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Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Mecânica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários
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Paulino dos Santos and Pedro Noronha.

People from CENPES/Petrobras: Leticia Tapajoz, Raphael Timbó and all the
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

IDENTIFICAÇÃO DE COEFICIENTES DE SELOS DE GÁS ANULARES,

CONTATO ROTOR-ESTATOR, E ANÁLISE NÃO-LINEAR DE UM SISTEMA

ROTODINÂMICO

David Julián González Maldonado

Novembro/2019

Orientador: Thiago Gamboa Ritto

Programa: Engenharia Mecânica

Nesta tese são realizadas investigações teóricas e experimentais de uma bancada

usada para a identificação de coeficientes de gás anulares. O trabalho é dividido em

três partes: (i) a identificação dos coeficientes de um selo anular; (ii) a simulação

do movimento de um modelo de contato rotor-estator; (iii) a análise de um sistema

rotodinâmico com mancais e eixo anisotrópicos, e um selo com rigidez e amorteci-

mento cúbicos. Na primeira parte, os coeficientes são calculados excitando o rotor

com atuadores magnéticos e medindo o deslocamento rotor-estator com sensores de

proximidade. A Rigidez Dinâmica Complexa (RDC) é obtida como a função de

transferência entre a força magnética e o deslocamento do rotor. Os coeficientes são

diretamente obtidos da parte real e imaginária da RDC. Para o contato rotor-estator,

modelos simplificados para o rotor e estator são usados. O contato é modelado

como forças normais e tangenciais com atrito de Coulomb. Três simulações foram

realizadas e diferentes formas de movimento foram observadas: direta, retrógrada,

subśıncrona, superśıncrona e caótica. Os tipos de vibração são analisados usando

gráficos de órbitas, mapas de Poincaré, espectros de potência e espectrogramas. A

última parte da tese considera um rotor anisotrópico com mancais anisotrópicos e

um selo anular com amortecimento e rigidez cúbica. Primeiro, o sistema é anal-

isado mediante a teoria de Floquet e mostra o comportamento da combinação de

ressonâncias com grau de anisotropia dos mancais e eixo. Depois, os pontos fixos do

sistema são calculados usando um método semi-anaĺıtico conhecido como método

das formas normais. Os resultados são comparados com uma integração numérica

simples das equações.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

IDENTIFICATION OF ANNULAR GAS SEAL COEFFICIENTS,

ROTOR-STATOR CONTACT, AND NONLINEAR ANALYSIS OF A

ROTORDYNAMIC SYSTEM

David Julián González Maldonado

November/2019

Advisor: Thiago Gamboa Ritto

Department: Mechanical Engineering

This thesis deals with theoretical and experimental investigations of a test rig

used for identification of annular gas seal coefficients. The work is divided in three

parts: (i) the identification of coefficients from an annular seal; (ii) the simulation of

the motion from a rotor-stator contact model; (iii) the analysis of rotordynamic sys-

tem with anisotropic bearings and shaft, and a seal with cubic stiffness and damping.

In the first part, the coefficients are computed by exciting the rotor with magnetic

actuators and measuring the rotor-stator displacement with proximity sensors. The

Complex Dynamic Stiffness (CDS) matrix is obtained as the transfer function be-

tween forces and displacements. The coefficients are obtained from the real and

imaginary parts of the CDS matrix. For the rotor-stator contact, simplified models

of the rotor and stator are used. The contact is modeled as tangential and normal

forces with Coulomb friction. Three simulations are performed and different mo-

tion patterns are observed: forward, backward, subsynchronous, supersynchronous

and chaotic vibration. The types of vibration are analyzed by orbits plots, Poincaré

maps, full spectra and full spectrograms. The last part of thesis considers a simplified

anisotropic rotor with anisotropic bearings and an annular seal with cubic damp-

ing and stiffness coefficients. First, the system is analyzed by the Floquet theory,

showing the behavior of the combination resonances with the degree of anisotropy

from the bearings and rotor. Then, the fixed points of the system are computed

by a semi-analytical method known as the Normal Forms method. The results are

compared with a simple numerical integration of the equations.
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ûSx, ûSy
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Chapter 1

Introduction

Research on rotordynamics goes back more than 150 years, when Rankine [6], Durke-

ley [7], Jeffcott [8] and Föppl [9] studied the motion of a rotor. One of the main

concerns was the critical speeds of rotating machinery due to the dangerous high

vibrations. Later on, different problems have been addressed, namely, self-excited

vibrations, internal damping, oil whirl, oil whip, parametrically excited systems,

flow-induced vibrations, anisotropy and nonlinearity. Machines such as compressors,

turbochargers and turbines have been relevant for different industries (oil extrac-

tion, aviation, etc.) and, thus, are the main motivation of research. Their correct

functioning is vital to increase productivity and profitability. Their malfunctioning,

due to different effects, must be reduced as much as possible. Such machines have

components, such as seals or bearings, with a certain dynamic behavior. In the case

of centrifugal compressors, annular gas seals are one of the components that may

affect the overall dynamics of the machine depending on the operating condition

(rotating speed, fluid, temperature, etc.). As an effort to analyze the seal dynamics,

this thesis deals with the identification of rotordynamic coefficients from a seal of a

prototype test rig. Moreover, since the rig operates with a small rotor-stator clear-

ance, the contact between those parts is analyzed. Finally, the effects of anisotropy

and smooth nonlinearities in the parameters are discussed.

1.1 Motivation

Petrobras is the Brazilian corporation of petroleum with several floating production

storage and offloading units (SPSO). In one of them, located at the Campos basin

and with a capacity of 180,000 barrels per day, a high vibration problem was found

in January 2012, after a maintenance in the high power compressor of the unit, as

related by Noronha et al. [10]. The amplitude of the synchronous vibration increased

from 20 to 60 microns and the phase angle showed a rapid change as shown in Fig.

1.1. After some analysis, it was found that the stiffness and damping coefficients of a
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damper seal from the balance piston of the compressor changed after the closure of a

recycle valve. Since the seals coefficients have a strong dependency on the pressure

difference between the suction and discharge chambers, the closure of such valve

caused a modification of the system dynamics, pushing the first critical speed to the

operating condition. The solution to the problem was to change the geometry of the

seal. This problem shows the importance to determine the seals coefficients under

different operating conditions.

Figure 1.1: Overall vibration of a high power compressor from Petrobras (Noronha
et al.[10]).

Another important source of dangerous vibrations in compressors is the con-

tact between the stator and rotor, also known as rubbing and it involves impacts,

friction, stiffening and coupling effects, thermal bow, among others effects. This

condition causes different type of vibration such as forward whirl, backward whirl,

sub-synchronous and super-synchronous vibration and chaotic motion.

The analysis of rotordynamic systems with nonlinear parameters is challenging.

The dynamics of elements such as seals or bearings is nonlinear. However, for a

certain operating condition with small vibration amplitude, it is possible to obtain

equivalent linear stiffness and damping coefficients. This linear behavior comes from

the truncation of a polynomial series expansion, which in most cases is reasonable.

If the series is truncated up to a different order, a more complex dynamics arises.

Nonlinear systems can be analyzed by different methods such as direct numerical

integration, perturbation methods, harmonic balance, multiple scales, normal forms,

among others. This thesis is based on the latter. The normal forms method consists
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in using several coordinate transformation to eliminate some nonlinear terms

1.2 Annular gas seals

Annular gas seals are one of the most important components in rotating machin-

ery (turbines, compressors, etc). They are responsible for reducing the backward

flux from a high-pressure stage to a previous stage, increasing the efficiency of the

machine. In Fig. 1.2 a representation of a rotor-seal assembly is shown. During nor-

mal operation, the seal does not touch the rotor (in a seal-on-stator configuration),

and thus, no rubbing is caused. On the other hand, velocity and pressure fields

are created inside the clearance, and fluid-induced forces are created and applied to

the rotor, affecting the dynamic behavior of the machine. Considering a small per-

turbations approach, the relation between fluid forces and seal-rotor displacements

can be considered linear. Thus, the machine behavior is determined as a linear

stiffness-damping system with frequency-dependent parameters. Although this ap-

proach disregards some nonlinear fluid effects, it is sufficient to explain important

phenomena such as instabilities, added stiffness and damping, and modification of

critical speeds.

Figure 1.2: Schematic of a stator seal and a rotor. The stator moves inside the rotor
and the fluid between them applies forces to it.

Annular gas seals play an important role in rotating machines used for petroleum

extraction, such as the Petrobras 7-stage centrifugal compressor shown in Fig. 1.3.

A simplified drawing of its principal components is shown in Fig. 1.4. When the

fluid passes from a lower pressure stage to a higher pressure state, a leakage tends

to flow back through the clearances between rotor and stator, i.e., the diffuser-rotor

and the diffuser-impeller clearances. Also, there is a leakage through the balance

piston as one side is connected to the last stage (discharge), and the other side to

the first stage (intake). This fact makes necessary to have the interstage seals, eye-

packing seals and balance piston seals shown in Fig. 1.4. Nevertheless, the use of
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these components may change the dynamic behavior of the rotor and, thus, their

behavior under operating conditions must be known a priori.

Figure 1.3: Cross section of a turbomachine from the Petrobras Turbomachinery
Workshop in Macaé, Rio de Janeiro.

1.2.1 Type of seals

There are different annular gas seals used in centrifugal compressors, depending on

their geometry (Fig. 1.6) and their inner surface (Fig. 1.5). If the rotor and seal are

parallel to each other, as shown in Fig. 1.6a, it is called a straight seal. If the seal

has a convergent geometry, it is a tapered seal (Fig. 1.6b). The seal can also have

two different diameters, as shown in the stepped seal of Fig. 1.6c. In Figures 1.6d,

Eye Seal

Shaft Seal1st Stage 2nd Stage 6th Stage 7th Stage

Balance-Drum
Seal

Intake

Discharge

Figure 1.4: Typical seals in a centrifugal compressor [1].
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1.6e, 1.6f 3 types of labyrinth seals are shown, namely, teeth-on-stator, teeth-on-

rotor, and teeth-on-stator and teeth-on-rotor. In the honeycomb seal of Fig. 1.6g,

a honeycomb pattern is machined on the inner seal surface.

(a) Smooth seal surface. (b) Porous surface.

(c) Labyrinth surface. (d) Helically grooved surface.

(e) Honeycomb surface. (f) Hole-pattern surface.

Figure 1.5: Annular gas seals surfaces [2].

1.2.2 Fluid-induced instabilities

Instabilities are one of the main concerns in rotordynamics. During this state, the

rotor vibrations increase considerable until contact between rotor and stationary

parts becomes considerably, leading to a failure. There are several causes of insta-

bilities. Bearings and seals are affected by fluid-induced forces, where an external

fluid, used either to lubricate or as a process fluid, applies forces on the rotor. In

the former, the oil whirl and oil whip are common. In the latter, the instability is

assessed by the eigenvalues of a linear model. Rotor internal damping (RID) insta-

bility, caused by the damping of a rotating structure, causes a whirling close to the

first whirling mode (FWD) and the vibrations are maintained or increased without

passing though with an acceleration or deceleration.

1.2.3 Identification methods

Coefficients of annular gas seals are obtained experimentally by using different test

rigs. They are mainly composed of a rotor, a stator, seals in a back-to-back configu-

ration pre-swirl rings, magnetic or hydraulic exciters, and supports such as hydrody-

namic or active magnetic bearings. They are also instrumented and variables such

as displacement, acceleration, force, pressure, mass flow and current are measured.

In general, the identification methods consist in exciting the rotor (or stator) with

a certain force and measuring the relative rotor-stator displacement; or vice-versa,
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(a) Straight seal. (b) Tapered seal.

(c) Stepped seal. (d) Teeth-on-stator labyrinth seal.

(e) Teeth-on-rotor labyrinth seal.

(f) Teeth-on-stator and teeth-on-rotor
labyrinth seal.

(g) Honeycomb seal.

Figure 1.6: Types of annular gas seals [2].
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Figure 1.7: Hybrid annular gas seal from Petrobras (Noronha et al. [10]).

imposing a certain relative displacement and measuring the force. The coefficients

are obtained either by a time-domain or frequency-domain approaches. In both

cases, the seal is modeled as a linear system with direct and crossed-couple parame-

ters. The experiments are carried out for different operating conditions such as inlet

pressure, drop pressure, circumferential speed, rotor speed, excitation frequency.

For validation purposes, the results are compared with previous validated models or

experimental results in the literature.

1.2.4 Excitation signals

The quality of the estimates from the identification method strongly relies on the

excitation signal used. Sufficient seal-to-rotor displacement must be applied in order

to surpass the noise level in the sensors readings. If the excitation amplitude is small

compared to the noise, the identification method output is not reliable.

In general, three types of excitation have been used. Instrumented hammers are

used to apply impulsive signals to the structure (stator or rotor). In this case, a

frequency band is excited. Hydraulic shakers and magnetic actuators are also used

to apply a single frequency excitation, sweep excitation or multisine excitation.

Recently, active magnetic bearings are widely used to both support the rotor and

apply different excitation signals.

7



1.3 Stator-rotor contact

The efficiency of turbomachinery depends principally on their size, the diameter of

the rotor, the angular speed and clearances between rotating and stationary parts.

This thesis is focused on the latter. The smaller the clearance, the lower the leakage.

Nevertheless, when a certain operating condition causes high level of vibrations, a

contact, or rubbing, between those parts occur. Thus, improving the machinery

performance leads to the risk of a different dynamics.

In some cases, the rubbing only causes wear of the parts but may change the

dynamics of the machine. For example, when the rotor rubs slightly with a seal, the

clearance may increase due to the material removal; the parameters of the seal may

change considerably and also the dynamics of the overall machine. In other cases,

severe damage may occur as a result of high contact and friction forces. In any case,

the effects of the rubbing must be well understood to diminish the risk of hazardous

events.

The rubbing can be divided into two effects: thermal deformation and contact

forces. In the former, which is not considered in this thesis, a non-uniform tempera-

ture distribution causes a bending in the rotor. In the latter, which is addressed here,

normal and tangential forces are applied to both parts. The interaction between the

stator and rotor is simplified as mass-spring-damper systems. Nevertheless, the

system is strongly nonlinear and its analysis turns complex.

Problems with rubbing were found in the test rig from the Laboratory of Acous-

tics and Vibration (LAVI). When a test above the first critical speed needs to be

performed, the rotor must be accelerated quickly to avoid excessive vibrations due

to its unbalance.

1.4 Anisotropy and nonlinearity

For simplicity, rotors are considered axisymmetric, which in most cases is reasonable

due to the design and manufacturing processes. However, some of their components

may introduce certain anisotropy to the system. For example, keyways grooved in

circular shafts for coupling with other elements. However, the anisotropy can also

comes from failures of the rotor, such as cracks, that modifies the initial geometry.

Moreover, some other components may also introduce nonlinearities to the system.

This is the case of bearings and seals that are affected by fluid-induced forces.

If a rotor has a noncircular cross section, the stiffness along two orthogonal axis

is different. In this thesis, this configuration is called an anisotropic rotor. Similarly,

if a bearing has different stiffness along orthogonal axis, it is called a anisotropic

bearing. If the equations of motion are expressed in an inertial frame, a periodic
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stiffness matrix is obtained. On the other hand, if a non-inertial frame fixed in the

rotor center of mass is used, a constant stiffness matrix is obtained. Moreover, if

the rotor is supported by anisotropic bearings, it is not simple to obtain a constant

stiffness matrix by expressing the equations in either frame. Such systems can be

analyzed by Floquet or Hills theory. This thesis is focused on the former.

Nonlinearities in turbomachinery normally arises from fluid-induced forces. Con-

sidering small perturbation around an operating condition, the equations can be

linearized to simplify the analysis. However, some effects may not be explained by

linear systems theory. For example, if nonlinear stiffness and damping coefficients

are considered a richer dynamics is obtained. Such systems can be addressed by

different methods: perturbation methods, harmonic balance, multiple scales, nor-

mal forms, and others. This thesis makes use of the normal forms method. The

objective of the method is to reduce as much nonlinear terms as possible by using

a set of coordinate transformation that involves near-identity and polar coordinate

transformations. Hereafter, the set of equations obtained is autonomous, without an

explicit time dependency, and has fewer nonlinear terms. The new system exhibits

a simpler form that is topologically equivalent to the original system.

1.5 Objectives of the Thesis

The objectives of the thesis are summarized in Fig. 1.8 and described below.

- To analyze and test a rig for identifying annular gas seals coefficients. An

identification method is used to determine the seals coefficients of a labyrinth

seal. The method consists in exciting the rotor with an optimal multisine

signal and acquiring measurements of displacements and forces to create a

complex matrix whose entries are directly related to the seals coefficients. This

analysis considers only linear dynamics and the coefficients are only determined

experimentally. Theoretical analysis such as computer fluid dynamics or bulk-

flow are out of the scope.

- To study the different motion patterns observed in a system with rotor-stator

contact. A Jeffcott rotor in contact with a flexible stator is used to perform a

theoretical analysis of bifurcation. The effects of some parameters on the type

of response are addressed. Some motion patterns are investigated through

signal spectra, orbits and Poincaré maps.

- To analyze a rotordynamic system with anisotropy and nonlinearity with Flo-

quet theory and the normal forms method. A rotordynamic system with

anisotropic rotor and bearings, and a seal with cubic damping and stiffness

is considered. A Floquet analysis is performed to account for the anisotropy.
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Stability maps for the system are presented. The nonlinear analysis is carried

out by the normal forms method. The effect of the nonlinear stiffness and

damping on the fixed points is addressed.

Thesis

Identification of

annular gas seal

coefficients

Investigation of

rotor-stator

contact

Analysis of a

rotordynamic

system with

anisotropy and

nonlinearities
Model of the

rotor

Model of the

magnetic

actuators

Identification of

coefficients from

a test rig using
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Dynamic

Stiffness

Mathematical

model of contact

Type of orbits

Detection of

contact

Mathematical

model

Analysis of

anisotropy with

the Floquet

theory

Introduction to

the method of

normal forms

Analysis of fixed

points

Figure 1.8: Overview of the thesis.

1.6 Thesis structure

The thesis is divided in nine chapters.

A review of literature in Chapter 2 shows the most relevant works regarding an-

nular gas seals coefficients, rotor-stator contact models and the analysis of anisotropy

and nonlinearities in the rotordynamic field. Chapter 3 presents some aspects and

characteristics about the small-scale test rig built at LAVI. Chapter 4 is about the

dynamic model of the rotor by means of the finite element method. Some prelimi-

nary analysis of the rig are performed based on this model. Chapter 5 is dedicated

to the electromagnetic model of the actuators. The identification of seals coefficients
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is shown in Chapter 6. It is based on the Complex Dynamic Stiffness matrix, which

is obtained experimentally with force and vibration data. Chapter 7 studies the

behavior of the rotor under rotor-stator contact that eventually occurs during nor-

mal operation. Preliminary experiments are carried out to show the type of orbits

set during contact in the test rig. Theoretical linear and nonlinear analyses of a

rotor are performed in Chapter 8. First, the anisotropy influence on the stability is

assessed by the Floquet theory. Then, the fixed points created by nonlinear stiffness

and damping are analyzed by the normal form theory. In Chapter 9, the concluding

remarks are presented.
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Chapter 2

Literature Review

2.1 Overview of Literature

In this chapter, a review of the most relevant works about annular gas seals is pre-

sented. First, some works about annular gas seals are briefly exposed. Then, litera-

ture about rotor-stator contact problems in rotating machines is addressed. Finally,

works regarding rotordynamic systems with anisotropy and nonlinear parameters is

shown.

2.2 Annular gas seals

The model of labyrinth seals from Iwatsubo [11] is the base of subsequent models.

The flow in the clearance is divided in two parts. One of them is the turbulent flow

present in the seal cavities. The other part is the gas flow that is between the stator

and the seal teeth, without entering in the cavities. Taking into account this flow

behavior, the equations of continuity, circumferential moment and axial energy are

formulated and solved by a method of perturbation. The results were compared

with experimental data and showed good agreement for forward whirls.

Childs and Kim [12] determined the coefficients from a damping seal with a rough

surface and a stator with a smooth surface. This configuration showed more damping

with respect to a configuration with both stator and seal with rough surfaces.

Childs and Scharrer [13] determined the rotordynamic coefficients of teeth-on-

rotor and teeth-on-stator. The stiffness and damping for both the configurations

are insensitive to rotor speed variations. On the other hand, the coefficients are

sensitive to the swirl and the pressure drop in both configurations. However, the

teeth-on-stator seal is more stable in relation to the teeth-on-rotor configuration.

Dietzen and Nordmann [14] presented a model based on Naiver-Stokes equations

for turbulent flow. The equations are computed at the center of the seal and a
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perturbation around it is applied. They solution is based on the method of finite

differences.

Syssmann [15] compared theoretical and experimental results from a labyrinth

seals. The predictions for the cross-coupled stiffness and direct damping were similar

to those obtained from experiments. On the other hand, the results from the direct

stiffness and cross-coupled damping differed significantly.

Childs and Scharrer [16] proposed a model with two control volumes to predict

the behavior of labyrinth seals. The predictions were compared to experimental

data and showed good agreement for the direct and cross-coupled stiffness.

For honeycomb seals, Kleynhans and Childs [17] proposed a model also with

a two control volumes approach. The analysis showed that the honeycomb cells

reduced the effective acoustic speed of the flow. This fact reduces the acoustic

natural frequencies, which invalidates some previous models.

Yu and Childs [18] proposed a seal with a simpler manufacturing process than

the honeycomb seals, but with similar damping characteristics. It is a seal with

small holes around the surface, called hole-pattern seal. The results showed a leak-

age reduction of 12 % and a higher direct damping coefficient with respect to a

honeycomb seal.

Childs et al. [19] presented three different types of seals: Honeycomb, labyrinth

and smooth. For comparison purposes, the seals had the same diameter, length

and clearance. The comparisons concluded that the honeycomb seal has the lower

leakage, followed by the labyrinth and smooth seals. For a high swirl, the honeycomb

seal showed a better rotordynamic stability in relation to the others. However, for a

negative swirl, the labyrinth seal had a better stability, followed by the smooth and

honeycomb seals.

Kwanka and Magel [20] explained the relevance of the forces induced by the flow

in the interior of the labyrinth seals because they are capable of create unstable vi-

brations. The authors developed a identification method with a high sensitivity and

reproducibility. The experiments showed that the crossed-couple stiffness increase

linearly with the swirl and that the direct damping depends particularly of seal ge-

ometry. Another important conclusion is that for these type of seals the rotor speed

has a minimum influence on the coefficients. However, the crossed-couple stiffness

depends strongly on the pressure ration and swirl.

Picardo and Childs [21] studied teeth-on-stator labyrinth seals and shows the

dependency of the clearance, pressure ration and swirl. The results of the experi-

ments done are the following: The coefficients are independent of the frequency up

to 150 Hz; the terms of crossed-coupled are equal in magnitude but with opposite

sign; a reduction in the clearance does not affect significantly the damping or the

stability; the coefficients magnitude of labyrinth seals are much smaller to those of
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the hole-pattern; the flow leakage is reduce to a half with a clearance reduction of

50%.

In the paper of Vannini et al. [22] a test rig built in General Electrics for seal

coefficients identification is detailed. The rig is mainly composed of a rotor with 200

mm diameter, active magnetic bearings for support and excitation up to 330 Hz,

rotation speeds up to 15000 RPM and nitrogen as the operating fluid. The system

has an instrumentation to measure the relative displacement between the rotor and

stator, inlet and outlet pressure, fluid temperature, circumferential speed of the fluid

and mass flow. A labyrinth seal was tested and characterized in the rig to emulate

a balance piston of a 12.5 MW submarine compressor in Norway [23]. The results

were compared with a computational model and showed discrepancies in the direct

stiffness at higher frequencies, while the direct damping values were more accurate.

The work of Wagner et al. [3] presents an identification method for labyrinth

seals using a test rig developed by SIEMENS (see Fig. 2.1). It is driven by a motor

with a frequency inverter and a gearbox connected to the test rotor through a quill

shaft. The seals are arranged symmetrically in the high pressure region to balance

the axial thrust. Two magnetic bearings support the test rotor and they can variate

the static and dynamic eccentricity. Frequency, amplitude and whirl direction can be

set for different tests. Moreover, the magnetic bearings serves as force transducers,

so the tangential and radial forces can be obtained directly. The real scale of the

test rig allows to test seals in conditions similar to those on centrifugal compressors.

The inlet and outlet pressure are adjusted independently by electronic valves. In

order to determine the swirl in labyrinth seals, the static and dynamic pressure are

measured using pitot tubes.

The paper of Vannarsdall adn Childs [4] describes a identification of seals method

tested in a test rig built in Texas A&M University. The rig works at a pressure

of 70 bar and is composed of hydrostatic bearings, static and dynamic pressure

sensors, load cells, temperature sensors, proximity sensors, asynchronous excitation,

accelerometers and 3 different swirls. As the rig has no magnetic bearings, the seal

eccentricity is imposed using hydraulic shakers connected to the rig casing. The

test was initially developed to characterized hydrostatic bearings and, afterwards,

modified for identification of annular gas seals. The rig is able to test seals with

an inlet pressure of up to 70 bar. Hydraulic shakers are used to excite and control

the relative position between stator and rotor. The high pressure air is supply to

the center of stator by pre-swirl rings. The air that leaks through the outlet seal

clearance can be regulated, allowing to impose different pressure ratios and leakage.

During the test, the relative rotor-stator displacement and the shakers forces are

measured. The measurement and excitation are realized in 2 orthogonal directions,

parallel to the shakers. The temperature and pressure of the fluid are monitored
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Figure 2.1: Test rig from SIEMENS [3].

and registered. The theoretical and experimental results of the direct stiffness from

a hole-pattern seal is shown in Fig. 2.2.

From all the literature it was observed that the models are so complex that must

be compared with experimental data. Moreover, the results found are valid only

for the specific seals considered. This fact was a motivation for the construction of

a small-scale test rig in the Acoustics and Vibration Laboratory (LAVI), from the

Federal University of Rio de Janeiro. The characteristics and preliminary results

can be found in Côrtes [24], Maldonado et al. [25–28], Diaz et al. [29–31] and Pinto

et al. [32].

Further information about annular gas seals is found in Childs and Scharrer [16],

Atkins and Perez [33], San Andrés [34], Childs and Hale [35], Kerr [36], Gupta et

al. [37], Forte and Latini et al. [38], Kim and Lee [39], Burrows et al. [40], Lee et

al. [41] et al. and Tiwari et al. [42].
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Figure 2.2: Experimental (cross) and theoretical (line) results from direct stiffness
of a hole-pattern seal [4].

2.3 Rotor-stator contact models

The work of Ehrich [43] is one of the first investigations of rubbing between stator

and rotor. The author described subsynchronous whirls excited by the nonlinearity

of the contact. This vibration is a multiple of the critical speed, and becomes

relevant when running the machine at twice the critical speed. Black [44] studied

the change in the synchronous whirl by the intermittent interaction between the

stator and unbalanced rotor. Different interaction zones were described and they

may be different during a run-up or run-down. Counterwhirls were observed when

considering dry friction.

Isaksson [45] conducted an intensive theoretical investigation about rubbing us-

ing Jeffcott rotors and finite element method models. Among the most important

results are: jump phenomena during run-up and run-down, the improve of stability

by adding external damping and low friction, subharmonic vibrations when friction

is added and the influence of the stator offset.

In the work of Sawiki et al. [46], subharmonics, quasi-periodic and chaotic

responses were encountered in a multi-disk rotor system. Bifurcation diagrams and

Poincaré maps were used to analyze the vibrations.

Von Groll and Ewins [47] conducted experimental studies in which subharmonic

and superharmonic vibrations were observed. It was shown that the parameter that

determines the dominant frequency components depends on the resonance frequency

of the rotor-stator system and the rotor speed.

Muszynska and Goldman [48] also showed the existence of chaotic vibrations

zones of a rotor-bearinbg-stator system. Experimental results showed that the
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chaotic zones decrease with increasing damping.

Norrick et al. [49] used a analytical approach to predict backwhirl vibration

during a rotor-stator contact.The influence of the gyroscope effects were taken into

account.

Edwards et al. [50] carried out analyses on the influence of torsion in rotor-stator

rubbing. In the results, periodic and chaotic motion were observed. Also, it was

concluded that torsion has a considerable effect on the dynamics and should not be

neglected.

The interaction of a mechanical seal contacting a rotor was investigated by Bently

et al.[51]. Full annular rub was observed when increasing the mass unbalance of

the rotor and seal-rotor friction. In this condition, a reverse precession is present.

However, when the surfaces are lubricated, only synchronous motion is maintained.

Also, the rotor foundation plays an important role. No reverse precessional rub was

observed with flexible supports.

Lingener [52] studied reverse whirls when varying the rotor speed. The main

result is that if this whirl excites a resonance of the coupled rotor-stator system any

change of the rotational speed would not take the system out of this condition. In

experiments conducted by Wilkes, conditions called dry whip and dry whirl were

observed. The former is when the rotor rolls inside the stator without rolling. In

the latter, the rotor slides inside the stator. When changing the speed of rotor,

transitions from one condition to the other were observed.

In the work of Ehehalt et al. [5], the theoretical results of a model and the exper-

imental results from a test rig (see Fig. 2.3) are shown. The motion patterns seen

in the model were verified experimentally since parameters such as mass, stiffness

and damping are able to be modified from the rig.

From all the literature found, few results related to contact in seals were found.

In general, most of the rigs are simple systems with a flexible rotor and stator. This

thesis tends to explore this phenomenon in a test rig for annular gas seals.
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Figure 2.3: Test rig from the Technical University of Darmstadt [5]

2.4 Anisotropic rotor and bearings and nonlinear

parameters

One of the first efforts in explaining the dynamics of rotating machines is the work

of Jeffcott [8] and De Laval, showing that a flexible rotor is stable after surpassing

the first critical speed. Although the rotor considered is symmetric, it motivated

different research. A modified version of the Jeffcott rotor, considering asymme-

tries, were published by Prandtl [53], Foote [54] and Rogers [55]. They showed the

existence of other resonant frequencies different from the critical speed.

Brosens and Crandall studied a symmetric rotor with an asymmetric disk

mounted on anisotropic bearings. In this case, gyroscopic effects were taken into

account. Experimental results validated some of the calculated unstable regions.

Yamamoto and Ōta [56] considered an asymmetric rotor and showed that the

addition of external viscous damping tend to reduce the unstable regions.

Noah and Hopkins [57] presented a method, based on Hill’s analysis, to study

the stability of parametrically excited systems. Although they did not used rotor-

dynamic models, those type of systems are obtained when considering anisotropy.

Genta [58] showed a model of a rotor using the finite element model. A stability

analysis was performed by the Hill’s method.

Jei and Lee [59] applied a modal analysis to a continuous asymmetrical rotor

system. Resonances in forward and backward whirls are discussed.

Afolabi [60] presented a method to obtain a set of equations with constant coef-

ficients for a non-circular rotor mounted on asymmetric bearings.

Oncescu et al. [61] studied a finite element model of an anisotropic rotor via
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Floquet theory. A stability analysis showing the influence of the rotor and bearing

anisotropy is addressed.

Hull [62] conducted experimental investigations in a test apparatus with a flatten

rotor supported by asymmetric bearings. Regions of forward and backward whirls

where observed for different frequencies.

Iwatsubo [63] analyzed continuous rotor-bearing system by using the Galerkin’s

method and perturbation method. Results were validated using an experimental

apparatus. Results similar to other authors were found.

Ganesan [64] performed a non-stationary analysis of a system. The author fo-

cused to the motions near the critical speed.

Regarding nonlinear systems, different techniques are available (see [65–69]). For

comparison purposes, Elliott et al. [70] and Hill et al. [71] showed backbones curves

of a 2 degrees of freedom (2DOF) system via normal forms, multiple scales, harmonic

balance and numerical continuation. Results from the normal forms and harmonic

balance were more accurate, especially at frequencies far from the resonance. The

method of averaging has a strong similarity with the normal forms [72].

Jezequel and Lamarque [73], Neild and Wagg [74], and Neild et al. [75] applied

the method to different mechanical systems with satisfactory results.

Karev et al. [76] showed the occurrence of asynchronous parametric excitation

of a disk brake system with good results compared to numerical integration.

The present work is based on the normal forms method. The general theory

can be found in the books of Murdock [77], Guckenheimer and Holmes [78], Chow

and Wang [79] and Nayfeh [66]. Nevertheless, the application of the method to

rotordynamic systems has not been completely adopted.
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Chapter 3

Test Rig Prototype Description

In this chapter, the main characteristics of a test rig for annular gas seals are pre-

sented. The purpose of the rig is to investigate the dynamics of a seal. Specifi-

cally, the equivalent damping and stiffness coefficients. The rig was designed and

constructed in the Acoustics and Vibration Laboratory (LAVI) of the Federal Uni-

versity of Rio de Janeiro (UFRJ). The mechanical design was performed by Côrtes

[24]. The instrumentation and design of excitation signals is based on the work of

Diaz [29]. Some previous research about the test rig and the methodology of iden-

tification are presented by Maldonado et al. [25–28], Diaz et al. [29–31] and Pinto

et al. [32]. A picture of the rig is shown in Fig. 3.1.

3.1 Overview of the system

The rig cross section and its main parts are shown in Fig. 3.2 and detailed in Tabs.

3.1 and 3.2. It is basically composed of three main parts: A high pressure chamber,

where the inlet high pressure is connected; a low pressure chamber, where the gas

leaks to the atmosphere; and the test section, a region between the high and low

pressure chambers, where the seals are located.

The inlet pressure is connected to the high pressure chamber through the inlet

ring (red part) which distributes the pressure radially. The gas passes through a

swirl generator ring (yellow part) to impose a tangential speed to the flow. The seals

(orange parts) are placed inside the seals support (green part) so that the inlet gas

leaks through the clearance between the rotor and seals, at the test section. Once

the gas exits the seals, through the low pressure chamber, it is discharged through

a regulator valve to the atmosphere. The pressure and velocity field inside the

clearance create tangential and radial forces that can be modeled as linear stiffness

and damping, with direct and cross-coupled components. Those parameters are

obtained by applying radial forces by means of two electromagnetic actuators (part

No. 9). The clearance is measured by four proximity sensors (part No. 5). Two
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Figure 3.1: Test rig.

touchdown sleeves are used to avoid rubbing between rotor and seals, unbalance

disks (blue parts) are used reduce the vibration coming from residual unbalance.

Finally, the rotor is driven by a brushless DC motor (part No. 12).

The test rig is mainly built of steel. The touchdown sleeves are made of Teflon for

a low friction factor and wear reduction. The seals are built of aluminum because

it is less rigid than steel, which protects the rotor if the touchdown fails. The

pressures in the high and low pressure chambers were limited to 4 MPa (40 bar) and

2.5 MPa (25 bar) to keep the mass below 70 Kg, facilitating the handling inside the

laboratory facility. A swirl generator was used to emulate a typical characteristic of

turbomachinery, where the inlet fluid has a circumferential velocity.

One of the most important characteristics of the test rig is the rotor flexibility.
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Characteristics Value
Maximum test pressure 4 MPa (40 bar)
Maximum counter-pressure 2.5 MPa (25 bar)
Maximum rotor speed 8500 RPM
Rotor length 800 mm
Test section diameter 40 mm
Test section length 120 mm
Seal radial gap 0.4 mm
Safety touchdown radial gap 0.25 mm
Approximate test rig weight 65 kgf

Table 3.1: Main characteristics of the test rig.

Number Description Qty.
1 Rotor 1
2 Bearing flange 2
3 Balancing disk 2
4 Center assembly 1
5 Distance sensor bushing 4
6 Low pressure chamber 2
7 Rotor speed sensor housing 1
8 O-ring 6
9 Electromagnetic actuator stator 2
10 Electromagnetic actuator rotor 2
11 Bearing 2
12 Motor 1

Table 3.2: Main components of the test rig.

Vertical direction

Figure 3.2: Test rig cross section; see Tab. 3.2.

Since most turbomachinery work above the first critical speed, a test rig with a

flexible rotor would better represent the dynamics of such machines. Nevertheless,

this is a challenge for several reasons. First, since the relative displacements are

higher than in rigid rotors, the seals are more likely to touch the rotor, causing

nonlinear vibration and wear. Second, if the rig is placed horizontally, the rotor will

bend due to the gravity force and a different behavior will be set on the rotor. Third,
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Figure 3.3: Test rig instrumentation and control scheme.

the second mode shape of a flexible rotor does not guarantee similar displacements

measurements from sensors placed at equidistant locations.

3.1.1 Seals

The test seals used for the test are labyrinth type with 12 teeth (each one) and a

depth of 1 mm, as shown in detail in Fig. 3.4.

12 teeth

Figure 3.4: Cross section of the annular seal. Dimensions in mm.

3.2 Instrumentation

The instrumentation of the test rig is mainly made up of four proximity sensors, a

rotor speed sensor, two electromagnetic actuators, eight current amplifiers and sen-

sors, three pressure sensors, a brushless DC motor and a set of National Instruments
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boards (see Fig. 3.3). The gas is supplied by an air compressor with a capacity of

7 bar, and the inlet flow is controlled by a solenoid valve manually operated from a

computer.

3.2.1 Sensors

A set of two orthogonal proximity sensors are located near the seal to measure the

relative distance between rotor and stator. They are inductive-type sensors (Balluff

BAW004). A static calibration was performed in a calibration stand by measuring

a target at different distances and calibrating the values with a micrometer. The

values were acquired by a 24-bit data acquisition module (NI 9239). The calibration

curves are shown in Fig. 3.7a. Since the curves are not linear, a polynomial fitting

was applied.

The current in the actuators’ coils are measured by Hall effect-type sensors

(ACS715-5A). A static calibration was performed by varying the voltage across

a power resistor and measuring the current. The readings were calibrated with a

precision current clamp. The calibration curves are shown in Fig. 3.7b. In this case,

the curves are linear and only a linear fit was applied.

3.2.2 Actuators

The actuators are used to excite the rotor transversely based on induced electro-

magnetic forces. They are basically divided in two parts: a stator and a journal.

The stator is made of several sheets of non-oriented ferromagnetic material that are

stuck together to avoid power loss due to Eddy currents. They are shaped into an

eight-pole configuration to accommodate eight coils as seen in Fig. 3.5. The journal

is also made of stuck sheets but in a ring shape that is inserted in the shaft. The

design of the actuator was based on Maslen [80]. A picture of one of the actuators

is shown in Fig. 3.6.

The coils were placed in each of the stator poles. The interconnection between

the coils are shown in Fig. 3.5. In this scheme, the coils in poles 1 and 2 are used

to apply positive horizontal forces (to the right), while coils in poles 5 and 6 applies

negative horizontal forces (to the left). A similar behavior applies to the coils in

poles 3, 4, 7 and 8. This scheme is advantageous because the number of independent

currents are reduced to four.

The coil currents are driven by H-bridge circuit amplifiers (VNH2SP30), which

support up to 15A of continuous current. In total, four amplifiers were used per

actuator (one per pair of interconnected coils). This type of amplifier is based on

Pulse Width Modulation (PWM) in which the output voltage is varied in function

of the duty cycle of a switched signal. The desired voltage is set from the computer
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through National Instruments boards.

Figure 3.5: Eight-pole magnetic actuator.

Figure 3.6: Picture of the magnetic actuator assembled in the stator.

3.2.3 Acquisition and excitation signals

The displacement of the rotor and currents of the coils measured by the sensors are

acquired by Data Acquisition Boards from National Instruments.

25



Figure 3.7: Calibration curves for all (a) position and (b) current sensors.

The excitation signals are created in Matlab and exported to a Field Pro-

grammable Gate Array (FPGA) controller (CompactRio 9030) capable of synchro-

nization of the eight PWMs. Then, the signals are sent to the power amplifiers

through analog and digital output boards (NI 9239 and NI 9474) with a frequency

of 10 KHz.

3.2.4 Drive motor

The rig rotor is driven by a brushless DC motor linked with a flexible coupling. The

speed is measured by an optical interrupter. The maximum rotation reached was

8500 RPM. This speed is enough to surpass the first critical speed of the rotor.

3.2.5 Labview interface

A graphical interface allows the visualization of the variables and the modification

of some parameters (rotor speed, data storage, sampling rate, type of excitation

signal, etc). The signals are shown in the time domain, frequency domain and as

orbits. Also, it is used to save the data in a text file for post-processing.
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Chapter 4

Finite element model of the rotor

In this chapter, the rotor of the rig modeled using the finite element method. The

Timoshenko beam theory (Astley [81], Davis et al. [82], Inman [83], Petyt [84],

Thomas et al. [85]) is used to model the dynamics of each element. Once the

equations for each element is obtained, the overall equations of motions are derived

by assembling the mass, stiffness and gyroscopic matrix. The damping matrix is

obtained assuming a modal damping.

The equations of motion obtained are used to analyze some properties of the ro-

tor, before the analysis of the annular seals. First, the Campbell diagram is plotted

to visualize the first critical speeds and the influence of the gyroscopic effects. Sec-

ond, the frequency response function is shown to observe behavior of the amplitude

of vibration of a single point in the rotor when the rotation speed is varied. These

analyses are useful to know a priori the critical speeds of the rig.

4.1 Finite element theory

The dynamics of the rig’s rotor bending can be determined by applying a finite ele-

ment method. The rotor is divided in several regions modeled with the Timoshenko

beam theory. In this formulation, each node has four degrees of freedom represented

by four generalized coordinates: two transversal displacements and two rotations.

This section is based on the books of Lalanne and Ferraris [86], Nelson [87], and

Nelson and McVaugh [88], and the thesis of Ritto [89].

The first step is to define the coordinates. In Fig. 4.1, a representative beam

element e is shown in two orthogonal planes. In the x-z plane, the nodal displace-

ments uxe1 and uxe2 are along the x axis, while the nodal angles θe1 and θe2 are

measured around the y axis, with the positive direction defined by the right-hand

rule between z and x. On the other hand, the nodal displacements uey1 and uey2 are

along the y axis and the nodal angles φ1 and φ2 are measured around the x axis,

with the positive direction defined by the right-hand rule between z and y. The
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element displacements uxe and uye represents the transversal displacement of any

point (x, y) in the element. This variables can be expressed in vector notation as

ue(ξ, t) =

[
uxe(ξ, t)

uye(ξ, t)

]
, (4.1)

uek(t) =
[
uxe1(t) θe1(t) uye1(t) φe1(t) uxe2(t) θe2(t) uye2(t) φe2(t)

]T
. (4.2)

Figure 4.1: Local coordinates for a beam element.

Considering the Timoshenko beam theory, a small section of the element e is

shown in Fig. 4.2. As opposed to the Euler-Bernoulli beam theory, the shear angles

vector ψe = [αe, βe]
T are considered. Thus, the angles vector Θe = [θe, φe]

T of the

beam element cross section is

Θe(ξ, t) = S
∂ue(ξ, t)

∂ξ
+ψe(ξ, t), (4.3)

where the matrix

S =

[
1 0

0 −1

]
(4.4)

is used to account for the sign convention illustrated in Fig. 4.1, where a positive

angle θ corresponds to a positive slope of the centerline (neutral axis or neutral

plane) and a positive angle φ corresponds to a negative slope. The shear angles can
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Figure 4.2: Local coordinates and share angles for a beam element.

be related ([83]) to the element displacements by using the following equation:

∂

∂ξ

(
EeIe

∂Θe(ξ, t)

∂ξ

)
= κeGeAeψe(ξ, t), (4.5)

where Ae is the area of the cross section,

κe =
6(1 + νe)

2

7 + 12νe + 4ν2
e

(4.6)

is a shear constant, Ie is the second moment of area of the cross section about the

neutral plane, Ee is the Young’s modulus,

Ge =
Ee

2(1 + νe)
(4.7)

is the shear modulus, νe is the Poisson’s ratio. Considering a element with constant
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cross section, the substitution of Eq. (4.3) in Eq. (4.5) yields

∂2ψe(ξ, t)

∂ξ2
+ S

∂3ue(ξ, t)

∂ξ3
=
κeGeAe
EeIe

ψe(ξ, t). (4.8)

The solution of Eq. (4.8), for an uniform beam element, is approximated by

ψe(ξ, t) =
γel

2
e

12
S
∂3ue(ξ, t)

∂ξ3
, (4.9)

where

γe =
12EeIe
κeGeAel2e

. (4.10)

Thus, Eq. (4.3) turns to

Θe(ξ, t) = S
∂ue(ξ, t)

∂ξ
+
γel

2
e

12
S
∂3ue(ξ, t)

∂ξ3
. (4.11)

The key idea of the finite element method is to eliminate the partial derivatives of

the equations of motion by assuming a polynomial function for the displacement

field inside the beam element. In this work, the third order polynomial

ue(ξ, t) = a0(t) + a1(t)ξ + a2(t)ξ2 + a3(t)ξ3 (4.12)

is used, where ai(t) depends on the nodal displacements and angles. Thus, consid-

ering the boundary conditions

uxe(le) =uxe2, (4.13a)

uxe(0) =uxe1, (4.13b)

∂uxe(0, t)

∂ξ
+ αe(0, t) =θe1(t), (4.13c)

∂uxe(le, t)

∂ξ
+ αe(le, t) =θe2(t), (4.13d)

uye(0) =uye1, (4.13e)

uye(le) =vye2, (4.13f)

∂uye(le, t)

∂ξ
+ βe(le, t) =φe2(t), (4.13g)

∂uye(le, t)

∂ξ
+ βe(le, t) =φe2(t), (4.13h)

the element displacement vector can be separated as

ue(ξ, t) = Ne(ξ)uek(t), (4.14)
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where,

Ne(ξ) =

[
Ne1(ξ) Ne2(ξ) 0 0 Ne3(ξ) Ne4(ξ) 0 0

0 0 Ne1(ξ) −Ne2(ξ) 0 0 Ne3(ξ) −Ne4(ξ)

]
(4.15)

is called the shape function matrix with

Ne1(ξ) =
1

1 + γe

(
1 + γe −

γe
le
ξ − 3

l2e
ξ2 +

2

l3e
ξ3

)
, (4.16a)

Ne2(ξ) =
le

1 + γe

(
2 + γe

2le
ξ − 4 + γe

2l2e
ξ2 +

1

l3e
ξ3

)
, (4.16b)

Ne3(ξ) =
1

1 + γe

(
γe
le
ξ +

3

l2e
ξ2 − 2

l3e
ξ3

)
, (4.16c)

Ne4(ξ) =
le

1 + γe

(
− γe

2le
ξ − 2− γe

2l2e
ξ2 +

1

l3e
ξ3

)
. (4.16d)

The equations of motion for a beam element can be derived by using the Lagrange’s

equations. The first step is to define the Lagrangian Le of an element e as

Le = TLe + TGe − Ue, (4.17)

where TLe is the kinetic energy due to bending, TGe is the kinetic energy due to

rotation speed and Ue is the strain energy. Then, the equation of motion is derived

as
d

dt

(
∂L

∂u̇e

)
− ∂L

∂u e
= Fext. (4.18)

The strain energy Ue is

Ue =
1

2
EeIe

ˆ le

0

∣∣∣∣∂2Θe

∂ξ2

∣∣∣∣2 dξ +
1

2
κ2
eGeAe

1

2

ˆ le

0

|ψe|
2 dξ. (4.19)

If the cross section of the element is uniform, the following equation holds

∂Θe

∂ξ
= S

∂2ue
∂ξ2

+
∂ψe

∂ξ
= S

∂2ue
∂ξ2

. (4.20)
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Thus, the strain energy is

=
1

2
EeIe

ˆ le

0

(
S
∂2 (Neuek)

∂ξ2

)T (
S
∂2 (Neuek)

∂ξ2

)
dξ

+
1

2

EeIeγel
2
e

12

ˆ le

0

(
S
∂3(Neuek)

∂ξ3

)T (
S
∂3(Neuek)

∂ξ3

)
dξ

=
1

2
uTek

(
EeIe

ˆ le

0

N′′Te N′′edξ +
EeIeγel

2
e

12

ˆ le

0

N′′′e N′′′Te dξ

)
uek

=
1

2
uTekKeuek, (4.21)

where

Ke = EeIe

ˆ le

0

N′′Te N′′edξ +
EeIeγel

2
e

12

ˆ le

0

N′′′e N′′′Te dξ (4.22)

is the stiffness matrix of a beam element.

The kinetic energy due to the bending of the element is

TLe =
1

2
ρeAe

ˆ le

0

∣∣∣∣∂ue(ξ, t)

∂t

∣∣∣∣2 dξ +
1

2
ρeIe

ˆ le

0

∣∣∣∣∂Θ

∂t

∣∣∣∣2 dξ
=

1

2
ρeAe

ˆ le

0

∣∣∣∣∂ue(ξ, t)

∂t

∣∣∣∣2 dξ +
1

2
ρeIe

ˆ le

0

∣∣∣∣∂ψ∂t + S
∂2ue
∂ξ∂t

∣∣∣∣2 dξ
=

1

2
ρeAe

ˆ le

0

(
∂ue
∂t

)T (
∂ue
∂t

)
dξ

+
1

2
ρeIe

ˆ le

0

(
∂ψ

∂t
+ S

∂2ue
∂ξ∂t

)T (
∂ψ

∂t
+ S

∂2ue
∂ξ∂t

)
dξ

=
1

2
ρeAe

ˆ le

0

(
∂ (Neuek)

∂t

)T (
∂ (Neuek)

∂t

)
dξ

+
1

2
ρeIe

ˆ le

0

(
γel

2
e

12
S
∂4 (Neuek)

∂ξ3∂t
+ S

∂2 (Neuek)

∂ξ∂t

)T
·
(
γel

2
e

12
S
∂4 (Neuek)

∂ξ3∂t
+ S

∂2 (Neuek)

∂ξ∂t

)
dξ

=
1

2
u̇Tek

(
ρeAe

ˆ le

0

NT
e Nedξ + ρeIe

ˆ le

0

(
γel

2
e

12
N′′′e + N′e

)T(
γel

2
e

12
N′′′e + N′e

)
dξ

)
u̇ek

TLe =
1

2
u̇TekMeu̇ek, (4.23)

where

Me = ρeAe

ˆ le

0

NT
e Nedξ + ρeIe

ˆ le

0

(
γel

2
e

12
N′′′e + N′e

)T (
γel

2
e

12
N′′′e + N′e

)
dξ (4.24)

is defined as the mass matrix.
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The kinetic energy due to the rotational speed is

TGe = −2ρeIeΩ

ˆ le

0

∂θe(ξ, t)

∂t
φe(ξ, t)dξ, (4.25)

or in matrix notation as

TGe =− 2ρeIeΩ

ˆ le

0

Θ̇
T
PΘdξ, (4.26)

where

P =

[
0 1

0 0

]
. (4.27)

Thus, this kinetic energy is

TGe =− 2ρeIeΩ

ˆ le

0

(
Su̇′e +

γel
2
e

12
Su̇′′′e

)T
P

(
Su′e +

γel
2
e

12
Su′′′e

)
dξ

=− 2ρeIeΩ

ˆ le

0

(
SN′eu̇ek +

γel
2
e

12
SN′′′e u̇ek

)T
P

(
SN′euek +

γel
2
e

12
SN′′′e uek

)
dξ

=− 2ρeIeΩu̇Tek

(ˆ le

0

N′Te SPSN′edξ +
γel

2
e

12

ˆ le

0

N′Te SPSN′′′e dξ

+
γel

2
e

12

ˆ le

0

N′′′Te SPSN′edξ +

(
γel

2
e

12

)2 ˆ le

0

N′′′Te SPSN′′′e dξ

)
uek

=u̇TekBeuek, (4.28)

where

Be =− 2ρeIeΩ

(ˆ le

0

N′Te SPSN′edξ +
γel

2
e

12

ˆ le

0

N′Te SPSN′′′e dξ

+
γel

2
e

12

ˆ le

0

N′′′Te SPSN′edξ +

(
γel

2
e

12

)2 ˆ le

0

N′′′Te SPSN′′′e dξ

)
. (4.29)

The equations of motion are obtained by applying the Lagrange’s equations in (4.18)

based on Eqs. (4.22), (4.24) and (4.29):

Meüe(t) + Geu̇e(t) + Keue(t) = Fext(t), (4.30)
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where

Ke =
EIe

(1 + γe)l3e
,



k1 k2 0 0 −k1 k2 0 0

k2 k3 0 0 −k2 k4 0 0

0 0 k1 −k2 0 0 −k1 −k2

0 0 −k2 k3 0 0 k2 k4

−k1 −k2 0 0 k1 −k2 0 0

k2 k4 0 0 −k2 k3 0 0

0 0 −k1 k2 0 0 k1 k2

0 0 −k2 k4 0 0 k2 k3


, (4.31)

with k1 = 12, k2 = 6le, k3 = (4 + γe)l
2
e , k4 = (2− γe)l2e ,

Me =
ρAle

840(1 + γe)2



m1 m2 0 0 m3 m4 0 0

m2 m5 0 0 −m4 m6 0 0

0 0 m1 −m2 0 0 m3 −m4

0 0 −m2 m5 0 0 m4 m6

m3 −m4 0 0 m1 −m2 0 0

n4 m6 0 0 −m2 m5 0 0

0 0 m3 m4 0 0 m1 m2

0 0 −m4 m6 0 0 m2 m5



+
ρIe

30le(1 + γe)2



m7 m8 0 0 −m7 m8 0 0

m8 m9 0 0 −m8 m10 0 0

0 0 m7 −m8 0 0 −m7 −m8

0 0 −m8 m9 0 0 m8 m10

−m7 −m8 0 0 m7 −m8 0 0

m8 m10 0 0 −m8 m9 0 0

0 0 −m7 m8 0 0 m7 m8

0 0 −m8 m10 0 0 m8 m9


, (4.32)

with
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m1 =312 + 588γe + 280γ2
e ,

m2 =(44 + 77γa + 35γ2
e )le,

m3 =108 + 252γe + 140γ2
e ,

m4 =− (26 + 63γe + 35γ2
e )le,

m5 =(8 + 14γe + 7γ2
e )l

2
e ,

m6 =− (6 + 14γe + 7γ2
e )l

2
e ,

m7 =36,

m8 =(3− 15γe)le,

m9 =(4 + 5γe + 10γ2
e )l

2
e ,

m10 =(−1− 5γe + 5γ2
e )l

2
e ,

Ge =
(
Be −BT

e

)
=

ρIpΩ

15(1 + γe)2le



0 0 −g1 g2 0 0 g1 g2

0 0 −g2 g3 0 0 g2 g4

g1 g2 0 0 −g1 g2 0 0

−g2 −g3 0 0 g2 −g4 0 0

0 0 g1 −g2 0 0 −g1 −g2

0 0 −g2 g4 0 0 g2 g3

−g1 −g2 0 0 g1 −g2 0 0

−g2 −g4 0 0 −g2 −g3 0 0


, (4.33)

where g1 = 36, g2 = (3− 15γe)le, g3 = (4 + 5γe + 10γ2
e )l

2
e , g4 = (−1− 5γe + 5γ2

e )l
2
e .

The mass, stiffness and gyroscopic matrices shown here were obtained using a

symbolic computation code in Mathematica, which is shown in Appendix E.3.

4.1.1 Global matrix assembly

The equation of motion of the overall rotor is obtained by assembling the stiffness,

mass and gyroscopic matrix according to the extended displacement vector u con-

taining the overall nodes. The equation obtained is

Mü(t) + G(Ω)u̇(t) + Ku(t) = f(t), (4.34)

where M ∈ R4(Ne+1)×4(Ne+1), K ∈ R4(Ne+1)×4(Ne+1), G ∈ R4(Ne+1)×4(Ne+1) and f ∈
R4(Ne+1)×1 are the global matrices and vector force and Ne the number of elements.

4.2 Modal damping

In the previous section, the damping forces were not considered. In this thesis, a

modal damping approach is applied. The damped version of Eq. (4.34) is

Mü(t) + G(Ω)u̇(t) + Cu̇(t) + Ku(t) = f(t), (4.35)
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where C is the damping matrix. Thereafter, the equation is written in the modal

coordinates η by means of the transformation

u = Φη, (4.36)

where Φ is a modal matrix obtained from the eigenvalue problem

KΦ = MΦΛ. (4.37)

After substituting Eq. (4.36) in Eq. (4.35) and multiplying by ΦT , the following

equation is obtained:

ΦTMΦη̈ + ΦTGΦη̇ + ΦTCΦη̇ + ΦTKΦη = ΦTF, (4.38)

where it is assumed that the eigenvalue matrix Φ diagonalizes the damping matrix.

Since, Φ diagonalizes M and K, and considering negligible gyroscopic effects, the

mode shapes from Eq. (4.38) are decoupled. Thus, the damping value of each mode

shape is

ΦTCΦ = diag(c1, c3, . . . , cn) = diag(2ζ1ω1, 2ζ2ω2, . . . , 2ζnωn) = c, (4.39)

where ζi and ωi is the damping ratio and natural frequency of the i-th mode shape.

When each mode shape is given a value, the damping matrix is obtained:

C =
(
ΦT
)−1

cΦ−1. (4.40)

4.3 Convergence analysis

The finite element method is an approximation of the exact solution of the rotor. By

assuming shape functions, an approximation error is introduced in the equations.

However, if the length of the element is small enough, the involved error may be

reasonable depending on the type purpose of the analysis. In this thesis, the finite

element method is used to model the rotor dynamics up to the second critical speed.

Thus, a convergence analysis can be performed to assess the error. The approach

used is to divide the rotor into the regions of constant area, which gives the N -th

natural frequency ωN(Ne). Then, each element is divided into two smaller elements,

which gives the N -th natural frequency ωN(Ne/2). Based on these results, the

relative error is defined as

error(N,Ne) ≈
|ωN(Ne)− ωN(Ne/2)|

ωN(Ne)
. (4.41)
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For thus thesis, this process is performed until the error of the second natural

frequency is less than 5%. This is reached by dividing the rotor in 10 elements

(Ne = 10).

4.4 Analysis of the rig’s rotor

A representation of the rig is shown in Fig. 4.3. It is a flexible rotor with two

bearings at the ends, two seals in the middle region and two radial forces. Based on

Eq. (4.35), the system equations are:

Figure 4.3: Representation of the test-rig. All dimensions are in millimeters.

Mü(t) + (C + G) u̇(t) + Ku(t) = fa(t) + fu(t), (4.42)

where fa is the actuators forces and unbalancing force fu.

For certain analysis, such as mode shapes, frequency response functions and

Campbell diagrams, the homogeneous first-order version of Eq. (4.42) is useful.

This new equation is[
u̇

ü

]
=

[
0 I

−M−1K −M−1(C + G(Ω))

][
u

u̇

]
. (4.43)

This system leads to the eigenvalue problem

A(Ω)νk = ωkνk, (4.44)

where A is the matrix of Eq. (4.43), νk is the k-th eigenvector and ωk the k-th

eigenfrequency. The eigenvectors are related to the mode shapes of the rotor, while

the eigenfrequencies are related to its critical speeds.
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4.4.1 Mode shapes

The vibration of the test rig’s rotor can be better visualized by plotting the mode

shapes, which are obtained from the eigenvalue problem. In this analysis, only the

first two modes are considered since the motor drive the rotor up to 8500 RPM.

The mode shapes (bending modes) are shown Fig. 4.4. In the first mode, the

displacement distribution is symmetric with respect to the center of the rotor; the

readings of sensor A are the same as the readings of sensor B. In the second mode,

the displacement distribution is anti-symmetric; the readings of both sensors have

the same magnitude but with opposite sign.

Figure 4.4: Mode shapes for the first two critical speeds of the rotor.

4.4.2 Campbell diagram

The Campbell diagram is based on the eigenfrequencies obtained from Eq. (4.44)

the eigenvalue problem. It is shown in Fig. 4.5 for the first two bending modes.

The eigenfrequencies are divided into two types: Forward whirl and Backward whirl.

In the former, the rotor’s orbit moves in the same direction of the rotor’s angular

velocity. In the latter, the orbit moves in the opposite direction. These two motion

are represented as solid lines (forward) and dotted lines (backward) in Fig. 4.5.

Also, the synchronous speed is represented as a dashed line. The crossing of the

synchronous speed with an eigenfrequency represents a critical speed. The first two

critical speeds are 2100 RPM and 8160 RPM, respectively. From the figure, it can

be noted that the forward and backward whirl branches do not vary considerably

with the frequency, which means that the gyroscopic effect is negligible. This is an

expected behavior due to the symmetry of the rotor.
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Figure 4.5: Campbell diagram of the rotor for the first two critical speeds.

4.4.3 Frequency response function

A Frequency Response Function (FRF) analysis can be obtained by considering the

excitation force and displacement vectors

fa(t) = Fa(ω)e−iωt+φf ,

u(t) = U(ω)e−iωt+φu .
(4.45)

The force vector is considered to be applied at the position of the actuators/sensors

(nodes 4 and 8); both actuators applies the same force along each axis. The displace-

ment vector is considered to be measured at the same nodes. This yields a system

with two inputs and four outputs: one actuator force per axis and two points of

measurements per axis. As a result of the symmetry of the rotor and applied forces,

the displacements at node 4 is equal to that of node 8. In the case of symmetry, the

displacements of both nodes can be averaged. Thus, the final system is represented

by two input forces and two output displacements.

The substitution of Eq. (4.45) in Eq. (4.42) gives the following FRF matrix

(length per unit force):

UF−1
a =

(
−ω2M + iω (C + G(Ω)) + K

)−1
. (4.46)

This equation is a frequency-dependent matrix representing the FRF of the entire

system, i.e., considering all nodes. For an excitation along one direction and mea-
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surements at the sensors’ position, the FRF takes a single value for each frequency

ω. The magnitude and phase of this function are shown in Figs. 4.6 and 4.7; they

are valid for nodes 4 and 8. The magnitude shows the peak of the first critical speed.

Although the second critical speed occurs at 136 Hz (see Fig. 4.5), it is not observed

in the FRF. At this frequency, the left and right halves of the rotor are 180 degrees

out of phase (see Fig. 4.4), and the left and right actuators forces are in phase.

Thus, the excitation forces tends to excite the first mode. This is clarified in the

next subsection. The phase of the FRF shows a rapid phase change near the first

critical speed. However, as stated before, both FRFs for the 4 and 8 have similar

phase for the first mode.

Figure 4.6: Magnitude of the FRF for an excitation at nodes 4 and 8, and displace-
ments computed at node 4.
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Figure 4.7: Phase of the FRF for an excitation at nodes 4 and 8, and displacements
computed at node 4.

4.4.4 Unbalance response

An unbalance response in the frequency domain can be performed by considering

two unbalancing masses mu3, mu9 at the nodes 3 and 9. This is modeled as the

following forces:

fu3 =
[
mu3ru3Ω2 cos(Ωt),mu3ru3Ω2 sin(Ωt)

]T
,

fu9 =
[
mu9ru9Ω2 cos(Ωt),mu9ru9Ω2 sin(Ωt)

]T
.

Thus, by considering the excitation and displacement forces

fu(t) = [· · · , fu3, · · · , fu9, · · · ]T ,

u(t) = U(ω)e−iωt+φu ,
(4.47)

the unbalance response in the frequency domain is

U =
(
−ω2M + iω (C + G(Ω)) + K

)−1
fu. (4.48)

This response is shown for three cases in Fig. 4.8. In the Case 1, a static unbalance

was applied. Two identical unbalance masses were added in phase to the nodes 3

and 9. Similar to the FRF in Fig. 4.6, only the first mode is excited with a static

unbalance. The Case 2 is simulated with a couple unbalance. A similar arrangement
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to the static unbalance was used, but the masses were located 180◦ opposite to each

other. The response magnitude only excites the second critical speed. The Case 3

combines the static and couple unbalances. The masses are also located with a 180◦

phase, but the masses are different. This dynamic unbalance excites the first and

second critical speeds.

Figure 4.8: Magnitude of the system response due to unbalance forces. Three cases
were tested. Case 1: Static unbalance. Case 2: Couple unbalance. Case 3: Dynamic
unbalance.

4.4.5 Complex Dynamic Stiffness

The Complex Dynamic Stiffness (CDS) is defined as

H = −ω2M + iω (C + G(Ω)) + K, (4.49)

which is the inverse of the FRF from Eq. (4.46). It is a convenient function because

the system matrices are directly obtained from its real and imaginary parts. Fig.

4.9 shows the magnitude of the CDS computed at the left proximity sensor of the

rig for an excitation along the x direction. The critical speeds correspond to points

of minimum amplitude. The real part of the CDS corresponds to K− ω2M, which

are quadratic equations with respect to the frequency. Fig. 4.9 shows this function

computed at the left proximity sensor of the rig. The zeroes of this function corre-

sponds to the critical speeds. On the other hand, the imaginary part of the CDS
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corresponds to ωC, which are linear equations with respect to the frequency. Fig.

4.9 shows this function computed at the left proximity sensor of the rig. Since the

modal damping model was used in the finite element method, the slope of the curve

correspond to the damping. The identification method explained in Chapter 6 is

based on the CDS.

Figure 4.9: CDS for an excitation at nodes 4 and 8, and displacements computed
at node 4.
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Chapter 5

Electromagnetic model of the

actuator

The actuator is formed basically by a rotor, an eight-pole stator and coils wound in

each pole, as shown in Fig. 5.1. The excitation forces of the actuator are created due

to the magnetic field imposed by electric currents carried by the coils. Considering a

ferromagnetic material with high permeability µ0, the electromagnetic forces acting

on the body can be approximated as

f =
1

2µ0

‹
|B|2ds, (5.1)

where s is a surface enclosing the body. The purpose of this section is to determine

the magnetic flux density B in order to obtain the actuator’s electromagnetic forces

in terms of the coils currents and the material properties.
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Figure 5.1: Magnetic actuator with an eight poles electromagnet.

5.1 Constitutive law of the material

An electric current creates a magnetic field intensity H (A/m), regardless the type

of material inserted in the field. The magnetic flux density B (Tesla) is a response

of the material to the magnetic field H. For an isotropic material and low frequency

excitation, they are related by

B(t) = µ(t)H(t), (5.2)

where µ is known as permeability. A typical B-H curve for a silicon iron is shown

in Fig. 5.2. Two important properties can be observed. The permeability is the

slope of the curve. The curve has an asymptotic behavior or saturation. This last

property means that, when a certain magnetizing force is achieved, the material can

no longer amplify the applied field.
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Figure 5.2: B-H curve for a silicon iron (from Maslen [80]).

5.2 Governing equations

The Maxwell’s equations are useful to describe the magnetic quantities, specially

the Ampere’s and Gauss’s Law.

Ampère’s law

Considering a two dimension model of the actuator shown in Fig. 5.3, the Ampère’s

law is expressed as ∮
L

H · d` =

ˆ
A

J · da, (5.3)

where L is a closed path around an open surface and d` a length vector of an

infinitesimal element of L with the direction defined by the tangent to L. The

vector J is the current density.

In order to simplify this law, one can make the following assumptions:

1. The vector d` is parallel to H.

2. The path L can be broken into discrete segments ns where H is constant.

3. The current density J is confined to the coils.

4. J is uniform along the coil.

5. The permeability is constant along each segment.

Thus, considering a stator with nc coils, each one with Nk turns and carrying a
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curent ik, the Ampère’s law is simplified as:

ns∑
i=1

Bi`i
gi

=
nc∑
k=1

Nkik. (5.4)

Considering the eight paths of the actuator, the following equations hold:

B1g1

µ0

− B2g2

µ0

= N(i1 − i2) −→ for the loop between coils 1 and 2, (5.5a)

B2g2

µ0

− B3g3

µ0

= N(i2 − i3) −→ for the loop between coils 2 and 3, (5.5b)

B3g3

µ0

− B4g4

µ0

= N(i3 − i4) −→ for the loop between coils 3 and 4, (5.5c)

B4g4

µ0

− B5g5

µ0

= N(i4 − i5) −→ for the loop between coils 4 and 5, (5.5d)

B5g5

µ0

− B6g6

µ0

= N(i5 − i6) −→ for the loop between coils 5 and 6, (5.5e)

B6g6

µ0

− B7g7

µ0

= N(i6 − i7) −→ for the loop between coils 6 and 7, (5.5f)

B7g7

µ0

− B8g8

µ0

= N(i7 − i8) −→ for the loop between coils 7 and 8. (5.5g)

Gauss’s Law (Conservation of flux)

From Fig. 5.3, the Gauss’s law is expressed as

‹
S

B · ds = 0, (5.6)

where S is a closed surface surrounding a certain volume and ds is a vector area of

an infinitesimal element of S. The direction of ds is normal to S.

This law can also be simplified assuming that total surface enclosing the magnetic

circuit can be divided into np discrete patches where B is parallel to ds. Thus, the

Gauss’s law is reduced to:
np∑
i=1

BiAi = 0. (5.7)

Considering a constant area Ag, the equation of conservation of flux are

Ag(B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8) = 0. (5.8)

47



Figure 5.3: Gauss’s and Ampère’s law applied to one patch and one path.

5.2.1 Force model

The force vector of Eq. (5.1) is also simplified by using the previous assumptions.

It is expressed as:

f =
1

2µ0

np∑
i=1

B2
iAinAi

=

[
fx

fy

]
=


1

2µ0

∑np

i=1 B
2
iAi cos(

π

4
i− 3π

8
)

1

2µ0

∑np

i=1B
2
iAi sin(

π

4
i− 3π

8
)

 , (5.9)

where nAi
is an unitary vector perpendicular to the patch’s area Ai. In matrix

notation, the magnetic forces, expressed in an inertial frame with coordinates (x, y),

are:

f =

[
BTAxB

BTAyB

]
. (5.10)
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where

Ax =
Ag
2µ0



1 0 0 0 0 0 0 0

0
1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0
−1√

2
0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0
−1√

2
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1√
2



, (5.11)

Ay =
Ag
2µ0



0 0 0 0 0 0 0 0

0
1√
2

0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0
1√
2

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0
−1√

2
0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0
−1√

2



, (5.12)

are the air gap area matrices.

For the actuator of Fig. 5.1, the governing equations can be expressed in matrix

notation as

RB = Ni, (5.13)

where

B =
[
B1 B2 B3 B4 B5 B6 B7 B8

]T
, (5.14)

N = N



1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0


, (5.15)

i =
[
i1 i2 i3 i4 i5 i6 i7 i8

]T
, (5.16)
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R =
1

µ0



−g1 g2 0 0 0 0 0 0

0 −g2 g3 0 0 0 0 0

0 0 −g3 g4 0 0 0 0

0 0 0 −g4 g5 0 0 0

0 0 0 0 −g5 g6 0 0

0 0 0 0 0 −g6 g7 0

0 0 0 0 0 0 −g7 g8

µ0Ag µ0Ag µ0Ag µ0Ag µ0Ag µ0Ag µ0Ag µ0Ag


, (5.17)

with

g1 =g0 − x, (5.18)

g2 =g0 −
1√
2
x− 1√

2
y, (5.19)

g3 =g0 − y, (5.20)

g4 =g0 +
1√
2
x− 1√

2
y, (5.21)

g5 =g0 + x, (5.22)

g6 =g0 +
1√
2
x+

1√
2
y, (5.23)

g7 =g0 + y, (5.24)

g8 =g0 −
1√
2
x+

1√
2
y. (5.25)

R is the reluctance matrix, N is the linkage matrix, and i the current vector and B

is the magnetic flux density vector.

Thus, the magnetic flux density vector can be obtained by:

B = R−1Ni. (5.26)

Substituting Eq. (5.26) in Eq. (5.10), the magnetic force vector in terms of the

current vector, linkage matrix, reluctance matrix and area matrices is

f =

[
iTNTR−TAxR

−1Ni

iTNTR−TAyR
−1Ni

]
. (5.27)
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For small displacements inside the gap, Eq. (5.27) is reduced to:

f =


cos(

π

8
)µ0AgN

2

 i21(
g0 − x cos(

π

8
)
)2 −

i25(
g0 + x cos(

π

8
)
)2


cos(

π

8
)µ0AgN

2

 i23(
g0 − y cos(

π

8
)
)2 −

i27(
g0 + y cos(

π

8
)
)2




. (5.28)

Eq. (5.28) was obtained by using a symbolic computation code in Mathematica,

which is shown in Appendix E.4.

Linearization of the force model

The forces of Eq. (5.27) depend on eight independent currents. For applications

such as excitation and control, it is convenient to reduce the independent currents by

wiring two consecutive coils in series and applying a bias current. This configuration

is shown in Fig. 5.4. This current law is applied by using the current matrix C:

i = Ĉı, (5.29)

where

C =



1 0 1

−
√

2

2
−
√

2

2
−1

0 1 1√
2

2
−
√

2

2
−1

−1 0 1√
2

2

√
2

2
−1

0 −1 1

−
√

2

2

√
2

2
−1



, ı̂ =

ixiy
i0

 . (5.30)

i0 is the bias current and ix, iy are the current perturbations related to the forces

along the x and y directions, respectively. The substitution of Eq. (5.29) gives the

force model

f =

[̂
ıTCT iTNTR−TAxR

−1NĈı

ı̂TCT iTNTR−TAyR
−1NĈı

]
. (5.31)

In order to obtain a linear force model, Eq. (5.27) is expanded in Taylor series. If

small current and displacement perturbations are considered, the following equation
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Figure 5.4: Magnetic actuator pair with differential configuration (modified from
Schweitzer and Maslen [90])

holds:

f ≈

fx(x0, ix) +
∂fx(0, ix)

∂ipx
(i0 − ix) +

∂fx(x0, ix)

∂x
(x− x0)

fy(y0, iy) +
∂fy(0, iy)

∂ipy
(i0 − iy) +

∂fy(y0, iy)

∂y
(y − y0)

 . (5.32)

The actuator gain is defined as

Ki ≡


∂fx
∂ipx

∂fx
∂ipy

∂fy
∂ipx

∂fy
∂ipy

 = Ki

[
1 0

0 1

]
, (5.33)

where

Ki =2̂ıTCTNTR−T (0, 0)AxR
−1(0, 0)NC (5.34)

=
4µ0AgN

2i0
g2

0

. (5.35)

The open loop stiffness is defined as

Kq ≡


∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

 =

[
Kxx Kxy

Kyx Kyy

]
= −µ0AgN

2

g3

[
3i2x + i2y + 4i20 ixiy

ixiy i2x + 3i2y + 4i20

]
,

(5.36)

where

Kij = ı̂Tp CTNT

(
∂R−T

∂j
AiR

−1 + R−TAi
∂R−1

∂j

)
NĈıp, for i, j ∈ {x, y} . (5.37)
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Thus,

Kq = −µ0AgN
2

g3

[
3i2x + i2y + 4i20 ixiy

ixiy i2x + 3i2y + 4i20

]
. (5.38)

If ix and iy are small perturbations, then

Kq = −4i20µ0AgN
2

g3
0

, (5.39)

f = µoN
2Ag

(
i0
g2

0

ip −
i20
g3

0

q

)
. (5.40)

This equation is used to perform the simulations using the model proposed in the

next section. Note that in order to obtain a linear model, a bias current must be

used. This must be taken into account because, if no bias current is supplied, the

forces applied to the rotor may be nonlinear and harmonic distortions will appear,

which is not desirable, since the identification method is based on characteristics of

linear systems.

5.2.2 Effect of bias current on the rotor response

Linearity is an advantageous characteristic for parameters identification. When a

linear system is excited with a single frequency component, the system respond with

a proportional amplitude signal at the same frequency. When a nonlinear system is

excited with a single frequency signal, other frequencies also appear in the response.

This means that the energy applied leaks to other frequencies.

This linearity requirement is fulfilled by the rotor, bearings and seal. However,

the electromagnetic model of the forces may become nonlinear if no bias current

is applied. In order to illustrate these nonlinear effects, a multisine signal with 17

frequency component was applied to the rig’s actuators with zero rotor speed. Fig.

5.5a shows the force from actuator A with a linearized model with bias current.

The amplitude profile was chosen to excite the rotor with no contact between stator

and rotor, as will be discussed in Chapter 6. The flat vibration response obtained

is shown in Fig. 5.6a. On the other hand, if no bias current is used, the ampli-

tude profile of the force is distorted and some additional frequency components are

added, as shown in Fig. 5.6b. The vibration response of this force is shown in Fig.

5.5b. There are two important differences between both vibration responses. One

of them, the amplitude is not flat anymore. However, the most important effect is

the appearance of other frequency components of considerable amplitudes. Thus,

the use of bias current improves the energy distribution along the desired frequency

components.
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Figure 5.5: Excitation signal with (a) and without (b) bias currents in the magnetic
actuators’ coils.

Figure 5.6: Experimental displacement response signal with (a) and without (b)
bias currents in the magnetic actuators’ coils.
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Chapter 6

Identification methodology

6.1 Introduction

The parameter identification of a rotating machine is performed by applying ex-

citation forces and measuring variables such as displacement, velocity and accel-

eration. Several excitation approaches have been applied: impulsive signals with

instrumented hammers; and single harmonic, multisine and pseudorandom signals

with hydraulic shakers and magnetic bearings (Nordmann [91], Lee [92], Kozanecka

et al. [93], Wagner et al. [3], Wagner [94], Matros and Nordmann [95], Wagner

and Pietruszka [96]). The use of contactless actuators to excite the rotor for iden-

tification purposes has been studied intensively during the last 25 years due to the

advantages.

In this chapter, an identification methodology is applied to obtain the seal co-

efficients of the test rig by using magnetic actuators. The rotor is excited harmon-

ically by the electromagnets and the rotor-seal relative displacement are measure

by proximity sensors. Assuming a linear system, the seal forces are considered as

a spring-damper system with stiffness and damping coefficients. The methodology

is based on a frequency approach, in which all variables are transformed to the fre-

quency domain by means of the Fourier transform. Moreover, an estimator is used

to reduce the effect of the noise on the coefficients.

The identification scheme is shown in Fig. 6.1. In the first block, the ex-

citation signals vector v are created in a LabView program. These are voltage

signals and are connected to a power amplifier that drivers the coils of the elec-

tromagnetic actuators. This voltage set currents in each coil, represented by ia,

and the electromagnetic forces fa are applied to the rig. The displacement u of

the rotor and current of each coil are transformed to a voltage level by displace-

ment and current sensors, represented by us and ı̂a, respectively. All sensor read-

ings are stored in text files that are later used to estimate the parameters vector
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p̂ = [Kxx, Kxy, Kyx, Kyy, Cxx, Cxy, Cyx, Cyy]
T . The identification methodology is di-

vided in three important steps. First, the computation of a complex matrix that is

directly related to the parameters of the seals. Then, an averaging method to deal

with noisy measurements from sensors. Finally, the design of the excitation signal

to distribute the energy suitably.

Exc.
Signal

Eletrom.
Actuator

Test rig
Prox.
Sensor

Current
Sensor

Iden.

v fa u
ûs

ia

ı̂a

p̂

Figure 6.1: Block diagram of system excitation and parameter identification.

6.2 Annular gas seal model

Theoretical models of annular gas seals have been proposed mainly to compute the

velocity and pressure fields of the flow inside the clearance, for different operating

conditions. The pressure distribution is then integrated to determine the stiffness

and damping coefficients. There are two common techniques to model the seals: A

bulk-flow approach and CFD simulations. In the former, it is assumed that no shear

stresses act inside the fluid but only on the boundaries, in the fluid-stator or fluid-

rotor interfaces. In the latter, the fluid geometry is modeled in a CAD software,

discretized in smaller subdomains, set some input variables and parameters, and

then run a CFD simulation.

In general, the dynamics of the fluid between the rotor and seal depends on

several parameters. Nevertheless, for a given operating condition and with small

deflection of the rotor (less than 100µm), the linear system[
−fxs
−fys

]
=

[
Kxx Kxy

Kyx Kyy

][
uxs

uys

]
+

[
Cxx Cxy

Cyx Cyy

][
u̇xs

u̇ys

]
(6.1)

is able to model the seal dynamics. Kxx, Kyy, Cxx, Cyy are the direct stiffness and

damping coefficients, and Kxy, Kyx, Cxy, Cyx are the cross-coupled stiffness and

damping coefficients. These parameters depend on different operating conditions

such as rotor speed, pressure drop, gas density, inlet circumferential speed, clearance

geometry, actuators frequency, etc. Moreover, it is common to consider the stiffness

and damping matrices of Eq. (6.1) as skew-symmetric. In this case, Eq. (6.1)
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becomes [
−fxs
−fys

]
=

[
K k

−k K

][
uxs

uys

]
+

[
C c

−c C

][
u̇xs

u̇ys,

]
(6.2)

where K, k, C and c are obtained by averaging coefficients in Eq. (6.1), detailed in

Chapter 6.

Eq. (6.1) can be represented in the frequency domain as[
Fxs

Fys

]
=

[
Hxx Hxy

Hyx Hyy

][
Uxs

Uys

]
, (6.3)

where

Hij = Kij + iωCij, for i = {x, y} (6.4)

is the CDS of the seal with Hxx and Hyy representing the direct CDS and Hxy

and Hyx the cross-coupled CDS. Parameters Kxx, Kyy, Cxx, Cyy, Mxx, and Myy

are called direct coefficients of the stiffness, damping and mass, while Kxy, Kyx,

Cxy, Cyx, Mxy and Myx are the cross-coupled coefficients of the stiffness, damping

and mass, respectively. For gas seals, the mass does not affect the CDS considerable

when compared to the mass of the rotor. In this case, the real part is directly related

to stiffness coefficients and the imaginary part related to the damping multiplied by

the excitation frequency. In the general case, the real part corresponds to a function

in terms of the stiffness, mass and excitation frequency.

6.3 Identification method of the CDS

The seal CDS is obtained by exciting the rotor with the magnetic actuators and

measuring the displacement at two points. Eq. (4.49) can be expressed as

H(ωk)u(ωk) = f(ωk), (6.5)

where u ∈ C44×1 and f ∈ C44×1 are vectors containing the displacements (linear and

angular) and forces at each node, and H ∈ C44×44 is the CDS matrix

H(ωk) =
(
−ω2M + iω (C + G(Ω)) + K

)
, (6.6)

containing the mass, damping, stiffness and gyroscopic terms of the rotor, bearings

and seals. Since the objective of the analysis is to obtain the seal coefficients, matrix

H is rearranged to separate the effect of seals from that of the rotor and bearings.
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Thus, the rearranged version of Eq. (6.5) is

H̄ū = H̄R

us1

us2

uR

+

Hs1 0 0

0 Hs2 0

0 0 0


us1

us2

uR

 =

fa1

fa2

0

 , (6.7)

where

H̄R =

HR11 HR12 HR13

HR21 HR22 HR23

HR31 HR32 HR33

 (6.8)

is the rearranged CDS matrix of the rotor and bearings, us1 ∈ C2×1 and us2 ∈ C2×1

are the displacement vector at the location of the proximity sensors, uR ∈ C40×1 is

the displacement vector of the remaining node’s location, fa1 ∈ C2×1 and fa2 ∈ C2×1

are the actuators’ forces, and Hs1 and Hs2 are the CDS matrices of the seals.

Although the seal forces are created at the test section of the rig (near the

middle), the displacement and forces are only measured and applied at the sensors’

and actuators’ location (assuming that the forces are applied exactly at the proximity

sensors). Thus, two set of parameters are obtained. As will be shown later, the seal

parameters are defined as the average between Hs1 and Hs2.

Next, matrix H̄R is expressed in a compacted form and Eq. (6.7) turns to[
H̃R11 H̃R12

H̃R21 HR33

][
us

uR

]
+

[
Hs12us

0

]
=

[
fa

0

]
, (6.9)

where

H̃R11 =

[
HR11 HR12

HR12 HR22

]
, H̃R12 =

[
HR13

HR23

]
, H̃R21 =

[
HR31 HR32

]
, (6.10)

Hs12 =

[
Hs1 0

0 Hs2

]
, us =

[
uTs1 uTs2

]T
, fa =

[
fTa1 fTa2

]T
,

with H̃R11 ∈ C4×4, H̃R12 ∈ C4×40, H̃R21 ∈ C40×4, HR33 ∈ C40×40, Hs12 ∈ C4×4, us ∈
C4×1 and fa ∈ C4×1. Note that the displacement vector us1 and us2 are measured by

the proximity sensors, and the actuators’ forces fa1 and fa2 are measured indirectly

by the current and proximity sensors. The displacements of the vector uR are not

measured, but they can be obtained from Eq. (6.9):

uR = −H−1
R33H̃R21us = −H−1

R33

(
H̃R31us1 + H̃R32us2

)
. (6.11)

Based on Eqs. (6.9) and (6.11), the equation that relates the matrix Hs12 and vector
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us and fa is: (
H̃R11 + Hs12 − H̃R12H

−1
R33H̃R21

)
us = fa. (6.12)

Note that the only unknown matrix is Hs12. However, algebraically, there are eight

unknowns (four coefficients for each seal) but only 4 equations. In order to overcome

the lack of information, the rotor is excited in two orthogonal direction and eight

equations are obtained in total. With this approach, Eq. (6.12) turns to(
H̃R11 + Hs12 − H̃R12H

−1
R33H̃R21

)
Us = Fa, (6.13)

with

Fa =

[
fa,11 fa,12

fa,21 fa,22

]
, Us =

[
Us,11 Us,12

Us,21 Us,22

]
. (6.14)

The subscript ij means a quantity obtained along the i-direction for an excitation

along the j-direction. Thus, Eq. (6.13) can be used to obtain the seal coefficients:

Hs12 = FaU
−1
s + H̃R12H

−1
R33H̃R21 − H̃R11. (6.15)

Note that the coefficients depends on the measurements and a previously known

model of the rotor and bearings. In the next subsection, two-step procedure is used

to avoid this dependency.

6.3.1 Baseline and overall test approach

When a test is performed, the CDS matrix FaU
−1
s contains the effects of the seals,

rotor and bearings. If a test is performed previously without the effect of the seals,

the CDS matrix will only contain the effects of the rotor and bearings. Intuitively,

one can subtract both matrices to obtain only the effects related to the seals. Math-

ematically, a baseline and overall test matrices are defined:

(Hs)base ≡
(
FaU

−1
s

)
base
−→ No pressure, (6.16)

(Hs)over ≡
(
FaU

−1
s

)
over
−→With pressure. (6.17)

The baseline CDS matrix can be obtained by removing the supply pressure.

Based on Eqs. (6.15), (6.16) and (6.17), the baseline and overall CDS matrices

are

(Hs)base = H̃R11 − H̃R12H
−1
R33H̃R21, (6.18)

(Hs)over = H̃R11 + Hs12 − H̃R12H
−1
R33H̃R21. (6.19)
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The seals’ CDS matrix are obained by subtracting (6.18) from (6.19):

Hs12 = Hover
s −Hbase

s . (6.20)

Thus, the CDS of each seal is

Hs1 = FaU
over−1
s1 − FaU

base−1
s1 , (6.21)

Hs2 = FaU
over−1
s2 − FaU

base−1
s2 . (6.22)

As can be noted in Eq. (6.21), each CDS matrix is obtained with only the measure-

ments from the overall and baseline tests, removing the dependency on the model

of the rotor and bearings. This approach is also advantageous if any unexpected

linear perturbation is present in the test.

Finally, both CDS matrices are averaged to obtain the seal CDS:

Hs =
Hs1 + Hs2

2
. (6.23)

This equation is valid only if the rotor is excited with actuator in a symmetrical

manner.

6.4 Estimation of the CDS matrix

Electronic devices such as sensors are susceptible of random errors or deviation of

their readings, also known as noise. A measure of the quality of a sensor measure-

ments is the Signal-to-Noise ratio (SNR). If the mean value of the noise is zero,

several repetitions (or blocks) of the measurement can be taken and averaged to

reduce the noise effects on the estimates. Estimators [97] can be used to reduce the

noise effects on an FRF. Further details about estimators can be found in Pintelon

and Schoukens [98]. In this thesis, the estimator is based on the power spectral

density of the signals, similar to that used by Childs and Hale [99].

Based on Eq. (6.13), the relation between the CDS matrix, the force matrix and

the displacement matrix is

F(ωk) = H(ωk)U(ωk). (6.24)

After several algebraic manipulations (see Appendix A), two important equations,

relating spectral densities Suu(ωk), Sff (ωk) and Suf (ωk), are obtained:

Sff (ωk) =H∗(ωk)Suu(ωk)H(ωk), (6.25)

Suf (ωk) =Suu(ωk)H(ωk). (6.26)
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These two equations are used to obtain the CDS matrix H. One alternative is to

multiply both sides of Eq. (6.26) by S−1
uu . This is called the H1 estimator. A second

alternative is to conjugate Eq. (6.26) and substitute H∗ in Eq. (6.25). This gives

the H2 estimator. These methods are explained in the following section and a short

proof is available in the Appendix B.

6.5 H1, H2 and H3 Estimators

For the calculation of the CDS matrix, the following disturbing noise model is con-

sidered:

U(ωk) = U0(ωk) + Nu(ωk), (6.27a)

F(ωk) = F0(ωk) + Nf (ωk), (6.27b)

where U and F are the measured displacement and force matrices, U0 and F0 are

their exact value, and Nu and Nf are zero-mean disturbing noises.

There are several approaches in the literature to compute the CDS matrix in Eq.

(6.24). The H1 estimator is used when the SNR at the input is greater than that at

the output. It is defined as

H1(ωk) =

(
1

Nb

Nb∑
l=1

F(ωk)
(l)F∗(ωk)

(l)

)(
1

Nb

Nb∑
l=1

U(ωk)
(l)F∗(ωk)

(l)

)−1

. (6.28)

The H2 estimator is used when the SNR at the output is greater than that at the

input. Its equation is

H2(ωk) =

(
1

Nb

Nb∑
l=1

F(ωk)
(l)U∗(ωk)

(l)

)(
1

Nb

Nb∑
l=1

U(ωk)
(l)U∗(ωk)

(l)

)−1

. (6.29)

Finally, the H3 estimator is obtained from the average between the H1 and H2

estimators:

H3(ωk) =
H1(ωk) + H2(ωk)

2
. (6.30)

Details about the estimators can be found in Appendix B. It is important to remark

that the forces and displacements in the frequency domain are obtained by applying

a discrete-time Fourier transform, which is implemented computationally with a fast

Fourier transform (FFT). Special attention should be given to certain parameters of

the FFT such as the sampling frequency, number of samples, frequency resolution

and leakage.
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6.5.1 Errors in the Estimates

Since noise in the measurements create random errors, the CDS must be computed

along with confidence intervals. In this thesis, the standard deviation is used. Ac-

cording to Bendat [100], Pintelon [98] and Cloud [101], the standard deviations of

the magnitude and phase of the estimator in Eq. (6.30) are

σ(|Hij(ωk)|) =

√
1− γ2

ij(ωk)

γij(ωk)
√

2Nb

Hij(ωk) , σ(∠Hij(ωk)) =

√
1− γ2

ij(ωk)

γij(ωk)
√

2Nb

, (6.31)

where γij is the coherence function between the force and displacement signals, and

Nb the number of data blocks. The errors for stiffness and damping coefficients are

estimated by propagating the standard deviation to the real and imaginary parts

of the CDS. Thus, by assuming an asymptotic normal distribution, the estimates of

the CDS with a confidence interval of 99.7% is

|Hij(ωk)| − 3σ(|Hij(ωk)|) ≤ |Hij(ωk)| ≤ |Hij(ωk)|+ 3σ(|Hij(ωk)|) (6.32)

∠Hij(ωk)− 3σ(∠Hij(ωk)) ≤ ∠Hij(ωk) ≤ ∠Hij(ωk) + 3σ(∠Hij(ωk)) (6.33)

This equation is also used to compute the confidence interval of the stiffness and

damping coefficients in Chapter 6.

6.6 Excitation signal

Excitation signal must be properly designed to obtain measurements with high SNR.

This is no simple task when dealing with rotordynamic systems that have small gaps

between their parts. A high excitation energy may cause a rotor-stator contact. An

alternative is to use a single harmonic signal that excites one component frequency.

One of the advantages of using this type of signal is that it has a high SNR value

[102]. A frequency interval can be excited by performing several tests with different

sine waves. Nonetheless, a considerable amount of time would be expended at the

end of all tests, which is not viable in this rig. Another alternative is to excite the

system with random signals, which have a robust behavior with non-linear distor-

tions. However, their leakage limitations demands a high quantity of repetitions to

obtain accurate results [103], especially in higher frequencies. A more appropriate

alternative is to excite harmonically with different single frequencies simultaneously,

which can reduce the overall test time and better distribute the energy along the

frequency. This type of signal is formed by the sum of several sine waves of different
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frequency, phase and amplitude [104]. It is defined as

S =

Nf∑
k=1

Ak cos(2πfkt+ φk), (6.34)

where Nf is the number of frequency components (also known as harmonics or

tones) and Ak, fk, and φk are the k-th excited amplitude, frequency and phase

angle, respectively. For the tests, 17 frequencies were selected, below and beyond

the first critical speed (35 Hz), avoiding the excitation of their first four multiples.

The chosen frequencies are according equation

fk = 4k + 1, for k = 1, 2, . . . , 17. (6.35)

According to Eq. (6.34), each tone has two unknown parameters: amplitude and

phase. They must be carefully designed to avoid poor coefficient estimates as a

result of low SNR. Regarding the amplitude, it was established in such a way that

the displacement signal amplitudes, in the frequency domain, remain flat. The exci-

tation amplitude profile was experimentally obtained by computing the magnitude

of the CDS at baseline condition. Since the CDS is the inverse of the FRF shown in

Fig. 4.6, the responses are expected to be constant. In this approach, the excitation

amplitudes near the critical speeds are lower than those far from then. Regarding

the phase, an algorithm proposed by Guillaume et al. [105] was used. The intention

with this signal is to reduce the Crest-Factor (CF), which is the ratio of the l∞ norm

of the signal to its root-mean-square value. If the CF is reduced, small peaks of the

signal are reduced and the energy can be better distributed. The phases are deter-

mined by an iterative minimization strategy based on Gauss-Newton method and

Levenberg-Marquardt algorithm. At the first iteration, the phases are set according

to the formula proposed by Schroeder [106], i.e. φk = −πk2/Nb, which gives a CF

of 2.78.

In Fig. 6.2 the original (CF=2.78) and modified (CF=1.62) signals are plotted.

They are based on the work on Diaz et al. [29]. In the time domain, the maximum

peaks are reduced but the signal has the same amount of energy. In the frequency

domain, the amplitude of each tone is not modified. However, the phases are different

and are responsible for reducing the CF. Moreover, the amplitudes are not constant.

Higher amplitudes are give to those frequencies where the natural responses of the

rotor is lower.

In rotating machines with small gaps between rotating and stationary parts,

the excitation signal is an important aspect to improve measurements. A properly

choice of phases is desirable since more energy can be applied to the system as a

result of the decrease of some peaks. This means that the SNR is improved. Also,
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Figure 6.2: Original and modified excitation signal using the algorithm proposed by
Guillaume et al. [105]. Signal with 17 tones: fk = 4k + 1, for k = 1, 2, . . . , 17

the amplitude design is relevant to avoid rotor-stator contact, which is easily excited

by frequencies near the first critical speed. If an excitation signal with a flat profile

is used, the vibrations near the first critical speed would limit the allowed excitation

energy due to the maximum shaft lateral displacement. In the next section, it is

shown that constant displacement amplitudes are produced by the excitation profile.

This tends to give the same SNR to all displacement measurements.

6.7 Experimental results and discussion

In this section, experimental results of the identification methodology are shown.

The tests were performed with an average input pressure of 0.3 MPa (3 bar), at-

mospheric pressure in the discharge port, pre-swirl ring of 30◦ and a rotor speed

of 4500 RPM. Data acquisition of displacements, forces, currents and voltages were

performed using a sample rate of 5.12 kHz and 5120 samples. This sets a frequency

resolution of 1 Hz. Also, 20 blocks of measurements were used for the averaging pro-

cess of the estimates. For comparison purposes, three excitation signals are applied:

multisine, random and single harmonic signals.

6.7.1 Noise in the measurements

The measurement errors presented in this thesis only considers random errors. The

distribution of the measurements is an important characteristic to assess the un-
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certainty in the parameter estimation. Normal or gaussian noise is widely used in

the literature due to its statistical properties. However, some analyses consider this

type of distribution without any justification. In order to show some evidence to

use normal distribution in this thesis, Fig. 6.3 shows the histograms of one of the

proximity and current sensors for a stationary rotor test with no excitation. Both

sensors showed normal distributions with the parameters shown in Tab. 6.1.

Figure 6.3: Histograms of one of the proximity and current sensors.

Mean value Std. dev. Units

Proximity sensor 41.83 0.043 µm
Current sensor 0.0092 0.0217 A

Table 6.1: Statistics of the histograms of one of the proximity and current sensors.

6.7.2 High, low and differential pressure

During an excitation along one of the axis, both baseline and overall tests are per-

formed consecutively. Fig. 6.4 shows the inlet (High), outlet (Low) and drop (Differ-

ential) pressures for both the baseline (Figs. 6.4a and 6.4c) and overall (Figs. 6.4b

and 6.4d) tests. The vertical lines correspond to each measurement block. During

the baseline test, the inlet and outlet ports are at atmospheric pressure because

a valve is blocking the pressure from the compressor; the high pressures from the

figures correspond to the pressure before the valve. When the valve is opened, the

high pressure starts to decay linearly. The low pressure raised immediately after the

valve was opened, but also decays over time. This pressure drop occurs because the

amount of air flux is out of the compressor’s capacity. For this reason, during the
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overall test, a short amount of time is available to acquire the signals before both

the high and low pressures are balanced. The parameters obtained are related to

the equivalent parameters for the pressure range 0.50-0.56 MPa (5.6-5.0 bar).

Figure 6.4: High, low and differential pressures.

6.7.3 Multisine excitation

The first signal used to excite the rotor is the 17-tone multisine shown in Fig. 6.2

from section Sec. 6.6.

Excitation, force, current and displacement signals

Fig. 6.5 shows the excitation voltage, force, current and displacement signals, in

time and frequency domain, of one actuator. They were taken during a baseline test

and with an excitation along the x direction. Fig. 6.5a shows the excitation voltage

during 400 ms. In Fig. 6.5b, the amplitude profile of the excitation is shown. When

this excitation is applied to the coils of the actuator, Fig. 6.5c is obtained. The

spectrum of the force in Fig. 6.5d is similar to that of the excitation in Fig. 6.5b.

66



The current of the actuator in Figs. 6.5e and 6.5f also showed similar behavior as the

excitation and force signals. In Fig. 6.5g the displacements of the seal (mean value

between sensors A and B), along the x and y directions, are plotted. Although an

excitation along the x direction was applied, a small response in the other direction

is also obtained. This can be attributed to residual unbalance and crossed-couple

terms in the system. This effect is better observed in the spectrum of Fig. 6.5h,

where small amplitudes are obtained in the y direction. The amplitude profile of

the displacements was a design objective to improve the SNR. If an excitation with

constant amplitudes were adopted, the SNR would be low for frequencies far from

the critical speed.

Coherence between force and displacement signals

In order to assess the quality of the excitation signal, the magnitude-squared coher-

ence function is used. It is defined as

γ =
|Sfu(ω)|2

Sff (ω)Suu(ω)
, (6.36)

where Sff and Suu are the autospectral density functions of the force and displace-

ment, and Sfu the cross-spectral density function between them. It is a function

that varies between zero (no coherence) and one (full coherence). Basically, it rep-

resents the part of the output power (displacement) that was excited by the input

(force).

Fig. 6.6 shows two coherence function for the baseline and overall test. γxx

corresponds to the direct coherence (excitation and response along the x-direction).

γxy is the cross-coupled coherence function (excitation along the x-direction and

response along the y-direction). For both tests, the direct coherence was equal to

one at all frequencies, except at the critical speed. The cross-coupled coherence

showed values much lower than one and decreasing with the frequency. This means

that the energy applied to the system was in great measure used to excite the direct

coefficients. Due to the low cross-coupled effects of the system, the low coherence

was expected.

CDS of the overall system coefficients

Before showing the results of the seal coefficients, the results of the overall tests

are shown. This corresponds basically to the rotor, bearings and seal dynamics

over the frequency. Fig. 6.7 shows the magnitude of the direct and cross-coupled

CDS coefficients for the excitation signal in Fig. 6.5. It was computed at both

seals’ location and averaged. The direct CDS obtained is a typical function from
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Figure 6.5: Excitation, force, current and displacement signals for a multisine exci-
tation.
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Figure 6.6: Coherence function of the baseline and overall tests for a multisine
excitation.

rotordynamic systems where lower amplitudes are near the critical speed. At low

frequencies, the stiffness has more influence on the dynamics. The mass and damping

effects increase with the frequency. Also, the cross-coupled CDS exhibited negligible

values with respect to the direct parts.

Another important characteristic of the CDS are its real and imaginary parts.

According to Eq. (6.4), the real part corresponds to K−Mω2, which is a quadratic

function. The results for the direct and cross-coupled parts are shown in Fig. 6.8. As

expected, the direct part decrease with the frequency and crosses zero at the critical

speed. The cross-coupled part is negligible and varies slowly with the frequency.

The imaginary part of the CDS contains the damping terms. It is shown in Fig.

6.9. The direct part increases almost linearly with the frequency. The cross-coupled

remained around zero.

Seal coefficients

The results of the identification of the seals coefficients are based on the baseline

approach. After performing both the baseline and overall tests, the Fig. 6.10 is

obtained. The direct stiffness in Fig. 6.10a shows a trend to increase when the

frequency is higher, which means a hardening effect of the overall system. As a re-

sult, the critical speed is slightly increased. The cross-coupled stiffness in Fig. 6.10c

presented negligible variations with the frequency and its amplitudes are small com-

pared to the direct coefficient. Regarding the damping coefficients, they exhibited

small amplitudes. The direct damping in Fig. 6.10b shows an increasing behavior

with the frequency and with negative values at low frequencies. In the case of the

cross-coupled damping in Fig. 6.10d, its amplitudes remained near zero, with no

relevant effects to the system. In general, the seal studied in this thesis only ex-
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Figure 6.7: Magnitude of the direct and cross-coupled CDS.

Figure 6.8: Real part of the overall CDS.

hibited a stiffening effect and no instability issues were observed. Nevertheless, the

cross-coupled stiffness has to be taken into account when changing the operating

condition (e.g. pressure, fluid, speed of rotation, etc.), since it may destabilize the

system.

70



Figure 6.9: Imaginary part of the overall CDS.

Although the estimator used in this work improves the computation of the CDS,

it is of great importance to take into consideration the error of each estimate. The

error of direct stiffness remained low for all the excited frequencies. Nevertheless, the

error of the cross-coupled stiffness was considerably high, specifically at the higher

frequencies (e.g. at 69 Hz). In other words, the identification method at those

frequencies returned poor estimates. This is so because the coherence between the

force and displacements, for both baseline and overall tests, was high for the direct

CDS and low for the cross-coupled CDS. Similar results were seen on the damping

coefficients. The error of the direct damping is relatively slow, except for the first

frequencies (e.g. 5 Hz). The cross-coupled damping presented better estimates at

the center frequencies. As before, the bad estimates were found where the coherence

between the force and displacement were low. In order to reduce the error of the

estimates, more averages should be taken.

6.7.4 White noise excitation

For comparison purposes, the seal coefficients were obtained also with a white noise

excitation.
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Figure 6.10: Direct and cross-coupled coefficients of the seal obtained with a mul-
tisine excitation. The error bars of each estimate correspond to an interval with
99.7% of confidence. Red dots correspond to estimates with a confidence interval
out of the figure scale.
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Histogram of the excitation

The histogram of the excitation and force signals are shown in Fig. 6.11. Both

signals are normally distributed. This type of signal is widely used for identification

in several research fields. However, it has some strong disadvantages. In this thesis,

the energy distribution of this signal is discussed.

Figure 6.11: Histograms of the excitation signal and force from Actuator A.

Excitation, force, current and displacement signals

Fig. 6.12 show the excitation, force, displacement and current signals in time and

frequency domain, for an excitation along the x-axis. The amplitude of the excita-

tion was selected such that no rotor-stator contact occurs. The energy is distributed

almost evenly along the frequency range. However, the spectrum of the displace-

ment along the excited axis exhibits higher values near the critical speed. This is

a major drawback because it means that the maximum excitation energy depends

strongly on the amplitudes near the critical speed. This causes a poor excitation at

other frequencies, which means low SNR values.

Coherence function

The quality of the excitation is quantitatively assessed by the coherence functions

shown in Fig. 6.13. As expected the direct coherence has low values, especially at

the higher frequencies.
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Figure 6.12: Excitation, force, current and displacement signals for a white noise
excitation. 74



Figure 6.13: Coherence function of the baseline and overall tests for a white noise
excitation.

Seal coefficients

The seal coefficients are shown in Fig. 6.14. With the excitation and response

signals of Fig. 6.12, the coefficients obtained showed a high uncertainty. The only

way to reduce it is to increase the number of measurement blocks. However, as was

discussed before, the test time is limited by the pressure drop of the compressor.

For this reason, a multisine signal is a better excitation signal in this case.

6.7.5 Single harmonic excitation

One further excitation signal was applied for comparison purposes. It is a harmonic

excitation, with the energy concentrated in only one frequency component. This

characteristic makes this type of signal appropriate to increase the SNR at a certain

frequency. However, a drawback of this signal is discussed below.

Excitation, force and displacement signals

In Fig. 6.15, the excitation, force, current and displacement signals are shown for

an excitation of 69 Hz and along the x-axis. The spectra of the excitation, force and

currents presented only one frequency harmonic. However, the displacement signal

has also one peak near the critical speed. This peak appears in any excitation due to

the resonance characteristic at this frequency in the presence of small perturbations.
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Figure 6.14: Direct and cross-coupled coefficients of the seal obtained with a white
noise excitation. The error bars of each estimate correspond to an interval with
99.7% of confidence. Red dots correspond to estimates with a confidence interval
out of the figure scale.
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Figure 6.15: Excitation, force, current and displacement signals for a single harmonic
excitation.
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Coherence function

The coherence functions are shown in Fig. 6.16. As expected, the direct coherence

is near the unity at all frequency. Even with low cross-coupled terms, this signal

managed to increase the coherence. Only at the last two frequencies the cross-

coupled coherence is low, possibly for a measuring error.

Figure 6.16: Coherence function of the baseline and overall tests for a single har-
monic excitation.

Seal coefficients

The seal coefficients are shown in Fig. 6.17. All coefficients showed a low uncertainty,

except at those frequencies with a low coherence. For these reason, this type of signal

is of extreme importance in the identification method. It serves as a benchmark for

other excitation signals, such as the multisine or white. Although it is a signal that

returned a high coherence, the total duration of all the tests is a drawback and a

motivation to use a multisine. Due to the compressor limitations, the duration of

all the 17 tests were completed approximately in 12 hours. On the other hand,

the multisine approach was performed in a shorter time (1 hour approximately).

Thus, the multisine signal is recommended when the duration of an experiment is

restricted.
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Figure 6.17: Direct and cross-coupled coefficients of the seal obtained with a single
harmonic excitation. The error bars of each estimate correspond to an interval with
99.7% of confidence. Red dots correspond to estimates with a confidence interval
out of the figure scale.
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Chapter 7

System with rotor-stator contact

An investigation of the motion type is performed in a simplified model representing

the test rig. This type of machine operates with small clearances to reduce fluid

leakage and to improve its performance. However, this fact increases the chance

of a rotor-stator contact when the vibration eventually exceed the clearance. As a

consequence, contact forces are developed at the contact surfaces and the dynamics

is affected. Depending on some parameters, the machine may change its operating

condition dramatically.

Components of rotating machines, such as seals or bearings, contain small clear-

ances between the stator and rotor that turns the machine susceptible of contact

between them. Specifically, annular gas seals are designed to reduce the leakage

from a higher-pressure stage to a lower-pressure stage. During normal operation,

rotor and seals do not touch each other. Eventually, beyond the nominal capacity

or abnormal condition, the seals contact the rotor and the phenomenon of rubbing

occurs. This event must be avoided or minimized, because contact forces may dam-

age the machine or reduce its lifespan. Thus, the study of the rotor behavior under

different rubbing conditions provides relevant information for preventive, predictive

and/or corrective maintenance.

In some cases, the contact only causes wear of the parts but may change the

dynamics of the machine. For example, when the rotor rubs slightly with a seal,

the clearance may be increase because of the material removal; the parameters of

the seal may change considerably and also the dynamics of the overall machine. In

other cases, severe damage may occur as a result of high contact and friction forces.

In any case, the effects of the rubbing must be well understood to diminish the risk

of hazardous events.

The rubbing can be divided into two effects: thermal deformation and contact

forces. In the former, which is not considered in this thesis, a non-uniform tempera-

ture distribution causes a bending in the rotor. In the latter, which is addressed here,

normal and tangential forces are applied to both parts. The interaction between the
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stator and rotor leads to a nonlinear system that cannot be solved analytically.

Moreover, the due to the abrupt change of some parameters after the contact, some

nonlinear analysis, such as perturbation methods, are not valid. Thus, numerical

integration is used to solve the system for certain set of parameters. In this thesis,

a numerical integration based on Runge-Kutta of fourth-order algorithm was imple-

mented in Matlab. Moreover, the system equations are nondimensionalized to avoid

numerical integration problems due to high stiffness values.

The rotor vibration presents different type of motion depending on the system

parameters. This motion is visualized by plotting orbits and frequency spectra.

Since the rotor speed is an important parameter in rotating machines, its influence

on the vibration is assessed. Moreover, the spectrogram based on the short-time

FFT is used to analyze the vibration of the test rig experimentally.

7.1 System Equations

The model of the test rig with the rotor-stator contact is shown in Fig. 7.1. It

consists of a Jeffcott rotor and a flexible stator. The rotor has an unbalanced mass

mR, stiffness kR and external viscous damping bR. The stator has a mass mS,

stiffness kS and external viscous damping bS. Due to the unbalance of the disk,

forces fux are fuy are considered. There is a small concentric clearance s between

the cylindrical surfaces of disk and stator. If the clearance is not surpassed by the

disk’s displacements, the rotor behaves like a simple Jeffcott rotor, with a linear

dynamics. When the disk displacement is greater than the clearance, the rotor rubs

the stator and contact forces are applied at the surface of contact. These forces are

in terms of stiffness kC and viscous damping bC . Moreover, they are decomposed

as tangential and normal components. The normal force depends on the minimum

thickness d, while the tangential force depends on the friction coefficient µf between

the contact surfaces. Finally, eccentricities xS0 and yS0 of the stator are considered.

Considering the displacement vectors uR = [uRx, uRy]
T and uS = [uSx, uSy]

T , the

equations that represent the dynamics of both the rotor and stator are:

mRüR + bRu̇R + kRuR = fu − f c + f s, (7.1)

mSüS + bSu̇S + kS(uS − uS0) = f c − f s, (7.2)

where fu, f c and f s are the unbalance, contact and seal forces, respectively. The

unbalance force is given by

fu = mRruΩ
2
[
cos(Ωt+ ϕ0) sin(Ωt+ ϕ0)

]T
(7.3)
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Figure 7.1: Model of the rotor-stator contact.

The contact forces are modeled according to several works in the literature, such

as Ehehalt et al. [107], Alber and Markert [108], Sawicki et al. [109] and Jacquet-

Richardet et al. [110]. They can be decomposed as the normal and tangential forces

f c = f cn + f ct. (7.4)

The normal force depends on the indentation (negative value of d) between rotor

and stator. It is defined by

f cn =
〈
−kCd− bC ˙〈d〉

〉
〈−d〉0

[
cosψ sinψ

]T
(7.5)

where kC is the contact stiffness, bC is the contact damping and ψ is the angle that

defines the direction of the minimal thickness d. Since the contact force only acts

when d is equal or less than zero, the discontinuous function

〈x〉c =

xp, for x > 0,

0, otherwise,
(7.6)

is used.
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Assuming a Coulomb friction between the surfaces, the tangential force is

f ct = µf f cn = µf

〈
−kCd− bC ˙〈d〉

〉
〈−d〉0

[
− sinψ cosψ

]T
. (7.7)

The angle ψ and thickness d can be determined geometrically. Based on Fig. 7.1,

the kinematic relations

uA = uR +
[
ru cos(Ωt+ ϕ0) ru sin(Ωt+ ϕ0)

]T
, (7.8)

uA = uS +
[
(s− d) cosψ (s− d) sinψ

]T
, (7.9)

hold, and they are determined by

ψ = tan−1

(
yR + ru sin(Ωt+ ϕ0)− yS
xR + ru cos(Ωt+ ϕ0)− xS

)
, (7.10)

d = s−
√

(xR + ru cos(Ωt+ ϕ0)− xS)2 + (yR + ru sin(Ωt+ ϕ0)− yS)2. (7.11)

7.1.1 Dimensionless equations

The equations of motion are nondimensionalized to reduce the number of parameters

and to void numerical problems related to stiff systems. The following change of

variables are used:

τ = ωRt, η =
Ω

ωR
, νR =

bR√
mRkR

, νS =
bS√
mRkR

, νC =
bC√
mRkR

,

κ =
kS
kR
, ρ =

mS

mR

, κC =
kC
kR
, σ =

ru
s
, ûRx =

uRx
s
, ûRy =

uRy
s
, x̂S =

xS
s
,

ŷS =
yS
s
.

(7.12)

Using Eq. (7.12) in Eqs. (7.1)-(7.5), the following new system equations are ob-

tained:

û′′R + νRû′R + ûR = f̂u − f̂ c, (7.13)

ρû′′S + νSû′S + κ(ûS − ûS0) = f̂ c, (7.14)

where

f̂ c =
1

s

〈
−κCd− νC ˙〈d〉

〉
〈−d〉0

[
cosψ − µf sinψ sinψ + µf cosψ

]T
, (7.15)

f̂u =ση2
[
cos(ητ + ϕ0) sin(ητ + ϕ0)

]T
. (7.16)
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The scaling of the time t by the natural frequency of the rotor ωR is important

to avoid problems with numerical methods when solving the nonlinear equations.

In the left-hand side of Eq. (7.13), the nondimensionalized rotor stiffness is the

unity. Hence, the solution of the equations is not affected by high rotor stiffness.

On the other hand, in Eq. (7.14), the nondimensionalized stator stiffness is the ratio

between the rotor and stator stiffness. In this case, the nondimensionalized stator

stiffness is not the unity. However, if both stiffness coefficients are in the same order

of magnitude, the ratio would be small compared to both stiffness coefficients.

7.2 Tools for analysis

7.2.1 Poincaré section

The Poincaré section can better identify periodic, quasi-periodic and chaotic motion.

It can be obtained by sampling the state variables at the times tn = 2πn/Ω + t0.

This yields a sequence of values that corresponds to points in the phase plane. The

pattern of the points correspond to different type of vibration. If only one point

is obtained, the response is a synchronous or period-1 motion. n points means a

subharmonic or period-n motion. When points form a closed curve, it corresponds

to a quasi-periodic motion with two incommensurable frequencies. Finally, when a

quasi-periodic motion with more than two incommensurable frequencies is obtained,

the points are scattered over the phase plane and it can be a strong evidence of

chaotic motion (see Moon [111]).

7.2.2 Full spectrum

The frequency analysis of a rotor’s orbit can be performed by applying the DFT to

the signals in two different ways. If the DFT is applied to each signal individually,

it is called a half spectrum. Since they are computed separately, no relative infor-

mation between the signals is obtained. On the other hand, a full spectrum can

be used to decompose the orbits into forward orbits (precessions in the direction of

rotation) and backward orbits (processions in the opposite direction of rotation).

The visualization of such orbits is of great importance for detecting and identifying

rubbing.

The first step to determine the full spectrum is to consider the motion’s orbit as

the complex function

u(t) = ux(t) + iuy(t) = Ux cos(ωt+ φx) + iUy sin(ωt+ φy), (7.17)

where ux and uy are the signals from two orthogonal proximity sensors, Ux and Uy
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are their amplitudes, and φx and φy are their phases. Eq. (7.17), rewritten as sums

of complex exponentials, turns to

U =
Ux
2

(
ei(ωt+φx) + e−i(ωt+φx)

)
+ i

Uy
2

(
ei(ωt+φy) − e−i(ωt+φy)

)
, (7.18)

U =eiωt
(
Ux
2
eiφx + i

Uy
2
eiφy
)

+ e−iωt
(
Ux
2
e−iφx − iUy

2
e−iφy

)
. (7.19)

The coefficients that are multiplied by eiωt and e−iωt correspond to the parameters

of the forward (FW) and backward (BW) orbits, respectively. Thus, Eq. (7.18) is

written as

U = eiωtUFW e
iφFW + e−iωtUBW e

iφBW , (7.20)

where

UFW e
iφFW =

1

2

(
Uxe

iφx + iUye
iφy
)
, (7.21)

=
1

2
(Ux cosφx + iUx sinφx + iUy cosφy − Uy sinφy) , (7.22)

UBW e
iφBW =

1

2

(
Uxe

−iφx − iUye−iφy
)
, (7.23)

=
1

2
(Ux cosφx − iUx sinφx − iUy sinφy + Uy cosφy) . (7.24)

Thus, by considering the complex orbit from Eq. (7.17), the amplitudes and phases

of the forward and backward components for a frequency ω are obtained. Since

the Fourier transform decomposes a signal into amplitudes and phases of different

frequencies, the forward and backward components of a motion can be represented

by

U(ω) = F {ux + iuy} , (7.25)

which is known as the full spectrum of the orbit.

7.2.3 Full spectrogram

The Fourier transform decomposes a signal into a sum of complex exponentials,

providing that the signal is stationary over a range of time. In a rotating machine,

the spectrum is useful to analyze the response at a fixed operating condition such

as pressure drop or rotating speed. However, if some parameters are changing with

time, the response may not be stationary anymore. In such cases, different methods

are available to overcome this situation. One straightforward approach is to use

a window function in the DFT small enough to guarantee the stationarity of the
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signal. This is called the discrete short-time Fourier transform and is defined as

U [n, k] =
∞∑

m=−∞

u[m]w[n−m]e−i2πkn/N , (7.26)

where w is the window function, n is the n-th time sample, k the k-th frequency

component and m the length of the window. This transformation is also called

spectrogram.

For contact detection, the spectrogram is very useful to determine the time

interval where the contact began. Also, depending on the dominant frequency com-

ponents, the type of the rubbing can be identified.

7.3 Type of responses

Depending on the value of the parameters in Eq. (7.12), the equations of motion in

Eqs. (7.13)-(7.16) exhibit different types of vibration, namely forward, backward,

subharmonic, superharmonic, sidebands and chaotic vibration. Each of them can

be identified and analyzed by the aforementioned tools.

Three simulations are performed to show these types of vibration. A fourth order

Runge-Kutta method [112] was implemented in Matlab to integrate the equations.

Part of the code is shown in Appendix E.1. The parameters of the simulations are

shown in Tab. 7.1.

Parameter Symbol Value Units
(Sim. 1) (Sim. 2) (Sim. 3)

Concentric clearance s 4 · 10−5 5.8 · 10−5 0.004 m
Unbalance radius σ 0.5 0.3448 0.5 -
rotor-stator mass ρ 0.01 0.17 3 -
Static eccentricity ûS0 [0, 0]T [0.8276, 0]T [0, 0]T -
Friction coefficient µf 0.3 0.1 0.3 -
rotor-stator stiffness κ 3 1.64 5 -
Rotor damping νR 0.1 0.0240 0.1 -
Stator damping κC 0 0.0220 0.1 -
Contact damping νC 3 3 3 -
Initial rotation phase ϕ0 0 0 0 rad

Table 7.1: Parameters of the simulations.

7.3.1 Simulation 1 (Forward and backward whirl vibration)

The first simulation was performed to show the forward and backward whirl motion.

Fig. 7.2 shows the magnitudes (ÛR), stator (ÛS) and rotor-stator (ÛRS) orbit from
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0 to 3ωR. Before Ω/ωR = 0.8208 Hz, the rotor’s response in Fig. 7.2a corresponds

to synchronous vibration. Then, when the amplitude surpasses the clearance s, the

contact occurs and the amplitude of vibration is spread out inside an envelope. Two

regions with high and low vibration amplitude can be identified. Similar behavior

is seen in the stator response in Fig. 7.2b, except for the non-contact state, where

the stator vibration is zero. Since the proximity sensors are located in the stator,

they are able to measure only the relative distance between the rotor and stator.

This relative vibration is shown in Fig. 7.2c. A value less than s corresponds to a

non-contact state, while a value beyond it represents a penetration of the rotor in

the stator.

The previous results suggest the existence of a low and high vibration state during

rubbing. Fig. 7.3 shows graphical information of one frequency from each interval.

Fig. 7.3a shows the orbit of the relative vibration ûRS, along with a Poincaré

section, at η = 0.9061. The motion is restrained between a circular strip with a

rosette-like form. The Poincaré section encloses a portion of the orbit, not including

the center. These patterns are related to two different frequencies components, as

shown in the full spectrum of Fig. 7.3c. The positive frequency ηF/η = 1 is the

synchronous component, while the negative frequency ηF/η = −1.39 corresponds to

the backward whirl component. However, since the amplitude of the synchronous

is higher, the motion is considered a forward whirl type. Similarly, Fig. 7.3b shows

the orbit with a Poincaré section at η = 1.5586 Hz. Although the motion is also

restricted to a circular strip, the Poincaré section encloses the center of the orbit.

The full spectrum in Fig. 7.3d shows two different frequencies but the amplitude

of the negative component ηF/η = −1.17 is greater than the synchronous vibration.

Thus, this motion is considered a backward whirl. An analysis of the vibration

during a machine run-up is carried out by means of the spectrogram, as shown in

Fig. 7.4. The continuous straight red line corresponds to the synchronous vibration.

The forward and backward whirl vibrations can be easily identified in this type of

graphical representation.

7.3.2 Simulation 2 (Subharmonic, superharmonic and

chaotic vibration)

Subharmonic, superharmonic and chaotic vibration may occur when the rotor and

stator are statically misaligned. The results for this case are shown in Fig. 7.5. The

magnitudes of the stator and rotor’s vibration in Figs. 7.5a and 7.5b reached higher

amplitudes than the forward and backward whirls. The rotor indentation during

rubbing, shown in Fig. 7.5c is also higher than in Simulation 1.

Three types of vibration were identified in the relative amplitudes. They are
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Figure 7.2: Magnitude of the rotor, stator and rotor-stator displacement with for-
ward and backward vibration.
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Figure 7.3: Orbits and full spectrum of the rotor-stator displacement with forward
and backward vibration.

Figure 7.4: Full spectrogram of the rotor-stator displacement with forward and
backward vibration.

89



shown in Fig. 7.6. For η = 1.2071, the orbit in Fig. 7.6a exhibits a simpler form

with a punctual Poincaré section. In the full spectrum from 7.6c, five frequency

components were found. The greatest amplitude component is the synchronous vi-

bration. The superharmonic vibrations ηF = ±2η were found. Also, a vibration

around ηF = 0 was present. For η = 2.5202, the Poincaré sections of the orbit

in Fig. 7.6b forms a dispersed pattern, suggesting an evidence of chaotic vibra-

tion. The frequency components are shown in Fig. 7.6d. The vibration contains

components spread along an interval, not only at discrete values. This is also an

evidence of chaotic motion. Moreover, the subsynchronous vibrations ηF = ±0.5η

were found. The spectrogram in Fig. 7.7 reveals the three types of vibration during

a machine run-up. Also, the transition between chaotic and periodic motion (sub

and superharmonic) is also visible.

7.3.3 Simulation 3 (Vibration with sidebands)

Another type of motion arises when the eigenfrequency of the stator is slightly higher

than the first critical speed of the rotor. The amplitude of vibrations are shown in

Fig. 7.8. In this case, the rotor and stator’s vibration, shown in Figs. 7.8a and 7.8b,

do not spread out after the contact. It remains at a simple vibration until η = 1.259.

After that frequency, a different motion is set. Similar results can be observed in

the relative amplitude in Fig. 7.8c. The types of motion for two frequencies are

shown in Fig. 7.9. The orbits at η = 1.2707 and η = 1.3667, in Figs. 7.9c and 7.9d

, are circular and the Poincaré section encloses a portion of the orbit, but not in a

circular pattern. For both frequencies, the full spectrum exhibits the synchronous

vibration with smaller components around, or sidebands. Moreover, the spacing

of the sidebands decreases with the frequency. The spectrogram with the different

motions type is shown in Fig. 7.10
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Figure 7.5: Magnitude of the rotor, stator and rotor-stator displacement with sub-
harmonic, superharmonic and chaotic vibration.
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Figure 7.6: Orbits and full spectrum of the rotor-stator displacement with subhar-
monic, superharmonic and chaotic vibration.

Figure 7.7: Full spectrogram of the rotor-stator displacement with subharmonic,
superharmonic and chaotic vibration.
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Figure 7.8: Magnitude of the rotor, stator and rotor-stator displacement with side-
bands vibration.
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Figure 7.9: Orbits and full spectrum of the rotor-stator displacement with sidebands
vibration.

Figure 7.10: Full spectrogram of the rotor-stator displacement with sidebands vi-
bration.
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7.4 Discussion

The analysis of the rubbing in rotors leads to complex mathematical models due to

the discontinuous model of the forces. Although a simplified model was considered,

the numerical integrator used to solve the equations may take a high computational

time depending on the time-step. If additional degrees of freedom are added, that

time may increase considerably. Moreover, the number of parameters to consider

increases the complexity of the analysis. Thus, in this work, the mathematical model

was as simplified as much as possible.

The nondimensionalization of the equations applied to the equations was per-

formed for two reasons. One of them is the reduction of the number of parameters.

This can simplify some analysis without loss of generality. Also, the dimensionless

time introduces a time scaling that enhance the performance of the numerical inte-

gration when high stiffness values are considered. This type of system may cause a

bad numerical condition due to the small step size needed to capture the dynamics.

The tools for analysis used in this work were chosen due to the simplicity and

practicality of their implementation; characteristics that are considered in industrial

applications. The orbits combined with the Poincaré map are rather convenient to

visualize the type of vibration of the machine. For quantitative analysis, the full

spectrum yields the amplitude of each frequency component present in the motion.

In the case of monitoring the machine when varying a parameter such as the rotor

speed, time-frequency methods can be implemented. Among the most used are the

FFT and Wavelets. The frequency and time resolution is better handled by the

Wavelets. The FFT depends on the uncertainty principle; a high time resolution

leads to a low frequency resolution and vice-versa. However, the fast implementation

of the FFT makes the spectrum-base method rather useful in the industry.

The simulations showed similar results to those observed in the literature; the for-

ward, backward, subsynchronous, supersynchronous and chaotic motion appeared.

The difference of this work from the literature lies on the use of a nondimensional

model, the use of a relative rotor-stator displacement and the use of full spectrogram

to detect forward and backward precessions. As stated before, the nondimensional

model is convenient to both reduce the number of parameters and to change the

time scale of the system in order to avoid a bad numerical condition. The simula-

tion of the orbits from the rotor or stator, individually, could not be observed in an

experimental set up if the stator stiffness is within the order of magnitude of that

of the rotor stiffness; the relative rotor-stator displacement is a more realistic mea-

sure. The use of the full spectrum to account for the forward and backward orbits

were introduced by Bently and Muszynska. Since the contact simulations showed

0X, 1X, −1X, and other components, it is a useful tool to analyze the data. For
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nonstationary tests like run-ups and rundowns, a full spectrogram is a better tool.

Although the full spectrum cascades or waterfall plots have been widely used, a

spectrogram is a compact representation of the same plots.

One of the main drawbacks of the model is the number of parameters to be

determined in the real machine. In this work, similar values obtained from the lit-

erature were used to verify the model. Among the most parameters are the stiffness

and damping coefficients. For some values of this parameter, the numerical inte-

gration may not converge. For future works, this parameter must be determined

experimentally from some properties of the material such as elasticity and hardness.

In Appendix D, preliminary experimental results of the test rig’s orbits are

shown. The frequencies −1X, 1X and 0X revealed by the spectrogram are sim-

ilar to the Simulation 2. Thus, there might be a static misalignment between stator

and rotor. For future works, the parameters of the model will be identified from the

vibration measurements.
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Chapter 8

Rotordynamic system with

anisotropy and nonlinearity

In this chapter, a theoretical analysis of a flexible rotor with an annular seal is

performed base on the work of Maldonado et al. [26]. The system equations obtained

have a periodic stiffness matrix and nonlinear terms. A Floquet theory is used to plot

stability charts for different levels of anisotropy. For the nonlinear terms, a method

known as normal forms is applied. It is based on several coordinate transformations

that takes the original equations to a simpler form.

The system studied is composed of an anisotropic rotor, two asymmetrical bear-

ings, a disk and two nonlinear spring-damper systems, as shown in Fig. 8.1. The

stiffness matrix of the rotor and bearings were taken from [113] and the nonlineari-

ties were added. The nonlinear stiffness and damping can model some fluid-induced

forces that are created in some components, such as annular gas seals, of rotating

machinery. Considering the Fig. 8.1, the system equations are

Mü + K(t)u + fnk(u) + fnc(u̇) = f g + fu(t), (8.1)
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Figure 8.1: Rotordynamic system with a flexible anisotropic rotor, a disk, 2 bear-
ings and two set of nonlinear spring-dampers at the disk (based on Gasch and
Pfützner[113], and Maldonado et al. [26])

where

M =


md 0 0 0

0 md 0 0

0 0 2mb 0

0 0 0 2mb

 ,K(t) =

[
Kr(t) −Kr(t)

−Kr(t) Kr(t) + Kb

]
, f g =


0

mdg

0

2mbg

 ,

Kr(t) =

[
kζ cos2 Ωt+ kη sin2 Ωt (kζ − kη) cos Ωt sin Ωt

(kζ − kη) cos Ωt sin Ωt kζ sin2 Ωt+ kη cos2 Ωt

]
, fu(t) = εmdΩ

2


cos Ωt

sin Ωt

0

0

 ,

u(t) =


ux

uy

uxb

uyb

 ,Kb = 2

[
kx 0

0 ky

]
, fnk =


knxu

3
x

knyu
3
y

0

0

 , fnc =


cnxu̇

3
x

cnyu̇
3
y

0

0

 .
(8.2)

M is the mass matrix with the mass of the disk md and mass of the bearing mb

along its main diagonal. K(t) is the stiffness matrix in terms of the rotor stiffness

matrix Kr(t) and the stiffness of bearings Kb. fnk and fnc are the nonlinear stiffness

and damping forces in terms of the parameters knx, kny, cnx, cny. Parameters kζ ,

kη are the rotor stiffness in the rotating frame (along its principal axes of inertia).

f g is the gravity force vector due to the mass of the disk and bearings. fu(t) is

the unbalance force vector applied by a small eccentricity ε in the disk. u(t) is the

displacement vector comprising the displacements of the center of disk ux, uy, and

the displacements of the bearings uxb, uyb.
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Since the rotor is asymmetric, its stiffness matrix Kr(t), w.r.t. an inertial frame,

is time dependent and has a periodic behavior, i.e., Kr(t) = Kr(t+T ), with T = π/Ω

as the period of the parametric excitation. On the other hand, the bearing stiffness

Kb is constant.

8.0.1 Assumptions and system simplifications

The previous equations consider the mass of the bearings. Nevertheless, if the mass

of the disk is much larger than that of the bearings, one may assume that the latter is

negligible to the system behavior. This fact, in an inertial frame, yields the simpler

system

Mdüd + K̃(t)ud + f̃nk(ud) + f̃nc(u̇d) = f̃ g + f̃u(t), (8.3)

where

Md =

[
md 0

0 md

]
,ud =

[
ux

uy

]
, f̃ g =

[
0

mdg

]
, f̃u(t) = εmdΩ

2

[
cos Ωt

sin Ωt

]
,

K̃(t) = Kr(t)−Kr(t) (Kr(t) + Kb)
−1 Kr(t) , f̃nk =

[
knxu

3
x

knyu
3
y

]
, f̃nc =

[
cnxu̇

3
x

cnyu̇
3
y

]
.

(8.4)

The stiffness matrix K has the form

K̃(t) =


c1 + c2 cos Ω̃t

c3 + c4 cos Ω̃t

c2 sin Ω̂t

c3 + c4 cos Ω̃t

c2 sin Ω̃t

c3 + c4 cos Ω̃t

c5 − c2 cos Ω̃t

c3 + c4 cos Ω̃t

 , (8.5)

where

Ω̃ = 2Ω,

c1 = 2kxkykη + 2kykηkζ + kxkykζ ,

c2 = 2kxkykζ − 2kxkykη,

c3 = 4kxky + kxkζ + kykζ + kxkη + kykη + kηkζ ,

c4 = kxkζ + kykη − kykζ − kxkη,

c5 = 2kxkykη + 2kxkηkζ + kxkykζ .

(8.6)

For the purpose of this work, the gravity and unbalance forces are considered null

for the nonlinear analysis of Section 8.2. For the Floquet theory of Section 8.1, only

unbalance force is taken into account. Thus, the final system equations are

Mdüd + K̃(t)ud + f̃nk(ud) + f̃nc(u̇d) = 0̃. (8.7)
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Eq. (8.3) corresponds to a system with nonlinearities, caused by the cubic stiffness

and damping of the seal, and periodic stiffness matrix, due to the anisotropy between

rotor and bearings. If the seal forces are neglected, the system reduces to a linear

system with periodic coefficient parameters. These type of systems can be solved by

Floquet theory, as will be shown in the next section. Specifically, the stability of the

system for different levels of asymmetry are investigated. When the nonlinearities

are taken into account, a different analysis is performed in Section 8.2. The fixed

points of the system, near a certain rotor speed, are computed by a method known

as normal forms.

8.1 Linear analysis

In this section, a linear analysis of system given by Eqs. (8.3)-(8.7) is carried out by

assuming no seal forces. The stability of the linear system is assessed for different

values of rotor anisotropy kζ/kη and bearings anisotropy kx/ky. Stability maps are

built by employing the Floquet theory.

8.1.1 First-order Form

The first step is to set the nonlinear stiffness and damping parameters knx, kny, cnx

and cny to zero in Eq. (8.7) and, then, express the system into a first-order form by

using the vector state

q =
[
q1 q2 q3 q4

]T
=
[
ux u̇x uy u̇y

]T
. (8.8)

Thus, Eq. (8.7) assumes the form

q̇1 = q2,

q̇2 = − 1

md

(
c1 + c2 cos Ω̃t

c3 + c4 cos Ω̃t
q1 +

c2 sin Ω̃t

c3 + c4 cos Ω̃t
q3 − εmdΩ

2 cos Ωt

)
,

q̇3 = q4,

q̇4 = − 1

md

(
c2 sin Ω̃t

c3 + c4 cos Ω̃t
q1 +

c5 − c2 cos Ω̃t

c3 + c4 cos Ω̃t
q3 − εmdΩ

2 sin Ωt

)
.

(8.9)

Since these equations are in the form q̇ = A(t)q + f(t), with

A(t) = A(t+ T ), (8.10)

they represent a linear system with periodic coefficients. The stability analysis of

this system is assessed by the Floquet theory, as shown in the following subsection.
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Also, note that if the rotor anisotropy is null, i.e., kζ = kη, then c2 = 0 and the

system is not time-periodic anymore. In this case, the natural eigenfrequencies are

ω1 =

√
1

md

√
3kxkykζ + 2kyk

2
ζ

4kxky + 2kxkζ + 2kykζ + k2
ζ

, (8.11)

ω2 =

√
1

md

√
3kxkykζ + 2kxk

2
ζ

4kxky + 2kxkζ + 2kykζ + k2
ζ

. (8.12)

8.1.2 Floquet theory

The stability of the linear system in Eq. (8.9) in terms of the rotor speed Ω, the

rotor stiffness kζ and kη as well as the bearings stiffness kx and ky is analyzed. With

the fundamental solution matrix Φ(t), the solution at the time t+ T is given by

Φ(t+ T ) = Φ(t)Φ−1(0)Φ(T ), (8.13)

where Φ−1(0)Φ(T ) is called monodromy matrix [114]. According to the Floquet

theory, the stability of the trivial solution is defined by the largest characteristic

multiplier given by the eigenvalue of the monodromy matrix with the largest mag-

nitude.

In this way, given a monodromy matrix with the eigenvalues λ1, λ2, . . . , λn, the

stability of the trivial solution is as follows:

(1) If all the characteristic multipliers are less than one, then the trivial solution

is asymptotically stable.

(2) If all the characteristic multipliers are less than or equal to one, then the trivial

solution is weakly stable.

(3) If at least one characteristic multiplier is greater than one, then the trivial

solution is unstable.

The monodromy matrix is obtained by integrating Eq. (8.9) over one period with

initial conditions such that Φ(0) = I. Since the monodromy matrix represents the

map q(t) 7−→ q(t+ T ), only the values at time t+ T of the integration are needed.

In order to reduce the number of system parameters, the dimensionless quantities

k̂r =
kζ − kη
kζ + kη

, k̂b =
kx − ky
kx + ky

, Ω̂ = Ω/ω , for kζ ≥ kη, kx ≥ ky, (8.14)

are introduced. The rotation speed is nondimensionalized by the frequency

ω =

√
kζ + kη

2md

, (8.15)
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which corresponds to the natural eigenfrequency when rigid bearings are considered.

In Fig. 8.2, the greatest Floquet multiplier is shown for a certain set of parameters.

The peaks correspond to a resonance condition. ω1/ω and ω2/ω correspond to

fundamental parametric resonances, and (ω1+ω2)/(2ω) to a combination parametric

resonance.

Figure 8.2: Greatest Floquet multiplier showing the fundamental and combination
parametric resonance.

Stability maps

Based on these parameters, stability maps are constructed by computing the char-

acteristic multipliers for each triple k̂r, k̂b, Ω̂. Figs. 8.3 and 8.4 show stability maps

for different levels of rotor and bearings anisotropy in terms of the dimensionless

frequency Ω̂. In each of the figures, stable and unstable regions can be observed.

The unstable region is composed of three tongues and the affected area depends on

the level of anisotropy. Fig. 8.3 shows that the bearings’ anisotropy separates the

tongues and stability areas between them are created. Note that the widest insta-

bility area occurs when k̂r = 1 and that the origins of the tongues tend to merge

when decreasing k̂b. This result is in agreement with Gasch and Pfützner [113]. On

the other hand, Fig. 8.4 shows that the rotor anisotropy also modifies the origins of

the tongues. However, the stable areas between them are reduced and the unstable

area is widened considerably. Thus, if the set of parameters lies in a stable region

close to the tongues, a small variation of the anisotropy may destabilize the system.
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Far from that region, the instability due to a small variation of the bearings or the

rotor stiffness is less likely to occur. This result is important when defining safe

operating conditions of a rotating machine. Also, since bearings may change their

stiffness (e.g. due to wear) it is advisable to identify and monitor these parameters.

The origins of the tongues in Fig. 8.3 are located along the axis k̂r = 0, which

corresponds to the isotropic rotor case when kζ = kη. Based on Eqs. (8.11)-(8.12),

the origins of the tongues are

Ω̂ =
ω1

ω
, (8.16)

Ω̂ =
ω2

ω
, (8.17)

Ω̂ =
1

2
(
ω1 + ω2

ω
). (8.18)

Recalling from Eq. (8.6) that the parametric excitation frequency Ω̃ is twice the

rotation speed Ω, the fundamental parametric resonances Ω̃ ≈ 2ω1 and Ω̃ ≈ 2ω2 are

excited through the rotation speeds Ω = ω1 and Ω = ω2, respectively. This means

that the system has an external excitation resonance as well as fundamental para-

metric excitation. Thus, a nonlinear analysis around the fundamental frequencies is

performed in the next section.
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Figure 8.3: Stability maps computed via the Floquet theory for md = 1 kg, ω = 1
rad/s and k̂b = 0.2(a), 0.4(b), 0.6(c), 0.8(d)

Figure 8.4: Stability maps computed via the Floquet theory for md = 1 kg, ω = 1
rad/s and k̂r = 0.2(a), 0.4(b), 0.6(c), 0.8(d)
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8.2 Nonlinear analysis

In this section, the nonlinear stiffness and damping parameters are taken into ac-

count. The main objective is to find and analyze the fixed points of Eq. (8.7) by

using the method of normal forms. The analysis is based on References [66, 77, 115].

8.2.1 First-order form

The method of normal forms requires a first-order representation of the equations

and a polynomial form of nonlinearities with time-independent parameters. To do

so, the transformation

q =
[
q1 q2 q3 q4 q5 q6

]T
=
[
ux u̇x uy u̇y eiΩ̃t e−iΩ̃t

]T
, (8.19)

is used in Eq. (8.7). Note that the two complex exponentials are introduced to

eliminate the time-dependency, creating an autonomous system. Nevertheless, in-

creasing the states of the system leaves the entries of the stiffness matrix of Eq.

(8.5) in a fraction form. Thus, multivariate Taylor series are used to expand the

system equations up to the third order. The expanded equations take the form

q̇ = f(q) = Aq + f2(q) + f3(q), (8.20)

where A = ∂f
∂q

∣∣∣
q=0

and f2(·), f3(·) contain all the terms of degree 2 and 3, respec-

tively. Eq. (8.20) assumes the form

q̇1 =q2,

q̇2 =− 1

md

(
ω2

1q1 +
c2c

2
3 − c1c4

2c2
3

(q5 + q6)q1 +
c2

2c3

(q5 − q6)q3 +
c1c

2
4 − c3c2c4

4c3
3

(q5 + q6)2q1+

c2c4

4c2
3

(q2
6 − q2

5)q3 + knxq
3
1 + cnxq

3
2

)
,

q̇3 =q4,

q̇4 =− 1

md

(
ω2

2q3 −
c2c

2
3 + c4c5

2c2
3

(q5 + q6)q3 +
c2

2c3

(q5 − q6)q1 +
c3c2c4 + c2

4c5

4c3
3

(q5 + q6)2q3+

c2c4

4c2
3

(q2
6 − q2

5)q1 + knxq
3
1 + cnxq

3
2

)
,

q̇5 =Ω̃q5i,

q̇6 =− Ω̃q6i.

(8.21)

Note that after the introduction of complex exponentials the system is autonomous,

i.e., there is no explicit dependency on time in the equations. However, the system’s
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dimension increased and the equations became complex.

In order to simplify the equations, the matrix A can be expressed in its simplest

form using the modal transformation q = Rx, where R is the modal matrix, in which

columns are formed by the eigenvectors of the linear system. Thus, the equation of

motion is transformed to

ẋ = Λx + R−1f2(x) + R−1f3(x), (8.22)

where

Λ = diag(ω2i,−ω2i, ω1i,−ω1i, Ω̃i,−Ω̃i) (8.23)

is a diagonal matrix and f2(·) and f3(·) are polynomial functions of order 2 and 3,

respectively. Eq. (8.22) can be rewritten in a matrix form as

ẋ = f(x) = Λx + F2x
2 + F3x

3, (8.24)

where x2, x3 are 21×1 and 56×1 vectors, and F2, F3 are 6× 21 and 6× 56 matrices,

respectively. Note that the notation

xi =



xm11
1 xm12

2 · · ·xm1n
n

xm21
1 xm22

2 · · ·xm2n
n

...

xmk1
1 xmk2

2 · · ·xmkn
n

...


(8.25)

represents a vector with the monomials of degree i

xmk1
1 xmk2

2 · · ·xmkn
n , with

n∑
l=1

mkl = i , for i = 1, 2, 3. (8.26)

8.2.2 Normal form transformation

The main objective of the normal form transformation is to eliminate as many

quadratic and cubic terms in Eq. (8.21) as possible. The number of eliminated

terms depends on a special resonance condition. After the transformation is applied,

a simpler set of equations is obtained and some analyses are easier to carry out. The

following steps are according to Hochlenert [115].

The equations in normal form are expressed as

ẏ = h(y) = Λy + H2y
2 + H3y

3. (8.27)
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The near-identity transformation that takes Eq. (8.21) to Eq. (8.27) is of the type

x = g(y) = y + G2y
2 + G3y

3. (8.28)

The transformation leaves the linear part unchanged. On the other hand, the mono-

mials vectors y2, y3 are multiplied by matrices H2, H3, defining the remaining non-

linear terms. These matrices depend on F2, F3, G2, G3, and are chosen so that as

many nonlinear terms are eliminated as possible.

The objective is to determine matrices Gi and Hi. First, Eq. (8.28) is subtituted

in Eq. (8.24) and equated to the time derivative of Eq. (8.28). This gives(
I +

∂(G2y
2)

∂y
+
∂ (G3y

3)

∂y
+ · · ·

)(
Λy + H2y

2 + H3y
3 + · · ·

)
= Λ

(
y + G2y

2+

G3y
3 + · · ·

)
+ F2

(
y + G2y

2 + G3y
3 + · · ·

)2
+ F3

(
y + G2y

2 + G3y
3 + · · ·

)3

(8.29)

By equating the monomials of the same degree (except for the trivial equation

of degree 1) on both sides, the matrices H2, H3 can be obtained as

H2y
2 = F2y

2 + ΛG2y
2 − ∂ (G2y

2)

∂y
Λy, (8.30a)

H3y
3 = F̃3y

3 + ΛG3y
3 − ∂ (G3y

3)

∂y
Λy, (8.30b)

where

F̃3y
3 := F3y

3 + 2F2

(
y
(
G2y

2
))
− ∂ (G2y

2)

∂y
H2y

2. (8.31)

The last term of each equation involving a partial derivative can be determined as

∂(Giy
i)

∂y
Λy = Gi

[
∂yi

∂y1

· · · ∂yi

∂y6

]
Λy

= Gi


...

...
...

· · · mkj

(
ymk1

1 · · · ymkj−1
j · · · ymk6

6

)
· · ·

...
...

...

Λy

= Gi


. . . 0∑6

l=1 mklλl

0
. . .

yi, for i = 2, 3.

(8.32)
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Using Eq. (8.32) in Eq. (8.30), the equations

H2,jk = F2,jk +

{
λj −

6∑
l=1

mklλl

}
G2,jk , for j = 1, . . . , 6 (8.33a)

H3,jk = F̃3,jk +

{
λj −

6∑
l=1

mklλl

}
G3,jk , for j = 1, . . . , 6 (8.33b)

are obtained.

The idea of the transformation is to choose such G2,jk and G3,jk that H2,jk and

H3,jk become zero. It is possible for all nonlinear terms which do not fulfill the

resonance condition

λj =
6∑
l=1

mklλl , with
6∑
l=1

mkl = i , for i = 1, 2, 3. (8.34)

If the resonance condition is fulfilled, the corresponding nonlinear terms cannot be

eliminated, i.e., the terms are called resonant. Considering this condition, two cases

are used to determine the normal form of the system equations, as shown in Tab.

8.1. It has to be noted that due to parametric excitation, the resonant terms depend

on the excitation frequency, so that for each specific values of excitation frequency

a separate normal form has to be derived.

Resonance condition not fulfilled Resonance condition fulfilled

G2,jk =
F2,jk∑6

l=1mklλl − λj

G3,jk =
F̃3,jk∑6

l=1mklλl − λj
H2,jk = 0

H3,jk = 0

G2,jk = 0

G3,jk = 0

H2,jk = F2,jk

H3,jk = F̃3,jk

Table 8.1: Values of matrices G2,jk, G3,jk, H2,jk, H3,jk

8.2.3 System equations in normal form

The normal form of Eq. (8.21) for the combination resonances Ω̃ ≈ 2ω1 and Ω̃ ≈ 2ω2

is computed based on the cases of Tab. 8.1. These frequencies also correspond to

Ω ≈ ω1 and Ω ≈ ω2, which are the external resonances discussed in Section 8.1.

For the fundamental resonance frequency Ω̃ ≈ 2ω1, the equations in normal form
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are

ẏ1 = ω2y1i+ (f1 + f2i)y
2
1y2,

ẏ2 = −ω2y2i+ (f1 − f2i)y1y
2
2 + f3y2y5y6i,

ẏ3 = ω1y3i+ f4y4y5i+ (f5 + f6i)y
2
3y4,

ẏ4 = −ω1y4i+ f7y3y6i+ (f5 − f6i)y3y
2
4 + f8y4y5y6i,

ẏ5 = Ω̃y5i,

ẏ6 = −Ω̃y6i,

(8.35)

where f1, . . . , f8 are real constants that depend on the system parameters.

For the fundamental resonance frequency Ω̃ ≈ 2ω2, the equations in normal form

are

ẏ1 = ω2y1i+ g1y2y5i+ (g2 + g3i)y
2
1y2,

ẏ2 = −ω2y2i+ g4y1y6i+ (g2 − g3i)y1y
2
2 + g5y2y5y6i,

ẏ3 = ω1y3i+ (g6 + g7i)y
2
3y4 + g8y3y5y6i,

ẏ4 = −ω1y4i+ (g6 − g7i)y3y
2
4 + g9y4y5y6i,

ẏ5 = Ω̃y5i,

ẏ6 = −Ω̃y6i,

(8.36)

where g1, . . . , g9 are real constants that depend on the system parameters.

In both cases, the number of nonlinear terms from the second and fourth equa-

tions is less than in Eq. (8.21). Note that the system is still complex and the first

four equations still depend on y5 and y6, which are the complex exponentials of the

periodic stiffness. In the following subsection, a polar coordinate transformation is

applied to eliminate this dependency and to obtain a real system.

8.2.4 Normal form in polar coordinates

Eqs. (8.35) and (8.36) can be simplified by means of a further transformation. By

using the polar coordinates

y1 = r1e
iϕ1 , y2 = r1e

−iϕ1 , y3 = r2e
i(ϕ2+ 1

2
Ω̃t), y4 = r2e

−i(ϕ2+ 1
2

Ω̃t), (8.37)
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the normal form for the fundamental resonance frequency Ω̃ ≈ 2ω1 is

ṙ1 = e1cnxr
3
1,

ϕ̇1 = e2knxr
2
1 + e3,

ṙ2 = e4cnyr
3
2 + e5 sin(2ϕ2)r2,

ϕ̇2 = e6knyr
2
2 + e7 cos(2ϕ2) + e8 −

Ω̃

2
,

(8.38)

where e1, . . . , e8 are real constants.

For the fundamental resonance frequency Ω̃ ≈ 2ω2, using the polar coordinates

y1 = r1e
i(ϕ1+ 1

2
Ω̃t), y2 = r1e

−i(ϕ1+ 1
2

Ω̃t), y3 = r2e
iϕ2 , y4 = r2e

−iϕ2 , (8.39)

the normal form is written as

ṙ1 = d1cnxr
3
1 + d2 sin(2ϕ1)r1,

ϕ̇1 = d3knxr
2
1 + d4 cos(2ϕ1) + d5 −

Ω̃

2
,

ṙ2 = d6cnyr
3
2,

ϕ̇2 = d7knyr
2
2 + d8,

(8.40)

where d1, . . . , d8 are real constants.

In both cases, there are some advantages of this representation in contrast to

Eqs. (8.35) and (8.36): the number of nonlinear terms is smaller, it was possible

to obtain an autonomous real system, and two of the equations are decoupled. For

Ω̃ ≈ 2ω1 in Eq. (8.38), only variables r2, ϕ2 are coupled. On the other hand, for

Ω̃ ≈ 2ω2 in Eq. (8.40), r1, ϕ1 are coupled. It is also relevant to note that Ω̃ only

affects the coupled variables. The procedure to obtain Eqs. (8.38) and (8.40) is

detailed in Appendix E.2.

8.2.5 Fixed points

Normal form transformation

The fixed points of Eqs. (8.38) and (8.40) are computed by zeroing the derivatives

and solving for each variable. Thus, from Eq. (8.40), the fixed points for Ω̃ ≈ 2ω2

are obtained from the set of equations

d1cnxr
3
1 + d2 sin(2ϕ1)r1 = 0, (8.41a)

d3knxr
2
1 + d4 cos(2ϕ1) + d5 −

Ω̂

2
= 0. (8.41b)
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It is a set of equation with three solutions: {r(1)
1 , ϕ

(1)
1 }, {r

(2)
1 , ϕ

(2)
1 } and {r(3)

1 , ϕ
(3)
1 }.

One of the solutions is

r
(1)
1 = 0, (8.42a)

ϕ
(1)
1 =

1

2
cos−1

(
Ω̂/2− d5

d4

)
. (8.42b)

The remaining solutions are obtained by solving the set of equations

d1cnx

(
r

(2,3)
1

)2

+ d2 sin(2ϕ
(2,3)
1 ) = 0, (8.43a)

d3knx

(
r

(2,3)
1

)2

+ d4 cos(2ϕ
(2,3)
1 ) + d5 −

Ω̂

2
= 0. (8.43b)

The stability of these solutions can be assessed by computing eigenvalues of the

Jacobian matrix

Jω2 =

[
3d1cnxr

2
1 + d2 sin(2ϕ1) 2d2 cos(2ϕ1)r1

2d2knxr1 −2d4 sin(2ϕ1)

]
. (8.44)

Similarly, the fixed points for Ω̃ ≈ 2ω1 are obtained from the set of equations

e4cnyr
3
2 + e5 sin(2ϕ2)r2 = 0,

e6knyr
2
2 + e7 cos(2ϕ2) + e8 −

Ω̂

2
= 0,

(8.45)

with the solutions {r(1)
2 , ϕ

(1)
2 }, {r

(2)
2 , ϕ

(2)
2 } and {r(3)

2 , ϕ
(3)
2 } obtained from

r
(1)
2 = 0, (8.46a)

ϕ
(1)
2 =

1

2
cos−1

(
Ω̂/2− e8

e7

)
, (8.46b)

and

e4cny

(
r

(2,3)
2

)2

+ e5 sin(2ϕ
(2,3)
2 ) = 0,

e6kny

(
r

(2,3)
2

)2

+ e7 cos(2ϕ
(2,3)
2 ) + e8 −

Ω̂

2
= 0.

(8.47)

In this case, the Jacobian matrix is

Jω1 =

[
3e4cnyr

2
2 + e5 sin(2ϕ2) 2e5 cos(2ϕ2)r2

2e6knyr2 −2e7 sin(2ϕ2)

]
. (8.48)

The solution of Eqs. (8.45) and (8.47) form the 3-dim spaces r2-ϕ2-Ω̃ and r1-
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ϕ1-Ω̃, valid only near the fundamental resonance frequencies 2ω1 and 2ω2. The

results are shown in Figs. 8.5-8.7. The curves are composed of stable (solid lines)

and unstable points (dashed lines). The stability is determined by computing the

Jacobian matrices (8.44) and (8.48). If the real part of one eigenvalue is less than

zero, the point is stable, otherwise it is unstable. The figures also show the influence

of the nonlinear stiffness and damping coefficients. Figs. 8.5a and 8.6a show that

the nonlinear stiffness has a hardening effect, and the curve bends to the right as

the nonlinear stiffness is increased. On the other hand, Figs. 8.5b and 8.6b show

that the nonlinear damping attenuates the amplitude of vibration. The bearings

and the rotor anisotropy change the amplitude and the bifurcation point of the

nontrivial fixed points, as shown in Fig. 8.7. Depending on how the rotor speed is

varied, different paths are traversed by the fixed points. During a run-up, starting

with Ω̃ below a fundamental resonance frequency, the trivial solution is the only

stable point. Near a fundamental resonance frequency, the trivial solution loses

stability and a bifurcation causes a separation into two branches, one stable and the

other unstable. Thus, the fixed point jumps up to the stable branch of nontrivial

solutions. Hereafter, when increasing the rotor speed, the fixed point loses stability

and jumps down to trivial solution branch again. During the run-down, starting

above a fundamental resonance frequency, the same behavior occurs but at different

frequencies, as can be seen in the figures. The bifurcation only occurs at the turning

points seen in the figures.

Numerical integration

The results obtained from the normal form transformation are verified by a numerical

integration from Eq. (8.21). A fourth-order Runge-Kutta integrator is used to obtain

the solutions to unfolded system equation

q̇ = f(q,Ω), for Ω ≈ 2ω1,Ω ≈ 2ω2

Ω̇ = ε,
(8.49)

where ε is a small constant representing the variation of the rotor speed.

Figs. 8.8 adn 8.9 shows the solutions of the state variable q2 and q3 during

a run-up, starting below the corresponding fundamental resonance frequency, and

run-down, starting above it. The vibrations are attracted to the stable fixed points

obtained through the normal form method. The points were the solutions jump

from a low to high vibration level are related to the jump phenomena common in

systems with parametric excitation. Note that the unstable branches, obtained by

the normal form method, cannot be observed by the numerical integration. Near the

unstable points, the solutions are repelled to a stable fixed point. When an initial
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(a) kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m, kζ = 103N/m, m = 1kg,
cnx = cny = 50Ns/m.

(b) kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m,
kζ = 103N/m, m = 1kg, knx = kny = 106N/m.

Figure 8.5: Fixed point for different values of cnx and knx. The solid lines are stable
points and the dashed lines are unstable points. (a) Fixed point curve bending for
Ω̂ ≈ 2ω1 on the plane r2-Ω̂ when varying knx. (b) Fixed point curve damping for
Ω̂ ≈ 2ω1 on the plane r2-Ω̂ when varying cnx.
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(a) kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m,
kζ = 103N/m, m = 1 kg, cnx = cny = 50Ns/m.

(b) kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m,
kζ = 103N/m, m = 1 kg, knx = kny = 106N/m.

Figure 8.6: Fixed point for different values of cny and kny. The continuous lines
are stable points and the dashed lines are unstable points. (a) Fixed point curve
bending for Ω̂ ≈ 2ω2 on the plane r1-Ω̂ when varying knx. (b) Fixed point curve
damping for Ω̂ ≈ 2ω2 on the plane r1-Ω̂ when varying cnx.

condition is given outside the unstable orbit, the solution tends to the nontrivial

solution. Inside this orbit, the solution tends to the trivial solution.
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(a) kx = 0.5·103N/m, ky = 1.75·103N/m, kζ = 103N/m, m = 1
kg, knx = kny = 106N/m, cnx = cny = 50Ns/m.

(b) ky = 1.75 · 103N/m, kη = 2 · 103N/m, kζ = 103N/m, m = 1
kg, knx = kny = 106N/m, cnx = cny = 50Ns/m.

Figure 8.7: Fixed point for different values of kx and kη. The continuous lines
are stable points and the dashed lines are unstable points. (a) Effect of the rotor
asymmetry on the fixed point curve for Ω̂ ≈ 2ω2 on the plane r1-Ω̂ when varying kη.

(b) Effect of the bearings asymmetry on the fixed point curve for Ω̂ ≈ 2ω1 on the
plane r2-Ω̂ when varying kx.

Verification

Since the fixed points of the system in normal form are related to amplitudes of

the limit cycles of the original system, the maximum amplitudes of the periodic

solutions obtained by the integration of Eq. (8.49) are considered. Moreover, both
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Figure 8.8: Numerical integration of variable q3 during a run-up and run-down for
Ω̃ ≈ 2ω1, kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m, kζ = 103N/m,
m = 1 kg, knx = kny = 1 · 106N/m, cnx = cny = 500Ns/m.

Figure 8.9: Numerical integration of variable q2 during a run-up and run-down for
Ω̃ ≈ 2ω2, kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη = 2 · 103N/m, kζ = 103N/m,
m = 1 kg, knx = kny = 1 · 106N/m, cnx = cny = 500Ns/m.

solutions must be in the same coordinate systems. Thus, Eqs. (8.28),(8.38) and

(8.40) are used to express both solutions in the same coordinate system. In this

case, the physical coordinates (coordinates of the original system) are used. The

results in Fig. 8.10 shows a good agreement between the normal forms method and

the numerical integration. Figs. 8.8 and 8.9 show the jump phenomena during the
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run-up and run-down due to the unstable fixed points.

(a)

(b)

Figure 8.10: Comparison between the normal forms and the numerical integration
for Ω̂ ≈ 2ω1 (a) and Ω̂ ≈ 2ω2 (b) with kx = 5 · 102N/m, ky = 1.75 · 103N/m, kη =
2 · 103N/m, kζ = 103N/m, m = 1 kg, knx = kny = 2 · 104N/m, cnx = cny = 100Ns/m.
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8.3 Discussion

Stability maps is one of the most important tools in rotating machinery because

one can predict the behavior of the system with the modification of a parameter

value. Similarly, fixed points are also relevant because the mathematical model of

components such as bearings and seals are linearized around these points. If the

value of any parameter changes (by wear or a different operating condition), the fixed

points may become unstable and the linear equations would not be valid anymore.

Thus, parameters such as the bearings’ anisotropy, rotor anisotropy, and nonlinear

stiffness and damping should be identified and monitored. In an experimental rig or

machine, this can be carried out by proximity sensors and accelerometers measuring

the transverse vibration of the rotor. This vibration, combined with an identification

method, can be used to determine the stiffness of the rotor and of the bearings. With

these parameters, the position of the operating point on the stability maps of Figs.

8.3-8.4 as well as the distance from instability can be determined. On the other

hand, the experimental version of Fig. 8.10 can be obtained by taking the maximum

amplitude of the vibration during a slow run-up and run-down. If an abrupt change

in the amplitude of vibration occurs, it can be attributed to the jump phenomenon

of Figs. 8.5-8.7. As seen before, such behavior comes from the presence of cubic

stiffness and damping in the seal. In this case, the bifurcation points that cause the

jump must be taken into consideration because if the machine is working near these

points with a low vibration level, a small variation in the rotor speed would increase

(or decrease) the vibration dramatically.

Even though the intention of this work was not to show the advantage of the

normal forms over other methods, it is remarkable to show the basic idea of simpli-

fying the system via coordinate transformations and order approximations applied

to the equations of motion itself without making assumptions on the kind of solu-

tions [75]; the method can be readily implemented by using symbolic computation.

Also, as stated by Guckenheimer and Holmes [78], the normal form reveals some

hidden symmetries useful for further analysis. Moreover, no references in the liter-

ature were found regarding normal forms applied to rotordynamics, particularly to

bearings and seals. This is a motivation since a different analysis of such systems

may bring new insights to the field. In the case of this thesis, asymmetries and cubic

nonlinearities created nontrivial fixed points with frequency jumps. It is important

to note that the method is based on polynomial expansions and truncations that

makes the result valid only under those assumptions. Different results might be ob-

tained by considering higher order terms. The analysis of a larger system by means

of the normal form transformation is possible, but most probably not feasible due

to the high complexity of analytical expressions involved. Therefore, the method
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is preferably applied to a smaller or reduced model in order to investigate specific

effects or qualitative influence of a few chosen parameters in detail.
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Chapter 9

Conclusions

In this thesis, three problems of rotordynamics were investigated. They are related

to the dynamics of a test rig for the identification of annular gas seal coefficients.

In the first problem, the coefficients were obtained by means of a transfer function

(CDS matrix) between the forces and displacements measurements. Three excita-

tion signals were tested and the results showed that the multisine signal is adequate

for this type of machine. During the tests, the rotor vibration eventually exceeded

the maximum clearance and a rotor-stator contact problem arouse. Since this phe-

nomenon may damage the machine, a theoretical investigation was performed to

know the consequences of this condition. Three simulations showed different asyn-

chronous vibration and they were analyzed by different tools. The intention was to

show that the contact condition can be detected by means of graphical information.

Only preliminary experimental results of the rig’s vibration was shown. Three har-

monics were observed with the full spectrum and full spectrogram. Finally, the last

problem was related to the nonlinear dynamics of a system, representing the rig,

with anisotropy and a seal with cubic stiffness and damping. Although the problem

was only analyzed theoretically, it is important to know the behavior of the rig with

such conditions. Moreover, the method of the normal forms was introduced and

applied to determine the influence of certain parameters on the system response.

Below are shown specific conclusions, contributions and expected future work from

the three problems.

9.1 Annular gas seal test rig

Conclusions

The construction of a test rig for annular gas seals involves the integration of the

following aspects: rotordynamics, electromagnetism, instrumentation, identification

of parameters and design of excitation signals. In order to obtain satisfactory mea-

120



surements, each aspect must be correctly designed and implemented.

The dynamic characteristics of the rotor must be known a priori to guarantee a

well energy distribution of the excitation signal. The finite element method used to

model the rotor was able to predict the two first critical speeds. This information

is important to define the operating speed and excitation frequency range.

The use of magnetic actuators to excite the rotor is an interesting approach and

a widely used technique. Although the equations involved in the phenomena are

complex, a simplified model is reasonable to both design the magnetic actuators

and model the electromagnetic forces. Although this type of actuators brings some

advantages, the model must be correctly linearized in order to avoid nonlinear effects.

This can be done by applying a bias current and considering small displacements

around the magnetic center of the actuators.

The CDS matrix method showed satisfactory results when identifying the equiv-

alent stiffness and damping coefficients of the overall system. Each entry of the

CDS was computed by using the H3 estimator to account for both the noise in

the displacement and force sensors. The shape of the absolute value, real part and

imaginary part of the CDS are in accordance with the literature. It is important to

remark that the estimates of the coefficients must be computed along with an esti-

mate about their error. This gives an insight about the uncertainty of the coefficients

at each frequency.

Regarding the amplitude limitation between the rotor and seal, the design of

the excitation signal was able to better distribute the energy in two important

aspects. First, the signal was composed of several tones that excite the system at

different frequencies simultaneously. If all the individual tones are summed with the

same phase, several overshoots would appear in the response. This was avoided by

modifying the phases with an iterative method proposed in the literature. Thus, the

overshoots were diminished and more energy can be transferred to the rotor without

rubbing the seal. The second aspect is related to the natural vibration of the rotor.

If the amplitudes of the excitation signal in the frequency domain are constant, the

displacement response would be high at the critical speeds and low far from them

(considering frequencies around the first critical speed). Thus, low SNR would be

found around those small amplitudes and, consequently, poor estimates would be

obtained. To overcome this issue, the amplitude of each tone from the excitation

signal is designed so that the displacement responses is flat. In this case, the SNR

would be higher, reaching better estimates.

The coefficients were obtained by applying the CDS matrix method with a two-

step approach. A baseline set of measurements, with no pressure drop, determined

the effects of the rotor and bearings. In the pressurized test, the effects of the

rotor, bearings and seals are obtained. By subtracting the two tests one another,
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the effects of the seals were readily obtained. It is relevant to note that this is only

true if all the effects coming from different components are linear. The results found

using this method was according to several references in the literature. The direct

stiffness increased with the excitation frequency with low error, which correspond

to a hardening effect. The direct damping increased with the excitation frequency

and high relative errors were found in the low frequencies. Both the cross-coupled

stiffness and damping exhibited small values and high errors at some frequencies.

High errors were found where the coherence between the excitation force and seal

displacements were low.

Contributions

Currently, there are few test rigs for testing annular gas seals. In Brazil, there is no

similar machine. This thesis showed some characteristics of a small-scale rig built

in the Acoustics and Vibration Laboratory. This type of machine are of great rel-

evance, especially in Brazil, since the Brazilian Petroleum Corporation (Petrobras)

has interest in developing a real-scale machine to test seals from centrifugal com-

pressors used in oil extraction. Currently, there is a partnership between Petrobras

and UFRJ to develop such machine and one of the objective of this thesis is to

build a small-scale rig to understand the dynamics and to test the identification

algorithms that will be used in the bigger machine. Moreover, different theoretical

models can be proposed and validated experimentally. This widens different studies

in the rotordynamic field such as finite element methods, nonlinear dynamics, active

magnetic bearings, monitoring and diagnosis, signal excitation design, rotor-stator

rub, bulk-flow, CFD, among others.

Most of the available test rigs uses a rigid rotor, with an operating condition

below the first critical speed, however, centrifugal compressors may work above

it. In this thesis, a test rig with flexible rotor was considered and the excitation

signal was applied below and above the first critical speed. This was a challenge

in two aspects. First, the first critical speeds is always excited and the tones of

the excitation must be void it. Since it is a flexible rotor, the vibration at that

frequency may exceed the maximum value allowed and the rotor would rub the seal.

Secondly, the excitation frequency must be carefully designed to avoid rubbing for

all frequencies. In this thesis, the amplitude profile of the excitation frequency was

chosen so that the amplitudes of the displacement remain flat. Thus, a high SNR

was reached in contrast to an excitation with a flat profile.

The results obtained in this work are of great relevance in the industry of ro-

tating machines, especially in Brazil. Only few rigs test annular seals around the

world. This is the first step towards the improvement of centrifugal compressors’
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performance. The direct and cross-coupled coefficients of the seal were success-

fully obtained, showing that the design, instrumentation, identification method and

excitation signals are sufficient to extract some preliminary results.

Future Works

One of the main drawbacks of the rig is the drop of the inlet pressure due to limi-

tations from the air compressor used for the tests. Since it could not maintain the

pressure constant, only a small part of the test, with an almost constant pressure,

was used in the identification method. For future works, a compressor with a higher

capacity should be used.

Although the coefficients were obtained with displacement and force measure-

ments, rotordynamic instabilities may come mainly from the circumferential speed

between the rotor and seal; this variable was not measured in this work. Thus, a

pitot probes should be installed for future tests.

In this work, the electromagnets were used as shakers whilst ball bearings were

used as support. A more interesting configuration would be use active magnetic

bearings to both excite and support the rotor.

The use of other type of fluid, such as nitrogen or carbon dioxide, with a high

pressure would be an interesting and more realistic case. It is intended to carry out

this condition on bigger test rig.

9.2 Type of responses of a rotor-stator contact

and the the detection in a test rig for annular

gas seals

9.3 Conclusions

The analysis of the type of motion in a rotating machine is relevant in the diagnosis

of failures. For certain operating conditions, the machine may exhibit vibration in

asynchronous frequencies that could trigger an instability. One common problem in

rotating machines with small clearances is the rotor-stator contact. In this thesis, a

an analysis was performed to determine the type of motion in a test rig for annular

gas seals.

As an effort to represent the system with as few degrees of freedom as possi-

ble, a lumped-element model was used. The results obtained were similar to the

information available in the literature. The simulations showed different types of

motion: forward, backward, subsynchronous, supersynchronous and chaotic vibra-
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tions. However, in this work, the equations were nondimensionalized to reduce the

value of the time steps. Moreover, the relative rotor-stator displacement was chosen

to analyze the system’s vibration since it is the variable measured experimentally.

The tools to analyze the rotor vibration were chosen due to their simplicity in

the practical implementation. The orbit with a superimposed Poincaré map gave an

insight about the type of vibration. A single harmonic orbit is represented by one

point the Poincaré map. When a forward and backward motions are present, the

Poincaré map appears as closed paths around the orbit. A diffuse set of points in

the Poincaré map is an indication of a multiperiodic or chaotic motion. At a certain

frequency, the full spectrum can reveal more information. The forward/backward

motion appears in the positive/negative frequency range. The dominant motion is

the peak with the higher amplitude. During an acceleration or deceleration, the

type of motion can be assessed by the full spectrogram. This type of plot is useful

to detect, within a margin of error determined by the time window of each spectrum,

a variation in the type of motion. Thus, the red curves are related to the different

frequency components present in the vibration. Although in this work, the full

spectrogram captured a change in the orbits due to a rotor-stator contact, it can be

used to detect a modification of the motion due to other parameters.

The motion observed in the test rig revealed similar frequency components to

those in Section 7.3. As expected, only one positive frequency (1X) is seen initially.

Then, when the clearance is surpassed, the rub occurs and the motion is represented

by three frequencies: 0X, 1X and −1X. Thus, when performing a pressurized

experiment on the rig, special attention must paid to the frequencies around these

values.

Contributions

In the theoretical part, a computational code was developed to easily observe the

influence of different parameters on the vibration. Although this model was al-

ready investigated by other authors, the intention is to show that it can be used for

predicting the vibration in a test rig.

This thesis showed that classical tools such as orbits, Poincaré maps, power

spectra and spectrograms are useful to assess and detect the vibration during rotor-

stator contact. The experiments showed that when the vibration of the rotor rig

rises significantly, the contact forces create a motion with the components 0X, 1X

and -1X. The methods exposed in the thesis can be implemented in any rotating

machine for the diagnosis of a failure due to rotor-stator contact.
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Future Works

The parameters of the rotor-contact model will be identified in order to validate the

results. This can be implemented by using a nonlinear fit or by using probabilistic

approaches such as the Bayesian inference.

Experimental results from pressurized tests will be performed to see the influence

on the vibration during contact.

9.4 Anisotropy and nonlinearities analysis of a ro-

tor via Floquet and normal forms

Conclusions

In many mechanical systems, anisotropy and nonlinearity are present and its as-

sessment is relevant to keep the machine under safe conditions. This thesis dealt

with an asymmetric rotor, asymmetric bearings and an annular seal with nonlinear

stiffness and damping. Stability and the behavior of the fixed points were assessed.

The Floquet theory was used to assess the the stability of the linearized dynamics

of the system. Stability maps were created and they provided graphical insight about

the safe operating regions, where small variations of the rotor or bearings anisotropy

are allowed without making the system unstable. Three tongues of instability were

observed. Depending on the level of anisotropy, the instability areas may increase

or decrease. For a constant anisotropy level, the rotor may pass through instability

areas during an acceleration. These tongues also were useful to find the nontrivial

fixed points when a stiffness and damping is added to the system.

When a seal with cubic nonlinear stiffness and damping is considered, a more

complex dynamics is obtained. The method of the normal forms was applied to com-

pute the near-identity transformation in which the resonant terms are eliminated

systematically. This fact simplified the complexity of the equations. The fixed

points of the system were computed and they showed stable and unstable branches.

During a rotor run-up or rundown, the fixed points traverse different paths due

to the different location of the bifurcation on each path. Since no integration is

required, the influence of the nonlinear parameters were assessed. The nonlinear

stiffness showed a hardening effect by bending the curve to the right. On the other

hand, the nonlinear damping had an attenuation effect on the amplitude of vibra-

tion when increased. The rotor and bearings asymmetries modified the bifurcation

points and amplitudes of the fixed points. For verification purposes, the comparison

between the fixed points, obtained using the method of normal forms method, and

the maximum amplitude of limit cycles in physical coordinates, obtained by direct
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numerical integration of the original equations, were compared and showed a good

agreement.

Contributions

Stability charts showed the importance of quantifying the level of asymmetry in a

rotordynamic system. In practice, some components may exhibit anisotropic char-

acteristics, such as rotors or bearings. These charts are a reference to maintain a

safe operating condition without damaging the machine.

A method for analyzing nonlinearities in a rotordynamic system was applied.

This is a novelty in the annular seals field, since many authors considers only linear

stiffness and damping coefficients. Nevertheless, this work shows that if the seal ex-

hibits cubic parameters, different fixed points are established and a jump phenomena

occur near the fundamental resonances.

This behavior is relevant in rotating machines since the fixed points are used

to linearize the equations. If they are unstable, the linear equations are not valid

anymore. Also, the abrupt change in the amplitude at the bifurcation points should

be taken into consideration in the design or operating stage of the machine by

identifying the value of the nonlinear parameters and asymmetry.

The normal form of a nonlinear system is not a new concept. However, the

systematic method that takes a nonlinear system with smooth nonlinearities into a

simpler system has been studied recently. In this thesis, this method was successfully

applied to a rotordynamic system to determine the influence of some parameters.

Moreover, the computational code developed in Mathematica is able to compute the

normal forms of a system of differential equations of first order with general smooth

nonlinear stiffness and damping.

Future Works

Since the method of the normal forms can be applied to any system with smooth

nonlinearities, other components from rotating machines can be analyzed. The

Mathematica code will be used to determine the influence of other parameters such

as a cross-coupled stiffness and damping.
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Appendix A

Spectral density functions

The spectral density functions are used to relate the input and output measurements

from a linear system. The equations shown below are based on the book of Bendat

[100].

A.1 Definitions

The power spectral densities Sff and Suu, and cross-power spectral density Sfu,

needed to compute the coherence function, are defined as

Suu(ω) =

ˆ ∞
0

ruu(τ)e−iωτ dτ, (A.1)

Sff (ω) =

ˆ ∞
0

rff (τ)e−iωτ dτ, (A.2)

Sfu(ω) =

ˆ ∞
0

rfu(τ)e−iωτ dτ, (A.3)

Suf (ω) =

ˆ ∞
0

ruf (τ)e−iωτ dτ, (A.4)

where ruu and rff are autocorrelation functions, and rfu is the cross-correlation

function. They are defined as be

ruu(τ) =

ˆ ∞
0

u(t)u(t+ τ) dt, (A.5)

rff (τ) =

ˆ ∞
0

f(t)f(t+ τ) dt, (A.6)

rfu(τ) =

ˆ ∞
0

f(t)u(t+ τ) dt, (A.7)

ruf (τ) =

ˆ ∞
0

u(t)f(t+ τ) dt. (A.8)
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A.2 Estimation

Since the correlation functions are convolution integrals, the power and cross-power

spectral densities can be estimated by the Fourier transform of each signal as follows:

Ŝff (ωk) =|F (ωk)|2, (A.9)

Ŝuu(ωk) =|U(ωk)|2, (A.10)

Ŝfu(ωk) =F ∗(ωk)U(ωk). (A.11)

A.3 Relation with the system response

Considering a linear system, represented by the system response h(τ), the relation

between input u(t) and output f(t) is

f(t) =

ˆ ∞
0

h(τ)u(t− τ)dτ. (A.12)

By using Eq. (A.12) in Eqs. (A.6) and (A.8), the relations between the correlation

functions and system response are

rff (τ) =

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

h(α)h(β)u(t− β)u(t+ τ − α) dα dβ dt

=

ˆ ∞
0

ˆ ∞
0

h(α)h(β)ruu(τ + β − α) dα dβ (A.13)

ruf (τ) =

ˆ ∞
0

ˆ ∞
0

h(α)u(t)u(t+ τ − α) dα dt

=

ˆ ∞
0

h(α)ruu(τ − α) dα (A.14)
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Now, by inserting the Eqs. (A.13)-(A.14) into Eqs. (A.2)-(A.4), the relations be-

tween the spectral densities and system response are

Sff (ω) =

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

h(α)h(β)ruu(τ + β − α)e−iωτ dα dβ dτ

=Suu(ω)

ˆ ∞
0

ˆ ∞
0

h(α)h(β)eiω(β−α) dα dβ

=Suu(ω)H(ω)

ˆ ∞
0

h(β)eiωβ dβ

=H(ω)H∗(ω)Suu(ω) (A.15)

Suf (ω) =

ˆ ∞
0

ˆ ∞
0

h(α)ruu(τ − α)e−iωτ dα dτ

=Suu(ω)

ˆ ∞
0

h(α)e−iωα dα

=Suu(ω)H(ω) (A.16)

A.4 Equations for multiple-input-multiple-

output systems

For multiple-input-multiple-output systems, Eq. (A.12) turns

F(ωk) = H(ωk)U(ωk), (A.17)

where F(ωk) ∈ CN×1, U(ωk) ∈ CN×1.

Also, the multidimensional version of Eqs. (A.15) and (A.16) is

Sff (ωk) =H(ωk)
∗Suu(ωk)H(ωk) (A.18)

Suf (ωk) =Suu(ωk)H(ωk), (A.19)

where Sff (ωk) ∈ CN×N , Suu(ωk) ∈ CN×N and Suf (ωk) ∈ CN×N .

If a several experiments approach is adopted, then F(ωk) ∈ CN×Nb , U(ωk) ∈
CN×Nb , were Nb is the number of experiments (or blocks).
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Appendix B

H1, H2 and H3 Estimators

A transfer function H0, which relates the output F0 and input U0 with the equation

F0(ωk) = H0(ωk)U0(ωk), (B.1)

can be estimated from noisy input and output measurements. The model assumed

for the measurements is

U(ωk) = U0(ωk) + Nu(ωk) (B.2a)

F(ωk) = F0(ωk) + Nf (ωk) (B.2b)

where F0 is the exact value of the force vector, Nf is a zero-mean disturbing noise,

U0 is the exact value of the displacement vector and Nf a zero-mean disturbing

noise. Thus, the model that relates the noisy outputs and inputs is

F(ωk) = H(ωk)U(ωk). (B.3)

The objective of the estimators is to take advantage of the properties of the dis-

turbing noises so that H tends to H0. If the SNR at the input is much higher than

that at the output, the H1 estimator should be used. In the converse case, the H2

estimator is more convenient. In any case, the H3 estimator can be constructed from

the mean value between the H1 and H2 estimators. The equations shown here are

based on the books of Pintelon [98] and Bendat [100].

B.1 H1 Estimator

This estimator assumes that the disturbing noise affecting the force measurements is

greater than the noise affecting the displacement measurements. The first step is to

multiply both sides of Equation (B.3) by the complex conjugate of the displacements
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vector U∗(ωk):

FU∗ = HUU∗

(F0 + Nf ) (U∗0 + N∗u) = H (U0 + Nu) (U∗0 + N∗u)

F0U
∗
0 + F0N

∗
u + NfU

∗
0 + NfN

∗
u = H (U0U

∗
0 + U0N

∗
u + NuU

∗
0 + NuN

∗
u)

(B.4)

Then, by assuming the properties (uncorrelated and independent disturbing

noises)

E [Nf (ωk)] = E [Nu(ωk)] = E [Nf (ωk)N
∗
u(ωk)] =0,

E [F0(ωk)N
∗
u(ωk)] = E [Nf (ωk)U

∗
0(ωk)] =0,

E [U0(ωk)N
∗
u(ωk)] = E [Nu(ωk)U

∗
0(ωk)] =0,

E [Nu(ωk)N
∗
u(ωk)] =σ2

u(ωk),

(B.5)

and applying the Expectation operator E[ · ] to Equation (B.4), the following equa-

tion is obtained:

E [F0U
∗
0] = H

(
E [U0U

∗
0] + σ2

u

)
. (B.6)

Thus, the H1 estimator of the transfer function is

H(ωk) =
E [F0(ωk)U

∗
0(ωk)]

E [|U0(ωk)|2] + σ2
u(ωk)

= H0(ωk)
E [|U0(ωk)|2]

E [|U0(ωk)|2] + σ2
u(ωk)

(B.7)

If the SNR of the displacement measurements are high enough, then the measured

transfer function converges to the exact transfer function:

H(ωk) = H0(ωk) (B.8)

For implementation purposes, the Expectation operator applied to Equation (B.4)

can be represented by the arithmetic mean between M measurements blocks. Thus,

the transfer function is computed by the equation

H(ωk) =

1

M

∑M
l=1 F(l)(ωk)U

∗(l)(ωk)

1

M

∑M
l=1 U(l)(ωk)U

∗(l)(ωk)
. (B.9)

This equation is the division between the cross-spectral density from the force and

displacement vectors, and the auto-spectral density of the displacement vector.
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B.2 H2 Estimator

This estimator assumes that the disturbing noise affecting the displacement mea-

surements is greater than the noise affecting the force measurements. In this case,

the both sides of Equation (B.3) are multiply by the complex conjugate of the forces

vector F∗(ωk):

FF∗ = HUF∗

(F0 + Nf )
(
F∗0 + N∗f

)
= H (U0 + Nu)

(
F∗0 + N∗f

)
F0F

∗
0 + F0N

∗
f + NfF

∗
0 + NfN

∗
f = H

(
U0F

∗
0 + U0N

∗
f + NuF

∗
0 + NuN

∗
f

) (B.10)

Then, by assuming the properties (uncorrelated and independent disturbing

noise)

E [Nf (ωk)] = E [Nu(ωk)] = E
[
Nu(ωk)N

∗
f (ωk)

]
=0

E
[
F0(ωk)N

∗
f (ωk)

]
= E [Nf (ωk)F

∗
0(ωk)] =0,

E
[
U0(ωk)N

∗
f (ωk)

]
= E [Nu(ωk)F

∗
0(ωk)] =0,

E
[
Nf (ωk)N

∗
f (ωk)

]
=σ2

f (ωk),

(B.11)

and applying the Expectation operator E[ · ] to Equation (B.10), the following

equation is obtained:

E [F0F
∗
0] + σ2

f = HE [U0F
∗
0] (B.12)

Thus, the H2 estimator of the transfer function is

H(ωk) =
E [|F0|2] + σ2

f

E [U0F
∗
0]

= H0(ωk)
E
[
|F0|2 + σ2

f

]
E [|F0|2]

(B.13)

If the SNR of the force measurements are high enough, then the measured transfer

function converges to the exact transfer function:

H(ωk) = H0(ωk) (B.14)

For implementation purposes, the Expectation operator applied to Equation (B.10)

can be represented by the arithmetic mean between M measurements blocks. Thus,

the transfer function is computed by the equation

H(ωk) =

1

M

∑M
l=1 F(l)(ωk)F

∗(l)(ωk)

1

M

∑M
l=1 U(l)(ωk)F

∗(l)(ωk)
(B.15)

This equation is the division between the auto-spectral density of the force and the
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cross-spectral density from the displacement and force vectors.

B.3 H3 Estimator

If the disturbing noise affects both the input and output considerably, the H3 esti-

mator can be used:

H3(ωk) =
H1(ωk) + H2(ωk)

2
. (B.16)

B.4 Magnitude-squared coherence function

The magnitude-squared coherence function γ2
fu estimates the amount of power that

is transferred from input f to output u at a frequency ω, assuming a linear relation

between them. It is defined as

γ2
fu(ω) =

|Sfu(ω)|2

Suu(ω)Syy(ω)
, (B.17)

where Sff and Suu are the autospectral density of signals f(t) and u(t), respectively,

and Sfu is the cross-spectral density between f(t) and u(t).

The coherence function always satisfies 0 ≤ γ2
fu(ω) ≤ 1. For an ideal input

output relation γ2
fu(ω) = 1. If the coherence is different than the unity, it is an

evidence of noise in the signals, a nonlinear relation between signals or other inputs

also transferring power to the output.
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Appendix C

Final equations of the normal form

C.1 Normal form for Ω̃ ≈ 2ω1

ṙ1 =− 3cnx
2
r3

1

ϕ̇1 =
3605

114
− 238431095c2

1

49240108376ω2
2

+
c5

4ω2

+
11515686644519108438c2

2

1204708112569186924757ω1ω2

+
3knxr

2
1

2ω3
1

ṙ2 =− r2(6ω1cnyr
2
2 + c4 sin(2ϕ2))

4ω1

+

ϕ̇2 =
4306

177
− Ω− 177c2

4

275584ω2
1

+
c6

4ω1

+
21132493411471390025c22

2409416225138373849514ω1ω2

− c4 cos(2ϕ2)

4ω2

+
3knyr2

2ω3
1

(C.1)

C.2 Normal from for Ω̃ ≈ 2ω2

ṙ1 =
r1c1

4ω2

sin(2ϕ1) +
6cnxω2

4ω2

r1
2,

ϕ̇1 =− 57c1
2

115360ω2
2
− c1

4ω2

cos(2ϕ1)− 18289660220671547054c2
2

2341233865481792561027ω2ω2

+
c5

4ω2

+
3knx
2ω2

3
r1

2 − Ω +
3605

114
,

ṙ2 =− 3

2
cnyr2

3,

ϕ̇2 =− 38743052848483917605c2
2

4682467730963585122054ω2ω1

+
45856747c4

2

12310027094ω1
2

+
c6

4ω1

+
3kny
2ω1

3
r2

2 +
4306

177
.

(C.2)
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Appendix D

Preliminary experimental results

of the rotor-stator contact of the

test rig

A preliminary experimental investigation was carried out in a test rig used for the

identification of annular gas seals. This machine is available in the Federal University

of Rio de Janeiro (UFRJ), in the Acoustics and Vibration Laboratory (LAVI). The

identification tests are based on the measurement of the rotor displacement when it

is excited with magnetic bearings actuators. Eventually, during normal operations,

the vibrations exceeded the clearance and a rotor-stator contact was recognized by

tinkling sound. This condition is reached either by applying excessive excitation

signal to the magnetic bearings’ coils or by passing through a critical speed slowly.

In any case, it is important to avoid this condition. In this thesis, the rub is analyzed

by observing the vibration with time and frequency domain methods.

The experiments consist in a slow run-up of the rotor until a light rub is reached;

the rotor is stopped short after the rub for safety reasons. The vibration of the rotor

is obtained by a set of two orthogonal proximity probes. The data is acquired by

National Instruments boards with a rate of 5128 samples/second and stored in a

computer as a CSV file. The data is then postprocessed in Matlab.

The run-up acceleration is slow enough to assure stationarity inside a time win-

dow with short duration. Thus, orbits, Poincaré maps and full FFTs can be cal-

culated. Moreover, a nonstationary analysis can also be applied by stacking sev-

eral small FFTs and using a colormap to construct a full spectrogram. This time-

frequency analysis is useful to observe a certain motion and the time interval where

it changed to another type of motion.

Figure D.1 shows the full spectrogram for a run-up acceleration. The x axis

correspond to the time interval of each time window and the y axis is the frequency

146



Figure D.1: Full spectrum of the vibration before (a, c) and after (b, d) the rotor-
stator contact.

spectrum of the motion. The power spectral density is shown as a colormap. At

start, only the forward precession is the dominant motion, as expected from the

linear dynamics of a flexible rotor excited by unbalance forces. At 236 seconds, the

vibration of the rotor exceeds the clearance and a different motion is set. Three

frequency components can be observed as red lines, indicating high amplitude val-

ues with respect to other frequencies. One of the components is still the forward

precession (1X). The new frequencies are the backward precession (-1X) and 0 Hz

(0X). This behavior is similar to the Simulation 3 shown in Chapter 7.

The motion can be also analyzed by observing the orbits, Poincaré plots and

full spectra at points before and after the rub. This is shown in Figure D.2. As

expected, the orbit before the rub condition (Figure D.2a and c) is a well-defined

closed path with the Poincaré map moving around it. The spectrum has a peak

showing the dominant frequency component. In the rub condition (Figure D.2b and

d), the three frequency components are clearly observed.
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Figure D.2: Full spectrogram of the vibration of the rotor during a slow run-up.
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Appendix E

Codes

E.1 Matlab code for the rotor-stator contact

1 func t i on qd = rub4dof ( t , q , s , eps A , omega , m s , m r , r u , x s ta t ,

y s ta t , mu f , k c , b c , k r , b r , k s , b s ,K,D, mf , tauz , b)

2 omega r=s q r t ( k r /m r ) ;

3 q1 = q (1) ; q2 = q (2) ; q3 = q (3) ; q4 = q (4) ; q5 = q (5) ; q6 =

q (6) ;

4 q7 = q (7) ; q8 = q (8) ;

5 aux = [ q1+eps A* cos ( omega* t /omega r )−q3 ; q5+eps A* s i n ( omega* t

/omega r )−q7 ] ;

6 auxd = [ q2−eps A* s i n ( omega* t /omega r )*omega/omega r−q4 ; q6+

eps A* cos ( omega* t /omega r )*omega/omega r−q8 ] ;

7 p s i = ang ( aux ) ;

8 de l t a = s − norm( aux ) ;

9 de l tad = −(aux'*auxd ) /norm( aux ) ;

10 fux = m r* r u *omegaˆ2* cos ( omega* t /omega r ) ;

11 fuy = m r* r u *omegaˆ2* s i n ( omega* t /omega r ) ;

12 f cx = koppl(−k c*de l ta−b c*koppl ( de l tad ) )*koppl(−de l t a ) ˆ0*(

cos ( p s i )−mu f* s i n ( p s i ) ) ;

13 f cy = koppl(−k c*de l ta−b c*koppl ( de l tad ) )*koppl(−de l t a ) ˆ0*(

s i n ( p s i )+mu f* cos ( p s i ) ) ;

14 f s x = −K d*( q1−q3 )−D d*( q2−q4 )−K c*( q5−q7 )−D c*( q6−q8 ) ;

15 f s y = −K d*( q5−q7 )−D d*( q6−q8 )+K c*( q1−q3 )+D c*( q2−q4 ) ;

16

17 q1d = q2 ;

18 q2d = ( fux+fsx−fcx−b r *q2*omega r−k r *q1 ) /( omega r ˆ2*m r ) ;

19 q3d = q4 ;
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20 q4d = ( fcx−f sx−b s *q4*omega r−k s *( q3−x s t a t ) ) /( m s*omega r

ˆ2) ;

21 q5d = q6 ;

22 q6d = ( fuy+fsy−fcy−b r *q6*omega r−k r *q5 ) /( m r*omega r ˆ2) ;

23 q7d = q8 ;

24 q8d = ( fcy−f sy−b s *q8*omega r−k s *( q7−y s t a t ) ) /( m s*omega r

ˆ2) ;

25 qd = [ q1d , q2d , q3d , q4d , q5d , q6d , q7d , q8d ] ' ;

26 end
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E.2 Mathematica code for the normal form trans-

formation
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Kapp2 =

ω2^2 + c1 * Cos2 t Ω + c5 * Cos2 t Ω^2, c2 * Sin2 t Ω + c3 * Cos2 t Ω * Sin2 t Ω,
c2 * Sin2 t Ω + c3 * Cos2 t Ω * Sin2 t Ω, ω1^2 + c4 * Cos2 t Ω + c6 * Cos2 t Ω^2;

qt_ = q1t, q2t, q3t, q4t, q5t, q6t;

System = q't ⩵ q2t,
-1 * Kapp21, 1 * q1t + Kapp21, 2 q3t +

Kn1, 1 * q1t^3 + Cn1, 1 * q2t^3,
q4t,
-1 * Kapp22, 1 * q1t +

Kapp22, 2 q3t + Kn2, 2 * q3t^3 + Cn2, 2 * q4t^3,
2 ⅈ Ω q5t,
-2 ⅈ Ω q6t;

System = FullSimplifyReplaceAllSystem,
Sin2 * Ω * t → 1  2 * q5t - q6t, Cos2 * Ω * t → 1  2 * q5t + q6t;

Eigenvectors Matrix

rechteSeite = #2 - #1 & /@ System;

rechteSeite = FlattenrechteSeite;

ATilde = Coefficient#, qt & /@ rechteSeite;

rule = Tableqti → 0, i, 1, Lengthqt;

A = ATilde /. rule;

Q, Adiag = JordanDecompositionA;

λ = DiagonalAdiag;
λ = λ4, λ3, λ6, λ5, λ2, λ1;

Q = Transpose
QAll, 4, QAll, 3, QAll, 6, QAll, 5, QAll, 2, QAll, 1;

Nonlinear  with Diagonal Linear Part

xt_ = x1t, x2t, x3t, x4t, x5t, x6t;

rule2 = Tableqti → Q.xti, i, 1, 6;

rule3 = Tableq'ti → Q.x'ti, i, 1, 6;

SystemJordan = FullSimplifySystem /. rule2 /. rule3;

SystemJordan = SolveSystemJordan, x't;

SystemJordan = x't ⩵ TableSystemJordan1, k, 2, k, 1, 6;
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Matrix F2

k = 0; p = 0;

DoDop = p + 1, j, i, 6, i, 1, 6

ax = Table0, i, 1, p;

DoDoaxk = k + 1 = xti * xtj, j, i, 6, i, 1, 6

rechteSeiteJordan = Flatten#2 - #1 & /@ SystemJordan;

F2 = Coefficient[#, ax] & /@ rechteSeiteJordan;

rule = Tablexti → 0, i, 1, Lengthxt;

F2 = FullSimplifyF2 /. rule;

Resonant Condi�on

Ω = 1 * ω1 + 0 * ω2  1;

λ = ReplaceAllλ, ω2 → 3605  114, ω1 → 4306  177;

Matrices G2 and H2

yt_ = y1t, y2t, y3t, y4t, y5t, y6t
y1[t], y2[t], y3[t], y4[t], y5[t], y6[t]

k = 0; p = 0;

DoDop = p + 1, j, i, 6, i, 1, 6;

ay = Table0, i, 1, p;

DoDoayk = k + 1 = yti * ytj, j, i, 6, i, 1, 6;

G2 = Table0, i, 1, Lengthyt, j, 1, Length[ay];

H2 = Table0, i, 1, Lengthyt, j, 1, Length[ay];

Do
u = Table0, i, 1, Lengthyt,
Doui = Exponentayk, yti, i, 1, 6,
b = 0, 0, 0, 0, 0, 0,
Do

Ifu.λ - λj ⩵ 0, G2j, k = 0;

H2j, k = F2j, k, G2j, k =
F2j, k
u.λ - λj

;

H2j, k = 0, j, 1, 4, k, 1, Length[ay]

DoH2i, All = F2i, All, i, 5, 6;
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Matrix F3

p = 0; k = 0;

DoDoDop = p + 1, l, j, 6, j, i, 6, i, 1, 6

bx = Table0, i, 1, p;

Do
DoDobxk = k + 1 = xti * xtj * xtl, l, j, 6, j, i, 6, i, 1, 6

rechteSeiteJordan = Flatten#2 - #1 & /@ SystemJordan;

F3 = Coefficient#, bx & /@ rechteSeiteJordan;

Matrix F
˜

3: F3 y
3 = F3 y

3 + 2 F2yG2 y
2 - ∂G2 y

2
∂y

H2 y
2

Jay = TransposeTableDay, yti, i, 1, 6;

Ausdruck2 = G2.Jay.H2.ay;

Ausdruck1 = F2.Jay.G2.ay;

p = 0; k = 0;

DoDoDop = p + 1, l, j, 6, j, i, 6, i, 1, 6;

by = Table0, i, 1, p;

Do
DoDobyk = k + 1 = yti * ytj * ytl, l, j, 6, j, i, 6, i, 1, 6

KoeffizientenAusdruck1 = Coefficient#, by & /@ Ausdruck1;

KoeffizientenAusdruck2 = Coefficient#, by & /@ Ausdruck2;

F3Tilde = F3 + KoeffizientenAusdruck1 - KoeffizientenAusdruck2;

Matrices G3 and H3

G3 = Table0, i, 1, Lengthyt, j, 1, Lengthby;

H3 = Table0, i, 1, Lengthyt, j, 1, Lengthby;
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Do
u = Table0, i, 1, Lengthyt,
Doui = Exponentbyk, yti, i, 1, 6,
b = 0, 0, 0, 0, 0, 0,
Do

Ifu.λ - λj ⩵ 0, G3j, k = 0;

H3j, k = F3Tildej, k, G3j, k =
F3Tildej, k
u.λ - λj

;

H3j, k = 0, j, 1, 4, k, 1, Lengthby;

DoH3i, All = F3i, All, i, 5, 6

Λ = DiagonalMatrix[λ];

System y

= Λy + H2 y

2 + H3 y
3

hOmega2 = Λ.yt + H2.ay + H3.by;

System x = y + G2 y
2 + G3 y

3

gOmega2 = yt + G2.ay + G3.by;

Clear[Ω]

rule4 = yt5 → E2 I Ω t, yt6 → E(-1) 2 I Ω t;

hOmega2 = hOmega2 /. rule4;

System in Polar Coordinates

NormalformOmega2 = Tabley'ti ⩵ hOmega2i, i, 1, Lengthyt;

rule = y1t → r1t EI (ϕ1[t]+Ω t),

y2t → r1t E-I (ϕ1[t]+Ω t), y3t → r2t E I (ϕ2[t]), y4t → r2t E -I (ϕ2[t]);

rule2 = TableDrulei, t, i, 1, Lengthrule;

NormalformPolarOmega2Tilde = NormalformOmega2 /. rule2 /. rule;

NormalformPolarOmega2Tilde = NormalformPolarOmega2Tilde;

FullSimplifyNormalformPolarOmega2Tilde;

Polarkoort_ = r1t, ϕ1t, r2t, ϕ2t;

NormalformPolarOmega2 = 0, 0, 0, 0;

k = 2, 3, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3;
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E.3 Mathematica code for the finite element ma-

trices K,M,G
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In[16]:= rule1 = 312 + 588 γ + 280 γ2 → M01, 44 Le + 77 γ Le + 35 γ2 Le -> M02,

-44 Le + 77 γ Le + 35 γ2 Le → -M02, 108 + 252 γ + 140 γ2 → M03,

-26 Le - 63 γ Le - 35 γ2 Le → M04, 26 Le + 63 γ Le + 35 γ2 Le → -M04,

8 Le2 + 14 γ Le2 + 7 γ2 Le2 → M05, -6 Le2 - 14 γ Le2 - 7 γ 2 Le2 → M06, 36 → M07,

-36 → -M07, 3 Le - 15 γ Le → M08, -3 Le + 15 γ Le → -M08, 4 Le2 + 5 γ Le2 + 10 γ2 Le2 → M09,

-4 Le2 - 5 γ Le2 - 10 γ2 Le2 → -M09, -Le2 - 5 γ Le2 + 5 γ2 Le2 → M10;

M =
ρ Ae Le

840 1 + γ2
.MatrixFormExpandM1 /. rule1 +

ρIe
30 1 + γ2 Le

.MatrixFormExpandSimplifyM2 /. rule1;

In[18]:= K1 = 1 + γ Le3 IntegrateTransposeDNe, ξ, 2.DNe, ξ, 2, ξ, 0, Le;

K2 = 1 + γ Le3 γ Le2

12
IntegrateTransposeDNe, ξ, 3.DNe, ξ, 3, ξ, 0, Le;

In[20]:= rule3 = 12 → K01, -12 → -K01, 6 Le → K02, -6 Le → -K02, 4 Le2 + Le2 γ → K03,

-4 Le2 + Le2 γ → -K03, 2 Le2 - γ Le2 → K04, 2 Le2 - γ Le2 → -K04;

K =
Ee.Ie

1 + γ Le3
.MatrixFormExpandSimplifyK1 + K2 /. rule3;

S�ffness Matrix

In[22]:= K

Out[22]=

Ee.Ie

Le3 1 + γ
.

K01 K02 0 0 -K01 K02 0 0

K02 K03 0 0 -K02 K04 0 0

0 0 K01 -K02 0 0 -K01 -K02

0 0 -K02 K03 0 0 K02 K04

-K01 -K02 0 0 K01 -K02 0 0

K02 K04 0 0 -K02 K03 0 0

0 0 -K01 K02 0 0 K01 K02

0 0 -K02 K04 0 0 K02 K03

Mass matrix
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In[23]:= M

Out[23]=

Ae Le ρ

840 1 + γ2
.

M01 M02 0 0 M03 M04 0 0

M02 M05 0 0 -M04 M06 0 0

0 0 M01 -M02 0 0 M03 -M04

0 0 -M02 M05 0 0 M04 M06

M03 -M04 0 0 M01 -M02 0 0

M04 M06 0 0 -M02 M05 0 0

0 0 M03 M04 0 0 M01 M02

0 0 -M04 M06 0 0 M02 M05

+

ρIe

30 Le 1 + γ2
.

M07 M08 0 0 -M07 M08 0 0

M08 M09 0 0 -M08 M10 0 0

0 0 M07 -M08 0 0 -M07 -M08

0 0 -M08 M09 0 0 M08 M10

-M07 -M08 0 0 M07 -M08 0 0

M08 M10 0 0 -M08 M09 0 0

0 0 -M07 M08 0 0 M07 M08

0 0 -M08 M10 0 0 M08 M09

Gyroscopic matrix

In[24]:= G

Out[24]//MatrixForm=

0 0 -G01 G02 0 0 G01 G02

0 0 -G02 G03 0 0 G02 G04

G01 G02 0 0 -G01 G02 0 0

-G02 -G03 0 0 G02 -G04 0 0

0 0 G01 -G02 0 0 -G01 -G02

0 0 -G02 G04 0 0 G02 G03

-G01 -G02 0 0 G01 -G02 0 0

-G02 -G04 0 0 G02 -G03 0 0
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E.4 Mathematica code for the electromagnetic

forces
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