is 

sigma (𝜎), and the Gauss error function is erf.  

B.3. Gompertz function 

The Gompertz function is defined as follows: 

𝑌 = 𝑎𝑙𝑝ℎ𝑎 𝑒−𝑏𝑒𝑡𝑎 𝑒−𝑘𝑥
 (B.3) 

Where alpha is a numeric parameter representing the asymptote, e is the Euler number; 

beta is a positive number that sets the displacement along the abscissa-axis, k is a positive 

number that sets the growth rate.  
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Appendix C - Statistics of the three functions fitting for 1P and 3P 

reserves 

Table C1:  Results of model fitting to a logistic function - 1P reserves 

Formula: y ~ SSlogis(x, Asym, xmid, scal) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

Asym 17992.2 295.014 60.99 <2e-16 *** 

xmid 351.733 5.126 68.62 <2e-16 *** 

scal 86.395 5.122 16.87 <2e-16 *** 

Residual standard error: 740.2 on 43 degrees of freedom 

Basin Recôncavo 

Asym 1688.769 16.18 104.38 <2e-16 *** 

xmid 131.334 5.29 24.83 <2e-16 *** 

scal 68.441 4.021 17.02 <2e-16 *** 

Residual standard error: 99.6 on 75 degrees of freedom 

Basin Potiguar 

Asym 1099.2 12.51 87.86 <2e-16 *** 

xmid 252.283 7.716 32.7 <2e-16 *** 

scal 81.18 5.655 14.36 <2e-16 *** 

Residual standard error: 53.8 on 41 degrees of freedom 

Basin Santos 

Asym 8534.66 292.47 29.18 <2e-16 *** 

xmid 202.68 3.994 50.75 <2e-16 *** 

scal 26.169 2.592 10.1 6.43E-13 *** 

Residual standard error: 391.8 on 43 degrees of freedom 

*** indicates significance on the 0.001 level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



151 

 

Table C2:  Results of model fitting to a logistic function - 3P reserves 

Formula: y ~ SSlogis(x, Asym, xmid, scal) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

Asym 20649.75 338.589 60.99 <2e-16 *** 

xmid 351.733 5.126 68.62 <2e-16 *** 

scal 86.395 5.122 16.87 <2e-16 *** 

Residual standard error: 849.6 on 43 degrees of freedom 

Basin Recôncavo 

Asym 1760.244 16.864 104.38 <2e-16 *** 

xmid 131.334 5.29 24.83 <2e-16 *** 

scal 68.441 4.021 17.02 <2e-16 *** 

Residual standard error: 103.8 on 75 degrees of freedom 

Basin Potiguar 

Asym 1182.971 13.464 87.86 <2e-16 *** 

xmid 252.283 7.716 32.7 <2e-16 *** 

scal 81.18 5.655 14.36 <2e-16 *** 

Residual standard error: 57.9 on 41 degrees of freedom 

Basin Santos 

Asym 16710.99 572.66 29.18 <2e-16 *** 

xmid 202.68 3.994 50.75 <2e-16 *** 

scal 26.169 2.592 10.1 6.43E-13 *** 

Residual standard error: 767.1 on 43 degrees of freedom 

*** indicates significance on the 0.001 level 

 

Table C3:  Results of model fitting to a Gaussian function - 1P reserves 

Formula: y ~ asym * 0.5 * (1 + erf((x - mi)/(sigma * sqrt(2)))) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

asym 17795.72 294.7 60.39 <2e-16 *** 

mi 349.023 5.342 65.33 <2e-16 *** 

sigma 143.357 8.416 17.03 <2e-16 *** 

Residual standard error: 773 on 43 degrees of freedom 

Basin Recôncavo 

asym 1681.22 1.58E+01 106.38 <2e-16 *** 

mi 131.341 5.19E+00 25.32 <2e-16 *** 

sigma 113.02 6.307 17.92 <2e-16 *** 

Residual standard error: 100.8 on 75 degrees of freedom 

Basin Potiguar 

asym 1092.412 11.796 92.61 <2e-16 *** 

mi 249.137 7.532 33.08 <2e-16 *** 

sigma 137.363 8.602 15.97 <2e-16 *** 

Residual standard error: 53.3 on 41 degrees of freedom 

Basin Santos 

asym 8413.614 286.424 29.38 <2e-16 *** 

mi 201.348 3.934 51.17 <2e-16 *** 

sigma 43.497 4.22E+00 10.32 3.31E-13 *** 

Residual standard error: 382.2 on 43 degrees of freedom 

*** indicates significance on the 0.001 level 
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Table C4:  Results of model fitting to a Gaussian function - 3P reserves 

Formula: y ~ asym * 0.5 * (1 + erf((x - mi)/(sigma * sqrt(2)))) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

asym 20424.27 338.231 60.39 <2e-16 *** 

mi 349.023 5.343 65.33 <2e-16 *** 

sigma 143.357 8.416 17.03 <2e-16 *** 

Residual standard error: 887.1 on 43 degrees of freedom 

Basin Recôncavo 

asym 1752.376 16.473 106.38 <2e-16 *** 

mi 131.341 5.187 25.32 <2e-16 *** 

sigma 113.013 6.307 17.92 <2e-16 *** 

Residual standard error: 105.1 on 75 degrees of freedom 

Basin Potiguar 

asym 1175.666 12.695 92.61 <2e-16 *** 

mi 249.137 7.532 33.08 <2e-16 *** 

sigma 137.363 8.602 15.97 <2e-16 *** 

Residual standard error: 57.36 on 41 degrees of freedom 

Basin Santos 

asym 16474.01 560.831 29.37 <2e-16 *** 

mi 201.348 3.935 51.17 <2e-16 *** 

sigma 43.497 4.216 10.32 3.31E-13 *** 

Residual standard error: 748.3 on 43 degrees of freedom 

*** indicates significance on the 0.001 level 

 

Table C5:  Results of model fitting to a Gompertz function - 1P reserves 

Formula: y ~ alpha * exp(-beta * exp(-k * x)) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

alpha 1.89E+04 5.02E+02 37.69 <2e-16 *** 

beta 1.04E+01 1.98E+00 5.23 4.76E-06 *** 

k 7.59E-03 6.35E-04 11.95 2.94E-15 *** 

Residual standard error: 848.4 on 43 degrees of freedom 

Basin Recôncavo 

alpha 1.71E+03 1.51E+01 113.25 <2e-16 *** 

beta 2.35E+00 9.93E-02 23.67 <2e-16 *** 

k 9.89E-03 4.77E-04 20.72 <2e-16 *** 

Residual standard error: 81.15 on 75 degrees of freedom 

Basin Potiguar 

alpha 1.13E+03 1.53E+01 73.837 <2e-16 *** 

beta 4.22E+00 4.66E-01 9.075 2.34E-11 *** 

k 7.57E-03 4.97E-04 15.244 <2e-16 *** 

Residual standard error: 50.46 on 41 degrees of freedom 

Basin Santos 

alpha 9.45E+03 5.88E+02 16.078 <2e-16 *** 

beta 5.36E+01 2.44E+01 2.197 0.0334 * 

k 2.10E-02 2.82E-03 7.467 2.73E-9 *** 

Residual standard error: 378.9 on 43 degrees of freedom 

*** indicates significance on the 0.001 level 
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Table C6:  Results of model fitting to a Gompertz function - 3P reserves 

Formula: y ~ alpha * exp(-beta * exp(-k * x)) 
 Estimate (MMbbl) Std. Error (MMbbl) t value Pr(>|t|)  

Basin Campos 

alpha 2.17E+04 5.76E+02 37.68 <2e-16 *** 

beta 1.04E+01 1.98E+00 5.23 4.75E-6 *** 

k 7.59E-03 6.35E-04 11.95 2.94E-15 *** 

Residual standard error: 973.7 on 43 degrees of freedom 

Basin Recôncavo 

alpha 1.79E+03 1.58E+01 113.25 <2e-16 *** 

beta 2.35E+00 9.93E-02 23.67 <2e-16 *** 

k 9.89E-03 4.77E-04 20.72 <2e-16 *** 

Residual standard error: 105.1 on 75 degrees of freedom 

Basin Potiguar 

alpha 1.22E+03 1.65E+01 73.837 <2e-16 *** 

beta 4.23E+00 4.66E-01 9.075 2.34E-11 *** 

k 7.57E-03 4.97E-04 15.244 <2e-16 *** 

Residual standard error: 54.31 on 41 degrees of freedom 

Basin Santos 

alpha 1.85E+04 1.15E+03 16.078 <2e-16 *** 

beta 5.36E+01 2.44E+01 2.197 0.0334 * 

k 2.10E-02 2.82E-03 7.467 2.73E-9 *** 

Residual standard error: 742 on 43 degrees of freedom 

***, * indicate significance on the 0.001, and 0.05 levels   
 

 

 

  



154 

 

Appendix D - Cointegration and Error-Correction Model 

D.1. Results - GARCH Models 

Tests of the residuals from the GARCH (1,1) model suggest that it can be used to proxy 

the volatility of oil prices. ADF statistics reject the null hypothesis that the residuals for 

all oil prices (Table D1) contain a stochastic trend, which indicates that the residuals are 

stationary. Similarly, the ARCH statistic fails to reject the null hypothesis that there are 

no ARCH-effects for all measures of oil prices, which indicates there is little evidence for 

conditional heteroscedasticity. The Jarque-Bera tests fail to reject the null hypothesis that 

skewness and the excess kurtosis are zero for all Brent and WTI prices, which suggests 

that the residuals from the GARCH model are consistent with a normal distribution. The 

Ljung-Box Q statistic rejects the null hypothesis that the autocorrelations of residuals are 

zero for all measures of oil prices. This suggests the residuals from these GARCH models 

are autocorrelated. This autocorrelation cannot be eliminated by increasing the length of 

the autocorrelation parameter in the GARCH model.  

Table D1: Analysis of residuals from the GARCH models 

 ADF 
ARCH 

Statistic 

Signif. 

Level 

Jarque-

Bera 

Signif. 

Level 

Ljung-

Box 

Q-

Statistics 

WTI0 -5.923** 0.034 0.853 0.532 0.766 8.283** 0.004 

WTI1 -5.937** 0.016 0.898 0.673 0.714 8.911** 0.003 

WTI6 -5.799** 0.090 0.764 2.851 0.240 10.550** 0.001 

WTI12 -5.590** 0.376 0.541 3.708 0.157 9.676** 0.002 

WTI24 -5.372** 0.363 0.548 5.711 0.058+ 8.891** 0.003 

Brent0 -5.824** 0.187 0.666 3.573 0.168 10.502** 0.001 

Brent1 -5.724** 0.195 0.660 3.549 0.170 13.307** 0.000 

Brent6 -5.650** 0.229 0.633 2.960 0.228 12.237** 0.000 

Brent12 -5.550** 0.223 0.637 2.179 0.336 10.992** 0.001 

Brent24 -5.345** 0.078 0.780 0.971 0.615 9.879** 0.002 

Test statistics reject the null hypothesis at the **1%, *5%, +10% level. 
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This suggests the residuals from these GARCH models are autocorrelated. Taking this 

into account, Ansari and Kaufmann (2019) add an autoregressive component to Equation 

44, which creates an AR(r)-GARCH (p,q) representation given by Equation D.1.1: 

𝑌𝑡 = 𝛼 + ∑𝛽𝑟𝑌𝑡−𝑟 +

𝑅

𝑟=1

ε𝑡 (D.1.1) 

In which 𝑌𝑡 represents the daily return (
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
) to crude oil prices and ε𝑡 comes from a 

GARCH(p,q) process. After evaluating the best lengths for r, p and q, Ansari and 

Kaufmann (2019) use an AR(1)-GARCH(1,1) model to generate conditional volatilities 

of the returns. Such conditional volatilities are very similar to those generated by the 

GARCH (1,1) model. With that in mind, this thesis proxies the volatility of oil prices by 

the plain GARCH model ‒ GARCH (1,1) ‒ which is used to generate the results reported 

throughout this thesis’ text.  

D.2. Illustrating the model 

To give the physical intuition of the CVAR model, this study uses the CVAR Brent model 

(Table 15 in section 4.3.2). It includes three endogenous variables (Well, PerVol and 

Vol), and four exogenous variables; AWP, Profit, Revenue and Risk. The rank defined 

by the likelihood-based trace test (Johansen, 1996) is two, i.e., there are two cointegrating 

relations among the seven variables. The number of cointegrating relations is inferior to 

the number of endogenous variables, which means the rank of  𝛱 is not full. For 

simplicity, the short-run effects (𝐴0∆𝑤𝑡, 𝐴1∆𝑤𝑡−1, 𝛤11∆𝑥𝑡−1), and the dummy variables 

𝛩𝑀 are set to zero, and the CVAR model becomes Equation D.2.1:  
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[
∆𝑊𝑒𝑙𝑙

∆𝑃𝑒𝑟𝑉𝑜𝑙
∆𝑉𝑜𝑙

] = [

𝛼11 𝛼12

𝛼21 𝛼22

𝛼31 𝛼32

] [
𝛽11 … 𝛽17

𝛽21 … 𝛽27
]

[
 
 
 
 
 

𝑊𝑒𝑙𝑙𝑡−1

𝑃𝑒𝑟𝑉𝑜𝑙𝑡−1

𝑉𝑜𝑙𝑡−1

⋮
𝑅𝑒𝑣𝑡−1

𝑅𝑖𝑠𝑘𝑡−1 ]
 
 
 
 
 

 +[

𝜀1𝑡

𝜀2𝑡

𝜀3𝑡

] (D.2.1) 

The β coefficients in Equation 10 correspond to estimated eigenvectors obtained by 

solving the reduced rank problem and defined based on the ordering of the eigenvalues. 

The unrestricted β relations in Equation 10 only exceptionally may have a physical 

interpretation. To give them a physical interpretation, identifying restrictions are 

imposed. “Generally, the structure of cointegration relations is identified when it is not 

possible to take a linear combination of the two cointegrating relations without violating 

any of the imposed restrictions” (Kaufmann and Juselius, 2013, p. 4).  

The model is defined after the restrictions are imposed. Then, the 𝛱 matrix is obtained 

(Equation D.2.2):   

[
∆𝑊𝑒𝑙𝑙

∆𝑃𝑒𝑟𝑉𝑜𝑙
∆𝑉𝑜𝑙

] = [
−0.799 −0.064
0.241 0.036
0.093 0.101

] [
1
0
0
1

0
−3.596

−0.7
0

0
0

0
−1.247

0.198
0

]

[
 
 
 
 
 

𝑊𝑒𝑙𝑙𝑡−1

𝑃𝑒𝑟𝑉𝑜𝑙𝑡−1

𝑉𝑜𝑙𝑡−1

⋮
𝑅𝑒𝑣𝑡−1

𝑅𝑖𝑠𝑘𝑡−1 ]
 
 
 
 
 

 +[

𝜀1𝑡

𝜀2𝑡

𝜀3𝑡

] (D.2.2) 

Equation D.2.3 presents the error correction model for 𝑊𝑒𝑙𝑙, and the two cointegration 

relations (CR) are presented in Equation D.2.4 and Equation D.2.5.   

∆𝑊𝑒𝑙𝑙 = −0.799𝐶𝑅1 − 0.064𝐶𝑅2+ 𝜀1𝑡 (D.2.3) 

𝐶𝑅1 = 𝑊𝑒𝑙𝑙𝑡−1 − 0.7𝐴𝑊𝑃𝑡−1+0.198𝑅𝑖𝑠𝑘𝑡−1 (D.2.4) 

𝐶𝑅2 = 𝑃𝑒𝑟𝑉𝑜𝑙𝑡−1 − 3.596𝑉𝑜𝑙𝑡−1 −1.247𝑅𝑒𝑣𝑡−1 (D.2.5) 

The error correction term (𝛼11) is -0.799, that is not statistically different from -1. This 

means the response of 𝑊𝑒𝑙𝑙 to the previous period deviation from long-run equilibrium 

is immediate. To obtain that 𝛼11 is not statistically different from -1, this study applies 
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the t test: 𝑡 =
𝜇−𝑋̅

𝑠𝑒
=

−1−(−0.799)
𝛼

𝑡 𝑠𝑡𝑎𝑡

=
−1−(−0.799)

−0.799

−6.938

 = -1.745. The t-value at 71 degrees of 

freedom results in p > 0.085, which does not reject the null hypothesis that there is no 

difference between -1 and -0.799.  

For simplification, the short-run effects were previously set to zero. Indeed, the short-run 

matrices (𝐴0∆𝑤𝑡, 𝐴1∆𝑤𝑡−1, 𝛤11∆𝑥𝑡−1) and the dummy variables 𝛩𝑀 derive from the 

long-run effects. Equations D.2.6, D.2.7 and D.2.8 include only the coefficients in the 

short-run matrices that rejects the null hypothesis that they equal zero (evaluated against 

a t distribution).   

𝛤11∆𝑥𝑡−1 = −0.59(∆𝑉𝑜𝑙𝑡−1) (D.2.6) 

𝐴0∆𝑤𝑡 = 0.868(∆𝑅𝑖𝑠𝑘) (D.2.7) 

𝐴1∆𝑤𝑡−1 = 1.115(∆𝑅𝑖𝑠𝑘𝑡−1) (D.2.8) 

The methodology illustrated throughout the Appendix D.2 for the CVAR Brent model 

(Table 15 in section 4.3.2) is the same used to the CVAR model chosen as the most 

accurate (Table 14 in section 4.3.2). 


