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necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM ESQUEMA DE ADAPTATIVIDADE TEMPORAL-ESPACIAL PARA A
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No presente trabalho, um esquema de adaptatividade espacial e temporal para a
equação de Cahn-Hilliard é proposto. Dois indicadores de erro são testados e acopla-
dos ao método da bissecção para a adaptatividade espacial, enquanto a adaptatividade
temporal é desenvolvida sob a teoria do controle. Consideramos um estimador de erro
temporal que extrapola a solução obtida por um método de integração temporal energeti-
camente estável e três controladores de passo de tempo: um controlador integral simples,
um controlador proporcional-integrativo-derivativo completo e um controlador preditivo
conhecido como PC11. Avaliamos a performance dos esquemas adaptativos para difer-
entes contextos fı́sicos, como o acoplamento Navier-Stokes-Cahn-Hilliard e a equação
de Cahn-Hilliard não-local, simulando diferentes fı́sicas e escalas temporais. Valida-se a
nossa estratégia com simulações bem conhecidas na literatura e avalia-se a performance
para cada caso.
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In this study, we propose a space-time adaptivity scheme for the Cahn-Hilliard equa-
tion. We evaluate two error indicators for the spatial adaptivity scheme coupled with the
bissection method for refinement, while the temporal adaptivity scheme is recast under
the linear feedback control theory. We consider an error estimation in time that extrapo-
lates the solution obtained from an energy-stable time marching scheme, and three time
step controllers: a simple integral controller, a complete Proportional-Integral-Derivative
controller, and the predictive controller known as PC11. We assess the performance of
the adaptive schemes for different physical contexts for the Cahn-Hilliard equation, such
as the Navier-Stokes-Cahn-Hilliard coupling and the nonlocal Cahn-Hilliard equation,
simulating different physics and time scales. We validate our strategy with benchmark
simulations in the literature and evaluate the performance gain for each case.
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Chapter 1

Introduction

A free boundary problem (FBP) corresponds to a problem in which the domains are a

priori unknown and have to be determined as a part of the problem solution, thanks to a
number of free boundary conditions that are derived from certain physical laws or other
constraints governing the phase transition, according to FRIEDMAN [8]. Probably the
first classical FBP to be studied was the Stefan problem that describes the joint evolution
of a liquid and a solid phase, first questioned in the nineteenth century. In the past decades,
new directions were developed and new physical applications concerning free surface
flows, porous media, fluid-structure interaction and crack propagation became of central
importance in the FBP context (CHEN et al. [9]).

The numerical treatment of a FBP can be of great complexity. Important developments
can be highlighted as:

• diffuse interface models with applications to curvature flows, solidification and
phase transformations in material science;

• level set methods for evolving fronts including applications to fluid flow and image
processing;

• variational front tracking methods for geometric partial differential equations
(PDEs); for instance, interfaces involving curvature effects (such as surface tension
and bending);

• extensive mathematical contributions to the stability, well-posedness and rigorous
error analysis of discrete approximations to FBPs and degenerate nonlinear elliptic
and parabolic equations; and

• adaptive methods appropriate for free boundary and interface problems.

In this study, we focus on the phase field models - more specifically, on the Cahn-
Hilliard equation - which reside in the first item of the list. The phase-field models consist
on the approximation of sharp interface models into thermodynamically consistent diffuse
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interface models and may be understood as a mathematical theory to reformulate FBPs
as PDEs that hold on a known and fixed computational domain. This strategy avoids
the necessity of tracking the interfaces significantly simplifying the numerical solution
of FBPs. However, the computational treatment of phase-field equations is not trivial,
being an active topic of research in the computational mechanics community (GOMEZ
and VAN DER ZEE [10]).

1.1 Phase-field models versus sharp-interface descrip-
tions

In comparison with sharp-interface descriptions, phase-field models present several ad-
vantages and drawbacks. Initially, modeling free boundary problems by using sharp in-
terface models is limited to the existence of an appropriate description of the problem to
be solved, which is often not known for many classes of physical phenomena. As an ex-
ample, the sharp interface model for phase separation or particle coarsening is unknown
for the case when mobile dislocations and their effect of domain coarsening is included
(HAATAJA et al. [11], PROVATAS and ELDER [2]). In this sense, the use of phase-
field modelling yields the versatility needed to solve a practical problem of this nature
since these models do not need to have a free-boundary problem associated (GÓMEZ and
VAN DER ZEE [10]). They can be derived directly from free-energy functionals using
the classical theory of thermomechanics and Coleman–Noll-type approaches, where con-
stitutive equations are allowed to depend on the variational derivative of the free-energy
itself (COLEMAN and NOLL [12]). Another important advantage of the phase-field
models over sharp-interface descriptions is the difference of complexity during numeri-
cal simulations for both cases. Also according to PROVATAS and ELDER [2], the most
challenging aspect for modelling sharp-interface descriptions is the complex interactions
between topologically complex interfaces that undergo merging and pinch-off during the
course of a phase transformation. These complex interactions are naturally developed in
the phase-field context since the grand functional that dictates the nature of the model
leads to a thermodynamically consistent interface motion without the necessity of em-
ploying any numerical procedure to validate the system.

However, since the phase-field technique lies in the concept of diffuse interface, some
physical aspects may be lost in this approximation. Interfaces in real materials tend, with
few exceptions, to be at most a few atoms in width, as defined for example by the extent
of the strain field of interfacial dislocations (QIN and BHADESHIA [1]). Even though it
is possible to narrow the interfaces on a phase field simulation to increase the accuracy of
the model, the computational cost of refined meshes and and larger simulation times can
be a decisive factor.
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It is important to mention that, when comparing both scenarios, it is possible to reach
sharp-interface models for given natural phenomena from phase-field models and vice-
versa. The mathematical technique to prove the convergence of the phase-field model to
the sharp-interface equation is the theory of matched asymptotic expansions (CAGINALP
[13]) even though in some cases, there is still no proof that the use of the matched asymp-
totic expansions of a given phase-field model lead to the proper sharp-interface description
of the phenomena. On the other hand, the sharp-interface model can be smoothed out to
a diffuse-interface model (GOMEZ and ZEE [10]). This interplay between the two de-
scriptions reinforces that the phase-field technique can be efficient in modelling complex
phenomena with reasonable accuracy, turning the phase-field models into a promissing
tool in the context of the computational mechanics.

1.2 Objectives and methodology

This study aims to assess and optimize the computational performance of the numerical
solution of the Cahn-Hilliard equation in different physical contexts such as phase sep-
aration with constant and degenerate mobilities and diblock copolymers self-assembly.
We consider spatial and temporal adaptivity schemes to reduce the computational effort
of the simulations. The spatial adaptivity procedure aims to preserve the spatial error
of a given proper mesh to model the Cahn-Hilliard equation but with a reduced number
of degrees of freedom, consequently decreasing the size of the nonlinear system. The
temporal adaptivity procedure aims to include the Cahn-Hilliard equation in the linear
feedback control theory context, with proper error estimation and time step controller. In
this study, we use three different time-step controllers with different properties and behav-
iors, together with a proper error estimation method that prevents the calculation of the
same time step multiple times. This strategy is then coupled to a spatial adaptivity scheme
to achieve maximum performance in the simulation of the Cahn-Hilliard equation. The
adaptive results are compared with fixed mesh and fixed time-step simulations to show
that the accuracy of the adaptive solutions is not compromised by the performance gain.
The FEniCS1 framework is a finite element library in Python/C++ and is used to solve
numerically our models. The choice is due to its usability: programming a FEniCS code
becomes a simple task since variational forms can be input in a near-mathematical nota-
tion. In this study we considered the stable version 2017.2.0. To post-process the results,
the software Paraview2 and MATLAB codes are used.

1https://fenicsproject.org/
2https://www.paraview.org/
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1.3 Motivation

The Cahn-Hilliard equation is immersed in several different physical contexts such as
diblock copolymers, image impainting, binary fluid flow, fracture propagation, tumour
growth and topology optimization, according to KIM et al. [14]. The large spectrum
of applications of the Cahn-Hilliard equation is responsible for its pervasive presence in
computational mechanics. However, a proper numerical implementation of the phase field
methods in general is a complex process, since these equations often present various tem-
poral and spatial scales. In this sense, our motivation is to present strategies to reduce the
computational effort needed to simulate the Cahn-Hilliard equation in different physical
contexts while preserving the accuracy of the models.

1.4 Dissertation organization

This thesis presents the following structure: Chapter 2 describes the general physics and
mathematics behind the Ginzburg-Landau functional, describing important concepts such
as order parameter, interface thickness and free energy density functions. Also a Cahn-
Hilliard equation approach is made, showing its derivation from the previous described
functional and proving important mathematical aspects that imply on physical proper-
ties. Chapter 3 describes the computational implementation of the Cahn-Hilliard equa-
tion and all of its procedures: from the spatial finite element approximation and time
integration method to the solvers used in the equations. A brief description of the com-
putational platform FEniCS is made and some initial simulations are presented. Chapter
4 presents discussions and computational implementation on the coupling of phase-field
models with fluid dynamics equations. On chapter 5, computational strategies of spatial
and time adaptivity based on consistent mathematical principles are presented to reduce
the computational cost of the pure Cahn-Hilliard simulations done in the previous chapter
without compromising the accuracy of the model. Chapter 6 presents the evaluation of
the space-time adaptivity on different physical applications for the Cahn-Hilliard equation
such as the use of degenerate mobility on phase separation and diblock copolymers self
assembly. Lastly, chapter 7 presents conclusions and propositions for future works.
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Chapter 2

Phase-field models

The phase field method has been proved to be an interesting tool in the context of free
boundary problems (BIBEN [15]). Its versatility lies in the absence of the necessity of
tracking the evolution of individual interfaces, as is the case with sharp interface models,
simplifying the process to numerically solve the FBPs. Figure 2.1 illustrate the difference
between sharp and diffuse interface models.

2.1 Free energy functional and order parameter

Before introducing the phase field equations, the concepts of order parameter and the
free energy functional must be discussed, since the nature of the phase field methods rely
within the framework of irreversible thermodynamics. The order parameter is a quantity
that parametrizes the change of symmetry from the disordered phase to the ordered phase
appearing after a given phase transformation (PROVATAS and ELDER [2]) and may or
may not have macroscopic physical interpretations. In the case of the Cahn-Hilliard equa-
tion, for example, the order parameter can be described in the literature as concentration,

Figure 2.1: A sharp and diffuse interface model, respectively. The phase field models are
diffuse interface models by definition. From QIN and BADESHIA [1]
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even though it is not described by concentration physical units. The essence of the phase-
field modelling is that phases and their interfaces are all represented by an order parameter
- or the so-called phase field - and incorporated into a grand functional for the free en-
ergy of a heterogeneous system (QIN and BASHESHIA [1]). The interfaces are easily
inferred since they become a region over which the order parameter varies between the
values specified for the phases on either side.

Different free energy functionals dictates problems with different physical nature. The
free energy of the system and the physics of the phase transition give rise to different
phase field equations, according to PROVATAS and ELDER [2]. In this work, we focus
on the Cahn-Hilliard equation and its modifications. On CAHN and HILLIARD [16],
the authors proved that the free energy of a small element of a solution having a spatial
variation in composition can be represented by the sum of two terms: the free energy den-
sity function or function of state, described here as Ψ(φ), being the free energy that the
particle would have if surrounded by material of the same composition as itself (homo-
genenous mixture), and the other, named by the authors as gradient energy term, which
is proportional to the square of the composition gradient as a first approximation. In
other words, the free energy of an infinitesimal volume in a nonuniform system (or het-
erogeneous mixture) depends on both its composition and the composition of its nearby
environment. That said, this free energy, often referred as canonical free energy, has the
form:

g = Ψ(φ) +
ε2

2
|∇φ|2, (2.1)

where ε is a parameter that is constant for a regular solution and related to the interface
thickness.

This functional is derived by using mixture theory and is the simplest representation
of a free energy that combines the bulk thermodynamics of a simple binary alloy with a
minimal description of interfacial energy. This functional, often referred as the Ginzburg-
Landau functional, derives both the Allen-Cahn and Cahn-Hilliard equations (VIGNAL
et al. [17]). Mathematically, the free energy functional is:

F [φ] =

∫
Ω

gdΩ

=

∫
Ω

[
Ψ(φ(x)) +

ε2

2
|∇φ(x)|2

]
dΩ. (2.2)

The free energy density function Ψ(φ) is obtained through the Landau mean field
theory in combination with statistical mechanics and thermodynamics. Proper deductions
for the free energy density functions can be seen in LEE et al. [18] and PROVATAS
and ELDER [2]. Figure 2.2 shows the behaviour of the free energy density function of a
simple binary mixture. It is observed that, when the temperature T is less than a critical
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temperature Tc, the function behaves as a double-well function of the order parameter, that
is, both phases can coexist in the system. The spinodal region is defined by the spinodal
lines and the mixture theory demonstrates that an initial state with φ = φ0 quenched
below these lines becomes linearly unstable to thermal fluctuations and spontaneously
decomposes into the two stable phases, defined by the order parameter. The spinodal
lines are found where ∂2Ψ/∂φ2 = 0 and are bounds to the spinodal region. LANDAU
and LIFSHITZ [19] define the spinodal region as the range of concentrations where the
free energy is concave and homogeneous states are unstable, giving rise to a spontaneous
decomposition.

Many different free energy density functions can be derived from this statement. In
this work, simulations involving pure phase-field models are entirely of isothermal spin-
odal decomposition, or, described by CAHN [20], a process by which a mixture of two
materials can separate into distinct regions with different material concentrations. In this
case, the problem is described as a second order phase transition with a symmetric phase
diagram. The free energy density function in this case is a symmetric double-well func-
tion and its derivation leads to a logarithmic function. COPETTI and ELLIOT [21] proved
the existence and uniqueness of the numerical solution for this case and its convergence to
the solution. However, most studies in the literature approximate the logarithmic profile
to a fourth order polynomial, due to its numerical advantages without compromising the
phase transition (LEE [18]). It is, however, needed to be a double-well function, to make
sure that both phases are coexistent. A general form is:

Ψ(φ) =
α

4

(
φ−

√
β

α

)2(
φ+

√
β

α

)2

, (2.3)

where α and β are positive constants and ±
√
β/α define the values of φ± related to the

two stable bulk phases. Figure 2.3 shows its profile.
The second term of the free energy functional is relative to the gradient energy, ac-

cording to CAHN and HILLIARD [16]. The idea behind this term is that the total free
energy of the system cannot depend only on the local composition, because different
spatial configurations with the same volume fraction for nonuniform systems are not en-
ergetically equivalent (BINER [22]).

Statistical mechanics define that the thermodynamical equilibrium is characterized by
a state that minimizes some thermodynamic potential. To minimize the functional defined
in Eq. 2.2, the global equilibrium is reached when the field variable φ(x) is such that:

δF [φ]

δφ
= 0, (2.4)
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(a)

(b)

Figure 2.2: a) Energy landscape of the free energy density function of a simple binary
mixture. Two stable phases arise simultaneously from one for T < Tc and one single
stable phase exist for temperatures above the critical temperature Tc. b) Corresponding
two-phase co-existence phase diagram for T < Tc. The spinodal line is indicated by the
gray dashed line. From PROVATAS and ELDER [2].
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Figure 2.3: A generic free energy density function. The values of the constants α and β
define the pits φ− and φ+ of the double-well function. The red circles are the inflection
points that bound the spinodal region.

where the Gâteaux derivative operator δ
δφ

can be set as:

δF [φ]

δφ
=
∂F [φ]

∂φ
−∇ · ∂F [φ]

∂∇φ
, (2.5)

since the Ginzburg-Landau free energy functional has terms up to the first spatial deriva-
tive. The variational derivative of the free energy functional can be also translated into
the chemical potential of the mixture, defined in this study as µ.

Given a generic free energy density function such as the one on Eq. 2.3, the equilib-
rium, according to BADALASSI et al. [23], becomes:

δF [φ]

δφ
= µ = 0

αφ3 − βφ− λ∆φ = 0, (2.6)

where λ = ε2.
The non-uniform one-dimensional (along a given z axis, orthogonal to the interface)

solution proposed by Van der Waals which minimizes the functional is:

φ0 =

√
β

α
tanh

(
z√
2ξ

)
, (2.7)

where ξ =
√
λ/β is a measure of the thickness of the diffuse interface at the equilibrium.

This equilibrium profile was initially proposed by VAN DER WAALS [24] for the theory
of capillarity and it satisfies the boundary conditions φ0(z → ±∞) = ±φ, according to
BRAY [25]. The influence of the parameters over the thickness of the interface can be
seen in Fig. 2.4.
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Figure 2.4: The interface width of a given profile with different parameters. We observe
that for fixed α and β, high ξ values imply on a more diffuse interface.

2.2 The Cahn-Hilliard equation

The Cahn-Hilliard equation was first introduced in CAHN and HILLIARD [26] to de-
scribe the complex phase separation and coarsening phenomena in a binary alloy and has
a relevant role on many physical situations and is the leading model of spinodal decom-
position in binary alloys. However, many other physical applications can be seen with
different setups for the Cahn-Hilliard equation. We can highlight important works such
as:

• the microphase separation of diblock copolymers in OHTA and KAWASAKI [27]
and CHOKSI et al. [28];

• impainting of binary images in BERTOZZI et al. [29];

• fracture propagation in BORDEN et al. [30] and SILVA et al. [31];

• tumour growth simulation in WU et al. [32], ODEN et al. and WISE et al. [33];

• topology optimization in ZHOU and WANG [34].

The Cahn-Hilliard equation can be seen as the H−1 gradient flow1 of the free energy
functional described in Eq. 2.2 that is:

∂φ

∂t
=
δF [φ]

δφ
.

In order to variationally derive the free energy functional, the Gateaux derivative op-
erator, described in Eq. 2.5, must be used. Since the free energy functional depends only

1The H−1 space is the dual space of H1, which is the Sobolev space composed by square-integrable
functions whose weak first derivatives are also square-integrable functions
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of the order parameter φ and its gradient, the variational derivative operator is as follows.

δF [φ]

δφ
=
∂F [φ]

∂φ
−∇ · ∂F [φ]

∂∇φ
(2.8)

= Ψ′ − λ∇2φ. (2.9)

That said, considering Ω̄ a bounded domain, Ω as the spatial domain without the
boundaries, ∂Ω its boundaries and time interval [0, T ], the Cahn-Hilliard equation be-
comes: given φ0 : Ω→ R, find φ : Ω× [0, T ]→ R such that:

∂φ

∂t
= −∇ · (M(φ)∇(Ψ

′ − λ∇2φ)) in Ω×]0, T ], (2.10)

φ(x, 0) = φ0(x) on Ω̄, (2.11)

where φ is the order parameter that defines the phases of the mixture, Ψ
′ is the derivative

of the free energy density function with respect to the order parameter variable and φ0(x)

is the order parameter initial conditions.
In this study, the Cahn-Hilliard equation will be used for numerically solving spin-

odal decomposition problems (considering the pure Cahn-Hilliard simulations), diblock
copolymers self-assembly phenomena, where the Cahn-Hilliard equation inherits a non-
local term that models the long range interactions and binary fluid flow simulations with
the convective Cahn-Hilliard equation. In all situations, the most common boundary con-
ditions are the no-flux and periodic boundaries. The no-flux boundary conditions are

∇φ · n = 0 ∇µ · n = 0 in ∂Ω, (2.12)

being n the outward normal vector of the boundary ∂Ω.
The use of these boundary conditions brings up two important quantities of interest:

the mass conservation property and the free energy functional decay. These quantities
are important to detect unphysical results in our simulations. Both proofs with proper
mathematical treatment are seen on ELLIOTT and SONGMU [35]. In this study, we
show how these properties are obtained without proper mathematical formalism.

Initially, the mass conservation property is shown. The null mass variation with time
in the whole domain can be described as:

d

dt

∫
Ω

φdΩ = 0. (2.13)

Integrating Eq. 2.10 all over the domain Ω and applying the divergence theorem, we
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have: ∫
Ω

∂φ

∂t
dΩ =

∫
Ω

∇ ·M(φ)∇µdΩ

=

∫
∂Ω

M(φ)∇µ · nd∂Ω. (2.14)

Substituting the boundary conditions on Eq. 2.12 on equation 2.14, the mass conser-
vation property is obtained considering that ∂φ

∂t
= dφ

dt
:∫

Ω

∂φ

∂t
dΩ =

d

dt

∫
Ω

φdΩ = 0. (2.15)

In other words, at each time step of the simulation, the mass of the system must be
exactly the same, since there is no entry or loss of matter during the process, as well as
the mass of each constituent of the mixture. However, when dealing with computational
simulations, these values can have a small deviation according to numerical precision,
solver properties and other conditions.

Another quantity of interest of this Cahn-Hilliard setup is the free energy decrement.
Fundamentally, to reach the stable situation, the total energy of the system should de-
crease since, thermodynamically speaking, entropy production and energy decline are the
basic concepts for every physical or chemical process to take place in a closed system.
Mathematically, it can be said that the energy decay of the Ginzburg-Landau functional
acts as a Lyapunov function because of its monotonically decreasing behavior (VIGNAL
et al [17]). Assessing the free energy decay, it can be seen, using the chain rule:

dF [φ]

dt
=
δF [φ]

δφ

∂φ

∂t
. (2.16)

Substituting the variational derivative of F [φ] on Eq. 2.16, using the divergence theo-
rem and applying the boundary conditions presented in Eq. 2.12:

dF [φ]

dt
=

∫
Ω

µ
∂φ

∂t
dΩ

=

∫
Ω

µ∇ · (M(φ)∇µ)dΩ

=

∫
∂Ω

µM(φ)∇µ · nd∂Ω−
∫

Ω

∇µ · (M(φ)∇µ)dΩ

=−
∫

Ω

M(φ)|∇µ|2dΩ ≤ 0. (2.17)

Since mobility M(φ) is a positive function (or constant), the energy stability relies on
a Lyapunov function, that is, the free energy functional is monotonically decreasing and
the chosen time integration method must possess this property (VIGNAL et al. [17]).
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Chapter 3

Computational implementation of the
Cahn-Hilliard equation

In this chapter we present details of the numerical implementation of the pure Cahn-
Hilliard equation. The Cahn-Hilliard equation is notoriously difficult to solve numerically
because the equations are stiff due to both the biharmonic operator and the nonlinear
operator (EYRE [36]) aside from the fact that across the spatial interfaces, the solution
undergoes an O(1) change over an O(ε) interval.

In this chapter, we describe how the Cahn-Hilliard equation should be discretized and
approximated by our methods of choice, in order to guarantee accuracy in our results.
Special attention is required to spatially discretize the domain by using the standard C0

finite elements and a proper time integration method.

3.1 The finite element method

In this study, we use the finite element method to spatially approximate the pure Cahn-
Hilliard equation and the modified nonlocal Cahn-Hilliard equation. In this section, we
describe the standard finite element method, that will be used in the simulations of the
pure Cahn-Hilliard and the nonlocal Cahn-Hilliard equations in chapters 3 and 5.

Finite element approximations are based on a variational form (or weak form) of the
PDE. The weak form of a PDE is obtained by multiplicating the PDE by a test function
w(x) from a proper space function and integrating all over its domain. The Galerkin
method is used to approximate the solutions from a infinite dimension space to a finite
one. Equation 3.1 shows this approximation, where u(x) is the exact solution of the PDE
in the weak form, û(x) is the approximate solution, Ni(x) are the basis functions and
ũi(t) are the unknown variables, such that:
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Figure 3.1: Graphical representation of a bidimensional domain divided into subdomains
(elements). Adapted from ZIENKIEWICZ [3]

u(x) ≈ û(x) =
n∑
i=1

Ni(x)ũi(t), (3.1)

w(x) =
n∑
i=1

Ni(x)wi(t). (3.2)

The standard finite element method consists on discretizing a spatial domain Ω ⊂
Rnsd, with boundaries Γ ⊂ Rnsd−1 into a mesh composed by nodes and elements. In
this case, the unknown variables ũi(t) are also defined as nodal values. Each element is
composed by its domain Ωe ⊂ Rnsd and boundary Γe ⊂ Rnsd−1. Figure 3.1 illustrates a
finite element method domain. Mathematically speaking, the discretization of the spatial
domain Ω into nel number of elements is such that:Ω = ∪nele=1Ωe,

∅ = ∩nele=1Ωe.
(3.3)

The Galerkin isoparametric formulation is used to approximate the pure Cahn-Hilliard
and the nonlocal Cahn-Hilliard equations in this study, so that all functions are interpo-
lated in the domain using the same basis functionsNi. The basis functionNi are illustrated
on Fig. 3.2 and must respect the compact support condition presented as:

Ni(xj) = δij, (3.4)

where δij is the Kronecker delta. The compact support property added to the domain sub-
division seen on equation (3.3) allows us to represent the variational formulation integrals
over the complete domain as a sum of the integral inside each element. Since the integra-
tion of each element is required, a reference space ξ is used where the definition of the
basis functions in the element are well defined, enabling the use of well known quadrature
rules, assisting on the automation of the process.
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Figure 3.2: Illustration of polynomial basis functions (linear and quadractic, respectively).

In order to be spatially approximated by the finite element method, the Cahn-Hilliard
equation must be expressed in its weak form. One of the main difficulties when using
the finite element method on the Cahn-Hilliard equation is that, due to the presence of
the biharmonic operator in its description, standard C0-continuous finite elements are not
suitable for the primal variational formulation of the Cahn-Hilliard equation. To circum-
vent this constraint, several studies presented different strategies: STOGNER et al. [37]
presented a C1-continuous finite element formulation for rectilinear grids, GÓMEZ et al.

[38] explored the NURBS-based variational formulation, enabling the possibility of 3D
simulations using the primal description, and WELLS et al. [39] using a discontinuous
Galerkin method. In this study we consider a splitting strategy, also called mixed formu-
lation, that avoids the continuity constraint and enable the use of C0-continuous elements,
converting the Cahn-Hilliard equation into a coupled nonlinear system, with an additional
degree of freedom per node (ELLIOT et al. [40]). This reformulation also reduces the
complexity of the problem from the numerical point of view (VAN DER ZEE et al. [41]).
In this study, we take advantage of the splitting strategy for the Cahn-Hilliard equation
and use the finite element method with a choice of linear basis functions. Recovering the

identity µ =
δF

δφ
, we can split eq. 2.10 into:

∂φ

∂t
−∇ ·M(φ)∇µ = 0 in Ω, (3.5)

µ−Ψ
′
+ λ∇2φ = 0 in Ω. (3.6)

From the splitting technique, unknown fields now become φ(x, t) and µ(x, t) and a
test function for each equation must be used, that is, w(x) and q(x). The weak form of the
system can be obtained by integrating both Eqs. 3.5 and 3.6 in their strong form against
weighting functions w, q ∈ H1(Ω), where H1(Ω) is the Sobolev space of the square
integrable functions with an integrable first weak derivative, and applying the divergence
theorem. Being P k(Ωe) the space of polynomials of degree equal or less than k over Ωe,
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the function spaces are defined as:

Sht = {φh(·, t), µh(·, t) ∈ H1(Ω) | φh(·, t)|Ωe , µ
h(·, t)|Ωe ∈ P k(Ωe),∀e}, (3.7)

W h = {wh, qh ∈ H1(Ω) | wh|Ωe , q
h|Ωe ∈ P k(Ωe),∀e}. (3.8)

Therefore, the semi-discrete finite element formulation for the Cahn-Hilliard nonlin-
ear system is: find φh(t), µh(t) ∈ Sht ,∀wh, qh ∈ W h, so that:(

wh,
∂φh

∂t

)
+ (∇wh,M(φh)∇µh) = 0, (3.9)

(qh, µh)− (qh,Ψ
′
)− (∇qh, ε2∇φh) = 0,

where the L2 inner product over the domain Ω is indicated by (·, ·)Ω and:

wh =

nnodes∑
k=1

cφkNk, φh =

nnodes∑
k=1

φkNk,

qh =

nnodes∑
k=1

cµkNk, µh =

nnodes∑
k=1

µkNk, (3.10)

where Nk are the interpolation functions, nnodes is the number of the nodes in the finite
element mesh and cφk and cµk are arbitrary constants.

3.2 Time integration

The Cahn-Hilliard equation is a time-dependent equation, so a proper time integration
method must be chosen. The choice of a proper time integration method for the Cahn-
Hilliard equation is not a trivial task. As shown in section 2.2, the free energy functional
is a Lyapunov functional when no-flux or periodic boundary conditions are applied to the
domain. Since these boundary conditions comprehend most of the situations where the
Cahn-Hilliard equation is employed, it is fundamental that the time integration method
used respect the free energy decay in every possible situation. In other words, for any
given time step n, the following inequality must be respected:

F [φn+1]− F [φn] ≤ 0. (3.11)

According to GÓMEZ and VAN DER ZEE [10], the choice of a proper time integra-
tion method for the Cahn-Hilliard equation must respect the following items:

• The order of accuracy of the scheme;

• The stability of the algorithm;
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• The solvability of the time-discrete equations;

Initially, in the context of numerical analysis, the order of accuracy quantifies the
rate of convergence of a numerical approximation of a differential equation to the exact
solution. That is, in the time integration context, the larger the order of accuracy of
the method, the faster the error diminishes with the reduction of the time step size ∆t.
Proceeding to the second item, the stability of an algorithm is a clear concept in the
context of linear problems. However, for nonlinear problems, the concept of stability
becomes much more complex and difficult to be defined. In the Cahn-Hilliard equation
context, stability is often treated as the energy-stability described in Eq. 3.11. That is, time
integration methods can be unconditionally energy-stable, where Eq. 3.11 is respected
independently of the size of the time step ∆t or conditionally energy-stable, where the
time step cannot assume larger sizes than a critical ∆tc. Lastly, the concept of solvability
lies in the observation that when the time step is too large, depending on the method
employed the Cahn-Hilliard equation can present multiple solutions (EYRE [36]).

About the nature of a time integration scheme to be chosen, explicit methods are often
prohibitive due to severe restrictions on the time step size, which is around O(∆x4),
arising from the stiffness of the equation, while fully implicit schemes require the use of
nonlinear solvers. An intermediate approach is provided by semi-implicit time-stepping
algorithms, where some terms are treated implicitly while others are treated explicitly.
The convex-splitting scheme solves the problem of the unicity of the solution, such that
the solution is the Euler-Lagrange equation of a given convex energy functional, thus
being its minimizer, and is also unconditionally energy stable (EYRE [36], ELLIOT and
STUART [42]). However, these properties are only guaranteed on the first order convex-
splitting method. Second order convex-splitting schemes do not present a general form,
depending on the structure of Ψ(φ) and require proper stabilization to be unconditionally
energy-stable and uniquely solvable (SHEN [43]).

That said, VIGNAL et al. [17] proposed the method chosen in this study. This method
is mathematically proven to be energy stable regardless of mesh and time step size and is
second-order accurate in time, even though it is restricted on the use of a quartic potential,
which is the case of this study. The energy stability is proven by expanding the nonlinear
terms into Taylor’s series. On the solvability criteria, this method suits the adaptive time
stepping strategy proposed, allowing larger time steps without compromising the accu-
racy of the model since the proposition of the method was tested with similar adaptive
time stepping strategies (VIGNAL et al. [17]). Applying the time integration method on
the variational formulation of the problem in Eq. 3.9, considering the initial conditions
φ(x, 0) = φ0 and µ(x, 0) = µ0, where µ0 is an arbitrary function, the fully discrete system
is as follows:
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(
wh,

[[φ]]

∆tn+1

)
Ω

+ (∇wh,Mn+1∇µhn+1)Ω = 0,

(qh, µhn+1)− (qh, Ψ̃
′
)Ω − (∇qh, ε2∇{φ})Ω = 0,

(3.12)

where:

[[φ]] = φhn+1 − φhn, ∆tn+1 = tn+1 − tn, {φ} =
φhn+1 + φhn

2
.

The function Ψ̃
′ represents an approximation to Ψ

′ such that the scheme is energy-
stable. The approximation is defined as:

Ψ̃
′
=
∂Ψn+1

∂φ
− ∂2Ψn+1

∂φ2

[[φ]]

2
+
∂3Ψn+1

∂φ3

[[φ]]2

6
. (3.13)

3.3 The nonlinear system solver

The solution of the nonlinear system seen on equation (3.12) in the present study is
reached by using the Newton method. The Newton method first appeared in the 17th
century and is one of the most robust methods in solving nonlinear systems (KELLEY
[44]). The Newton method consists on linearizating a nonlinear system by iterating a
Taylor expansion on given a function R(φ) until the first order term from φ on a given
iteration k, such that:

R(φhk+1) = R(φhk) + R
′
(φ

h

k)(φ
h
k+1 − φhk) +O(∆φh)2. (3.14)

Ignoring the second order terms and making R(φhk+1) = 0, the following identity can
be reached:

Jδφhk = −R(φhk), (3.15)

where δφhk = φhk+1 − φhk and J = R
′
(φ

h

k).
The nonlinear system becomes now a sequence of linear systems. Equation (3.15) is

linearly solved for δφhk and, using the relation φhk+1 = φhk + δφhk , the iteration k + 1 is
reached. The iterator k is increased from k = 0 (from an initial guess) until a maximum
number of iterations niter and/or the nonlinear residual reach a given absolute tolerance
tolres and/or the variable update is smaller than a relative tolerance tolupdate. Both toler-
ance relations are:

||R(φhk)||
||R(φh0)||

< tolres
||δ(φhk)||
||(φhk)||

< tolupdate (3.16)
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In this study, we consider the relative tolerance as a stopping criteria with a prescribed
value of 10−4, that is tolres = tolupdate = 10−4.

3.4 The linear system solver

As described in the previous section, the nonlinear system now becomes a sequence of lin-
ear systems. The system described by equation (3.15) can be seen as Ax = b. The linear
systems generated in the simulations in this study are large due to fine meshes needed to
accurately define the interfaces and the splitting technique, that provides an extra degree
of freedom for each node, doubling the size of the unknown vector. It is well known from
the numerical analysis that large linear systems are better solvable by iterative methods
(KELLEY [44]). In this sense, we choose the Generalized Minimum RESidual (GM-
RES) linear solver, a very efficient iterative method for nonsymmetric system of linear
equations and used in several papers involving phase-field modelling, such as VIGNAL
et al. [17] and WODO and GANAPATHYSUBRAMANIAN [45].

The Krylov iterative methods consist on the projection of the subspace Kj of dimen-
sion j given on equation 3.17 where r0 = b−Ax0.

Kj = span(r0,Ar0, ...,A
j−1r0). (3.17)

Applying this method on equation 3.15 on a given iteration k, we reach:

r0 = −Jδφ−R(φ). (3.18)

The GMRES method consist on minimizing ||Jδφ+ R(φ)||2 for each iteration of the
method, where δφ is given on equation 3.19 and τi are scalars that minimize the residual:

δφj = δφ0 +

j−1∑
i=0

τi(J)ir0. (3.19)

A common practice when using iterative methods is to combine them with a precon-
ditioning method in order to speed up convergence. A robust preconditioning method that
works fine with the GMRES method is the Incomplete LU factorization (ILU) method.
The ILU method consist on approximating the matrix A into a product of two matrices:
a lower triangular L and an upper triangular U matrix. This is useful in the treatment for
a sparse matrix, in the sense that the LU factors can be much less sparse than the original
matrix, reducing memory requirements and making the convergence faster. In this study,
the linearized systems are solved by PETSc’s ILU(0)-GMRES(35) with a prescribed rel-
ative tolerance of 10−5.
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3.5 The FEniCS framework

The Finite Elements nurtured in Computer Science (FEniCS) framework is an open-
source computing platform for solving partial differential equations using the finite el-
ement method (ALNÆS et al. [4], LOGG et al. [46]). Its structure consists on several
built-in functions that can be translated into simplicity to novice programmers or per-
formance to more experienced users. FEniCS consists of a number of building blocks
(software components) that together form the FEniCS software. Figure 3.3 shows its
structure.

Figure 3.3: FEniCS software and its components. From LOGG et al. [4].

From the FEniCS structure, some important components can be highlighted:

• DOLFIN is a C++/Python library that functions as the main user interface of FEn-
iCS. It provides a problem solving environment for models based on partial dif-
ferential equations and implements core parts of the functionality of FEniCS, in-
cluding data structures and algorithms for computational meshes and finite element
assembly.

• FFC is the FEniCS form compiler. It is responsible for converting the equation’s
variational form in the code into matrices, tensors and vectors in a efficient and
error-free way.

• UFL is the Unified Form Language, and can be seen as the core component of the
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FEniCS framework. It is responsible for automating the process of the problem
definition, given the variational formulation of the problem.

The reason why the FEniCS framework was selected for this study was its simplicity
of implementation the variational formulation without the necessity of explicited matrices
treatment, which is automated in an optimized way: the data structure is automated to
integrate each element, assemble the local matrix to a global matrix and solve it with the
PETSc (BALAY et al. [47]) or Trilinos (HEROUX et al. [48]) solvers. For example, our
variational formulation on equation (3.12) can be written as:

Form0 = w*phi_form0/dtt*dx + inner(grad(w),M*grad(mu))*dx

Form1 = q*(mu-dpsitil)*dx - inner(grad(q),lmbda*grad(phi_form1))*dx

Form = Form0 + Form1

This simplicity makes the code writing much easier and efficient. Also, the data struc-
ture and solver implementations used are well known standard libraries.

3.6 Spinodal decomposition: initial simulations

In order to evaluate every method presented in this study, a phase-separation process
simulation with the Cahn-Hilliard equation is made to verify the quantities of interest
presented in chapter 2. The initial condition has the form:

φ(x, 0) = φ̄+ r, (3.20)

where r is a random variable with uniform distribution in [−0.01, 0.01] and φ̄ is set to be
0.3, being inside the spinodal region described in Fig. 2.3. The simulations consist on a
unit square domain Ω̄ = [0, 1]× [0, 1] discretized into an uniform mesh of [128]2 C0 linear
elements. The following parameters are used: α = 100, β = 100, λ = 0.01, M(φ) = 1

and ∆tn+1 = 2× 10−6s for all time steps.
The initial condition is seen on Fig. 3.4 and represents an unstable mixture (GOMEZ

et al. [38]). This instability triggers an initial spinodal decomposition, which results
in two coexisting phases being formed, and is followed by coarsening in later stages,
whereby the two distinct phases grow with time to decrease the total interfacial area. The
simulations are described in snapshots in Fig. 3.5. Since the fixed time step needs to be
small in order to capture the fast dynamics of the initial stages of the spinodal decomposi-
tion, reaching the steady-state without any time step adaptivity strategy requires thousands
of time steps. In this sense, the steady state is not reached in fixed time step simulations,
limiting this section to 5000 time steps. That is, the fixed time step simulation simulation
ends at t = 0.01 s.
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Figure 3.4: Initial condition for all the spinodal decompositions in this study.

On the early stages of the simulation, the phases begin to be segregate. The order
parameter that started the simulation around 0.3 starts to approach the values defined by
the free energy density function. In our simulations, for α = 100 and β = 100, it has the
form:

Ψ(φ) = 25(φ2 − 1)2, (3.21)

where phases φ− and φ+ are defined to be as φ = −1 and φ = 1, respectively.
After the phase definitions, the concentrations of each component begin the different

processes of interaction, such as pinch-offs and coalescences. On the late stages of the
simulation, the droplets with smaller concentrations were already absorbed by the larger
ones and, at this point, the solution practically does not change during the time evolution.
This is the point where the time adaptivity schemes are expected to improve the efficiency
of the simulation, admitting larger time steps. This is discussed in depth in section 5.
Figure 3.5 confirms this behavior, describing the evolution of the phase field submitted to
the spinodal decomposition of the simulations with constant mobility. We can observe that
the Figs. 5.2a, 5.2b and 5.2c present rapid dynamics, revealing more significant changes
in the phase field while Figs. 5.2d, 3.5e and 3.5f present slower dynamics, with more
subtle changes in the phase field even though the time difference between them is much
larger then the previous three figures. As mentioned before, some quantities of interest
are also assessed to verify the validity of our models. The mass variation in time and
energy decay are seen in Fig. 3.6. The mass variation figure describes M(t)/M0, where
M(t) is the mass of the system during the simulation and M0 is the mass of the system
at the initial stage. The mass variation is within the range of the numerical tolerance of
the solver, being around 2%. The energy decay is also seen proving that during all the
simulation the energy levels kept decreasing.
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(a) t = 0.0001s (b) t = 0.0005s

(c) t = 0.0010s (d) t = 0.0050s

(e) t = 0.0075s (f) t = 0.0100s

Figure 3.5: Spinodal decomposition using fixed time step and fixed mesh at different
times.
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Figure 3.6: Quantities of interest of the spinodal decomposition simulations.
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After assessing our methods and methodology, schemes of space and time adaptivity
can be made to optimize the performance of the simulations.
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Chapter 4

Preliminary studies

The Cahn-Hilliard equation can be coupled to phase-field equations to model multiflow
simulations. Both Cahn-Hilliard and Allen-Cahn equations can be used for this purpose,
except that the Allen-Cahn equation requires the use of Lagrangian multipliers to force the
mass conservation property that does no exist in its pure formulation (VASCONCELOS
et al. [49]). The Cahn-Hilliard equation properly conserves mass and presents energy
decay, being naturally suitable for this coupling (GURTIN et al. [50]). However, the
complex structure of the Cahn-Hilliard equation requires special attention when being
numerically modelled, demanding large computational effort. In this section we assess
a more complex situation where this equation is present to motivate our discussion in
optimizing the modelling of the Cahn-Hilliard equation.

4.1 Phase-field methods on fluid dynamics

In the context of the coupled phase-field-fluid-dynamics models, the scalar order param-
eter of the phase-field models characterize each component of the mixture and the be-
haviour of each component is dictated by a set of coupled nonlinear differential equa-
tions: a modified Navier-Stokes set of equations, that update the pressure and velocities
of the mixture and the convective-Cahn-Hilliard equation - or the convective-Allen-Cahn
equation equipped with a Lagrange multiplier - which updates the concentration of each
component and track the interfaces. The first work to couple the phase-field methodology
with the fluid dynamics equations to simulate two-phase flow of immiscible, viscous flu-
ids was HOHENBERG and HALPERIN [51], which was brought into the framework of
the nonlinear continuum mechanics by GURTIN et al. [50], proving to be thermodinami-
cally consistent. From this point, several works developed different Navier-Stokes-Cahn-
Hilliard coupling strategies, each with its advantages and drawbacks. The models - listed
and organized by HOSSEINI et al. [52] - are as follow:
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Table 4.1: Different Navier-Stokes-Cahn-Hilliard models for two incompressible flows.

Variable Thermody Admitting Sharp interface
Model density -namically energy law limit identifiable

ρf (φ) consistent when ε→ 0

Model H

LOWENGRUB and
TRUSKINOVSKY

[53]

DING et al. [54]

BOYER [55]

SHEN and YANG [56]

ABELS et al. [57]

After the development of the Model H, LOWENGRUB and TRUSKINOVSKY [53]
circumvented the variable density constraint existent in the model proposed by Halperin
and Hohenberg, creating a model labeled as quasi-incompressible Navier-Stokes-Cahn-
Hilliard. The mean velocity of a given particle of the mixture is mass averaged - or
also described as barycentric velocity - such that ρf (φ)u = ρf 1u1 + ρf 2u2, where the
indexes 1 and 2 represent the individual components of the mixture. This assumption
leads to a non-divergence-free velocity. Even though it is one of the most complete models
for the Navier-Stokes-Cahn-Hilliard coupling, according to HOSSEINI et al. [52], until
recently there were no discrete schemes available being based on the full model. The
difficulty in solving numerically this model lies, specially, in two reasons: the strong
nonlinearity existent in the presence of the pressure p on the chemical potential µ and by
the non-solenoidal velocity field for which no solution concept is available which avoids
to determine the pressure p. DING et al. [54] and BOYER [55] created models based
on the generalization of the Model H to enable the use of fluids with large density ratio.
However, there is no energy law related to their models or proof that these models are
thermodynamically consistent, since these properties present on Model H are achieved
through the assumption of small density ratio. Both models rely on averaging the velocity
field by the volume fraction of each component of the mixture, that is, the velocity is
treated as volume averaged thus u = v1u1 + v2u2. SHEN and YANG [56] presented
a model where the information of the components are merged in the parameters of the
Navier-Stokes equations, such that the density of the mixture is described as ρf (φ) =
ρf 1 − ρf 2

2
φ+

ρf 1 + ρf 2

2
φ and the viscosity is µf (φ) =

µf 1 − µf 2

2
φ+

µf 1 + µf 2

2
φ. This

model presents an energy law and proper thermodynamical treatment. ABELS et al. [57]
recently derived a thermodynamically consistent generalization of the Model H for the
case of variable density based on a solenoidal velocity field u, fulfilling local and global
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dissipation inequalities and leads to a sharp interface model when ε→ 0.
In this work, we have implemented the Model H, a coupled system between the Cahn-

Hilliard equation and the Navier-Stokes equations in a way that the capillary forces on
the interface are modelled in function of the phase-field order parameter. The Model H
relies on matched density fluids, that is, both components have the same densities, being
the most simple model within this framework. The Navier-Stokes momentum equation
inherited an extra elastic stress induced by interfacial surface tension, while the Cahn-
Hilliard equation gained a convection term dependent of the flow velocity. The Model H
momentum equation is:

ρf [
∂u

∂t
+ (u · ∇)u] = ∇ · [µf (∇u +∇uT )− pI− λ(∇φ⊗∇φ)]. (4.1)

After considering proper rearrangement for Eq. (4.1), according to SHEN and XI-
AOFENG [58] and GURTIN et al. [50], the Navier-Stokes-Cahn-Hilliard set of equations
can be formulated as:

ρf [
∂u

∂t
+ (u · ∇)u] = µf∆u−∇p̃+ µ∇φ, (4.2)

∇ · u = 0, (4.3)
∂φ

∂t
+ u · ∇φ = M(φ)∆µ, (4.4)

µ = Ψ
′ − λ∆φ, (4.5)

with p̃ = p− λ

6
|∇φ|2 + Ψ(φ).

4.2 The Cahn-Hilliard-Navier-Stokes coupling

The finite element methodology using the Galerkin method to a general partial differen-
tial equation is described in chapter 3.1. However, the use of finite element in transport
problems involving convective terms and/or viscous incompressible flows requires cer-
tain attention and therefore needs further stabilization. There are two major reasons for
stabilizing the incompressible Navier-Stokes equations and the convective Cahn-Hilliard
equation when using the finite element method: First, the Galerkin method leads to central
approximations of the convective terms and is thus not optimal when convection domi-
nates diffusion (the viscosity effects), that is for high Reynolds number flows when mod-
elling the incompressible Navier-Stokes momentum equation (DONEA and HUERTA
[7]). This is also applicable to the scalar convection-diffusion-reaction equation with high
Péclet number. The second problem is that the stability of the Galerkin method applied to
the incompressible Navier-Stokes equations depends on satisfying of the Ladyzhenskaya-
Babuška-Brezzi (LBB) condition. The following sections describe each of this issues,
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how to fix their instabilities and how to derive the final finite element model for the in-
compressible Navier-Stokes equations.

4.3 Velocity and pressure coupling

The Navier-Stokes equations for an incompressible flow can be defined as:

ρf

[
∂u

∂t
+ (u · ∇)u

]
− µf∆u +∇p = b in Ω× [0, T ], (4.6)

∇ · u = 0 in Ω× [0, T ], (4.7)

u = uD in ΓD × [0, T ], (4.8)

−pn + µf (n · ∇)u = uT in ΓN × [0, T ], (4.9)

u(x, 0) = u0(x) in Ω, (4.10)

where ρf is the fluid density, u is the fluid convective velocity, µf is the kinematic viscos-
ity, p is the pressure and b is the volume force per unit mass of fluid. uD and uT are the
boundary conditions prescribed on the boundaries ΓD and ΓN , respectively, and u0 are
the initial conditions.

Equation (4.7) is the incompressibility constraint of the fluid, being the consequence
of the fact that in an incompressible continuum the rate of change of the mass density
following the motion is zero. This incompressibility constraint causes unstable behaviour
in the finite element method when an inappropriate combination of element interpola-
tion functions for the velocity and pressure is employed. As a consequence, instabilities
in the pressure field may appear, and this is independent of the Reynolds number. The
Ladyzhenskaya-Babuška-Brezzi condition - also known as LBB condition or inf-sup con-
dition - is stated as: The existence of a stable finite element approximate solution (uh, ph)

to the steady Stokes problem or the incompressible Navier-Stokes equation depends on
choosing a pair of spaces V h and Qh, such that the following discrete inf-sup condition
holds:

infqh∈Qh sup wh∈Wh

(qh,∇ · wh)
||q||0||wh||1

≥ θ > 0, (4.11)

where θ is independent of the mesh size. Several pair of elements have been proved
to be within this context, being suitable for modelling the incompressible Navier-Stokes
equation. In this study we consider the Taylor-Hood (TAYLOR and HOOD [59]) pair of
elements, where the pressure elements and velocity base functions are, respectively, linear
and quadratic piecewise polynomials.
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4.4 Convection dominated flows

As shown on the previous section, the Cahn-Hilliard equation inherits a convection term
after the coupling with the Navier-Stokes equation. That is, the altered Cahn-Hilliard
equation has now a convection-diffusion-reaction form.

It is known that the traditional Galerkin formulation can lead to global spurious
oscillations on high Reynolds number flows while solving the Navier-Stokes equa-
tion (DONEA and HUERTA [7]). It is also described in JOSHI and JAIMAN [60]
that diffusion-reaction equations with reaction dominated flows and convection-diffusion
equations with advection dominated flows reveal the same behaviour. Since this study
uses the finite element method for numerical approximation of the described PDEs, addi-
tional stabilization techniques will be required.

Many stabilization techniques have been developed in the past decades, such as the
Streamline Upwind Petrov-Galerkin method (BROOKS and HUGHES [61]), the Galerkin
Least Squares method (HUGHES et al. [62]) and the Subgrid Scale method (HUGHES
[63]). All methods rely on a different way to model the weight functions. On JAIMAN
and JOSHI [60], a new stabilization technique is proposed for the convection-diffusion-
reaction equation. We implemented this method and compared to the others previously
cited. On Appendix A we assess some formulations for different situations for the
convection-diffusion-reaction equation.

4.5 Numerical validation

The two kissing bubbles example is a situation where two touching droplets of a given
fluid are immerse in a different immiscible fluid. This example simulates the coalescence
of two similar phases and evaluate the interfacial forces. To simulate the two kissing
bubbles example, we consider the following initial condition, which is described by Fig.
4.1

φ(x, y, 0) =tanh[200(x− 0.4)2 + 200(y − 0.5)2 −
√

2]+

tanh[200(x− 0.6)2 + 200(y − 0.5)2)−
√

2]− 1. (4.12)

For the time integration of the incompressible Navier-Stokes equation, we consid-
ered a semi-implicit fractional-step projection method proposed by CHORIN [64] and
TEMAM [65]. The principle of this method is to evaluate the velocity and pressure
fields separately through the computation of an intermediate velocity, which is then pro-
jected onto the subspace of the solenoidal vector functions, forcing the velocity to become
divergence-free. We implemented the SUPG stabilization method for both the incom-
pressible Navier-Stokes and convective Cahn-Hilliard equations in our simulations.
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Figure 4.1: Initial condition for the two-kissing bubble simulation.

This simulation represents a decoupled multiphysics system, where both equations
are updated separately and evaluated separately. We compare our results with the ones
seen on VASCONCELOS et al. [49], with presented similar behaviour. The convective
Cahn-Hilliard equation is solved implicitly with a nonlinear solver while the modified in-
compressible Navier-Stokes equation is solved with a semi-implicit Chorin-Temam pro-
jection method. The two kissing bubbles simulation was solved on a Intel Core i5-3230M
2.60GHz with 8 GB of RAM for approximately 4 days. Most of the time spent on the
simulation was solving the nonlinear system originated from the Cahn-Hilliard equation.
This reinforces the idea that the optimization of the numerical scheme used in the phase-
field equations is essential for simulating the desired physical phenomena in feasible time.
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Figure 4.2: Early stages of the merging droplets. Velocity fields present smaller magni-
tudes and pressure field points the potential direction of the fluid motion.
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Figure 4.3: Intermediate stages of the merging droplets. Velocity fields present larger
magnitudes in comparison to the early stages. The two bubbles now are a single phase
mass.
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Figure 4.4: Later stages of the merging droplets. Velocity fields begins to reduce its
magnitudes while the bubble reach its circular form.
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Chapter 5

Adaptivity Schemes

Phase-field simulations involve a connection between different scales and this can repre-
sent a gap between time and space scales. The computational cost of a spinodal decom-
position simulation using the Cahn-Hilliard equation is high, since it is a time-dependent
nonlinear PDE that requires long time simulations with the presence of fast dynamics on
the early stages, requiring small time step sizes. In this chapter, we will discuss space and
time adaptivity strategies for the Cahn-Hilliard equation to optimize the computational
cost without compromising the accuracy of the fixed time step and mesh results. Each
section deals with a separate subject that will compare the results with the simulation
presented on section 3.6.

5.1 Time adaptivity

The choice of a proper time integration method and time step for the Cahn-Hilliard equa-
tion is a difficult task, since the equation, in several physical situations, have different time
scales in their nature, creating a conflict between accuracy and performance. For exam-
ple, the initial phase of the spinodal decomposition is dictated by fast dynamics, requiring
small step sizes while the latter stages reveal slow dynamics, allowing large time steps.
Thus, to improve the efficiency of the computations, a time adaptivity scheme is often
used to automatically change the time step size to capture both fast and slow dynamics
of the Cahn-Hilliard equation, improving the performance of the simulations without any
accuracy loss.

Studies in the literature discuss time adaptivity schemes for the Cahn-Hilliard equa-
tion. Some schemes rely on the Cahn-Hilliard physical nature (GUILLÉN-GONZÁLEZ
and TIERRA [66], ZHANG [67]), where the adaptivity scheme is based on the variation
of the free energy functional. Several studies adopted different approaches where the pro-
posed schemes are based on a simple time step controller, seen in GÓMEZ and HUGHES
[38] WODO and GANAPATHYSUBRAMANIAN [45], CUETO-FELGUEROSO and
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PERAIRE [68], VIGNAL et al.[17]. In this study, our approach is to assess different
controllers with a recent error estimation scheme by using the linear feedback control
theory in a numerical context.

5.1.1 The control theory on adaptive time-stepping

The Cahn-Hilliard equation is a dynamical system of the form:

φ̇ = F (φ), φ(x, 0) = φ0, (5.1)

where φ ∈ Rnsd and F : Rnsd → Rnsd is a smooth Lipschitz map. Since the time
integration method used in this study is a one-step method, considering a step size ∆t,
there is a map Φ : Rnsd → Rnsd such that:

φn+1 = Φ(φn), φ(x, 0) = φ0. (5.2)

Equation (5.2) is a discrete-time dynamical system that approximates Equation (5.1).
It is possible to use the same approach for an additional map Ξ : R → R to vary the step
size:

∆tn+1 = Ξ(∆tn). (5.3)

The map Ξ uses information about the numerical solution φn when defining the
new step size (∆tn+1) while the map Φ is based on the time step ∆t. An adaptive
time–stepping method can be expressed as the following interactive recursion:

φn+1 = Φ(φn), (5.4)

∆tn+1 = Ξ(∆tn). (5.5)

Most of the adaptive time-step schemes are based in the interactive recursion seen on
Equations (5.4) and (5.5). It is assumed that the relation between the error and the step
size is asymptotic, that is:

rn = |ζn|∆tκn, (5.6)

where rn is the norm of the local error estimate, |ζn| is the norm of the principal error
function, and κ is related to the order of accuracy of the time integration method. In our
case, the principal error function can be viewed as a disturbance in the system, such as
a Newton solver residual and other properties of the Cahn-Hilliard equation. Also the
integration method employed is second-order accurate, so κ = 2. From the assumption
seen in Eq. 5.6, we can observe that rn → 0 if ∆t→ 0.

The idea behind the use of control theory on adaptive time-stepping is that the map Ξ

controls an estimated numerical error within a prescribed tolerance TOL. The recursion
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Figure 5.1: Adaptive time-stepping viewed as a feedback control system. Adapted from
SÖDERLIND [5].

can be translated into a closed loop, a common dynamic structure in the control theory.
We can split the map Ξ into two parts: the process transfer function G(q) and the control
transfer function C(q), where q is the forward shift operator, considering the process after
the z − transform (SÖDERLIND [69]). In our context, the process transfer function is
responsible for evaluating the Cahn-Hilliard equation and its local error during the present
time-step, while the control transfer function can be viewed as the transfer function that
evaluates the next time step considering the error obtained fromG(q) and the initially pre-
scribed tolerance TOL. The adaptive time-stepping closed loop can be seen in Figure 5.1.
The interactive recursion describes the interaction between the process and the controller:

log rn = G(q) log ∆tn + log |ζn|, (5.7)

log ∆tn+1 = C(q) · (log TOL− log rn). (5.8)

However, the process transfer function can be obtained by the asymptotic assumption
presented on Equation 5.6. This leads to the following closed loop dynamics [69]:

log rn = RTOL(q) log TOL+Rζ(q) log |ζ|, (5.9)

log ∆tn+1 = HTOL(q) log TOL+Hζ(q) log |ζ|, (5.10)

where the stepsize transfer map Hζ(q) and the error transfer map Rζ(q) are given by:

Hζ(q) = − C(q)

1 + κC(q)
, Rζ(q) = − 1

1 + κC(q)
. (5.11)

The recursion formed by Equations (5.9) and (5.10) expresses how the two inputs:
the prescribed tolerance log TOL and the disturbance log |ζ| influence the two outputs:
the error estimate log r and the stepsize log ∆t. The stepsize transfer map Hζ(q) and the
error transfer map Rζ(q) can be interpreted as digital filters implying that the stepsize
sequence log ∆t is considered to be obtained through digital signal processing of the
external disturbance log |ζ| (SÖDERLIND [69]).

In this sense, the use of the linear feedback control theory on step size adaptivity is
translated into: given a present time step tn, choose a future time step ∆tn+1 such that

37



the local error of the present time step rn is controlled within a given tolerance TOL by a
controller whose properties and tuning are defined by C(q). Besides from the expectancy
of reducing the number of linear/nonlinear systems to be solved, the control theory pro-
vides smoother step size sequences, which improves the solution evolution (SÖDERLIND
[70]), improved computational stability and a regular, tight tolerance proportionality.

5.1.2 Error estimation

We consider an error estimation where the solutions at tn and tn−1 are stored and the
error is estimated a posteriori by extrapolation by a lower-order time integration method,
since the solution tn+1 is obtained with a second order scheme. This method is proposed
by VIGNAL et al. [17]. This estimation is done through variable step-size backward
differentiation, where the error obtained in the lower-order method is controlled. In this
work, we consider the lower-order method to be the backward-Euler method. Therefore,
the local truncation error of the backward-Euler method is:

τBE(tn+1) = −∆t2

2
φ

′′
(tn+1) +O(∆t3). (5.12)

Given the stored solutions φn+1, φn and φn−1 at times tn+1, tn and tn−1 respectively
and neglecting the effects of the O(∆t3) terms, equation (5.12) can be approximated by
the variable step-size backward difference formula. So the error estimation is now:

En+1 = −1

η
φhn+1 +

1

η − 1
φhn −

1

η(η − 1)
φhn−1, (5.13)

where η = (∆t+ ∆tp)/∆t , with ∆t = tn+1 − tn and ∆tp = tn − tn−1.
With the error function, the weighted local truncation error (WLTE) can be written as:

r =

√√√√ 1

nnodes

nnodes∑
i=1

(
E

(i)
n+1

τabs + τ relmax(|φ(i)
n+1|, |φ

(i)
n+1 + E

(i)
n+1|)

)2

, (5.14)

where τabs and τ rel define tunable absolute and relative tolerances, respectively, and the
index i = 1, 2, ...nnodes refers to the nodal index.

The weighted local truncation error r is used to control the error at each time step.
By definition, values of r ≤ 1 mean that the local truncation error is within the user-
prescribed tolerances. In this case, the step just taken can be accepted and the time inte-
gration can move forward with either the same or a larger time step size. On the contrary,
values of WLTE larger than one imply unacceptable errors, that is, the step taken should
be rejected and retaken with a smaller time step size, since the error rn+1 becomes larger
and therefore decreases the new time step ∆tn+1 in this case.
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Table 5.1: Controllers parameters.

κD κI κD κT Controller
0.0 0.5 0.0 0.0 Integral (I)

0.075 0.175 0.01 0.0 PID
0.333 0.333 0.0 1.0 PC11

5.1.3 Timestep controllers

There are several timestep controllers in the literature and many ways to classify them
(SÖDERLIND [5]). In this study, we consider three controllers: an integral controller,
a PID controller, and a predictive controller. The integral controller is the simplest used
in time adaptivity and controls the relationship between the error in the present and past
time. This simplicity is known to grant the integral controller a large number of rejected
steps according to CUETO-FELGUEROSO and PERAIRE [68]. The PID controller has
three controlling terms - proportional, integral and derivative - that adjust the time step
with respect to the last three time steps. The predictive controller is the most indicated
controller for time adaptivity in stiff equations (SÖDERLIND [70]) and has a different
structure when compared to the other two controllers. The three controllers can be written
as:

∆tn+1 = ρ

(
rn
rn+1

)κP( 1

rn+1

)κI( r2
n

rn+1rn−1

)κD( ∆tn
∆tn−1

)κT
∆tn, (5.15)

where the parameter ρ = 0.9 for all methods is a safety factor used to smooth the steptime
growth. The parameters κP , κI , κD and κT for each controller are represented in Table
5.1. To avoid tuning the parameters, which can be very time consuming, the parameters
for the I controller, the PID controller and the PC11 controller were taken respectively
from SÖDERLIND [70], VALLI et al. [71] and AHMED and JOHN [72].

Remark: Although the use of time adaptivity schemes based on the linear feedback
control theory has not yet been explicitly mentioned in the Cahn-Hilliard literature, the
integral controller has been used in the present context in several works such as CUETO-
FELGUEROSO and PERAIRE [68], GÓMEZ and HUGHES [38], VIGNAL et al. [17]
WODO and GANAPATHYSUBRAMANIAN [45]. Even when the PID controller has
been used in the Cahn-Hilliard context (CUETO-FELGUEROSO and PERAIRE [68]),
the integration method used for the PID error estimation is not guaranteed to be energy
stable. Also, the error estimation employed was based on solution norms of different time
integration methods with different orders of accuracy. This error estimation requires the
calculation of the same step twice and therefore can be time-consuming. In the present
work, we employ an error estimation method based on extrapolation that avoids comput-
ing the same time step twice.
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(a) Fixed ∆t (b) I controller

(c) PID controller (d) PC11 controller

Figure 5.2: Simulations at t = 0.006s using different adaptivity strategies revealing that
there is no significant difference between each simulation.

5.1.4 Numerical validation

Numerical simulations are made to validate the time adaptivity strategy. Four constant
mobility phase separation simulations are made: one for each controller and the fixed
time step simulation is used to validate the spatial adaptivity scheme. We aim to compare
the frames in all simulations to check if they all represent the same physical stage. The
same fixed mesh simulation used in section 3 is employed in this validation. For our
simulations, we consider τabs = τ rel = 10−4 and the initial time step ∆t0 = 10−9.

Figure 5.2 show all simulations at the same instant. Even that it is possible to see
small differences between simulations, there is no significant loss of accuracy. It is also
essential to observe that during the early stages of the simulation, the adaptive time step
is much smaller than the fixed time step, revealing that the adaptive strategy is inefficient
for a short period. Figure 5.3 shows how many time steps are needed for each method
to reach the point where the fixed time step is no longer more efficient. The integral
controller method reached the fixed time step on step number 891, PC11 did it in step
937 while PID did it in step 1197. It is expected that the PID controller would behave
more conservatively, since its formulation consists of evaluating the error on different
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Figure 5.3: Comparison between physical simulation time between the fixed time step
and the proposed controllers. The adaptive time stepping scheme with the given tolerance
takes around 1000 time steps to reach the fixed time step simulation in physical time.

times, making it a more rigid controller than the others. Time step adaptivity facilitates to
reach the steady-state of the Cahn-Hilliard equation. In our simulations, the steady-state
is reached at around t = 0.7s. To reach the steady-state using the fixed time step scheme,
considering that ∆t = 2× 10−6, it would be necessary 325× 103 time steps, while using
the time step adaptivity, it is reached within around 5000 time steps.

Table 5.2 shows a comparison of the results. All nonlinear solutions converged, that
is, the growth of the time step adaptivity is sufficiently smooth to prevent any non-
convergence, thanks to the prescribed tolerance values. All methods significantly im-
proved the spinodal decomposition simulation, since it is possible to reach larger simu-
lation times with a lesser number of steps. It can be said that the methods do not show
considerable differences between them since they all reached the steady-state with ap-
proximately 5000 time steps. The last column in the table shows that the PC11 is the
method that solved less nonlinear systems. The PID controller solved the most, and it is
the most conservative. The integral controller contained only the error in the present time
en+1 and, therefore, had less control over the growth of the time steps, presenting more
rejected steps over the other methods. The fixed time step simulation does not need any
strategy to reject steps.

We can conclude that the use of time adaptivity schemes for the Cahn-Hilliard equa-
tion is better for long simulations. The error controllers used proved to be reliable in the
sense that no inaccurate solutions are obtained when compared to the fixed time step while
providing the desired performance. The comparison between the methods suggests that
the PC11 behaved slightly better in the spinodal decomposition simulations. However,
here we only want to show the necessity of using a time adaptivity scheme instead of a
fixed time step scheme for long time simulations. The results shown suggest that this is a
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Figure 5.4: Behaviour of the time step ∆t during the simulations. The time step is kept
around O(10−6) in the initial stages where the interfaces arise. In the mid and late stages,
where the dynamics are mostly dictated by mobility and shrinkage, the time step can
reach larger values. The time step is reduced to O(10−6) when the Ostwald Ripening
phenomenon is observed, that is, a given portion of a phase shrinks until its mass is
completely transported to a larger portion. This phenomenon reveals fast dynamics thus
reducing the time step size. It is also observable that all the simulations represent the
same physics since all curves reveal time step size reduction in the same simulation time.

Table 5.2: Results for the time adaptivity schemes for each time step controller.

Method Time steps Simulation Rejected steps Nonlinear
time (s) systems solved

Fixed ∆t 5000 0.01 - 5000
I 4415 1.00 272 4687

PID 5307 1.00 102 5409
PC11 4516 1.00 75 4591

good choice.

5.2 Space adaptivity

It is known that the Cahn-Hilliard equation requires a proper discretization in the inter-
facial domain to guarantee the accuracy of the boundary motion (WODO and GANAPA-
THYSUBRAMANIAN [45]). However, the bulk domain (defined by plain phases) does
not need to be numerically detailed, allowing the use of a coarser discretization in these
regions. Considering a nonlinear set of equations on a long time simulation, the reduction
of degrees of freedom in the bulk domain can be a huge improvement in the computational
cost of the simulation, without compromising its accuracy and robustness.

Several papers have used spatial adaptivity to improve the performance of the Cahn-
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Figure 5.5: Triangular mesh refinement procedure using the bisection method. The green
element is marked for refinement since its value ηel is greater than a prescribed tolerance
at each iteration.

Hilliard simulations varying in refinement criteria, procedure or numerical method. In the
Cahn-Hilliard numerical literature, two refinement criteria are often used: the value of the
order parameter close to the value defined for the interfaces or its gradient (CENICEROS
and ROMA [73]).

5.2.1 Spatial error indicators

Error estimators and indicators of different degrees of complexity and computational cost
can be used to drive adaptive simulations. We can highlight residual, interpolation-based,
flux jump, patch recovery and adjoint-based dual estimators (CAREY [74]). In this sec-
tion, we consider two error indicators and compare their behaviors. To setup the nomen-
clature of our refinement procedure, we consider some definitions. Our non-degenerate
family of simplices meshes {Tz}z∈‡ are obtained by local refinements of a reference
coarse mesh, denoted hereafter by T coarse at every iteration z. At the other end, we con-
sider a reference fine mesh, denoted hereafter by T fine, assumed to resolve all the scales
of the solution, meaning that its characteristic mesh length is capable of capturing the
diffuse interface thickness according to equation (2.7). So each member of the family of
meshes {Tz}z∈‡ is a mesh with characteristic length between T coarse and T fine. The spec-
ification of T coarse and T fine are problem dependent, and will be given in the numerical
validation section. We consider a spatial error vector η2 = {η2

e}, e = 1, 2, ..., nel, which
is the number of elements in the current mesh.

Initially, we use a modified error indicator procedure based on the residual of the
Cahn-Hilliard equation, proposed by BAÑAS and NÜRNBERG [75]. This error indi-
cator have been adjusted to fit our time integration method. The authors proposed two
error indicators based on each equation of the Cahn-Hilliard nonlinear system (3.12).
However, only one of these equations have practical computational applications and, after
preliminary numerical evaluations, we observed that the same behaviour occurred in our
simulations. Therefore, considering the defined spaces in Eq. (3.7), the discrete residual
of the second equation in (3.12), Rh

µ ∈ Sht is defined as:

43



Rh
µ = (qh, µhn+1)− (qh, Ψ̃

′
)− ε2(∇qh,∇{φ}) ∀qh ∈ W h. (5.16)

The first local error indicator considered, is then,

η2
e =

∣∣∣∣∣∣∣∣hel(µhn+1 − Ψ̃′ −Rh
µ

)∣∣∣∣∣∣∣∣2
L2(Ωe)

+ ε2
3∑
s=1

||h1/2
s [∇{φ}]s||2L2(s), (5.17)

where hel is the element size, Ωe is the element domain, s is the triangle edge, hs is the
edge length, and [∇{φ}]s = (∇{φ})+·n++(∇{φ})−·n− is the jump of the gradient of the
average phase field across the inter element boundary s, and n is the unit normal vector
to s. The superscripts + and − indicate that the vectors are evaluated in the positive
and negative directions of the facet s, respectively. The main difference between this
procedure and the original presented in BAÑAS and NÜRNBERG [75] is that we do not
consider any approximation of the free energy density function besides the Taylor’s series
expansion presented in Eq. (3.13). The first term on Eq. (5.17) refers to the residual of the
nonlinear system second equation while the second term takes into account the average
phase field jump.

The second procedure tested is a simple phase-field flux jump. In this case, the error
indicator is:

η2
e =

3∑
s=1

||h1/2
s [∇φhn+1]s||2L2(s), (5.18)

where [∇φhn+1]s = (∇φhn+1)+ · n+ + (∇φhn+1)− · n−.
In both cases the global error indicator can be expressed as:

ηΩ =
||η2||L2√
nel

=

√∑nel
e=1 η

2
e

nel
. (5.19)

In this study, we aim to achieve the same total error with less degrees of freedom to
increase the simulation efficiency. Thus the total error ηΩ of the adaptive meshes should
not surpass the total error obtained in the fixed mesh simulations ηFixedΩ - evaluated from
the solution on the mesh T fine -, while the maximum norm ||η||∞ is responsible for flag-
ging the elements that should be refined. The maximum norm is defined such that a given
mesh should present local errors within a prescribed value and presents direct influence
on the mesh generated.

The refinement procedure occurs as follows:

1. Solve the Cahn-Hilliard equation for the previous mesh (in case of initial step, the
fine mesh T fine is used)
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2. Local error vector η2 is calculated using equation (5.17) or (5.18) for every element
in the mesh. Global error ηΩ is then evaluated.

3. If ηΩ > ηFixedΩ or the present time step is defined for refinement:

(a) While the target element size is not achieved or the maximum number of re-
finement iterations is reached:

i. Project the solution onto the updated mesh Tz by interpolation (root mesh
if it is the first iteration).

ii. Loop over the cells in the current mesh and compare the local error of
each element ηe with the maximum norm allowed for the error vector
||η||∞.

iii. Mark the cells that surpassed the maximum norm allowed for the mesh
||η||∞.

iv. Refine and update the mesh.

(b) Interpolate the previous solution onto the created mesh.

4. Proceed to the nonlinear system solver and solve the present time step for the gen-
erated mesh.

The global error criterion defines the target element size to be the same used in the
fixed mesh simulations. Nevertheless, in this study, we consider the target element size to
have the exact same element size of the fixed fine mesh, prescribing the iterations needed
to refine the mesh to achieve the same discretization used in the fixed mesh simulations.
Thus the interfaces do not become more discretized than the fixed mesh case and the
global error ηΩ is almost identical in both adaptive and fixed cases. It is important to
mention that the refinement iterations z are not related to the nonlinear solver iterations.
The refinement procedure takes place before solving the system for the time step n + 1.
The mesh refinement procedure follows the bisection method (RIVARA [76]) which is
a built-in function in the FEniCS framework. Figure 5.6 presents the behavior of the
mesh refinement procedure for a given situation. In this section, for validation, the mesh
refinement routine is called in every time step.

The interpolation procedure used to transfer the solution at each iteration of the mesh
refinement routine is a built-in function on FEniCS. The solution φh is a linear combina-
tion of the nodal values and basis functions in the mesh. When transferring the solution
to a different mesh, the function interpolate maps the nodes coordinates xnew and
evaluates the solution φh(xnew) originating the nodal values for the new mesh. When this
process is coupled to the bissection refinement procedure in linear elements, the genera-
tion of a new node in the median of a triangle edge makes the new nodal value to assume
the average of the nodes in the edge.
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Figure 5.6: Iterative mesh refinement with four iterations. The error indicators track the
local error on the previous fine mesh that surpasses the prescribed maximum norm of the
mesh ||η||∞ and the iterative mesh refinement procedure generates a mesh that preserves
the maximum norm with less elements.

5.2.2 Numerical validation

To validate the spatial adaptivity scheme, we consider a constant mobility phase separa-
tion simulation. We considered the same initial conditions presented in Fig. 3.4 used for
the simulation in section 3. The fixed mesh simulation presented in Section 3.6 consists of
a triangular-element mesh with 1292 nodes. To reach this same level of refinement during
the adaptive procedure, a root mesh of 92 nodes is used and refined during four iterations,
resulting in a mesh with equal refinement. In this section, to mark the elements to be
refined, we consider the maximum norm of the error vector to be ||η||∞ = 10−6 in both
cases. As mentioned earlier, mesh discretization plays a major role in the Cahn-Hilliard
modeling, since the interface domain must be well discretized to capture the thermody-
namical transitions smoothly. Improper mesh discretizations interfere negatively on the
interface motion and often generates unphysical results. That said, the space adaptivity
must fulfill the prerequisite of representing the same physical results of the fixed mesh
results. Figure 5.7 reveals the identical free energy decay in both cases, confirming that
both results have the same level of accuracy but a different number of degrees of freedom.
This is also seen on Figure 5.8 which shows the spinodal decomposition at the same time
for both simulations.

Figure 5.9a shows that in the early stages of the adaptive simulation, the root mesh
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Figure 5.7: Free energy decay for both adaptive schemes

(a) Fixed mesh simulation.

(b) Error indicator proposed by BAÑAS and NÜRNBERG [75] (left) and flux jump
(right).

Figure 5.8: Solution of the spinodal decomposition at t = 0.01s. Two top figures are
fixed mesh results. Bottom left figure represents the solution and mesh for the residual
based error indicator and bottom right for the flux jump error indicator, revealing that at
the same instant the physics that are being represented are the same.
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(a) Number of degrees of freedom for each simulation step
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Figure 5.9: Variation of the number of degrees of freedom and the global spatial error ηΩ

for both adaptive simulations with comparison to the fixed mesh simulation. The global
error is preserved with reduced degrees of freedom.
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Table 5.3: Comparison of the performance of both error indicators in relation to the fixed
mesh simulation.

Error Average Nonlinear Normalized
Indicator System Size CPU Time

Fixed Mesh 33282 1.000
Bañas and Nürnberg 28140 0.845

Flux Jump 27008 0.811

refined all of its elements, becoming a 1292 node mesh until the interfaces became well
defined. As soon as the bulk domain started to become larger, the error ηel of the bulk
elements became lesser than the values defined as a refinement criterion. The satisfaction
of this criterion is crucial to avoid the refinement on areas where the calculations are not
important, providing a reduced nonlinear system. Such smaller errors occur thanks to the
order of magnitude of the error at the bulk domains, which is significantly lesser than the
errors found in the interface. As long as the simulation proceeds, the interfacial domain
tends to shrink to a minimum, where the equilibrium takes place (steady-state). The
constant reducing of the interfacial domain during the simulation reveals that the mesh
refinement can significantly optimize the simulation without affecting the error. Figure
5.9b shows that the error is practically the same for both situations since the number of
elements defining the interface is the same for both simulations. Nevertheless, Table 5.3
compares both error indicators, revealing that the flux jump revealed a smaller average
nonlinear system in the simulations, presenting better overall performance on the tested
case. At time t = 0.01s, it is clear that the reduced number of elements in the mesh
produces the same error seen in the fixed mesh for both cases, showing that the fixed
mesh is requiring unnecessary computational effort in the solution. However, if one aims
to reduce the global error estimator ηΩ, a more refined root mesh or increased number of
iterations would increase the number of elements representing the interface.

5.3 Space-time adaptivity

In this section, we combine both spatial and time adaptivity. Our objective is to take
advantage of the spatial adaptivity scheme to reduce the number of degrees of freedom in
our model by coarsening the mesh in the bulk domain while coupling the time adaptivity
scheme to enlarge the time step size when possible. The union of these two schemes
results in an optimal scheme to reduce the computational cost. We consider in the space-
time adaptivity scheme the PC11 time step controller and the flux jump error indicator
since both procedures presented the better results on their separate validations. Now, the
section related to the time loop can be splitted into three parts - the spatial adaptivity
procedure, the nonlinear system solver and the temporal adaptivity procedure - in this
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sequence.
Note though that both adaptivity schemes are coupled, that is, both errors estimates in-

terfere with each other [77]. During our simulations, we observed that calling the remesh-
ing routine affects the temporal error directly since the solution vector obtained after the
mesh adaptation procedure is solved in a different mesh while the other two past solutions
have to be interpolated into the new mesh. Mesh adaptation procedures affect the length
of the solution vectors at every time they are invoked. These solution vectors are used to
estimate the temporal weighted local truncation error. Therefore, the interpolation pro-
cedure on FEniCS is called by a built-in function to bring the past two solution vectors
needed to estimate the temporal error to the same length to the current solution vector.
The FEniCS framework presents two different ways to interpolate the solution, the func-
tions interpolate and project. The interpolate function is the same function
used to interpolate the meshes on the iterative mesh refinement procedure described in
section 5.2, where the new nodal values in the interpolated solution are obtained by the
average of the nearest nodes. The solution is evaluated in the nodal coordinates xnew

and averaged by their distances to the nearest nodes. That is, the new solution field φ̃ is
directly obtained by evaluating the solution φ on the coordinates xnew. The project
function consists on projecting the solution onto a new space of functions generated by
the new mesh and evaluating the L2-norm of both solutions by solving a linear system for
the new nodal values, being often used for postprocessing ends such as turning discontin-
uous gradient fields into continuous ones or comparing higher- and lower-order function
approximations [4]. The system to be solved is as follows: being V the space of functions
in the new mesh, find φ̃ ∈ V such that:∫

Ω

φ̃vdΩ =

∫
Ω

φvdΩ ∀v ∈ V. (5.20)

We tested both functions in our simulations, revealing identical results. In both cases,
the new nodal values are not obtained from directly solving the equation, but evaluated
from a previous solution on a different mesh. Thus, the interpolated solution now presents
computational errors due to the approximation of the solution, being directly influenced
by the prescribed tolerances of both adaptivity schemes. The time step controller evalu-
ates these errors and consequently reduces the time step size, increasing the number of
time steps evaluated. If the mesh refinement routine is set to be done at every time step,
the errors become cumulative on every time step, increasing the temporal error r. Our
investigation at this point is to verify if the use of the spatial adaptivity scheme coupled to
time adaptivity improves the performance of the simulations even if the spatial adaptivity
scheme leads to an increasing number of time steps. We observed that, if the maximum
norm of the mesh ||η||∞ is not strict enough, right after the mesh refinement routine is
called, the time step size is instantly reduced to O(10−9). Figure 5.10 and Table 5.4 com-
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Figure 5.10: Time step behavior on both simulations with temporal adaptivity and space-
time adaptivity schemes with ||η||∞ = 10−4. Note that the time step is reduced everytime
the refinement procedure is invoked. This effect compromise the performance of the
simulations, since much more time steps are required to reach the steady-state.

Table 5.4: Performance of both spatial adaptivity schemes for the case of ||η||∞ = 10−4.

Spatial Adaptivity Time Steps Average Nonlinear Normalized
Scheme System Size CPU Time

Fixed Mesh 4591 33282 1.000
Bañas and Nürnberg 9320 16361 0.998

Flux Jump 8882 16309 0.948

pare the performance of two space-time adaptivity schemes with prescribed values for
||η||∞ for the spatial adaptivity strategy, revealing that in the situation where the ||η||∞ is
less strict, the performance improvement obtained from the temporal adaptivity scheme
is compromised.

5.3.1 Numerical validation

Phase separation - constant mobility

After validating both spatial and temporal adaptivity schemes separately, we use the
space-time adaptivity scheme in the same simulations to compare the accuracy of the
methods. In this section we evaluate two different values for ||η||∞ and we compare the
performance of the simulation for the situations where the mesh is refined at every m

time steps. For larger values of m, the simulations can lead to situations where the inter-
face motion is captured by a coarsened region of the mesh, delaying the physics of the
problem, leading to unphysical results. In some cases, when the mesh is too coarsened,
the Newton solver can have convergence problems. When ||η||∞ = 0, all elements are
refined at every iteration, becoming a fixed mesh simulation. We consider a root mesh of
92 nodes to be iteratively refined 4 times to reach elements with an equivalent size of a
structured 1292 nodes mesh in the interface domain. Figure 5.11 shows the steady-state
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Figure 5.11: Assessment of the pure temporal and the space-time adaptive simulations in
the steady-state. The equilibrium profile seen in Eq. (2.7) is compared with the numerical
solution across a diagonal axis in the domain, revealing that the spatial discretization in
both situations is fine enough to capture the interface.

of the Cahn-Hilliard equation after the space-time adaptivity scheme and the equilibrium
concentration profile. The physics have the same dynamics in all cases, revealing that
any adaptivity scheme used did not hamper the accuracy of the fixed mesh and time step
simulations. This is also confirmed by Figure 5.12, since the reduction of the time step
size is caused by the shrinkage of a given phase and occurs in every simulation in the
same physical time thus revealing that the dynamics are preserved in every case.

Table 5.5 and Figures 5.12 and 5.13 compare the performance of the proposed simu-
lations. When comparing the performance of the space-time adaptivity with the variable
time step solutions with a fixed mesh, we note that the number of time steps calculated for
the space-time scheme is larger than the pure time adaptive simulation, as well as the num-
ber of rejected time steps. This large number of time steps happens because after calling
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Figure 5.12: Time step behavior on the proposed simulations with space-time adaptivity
schemes described on Table 5.5 presenting almost identical behavior.
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Figure 5.13: Global error ηΩ and number of degrees of freedom for each case presented
on Table 5.5. The global error is almost identical for all cases while the adaptive schemes
present less degrees of freedom.
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Table 5.5: Comparison between the performance of the presented simulations.

||η||∞ m Time Steps Rejected Average Nonlinear Normalized
Time Steps System Size CPU Time

0 1 4516 75 33282 1.0000
10−9 1 4981 101 26379 0.8774
10−8 1 5256 101 23346 0.8185
10−9 5 5056 104 24642 0.8322
10−8 5 5242 91 22003 0.7680
10−9 10 5119 96 24014 0.8196
10−8 10 5297 94 21598 0.7620
10−9 25 5081 97 24317 0.8241
10−8 25 5269 99 21793 0.7656

the mesh refinement procedure, the temporal error estimation possibly carries spatial error
due to the mesh coarsening in the bulk domain, implying that the disturbance ζ described
in Fig. 5.1 carries information about the physical, temporal error as well as the computa-
tional error generated by the mesh interpolation. However, this increased number of time
steps evaluated is confronted with a significant reduction of the nonlinear system size in
all cases. Comparing the average nonlinear system size on Table 5.5 with the presented
results on Table 5.4, we note that the simulations presenting larger values of ||η||∞ reveal
smaller nonlinear systems during the simulation, at the cost of an increasing number of
time steps evaluated. Evaluating the results, the best setup within the proposed simula-
tions consist on refining the mesh at every 10 time steps and considering ||η||∞ = 10−8.
We consider these parameters for the simulations presented in the following examples.
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Chapter 6

Numerical Applications

In this section, we extrapolate our methodology for different physical contexts where the
Cahn-Hilliard equation can model. We consider a phase-separation with a degenerate mo-
bility and a nonlocal Cahn-Hilliard equation which models the self-assembly of diblock
copolymers.

6.1 Phase separation - degenerate mobility

Some applications involving the Cahn-Hilliard equation require the use of degenerate mo-
bility, that is, a mobility coefficient which is a function of the concentration. This strategy
increases the nonlinearity of the equation, increasing the computational effort of its so-
lution. By using the degenerate mobility, the phases tend to have even slower dynamics,
since the mobility is now restricted to the interfaces and not to the bulk domain. This
strategy delays the Ostwald ripening phenomena, which can be unacceptable in certain
physical contexts such as binary fluid flow, according to YUE et al. [78] and ABELS et

al. [79].
In the phase separation context, using degenerate mobility also tends to slow the al-

ready slow dynamics of coarsening. That is, the steady-state reached under 1.0 second in
the constant mobility setup now is expected to be reached within 10.0 to 20.0 seconds,
making the use of time adaptivity schemes even more critical.

In this sense, we consider the following mobility parameter:

M(φ) =

M̄0(1− φ2) if −1 < φ < 1,

0 otherwise,
(6.1)

where M̄0 = 1.
This simulation reaches the steady-state around 22.7 seconds of physical time. As

expected, the dynamics of the Cahn-Hilliard equation for the degenerate mobility case is
slower than the constant mobility in the mixture. The larger number of time steps required
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Figure 6.1: Comparison between the number of degrees of freedom in the pure tem-
poral and space–time adaptive scheme. Reaching the steady-state presents much more
computational cost when the mixture is modeled with degenerate mobility. The spatial
adaptivity scheme reduces the size of the nonlinear systems to be solved significantly,
while the temporal adaptive scheme can assume larger time steps thanks to the slower
dynamics presented in this model.

Table 6.1: Comparison between space-time and time adaptivity schemes for the PC11
controller on degenerate mobility simulations. The last column takes into account both
accepted and rejected steps.

Adaptivity Time Rejected Nonlinear Systems Normalized
Scheme steps steps Average Size CPU Time

Time 5265 88 33282 1.0000
Space-Time 5303 84 26093 0.7890

to reach the steady-state in this scenario reinforces the use of adaptive time stepping.
The use of constant ∆t = 2 × 10−6s required to capture the fast dynamics in the phase
separation sub-process would demand the calculation of 1.135 × 107 timesteps, instead
of the usual O(103) number of time steps obtained from the adaptive schemes as seen in
Table 6.1. The Table compares the pure temporal and space-time adaptivity scheme, and
the results are similar to the ones found in the constant mobility case. We can highlight
the slightly smaller average size of the nonlinear system in the degenerate mobility case
that can be explained by the slower dynamics, leading to even slower intermediate and
advanced stages of phase separation. This slower stages usually have smaller interface
domain, then yielding more coarsened meshes with improved efficiency, as seen in Fig.
6.1. Since the degenerate mobility model requires more time of simulated physics, it is
desirable to use both adaptivity schemes to reach larger time step sizes using the pure
temporal adaptivity scheme and to reduce the number of equations to be solved in the
nonlinear system by using the spatial adaptivity scheme.
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6.2 Diblock copolymer

The Cahn-Hilliard equation can be modified to model the self-assembly of copolymers
(KIM et al. [14], CHOKSI et al. [28]). The order parameter φ is now the difference
between the local volume fractions of two-component monomers. In this section, we
consider the Ohta-Kawasaki model, where the Cahn-Hilliard equation is modified to:

∂φ

∂t
= ∇ ·

[
M(φ)∇

(
∂Ψ

∂φ
− ε2∇2φ

)]
− γ(φ− φ̄), (6.2)

where γ is a nonlocal parameter related to the square of the total chain length of the poly-

mer (OHNISHI et al. [80]) and mean(φ) = φ̄ =
1

|Ω|
∫

Ω
φdΩ is the spatial average of φ.

This extra reaction term reflects the first-order effects of the connectivity of the monomer
chains, thus giving the nonlocal character to the equation (OHTA and KAWASAKI [27]).

In this section, we consider periodic boundaries and it is well known that this condition
enables the Cahn-Hilliard mass conservation property. In this sense, the spatial average
of φ is the same for all time steps, being part of the initial condition. Different from
the pure Cahn-Hilliard equation that is derived from the Ginzburg-Landau functional, the
modified Cahn-Hilliard equation presented on Eq. (6.2) is derived from a different free
energy functional:

F [φ] =

∫
Ω

(
Ψ(φ) +

ε2

2
|∇φ|2

)
dΩ+ (6.3)

γ

2

∫ ∫
Ω

G(x,y)(φ(x)− φ̄)(φ(y)− φ̄)dxdy,

where G(x,y) represents Green’s function of −∆ on Ω with periodic boundary condi-
tions.

In the diblock copolymer context, the free energy density function Ψ(φ) in the Eqs.
(6.2) and (6.3) often are treated as the Flory-Huggins free energy density function, ac-
cording to GHIASS et al. [81], which is:

Ψ(φ) =
kBT

v

[
φ

l
lnφ+ (1− φ)ln(1− φ) + χφ(1− φ)

]
, (6.4)

where v is the volume fraction of the element and l is the Kuhn statistical length, kB is the
Boltzmann constant, T is the absolute temperature and χ is the Flory-Huggins interaction
parameter which measures the incompatibility of two monomers.

However, also according to GHIASS et al. [81], the parameters l and χ are often
calibrated from experimental results and vary for different components. In this sense, it is
possible to see the nonlocal Cahn-Hilliard equation from a different approach, where all
these parameters can be expressed as a function of φ̄, γ and ε (CHOKSI et al. [28]). This
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Figure 6.2: Nonlocal Cahn-Hilliard solution in the steady-state using the space-time adap-
tivity scheme. This example represents a 1292 nodes mesh with λ = 0.01, γ = 103 and
φ̄ = 0.0.

Cahn-Hilliard setup can be seen as a mathematical paradigm for the modeling of periodic
or quasi-periodic pattern formation induced by short-range and long-range interactions
(SEUL and ANDELMAN [82]). This approach also allows the use of the conventional
polynomial function of Ψ(φ) described by Eq. (2.3). Depending on the values of these
three parameters, the minimization of the functional seen on Eq. (6.3) leads to different
patterns between phases. We use the space-time adaptivity scheme presented in this study
to reach the steady-state for each pattern more efficiently. Unlike all the other results
presented in this study, we consider different initial conditions for each simulation in this
section, since the parameter φ̄ is related to the mass conservation of the Cahn-Hilliard
equation during all time steps and is one of the key parameters for the formation of differ-
ent patterns. Also, we consider periodic boundary conditions in this section, to estimulate
the development of the desired patterns. In this section, since the interfacial domain is
much larger in the steady state than the previous examples, it is expected that the spatial
adaptivity scheme presents smaller influence than in the previous cases. In this section,
we evaluate different meshes and different values for ε2 = λ to evaluate the relevance of
these parameters into the spatial adaptivity scheme for the diblock copolymer scenario.

Initially we consider the same 1292 nodes mesh used in the previous sections and
λ = 0.01. Since we are considering periodic boundary conditions in this section, the
mesh presents now a total of 32772 number of degrees of freedom. After numerical
experiments, we observed that the spatial adaptivity scheme can be irrelevant for certain
cases in the diblock copolymer context, not depending on ||η||∞. For example, it can
be seen in Fig. 6.2, a case with γ = 105 and φ̄ = 0.3, that the interface domain in the
steady-state of the nonlocal Cahn-Hilliard simulations is significantly larger than the other
cases presented. This larger interface depends mostly on the nonlocal parameter γ and,
in these situations, the spatial adaptivity does not add to the efficiency of the simulations.
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Figure 6.3: Nonlocal Cahn-Hilliard solution in the steady-state using the space-time adap-
tivity scheme. This example represents a 1292 nodes mesh with λ = 0.01, γ = 105 and
φ̄ = 0.3.

However, if we consider situations where the nonlocal parameter has less significance
in the model, we observe that the interfacial domain tends to diminish. We evaluate a
situation within this context where γ = 103 and φ̄ = 0.0, described in Fig. 6.3. In
situations where the nonlocal parameter γ is significantly large, the entire domain tends
to present interfacial values for the order parameter, implying on the non-existence of
the bulk domain, meaning that all elements become flagged for refinement during the
simulation. On situations where γ presents smaller orders of magnitude, the long-range
interactions become weaker, and the spatial adaptivity scheme is now relevant for the
simulations, even though the interfacial domain is still more representative than in the
spinodal decomposition simulations. In all cases, we consider ||η||∞ = 10−6, which
is slightly larger than the prescribed value on the previous cases. However, the results
presented on Table 6.3 reveals that the efficiency of the scheme is compromised for these
parameters. The CPU time of the adaptive simulations indicates that the best scenario
for the diblock copolymer simulation is when the mesh is not adaptive. When the spatial
adaptivity scheme influences on the coupled scheme, the increasing number of time steps
is not satisfactory.

To circumvent this situation, we consider an even finer discretization with smaller in-
terface width to assess the performance of the spatial adaptivity scheme. We consider a
2572 nodes mesh, with 131076 degrees of freedom and λ = 0.005. The interfacial thick-
ness is thought to be related to the interfacial domain of the steady state in this situations.
Thus we define these parameters to reduce the interfacial thickness, therefore increasing
the bulk domain and allowing the use of different values for ||η||∞. We consider the same
two set of parameters described on Figs. 6.2 and 6.3. Since we altered the value for λ, we
expected the pattern formation to change according to CHOKSI et al. [28]. The simula-
tion presenting γ = 105 and φ̄ = 0.3 presents the same pattern formation observed in the
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Table 6.2: Performance of the space-time adaptivity scheme for each simulation of the
nonlocal Cahn-Hilliard equation for a 1292 nodes mesh and λ = 0.01. It can be observed
that when the nonlocal parameter is strong enough, the interfacial domain is significant
enough to not reduce the nonlinear system size. However, when the nonlocal parameter
is weaker, the spatial adaptivity scheme can reduce the CPU time significantly, depending
on the parameters and initial conditions.

Mesh φ̄ γ Average Nonlinear Time Normalized
System Size Steps CPU Time

Fixed 0.0 105 32772 1061 1.0000
Adaptive 0.0 105 32772 1061 1.0000

Fixed 0.3 105 32772 689 1.0000
Adaptive 0.3 105 32772 689 1.0000

Fixed 0.0 103 32772 1453 1.0000
Adaptive 0.0 103 21188 2985 1.3282

Fixed 0.3 103 32772 2744 1.000
Adaptive 0.3 103 24789 6655 1.8147

Table 6.3: Performance of the space-time adaptivity scheme for each simulation of the
nonlocal Cahn-Hilliard equation for a 2572 nodes mesh with parameters γ = 103, φ̄ = 0.0
and λ = 0.005. We consider a mesh refinement procedure at every 10 time steps.

||η||∞ Average Nonlinear Time Normalized
System Size Steps CPU Time

0.0 131076 3186 1.0000
10−6 68146 10547 1.7211
10−7 86872 7308 1.5202
10−8 129992 3753 1.1682

previous mesh and interface settings, described in Fig. 6.4. However, the situations where
γ = 103 and φ = 0.0 presented a different steady state from the previous section. In this
sense, we evaluate the computational gain in this case, since the other set of parameters
does not reveal any performance change for the spatial adaptivity scheme.

We note that the CPU time decreases with a finer mesh and smaller interface thickness
even if the results are still not achieving proper CPU time for this case. However, we can
observe that with even finer mesh discretization the coupled temporal-spatial adaptivity
scheme can be able to improve the simulation of this type of physical phenomenon.
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Figure 6.4: Nonlocal Cahn-Hilliard solution in the steady-state using the space-time adap-
tivity scheme. This example represents a 1292 nodes mesh with λ = 0.01, γ = 105 and
φ̄ = 0.3.
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Chapter 7

Conclusions and future works

7.1 Conclusions

In this study, we propose an adaptive scheme for the Cahn-Hilliard equation and eval-
uate its performance on different physical contexts. Initially we evaluate each scheme
separately. For the spatial adaptivity scheme, we consider two error indicators coupled
with the bissection method for refinement. After some numerical simulations, the flux
jump presented better results and was carried to the space-time adaptivity scheme. For
the temporal adaptivity scheme, we considered the linear feedback control theory to de-
sign a proper time step size to keep the estimated temporal error within the prescribed
tolerances. We evaluated three controllers, where the PC11 presents better results, and an
error estimation procedure which does not require the necessity of the calculation of the
same step twice or three times. For the space-time scheme, we observe that when cou-
pling both adaptivity schemes, the interplay between the prescribed tolerances for each
case interfere directly on the performance of the simulations. For larger values of the
allowed maximum norm ||η||∞, the mesh becomes more coarsened, but the spatial error
is captured by the temporal estimator. If the maximum norm is tighter, the mesh becomes
less coarsened, not improving on the reduction of the nonlinear system. The evaluation
of this interplay is fundamental to validate the coupled adaptivity scheme. We concluded
that for this coupling, the refinement being called at every 10 time steps and the maximum
prescribed norm of ||η||∞ = 10−8 is the optimum setup.

When analyzing each adaptivity scheme individually, we conclude that the temporal
adaptivity scheme is much more efficient than the spatial adaptivity scheme in comparison
to both fixed mesh and fixed time step simulations. When comparing spinodal decom-
position simulations from the unstable mixture until the complete phase separation, the
temporal adaptivity scheme, when submitted to proper prescribed tolerances, can present
a ratio of solved time steps of 1/1000, that is, one adaptive time step is solved at every
1000 fixed time steps.
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We extended this setup to examples such as spinodal decomposition with constant
and nonlinear mobilities and diblock copolymer self-assembly using the nonlocal Cahn-
Hilliard equation. For the spinodal decomposition example, we reach good performance
with our set of parameters while for the nonlocal Cahn-Hilliard equation, due to the signif-
icant presence of interfacial domain, the scheme becomes better as the interfaces become
thinner.

7.2 Future works

Our suggestion for future related works:

• Extension for 3D simulations, which presents more complex phenomena and
reaches different steady-state patterns for the nonlocal Cahn-Hilliard equation;

• Nonlocal Cahn-Hilliard simulations with smaller values of λ and finer meshes to
increase the bulk domain and eventually reach a CPU time lesser than 1.00;

• Implementation of different NSCH models (described on Table 4.1);

• Proper tuning of the parameters κP , κI and κD to reach optimum performance;

• Spatial adaptivity scheme using anisotropic refinement to optimize the mesh size
reduction.
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[52] HOSSEINI, B. S., TUREK, S., MÖLLER, M., et al. “Isogeometric Analysis of
the Navier–Stokes–Cahn–Hilliard equations with application to incompress-
ible two-phase flows”, Journal of Computational Physics, v. 348, pp. 171–194,
2017.

[53] LOWENGRUB, J., TRUSKINOVSKY, L. “Quasi-incompressible Cahn-Hilliard
fluids and topological transitions”, Proceedings of the Royal Society A: Math-

ematical, Physical and Engineering Sciences, v. 454, n. 1978, pp. 2617–2654,
1998.

[54] DING, H., SPELT, P., C., S. “Diffuse interface model for incompressible two-phase
flows with large density ratios”, Journal of Computational Physics, v. 226,
n. 2, pp. 2078–2095, 2017.

[55] BOYER, F. “A theoretical and numerical model for the study of incompressible
mixture flows”, Computers and Fluids, v. 31, n. 1, pp. 41–68, 2002.

[56] SHEN, J., YANG, X. “A Phase-Field Model and Its Numerical Approximation for
Two-Phase Incompressible Flows with Different Densities and Viscosities”,
SIAM Journal on Scientific Computing, v. 32, n. 3, pp. 1159–1179, 2010.
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Appendix A

CDR Stabilization

Consider the general convection-diffusion-reaction equation given on eq. A.1. Since time
integration is dealt independently from spatial integration, its steady state (eq. A.2) is
considered.

∂φ

∂t
+ u · ∇φ−∇ · (k∇φ) + sφ = f, (A.1)

u · ∇φ−∇ · (k∇φ) + sφ = f, (A.2)

where u is the convection velocity, k is the diffusivity tensor, s is the reaction term and φ
the quantity transported. The convection-diffusion-reaction problems can be parametrized
by non-dimensional numbers. The Peclet number (Pe) represents the significance of
convection relative to diffusion. For large Pe, convection dominates, while for small Pe
diffusion dominates. The convection-dominant case gives rise to interior and boundary
layers in φ, which causes difficulties in the numerical approximation of the convection-
diffusion-reaction equation. Diffusion-dominant cases reveal good approximation within
the Galerkin framework (DONEA and HUERTA [7]). Figure A.1 shows different Pe
solutions for the CDR equation: a one dimension domain is assumed, advective velocity
is constant and points from left to right, and φ is set to unity on the left side of the interval
and zero on the right side. For Pe = 0 the analytic solution is a straight line connecting
the prescribed boundary values. As the Pe number increases, the solution forms a thin
boundary layer on the right side of the domain. Solutions containing large gradients
present a source of difficulty for numerical approximation of the convection–diffusion-
reaction equation.
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Figure A.1: Illustration of the solution behavior for the Convection–diffusion equation at
Pe number ranging from zero to nearly infinity. From BAZILEVS [6].

Another important non-dimensional number is the Damköhler number (Da), which
represents the significance of reaction relative to convection. The Damköhler number is
widely used in chemical engineering to relate the chemical reaction timescale (reaction
rate) to the transport phenomena rate occurring in a system. For large Da reaction domi-
nates, while for small Da convection dominates. The case Da = ∞ corresponds to pure
reaction, meaning that the whole substance was converted during transport.

In order to numerically solve the convection-diffusion-reaction equation using the fi-
nite element method, we need to introduce the variational form and spatial discretiza-
tion. The discretization of the spatial domain Ω into nel number of elements is such that
Ω = ∪nele=1Ωe and ∅ = ∩nele=1Ωe. Considering Sh the space of the test functions and V h the
space of the weight functions, the weak (variational) formulation of the CDR equation
becomes: find φh(x) ∈ Sh such that ∀wh ∈ V h:∫

Ω

(
wh(u · ∇φh) +wh∇ · (k∇φh) +whsφh)

)
dΩ =

∫
Ω

whfdΩ ∀wh ∈ V h. (A.3)

Using the divergence theorem and the fact that wh = 0 on ΓD, eq. (A.4) becomes:∫
Ω

(
wh(u · ∇φh) +∇wh · (k∇φh) + whsφh)

)
dΩ =

=

∫
Ω

whfdΩ +

∫
ΓN

whgdΓ ∀wh ∈ V h. (A.4)

As said on chapter ??, the Galerkin method essentially means that the function spaces
V h and Sh are the same (for trial functions and weight functions). However, when dealing
with some situations (a convection dominated convection-diffusion equation, for exam-
ple), the standard Galerkin method becomes unstable and prone to spurious global oscil-
lations. The Petrov-Galerkin approach solves this problem by changing the space of the
weight functions (that means the wh /∈ V h). For example, considering one dimentional
linear elements, the Streamline-Upwind Petrov-Galerkin (SUPG) method weight function
now becomes:

w̃h = wh + αp, (A.5)
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where p is such that
∫
L
pdx = ±h

2
, being h the element size. This means that the

Petrov-Galerkin weight function is now the Galerkin weight function added to its
derivative (multiplied by a scalar α, proportional to u). Figure A.2 shows an example of
a 1D linear SUPG weight function.

Figure A.2: Weighting function of the Streamline-Upwind Petrov-Galerkin (SUPG)
method for linear elements. From DONEA and HUERTA [7].

However, since the weight functions are now discontinuous, the divergence theorem
can be problematic. To avoid that, it can be considered that the Petrov-Galerkin weighting
is continuous only in the interior of the finite elements. In that case, the SUPG formulation
becomes: ∫

Ω

(
wh(u · ∇φh) +∇wh · (k∇φh) + whsφh)

)
dΩ+

+
nel∑
e=1

∫
Ω

u · ∇whτ(u · ∇φh −∇ · (k∇φh) + sφh − f)dΩ =

=

∫
Ω

whfdΩ +

∫
ΓN

whgdΓ, ∀wh ∈ V h. (A.6)

There are many forms of stabilization, being the SUPG one of them. Generally speak-
ing, the Petrov-Galerkin formulation for the CDR equation is:∫

Ω

(
wh(u · ∇φh) +∇wh · (k∇φh) + whsφh)

)
dΩ+

+
nel∑
e=1

∫
Ω

LStw
hτ(LCDRφ

h − f)dΩ =

=

∫
Ω

whfdΩ +

∫
ΓN

whgdΓ, ∀wh ∈ V h, (A.7)

where LSt is the linear stabilization differential operator and LCDR is the convection-
diffusion-reaction differential operator. There are several stabilization operators, each
one with its flaws and advantages. Stabilization operators used in this work are listed on
table A.1.
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Figure A.3: Example with Pe = 1, s = 0, f = 1 and φ(0) = φ(1) = 0
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Figure A.4: Example with Pe = 10, Da = 0.1, f = 0 and φ(0) = 1 and φ(1) = 0

Table A.1: Differential operators on the weighting function for linear stabilization meth-
ods.

Method Stabilization operator (LSt) Works

SUPG u · ∇ BROOKS and HUGHES [61]
GLS u · ∇ −∇ · (k∇) + s HUGHES et al. [62]
SGS u · ∇+∇ · (k∇)− s HUGHES [63]
PPV u · ∇ −∇ · (k∇) + |s| JOSHI and JAIMAN [60]

In one dimension, it can be assumed that u = u and k = k. Some results are presented.
A 10 linear element grid is used to show the versatility of the stabilization techniques. Fig-
ures A.3, A.4 and A.4 show how the Galerkin method presents unstable behaviour when
the Peclét number becomes larger. When the Dahmköhler number is not significant, all
the stabilization methods behave in a similar way. This is also confirmed after analyz-
ing the methods in Table A.1. Since our simulations consist on linear finite elements,
the stabilization terms related to diffusion are null. Thus, when the parameter s is not
significant, all methods behave similarly to the SUPG method. This is the case for the
examples described on Figs. A.3 and A.4. However, in situations where the reaction term
is significant, the behaviour of the stabilization methods becomes different. Figure A.5
presents the results of a situation of this kind.
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Figure A.5: Example with Pe = 10, Da = 1, f = 0 and φ(0) = 8 and φ(1) = 3
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