
SOUND PRESSURE LEVEL PREDICTION FROM VIDEO FRAMES USING

DEEP CONVOLUTIONAL NEURAL NETWORKS

Leonardo Oliveira Mazza

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: José Gabriel Rodriguez Carneiro

Gomes

Rio de Janeiro

Junho de 2019

Mazza, Leonardo Oliveira

Sound pressure level prediction from video frames using

deep convolutional neural networks/Leonardo Oliveira

Mazza. – Rio de Janeiro: UFRJ/COPPE, 2019.

XIV, 58 p.: il.; 29, 7cm.

Orientador: José Gabriel Rodriguez Carneiro Gomes

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 48 – 50.

1. Convolutional neural networks. 2. Traffic noise

intensity. 3. Non-linear regression. 4. Non-

linear prediction. I. Gomes, José Gabriel Rodriguez

Carneiro. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Às minhas priminhas,

Rafa e Duda

iv

Agradecimentos

Agradeço à minha famı́lia por possiblitar que eu pudesse seguir nessa empreitada

acadêmica.

Agradeço à Tatiane Tuha pelo carinho e pelo apoio.

Agradeço ao meu orientador José Gabriel por confiar em mim ao me incluir

em diversos projetos interessantes e divertidos. Agradeço também pelas várias dis-

cussões que tanto me agregaram.

Agradeço a todos os colegas do PADS pelo excelente ambiente de trabalho. Em

especial, agradeço ao Olavo, Cayres, Estêvão, Bandeira, Ítalo, Fernanda, Gustavo e

Renan.

Agradeço ao Pedro Savarese pela base em redes neurias e pelas consultas ao longo

do trabalho.

Agradeço à CAPES pelo apoio financeiro.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

PREDIÇÃO DO NÍVEL DE PRESSÃO SONORA A PARTIR DE FRAMES DE

VÍDEO COM REDES NEURAIS CONVOLUCIONAIS PROFUNDAS

Leonardo Oliveira Mazza

Junho/2019

Orientador: José Gabriel Rodriguez Carneiro Gomes

Programa: Engenharia Elétrica

Alguns sistemas de CCTV não possuem microfones. Como resultado, a in-

formação de pressão sonora não está dispońıvel nesses sistemas. Um método para

gerar estimativas da pressão sonora usando apenas quadros de v́ıdeos é apresen-

tado. Para tal, 64 combinações de modelos baseados em redes convolucionais foram

treinadas a partir de uma base de dados gerada automaticamente por dados de uma

câmera com um microfone mono apontada para um cruzamento com tráfego intenso

de carros, caminhões e motos. Para treinar as redes neurais, imagens coloridas são

usadas como entradas da rede e valores reais de pressão sonora são usados como alvos

da rede. Correlação 0.607 em resultados iniciais sugere que usar valores de pressão

sonora média como alvos são suficientes para que redes neurais convolucionais de-

tectem as fontes geradoras do áudio numa cena de tráfego. Essa hipótese é testada

ao se avaliar os mapas de ativação de classe (CAM) de um modelo com o formato

global average pooling+camada fully connected. Por fim, os CAMs ressaltaram forte-

mente objetos associados a altos valores de pressão sonora como ônibus e realçaram

fracamente objetos associados a menores ńıveis de pressão sonora como carros. Foi

feita validação cruzada no modelo com menor MSE com 6 folds e melhor modelo

foi avaliado no conjunto de teste. Esse modelo obteve correlação próxima de 0.6

em três dos v́ıdeos de teste e correlação 0.272 e 0.207 em outros dois v́ıdeos de

teste. A baixa correlação foi associada ao barulho constante do apito de um guarda

de trânsito presente somente nesses dois últimos v́ıdeos: caracteŕıstica ausente no

conjunto de treino. A correlação nos dados de teste calculada conjuntamente foi

de 0.647. Uma correlação de 0.844 ao usar Leq com intervalo de tempo maior (1

minuto) usando todos os videos de teste indica que a estimação de pressão sonora

de mais longo prazo é menos senśıvel a rúıdo no dataset.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

SOUND PRESSURE LEVEL PREDICTION FROM VIDEO FRAMES USING

DEEP CONVOLUTIONAL NEURAL NETWORKS

Leonardo Oliveira Mazza

June/2019

Advisor: José Gabriel Rodriguez Carneiro Gomes

Department: Electrical Engineering

Some CCTV systems do not have microphones. As a result, sound pressure

information is not available in such systems. A method to generate traffic sound

pressure estimates using solely video frames as input data is presented. To that

end, we trained several combinations of models based on pretrained convolutional

networks using a dataset that was automatically generated by a single camera with a

mono microphone pointing at a busy traffic crossroad with cars, trucks, and motor-

bikes. For neural network training from that dataset, color images are used as neural

network inputs, and true sound pressure level values are used as neural network tar-

gets. A correlation of 0.607 in preliminary results suggest that sound pressure level

targets are sufficient for convolutional neural networks to detect sound generating

sources within a traffic scene. This hypothesis is tested by evaluating the class ac-

tivation maps (CAM) of a model with the required global average pooling+fully

connected layer structure. We find that the CAM strongly highlights sources that

produce large sound pressure values such as buses and faintly highlights objects as-

sociated with lower sound pressure such as cars. The neural network with the lowest

MSE was cross-validated with 6 folds and the best model was evaluated in the test

set. The best model attained a correlation of approximately 0.6 in three of the test

videos and correlations of 0.272 and 0.207 in two of the test videos. The low cor-

relation in the two last videos was associated with a traffic warden that constantly

whistles: a characteristic not present in the training set. The overall correlation

using the whole test set was 0.647. A correlation of 0.844 with a longer term (1

minute) sound pressure level (Leq) estimate using all test videos indicate that esti-

mation of longer term sound pressure levels is less sensitive to sporadic noise in the

dataset.

vii

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Objectives . 2

1.2 Text Structure . 2

2 Theory 4

2.1 Training Neural Networks . 4

2.1.1 Cost Function . 5

2.1.2 Optimization . 6

2.2 Global Average Pooling . 8

2.3 Class Activation Map . 10

2.4 Transfer Learning . 11

2.5 Base Models . 13

2.5.1 VGG16 . 13

2.5.2 ResNet50 . 14

3 Method 19

3.1 Dataset Generation . 20

3.2 Conversion from Sound Pressure to Longer Leq 24

3.3 Models . 26

3.4 Training . 27

3.4.1 Sound Source Detection . 28

3.4.2 Model Validation . 29

4 Results and Discussion 31

4.1 Model with the Lowest MSE . 35

4.2 Model GAP+FC with Lowest MSE 36

4.2.1 Sound Source Detection . 38

4.3 Model Validation . 40

viii

5 Conclusion 45

5.1 Future Work . 46

Bibliography 48

A Loss curves for the models in cross-validation 51

B Predictions of the models in cross-validation 55

ix

List of Figures

2.1 A new network is created with the convolutional part of a pretrained

network by removing the original FC layer and substituting it for

another randomly initialized FC layer. The convolutional part of a

pretrained network is used in this example as a feature extractor.

Other structures are also possible: not only a new FC layer could be

added after the convolutional layer, but also different combinations

of GAP+FC, FC+FC or GAP+FC+FC, where FC+FC means two

FC layers in tandem. 12

2.2 Structure of VGG16: full classification network with the FC layers.

The indicated convolutional part is commonly used as feature extrac-

tor. Each convolutional layer is indicated by convA, B × C. A is

the number of filters, B the height of each filter and C the width of

each filter. The parentheses after max pooling indicate the size of the

pooling window. FC are fully connected layers with 4096, 4096 and

1000 neurons respectively. 14

2.3 The building block in residual learning. The dashed block represents

the function F(x). Weights may represent either FC layers or con-

volutional layers. The arrow from x to the summation sign is an

identity shortcut connection. 15

x

2.4 An identity block. Based on the residual learning building block

(Figure 2.3), it applies three convolutions with number of filters equal

to F1, F2 and F3 respectively (from top to bottom). The first and last

convolutions apply convolution kernels of size 1 × 1 and the second

one applies a convolution kernel of size 3 × 3. The rightmost arrow

pointing at the summation symbol represents an identity shortcut

connection: the input is directly added to the output of the last batch

normalization. In identity blocks, all convolutional layers perform

operations with stride (1,1), i.e. the resolution of input feature maps

is the same of the output feature maps. Since the input is directly

added to the output, the number of filters F3 in the third convolution

(that defines the number of feature maps at the output) is constrained

to be the same as the number of feature maps of the identity block

input. 17

2.5 A convolutional block. One difference between convolutional blocks

and identity blocks is the presence of convolutional layers in the short-

cut connection. This allows the number of feature maps at the output

of the block to be different from the block input because the number

of feature maps can be adjusted by this layer. Another difference is

the possibility of reduction in the resolution of feature maps. The

first convolutional layer may apply strided convolutions that reduce

feature map size. The same strides have to be applied to the con-

volutional layer at the shortcut connection. This is done so that the

shortcut connection output dimensions match the output dimensions

of last convolutional layer in the block. For the same reason, the

number of filters of the convolutional layer in the shortcut connection

has to match the number of filters in the third convolutional layer. . . 18

3.1 Representation of the recording scheme. The camera is positioned

50 meters from the recorded area positioned in a building 40 meters

away from the crossroad at 30 meters high. 21

3.2 Schematic representing the dataset generation. First row represents

incoming frames one at a time with time evolving to the right. The

second row represents the audio stream timeline. Around t of each

frame Ft, Equation 3.1 is applied to all audio samples from t− tb and

t+tf and that generates the values St in the third row. To each frame

Ft one value St is associated. 23

xi

3.3 Samples from the ten videos. Every set of four rows in each column

are samples from a distinct video. The number in the upper left

corner is the video name as described in section 3.1. 25

3.4 Models tested for prediction of sound pressure level values. The con-

volutional block represents either the convolutional part of VGG16 or

ResNet50. In the case of VGG16, the output of the last convolutional

layer lies in IR7×7×512. In the first model (a), the FC layer with a sin-

gle neuron contains 7×7×512+1 = 25089 parameters. In the second

model (b), the first FC layer contains 7×7×512×128+128 = 3211392

parameters and the second FC layer contains 128 + 1 = 129 param-

eters. In the third model (c), the FC layer contains 512 + 1 = 513

parameters. In the fourth model (d), the first FC layer contains

512×128+128 = 65664 parameters and the second FC layer contains

128+1 = 129 parameters. In the case of ResNet50, the number of fea-

ture maps in the last convolutional layer quadruples, so that the last

convolutional layer output size is 7× 7× 2048. In the first model (a),

the FC layer with a single neuron contains 7× 7× 2048 + 1 = 100353

parameters. In the second model (b), the first FC layer contains

7× 7× 2048× 128 + 128 = 12845184 parameters and the second FC

layer contains 128 + 1 = 129 parameters. In the third model (c), the

FC layer contains 2048 + 1 = 2049 parameters. In the fourth model

(d), the first FC layer contains 2048×128+128 = 262272 parameters

and the second FC layer contains 128 + 1 = 129 parameters. 26

4.1 Training and validation log loss curves for model 35. The log used is

base 10. 35

4.2 Predictions of sound pressure level St for model 35 in training and

validation data. Sound pressure levels St can be converted to sound

pressure levels in dB through Equation 3.2. 36

4.3 Detail of the predictions in the validation data of model 35. 37

4.4 Training and validation log loss curves for model 27. The log used is

base 10. 37

4.5 Predictions of sound pressure level St for model 27 in training and

validation data. 38

4.6 Detail of the predictions in the validation data of model 27. 39

4.7 A particularly good result: when a noisy bus drives trough the cross-

road. 39

4.8 A typical example: a car drives through the crossroad with unwanted

noisy spots around the image. 40

xii

4.9 Predictions for model from fold 1 in the test set. True St are in black

and predictions are in red. The dotted lines separate sections from

each video. Videos are in order 4, 7, 8, 12 and 14. 42

4.10 The dotted lines separate sections from each video. Videos are in

order 4, 7, 8, 12 and 14. 43

4.11 Relationship between the predicted Leq and true Leq (computed with

t2 − t1 = 1 minute) . 44

A.1 Training and validation log loss curves in the fold 1. 51

A.2 Training and validation log loss curves in the fold 2. 52

A.3 Training and validation log loss curves in the fold 3. 52

A.4 Training and validation log loss curves in the fold 4. 53

A.5 Training and validation log loss curves in the fold 5. 53

A.6 Training and validation log loss curves in the fold 6. 54

B.1 Predictions of sound pressure level St in fold 1. The validation part

of this fold contains frames from videos 3 and 6. 55

B.2 Predictions of sound pressure level St in fold 2. The validation part

of this fold contains frames from videos 2 and 6. 56

B.3 Predictions of sound pressure level St in fold 3. The validation part

of this fold contains frames from videos 1 and 6. 56

B.4 Predictions of sound pressure level St in fold 4. The validation part

of this fold contains frames from videos 3 and 5. 57

B.5 Predictions of sound pressure level St in fold 5. The validation part

of this fold contains frames from videos 2 and 5. 57

B.6 Predictions of sound pressure level St in fold 6. The validation part

of this fold contains frames from videos 1 and 5. 58

xiii

List of Tables

2.1 ResNet50 major block structure. This sequence of blocks is applied

between the 3 × 3 max pooling layer and the GAP layer. The first

conv basic block is the only conv block with stride 1× 1. 16

3.1 Four learning rate schedules by epoch. Each column is one schedule. . 28

3.2 Table of the dataset folds. Di is a daytime video with index i. Ni is

a night-time video with index i. Each row is one fold. 30

4.1 Each row corresponds to one training setup. Column Network has the

name of the base convolutional network. Column Opt has the name

of the optimizer. Column GAP defines the presence or absence of

GAP after the last convolutional layer. Column FC is the number of

neurons in the hidden layer. The value “None” in this column specifies

the absence of a hidden layer. lr list is the schedule of learning rates

with reductions in epochs 30 and 50. t loss and v loss are respectively

the training loss and validation loss. 32

4.1 Training and validation loss for each configuration of the trained models. 33

4.1 Training and validation loss for each configuration of the trained models. 34

4.2 Correlations and MSE for the validation in each fold. D1, D2, D3 are

the daytime videos 1, 2 and 3 respectively. N1 and N2 are night-time

videos 5 and 6 respectively. 41

4.3 Correlations and MSE for the model from fold 1 in the test set. Over-

all correlation using the whole test set was 0.647. 42

4.4 Correlations for model from fold 1 in the test set with Leq with time

interval equal to one minute converted. Correlation using the whole

test set was 0.844. 42

xiv

Chapter 1

Introduction

Noise pollution is known to have negative non-auditory effects [1]. Annoyance,

health issues and learning disabilities are associated with constant exposure to high

noise intensity [1]. A study [2] conducted in Berlin with 1881 patients and 2234

controls showed 1.3 times the odds of myocardial infarction in men subject to 70

dB(A) (A-weighted dB) compared to men exposed to 60 dB(A) or less. The study

also demonstrated that men that lived in the area with sound pressure level of 70

dB(A) or higher for over 10 years presented 1.8 times the probability of myocar-

dial infarction. A review [3] of several studies concluded that environmental noise

had significant effects on academic performance of kindergartners and children at

early school years. Since noise has an impact over daily life, health and intellectual

development, monitoring noise intensity is a sensible action for urban environment

improvement.

Aircraft, traffic and industry are usual noise sources. Traffic in particular is ubiq-

uitous and its monitoring is already in place in the form of closed-circuit television.

However some legislatures, for example California law [4], prohibits audio recordings

without two party consent. As a result, several closed-circuit television cameras ei-

ther do not contain a microphone or have it disabled. To be able to monitor noise

when microphones are not always available, we present a method to estimate sound

pressure levelssudo from video data (more specifically, still images without audio)

only.

This dataset contains still images (i.e. frames) and their respective average sound

pressure levels. Frames are fed to a model whose parameters are optimized to min-

imize error between the model outputs and true noise levels. Since convolutional

neural networks (CNNs) are currently the edge-performance models in image classi-

fication, segmentation, localization and other computer vision problems [5–9], they

were selected for this task. Particularly we use the convolutional part of a pretrained

model as a feature extractor, and train a fully connected (FC) network on its top.

After training, the model should approximate average sound pressure values from

1

previously unseen frame inputs. We also train a second network to predict aver-

age sound pressure, and then use a visualization technique to evaluate whether the

network detects noise-generating sources.

Related works predict traffic sound pressure levels with neural networks [10, 11].

Generally, Equivalent continuous (A-weighted) sound level (Leq) and 10 Percentile

exceeded sound levels (L10) are the characteristics calculated to qualify environmen-

tal noise. Leq is the steady sound level with the same energy as the measured source

with a time-varying sound level. Leq is calculated in a time interval t1 to t2 by:

Leq = 10 log10

(
1

(t2 − t1)

∫ t2

t1

p2(t)

p2ref
dt

)
, (1.1)

where pref is the reference acoustic pressure of 20× 10−5 N
m2 and p(t) is the acoustic

pressure at time t. Leq is usually calculated within relatively long periods of time

(from 15 minutes to 12 hours). The N Percentile exceeded sound level (LN) is the

sound level that is exceeded N percent of the time. For example, L10 is the 10

Percentile exceeded sound level and that represents sound levels that are exceeded

only 10 percent of the time. Thus, L10 characterizes loud noises (in comparison

to the overall sound levels). One study [10] uses neural networks to predict Leq

and L10 with three inputs: the traffic volume, the average vehicle speeds and the

percentage of heavy vehicles (within a time interval). In [10], Leq is computed over

the period of 15 minutes. Another study [11] computes Leq over one hour and has

four neural network inputs: the traffic volume, the percentage of heavy vehicles, the

vehicle average speeds and the width of the roadway. A significant difference of the

work in this thesis if compared to [10, 11] is that they compute sound pressure levels

within long periods of time, whereas, here, sound pressure levels are computed for

relatively short periods of time (600 ms).

1.1 Objectives

This thesis has the objective of predicting the sound pressure level within a traffic

scene by solely using video frames as input to a convolutional neural network. It

also tests the hypothesis that the model has to associate image objects to sound

pressure level to successfully track its trending values.

1.2 Text Structure

Chapter 2 explains concepts used throughout the thesis. It starts with the procedure

of training neural networks by establishing a minimization/optimization problem

2

whose solution defines training. This chapter also explains global average pooling

and its requirement for the class activation map visualization. In a sequence, the

models VGG16 and ResNet50, used as base for the networks built in this work,

are presented together with the transfer learning technique, which is required for

adapting pretrained networks to new problems.

Chapter 3 shows how the dataset is developed as to permit the training of the

convolutional neural network. Then, the set of models and the optimization settings

for training are presented. After that, a method to filter the class activation map

for visualization is shown. Finally, a dataset splitting scheme for cross-validation is

displayed.

Chapter 4 illustrates the results for the predictions of sound pressure level values

and the network focus for those predictions with class activation maps. This chapter

also presents the numerical evaluation of the models in an initial validation set, in

the cross-validation folds and in the final test set.

Chapter 5 finishes with conclusions and suggests possible future work for pre-

diction of sound pressure level with video frames, and for detection of the sound

sources within the image.

Appendix A contains the training and validation loss curves for the model in

every fold. Appendix B includes the predictions of the trained network in every

fold.

3

Chapter 2

Theory

Generally, neural networks are mathematical functions that are based on dot prod-

ucts followed by non linear functions. They commonly contain a large number of

parameters that have to be selected for a particular task such as image classification,

regression, segmentation, translation [12] and so forth. In this chapter, we present

methods to train neural networks, a layer that reduces output dimension, a visual-

ization technique to show the network focus, a method to reuse pretrained neural

networks, and the structure of the original models on which the models built in the

present work are based.

2.1 Training Neural Networks

Selecting neural network parameters is often called training. Although alternatives

exist [13], the usual method to train neural networks is to define an optimization

problem related to the task and associate the solution of that problem to the model

parameters. For example, in linear regression a model could be described as:

y = βTx+ b, (2.1)

where x ∈ IRM ,β ∈ IRM , b ∈ IR, y ∈ IR. In an experiment, for each input xi one yi

value is collected. So with experimental data, the problem is to select β and b such

that:

y1 = βTx1 + b

y2 = βTx2 + b
...

yi = βTxi + b
...

yK = βTxK + b

(2.2)

4

Since usually no single value for β and b exists so that the set of Equations (2.2)

is solved exactly, a new related problem is defined: to minimize a measure of the

solution error or residue r ∈ IRK :

r1 = y1 − (βTx1 + b)

r2 = y2 − (βTx2 + b)
...

ri = yi − (βTxi + b)
...

rK = yK − (βTxK + b)

(2.3)

A possible function for this purpose is the square of the norm 2 of r divided by

the number of samples K: the mean squared error (MSE). The problem of selecting

parameters β, b that best fit the model to data is associated with the minimization

of a cost function J :

J(β, b) =
1

K

K∑
k=1

r2i =
‖r‖22
K

(2.4)

So the optimization problem that selects β and b is:

minimize
β,b

J(β, b) (2.5)

2.1.1 Cost Function

More generally, a model represented by a function f with parameters θ and input

x is optimized to minimize a measure l (loss function) of the similarity between

f(x;θ) and a target y. In the example of Equation (2.4), l is the MSE. If x and y

are random vectors, the cost function J is:

J(θ) = Ex,y [l(f(x;θ),y)] (2.6)

From Equation (2.6), for each set of parameters θ, one value of the cost function J

is calculated. The expected value of the loss function is computed over all possible

values of x and y, which corresponds to an integral of the loss function over all

possible x and y weighted by their joint probability P (x,y). Since the distribution

P (x,y) is usually not available, the expected value Ex,y is approximated with a

dataset D of K pairs (xk,yk) so that:

J(θ) ≈ 1

K

K∑
k=1

l(f(xk;θ),yk) (2.7)

The choice of loss functions varies depending on the task. Examples of loss

functions are:

5

• binary cross-entropy (for classification problems):

l(f(x;θ),y) = y log (f(x;θ)) + (1− y) log (1− f(x;θ)) (2.8)

• categorical cross-entropy (for classification problems):

l(f(x;θ),y) =
∑
i

y[i] log (f(x;θ)[i]) + (1− y[i]) log (1− f(x;θ)[i]) (2.9)

where y[i] and f(x;θ)[i] are the i-th elements of each vector.

• MSE (for regression problems, usually):

l(f(x;θ),y) = (f(x;θ)− y)2 (2.10)

2.1.2 Optimization

Training a neural network is thus the same as optimizing the cost function J with

a loss function l. Since several neural network models have millions of parameters

[6, 14], optimizers with space complexity, i.e. memory requirements, O(n2) (e.g.

Newton’s method), where n the number of parameters to be optimized, are unfeasi-

ble. For this reason, methods to train neural networks are generally gradient-based

O(n) algorithms.

The gradient g of the cost function J with respect to parameters θ is:

g(θ) = ∇θJ(θ) = ∇θEx,y [l(f(x;θ),y)] (2.11)

Because the explicit computation of the the gradient of the expected value

∇θEx,y [l(f(x;θ),y)] is impractical (even if P (x,y) were available, which is not

the case), The gradient g is estimated as g∗ with a dataset D with K samples:

g(θ) = ∇θJ(θ) ≈ 1

K
∇θ

K∑
k=1

l(f(xk;θ),yk) =

=g∗(θ) = ∇θJ
∗(θ) =

1

K

K∑
k=1

∇θl(f(xk;θ),yk),

(2.12)

Equation (2.12) shows that the estimation g∗(θ) of g(θ) computes the aver-

age of the gradient of the loss for all data points in D. This equation shows how

parallel the computation of estimate gradients can be: the expensive computation

of ∇θl(f(xk;θ),yk) is independent for each pair (xk,yk). As a consequence, the

factors ∇θl(f(xk;θ),yk) could be calculated in parallel then averaged for the g∗

estimation.

6

When optimizing J∗ over large datasets, it is common to sample a subset of

the available pairs (xi,yi) and compute an approximation Ĵ from that set. This is

the mini-batch strategy (as opposed to the batch/full batch approaches that use the

entire dataset to compute J). Mini-batches turn practical the optimization of models

over large datasets such as ImageNet (with over 1.5 million images) which would

otherwise require enormous amounts of memory. Another advantage of mini-batches

compared to the full batch is the larger number of iterations that optimization

algorithms apply for roughly the same computation. In addition, small mini-batch

sizes (at an extreme a mini-batch of size 1) increase the variance of the gradient

estimation and, as a consequence, act as regularization [15]. Hardware is often

optimized for larger batch sizes, so an usual trade-off is to select batch sizes from

the range 16-256 [15]. For a mini-batch of size N (N < K), the estimation ĝ(θ) of

g(θ) is similar to Equation (2.12):

ĝ(θ) = ∇θĴ(θ) =
1

N

N∑
n=1

∇θl(f(xn;θ),yn) (2.13)

For each optimization step with a mini-batch, ĝ(θ) is computed with N samples

from the dataset. Usually, implementations randomize the dataset prior to dividing

it in mini-batches and do not allow the same sample to be used more than once

before all samples are used. An epoch is completed when all samples in the dataset

are used in optimization steps. After that, the mini-batches are again randomly

divided and the optimization continues in a new epoch. The optimization of neural

network models commonly occurs over several epochs.

Typical optimization algorithms are stochastic gradient descent (SGD), SGD

with momentum, RMSprop and Adam, where RMS stands for root mean square

and Adam stands for adaptive moment estimation.

• SGD:

θt+1 = θt − α∇θĴ(θt) (2.14)

Parameters are updated by subtracting the gradient estimate ∇θĴ(θt) scaled

by α, the learning rate, from the current parameter array θt.

• SGD with momentum:

µt+1 = βµt + (1− β)∇θĴ(θt) (2.15)

θt+1 = θt − αµt+1 (2.16)

SGD with momentum filters the noisy gradient estimate ∇θĴ(θt) by calcu-

7

lating a leaky accumulated gradient estimate µt+1 before applying it to pa-

rameters θt+1. The value β ∈ (0, 1) determines how much of the accumulated

gradient is weighted with the previous µt. In the Keras [16] implementation,

the effect of parameters α and β is less intuitive:

µt+1 = βµt − α∇θĴ(θt) (2.17)

θt+1 = θt + µt+1 (2.18)

Here, µt+1 is obtained by filtering the gradient step −α∇θĴ(θt) already with

the negative sign, and µt+1 is no longer a convex combination of the accumu-

lated gradient and the current gradient.

• RMSprop:

νt+1 = βνt + (1− β)(∇θĴ) ◦ (∇θĴ) (2.19)

θt+1 = θt − α∇θĴ(θt) ◦
(

(νt+1 + ε) . ∧ −1

2

)
(2.20)

where (∇θĴ) ◦ (∇θĴ) operation represents an element-wise multiplication and

the inverse square root (νt+1 + ε) . ∧ −1
2

operation represents an element-wise

inverse square root. The element-wise square of the gradient is filtered through

νt+1 to serve as an estimate for the variance of each parameter. νt+1 is then

used to normalize the gradient in the update Equation of θt+1. The small

constant ε is used to avoid division by zero.

• Adam: Adam unites ideas from SGD with momentum and RMSprop. It

filters the gradient ∇θĴ(θt) through µt+1 and filters an element-wise variance

estimate (∇θĴ) ◦ (∇θĴ) through νt+1. It then updates the parameters with

µt+1 normalized by the element-wise inverse square root of νt+1. Again, a

small ε is used to avoid division by zero in the parameter update for θt+1 in

Equation 2.23.

µt+1 = β1µt + (1− β1)∇θĴ(θt) (2.21)

νt+1 = β2νt + (1− β2)(∇θĴ) ◦ (∇θĴ) (2.22)

θt+1 = θt − αµt+1 ◦
(

(νt+1 + ε) . ∧ −1

2

)
(2.23)

2.2 Global Average Pooling

Global average pooling [17] (GAP) is a layer commonly applied after the last convo-

lutional layer. It was originally presented as a regularization method [17]. GAP has

8

other advantages as it reduces the overall parameter count and allows the applica-

tion of visualization techniques to illustrate image regions relevant for the network

prediction.

When dealing with image classification tasks, one typically flattens the output

of the last convolutional layer and adds fully connected (FC) layers at the end. This

flattening transforms a 3-D tensor into a 1-D vector. For example, the output of the

last convolutional layer of VGG16 lies in IR7×7×512. After flattening, the output lies

in IR25088. Then, in this network, there is a sequence of three FC layers: the first

one with 4096 neurons, the second one with 4096 neurons, and the third one with

1000 neurons. The first FC layer has 25088 × 4096 neuron parameters and 4096

biases for a total of 102.7 million parameters. In addition, the second and third

layers add another 4096 × 4096 + 4096 ≈ 16.7 million and 4096 × 1000 + 1000 ≈ 4

million parameters respectively. This high number of parameters is not only prone to

overfitting, it is also computationally demanding. GAP reduces this cost by applying

a function that reduces input tensor size before flattening the tensor. In the VGG16

example, GAP is a function IR7×7×512 → IR512. Generally, GAP : IRM×N×K → IRK .

The reduction in the number of parameters, for the VGG16 example provided, is

discussed in the next paragraph.

In the last convolutional layers, the number of channels increases substantially

e.g. from 3 channels in the input layer to 512 in the output layers in the VGG16

case. To avoid that the input to the first FC layer be 7×7×512, we substitute each

7× 7 channel by the average of the 49 numbers. That reduces the input to the first

FC layer to 512: a 49 times reduction in the number of components if compared to a

network without GAP. In general, operation GAP computes is the average along M

and N for each individual K, i.e. it averages every M ×N feature map and outputs

a single value for each one of them. For an output F ∈ IRM×N×K of a convolutional

layer with K feature maps each with resolution M × N , the k-th element of the

output vector y ∈ IRK is:

yk =

∑
m

∑
n F

k
mn

MN
, (2.24)

where F k indicates the k-th feature map. In the VGG16 example, the application

of GAP, followed by an FC layer with the same number neurons as before (4096),

would lead to a first FC layer with 512 × 4096 + 4096 ≈ 2 million parameters, a

reduction in parameter count of approximately 49 times. However, some models do

not even use hidden layers (i.e. FC layers that are not at the neural network output)

after GAP [18]. In a classification task with 1000 classes performed by VGG16 with

GAP and no hidden layers, the total parameter count of the FC layers is reduced

from the original 123 million to 513 thousand.

9

2.3 Class Activation Map

Class activation map (CAM) is a method that allows visualization of the most

relevant parts of an image, which are directly related to the classification of the

image itself [19]. It does a linear combination of the feature maps at the output

of the last convolutional layer to form an image that highlights regions of high

importance. Its results demonstrated that a CNN trained for classification not only

identifies the input image, but it also implicitly localizes the relevant object in the

image.

This method depends on the structure of the network. To apply CAMs, it is

required that the last convolutional layer be followed by a GAP and a single FC

layer. It is also possible that functions that preserve the ordering of the elements in

input vectors such as softmax, tanh or sigmoid be applied afterwards in classification

tasks. CAM uses the linearity of the GAP and the dot product in the FC layer to

compose a matrix such that the sum of each entry leads to the neuron output.

After the GAP, the output h of a single linear neuron with weights wk and bias

b is:

h =
∑
k

wkyk + b, (2.25)

where the k-th output of a GAP from a convolutional layer with K feature maps is:

yk =

∑
m

∑
n F

k
mn

MN
(2.26)

If (2.26) is applied to Equation (2.25), we have:

h =
∑
k

wk

∑
m

∑
n F

k
mn

MN
+ b

=
∑
k

∑
m

∑
n

wkF
k
mn

MN
+ b

=
∑
m

∑
n

∑
k

wkF
k
mn

MN
+ b

=

∑
m

∑
n

∑
k wkF

k
mn

MN
+ b

(2.27)

Finally, the CAM is defined as the M ×N frame:

CAM(m,n) =
∑
k

wkF
k
mn (2.28)

From Equation (2.28) we see that CAM is a linear combination of K feature

maps F k with the neuron weights wk as the weights of the linear combination. As

a function of the CAM, the network output is:

10

h =

∑
m

∑
n CAM(m,n)

MN
+ b (2.29)

From Equation (2.29) it is clear that, for CAMs, the following property holds:

when their sum is divided by the constant MN and added to the bias b it yields

the neuron output h. So entries in the CAM matrix with indices (m,n) that return

large values add a direct contribution to the overall network output. In this example

we assume that the last FC layer is composed by a single neuron. In classification

tasks with more than one neuron at the output (more than two classes), each set

of weights w of each neuron corresponds to a weighing of feature maps for a single

class. Therefore, for a single input image in a classification task with multiple classes,

several CAMs can be generated: one for each class.

A drawback of this method is the low resolution typical of the last feature maps

in a CNN. Solutions to that range from classical upsampling methods such as bicubic

interpolation to the modification of the original network. The original paper [19]

proposed the removal of some of the last convolutional layers and pooling to yield

higher spatial resolution. Then, a single convolutional layer was added with 1024

3 × 3 filters followed by a GAP and softmax. This new layer was trained and the

final network yielded results that were similar to the original ones.

With examples and benchmarks, it was shown that CAMs display the classified

object position in regions where the CAM matrix has high values and achieves

competitive results in object localization: a task for which it was not directly trained

for [19]. Although not covered in here, other methods based on CAM [20] do not

require the GAP+FC structure after the last convolutional layer to produce the

visualization.

In conclusion, CAM is a method to visualize image regions with high relevance to

the network output. This is accomplished by exploiting the linearity of the GAP+FC

layers. It is a linear combination of feature maps weighted by the parameters of the

FC layer. For a single input image, several CAMs can be formed: one for each

element of the network output.

2.4 Transfer Learning

Transfer learning is a method to apply a model, which was previously trained for

one task, to a different task. Patterns in data learned by a model can be sufficiently

general so that its parameters are good initial conditions for other tasks. This

method is usual when the training of the original network occurs with a much

larger annotated dataset if compared to the dataset of the new task. For example,

some models [6, 14, 18] are trained with the ImageNet [21] dataset: it contains

over a million annotated images and 1000 classes. Often, the new dataset will

11

F
C

 L
a
y
e
r

C
o
n
v
o
lu

ti
o
n
a
l

N
e
w

 F
C

 L
a
y
e
r

C
o
n
v
o
lu

ti
o
n
a
l

Figure 2.1: A new network is created with the convolutional part of a pretrained
network by removing the original FC layer and substituting it for another randomly
initialized FC layer. The convolutional part of a pretrained network is used in this
example as a feature extractor. Other structures are also possible: not only a new FC
layer could be added after the convolutional layer, but also different combinations
of GAP+FC, FC+FC or GAP+FC+FC, where FC+FC means two FC layers in
tandem.

neither be that large nor diverse. So it would be useful to reuse a model capable of

retrieving features from such large dataset in a different application. In particular,

classification CNNs can usually be divided into two parts: the convolutional part and

the FC part. The convolutional part is often called the feature extractor as its output

is related to relevant image characteristics [19]. The FC part is associated with the

classification task. A typical transfer learning technique consists of removing the FC

part of a pretrained CNN and using this pretrained convolutional part by attaching

a new FC layer at its end. This new FC layer is randomly initialized and then either

the whole network is trained in the new dataset or only the FC layer is trained.

Another possibility is to add a GAP before the FC layer. This, as shown in Figure

2.2, reduces the number of new parameters to be trained. Other examples of transfer

learning include models [7] that use pretrained networks as a module in whole new

networks.

A great advantage of transfer learning is the ability to quickly prototype models

12

with low computational cost. Training a model with the ImageNet dataset requires

several graphics processing units (GPUs) and days of computation unless a large

processor cluster is available [22, 23]. The convolutional part of these pretrained

models can be used to convert high-dimensional images with low semantic value into

relatively low-dimensional vectors with high semantic value. For example, VGG16

expects an input in IR224×224×3 and its convolutional part has an output in IR7×7×512,

which corresponds to a size reduction by a factor of six. In addition to the size

reduction, if the new model only requires training of the new top FC layers, caching

features speeds training up. At each parameter update, the network computes one

forward pass and one backward pass per sample. Consequently, the model executes

one function evaluation in the forward pass for each sample at each epoch. In the

ImageNet example, that involves computing the forward pass up to the end of the

convolutional part, for the entire dataset roughly one hundred times. In an example

where only the FC layers are trained, it is possible to reduce the number of forward

passes in the convolutional part to one. This leads to model testing at a reduced

computational cost.

2.5 Base Models

The models in this work were based on two CNNs: VGG16 and ResNet50. They were

chosen for their structural simplicity and high accuracy in the ImageNet challenge

(ILSVRC [21]).

2.5.1 VGG16

The VGG16 neural network [14] is known for winning the localization challenge, and

attaining second place in the classification challenge at the ImageNet contest of 2014.

Its convolutional structure contains approximately 14 million parameters, and the

fully connected (FC) top layers contain 124 million parameters. Its convolutional

layers are divided into five blocks. After each block, feature maps are downsampled

with a 2× 2 max pooling layer. All convolutions are followed by ReLU activations.

The first two FC layers (each with 4096 neurons) are also followed by ReLU activa-

tions. The final FC layer is followed by a softmax layer for classification. The last

max pooling outputs a tensor in IR7×7×512. This network achieved a top-1 classifica-

tion error of 27% and top-5 error of 8.8% in the ImageNet challenge of 2014 (these

classification errors are extracted from Table 3 of [14], first row of configuration D).

The overall structure of VGG16 is illustrated in Figure 2.2. The convolutional part

of this network serves as base (pre-trained feature extractor) for a set of models in

this work.

13

Figure 2.2: Structure of VGG16: full classification network with the FC layers. The
indicated convolutional part is commonly used as feature extractor. Each convolu-
tional layer is indicated by convA, B × C. A is the number of filters, B the height
of each filter and C the width of each filter. The parentheses after max pooling
indicate the size of the pooling window. FC are fully connected layers with 4096,
4096 and 1000 neurons respectively.

2.5.2 ResNet50

Training deep neural networks is challenging [6]. Gradient descent based optimizers

fail to find parameters that minimize loss functions when the number of layers grows

substantially. The problem of training deep networks was solved by changing the

structure of the model [6]. That was done by introducing the concept of residual

learning. For a network H(x), it is argued that optimizing the residue H(x)− x is

an easier task than optimizing a general function. To make a function so that its

parameters are optimized to learn the residual mapping H(x)− x, F(x) is defined

such that:

F(x) = H(x)− x (2.30)

14

Figure 2.3: The building block in residual learning. The dashed block represents
the function F(x). Weights may represent either FC layers or convolutional layers.
The arrow from x to the summation sign is an identity shortcut connection.

So the actual function H(x) in the network is defined as:

H(x) = F(x) + x (2.31)

Figure 2.3 illustrates a basic block of residual learning. This layout introduces

one constraint: the dimension of the input x has to be the same as that of the output

H(x). To overcome this issue a second type of shortcut connection is introduced:

a connection with a 1 × 1 convolution in the shortcut. This type of shortcut can

change the number of output feature maps and their resolution so that they match

the output resolution and number of channels.

Based on the residual learning building block, two blocks used in ResNet50, a

residual convolutional network, are created: the identity block (Figure 2.4) and the

convolutional block (Figure 2.5). Identity blocks typically reduce the number of

feature maps in the inner convolutions and then output the same number of feature

maps as the input. Convolutional blocks may change the number of feature maps

and reduce feature map spatial resolution by applying strided convolutions. The

final structure of ResNet50 is similar to that of the illustrated in Figure 3 of the

original paper [6] named “34-layer residual”. A difference between ResNet50 and

“34-layer residual” is the presence of one extra convolutional layer in ResNet50

at each convolutional block and at each identity block. ResNet50 starts with a

convolutional layer with 64 7×7 filters and stride 2. After that, a 3×3 max pooling

15

Table 2.1: ResNet50 major block structure. This sequence of blocks is applied
between the 3× 3 max pooling layer and the GAP layer. The first conv basic block
is the only conv block with stride 1× 1.

Basic block F1 F2 F3 Stride

Major block 1 conv 64 64 256 1× 1
identity 64 64 256 1× 1
identity 64 64 256 1× 1

Major block 2 conv 128 128 512 2× 2
identity 128 128 512 1× 1
identity 128 128 512 1× 1
identity 128 128 512 1× 1

Major block 3 conv 256 256 1024 2× 2
identity 256 256 1024 1× 1
identity 256 256 1024 1× 1
identity 256 256 1024 1× 1
identity 256 256 1024 1× 1
identity 256 256 1024 1× 1

Major block 4 conv 512 512 2048 2× 2
identity 512 512 2048 1× 1
identity 512 512 2048 1× 1

with stride 2 is applied. At this stage the feature map size is 56 × 56. Then, a

total of four major blocks, composed of basic identity and convolutional blocks, are

applied. Inside each major block the first basic block is always a convolutional block

and the other ones are identity blocks. The first basic block (convolutional) of the

first major block is the only convolutional block in the whole network that does not

reduce the input dimensions. All the other convolutional blocks cut feature map

resolution by a factor of two along width and height. Inside each major block the

values of F1, F2 and F3 are the same for all basic blocks. The major block structure

is illustrated in Table 2.1. After the major blocks, a GAP is applied to reduce the

last convolutional block output to a 2048 element vector. Finally, for the 1000-class

classification task, a 1000-neuron FC layer is added.

The addition of shortcut connections allow the optimization of neural networks

with more than ten times more layers than what was previously possible. Models

based on this new structure attained first place in ImageNet detection, ImageNet

localization, COCO [24] detection and COCO segmentation of the year 2015.

16

Figure 2.4: An identity block. Based on the residual learning building block (Figure
2.3), it applies three convolutions with number of filters equal to F1, F2 and F3
respectively (from top to bottom). The first and last convolutions apply convolution
kernels of size 1×1 and the second one applies a convolution kernel of size 3×3. The
rightmost arrow pointing at the summation symbol represents an identity shortcut
connection: the input is directly added to the output of the last batch normalization.
In identity blocks, all convolutional layers perform operations with stride (1,1), i.e.
the resolution of input feature maps is the same of the output feature maps. Since
the input is directly added to the output, the number of filters F3 in the third
convolution (that defines the number of feature maps at the output) is constrained
to be the same as the number of feature maps of the identity block input.

17

Figure 2.5: A convolutional block. One difference between convolutional blocks and
identity blocks is the presence of convolutional layers in the shortcut connection.
This allows the number of feature maps at the output of the block to be different
from the block input because the number of feature maps can be adjusted by this
layer. Another difference is the possibility of reduction in the resolution of feature
maps. The first convolutional layer may apply strided convolutions that reduce
feature map size. The same strides have to be applied to the convolutional layer
at the shortcut connection. This is done so that the shortcut connection output
dimensions match the output dimensions of last convolutional layer in the block.
For the same reason, the number of filters of the convolutional layer in the shortcut
connection has to match the number of filters in the third convolutional layer.

18

Chapter 3

Method

In this chapter a method to solve the problem of predicting sound pressure level

values from video frames is presented. First, we define sound pressure level. Then,

we extract the audio of an MPEG video and save it into a wave file. From the wave

file audio samples, a vector of sound pressure level values is computed and saved

as a binary numpy file. Each sample of this vector is generated by the calculation

of sound pressure level values around a time instant t every one second. For every

t when an sound pressure level value is computed, a frame is extracted from the

MPEG video and saved to a binary numpy file. A pair of files is created: one vector

of sound pressure level values for each t and a sequence of frames for each t. This

procedure is repeated for different MPEG videos so that for each video a new vector

of sound pressure level values and a new sequence of frames is also saved. This set

of pairs of synchronized sound pressure level values (targets) and frames (inputs)

from different videos define the dataset used for training, validation and test.

After that, 64 models are created based on the pretrained networks ResNet50

and VGG16. The FC layers of these models are removed and from that several ar-

chitectures are created. These new architectures include the addition of a GAP layer

and/or the addition of a hidden FC layer. All created structures share the property

that their final layer is a single linear neuron. Thus, the neural networks added on

top of the convolutional parts of pretrained convolutional layers are: FC, FC+FC,

GAP+FC, GAP+FC+FC. For each model variation a set of hyperparameters such

as type of optimizer and learning rate are tested. Models are trained on the dataset

to predict sound pressure values and their performances is evaluated in terms of

the MSE of the network predictions with respect to the true sound pressure level

values. From a pool of models, the best model is selected based on the lowest MSE.

Models with the GAP+FC structure allow the generation of a CAM that enables

audio source visualization. However, subtle changes in CAM, that are related to

the audio source location in the image, are faint if compared to the mean CAM.

So an online exponential moving average CAM is computed to approximate a time-

19

varying mean CAM. Then, this exponentially-weighted average is subtracted from

the CAM. The result from the subtraction is multiplied by a gain to form a matrix

that is upsampled and then displayed in the green channel of the original image.

This is done because the red and blue channels are sufficient to show the original

scene information, so the new image with its green channel swapped displays the

object localization and the original scene together. These amplified variations allow

visualization of objects that the network associates with large sound pressure level

values.

In summary, a dataset that associates individual video frames with scalar sound

pressure levels is created. Based on this dataset, 64 models are trained and two

models are chosen: one for inference and one for CAM visualization. The inference

model is chosen as the one with the lowest validation MSE value. The CAM-

generating model is chosen among the models with the GAP+FC structure and

the lowest validation MSE value. The generated CAM is filtered for visualization

to evaluate the hypothesis that trained models associate image objects with sound

pressure levels. Finally, the model selected for inference is cross-validated using six

train/validation folds from five videos and tested on five other videos. The sound

pressure values are then converted to Leq with t2 − t1 set to one minute, and a

correlation between the true one minute Leq and the predicted one minute Leq is

computed.

3.1 Dataset Generation

Ten videos were created from a camera with a mono microphone pointing towards a

busy crossroad. Figure 3.1 illustrates the recording scheme: a camera films audio and

video 50 meters away from the recorded area. Because the microphone is a signifi-

cant distance (50 meters) apart from the region of interest, the final recorded audio

is vulnerable to noise from sound sources next to the microphone. The ten videos

are named according to their original filenames: M2U00001.MPG, M2U00002.MPG,

M2U00003.MPG, M2U00004.MPG, M2U00005.MPG, M2U00006.MPG,

M2U00007.MPG, M2U00008.MPG, M2U00012.MPG, M2U00014.MPG. In the

result section, the name of the videos in the cross-validation folds are defined

according to the final number in these filenames. These RGB videos were down-

sampled from the original 720 × 480 resolution to 240 × 240 and their audio

information were extracted into wave files with ffmpeg [25]. The downsampling

reduces computational cost required for future neural network processing and the

storage space required to save the dataset. In addition, the Keras implementation

of the ResNet50 model requires inputs with resolution larger than 180× 180, so the

horizontal downsampling factor of six and the vertical downsampling factor of four

20

Figure 3.1: Representation of the recording scheme. The camera is positioned 50
meters from the recorded area positioned in a building 40 meters away from the
crossroad at 30 meters high.

21

are chosen for the final resolution of 240× 240. To downsample, for each one of the

ten videos the following command is run from inside a Python [26] script:

$ ffmpeg -i input.MPG -s 240x240 -c:a copy output.MPG

where input.MPG is the input 720× 480 video and output.MPG is the final down-

sampled 240× 240 video. The argument -s 240x240 sets the output resolution, -c:a

copy defines that the audio from the input file will be copied to the output file

without filtering. Samples of the ten videos are illustrated in Figure 3.3. To extract

the audio the following script is run:

$ ffmpeg -i input.MPG -f wav -ar 48000 -ab bit_rate -vn output.wav

where input.MPG is the original video and output.wav wave file, -ar 48000 sets the

audio sample rate to 48000, which is the original value, -ab bit rate sets the audio

bit rate to bit rate, that is the original bit rate value and -vn means to disable video

recording.

From the video and audio files, at t we define a pair of related objects: the input

frame Ft ∈ IR240×240×3 and the sound pressure level St ∈ IR. We define St as:

St = ln

(
1

M

t+tf∑
k=t−tb

I2k

)
, (3.1)

where Ik is the value of an audio sample from the respective wave file at k. Pa-

rameters tb and tf are respectively the backward and forward time limits considered

for St. The number of samples Ik between time instants (t− tb) and (t + tf) is M .

St is the natural log of the average of the square of audio samples between (t− tb)
and (t+ tf). The camera microphone was not initially calibrated so sound pressure

values (St) are not in dB unless stated otherwise. Posterior to the data gathering

the microphone was calibrated and the calibration formula was:

Sp = 4.12St + 5.84, (3.2)

where Sp is the calibrated sound pressure in dB.

Initially, four videos are selected for neural network training and validation:

three videos for training and one video for validation. In the training set, two videos

(videos 1 and 3) are from a daytime traffic scene and one video (video 6) is from a

night-time traffic scene. Values for tb and tf are set to 300 ms. The validation set

consists of frames from a single night-time video. Frames are sampled once every

second, which yields 1183, 1242, 1325 and 1280 frames from each video respectively.

After the first model structure is selected, it is cross-validated with folds based on

videos 1, 2, 3, 5 and 6. The final test set consists of videos 4, 7, 8, 12, 14.

22

Figure 3.2: Schematic representing the dataset generation. First row represents
incoming frames one at a time with time evolving to the right. The second row
represents the audio stream timeline. Around t of each frame Ft, Equation 3.1 is
applied to all audio samples from t− tb and t+ tf and that generates the values St

in the third row. To each frame Ft one value St is associated.

23

Daytime St sample sequences are clearly different from night-time St sample

sequences: daytime St values range from 12 to 17, and night-time St values range

from 10 to 16. In order to be applied to video sequences shot at different locations,

the models trained on the previously described dataset might require the application

of different output offset values. Without any further visual clue, sound pressure

averages change from one particular environment to another one.

Challenges in this dataset include label noise from extraneous audio sources

with no corresponding object in the video. For example, at times buses might

break outside of the crossroad frame, which causes a peak in the St sample sequence

without the presence of the bus itself in the image. Also, cars occasionally accelerate

abruptly, and loud skid noise is heard without significant change in the video frame.

Another issue arises from human voices from people near the microphone but not

present in the screen itself. In two videos (videos 12 and 14) present in the final test

set, a traffic warden whistle causes frequently peaking St values. Except for these

two videos, problems are not observed to be common enough to significantly impair

neural network training.

3.2 Conversion from Sound Pressure to Longer

Leq

To convert the recorded sound pressure St to an Leq with longer dt, the St is first

converted to Sp (sound pressure in dB) with Equation (3.2). Then, Equation (3.2)

is inverted as to calculate the integral as a function of Leq:∫ t2

t1

p2(t)

p2ref
dt = 10

Leq
10 (t2 − t1). (3.3)

The calculated values of Sp are then replaced in Equation (3.3) as the Leq, with

(t2− t1) as the value originally used to compute the St. In this work, we set (t2− t1)
to 600 ms. To elongate the time interval, the integral from t1 to t2 is added to the

integral from t2 to t3, to calculate an elongated integral:∫ t2

t1

p2(t)

p2ref
dt+

∫ t3

t2

p2(t)

p2ref
dt =

∫ t3

t1

p2(t)

p2ref
dt. (3.4)

To integrate over the specified Leq time interval, this process is repeated. Finally

the Leq with a larger time span is calculated with Equation (1.1) but with a new

interval t3− t1 as the new longer time span. The conversion is used to translate the

predicted St and true St to an Leq from an original time interval of 600 ms to one

minute.

24

Figure 3.3: Samples from the ten videos. Every set of four rows in each column
are samples from a distinct video. The number in the upper left corner is the video
name as described in section 3.1.

25

Figure 3.4: Models tested for prediction of sound pressure level values. The convolu-
tional block represents either the convolutional part of VGG16 or ResNet50. In the
case of VGG16, the output of the last convolutional layer lies in IR7×7×512. In the first
model (a), the FC layer with a single neuron contains 7×7×512+1 = 25089 param-
eters. In the second model (b), the first FC layer contains 7× 7× 512× 128 + 128 =
3211392 parameters and the second FC layer contains 128 + 1 = 129 parameters. In
the third model (c), the FC layer contains 512 + 1 = 513 parameters. In the fourth
model (d), the first FC layer contains 512 × 128 + 128 = 65664 parameters and
the second FC layer contains 128 + 1 = 129 parameters. In the case of ResNet50,
the number of feature maps in the last convolutional layer quadruples, so that the
last convolutional layer output size is 7 × 7 × 2048. In the first model (a), the FC
layer with a single neuron contains 7 × 7 × 2048 + 1 = 100353 parameters. In the
second model (b), the first FC layer contains 7× 7× 2048× 128 + 128 = 12845184
parameters and the second FC layer contains 128 + 1 = 129 parameters. In the
third model (c), the FC layer contains 2048 + 1 = 2049 parameters. In the fourth
model (d), the first FC layer contains 2048 × 128 + 128 = 262272 parameters and
the second FC layer contains 128 + 1 = 129 parameters.

3.3 Models

Using the generated dataset we train 64 models. They were based on the con-

volutional parts of ResNet50 and VGG16. Four combinations of new FC layers

are tested: a single FC, FC+FC, GAP+FC and GAP+FC+FC (Figure 3.4). For

each combination, the convolutional part of the model comes from either VGG16

or ResNet50 for a total of 8 models. The hidden 128 FC layer is followed by a

hyperbolic tangent activation function.

26

3.4 Training

To train the neural networks the input frames are first pre-processed, then model

parameters are selected by minimizing the cost function with an optimizer. The

VGG16 and ResNet50 models had been already pretrained in the ImageNet dataset

with a pre-processing that subtracts channels R, G and B by 103.939, 116.779, 123.68

respectively. Instead, we follow the pre-processing steps that are described in [18].

Those pre-processing steps first compute the mean and the standard deviation for

each image channel taking the entire training data into account. Then each image

channel is subtracted by its respective mean and divided by its respective standard

deviation:

R′ =
R− µR

σR

G′ =
G− µG

σG

B′ =
B − µB

σB

(3.5)

where µR, µG, µB are the channel-wise RGB means over the training data and σR,

σG, σB are the channel-wise RGB standard deviations over the training data. The

pre-processed frames are fed into the model. The network output is the predicted

sound pressure level values for each frame Ft at t. For each pair of (Ft, St), predic-

tions f(Ft,θ) are compared with the true sound pressure level value St and then

averaged:

J(θ) =
N∑
t=1

||f(Ft,θ)− St||22
N

(3.6)

Parameters θ are selected to minimize the cost function J(θ) corresponding to the

MSE loss. For that, two optimizers are tested: SGD with momentum and Adam.

Also, for each optimizer, four initial learning rates are tested: 0.1, 0.01, 0.001, 0.0001.

In all these cases the learning rates are reduced twice, during training, by a factor

of 0.3: first at epoch 30 and then again at epoch 50 (Table 3.1). All models are

trained up until epoch 70. The mini-batch size is 32, which yields approximately

115 optimization updates per epoch or approximately 7700 optimization updates for

the whole training. For each training setting (optimizer, initial learning rate and

model), the model with the lowest validation loss among all epochs is saved. During

inference, no online audio data is made available to the model at each time instant

t, so the network has to predict sound pressure levels with only the current frame

and no temporal information.

The total number of models trained for each experiment (comparison between

settings) is 64. One difficulty encountered during the project was on how to organize

27

Table 3.1: Four learning rate schedules by epoch. Each column is one schedule.

Epoch Learning Rates

epoch <30 0.1 0.01 0.001 0.0001
30 ≤ epoch <50 0.03 0.003 0.0003 0.00003
epoch ≥ 50 0.009 0.0009 0.00009 0.000009

this large number results so that performance obtained from different settings could

be quickly and objectively compared. To solve that problem, a LATEX report is auto-

matically generated from the experiment results, including data such as: validation

loss, the name of video files included in the dataset, the frame sampling rate, the

model structure, the saved model filename, the training/validation loss curves, and

an image of network predictions vs. true sound pressure level values for training

and validation. This turned feasible an objective comparison of the performance of

the 64 models.

3.4.1 Sound Source Detection

Since the network has no access to online audio data, it is expected that the model

has to detect, within the current image, objects that are relevant for sound pressure

value prediction. To test this hypothesis, the CAM technique is applied. Models

with the GAP+FC structure can be used to generate CAMs that identify image

locations that are associated with large network outputs [19]. So if the network

truly maps some objects visible in the image to high network outputs, they should

be highlighted in the CAM.

The network used for source detection is based on the convolutional part of

VGG16. This network is chosen because of its lowest validation MSE of 1.196. This

model follows the structure of the third network (from left to right) in Figure 3.4:

a convolutional model (from VGG16) and a GAP+FC structure. This model is one

of the 64 networks trained to predict St values by minimizing MSE between the

network outputs and the true St values.

The last convolutional layer of VGG16 yields 512 7 × 7 feature maps, which

constrains object detection resolution to a 7×7 grid. To improve CAM visualization,

we upsample the 7×7 grid to 240×240 by nearest neighbor interpolation, and then

replace the green channel of the input frame by the CAM. We observed that some

portions of the CAM remain fixed for several consecutive frames. These fixed values

have a large magnitude, in comparison to CAM variations that highlight the detected

object, which makes the green channel variations too subtle to be visualized. So we

first subtract that average CAM (AC) offset, and then apply a gain α to the green

channel, in order to magnify the CAM variations. We compute an online 7× 7 AC

28

by:

AC[n] = AC[n− 1]λ+ C[n− 1](1− λ) (3.7)

DC[n] = α(C[n]− AC[n]), (3.8)

where C[n] ∈ IR7×7 is the CAM at frame n, AC[n] ∈ IR7×7 is the AC at frame n,

DC[n] ∈ IR7×7 is the displayed CAM at frame n, λ ∈ (0, 1) and α ∈ IR+. The closer

λ is to 1, the longer the effective sample sequence that is taken into account for

CAM averaging. The higher α is, the higher the magnification of the highlighted

region but also the larger that unwanted noise spots become. An exceedingly high

value of α could also saturate the green channel, and that could hide DC variations,

that would otherwise differentiate objects associated with high sound pressure from

objects associated with low sound pressure. We choose λ = 0.95 and α = 10. For

sound source detection we do use temporal information to filter the CAM, however

this method only requires frames and no online audio data. A downside of this

method is that if a sound-generating source does not move within several frames

(which is typical for noisy vehicles stopped at traffic signal lights), then that source

might be filtered out as part of the AC. Larger values for λ might mitigate this

type of issue.

3.4.2 Model Validation

After the models are optimized according to the training setup, the best of the 64

models is cross-validated. This is done by first separating a test set from the ten

available videos. Five of the ten videos are considered part of the test set: three

daytime videos (videos 4, 12, and 14 in the numbering system of Figure 3.3) and two

night-time videos (videos 7 and 8). In the remaining five videos, three are daytime

(videos 1, 2 and 3) and two are night-time (videos 5 and 6). The train/validation

set is arranged into six folds for cross-validation. Each fold is composed of two sets:

the training set and the validation set. The folds are selected so that the validation

set in every fold contains one night-time video and one daytime video. So if the

three daytime videos are D1, D2 and D3 and the night-time videos are N1 and N2,

then the folds at each iteration are as described in Table 3.2. D1 is video 1, D2 is

video 2, D3 is video 3, N1 is video 5 and N2 is video 6. The initial learning setup is

equal to that of the best of the 64 models. The learning rate is reduced by a factor

of ten every time the validation loss does not decrease for 15 consecutive epochs.

Then, for each fold, the model with lowest MSE has the correlation of its output

with the true sound pressure level computed. Finally, one model from the six folds

is chosen according to its MSE and correlation, and it is evaluated in the test set.

29

Table 3.2: Table of the dataset folds. Di is a daytime video with index i. Ni is a
night-time video with index i. Each row is one fold.

Fold Training set Validation set

1 D1 D2 N1 D3 N2

2 D1 D3 N1 D2 N2

3 D2 D3 N1 D1 N2

4 D1 D2 N2 D3 N1

5 D1 D3 N2 D2 N1

6 D2 D3 N2 D1 N1

30

Chapter 4

Results and Discussion

Results for the prediction of sound pressure level values using image frames as neural

network inputs are presented. These results correspond to predictions in the valida-

tion video 8 by two models: the first with the lowest prediction MSE over all models

and the second with the lowest prediction MSE among models with the GAP+FC

structure. The DC is presented for the GAP+FC model to illustrate regions in the

image associated with large network output values. This model (with the GAP+FC

structure) allows the application of CAM and testing whether the network associates

specific objects with large sound pressure level values by observing the highlighted

regions. Table 4.1 shows all the models trained with their respective training setup

ordered by the lowest validation loss first. At the lower end of the table, models

with values > 1000 in t loss or in v loss diverged. In Table 4.1, Network specifies

the base convolutional model. Opt defines the optimization algorithm: either Adam

or SGD. The Gap column displays if the full network (convolutional part and FC

layers) contains a GAP after the last convolutional layer. FC stands for how many

neurons are there in the hidden fully connected layers: if the value displayed in this

column is “None”, then there is no hidden FC layer. lr list is the list of scheduled

learning rates as listed in Table 3.1. v loss is the validation loss of the model with

the lowest mean squared error among all epochs (for a single set of settings). t loss

is the training loss associated with that model. Models whose columns GAP and FC

contain respectively the labels “True” and “None” are the ones where CAM visu-

alizations are applicable. So, as observed in Table 4.1, the network with the lowest

MSE has index 35. Model 35 is composed by the convolutional part of VGG16, is

optimized with Adam, has a GAP layer and a hidden layer with 128 neurons. Its

schedule has an initial learning rate of 0.001 with training loss 0.461 and validation

loss 1.138. In comparison, the first model where the CAM visualization is appli-

cable has index 27, uses the same optimizer, an initial learning rate of 0.01 and

validation loss 1.196. In Section 4.1, the training/validation loss curves of model 35

are presented together with the predictions of sound pressure level values. Section

31

4.2 shows training/validation loss curves of model 27 and its predictions of sound

pressure level values. Section 4.2.1 presents the DC, generated with model 27, that

highlights image regions associated with higher prediction values.

Generally, models based on the convolutional part of VGG16 achieved lower

training loss and lower validation loss. Most models built with ResNet50 either

achieved a high validation loss or diverged. The absence of GAP after the last

convolutional layer is associated with lower training losses in several models (based

on VGG16 or ResNet50). For example, model 5 attained a training loss of 0.259:

roughly half of the training loss of model 35. However, its validation loss is still

similar to that of model 1: a model with very similar settings but lower parameter

count. The pattern of lower training losses without the counterpart lower validation

losses in models without GAP repeats through models 55, 29, 63 and other models.

This suggests that the presence of GAP does not negatively impact model perfor-

mance (measured with MSE) in spite of significantly reducing parameter count. The

Adam optimizer is slightly more common among the top ten models (six out of ten).

Among these models, two have initial learning rate 10−4, one 10−3, two 10−2 and one

10−1. In comparison, three of the four models optimized with SGD (in the overall

top ten) have an initial learning rate of 10−1 and one with initial learning rate 10−2.

The SGD optimizer seems to require more specific tuning to attain lower validation

losses.

Table 4.1: Each row corresponds to one training setup. Column Network

has the name of the base convolutional network. Column Opt has the name

of the optimizer. Column GAP defines the presence or absence of GAP

after the last convolutional layer. Column FC is the number of neurons in

the hidden layer. The value “None” in this column specifies the absence of

a hidden layer. lr list is the schedule of learning rates with reductions in

epochs 30 and 50. t loss and v loss are respectively the training loss and

validation loss.

Network Opt GAP FC lr list t loss v loss

35 VGG16 Adam True 128 [0.001, 0.0003, 9e-05] 0.461 1.138

19 VGG16 Adam True 128 [0.01, 0.003, 0.0009] 0.450 1.140

1 VGG16 SGD True 128 [0.1, 0.03, 0.009] 0.524 1.167

5 VGG16 SGD False 128 [0.1, 0.03, 0.009] 0.259 1.169

27 VGG16 Adam True None [0.01, 0.003, 0.0009] 0.576 1.196

11 VGG16 Adam True None [0.1, 0.03, 0.009] 0.517 1.209

51 VGG16 Adam True 128 [0.0001, 3e-05, 9e-06] 0.562 1.211

Continued on next page

32

Table 4.1: Training and validation loss for each configuration of the trained

models.

Network Opt GAP FC lr list t loss v loss

55 VGG16 Adam False 128 [0.0001, 3e-05, 9e-06] 0.390 1.214

29 VGG16 SGD False None [0.01, 0.003, 0.0009] 0.420 1.223

9 VGG16 SGD True None [0.1, 0.03, 0.009] 0.568 1.231

63 VGG16 Adam False None [0.0001, 3e-05, 9e-06] 0.257 1.233

39 VGG16 Adam False 128 [0.001, 0.0003, 9e-05] 0.461 1.243

21 VGG16 SGD False 128 [0.01, 0.003, 0.0009] 0.355 1.252

43 VGG16 Adam True None [0.001, 0.0003, 9e-05] 0.613 1.257

13 VGG16 SGD False None [0.1, 0.03, 0.009] 0.355 1.262

47 VGG16 Adam False None [0.001, 0.0003, 9e-05] 0.666 1.284

17 VGG16 SGD True 128 [0.01, 0.003, 0.0009] 0.613 1.300

37 VGG16 SGD False 128 [0.001, 0.0003, 9e-05] 0.553 1.301

45 VGG16 SGD False None [0.001, 0.0003, 9e-05] 0.515 1.306

25 VGG16 SGD True None [0.01, 0.003, 0.0009] 0.663 1.409

31 VGG16 Adam False None [0.01, 0.003, 0.0009] 0.453 1.548

59 VGG16 Adam True None [0.0001, 3e-05, 9e-06] 0.825 1.699

10 ResNet50 Adam True None [0.1, 0.03, 0.009] 16.002 1.720

33 VGG16 SGD True 128 [0.001, 0.0003, 9e-05] 0.816 1.753

41 VGG16 SGD True None [0.001, 0.0003, 9e-05] 0.821 1.790

2 ResNet50 Adam True 128 [0.1, 0.03, 0.009] 8.873 1.792

3 VGG16 Adam True 128 [0.1, 0.03, 0.009] 3.067 1.792

6 ResNet50 Adam False 128 [0.1, 0.03, 0.009] 1.977 1.793

7 VGG16 Adam False 128 [0.1, 0.03, 0.009] 1.537 1.797

34 ResNet50 Adam True 128 [0.001, 0.0003, 9e-05] 0.528 1.808

61 VGG16 SGD False None [0.0001, 3e-05, 9e-06] 0.850 1.824

4 ResNet50 SGD False 128 [0.1, 0.03, 0.009] 0.674 1.826

53 VGG16 SGD False 128 [0.0001, 3e-05, 9e-06] 2.095 1.839

22 ResNet50 Adam False 128 [0.01, 0.003, 0.0009] 2.751 1.841

23 VGG16 Adam False 128 [0.01, 0.003, 0.0009] 1.246 1.934

18 ResNet50 Adam True 128 [0.01, 0.003, 0.0009] 1.221 2.033

38 ResNet50 Adam False 128 [0.001, 0.0003, 9e-05] 1.155 2.322

54 ResNet50 Adam False 128 [0.0001, 3e-05, 9e-06] 1.143 2.657

15 VGG16 Adam False None [0.1, 0.03, 0.009] 19.392 5.470

26 ResNet50 Adam True None [0.01, 0.003, 0.0009] 1.192 8.783

Continued on next page

33

Table 4.1: Training and validation loss for each configuration of the trained

models.

Network Opt GAP FC lr list t loss v loss

0 ResNet50 SGD True 128 [0.1, 0.03, 0.009] 0.593 10.027

50 ResNet50 Adam True 128 [0.0001, 3e-05, 9e-06] 0.364 12.149

46 ResNet50 Adam False None [0.001, 0.0003, 9e-05] 75.788 13.867

8 ResNet50 SGD True None [0.1, 0.03, 0.009] 0.424 15.278

42 ResNet50 Adam True None [0.001, 0.0003, 9e-05] 0.496 17.901

20 ResNet50 SGD False 128 [0.01, 0.003, 0.0009] 0.575 27.870

32 ResNet50 SGD True 128 [0.001, 0.0003, 9e-05] 0.658 29.182

58 ResNet50 Adam True None [0.0001, 3e-05, 9e-06] 0.779 30.011

24 ResNet50 SGD True None [0.01, 0.003, 0.0009] 0.616 31.649

16 ResNet50 SGD True 128 [0.01, 0.003, 0.0009] 0.536 34.324

12 ResNet50 SGD False None [0.1, 0.03, 0.009] 0.830 44.495

36 ResNet50 SGD False 128 [0.001, 0.0003, 9e-05] 0.517 45.463

57 VGG16 SGD True None [0.0001, 3e-05, 9e-06] 64.872 47.675

49 VGG16 SGD True 128 [0.0001, 3e-05, 9e-06] 62.804 49.207

40 ResNet50 SGD True None [0.001, 0.0003, 9e-05] 1.174 52.486

62 ResNet50 Adam False None [0.0001, 3e-05, 9e-06] 1.110 59.933

30 ResNet50 Adam False None [0.01, 0.003, 0.0009] >1000 69.145

52 ResNet50 SGD False 128 [0.0001, 3e-05, 9e-06] 0.842 79.702

60 ResNet50 SGD False None [0.0001, 3e-05, 9e-06] 3.872 79.801

48 ResNet50 SGD True 128 [0.0001, 3e-05, 9e-06] 22.422 81.286

44 ResNet50 SGD False None [0.001, 0.0003, 9e-05] 0.525 86.197

28 ResNet50 SGD False None [0.01, 0.003, 0.0009] 0.257 101.153

56 ResNet50 SGD True None [0.0001, 3e-05, 9e-06] 41.233 122.410

14 ResNet50 Adam False None [0.1, 0.03, 0.009] >1000 >1000

These models were trained on a computer with an i7-6850K CPU @ 3.60 GHz, 64

GB RAM and 4 GPUS 1080Ti, one/two of which were used for training. Each model

required roughly 35 minutes to train. As the convolutional part of the models were

not trained, the features (outputs of the last convolutional layer) could have been

cached to speed up training and reduce memory requirements. However, features

were not cached at this step of the development to simplify programming efforts

(this was possible because sufficient computational resources were available).

34

4.1 Model with the Lowest MSE

Model 35 attained the lowest validation MSE of 1.138 among all models. Figure 4.1

shows the log loss curves for model 35. The training loss rapidly reduces in the first

ten epochs and then slowly reduces in future epochs. The validation loss decreases

in the first epochs and mostly stalls until the final epoch.

0 10 20 30 40 50 60 70

Epoch

� 0.4

� 0.3

� 0.2

� 0.1

0.0

0.1

0.2

L
o

g
 l

o
s
s

t rain

validat ion

Model 35

Figure 4.1: Training and validation log loss curves for model 35. The log used is
base 10.

Figure 4.2 shows predictions for training and validation data. The daytime sound

pressure level values are higher than the sound pressure level values during night-

time. From frame 0 to frame 1180 of a daytime video, the base St level is around

14. From frames 1180 to 2400 of a night-time video, the base St level is roughly 12.

From frames 2400 to 3700 of a daytime video, the base St level is again around 14.

The model trained with input frames from daytime videos and night-time videos

correctly predicts base St values of a night-time validation video. This implies that

the model correctly identifies frames from night-time videos.

Figure 4.3 illustrates the prediction of model 35 in the validation data. The

network predicts average sound pressure values with correlation 0.607. It is capable

of following trending St samples. The network had worse performance during low

signal intensity intervals. It is possible that in spite of the significant differences

between the real St and the network prediction during low sound pressure intervals

(Figure 4.3, frames 3880 to 3940, among other intervals) the image had no recog-

nizable sound-generating objects throughout these intervals. Figure 4.3 shows that

35

0 1000 2000 3000 4000 5000

Fram e

10

12

14

16

A
v

e
ra

g
e

 s
o

u
n

d
 i

n
te

n
s
it

y

True St

Training St predict ion

Validat ion St predict ion

Model 35

Figure 4.2: Predictions of sound pressure level St for model 35 in training and
validation data. Sound pressure levels St can be converted to sound pressure levels
in dB through Equation 3.2.

in spite of label noise, the network learned correct maps between visual objects and

salient St values. The St values at frames 4800 and 4860 are largely missed by the

network. The corresponding video shows an event in which a bus breaks, which

happens outside of the camera view, creates the spike at 4800, then a motorbike

skids at 4860, and that causes the second spike at that time. As expected, it is not

possible to correctly infer St values in those cases, because the associated objects

are not present in the image.

4.2 Model GAP+FC with Lowest MSE

Model 27 has the lowest MSE among models with the GAP+FC structure. The

network attained an MSE of 1.196 and predicts sound pressure level values with

correlation 0.592. Figure 4.4 shows the training loss and validation loss over the

70 training epochs. The training loss rapidly decreases over the first 20 epochs and

then stalls until the first learning rate reduction at epoch 30. The validation loss

reduces after the first ten epochs then stops improving.

Figure 4.5 shows the predictions in training data and in validation data. This

model is also capable of discerning between daytime and night-time sound pressure

level values as it is seen from it correctly predicting the base St level in the validation

video 8. The detail of St predictions in Figure 4.5 shows a very similar overall result

to that of model 35. Trending levels of sound pressure level values are followed by

the model. However, the model fails to predict peaks at 4800 and 4860, similarly to

the result of model 35. Model 27 cannot correctly evaluate the St at these positions

either, since the corresponding audio-generating sources are not visible in the image

36

3800 4000 4200 4400 4600 4800 5000

Fram e

10

12

14

16

A
v

e
ra

g
e

 s
o

u
n

d
 i

n
te

n
s
it

y

True St

Predicted St

Model 35

Figure 4.3: Detail of the predictions in the validation data of model 35.

0 10 20 30 40 50 60 70

Epoch

� 0.4

� 0.3

� 0.2

� 0.1

0.0

0.1

0.2

L
o

g
 l

o
s
s

t rain

validat ion

Model 27

Figure 4.4: Training and validation log loss curves for model 27. The log used is
base 10.

37

0 1000 2000 3000 4000 5000

Fram e

10

12

14

16

A
v

e
ra

g
e

 s
o

u
n

d
 i

n
te

n
s
it

y

True St

Training St predict ion

Validat ion St predict ion

Model 27

Figure 4.5: Predictions of sound pressure level St for model 27 in training and
validation data.

itself.

4.2.1 Sound Source Detection

Model 27 contains the structure GAP+FC and that allows the application of CAMs

to visualize the regions in the image responsible for larger output values. This

allows the verification of the hypothesis that the network associates objects with

St values to correctly predict sound pressure level values. Figures 4.7 and 4.8 show

the visualization of the original frame in the left, the CAM in the middle and the

filtered CAM (DC) as the green channel of the image in the right. In Figure 4.7

the network clearly focuses on the bus to predict higher sound pressure level values

from this frame. In comparison, the cars in Figure 4.8 are lightly highlighted by

the CAM, with the addition of unwanted green spots around the image without any

clear relationship to the sound-generating objects. An example of the filtering result

in the DC is illustrated in Figure 4.7. Several regions in the CAM have similarly

high value, shown as a light green in the CAM visualization (image in the middle),

however the image in the right only highlights the CAM variations: the filtering

process removes fixed unwanted regions. When a car drives through the crossroad

(Figure 4.8) it is clear the network associates lower sound pressure level values to it if

compared to the bus based on the CAM visualization. This supports the hypothesis

that the network discriminates between objects in the image and also associates

specific objects with St values.

38

3800 4000 4200 4400 4600 4800 5000

Fram e

10

12

14

16

A
v

e
ra

g
e

 s
o

u
n

d
 i

n
te

n
s
it

y

True St

Predicted St

Model 27

Figure 4.6: Detail of the predictions in the validation data of model 27.

Frame:4015 Class Activation Map Filtered CAM

Model 27

Figure 4.7: A particularly good result: when a noisy bus drives trough the crossroad.

39

Frame:3748 Class Activation Map Filtered CAM

Model 27

Figure 4.8: A typical example: a car drives through the crossroad with unwanted
noisy spots around the image.

4.3 Model Validation

As model 35 had the lowest MSE among all models, it is chosen for cross-validation

using the folds specified in Table 3.2. The correlation and MSE results for each fold

are displayed at Table 4.2. The loss curves and predictions for the model within each

fold are found in the appendices. It is seen from Table 4.2 that the MSE over all folds

is lower than that the first training, where 64 models are present. It could be argued

that since the validation video in the first training was a single night-time video, it

is possible that it had less traffic. So the average number of frames without sound

generating objects is expected to be smaller. Therefore, the average contribution of

frames associated with lower sound pressure level values (more difficult to predict)

is reduced. No single model had both the lowest MSE and the highest correlation

simultaneously. The model from fold 1 is chosen as the best model from the 6 folds

for its relatively high correlation (above 0.64) and low MSE. This model is then

evaluated in the test set. In this stage of development, features were cached so

that allowed models to train in approximately 30 seconds each in a laptop with an

i7-6700HQ CPU @ 2.60 GHz, 16 GB of RAM and a GTX1060 3 GB.

Table 4.3 shows the correlations and MSE of the selected model from the fold

in the test set. Predictions in videos 4, 7 and 8 attained a correlation of roughly

0.6. Predictions in daytime videos are associated with lower MSE and predictions in

night-time videos are associated with higher MSE. Correlation in videos 12 and 14

are exceptionally low compared to overall results. Further investigation showed that

40

Table 4.2: Correlations and MSE for the validation in each fold. D1, D2, D3 are
the daytime videos 1, 2 and 3 respectively. N1 and N2 are night-time videos 5 and
6 respectively.

Fold Training set Validation set Correlation MSE

1 D1 D2 N1 D3 N2 0.649 0.721
2 D1 D3 N1 D2 N2 0.639 0.780
3 D2 D3 N1 D1 N2 0.651 0.796
4 D1 D2 N2 D3 N1 0.608 0.668
5 D1 D3 N2 D2 N1 0.615 0.694
6 D2 D3 N2 D1 N1 0.632 0.717

in these two videos a traffic warden constantly whistles loudly. Since that was not

present in the training set, the model cannot correctly predict the sound pressure

level values in this situation. This caused the correlation to be extremely lower in

these two videos if compared to the other three. To test whether the model could

learn to predict sound pressure level values if samples from videos with the traffic

warden were present in the training set, a new separate fold is created. This new

fold consists of videos 2, 5 and 14 in the training set and videos 6 and 12 in the

validation set. This new fold contains samples from one video with a traffic warden

in the training set (video 14) and samples from one video with a traffic warden in

the validation set (video 12). In spite of that, performance did not improve. The

correlation of the model predictions with the true sound pressure level values is 0.222

for video 12 and 0.629 for video 6. It is possible that the low input frame resolution

made it impossible to distinguish whether the traffic warden was about to move the

whistle to his mouth or not. Even then, there are moments in the video when the

traffic warden is in his back, so no information about sound generation is available

in the image. Other situations include moments when the traffic warden has the

whistle in his mouth but only produces sound sporadically, so no visual cues could

aid in sound pressure level prediction. These events may explain the low correlation

of the model output with samples from video 14 (in the test set) and with video 12

(in the test set and in the new fold).

The results are further validated with the Leq values with one minute time de-

pendency (in dB and with (t2− t1) = 1 minute converted from St values (not in dB,

computed with a 600 ms dependency) using Equation (1.1)). Leq trends are visibly

followed in Figure 4.10. In Figure 4.11, the predicted Leq and the true Leq resemble

a correlated linear relationship. This observation is confirmed by the correlation in

the test set visible in Table 4.4.

41

Table 4.3: Correlations and MSE for the model from fold 1 in the test set. Overall
correlation using the whole test set was 0.647.

Test set

Video Time Correlation MSE

4 day 0.602 0.625
7 night 0.602 1.127
8 night 0.594 1.311
12 day 0.272 0.920
14 day 0.207 0.575

0 1000 2000 3000 4000 5000

Frame

10

11

12

13

14

15

16

17

S
ou
n
d
P
re
ss
u
re

L
ev
el

True St

Predicted St

Figure 4.9: Predictions for model from fold 1 in the test set. True St are in black and
predictions are in red. The dotted lines separate sections from each video. Videos
are in order 4, 7, 8, 12 and 14.

Table 4.4: Correlations for model from fold 1 in the test set with Leq with time
interval equal to one minute converted. Correlation using the whole test set was
0.844.

Test set

Video Time Correlation MSE

4 day 0.630 8.186
7 night 0.651 5.103
8 night 0.715 6.785
12 day 0.255 9.182
14 day 0.124 2.739

42

0 20 40 60 80

time (min)

54

56

58

60

62

64

66

68

True Leq (dB)

Predicted Leq (dB)

Figure 4.10: The dotted lines separate sections from each video. Videos are in order
4, 7, 8, 12 and 14.

43

52 54 56 58 60 62 64 66 68

True Leq (dB)

56

58

60

62

64

66

P
re
d
ic
te
d
L
e
q
(d
B
)

video 4

video 7

video 8

video 12

video 14

Figure 4.11: Relationship between the predicted Leq and true Leq (computed with
t2 − t1 = 1 minute)

44

Chapter 5

Conclusion

Models 35 and 27 were able to follow trends in sound pressure level values. This

occurred in spite of challenges in the dataset such as occasionally high St values

without corresponding sound-generating sources within the frame. The performance

of the two networks was compared and both predicted St values similarly. Model

27 in particular allowed the use of CAM to visualize image regions responsible for

large network outputs. The CAM had to be temporally filtered so that changes that

detect sound sources are observable. It was done by computing an online average

CAM that was subtracted from the unprocessed CAM. This result was multiplied

by a gain, upsampled to 240× 240 by nearest neighbor interpolation and set as the

green channel of the video frame. That produced a visualization where bright green

spots represent the detection of a source. Finally, that helped us verify that the

network predicts sound pressure by associating objects to St values. The training

settings of model 35 were repeated for six folds and the best of those models was

evaluated on the test set. This best model attained a correlation of approximately

0.6 in three of the videos and correlations of 0.272 and 0.207 in the other two.

The low correlations in the two videos was associated with a traffic warden that

constantly whistles: a characteristic not present in the training data of any of the

videos used in the six folds. To try to predict St values in this situation, a new fold

was created with three videos in the training set and two videos in the validation

set. The training set contained one video with the traffic warden and the validation

set contained one video with the traffic warden. In spite of that, the model was

not capable of following trending St values in this situation. A final evaluation of

the model was done with a longer term version of the sound pressure, a Leq with a

one minute time interval. This resulted in a correlation of 0.844 in Leq estimation

when all test videos are used. This indicates that estimation of longer term sound

pressure levels is less sensitive to sporadic noise in the dataset.

45

5.1 Future Work

A possible development could be to use models capable of exploiting characteristics

of audio and video signals. CNN+LSTM [27] models could be trained with knowl-

edge of the temporal nature of the signals so that predictions would produce that

type of behavior. For example, it is expected that a bus that is not moving would

produce less sound pressure than a moving bus, so temporal information could be

crucial for sound pressure prediction. In addition, a more general version of CAM

could be applied to source detection. GradCAM [20] allows visualization of image

regions responsible for the network outputs for more general models. In contrast to

CAM, gradCAM does not require a network with GAP+FC after the last convolu-

tional layer. In fact, gradCAM can localize image regions relevant to classification

even in more complex models such as CNN+LSTM [20].

Another method to predict sound pressure levels could be to apply pretrained

object detection networks such as YOLO [8] or Faster-RCNN [7] to initially count

the number of buses, trucks, cars and motorbikes in the frame. The number of each

vehicle could be represented as elements of a vector. This vector could then be

used as input to a linear regression problem to predict sound pressure levels. This

approach could also provide insights into the amount of sound pressure produced by

each individual type of vehicle: vehicles associated with larger weights in the linear

regression solution would be associated with larger predicted sound pressure level.

More specifically, the linear regression weights would represent the amount of sound

pressure expected per type of vehicle observed (plus bias).

This work could also be expanded by using online optimization methods in the

learning scheme to detect audio sources. In the case of models one and three in

Figure 3.4, if the parameters of the convolutional layers are not updated by the

optimization algorithm, then the convolutional network acts as a function without

trainable parameters applied to data. The training of parameters in further FC

layers are blind to this function application. If f is the function applied by the

convolutional part of a network with an image input x, then:

x′ = [f(x) 1], (5.1)

i.e. x′ is a function of the convolutional layers flattened to a vector and with a

one concatenated at the end. In this situation, the optimization problem may be

formulated as:

minimize
θ

1

N

∑
n

∥∥θtx′n − yn∥∥22 , (5.2)

where θ represents all the FC parameters (including bias as the last element), yn

is the n-th target and xn is the n-th input. Equation (5.2) is a convex problem,

46

so parameters θ could be updated online with convergence guarantees by using

upcoming frames and audio data. This could enhance the sound source detection

with CAM by adaptively updating the FC parameters. A possible downside would be

the susceptibility to inconsistent inputs such as when there are high sound pressure

level samples measured without the corresponding object in the image itself. The

model would learn from bad data and that would likely worsen prediction for new

inputs. As a suggestion, the problem of inconsistent inputs could be mitigated by

comparing the prediction of a parallel pretrained offline model to the current sound

pressure level sample. If the prediction error of the parallel pretrained model is

above some threshold, then it could be assumed that the audio source is not within

the image itself and the update of the online model could cease until the error

lowered. However, this would affect the long term capacity of the model to adapt.

For example if the true sound pressure base level changes to an offset largely different

from that of the data where the offline model was trained, any small audio change

could trigger the threshold and cease adaptation. To overcome this issue, the offline

and online models could be trained to predict not the absolute sound pressure level

value, but a delta between the previous sound pressure level sample and the current

sound pressure level sample.

47

Bibliography

[1] STANSFELD, S. A., MATHESON, M. P. “Noise pollution: non-auditory effects

on health”, British Medical Bulletin, v. 68, n. 1, pp. 243–257, dez. 2003.

doi: 10.1093/bmb/ldg033. Dispońıvel em: <https://doi.org/10.1093/

bmb/ldg033>.

[2] SØRENSEN, M., ANDERSEN, Z. J., NORDSBORG, R. B., et al. “Road Traffic

Noise and Incident Myocardial Infarction: A Prospective Cohort Study”,

PLoS ONE, v. 7, n. 6, pp. e39283, jun. 2012. doi: 10.1371/journal.pone.

0039283. Dispońıvel em: <https://doi.org/10.1371/journal.pone.

0039283>.

[3] W. EVANS, G., LEPORE, S. “Nonauditory Effects of Noise on Children: A

Critical Review”, Children’s Environments, v. 10, pp. 31–51, 01 1993.

doi: 10.2307/41515250.

[4] “California Penal Code paragraph 632”. jan. 2017. Dispońıvel em: <https:

//leginfo.legislature.ca.gov/faces/codes_displaySection.

xhtml?lawCode=PEN§ionNum=632.>. Accessed 23 April 2019.

[5] KRIZHEVSKY, A., SUTSKEVER, I., E. HINTON, G. “ImageNet Classification

with Deep Convolutional Neural Networks”, Neural Information Process-

ing Systems, v. 25, 01 2012. doi: 10.1145/3065386.

[6] HE, K., ZHANG, X., REN, S., et al. “Deep Residual Learning for Image Recogni-

tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). IEEE, jun. 2016. doi: 10.1109/cvpr.2016.90. Dispońıvel

em: <https://doi.org/10.1109/cvpr.2016.90>.

[7] REN, S., HE, K., GIRSHICK, R., et al. “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks”, arXiv preprint

arXiv:1506.01497, 2015.

[8] REDMON, J., FARHADI, A. “YOLOv3: An Incremental Improvement”, arXiv,

2018.

48

https://doi.org/10.1093/bmb/ldg033
https://doi.org/10.1093/bmb/ldg033
https://doi.org/10.1371/journal.pone.0039283
https://doi.org/10.1371/journal.pone.0039283
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=632.
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=632.
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=632.
https://doi.org/10.1109/cvpr.2016.90

[9] RONNEBERGER, O., FISCHER, P., BROX, T. “U-Net: Convolutional Net-

works for Biomedical Image Segmentation”. 2015.

[10] KUMAR, P., NIGAM, S., KUMAR, N. “Vehicular traffic noise model-

ing using artificial neural network approach”, Transportation Research

Part C: Emerging Technologies, v. 40, pp. 111–122, mar. 2014. doi:

10.1016/j.trc.2014.01.006. Dispońıvel em: <https://doi.org/10.1016/

j.trc.2014.01.006>.

[11] LEONARDI, G., CIRIANNI, F. “Artificial neural network for traffic noise

modelling”, ARPN Journal of Engineering and Applied Sciences, v. 10,

12 2015.

[12] ISOLA, P., ZHU, J.-Y., ZHOU, T., et al. “Image-to-Image Translation with

Conditional Adversarial Networks”. 2016.

[13] GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M., et al. “Generative

Adversarial Networks”. 2014.

[14] SIMONYAN, K., ZISSERMAN, A. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”, CoRR, v. abs/1409.1556, 2014.

[15] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. http:

//www.deeplearningbook.org, MIT Press, 2016.

[16] CHOLLET, F., OTHERS. “Keras”. https://keras.io, 2015.

[17] LIN, M., CHEN, Q., YAN, S. “Network In Network”. 2013.

[18] HUANG, G., LIU, Z., VAN DER MAATEN, L., et al. “Densely Connected

Convolutional Networks”. 2016.

[19] ZHOU, B., KHOSLA, A., A., L., et al. “Learning Deep Features for Discrimi-

native Localization.” CVPR, 2016.

[20] SELVARAJU, R. R., COGSWELL, M., DAS, A., et al. “Grad-CAM: Visual Ex-

planations from Deep Networks via Gradient-based Localization”. 2016.

[21] RUSSAKOVSKY, O., DENG, J., SU, H., et al. “ImageNet Large Scale Vi-

sual Recognition Challenge”, International Journal of Computer Vision

(IJCV), v. 115, n. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[22] GOYAL, P., DOLLR, P., GIRSHICK, R., et al. “Accurate, Large Minibatch

SGD: Training ImageNet in 1 Hour”. 2017.

49

https://doi.org/10.1016/j.trc.2014.01.006
https://doi.org/10.1016/j.trc.2014.01.006
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://keras.io

[23] YOU, Y., ZHANG, Z., HSIEH, C.-J., et al. “ImageNet Training in Minutes”.

2017.

[24] LIN, T.-Y., MAIRE, M., BELONGIE, S., et al. “Microsoft COCO: Common

Objects in Context”. 2014.

[25] “FFmpeg A complete, cross-platform solution to record, convert and stream

audio and video.” https://ffmpeg.org/, 2019. Accessed: 2019-05-10.

[26] “Python programming language”. https://www.python.org/, 2019. Accessed:

2019-05-10.

[27] HOCHREITER, S., SCHMIDHUBER, J. “Long Short-Term Memory”, Neural

Computation, v. 9, n. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.

9.8.1735. Dispońıvel em: <https://doi.org/10.1162/neco.1997.9.8.

1735>.

50

https://ffmpeg.org/
https://www.python.org/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Appendix A

Loss curves for the models in

cross-validation

Figure A.1: Training and validation log loss curves in the fold 1.

51

Figure A.2: Training and validation log loss curves in the fold 2.

Figure A.3: Training and validation log loss curves in the fold 3.

52

Figure A.4: Training and validation log loss curves in the fold 4.

Figure A.5: Training and validation log loss curves in the fold 5.

53

Figure A.6: Training and validation log loss curves in the fold 6.

54

Appendix B

Predictions of the models in

cross-validation

Figure B.1: Predictions of sound pressure level St in fold 1. The validation part of
this fold contains frames from videos 3 and 6.

55

Figure B.2: Predictions of sound pressure level St in fold 2. The validation part of
this fold contains frames from videos 2 and 6.

Figure B.3: Predictions of sound pressure level St in fold 3. The validation part of
this fold contains frames from videos 1 and 6.

56

Figure B.4: Predictions of sound pressure level St in fold 4. The validation part of
this fold contains frames from videos 3 and 5.

Figure B.5: Predictions of sound pressure level St in fold 5. The validation part of
this fold contains frames from videos 2 and 5.

57

Figure B.6: Predictions of sound pressure level St in fold 6. The validation part of
this fold contains frames from videos 1 and 5.

58

