

EVALUATION OF MACHINE LEARNING CLASSIFIERS IN ORDINAL

MULTICLASS FAKE NEWS DETECTION SCENARIO

Igor Bichara de Azeredo Coutinho

Dissertação de Mestrado apresentada ao Programa

de Pós-Graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre em

Engenharia de Sistemas e Computação.

Orientadores: Carlos Eduardo Pedreira

 Geraldo Bonorino Xexéo

Rio de Janeiro

Novembro de 2019

EVALUATION OF MACHINE LEARNING CLASSIFIERS IN ORDINAL

MULTICLASS FAKE NEWS DETECTION SCENARIO

Igor Bichara de Azeredo Coutinho

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

 Prof. Carlos Eduardo Pedreira, Ph.D.

 __

 Prof. Priscila Machado Vieira Lima, Ph.D.

__

 Prof. Carla Amor Divino Moreira Delgado, D.Sc

RIO DE JANEIRO, RJ – BRASIL

NOVEMBRO DE 2019

iii

Coutinho, Igor Bichara de Azeredo

Evaluation of Machine Learning Classifiers in Ordinal

Multiclass Fake News Detection Scenario/Igor Bichara de

Azeredo Coutinho – Rio de Janeiro: UFRJ/COPPE, 2019.

XI, 58 p.: il.; 29,7 cm.

Orientadores: Carlos Eduardo Pedreira

 Geraldo Bonorino Xexéo

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2019.

 Referências Bibliográficas: p. 51-58.

1. Fake News Detection. 2. Ordinal Classification. 3.

Fake News Feature Extraction. I. Pedreira, Carlos Eduardo

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

Título.

iv

À minha família e amigos.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

AVALIAÇÃO DE CLASSIFICADORES DE APRENDIZADO DE MÁQUINA EM

CENÁRIO MULTICLASSE DE DETECÇÃO DE FAKE NEWS

Igor Bichara de Azeredo Coutinho

Novembro/2019

Orientadores: Carlos Eduardo Pedreira

 Geraldo Bonorino Xexéo

Programa: Engenharia de Sistemas e Computação

Essa dissertação tem como objetivo avaliar classificadores de aprendizado de

máquina e suas técnicas no problema de detecção de fake news. Algoritmos preditivos

nesse contexto podem produzir resultados diferentes de acordo com a variância da

rotulação de datasets causada pela ambiguidade e subjetividade da semântica textual.

O dataset LIAR foi utilizado nos experimentos desta dissertação. Este dataset foi

criado a partir de dados da agência de checagem de fatos PolitiFact que consiste em

rótulos com 6 classes ordinais que por sua vez posicionam as declarações políticas no

intervalo entre completamente falsa e completamente verdadeira. O experimento original

do autor do dataset alcançou 27.4% de acurácia usando redes neurais híbridas com

camadas convolucionais CNN e recorrentes LSTM bidirecionais.

A contribuição principal deste trabalho consiste na avaliação de classificadores

mais simples usando diferentes técnicas de pré-processamento e seleção de atributos.

Além disso, o trabalho explora a natureza ordinal das classes usando um método

ensemble de classificadores binários já estabelecido na literatura.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

EVALUATION OF MACHINE LEARNING CLASSIFIERS IN ORDINAL

MULTICLASS FAKE NEWS DETECTION SCENARIO

Igor Bichara de Azeredo Coutinho

November/2019

Advisors: Carlos Eduardo Pedreira

 Geraldo Bonorino Xexéo

Department: Systems and Computing Engineering

This thesis intends to explore machine learning classifiers and techniques to

address the problem of fake news detection. Prediction algorithms can generate different

results in this problem due to variance in dataset labeling caused by ambiguity and

subjectivity of semantic text.

The LIAR Dataset was used in the experiments of this thesis. This dataset derived

from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling

that places political statements in the range between completely false and completely true

statements. The original experiment that created the dataset achieved 27.4% class

accuracy using hybrid CNN and Bi-Directional LSTM networks.

The main contribution of this work consists of evaluating simpler classifiers

focusing on using different preprocessing and feature selection techniques when

modeling metadata and text features. Furthermore, this work explores the ordinal

characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble

method already established in the literature.

vii

Summary

Figure List.. ix

Table List .. x

1 Introduction ... 1

1.1 The Problem ... 1

1.2 False Information Locations .. 4

1.3 Fake news characteristics ... 6

2 Methodology ... 8

2.1 Text Feature Selection Techniques .. 8

2.2 Dimensionality Reduction ... 10

2.3 Text-Oriented Classification Algorithms ... 10

2.4 Ordinal Classification Formulations .. 11

3 The experiments .. 13

3.1 LIAR Dataset ... 13

3.2 Programming Ecosystem ... 15

3.3 Feature Engineering ... 16

3.3.1 Text Features Representation ... 16

3.3.2 Statement Text Cleaning .. 17

3.3.3 TF-IDF Weighting .. 18

3.3.4 Metadata Features Representation ... 18

3.3.5 Feature Matrices Used: Different Dimensionality Reduction Techniques .. 20

3.4 Machine Learning Classification ... 23

3.4.1 Hyperparameter Tuning ... 23

3.4.2 Modeling as an Ordinal Classification ... 24

3.4.3 Evaluation Metric for Ordinal Classification ... 26

4 Results ... 28

4.1 Data Insights .. 28

4.1.1 False Information History Features .. 28

4.1.2 Feature Matrix 1: Data Insights .. 30

4.1.3 Feature Matrix 2: Data Insights .. 32

4.1.4 Feature Matrix 3: Data Insights .. 34

4.2 Single Classifiers ... 36

4.2.1 Grid Search Results .. 37

viii

4.2.2 NCA Classifier: Results ... 38

4.3 Ordinal Binary Ensemble ... 39

4.3.1 Grid Search Results .. 39

4.3.2 NCA Ordinal Classifier: Results .. 45

5 Discussion ... 46

5.1 Dataset Considerations... 46

5.2 Feature Selection Insights .. 47

5.3 Classifiers’ Performance and Ordinal Formulation ... 47

5.4 Fuzzy Interpretation ... 49

6 Conclusions ... 49

7 References ... 51

ix

Figure List

Figure 1 – Percentage of each age group who often get news on each platform: Pew

Research Center Survey of U.S. adults. Jul30 - Aug12, 2018 .. 2

Figure 2 – Number of fact-checking organizations in the last years 3

Figure 3 – False election campaign image in Brazil .. 5

Figure 4 – Photo of Hillary Clinton stumbling was used to suggest health issues 5

Figure 5 - Text Feature to Output Absolute Correlations ... 22

Figure 6 – Metadata Feature to Output Absolute Correlations 22

Figure 7 - Text feature to feature correlations .. 22

Figure 8 - Metadata feature to feature correlations .. 22

Figure 9 – Ordinal sample error smoothing based on confusion matrix 26

Figure 10 - All Features including History Features .. 29

Figure 11 - Only History Features .. 29

Figure 12 - T-SNE 2D Visualizations for FM1 .. 30

Figure 13 - T-SNE 2D Visualizations for FM2 .. 32

Figure 14 - T-SNE 2D Visualizations for FM3 .. 35

x

Table List

Table 1 – Rising numbers scientific papers addressing fake news 4

Table 2 – Simple fake news breakdown ... 6

Table 3 – Types of fake news by Claire Wardle .. 7

Table 4 - Basic Liar Dataset Information ... 13

Table 5 - Dataset Classes Distribution ... 14

Table 6 - Features of example rows .. 15

Table 7 - Experiment Libraries Usage .. 16

Table 8 - Example of tokens representation in a text statement 17

Table 9 - Text cleaning techniques used .. 18

Table 10- Metadata Features after Categorization/Binarization 19

Table 11 - State, Affiliation and Context fixed categories ... 20

Table 12 - Dimensionality Reduction for the three feature matrices used 21

Table 13 - Ordinal class labels on a scale ... 21

Table 14 - Algorithm Exploration and Hyperparameter Tuning 24

Table 15 - 5 binaries classifiers for a 6-class classification problem 25

Table 16 - Convergence of Binary Classifiers Probabilities .. 25

Table 17 - Label History Features .. 28

Table 18 – T-SNE 2D Visualizations for History Features .. 29

Table 19 - Single Classifier Classification Results for History Features Only 30

Table 20 - Dimensionality Reduction of FM1 during preprocessing and feature selection

 .. 31

Table 21 - Most correlated metadata features. Negative indicates truth bias while

positive indicates false bias (Table 13)... 31

Table 22 - Most correlated text features. Negative indicates truth bias while positive

indicates false bias (Table 13) .. 32

Table 23 - Dimensionality Reduction of FM2 during preprocessing and feature selection

 .. 33

Table 24 - SVD Explained Variance for FM2 .. 33

Table 25 - Most Represented Metadata Features with SVD on FM2 34

Table 26 - Most Represented Text Features with SVD on FM2 34

xi

Table 27 - Dimensionality Reduction of FM3 during preprocessing and feature selection

 .. 35

Table 28 - SVD Explained Variance for FM3 .. 36

Table 29 - Most Represented Text Features with SVD on FM3 36

Table 30 - Single Classifier Classification Results for FM1 .. 37

Table 31 - Single Classifier Classification Results for FM2 .. 37

Table 32 - Single Classifier Classification Results for FM3 .. 38

Table 33 - NCA Classification Results for FM1 .. 38

Table 34 - NCA Classification Results for FM2 .. 38

Table 35 - NCA Classification Results for FM3 .. 39

Table 36 - Ordinal hyperparameter tuning for each binary classifier using FM1 40

Table 37 - Ordinal Ensemble Classification Results for FM1.. 41

Table 38- Ordinal hyperparameter tuning for each binary classifier using FM2 42

Table 39 - Ordinal Ensemble Classification Results for FM2.. 43

Table 40- Ordinal hyperparameter tuning for each binary classifier using FM3 44

Table 41 - Ordinal Ensemble Classification Results for FM3.. 45

Table 42 - Poor Results for Ordinal Ensemble with NCA Classifier 45

1

1 Introduction

This work intends to explore machine learning techniques to tackle the fake news

detection scenario focusing on its major underlying complications: ambiguity and

subjectivity. Machine learning classifiers have achieved different results varying

according to dataset subject, dataset labeling methods and, of course, the context in which

the statement was captured.

The experiments of this work used the LIAR Benchmark Dataset [1]. This dataset

will be described in detail further on and it has six ordinal labels of truth. It is important

to notice that evaluating a multilabel ordinal classifier just by its accuracy can be

misleading [2]. Appropriate ordinal formulations are expected to perform better in

problems with high ambiguity such as misinformation detection. One of such

formulations is well established in the literature [3] and will be better explained in section

3.4.2.

The experiments intend to support answers to the following questions:

1. How can simpler machine learning algorithms perform in the fake news

detection problem compared to LSTM Networks, which are commonly placed

as state-of-art for text classification?

2. How does an ordinal formulation improve classification results in an ordinal

multiclass classification problem?

1.1 The Problem

Detection of fake news is now a common research topic that has emerged due to their

impact on society. The digital transformation changed the way people consume news

articles. Researches in the U.S. [4] showed that consumption of news through social

media already surpassed the consumption via print newspaper. From 2016 to 2018, the

users who often consumed news in websites raised from 28% to 33%; social media

numbers went from 18% to 20%; print newspapers fell from 20% to 18%. The same

studies, depicted in Figure 1, show that, for young adults (18-29 years old), social media

is the dominating platform.

2

Figure 1 – Percentage of each age group who often get news on each platform: Pew

Research Center Survey of U.S. adults. Jul30 - Aug12, 2018

It is common for most social media users to comment daily news online, exposing

their personal point of view. Others may only inform themselves in social networks,

spreading these comments even further. For most people who are not public figures,

shared information has very little compromise with the truth. However, even satires or

personally biased comments about news can be a polarizing factor in social media. A

particular misinformation can fall into different categories of fake news. Those categories

are discussed in in section 1.3.

When discussing politics, or mostly any conflicting subject, it is common for the

opinions to diverge and polarize. Studies show [5] that people pay more attention to media

that share their beliefs. This effect is inflated further by personalizing algorithms, or

“media bubbles”. In the context of social media posts, people are more influenced by

opinions that they agree with, while the opposite opinions, although present, draw much

less attention.

 With society polarized into extremes, it becomes easier for ill-intended people to

take advantage and feed the social networks with biased news. In that context, the story

does not need to be true to get attention.

 Some studies support [6] that the results of the 2016 USA`s presidential election

were influenced by the amount of misinformation present on social networks. The

election was characterized by an abundance of fabricated content, mostly partisan biased

towards one way or the other. Similarly, the elections in Brazil [7] and India [8] were also

marked by fake stories going viral on social networks and chat apps. These phenomena

3

have increasingly caught the attention of news agencies, broadcasters, media companies

in general, as well as the scientific community.

According to The Reporter`s Lab at Duke University [9], fact-checking has grown

consistently from 2014 to 2018, which is depicted in Figure 2. The number of

organizations has risen from 44 to 149 in a steady pace. Elections and politics in general

are the biggest concern of these organizations.

Figure 2 – Number of fact-checking organizations in the last years

Fact-checking agencies have been making partnerships with social network

corporations to help addressing the spread of fake news. Facebook, for instance, lets users

flag content as false and submits such content to professional fact-checkers [10]. In case

false information is confirmed, its ranking in the News Feed is significantly penalized.

This feature reduced the natural spread of false content by 80% in the USA [11]. It is also

functional in Brazil with the help of Aos Fatos and Agência Lupa organizations. Recently,

similar features were integrated to Instagram app as well. Facebook has also been banning

inauthentic accounts that spread political misinformation [12], usually secretly linked to

organizations or political parties that benefit from it. Similarly, Twitter has been taking

measures against bot accounts [13] that increase the exposure of low-credibility stories

by exploiting high influence users, either mentioning them or commenting on their posts.

The scientific community has also risen its eyes to the issue. A simple search for

“fake news, false news or inaccurate news” on IEEE Xplore returns an increasing number

of papers published after 2016. Those numbers, shown in Table 1, also serve as additional

evidence that the aftermath of USA Presidential Elections was alarming.

4

Table 1 – Rising numbers scientific papers addressing fake news

Year Number of IEEE Explore Papers

2012 1

2013 1

2014 2

2015 1

2016 0

2017 32

2018 71

2019 (Jan-Sep) 64

Great part of those papers comes from the Computer Science field and

experiments with text datasets creating machine learning classifiers to predict false

content. Some others [14] are less optimistic and place the misinformation problem as a

task for both human and machine to solve together. There are also some studies [15] that

consider using new technologies like Blockchain to fight the problem in a different way.

1.2 False Information Locations

The information flowing through internet chats and social network is usually composed

of not only text but also audio, image and video. A study detailed this effect further [16],

calling it a “truthiness” effect. The experiments suggest that people tend to process

photos, even nonprobative ones, as pseudo-evidence to support claims.

 It is very alarming to see some images edited digitally or just taken completely

out of context to spread false information [17]. Some cases, however, have the potential

to cause great impact. As an example, in Brazil’s 2018 Presidential Election, the image

shown in Figure 3 included the former president Lula, that had big public approval rate,

with the voting number of the opposing candidate Bolsonaro.

5

Figure 3 – False election campaign image in Brazil

 In the USA, a photo of the 2016 presidential candidate Hillary Clinton, shown in

Figure 4, was taken out of context to suggest her health was failing. In reality, she was

just being aided after stumbling as she climbed the steps.

Figure 4 – Photo of Hillary Clinton stumbling was used to suggest health issues

 Image editing and fabrication is a common thing these days. Criticism and

common sense have been more carefully used by viewers to judge the truthiness of an

image. However, with the advances of Deep Learning, fabricating misleading audio and

video has become easier.

 Manipulating video is nothing new for the cinema industry. However, doing that

using traditional methods took time, skill and money. With the increasing advances of

techniques such as Deepfake [18], anyone could create false audios or videos once the

algorithm is trained. That means having any face appear, say or do anything in a video

without that person actually doing any of those things. Even though CNN experts argue

6

that the technology is not yet sophisticated enough [18], they worry the doubt alone is

already enough to alter trust in audio and video for good.

 Even though this work focuses its efforts in modeling false information detection

using text, it is important to remark the convincing power that image, audio and video

have when it comes to altering information’s trust.

1.3 Fake news characteristics

Humans receive and interpret information in different ways making it difficult to model

the problem of misinformation in a systematic way. In a learning problem, the patterns

are captured from the data. Results will be poor if the model is fitting biased data [19].

 In the polarized environment of the web, it has become increasingly harder to

identify false from real news. The term “fake news” has become a tool or weapon for

anyone to use against contradictory opinions or stories [20]. Adding to that, an

experimental study from the University of Texas [21] has concluded that simply exposing

the reader to the term “fake news” in a story`s comments reduces the accuracy of

identifying real news.

 With the intention of exploring the actual meaning of the term “fake news”, Claire

Wardle wrote an article [22] identifying the different types of misinformation and

disinformation. They are described below in Table 2.

Table 2 – Simple fake news breakdown

Misinformation Inadvertent sharing of false information

Disinformation
Deliberate creation and sharing of

information known to be false

 The same article also presents the 7 types of misinformation in Table 3 that

follows. They are categorized according to their intentions and potential to deceive

people. Even though they sit on an increasing scale in terms of false content, the borders

between categories can be subjective and ambiguous.

7

Table 3 – Types of fake news by Claire Wardle

Satire or Parody
No intention to cause harm but has

potential to fool

False Connection
When headlines, visuals or captions don’t

support the content

Misleading Content
Misleading use of information to frame

an issue or individual

False Context
When genuine content is shared with

false contextual information

Impostor Content When genuine sources are impersonated

Manipulated Content
When genuine information or imagery is

manipulated to deceive

Fabricated Content
New content is 100% false, designed to

deceive and do harm

 The choice of the LIAR dataset for the experiments of this work was supported

by this definition of the problem of fake news. The dataset labels of each statement follow

an ordinal scale which could just as well be adapted to the same 7 types described in Table

3.

8

2 Methodology

Automatic machine learning fake news detection is still a work in progress and there is

plenty of different angles the problem can be addressed from. Despite that, some

conclusions appear very consistently when trying to detect misinformation. This section

will briefly cover these commonly used techniques when approaching text fake news

detection with machine learning. It will also introduce the methods from the literature

applied to the experiment of section 3 when modeling the fake news detection in an

ordinal manner.

Recent studies seem to agree that a rough distinction between true and false is

unrealistic and their framework relies in multiple levels of “fakeness” [23]. Another very

important concept in any machine learning algorithm but particularly problematic in fake

news context is avoiding dataset bias [24]. Most fake news datasets are still under

construction or are restricted to a specific time and subject and huge bias can be

introduced when using them outside their domain. That is also true when it comes to the

LIAR dataset, since its data is restricted to politics and its metadata could not be used

outside this context.

Another survey on fake news detection [25] remarked the importance of image

content in deceiving readers. The same survey listed some of the available and popular

fake news datasets showing that most of them still mainly use text features. For this

reason, text feature extraction techniques are still of major importance in this type of

algorithms.

2.1 Text Feature Selection Techniques

Numerical inputs are more usual in machine learning classifiers. One iconic and famous

dataset is the Boston Housing Prices dataset [26]. In this dataset, for example, the features

are a vector of numerical information such as number of rooms, size or neighborhood

crime rate. These features can be normalized and fed to a classifier directly. With image

features, the MNIST dataset [27], a dataset of handwritten digits, the features fed to the

classifier are usually the pixels` luminance value flattened in a vector. Slightly more

complex image features can be used, such as color histogram, contrast or edge

information.

Text features also need to be converted to numerical vector information and there are

numerous well-established techniques to derive valuable information from text data. With

9

the increasing use of text as features for machine learning classifiers, fields like

Information Retrieval, Information Extraction and Natural Language Processing blended

together as tools for text feature extraction. Even though their borders can be blurred they

can be defined independently [28].

The most trivial way used to represent text in numerical form is by the frequency of

words. This classic type of model is called bag-of-words [29] and can evolve in terms of

complexity. It can be as simple as using binary presence of words as features or more

complex such as calculating a sentence vector feature by averaging n-gram [30] features

together [31].

 A usual way to apply the bag-of-words model is to use TF-IDF [32] weighting to

score the words or n-grams in each document. This way, frequent terms contribute

positively to its relevance in a document while terms that are too ordinary in the collection

contribute negatively. Even though the result is a high-dimensional sparse feature matrix,

it can still be used for classification after applying proper dimensionality reduction

techniques [33]. TF-IDF is frequently used to calculate similarities between texts by

comparing its feature tokens scores. One recent example of such applications is detecting

relevant video events using closed caption and video synopsis [34]. Examples of python

programming libraries implementing TF-IDF are Scikit-Learn [35] and Gensim [36].

 A different, popular and effective way to vectorize text is word embeddings [37].

With this approach, the result is a dense low dimensional vector carrying the semantic

context information of the term. Along with LDA [38] it became a widely used tool for

Topic Modeling [39] applications. The experiment that gave birth to the LIAR Dataset

[1] uses word embeddings to represent the text features. Another recent example is the

tool called FakerFact [40] which uses embeddings and neural networks addressing one

small piece of the text at a time detecting characteristics that might suggest false

information such as sensationalism, satire and personal opinion. Gensim library has word

embeddings model implemented, including the extension Doc2Vec [41] capable of

producing vectors for whole sentences or paragraphs.

 Apart from the words, the text also has a few other characteristics to offer as

features. It is possible to expose the entities of the text to a classifier using Named Entity

Recognition [42]. Additionally, the part-of-speech tagging distribution can provide hints

on the text style and therefore be useful as a feature in fake news classification [43]. All

these text feature extractions are well established and can be applied by NLP libraries

such as nltk [44] or spacy [45].

10

2.2 Dimensionality Reduction

The way text is represented as a vector defines its dimensionality and therefore, some of

these methods are also a dimensionality reduction technique. LDA for example

transforms a large vocabulary vector space into a new space based on its latent topics.

Doc2Vec can produce a low dimensional vector trained with context words. On the other

hand, when text representation is high dimensional, such as in the case of bag-of-words,

additional dimensionality reduction is required for classification algorithms to be feasible.

 Correlation based feature selection [46] is a commonly used to extract the most

correlated features with the output classes while uncorrelated with another feature. Latent

Semantic Indexing, a traditional text dimensionality reduction method, applies the

concept of Principal Component Analysis [47] to text, using SVD [48] to cluster

semantic-related terms together in principal latent components, reducing dimensionality.

 Particular domain knowledge of text data can be used along with what’s called

corpus geometry in [49] to reduce dimensionality of text in order to visualize it in 2D or

3D. T-SNE technique [50] uses random walks to map each datapoint to a two or three-

dimensional map and is also widely used to visualize high dimensional data in general. A

similar technique is Neighborhood Component Analysis [51], performing an n-

dimensional transformation, with n being as low as wanted, such that neighborhood

classification performs well.

 Here, we opted for reducing the dimensionality of the feature matrix in three

different ways and compare its results.

2.3 Text-Oriented Classification Algorithms

Simple classifiers such as Decision Trees, SVMs or KNNs can be applied to predict the

classes of texts after they have been modeled into feature vectors appropriately. This will

be the approach of this work to evaluate both ordinal class and non-ordinal class

formulations.

 However, some neural network architectures have proved to be more efficient

when applied to text classification. Recurrent Neural Networks have increased in

popularity with the advances in deep learning. Their architecture is designed to deal with

sequential data, in this case, words or characters representations. The inputs go through

the layers of the network along with the memory of inputs fed to the network in the past

[52]. This way, the algorithm is fed context data intrinsically. A particular type of RNN

called Long Short-Term Memory Networks, or LSTM Networks, can handle a longer

11

history of memory inputs being used in each layer prediction [53]. LSTM Networks are

broadly used in text classification algorithms, including fake news detection [54] [55].

Many of those researches, including the original LIAR work [1], use

Convolutional Neural Networks layers together with LSTMs when modeling text

classifiers. Traditionally used in image classification, CNNs [56] have the power of

producing features that take position into consideration, since they convolute through the

data in each convolutional layer. In both CNN and LSTM models, including hybrid

networks, attention mechanism [57] is used to capture dependencies between each feature

pairs reducing ambiguity in subsequent layers. The attention mechanism, particularly self-

attention used in text, when a sentence is disambiguated by itself, is present in most state-

of-the-art NLP algorithms [58].

2.4 Ordinal Classification Formulations

Ordinal Classification is any classification task in which the labels have a natural order

between them, usually referring to a unique measure. They usually appear in problems

dealing with discrete measures such as HOT, MILD or COLD weather, LIGHT,

NORMAL or HEAVY traffic, or in the case of misinformation detection, FALSE, HALF-

TRUE, TRUE statement.

 With ordinal classes there are dependencies between the predicted labels which

are usually not modelled in the classifiers. Although many studies proposed ensemble

[59] or novel methods [60] of dealing with ordinal problems, few implementations are

available for use in library packages. One example is the OCAPIS R package [61] and

another is the ordinalNET R package [62]. Both studies design algorithms that optimize

custom loss functions designed specifically for ordinal regression problems.

 A more direct and simpler approach uses a combination of simple binary

classifiers and a decision rule based on the binary classes’ probability output generating

the multiclass prediction [3]. This method was applied in the fake news experiment of

section 3 and will be detailed in section 3.4.2.

 A handful of studies were also made discussing the evaluation of ordinal

classification. Some studies correctly remark [63] that class accuracy does not account

for the distance between the predicted and true class, arguing in favor of MSE to achieve

“smaller” errors.

 A different research study [64] formulated an error measured directly from the

confusion matrix. The error for each sample in this case is smoothed along the range of

12

the possible class labels and increases as the ordinal predicted class get further away from

the ordinal true class in the scale. This was the chosen evaluation measure for the ordinal

formulation of the experiment in section 3, being detailed under the fake news detection

scenario in section 3.4.3

13

3 The experiments

The experiments will be presented in this section. The main objective is to support

answers to the questions introduced in section 1. Simple classifiers are evaluated against

the original LIAR work [1] that used a hybrid LSTM and CNN network. Both non-ordinal

and ordinal problem formulations are used and compared.

 At first hand, this section details the dataset then follows on listing the tools and

explaining the methods used.

3.1 LIAR Dataset

The LIAR Dataset [65] was created in 2017 in the work “Liar, Liar Pants on Fire”: A

New Benchmark Dataset for Fake News Detection [1]. The dataset is a collection of text

and context metadata of over 10 thousand political statements extracted from the fact-

checking organization PolitiFact [66]. PolitiFact is owned by the non-profit organization

Poynter Institute for Media Studies [67], parent company of the Tampa Bay Times

newspaper [68].

 The dataset establishes fixed slices for training/validating/test splitting. The

speaker affiliations are reasonably balanced, suggesting a good partisan independence.

Some of the dataset information is described on Table 4 and Table 5.

Table 4 - Basic Liar Dataset Information

Dataset Statistics

Training set size 10240

Validation set size 1284

Testing set size 1267

Average statement length (tokens) 17.9

Top-3 Speaker Affiliations

Democrats 4137

Republicans 5665

None (e.g., Facebook posts) 2181

 The output classes are reasonably balanced with a slightly lower presence of the

pants-fire class, the extremely false statements. The labels are the same used by PolitiFact

14

when fact-checking a statement. They represent 6 ordinal levels of truthiness and

PolitiFact has formal definitions for them to better establish their boundaries.

Table 5 - Dataset Classes Distribution

Class Label Class Definition Class Representativity

(training + validation sets)

True

The statement is accurate

and there is nothing

significant missing.

16.01%

mostly-true

The statement is accurate

but needs clarification or

additional information.

19.21%

half-true

The statement is partially

accurate but leaves out

important details or takes

things out of context.

20.50%

barely-true

The statement contains an

element of truth but ignores

critical facts that would

give a different impression.

16.41%

false
The statement is not

accurate.
19.58%

pants-fire

The statement is not

accurate and makes a

ridiculous claim.

8.29%

 Some metadata is available in the dataset along with the statement’s text. Each

row contains a list of subjects covered in the statement, the speaker, job title, the state

where the statement was taken, the speaker`s affiliation and the context of the statement.

The history of false class labels for each speaker is also included. Some examples are

displayed on Table 6.

15

Table 6 - Features of example rows

Example1 Example2 Example3

Statement

Says the Obama

administration plans to

reduce …

Romney would turn

Medicare into a voucher

prog …

Members of Congress

passed a pay raise for

the…

Subjects
crime, criminal-justice,

immigration
debates, medicare

medicare, retirement,

social-security

Speaker michael-mccaul barack-obama chain-email

Affiliation republican democrat N/A

Job Title congressman President N/A

State Texas Illinois N/A

Context U.S. House floor debate
the first presidential

debate
a chain e-mail

N Pants-

Fire
0 9 105

N False 0 70 43

N Barely

True
1 71 11

N Half-

True
1 160 8

N Mostly

True
4 163 5

 As Table 6 shows, most features are either text or categorical. This means that

feature selection should play an important role in filtering out irrelevance once they are

broken into categories and text vector features. The dimensionality would be too high

otherwise. The peculiarity of the history label features will be treated on section 3.3.4

where the strong correlation with the output will cause them to be ruled out as redundant

features.

3.2 Programming Ecosystem

This experiment was created, in its majority, using Python3 [69] inside a Jupyter

Notebook [70] environment and it is hosted in a Github repository [71]. Table 7 lists the

most relevant libraries used for data cleaning, feature engineering and machine learning

16

classification. Some experimentation was also done in Matlab regarding the NCA

classifier, which will be detailed further.

Table 7 - Experiment Libraries Usage

Library Functionalities

pandas [72] Dataset loading, cleaning and exhibiting

numpy [73] Math operations, correlation checks

nltk [44]
Text tokenization, POS-Tagging [74] and

stopwords filtering [75]

scikit-learn [35]

TF-IDF text vectorization, machine

learning classifiers, hyperparameter

tuning and performance metrics

matplotlib [76] Data and result plots

fscnca [77] NCA [51] classifier Matlab [78] library

3.3 Feature Engineering

The first step in feature engineering is splitting them into text and metadata features.

Different approaches are used to vectorize them separately. Once they are vectorized they

are concatenated horizontally creating the feature matrix that will be used for

classification.

 Just as different classifiers will be tested, different dimensionality reduction

methods will also be used to compare the amount of information they retain and therefore

determine which method is more suited.

3.3.1 Text Features Representation

The statement text was represented with simple bag of words model and TF-IDF

weighting. The choice of word embeddings [37] would result in lower and denser

dimensionality capturing semantic context and simplifying the dimensionality reduction

phase. However, semantic context is assumed to be represented in the metadata features

of the LIAR Dataset, particularly in the subject feature. The choice of bag of words text

features is an attempt to capture a particular vocabulary that is more common in false

statements.

17

Special text tokens such as punctuation, numbers and symbols, are sometimes

stripped off before applying machine learning. This work addresses these tokens

generically as “symbol tokens”. In this approach they were kept in the vocabulary so that

they could be checked for relevance in the feature selection process. This choice is

explained by the assumption that false and true statements can have different patterns of

symbol token usage. Table 8 below shows an example of this symbol tokens’

representation in a sentence before going through the bag of words vectorization.

Table 8 - Example of tokens representation in a text statement

Label Statement

mostly-true

The most recent Associated Press poll has

Nader <DASH> Gonzalez at

<NUMERAL_TOKEN> percent <COMMA>

without any national coverage <COMMA>

against McCain and Obama <DOT>

 The symbols were also used to synthetize a new feature which was incorporated

into metadata. A feature named symbol_ratio was created and it represents the ratio

between the count of symbol tokens of the statement and the count of all tokens of the

statement.

3.3.2 Statement Text Cleaning

Before applying TF-IDF weighting to the terms, each of the techniques from Table 9 was

applied.

18

Table 9 - Text cleaning techniques summary

Text Cleaning

Technique
Purpose of the Technique

3-Grams Tokenization
Splitting the text into a list of tokens. A count of 3 N-Grams

is used to retain some word context information.

No Lowercase
Lowercase is not applied to the text statements in order to

keep writing style unchanged.

Stopwords Removal

Ignoring extremely common terms in the English language

with no semantic meaning such as determiners or

prepositions.

No Stemming
Reducing words to their stem or root would interfere with

writing style and this technique was not applied.

POS-Tagging filtering

Reinforcing the stopwords removal step by keeping only the

most relevant grammar (nouns, verbs, adjectives and

adverbs).

.

3.3.3 TF-IDF Weighting

When vectorizing the text features using bag-of-words, the preprocessing techniques

from section 3.3.2 were used and bigrams and trigrams were added to the token

vocabulary.

It is common in TF-IDF implementations for the vocabulary to be further reduced

by removing additional terms with low specificity terms (high DF) and high specificity

terms (low DF) by using simple thresholds. These threshold cuts were performed in one

of the feature matrices used in the experiments whereas the others kept the whole matrix

and used different dimensionality reduction methods. Details follow in section 0.

The columns of the text feature matrix represent the vocabulary Vs used as features.

The text vectorization process outputs one row vector with Vs elements for each

statement, each element representing that term’s relevance to the statement.

3.3.4 Metadata Features Representation

The metadata features are presented in Table 6 with the exception of the statement feature

and the addition of the synthetized symbol_ratio feature. Although there might seem to

be a small number of them, they were categorized and one-hot encoded [79]. That process

considerably increased dimensionality.

19

 The historical label features for each speaker, N-Pants Fire up until N-Mostly

True, contain output information for the whole dataset. Therefore, these cannot be used

for training a machine learning algorithm. Section 4.1.1 will show that including them in

the training caused severe overfitting and misleadingly good results that could not be

reproduced using additional data in the future. For that reason, after the initial tests, the

historical label features were excluded from the algorithm.

 The context feature is also a text feature but it is not diverse enough to be treated

as text in the feature representation. To best represent it in categories instead, a POS-

Tagging filter was used to keep only the noun tokens before categorizing it. This way, a

small number of categories could capture the contexts and represent them as another one-

hot encoded feature.

After being able to express the metadata as categories they needed to be encoded

to numbers. With the exception of the symbol_ratio feature, the metadata features were

one-hot encoded, creating one binary feature for each unique value of a feature.

Table 10 shows the number of binary features created when encoding the

metadata.

To reduce ambiguity and dimensionality, the states, affiliation and context

features were also converged to a list of the most recurring categories, categorizing any

value out of that list as ‘unknown’. Table 11 shows those categories in details.

Table 10- Metadata Features after Categorization/Binarization

Source Feature Number of Features

Subject 145

Speaker 3310

State 51

Affiliation 5

Context 9

Symbol Ratio 1

20

Table 11 - State, Affiliation and Context fixed categories

Feature List of Categories

State

“Alabama”, “Alaska”, “Arizona”, “Arkansas”, “California”, “Colorado

”, “Connecticut”, “Delaware”, “Florida”, “Georgia”, “Hawaii”, “Idaho

”, “Illinois”, “Indiana”, “Iowa”, “Kansas”, “Kentucky”, “Louisiana”, “

Maine”, “Maryland”, “Massachusetts”, “Michigan”, “Minnesota”, “Mi

ssissippi”, “Missouri”, “Montana”, “Nebraska”, “Nevada”, “New Ham

pshire”, “New Jersey”, “New Mexico”, “New York”, “North Carolina”

, “North Dakota”, “Ohio”, “Oklahoma”, “Oregon”, “Pennsylvania”, “R

hode Island”, “South Carolina”, “South Dakota”, “Tennessee”, “Texas

”, “Utah”, “Vermont”, “Virginia”, “Washington”, “West Virginia”, “W

isconsin”, “Wyoming”, “unknown”

Affiliation “republican”, “democrat”, “independent”, “organization”, “unknown”

Context
“interview”, “debate”, “campaign”, “press”, “ad”, “letter”, “article”,

“internet”

3.3.5 Feature Matrices Used: Different Dimensionality Reduction Techniques

This subsection will cover the distinct feature matrices used to test the algorithms varying

the type of dimensionality reduction in the feature representations. Table 12 below details

the methods used in each of them.

21

Table 12 - Dimensionality Reduction for the three feature matrices used

Feature

Matrix
Type

Step1

(Metadata)
Step1 (Text)

Step2

(Metadata)

Step2

(Text)

FM1

Output Correlation

Thresholds

+

Feature Pair

Correlation

Thresholds

0.03 minimum

output

correlation

0.03 minimum

output

correlation

0.1

maximum

feature pair

correlation

0.1

maximum

feature pair

correlation

FM2

PCA / LSI + Text

Output Correlation

Thresholds

100

components

(79.6%

variance)

0.02 minimum

output

correlation

N/A

150

components

(67.5%

variance)

FM3

Text TFIDF

thresholds +

PCA/LSI

100

components

(79.6%

variance)

TF-IDF cuts

0.5 max_df

5 min_df

N/A

150

components

(23.5%

variance)

With the class labels placed in an ordinal scale of untruthiness, such as in Table

13, it is possible to verify if a feature output correlation is positive (contributes to a false

statement) or negative (contributes to a true statement).

Table 13 - Ordinal class labels on a scale

𝑙 = 0

true

𝑙 = 1

mostly-true

𝑙 = 2

half-true

𝑙 = 3

barely-true

𝑙 = 4

false

𝑙 = 5

pants-fire

|---|

P = 1

 From that point of view, selecting the features that have a minimum absolute

correlation with the output is a way to exclude the most irrelevant ones. Figure 5 and

Figure 6 show the absolute correlations with the output for each feature.

22

Figure 5 - Text Feature to Output

Absolute Correlations

Figure 6 – Metadata Feature to Output

Absolute Correlations

From the plots it is possible to verify that only a small number of features

contribute to the output. Even the highest correlated/uncorrelated text feature barely

reaches 10%. This is something to be expected from text data specially in a subjective

output. Some of the high correlated features are displayed in section 4.1.

To reduce the number of features in matrices FM1 and FM2, simple thresholds

were established using the “knee” of the curve. The minimum correlation thresholds are

detailed in Table 12.

In a similar way, visual graph inspection was used in FM1 to address feature

redundancy and further remove less relevant features. Each feature was checked against

each other feature for their absolute correlations. Once again, the plots are shown in

Figure 7 and Figure 8.

Figure 7 - Text feature to feature

correlations

Figure 8 - Metadata feature to feature

correlations

 Once more, using the “knee” of the curves, threshold cuts from Table 12 excluded

one of the features from each high correlated pair.

23

 For FM2 and FM3, the dimensionality reduction was made mostly by extracting

the principal components of the data transforming the vector space to a latent lower

dimensional space. For metadata, 100 components were used. For text, with initial

dimensions over 200k, FM2 used an output correlation threshold to initially reduce

dimension before applying LSI with 150 components. For the same reason, FM3 used

minimum and maximum document frequency cuts directly from the TF-IDF matrix

before using LSI.

3.4 Machine Learning Classification

Starting the classification phase, a scan of different types of classifiers is made in order

to find best performing one. With the regular classification results in hand, an ordinal

ensemble method is proposed. The process is then repeated using the ordinal formulation

expecting an improvement due to the ordinality of the output class labels.

To accurately evaluate the classifiers, a grid search was made checking the mean

and standard deviation of the 10-fold cross-validation accuracy score in a total of 10

experiments. The reason for multiple experiments is to dilute the randomness of dataset

splitting due to random seed. Each classifier was evaluated with each of the feature

matrices from Table 12 and each combination of a grid of hyperparameters.

3.4.1 Hyperparameter Tuning

The process used scikit-learn class GridSearchCV [80], which is able to

automatically run cross-validation tests for a classifier given a parameter grid, obtaining

the best performing configuration. Table 14 below shows details of the classifiers and

parameter grids used.

The parameters search for the classifiers is focused on testing and finding the best

regularization parameter (such as “C” parameter in SVC and LogisticRegression) and the

most suited method of each algorithm (such as “criterion” entropy in

RandomForestClassifier or “algorithm” kd-tree in KNearestNeighbors).

24

Table 14 - Algorithm Exploration and Hyperparameter Tuning

Classifier Parameter Grid

Naïve Bayes var_smoothing

[1e-7, 1e-8,

1e-9, 1e-10,

1e-11]

Logistic

Regression

Tolerance [1e-4, 1e-6, 1e-8]

C
[0.1, 0.3,1, 3,10, 30,

100]

multi_class
[“ovr”,

“multinomial”]

Solver

[“newton-cg”,

“lbfgs”, “sag”,

“saga”]

K-Nearest

Neighbors

n_neighbors [3, 5, 10, 20]

Algorithm
[“ball_tree”,

“kd_tree”, “brute”]

Weights
[“uniform”,

“distance”]

leaf_size [10, 30, 50]

P [1, 2]

Random

Forest

n_estimators [10,30,50,100]

Criterion [“gini”, “entropy”]

max_depth [5, 10, 30, 50]

min_samples_leaf [2, 5, 10]

SVM

C [3, 10, 30, 100]

Kernel
[“linear”, “poli”,

“rbf”]

Degree [3, 5]

Apart from the classifiers on Table 14, the NCA Classifier [51] was also evaluated

with the intention to check if its intrinsic feature selection and dimensionality reduction

could handle the problem in a better way. In the case of the NCA, only the regularization

hyperparameter λ was tuned.

3.4.2 Modeling as an Ordinal Classification

Rather than using more complex classifiers, this experiment attempts to take

advantage of the ordinality of the classes, representing it in an ensemble model of simple

classifiers such as the ones listed in Table 14.

25

As stated in section 2.4, the work [3] provided a simple formulation of an ensemble

method that divides the 𝑘 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 classification problem into 𝑘 − 1 binary classifiers that

predicts 𝑦 > 𝑙 . The method represents each class label 𝑙 as an integer from 0 to 𝑘 − 1 ,

an ordered scale, creating a binary classifier for each class label interval boundary. The

convergence of the binary classifiers is done by combining the output probabilities of

each binary classifier 𝑃(𝑦 > 𝑙).

The following Table 15 summarizes the binary classifiers exposing their negative

and positive classes. Finally, Table 16 details how to go from 5 binary probability

predictions to the original 6 class output probability for a sample.

Table 15 - 5 binaries classifiers for a 6-class classification problem

Binary Classifier Negative Class Positive Class

𝐶0 𝑦 ≤ 0 𝑦 > 0

𝐶1 𝑦 ≤ 1 𝑦 > 1

𝐶2 𝑦 ≤ 2 𝑦 > 2

𝐶3 𝑦 ≤ 3 𝑦 > 3

𝐶4 𝑦 ≤ 4 𝑦 > 4

Table 16 - Convergence of Binary Classifiers Probabilities

Class Probability
Combined Binary Classifier

Probabilities

𝑃("𝑡𝑟𝑢𝑒") 1 − 𝑃(𝑦 > 0 | 𝑋)

𝑃("𝑚𝑜𝑠𝑡𝑙𝑦 − 𝑡𝑟𝑢𝑒") 𝑃(𝑦 > 0 | 𝑋) − 𝑃(𝑦 > 1 |𝑋)

𝑃("ℎ𝑎𝑙𝑓 − 𝑡𝑟𝑢𝑒") 𝑃(𝑦 > 1 | 𝑋) − 𝑃(𝑦 > 2 |𝑋)

𝑃("𝑏𝑎𝑟𝑒𝑙𝑦 − 𝑡𝑟𝑢𝑒") 𝑃(𝑦 > 2 | 𝑋) − 𝑃(𝑦 > 3 | 𝑋)

𝑃("𝑓𝑎𝑙𝑠𝑒") 𝑃(𝑦 > 3 | 𝑋) − 𝑃(𝑦 > 4 |𝑋)

𝑃("𝑝𝑎𝑛𝑡𝑠 − 𝑓𝑖𝑟𝑒") 𝑃(𝑦 > 4 | 𝑋)

When predicting the output of a sample, each of the binary probability outputs is

evaluated before computing the final class probabilities. After that, the final probabilities

should be normalized between 0 and 1. The sample receives the label with the highest

probability.

26

3.4.3 Evaluation Metric for Ordinal Classification

The hypothesis to be verified is that modeling the problem as an ordinal

classification should improve not only the base accuracy of the model but also make

prediction errors less impactful. This means that label prediction errors should be adjacent

or at least closer to the true labels in the ordinal scale. A misclassification of a “true”

statement as a “mostly-true” statement is much less harmful than a “true” statement being

classified as “false”.

This kind of evaluation of the ordinal classifier calls for an error metric of class

dispersion, a metric that captures this distance between the ordinal labels. An error metric

for ordinal classification based on the confusion matrix dispersion is proposed in [64] and

defines a sample error by:

𝑂𝐶𝛽 = min (1; 1 −
1

1 + | 𝑟 − 𝑐 |
+ 𝛽|𝑟 − 𝑐|)

The values of 𝑟 and 𝑐 correspond to the row and column indexes of the confusion

matrix. The error goes to 0 when 𝑟 = 𝑐 in the diagonal of the confusion matrix, meaning

the class is correctly classified. The parameter 𝛽 is responsible for smoothing the error

between 0 and 1 depending on the distance |𝑟 − 𝑐|, just as Figure 9 illustrates.

Figure 9 – Ordinal sample error smoothing based on confusion matrix

27

Each curve in Figure 9 shows the sample error 𝑂𝐶𝛽 assuming intermediate values

between 0 and 1. The error increases as the error distance between the predicted and true

ordinal classes increased. With 𝛽 = 0.5 the error metric converges to a hard error of 1 for

the sample, not taking into consideration the distance between the predicted and true

ordinal classes in this case.

For the LIAR dataset problem, the maximum |𝑟 − 𝑐| distance is 5, so in the

experiment, 𝛽 = 0.0313 is used to smooth the 6-class error into the range of 0 and 1.

𝑂𝐶𝛽 is checked in the end of the ordinal classification to check for reduced error compared

to the simple classifications from section 3.4.1.

28

4 Results

This section will cover the results of the experiment. Starting the section, the initial results

regarding the history features N-Pants Fire up until N-Mostly True will be presented,

justifying the exclusion of them. Following, the feature matrices’ visualizations are

detailed, along with some data insights derived from feature selection. Moving to the

classification, the results of the grid search from section 3.4.1 is presented. After that, the

results of the same hyperparameter tuning is presented, this time for the ordinal

formulation using the binary ensemble, detailing each binary classifier result and

evaluating the ensemble using the 𝑂𝐶𝛽 measure.

4.1 Data Insights

4.1.1 False Information History Features

The LIAR Dataset carries 5 metadata features that correspond to the number of false

labels according to the following Table 17.

Table 17 - Label History Features

n_barely-true
Number of barely-true statements for the

speaker on whole dataset

n_false
Number of false statements for the

speaker on whole dataset

n_half-true
Number of half-true statements for the

speaker on whole dataset

n_mostly-true
Number of mostly-true statements for the

speaker on whole dataset

n_pants-fire
Number of pants-fire statements for the

speaker on whole dataset

 A number of reasons led to the exclusion of these features for classification. First

of all, they represent a direct class label output proportion for each author, something that

skews the prediction of speakers in the direction of their past statements. Second, the

history features fail to provide information on a speaker with a small amount of previous

statements while being of great importance for speakers that have many statements in the

29

dataset. Also linked to that, it makes the dataset hard to scale in size in the future, since

new speakers will have zero information in those features. Lastly, besides the extremely

high output correlation, they also contribute to overfitting the classifiers since they

contain information of the whole dataset, including training, validation and test splits.

They would need to be recalculated for each of those splits separately.

 Following in Table 18, the data visualization for initial tests including the history

features is shown side by side with the visualization of the data composed of the history

features alone.

Table 18 – T-SNE 2D Visualizations for History Features

Figure 10 - All Features including History

Features

Figure 11 - Only History Features

When comparing the data 2D projections with the other matrices used it will be

easy to inspect that the false history information does a very good job at making the class

labels less intertwined. It is important to note that PCA could capture the information of

the history feature in its principal components, therefore achieving better performance in

representing the data with history features when reducing dimensionality.

Some classifiers, such as K-Nearest Neighbors and Random Forest, captured the

history output information better than others providing misleading overfitted results.

Table 19 shows these results, using only history as features.

30

Table 19 - Single Classifier Classification Results for History Features Only

4.1.2 Feature Matrix 1: Data Insights

As Table 12 details, FM1 is composed of all features excluding history with its

dimensionality reduced by feature output correlation and feature redundancy. Following

Figure 12 shows a 2D visualization using T-SNE to project the data.

Figure 12 - T-SNE 2D Visualizations for FM1

The following Table 20 will summarize the dimensionality of the experiment

using FM1.

 Naive Bayes Logistic Regression RandomForest K-Nearest Neighbors SVM

Mean 10-

fold

Accuracy

0.189 0.223 0.630 0.642 0.278

Std 10-fold

Accuracy
0.0012 0.0007 0.0015 0.0017 0.0025

10-fold

Average

Training

Time (ms)

98 8082 2827 4041 66705

Best

Parameters

Var_smoothing =

1e-11

Tolerance = 1e-6

C = 100

multi_class = “ovr”

solver = “sag”

n_estimators = 100

criterion = “gini”

max_depth = 50

min_samples_leaf = 2

n_neighbors = 20

algorithm = “ball_tree”

leaf_size = 10

weights = “distance

C = 100

Kernel = “poly”

Degree = 5

31

Table 20 - Dimensionality Reduction of FM1 during preprocessing and feature selection

Features
Initial

Dimension

Dimension after

Vectorization/Binarization

Dimension

after Feature

Selection by

Output

Correlation

Dimension

after

Feature

Selection by

Feature

Redundancy

Text 9634 197908 1251 253

Metadata 12 3532 130 92

When performing Feature Selection by Output Correlation using absolute values,

it is possible to find some hints on the most relevant features. Some with positive

correlation, meaning they make a statement label grow in the misinformation ordinal scale

(Table 13) and some having negative correlation and making a statement stay low in the

ordinal scale, closer to the “truth” label. Table 21 shows these hints on metadata features

and Table 22 on text features.

Table 21 - Most correlated metadata features. Negative indicates truth bias while

positive indicates false bias (Table 13)

Metadata Feature Origin Metadata Discrete Value
Output

Correlation

speaker_chain-email Speaker chain-email + 15.14%

affiliation_democrat Affiliation democrat - 14.65%

speaker_donald-trump Speaker donald-trump + 10.52%

speaker_blog-posting Speaker blog-posting + 8.96%

subject_health-care Subject health-care + 7.48%

subject_religion Subject Religion + 6.72%

symbol_ratio N/A N/A - 6.67%

speaker_viral-image Speaker viral-image + 5.28%

subject_economy Subject Economy - 4.78%

speaker-michele-bachmann Speaker michele-bachmann + 4.73%

32

Table 22 - Most correlated text features. Negative indicates truth bias while positive

indicates false bias (Table 13)

Text Feature Output Correlation

<NUMERAL_TOKEN> - 9.67%

Obama + 7.77%

Obamacare + 5.89%

Care + 5.47%

Walker + 5.40%

Georgia - 5.29%

Average - 5.08%

4.1.3 Feature Matrix 2: Data Insights

As Table 12 details, FM2 is composed of all features excluding history with its

dimensionality reduced by SVD Principal Component Analysis. Following Figure 13

shows a 2D projection of the data.

Figure 13 - T-SNE 2D Visualizations for FM2

33

FM2 matrix kept 100 metadata components and 150 text components. In a similar

way to the previous FM1 matrix, we can analyze the SVD principal components to check

which features contributes to them. The following Table 23 will summarize the

dimensionality of the experiment using FM2.

Table 23 - Dimensionality Reduction of FM2 during preprocessing and feature selection

Features
Initial

Dimension

Dimension after

Vectorization/Binarization

Dimension after

Feature Selection

by Output

Correlation

Dimension

after PCA

Dimension

after LSI

Text 9634 197908 1251 N/A 150

Metadata 12 3532 N/A 100 N/A

Table 24 details how much variance from the original data the remaining

components were able to represent in FM2.

Table 24 - SVD Explained Variance for FM2

SVD Process Components
Original Variance

Explained

Metadata Features SVD 100 79.65%

Text Features SVD 150 67.5%

Reverse engineering the total feature contribution weight to the remaining

components we can list the top original features selected by the SVD process. Table 25

shows the top 5 metadata and Table 26 shows the top 5 text features.

34

Table 25 - Most Represented Metadata Features with SVD on FM2

Metadata Feature Origin Metadata Discrete Value

Feature Weight

(principal

contribution)

subject_children Subject children 6.796

subject_labor Subject labor 6.725

subject_workers Subject workers 6.442

subject_poverty Subject poverty 6.254

subject_public-health Subject public-health 6.232

Table 26 - Most Represented Text Features with SVD on FM2

Text Feature
Feature Weight

(principal contribution)

highest 8.096

<NUMERAL_TOKEN>

<DOT>
7.970

time 7.537

average 7.356

<NUMERAL_TOKEN>

<NUMERAL_TOKEN>
7.320

4.1.4 Feature Matrix 3: Data Insights

The third feature matrix is also composed of all features excluding history with its

dimensionality reduced by both TF-IDF threshold cuts on text followed by SVD Principal

Component Analysis, applied to both text and metadata. Following Figure 14 shows a 2D

projection.

35

Figure 14 - T-SNE 2D Visualizations for FM3

Table 27 details dimensionality reduction steps on FM3 while Table 28 lists the

variance explained by the SVD process.

Table 27 - Dimensionality Reduction of FM3 during preprocessing and feature selection

Features
Initial

Dimension

Dimension after

Vectorization/Binarization

Dimension

after Feature

Selection TF-

IDF

Thresholds

Dimension

after PCA

Dimension

after LSI

Text 9634 197908 7708 N/A 150

Metadata 12 3532 N/A 100 N/A

36

Table 28 - SVD Explained Variance for FM3

SVD Process Components
Original Variance

Explained

Metadata Features SVD 100 79.65%

Text Features SVD 150 23.49%

The most represented metadata features are the same as FM2, listed in Table 25, since

there was no change in the metadata processing. Table 29 details most represented text

features in the principal components.

Table 29 - Most Represented Text Features with SVD on FM3

Text Feature
Feature Weight

(principal contribution)

voted 8.373

<SUSPENSION_POINTS> 7.345

Wisconsin 7.194

<POSSESSIVE_CONTRACTEDIS> 7.141

government 7.138

4.2 Single Classifiers

This section will present the single classifier best results after hyperparameter tuning with

grid search. Table 30-32 show results for each feature matrix. The NCA classifier results

are displayed in Table 33-35.

37

4.2.1 Grid Search Results

Table 30 - Single Classifier Classification Results for FM1

Table 31 - Single Classifier Classification Results for FM2

 Naive Bayes Logistic Regression Random Forest K-Nearest Neighbors SVM

Accuracy (µ) 0.1982 0.2634 0.2599 0.2410 0.2318

Accuracy (σ) 0.0008 0.0014 0.0017 0.0033 0.0039

Precision (µ) 0.2972 0.2828 0.2739 0.2481 0.2481

Precision (σ) 0.0186 0.0016 0.0039 0.0034 0.0041

Recall (µ) 0.1982 0.2634 0.2599 0.2410 0.2318

Recall (σ) 0.0008 0.0014 00017 0.0034 0.0039

F1-Score (µ) 0.1202 0.2374 0.2223 0.2371 0.2154

F1-Score (σ) 0.0016 0.0013 0.0014 0.0033 0.0052

𝑂𝐶𝛽 (µ) 0.5942 0.4925 0.4959 0.5203 0.5314

𝑂𝐶𝛽 (σ) 0.0024 0.0009 0.0007 0.0022 0.0028

Average

Training

Time (ms)

243 21178 3320 9288 20768

Best

Parameters

var_smoothing =

1e-07

tolerance = 1e-8

C = 3

multi_class =

“multinomial”

solver = “saga”

n_estimators = 100

criterion = “entropy”

max_depth = 50

min_samples_leaf =

10

n_neighbors = 20

algorithm = “ball_tree”

leaf_size = 30

weights = “uniform”

C = 100

Kernel =

“linear”

Degree = 5

 Naive Bayes Logistic Regression Random Forest K-Nearest Neighbors SVM

Accuracy (µ) 0.2159 0.2685 0.2598 0.2336 0.2378

Accuracy (σ) 0.0014 0.0030 0.0025 0.0021 0.0030

Precision (µ) 0.2323 0.2737 0.2978 0.2376 0.2507

Precision (σ) 0.0015 0.0035 0.0072 0.0021 0.0035

Recall (µ) 0.2159 0.2685 0.2598 0.2336 0.2378

Recall (σ) 0.0014 0.0030 0.0025 0.0021 0.0030

F1-Score (µ) 0.2074 0.2643 0.2248 0.2307 0.2319

F1-Score (σ) 0.0014 0.0032 0.0020 0.0020 0.0030

𝑂𝐶𝛽 (µ) 0.5291 0.4909 0.4911 0.5282 0.5275

𝑂𝐶𝛽 (σ) 0.0010 0.0018 0.0014 0.0019 0.0025

10-fold

Average

Training

Time (ms)

899 120574 21641 15270 41141

Best

Parameters

var_smoothing

= 1e-08

tolerance = 1e-6

C = 10

multi_class = “ovr”

solver = “lbfgs”

n_estimators = 100

criterion = “gini”

max_depth = 10

min_samples_leaf = 10

n_neighbors = 20

algorithm = “brute”

leaf_size = 30

weights = “distance”

C = 100

Kernel =

“linear”

Degree = 3

38

Table 32 - Single Classifier Classification Results for FM3

4.2.2 NCA Classifier: Results

Table 33 - NCA Classification Results for FM1

Lambda Mean Acc Std Acc Mean OCB Std OCB

8.677e-07 0.2394 0.0034 0.5168 0.0027

8.677e-06 0.2401 0.0035 0.5166 0.0030

8.677e-05 0.2462 0.0032 0.5082 0.0022

8.677e-04 0.2383 0.0035 0.5211 0.0048

8.677e-03 0.2050 0 0.5188 0

8.677e-02 0.2050 0 0.5188 0

Table 34 - NCA Classification Results for FM2

Lambda Mean Acc Std Acc Mean OCB Std OCB

8.677e-07 0.2144 0.0040 0.5482 0.0036

8.677e-06 0.2131 0.0039 0.5491 0.0033

8.677e-05 0.2154 0.0036 0.5466 0.0031

8.677e-04 0.2291 0.0039 0.5303 0.0034

8.677e-03 0.2050 0 0.5188 0

8.677e-02 0.2050 0 0.5188 0

 Naive Bayes Logistic Regression Random Forest K-Nearest Neighbors SVM

Accuracy (µ) 0.2159 0.2631 0.2584 0.2388 0.2381

Accuracy (σ) 0.0020 0.0023 0.0022 0.0025 0.0035

Precision (µ) 0.2312 0.2728 0.2806 0.2427 0.2450

Precision (σ) 0.0019 0.0027 0.0036 0.0026 0.0044

Recall (µ) 0.2159 0.2631 0.2584 0.2388 0.2381

Recall (σ) 0.0020 0.0023 0.0022 0.0025 0.0035

F1-Score (µ) 0.2120 0.2558 0.2376 0.2360 0.2320

F1-Score (σ) 0.0020 0.0023 0.0028 0.0025 0.0037

𝑂𝐶𝛽 (µ) 0.5535 0.4959 0.4957 0.5267 0.5302

𝑂𝐶𝛽 (σ) 0.0013 0.0017 0.0013 0.0018 0.0028

Average

Training

Time (ms)

1136 116131 15503 17733 39639

Best

Parameters

var_smoothing

= 1e-09

tolerance = 1e-6

C = 0.3

multi_class = “ovr”

solver = “lbfgs”

n_estimators = 100

criterion = “gini”

max_depth = 50

min_samples_leaf = 10

n_neighbors = 20

algorithm =

“ball_tree”

leaf_size = 50

weights = “distance”

C = 3

Kernel =

“linear”

Degree = 3

39

Table 35 - NCA Classification Results for FM3

Lambda Mean Acc Std Acc Mean OCB Std OCB

8.677e-07 0.2115 0.0062 0.5527 0.0048

8.677e-06 0.2120 0.0034 0.5527 0.0031

8.677e-05 0.2136 0.0061 0.5515 0.0051

8.677e-04 0.2278 0.0035 0.5342 0.0033

8.677e-03 0.2050 0 0.5188 0

8.677e-02 0.2050 0 0.5188 0

4.3 Ordinal Binary Ensemble

This section will cover the results of the same classifiers, this time modeled in an ordinal

ensemble as described in section 3.4.2. Hyperparameter tuning is made to maximize

accuracy of each binary classifier before combining them.

4.3.1 Grid Search Results

Table 36 follows and shows the hyperparameter tuning results for each of the binary

classifiers for FM1.

40

Table 36 - Ordinal hyperparameter tuning for each binary classifier using FM1

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

𝐶0 Accuracy (µ)

0.2597 0.8401 0.8399 0.8392 0.8387

𝐶0 Accuracy (σ) 0.0007 0.0002 0.0001 0.0003 0.0006

𝐶0 Best

Parameters

var_smoothing:

1e-07

tolerance: 1e-03

solver: “saga”

C: 30

multi_class: “ovr”

n_estimators: 10

criterion:

“entropy”

max_depth: 10

min_samples_leaf:

5

n_neighbors: 20

algorithm: “brute”

leaf_size: 30

weights: uniform

C: 30

kernel: “rbf”

degree: 5

𝐶1 Accuracy (µ)

0.4328 0.6633 0.6591 0.6363 0.6494

𝐶1 Accuracy (σ) 0.0009 0.0008 0.0014 0.0016 0.0011

𝐶1 Best

Parameters

var_smoothing:

1e-07

tolerance: 1e-06

solver:”newton-

cg”

C: 100

multi_class:

“multinomial”

n_estimators: 100

criterion:

“entropy”

max_depth: 30

min_samples_leaf:

2

n_neighbors: 20

algorithm: “kd-

tree”

leaf_size: 10

weights: uniform

C: 30

kernel: “rbf”

degree: 5

𝐶2 Accuracy (µ)

0.6125 0.6308 0.6261 0.6105 0.6258

𝐶2 Accuracy (σ) 0.0006 0.0013 0.0015 0.0022 0.0017

𝐶2 Best

Parameters

var_smoothing:

1e-07

tolerance: 1e-03

solver: “saga”

C: 10

multi_class:

“multinomial”

n_estimators: 100

criterion: “gini”

max_depth: 30

min_samples_leaf:

5

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 10

weights: uniform

C: 30

kernel: “rbf”

degree: 3

𝐶3 Accuracy (µ)

0.7351 0.7430 0.7441 0.7378 0.7402

𝐶3 Accuracy (σ) 0.0011 0.0003 0.0011 0.0008 0.0012

𝐶3 Best

Parameters

var_smoothing:

1e-10

tolerance: 1e-03

solver: “newton-

cg”

C: 100

multi_class:

“multinomial”

n_estimators: 100

criterion: “gini”

max_depth: 30

min_samples_leaf:

2

n_neighbors: 20

algorithm: “brute”

leaf_size: 30

weights: uniform

C: 30

kernel: “rbf”

degree: 5

𝐶4 Accuracy (µ)

0.2605 0.9206 0.9204 0.9198 0.9193

𝐶4 Accuracy (σ) 0.0008 0.0003 0.0004 0.0003 0.0004

𝐶4 Best

Parameters

var_smoothing:

1e-07

tolerance: 1e-03

solver: “newton-

cg”

C: 100

multi_class:

“multinomial”

n_estimators: 100

criterion:

“entropy”

max_depth: 50

min_samples_leaf:

5

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: uniform

C: 30

kernel: “rbf”

degree: 3

41

Table 37 below summarizes the results for FM1 using the ordinal ensemble

method.

Table 37 - Ordinal Ensemble Classification Results for FM1

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

Accuracy (µ) 0.1874 0.2632 0.2582 0.2392 0.2506

Accuracy (σ) 0.0003 0.0011 0.0026 0.0026 0.0016

Precision (µ) 0.210 0.2819 0.2697 0.2472 0.2314

Precision (σ) 0.0263 0.0016 0.0035 0.0029 0.0096

Recall (µ) 0.1874 0.2632 0.2582 0.2392 0.2506

Recall (σ) 0.0003 0.0011 0.0026 0.0026 0.0016

F1-Score (µ) 0.0774 0.2392 0.2302 0.2360 0.1988

F1-Score (σ) 0.0004 0.0011 0.0026 0.0025 0.0016

𝑂𝐶𝛽(µ) 0.6144 0.4922 0.4931 0.5171 0.5056

𝑂𝐶𝛽(σ) 0.0003 0.0006 0.0016 0.0017 0.0010

Following Table 38 shows the hyperparameter tuning results for each of the binary

classifiers for FM2.

42

Table 38- Ordinal hyperparameter tuning for each binary classifier using FM2

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

𝐶0 Accuracy (µ)

0.7158 0.8402 0.8401 0.8377 0.8398

𝐶0 Accuracy (σ) 0.0006 0.0003 0.0002 0.0004 0.0004

𝐶0 Best

Parameters

var_smoothing:

1e-10

tolerance: 1e-03

solver: “saga”

C: 3

multi_class:

“multinomial”

n_estimators: 100

criterion: “gini”

max_depth: 30

min_samples_leaf:

2

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: uniform

C: 30

kernel: “linear”

degree: 3

𝐶1 Accuracy (µ)

0.6303 0.6676 0.6613 0.6407 0.6509

𝐶1 Accuracy (σ) 0.0013 0.0018 0.0012 0.0015 0.0011

𝐶1 Best

Parameters

var_smoothing:

1e-10

tolerance: 1e-06

solver: “saga”

C: 3

multi_class:

“multinomial”

n_estimators: 100

criterion:

“entropy”

max_depth: 50

min_samples_leaf:

5

n_neighbors: 20

algorithm: “kd-

tree”

leaf_size: 10

weights: distance

C: 30

kernel: “linear”

degree: 5

𝐶2 Accuracy (µ)

0.6049 0.6433 0.6334 0.5924 0.6213

𝐶2 Accuracy (σ) 0.0020 0.0015 0.0016 0.0014 0.0015

𝐶2 Best

Parameters

var_smoothing:

1e-08

tolerance: 1e-06

solver: “newton-

cg”

C: 10

multi_class:

“multinomial”

n_estimators: 100

criterion:

“entropy”

max_depth: 30

min_samples_leaf:

10

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: uniform

C: 30

kernel: “linear”

degree: 5

𝐶3 Accuracy (µ)

0.6699 0.7403 0.7407 0.7299 0.7378

𝐶3 Accuracy (σ) 0.0011 0.0004 0.0007 0.0011 0.0009

𝐶3 Best

Parameters

var_smoothing:

1e-09

tolerance: 1e-06

solver: “saga”

C: 10

multi_class:

“multinomial”

n_estimators: 100

criterion: “gini”

max_depth: 50

min_samples_leaf:

2

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: uniform

C: 100

kernel: “linear”

degree: 3

𝐶4 Accuracy (µ)

0.8097 0.920713 0.9200 0.9188 0.9176

𝐶4 Accuracy (σ) 0.0005 0.0004 0.0004 0.0004 0.008

𝐶4 Best

Parameters

var_smoothing:

1e-10

tolerance: 1e-08

solver: “newton-

cg”

C: 10

multi_class: “ovr”

n_estimators: 50

criterion: “gini”

max_depth: 50

min_samples_leaf:

2

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: distance

C: 30

kernel: “linear”

degree: 3

43

Following Table 39 summarizes the results for FM2 using the ordinal ensemble

method.

Table 39 - Ordinal Ensemble Classification Results for FM2

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

10-fold Accuracy

(µ)
0.2206 0.2687 0.2504 0.2287 0.2632

10-fold Accuracy

(σ)
0.0014 0.0023 0.0030 0.0013 0.0026

Precision (µ) 0.2283 0.2758 0.2523 0.2328 0.2696

Precision (σ) 0.0018 0.0022 0.0033 0.0017 0.0031

Recall (µ) 0.2206 0.2687 0.2504 0.2287 0.2632

Recall (σ) 0.0014 0.0024 0.0030 0.0013 0.0026

F1-Score (µ) 0.2136 0.2639 0.2487 0.2252 0.2499

F1-Score (σ) 0.0015 0.0023 0.0031 0.0012 0.0024

𝑂𝐶𝛽(µ) 0.5352 0.4875 0.5074 0.5321 0.4892

𝑂𝐶𝛽(σ) 0.0007 0.0014 0.0019 0.0009 0.0018

Following Table 40 shows the hyperparameter tuning results for each of the binary

classifiers for FM3.

44

Table 40- Ordinal hyperparameter tuning for each binary classifier using FM3

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

𝐶0 Accuracy (µ)

0.6517 0.8399 0.8400 0.8387 0.8379

𝐶0 Accuracy (σ) 0.0016 0 0.0001 0.0005 0.0006

𝐶0 Best

Parameters

var_smoothing:

1e-11

tolerance: 1e-03

solver: “newton-

cg”

C: 0.1

multi_class: “ovr”

n_estimators: 100

criterion: “gini”

max_depth: 50

min_samples_leaf:

2

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: distance

C: 3

kernel: “rbf”

degree: 5

𝐶1 Accuracy (µ)

0.5835 0.6602 0.6564 0.6430 0.6538

𝐶1 Accuracy (σ) 0.0014 0.0011 0.0019 0.0027 0.0022

𝐶1 Best

Parameters

var_smoothing:

1e-08

tolerance: 1e-03

solver: “sag”

C: 0.3

multi_class: “ovr”

n_estimators: 100

criterion:

“entropy”

max_depth: 50

min_samples_leaf:

2

n_neighbors: 20

algorithm: “ball-

tree”

leaf_size: 50

weights: distance

C: 10

kernel: “rbf”

degree: 3

𝐶2 Accuracy (µ)

0.5895 0.6333 0.6266 0.5950 0.6242

𝐶2 Accuracy (σ) 0.0014 0.0016 0.0022 0.0016 0.0014

𝐶2 Best

Parameters

var_smoothing:

1e-11

tolerance: 1e-06

solver: “lbfgs”

C: 1

multi_class: “ovr”

n_estimators: 100

criterion:

“entropy”

max_depth: 50

min_samples_leaf:

10

n_neighbors: 20

algorithm: “kd-

tree”

leaf_size: 50

weights: uniform

C: 3

kernel: “rbf”

degree: 5

𝐶3 Accuracy (µ)

0.6449 0.7362 0.7367 0.7296 0.7308

𝐶3 Accuracy (σ) 0.0012 0.0006 0.0008 0.0011 0.0009

𝐶3 Best

Parameters

var_smoothing:

1e-11

tolerance: 1e-08

solver: “saga”

C: 0.1

multi_class:

“multinomial”

n_estimators: 100

criterion: “gini”

max_depth: 30

min_samples_leaf:

2

n_neighbors: 20

algorithm: “brute”

leaf_size: 30

weights: uniform

C: 3

kernel: “rbf”

degree: 5

𝐶4 Accuracy (µ)

0.7301 0.9198 0.9188 0.9193 0.9195

𝐶4 Accuracy (σ) 0.0012 0.0003 0.0004 0.0003 0.0004

𝐶4 Best

Parameters

var_smoothing:

1e-11

tolerance: 1e-03

solver: “saga”

C: 10

multi_class: “ovr”

n_estimators: 30

criterion: “gini”

max_depth: 30

min_samples_leaf:

2

n_neighbors: 10

algorithm: “brute”

leaf_size: 10

weights: distance

C: 3

kernel: “rbf”

degree: 5

45

Following Table 41 summarizes the results for FM3 using the ordinal ensemble

method.

Table 41 - Ordinal Ensemble Classification Results for FM3

 Naive Bayes
Logistic

Regression
Random Forest

K-Nearest

Neighbors
SVM

10-fold Accuracy

(µ)
0.2096 0.2573 0.2430 0.2351 0.2477

10-fold Accuracy

(σ)
0.0018 0.0016 0.0045 0.0018 0.0027

Precision (µ) 0.2299 0.2596 0.2453 0.2343 0.2528

Precision (σ) 0.0021 0.0017 0.0051 0.0017 0.0034

Recall (µ) 0.2096 0.2573 0.2430 0.2351 0.2477

Recall (σ) 0.0018 0.0016 0.0045 0.0018 0.0027

F1-Score (µ) 0.1949 0.2478 0.2398 0.2319 0.237

F1-Score (σ) 0.0016 0.0017 0.0046 0.0017 0.0029

𝑂𝐶𝛽(µ) 0.5684 0.4952 0.5152 0.5314 0.5013

𝑂𝐶𝛽(σ) 0.0014 0.0012 0.0032 0.0013 0.0019

4.3.2 NCA Ordinal Classifier: Results

The ordinal formulation premises did not hold for the NCA classifier and it performed

poorly giving random guesses results and high 𝑂𝐶𝛽 errors.

Table 42 - Poor Results for Ordinal Ensemble with NCA Classifier

 Accuracy 𝐶0 Accuracy 𝐶1 Accuracy 𝐶2 Accuracy 𝐶3 Accuracy 𝐶4
Accuracy

Ensemble

𝑂𝐶𝛽

error

FM1 0.2600 0.2067 0.1957 0.2339 0.2901 0.1600 0.6525

FM2 0.2374 0.1773 0.1787 0.2018 0.2718 0.1562 0.6564

FM3 0.2369 0.1889 0.1787 0.1998 0.2693 0.1558 0.6562

46

5 Discussion

5.1 Dataset Considerations

While the LIAR Dataset is indeed a valuable asset to address the fake news detection

problem, some caution remarks are in order and there is some space for improvement in

the data.

 The false label history features from Table 17 stand out as a weak feature for

predicting unseen data. Any statement from a new speaker, one not previously part of the

dataset, will receive no prediction value from those features. The same can be said for the

speaker feature itself.

The history features contain extremely correlated output value for each speaker.

This can lead to both good and bad realizations. On the bright side, it brings huge attention

to the speaker as a red flag for fake news. A speaker that has a reputation to be untruthful

seems to continue on this path, according to the results in section 4.1.1. That is a useful

conclusion to reach. On the other hand, it introduces a big overfitting bias in the dataset,

meaning a lot more data on a huge range of political figures would be needed in order to

reduce the chance for unseen data to produce poor results.

In section 4.1.1, the SVD was able to capture that information reducing the

dimensionality to the history features themselves, generating extremely good results in

the case of Nearest Neighbors Classification. Figure 11 and Table 19 show how simpler

the data becomes and how both Random Forest classifier and KNN classifier achieve over

60% accuracy on a 6-class classification problem. Other classifiers did not have such

improvements including the original work’s [1] hybrid CNN/Bi-Directional LSTM

achieving similar results in the mid 20-30% accuracy range.

Since the dataset relies on data extracted from PolitiFact [66] the class labels are

designed to be interpreted by humans. It is still to be verified if the ordinal labels created

by PolitiFact can generalize well in a machine learning scenario and be just as effective

as it has been on fighting fake news via manual fact checking.

A very positive remark to be made towards the dataset is its size. The LIAR Dataset

remains as one of the largest fake-news oriented dataset created so far. With a lot more

fact-checking agencies starting their work around the globe the scientific machine

learning community might benefit from more large-scale datasets soon. Hopefully a

47

standardized and machine learning oriented approach is taken in building those datasets

in order to bring better prediction performance.

5.2 Feature Selection Insights

Before the actual classification results’ compilation, there are plenty of insights that result

from analyzing the features that remain after generating FM1, FM2 and FM3.

 As a result of using output correlation for feature selecting metadata in FM1, Table

21 unearths valuable knowledge regarding misinformation. The data shows that when the

speaker is not an actual person, such as in the case of a chain e-mail, blog-posting or

viral-image, the statement has a higher chance of being false. The same happens with

subjects such as health-care or religion. On the other hand, the subject economy and a

higher symbol_ratio gives a higher chance of truth to the statement. Reinforcing the

symbol_ratio truth inclination, the NUMERAL_TOKEN text variable also has truth

correlation according to Table 22.

 Feature matrices FM2 and FM3 presents similar truth correlation regarding

NUMERAL_TOKEN and their metadata is processed with SVD which selected the subject

features as most relevant to its components. This is an interesting result and could mean

that the subject features have a higher generalization power even though they have less

direct output correlation. Subjects in general can also be easily obtained through other

text feature selection methods like word embedding or topic modeling and it’s good to

verify they are actually very relevant metadata features for detecting fake content.

 Even though those realizations are important in the context of the fake news

problem, they must be verified further. The LIAR Dataset has a decent size but is

constrained to the USA’s 2016 election campaign context while the fake news context is

somewhat infinite. The more large-scale datasets are studied more accurate the insights

and predictions will be.

5.3 Classifiers’ Performance and Ordinal Formulation

Starting from the three feature matrices comparison, while FM1 provided a great number

of insights described in previous section, FM2 performed best in both ordinal and non-

ordinal classifications.

The best performing classifier was a simple Logistic Regression. After being

hyperparameter tuned, it achieved an average 10-fold cross-validation accuracy of

26.85% and an 𝑂𝐶𝛽 error of 49.09% as stated in Table 31. The average is taken running

48

10-fold cross-validation 10 times to dilute randomness of dataset splitting, since fixing

the random seed varied the result both ways in approximately 1%.

Before starting ordinal formulation, this result is quite satisfactory. A much

simpler classifier such as a Logistic Regression performs on par with a much more

complex neural network architecture, which achieved 27.4% in a single cross-validation

experiment. Additionally, a simpler classifier is more explainable and provides useful

insights.

The ordinal formulation of the problem is used as an attempt to take advantage of

the ordinality of the output classes and increase overall accuracy and diminish error

impact (𝑂𝐶𝛽). Even though the 𝑂𝐶𝛽 error is not used intrinsically in the loss function, it

is expected to decrease when using ordinal classification framework if the classes are

indeed ordinal in nature.

While indeed achieving lower 𝑂𝐶𝛽 error and higher accuracy, the improvements

were minimal and inside the standard deviation variation could be considered equal. This

does not invalidate the ordinality of the classes or the framework proposed by [3]

otherwise the accuracy was supposed to be lower than the regular classification. The most

performing classifier was also the Logistic Regression in the FM2 matrix achieving an

average 26.87% accuracy and 48.75% 𝑂𝐶𝛽 error (Table 39).

Most classifiers had slight improvements or remained at the same range of

performance when using the ordinal formulation except for the NCA classifier that

performed poorly in ordinal manner, needing additional research (Table 42) to find the

reason for it. It is important to remark that other classifiers simpler than a neural network

such as Random Forest or SVM also performed similarly to Logistic Regression

achieving results pretty close to the 26% mark. This might be due to the fact that neural

networks do not perform at their best when using limited size datasets due to their

complexity. Neural Networks’ power relies on huge amounts of data, which is not usually

available for fake news detection just yet.

Additional metrics such as precision, recall and F1-score are also available for

reference in the results section in both regular and ordinal classifications.

Lastly, it is interesting to analyze the results of the individual binary classifiers of

the ordinal formulation such as in Table 38. As the classifiers range from 𝐶0 to 𝐶4, the

threshold between true and false statement moves from one extreme to the other. The

accuracy of the binary classifiers follows that pattern being much higher when the

49

threshold is closer to one of the extremes (𝐶0 and 𝐶4) and being lower as the threshold

travels in the middle (𝐶1, 𝐶2, 𝐶3). This is explained by misinformation being indeed a

continuous and ambiguous concept and therefore it is easier to detect an extreme lie than

a partial lie.

Following, as an illustration, is a closer look at the performance of the 5 binary

classifiers for the best performing Logistic Regression using FM2.

Table 43 - Ordinal binary classifiers accuracy varying with true/false threshold

 𝐶0 𝐶1 𝐶2 𝐶3 𝐶4

Accuracy (µ) 0.8402 0.6676 0.6433 0.7403 0.9207

5.4 Fuzzy Interpretation

The difficulty of labeling an ambiguous dataset with 6 ordinal classes could make Fuzzy

Logic [81] useful to this problem [82]. With Fuzzy Logic, a statement can be a member

of multiple classes to different degrees, which is mostly why a statement becomes

“mostly-true” or “barely-true” to begin with.

 Similarly, even with no fuzzy output variables, the probability output of classifiers

could be used for that purpose. Therefore, since the classes measure a single concept, the

untruthiness of a statement, a single fuzzy output might make more sense in aiding

decision making after prediction.

6 Conclusions

It became clear with the results of the experiment that using artificial intelligence to find

untruthiness in data is not an easy task. However, this work has achieved reasonable

results with simple classifiers.

 All of the preprocessing tasks have done good jobs exposing relevant features to

the classifiers even without the use of word embeddings. FM1 and FM2 were particularly

more important than FM3 when bringing useful insights. The metadata seemed to be

enough to represent semantics and context information. Results shown in Table 21 and

Table 22 can give a grasp of what the patterns are in this dataset, however, a much bigger

dataset analysis would be required to check consistency, especially with potential polemic

results.

50

 The subjectivity of the untruthiness levels becomes obvious when looking at the

results of the binary classifiers in Table 38.. This means that, for any fake news detection

system, the results will vary according to these untruthiness thresholds or, in other words,

the amount of subjectivity the system tries to capture. This is also valid for the task of

dataset labeling. Many levels of untruthiness to choose from leads to eventual

inconsistency in the labeling process affecting the patterns to be detected using machine

learning algorithms.

 This experiment, however, managed to achieve an accuracy in the order of 26.87%

accuracy in a 6-class classification problem. Random guesses would result in 16.67% and

majority guesses would result in 20.5%. The ordinal formulation did not reduce the 𝑂𝐶𝛽

significantly as expected, but the assumptions from section 3.4.2 still held. One possibility

is that labeling subjectivity could be introducing noise to the actual ordering of the classes,

preventing better results with ordinal classification.

 Fake news detection in machine learning is still a work in progress. It depends on

a highly precise human labeling process when constructing large datasets. Even then, each

dataset will, most likely, be constrained to its domain.

 What appears to be extremely useful is the insights obtained from datasets like

this. For that reason, this work is expected to contribute to verifying techniques that can

be used in text and metadata not only for classification itself but also to mine valuable

information regarding true or false statements. Additionally, the experiments showed that

similar results can be achieved with simpler classifiers using appropriate feature selection,

especially when datasets are limited to be used with deep neural networks. Lastly, this

work contributes to reinforcing the need of a standardized way to capture the different

levels of untruthiness in statements that proved hard to deal with even when modeling the

classification in an ordinal manner.

51

7 References

[1] W. Y. Wang, ““Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News

Detection,” em Association for Computational Linguistics -

https://arxiv.org/abs/1705.00648, Vancouver, 2017

[2] Cardoso, Jaime S.; Sousa, Ricardo; INESC Porto, “Measuring the Performance of

Ordinal Classification,” International Journal of Pattern Recognition and Artificial

Intelligence, vol. 25, nº 8, pp. 1173-1195, 2011

[3] E. &. H. M. Frank, “A Simple Approach to Ordinal Classification,” Lecture Notes

in Computer Science, vol. 2167, pp. 145-156, 2001

[4] E. Shearer, “Fact Tank,” Pew Research, 10 December 2018. [Online]. Available:

https://www.pewresearch.org/fact-tank/2018/12/10/social-media-outpaces-print-

newspapers-in-the-u-s-as-a-news-source/

[5] B. N. Anand, “The U.S. Media’s Problems Are Much Bigger than Fake News and

Filter Bubbles,” Harvard Business Review, 5 January 2017. [Online]. Available:

https://hbr.org/2017/01/the-u-s-medias-problems-are-much-bigger-than-fake-news-

and-filter-bubbles

[6] R. Gunther, P. Beck and E. Nisbet, "Fake News May Have Contributed to Trump’s

2016 Victory," Ohio State University, 8 March 2018. [Online]. Available:

https://assets.documentcloud.org/documents/4429952/Fake-News-May-Have-

Contributed-to-Trump-s-2016.pdf.

[7] D. Phillips, “Brazil battles fake news 'tsunami' amid polarized presidential election,”

The Guardian, 10 October 2018. [Online]. Available:

https://www.theguardian.com/world/2018/oct/10/brazil-fake-news-presidential-

election-whatsapp-facebook

[8] K. Ponniah, “WhatsApp: The 'black hole' of fake news in India's election,” BBC

News, 6 April 2019. [Online]. Available: https://www.bbc.com/news/world-asia-

india-47797151

[9] M. Stencel e R. Griffin, “Fact-checking triples over four years,” Duke Reporter`s

Lab, 22 2 2018. [Online]. Available: https://reporterslab.org/fact-checking-triples-

over-four-years/

52

[10] J. Porter, “Facebook is turning its fact-checking partners loose on Instagram,” The

Verge, 7 5 2019. [Online]. Available:

https://www.theverge.com/2019/5/7/18535116/instagram-fact-checking-facebook-

dashboard-misinformation

[11] T. Henriksson, “Facebook: labelling of false stories reduces the spread of fake news

by 80%,” World News Publishing Focus, 12 October 2017. [Online]. Available:

https://blog.wan-ifra.org/2017/10/12/facebook-labelling-of-false-stories-reduces-

the-spread-of-fake-news-by-80

[12] Facebook, “Removing Coordinated Inauthentic Behavior From Israel,” Facebook

Newsroom, 16 May 2019. [Online]. Available:

https://newsroom.fb.com/news/2019/05/removing-coordinated-inauthentic-

behavior-from-israel/

[13] M. Temming, “How Twitter bots get people to spread fake news,” Science News,

20 November 2018. [Online]. Available:

https://www.sciencenews.org/article/twitter-bots-fake-news-2016-election

[14] E. Strickland, “AI-human partnerships tackle "fake news": Machine learning can get

you only so far-then human judgment is required,” IEEE Spectrum, vol. 55, nº 9, pp.

12-13, 2018

[15] W. Shang, M. Liu, W. Lin e M. Jia, “Tracing the Source of News Based on

Blockchain,” em IEEE/ACIS, Singapore, 2018

[16] E. J. A. Newman, M. Garry, C. Unkelbach, D. M. Bernstein, D. S. Lindsay e R. A.

Nash, “Truthiness and falsiness of trivia claims depend on judgmental contexts.,”

Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 45, nº

5, pp. 1337-1348, 2015

[17] Rugile, “30 Fake Viral Photos People Believed Were Real,” Bored Panda, [Online].

Available: https://www.boredpanda.com/fake-news-photos-viral-

photoshop/?utm_source=google&utm_medium=organic&utm_campaign=organic

[18] Stanford University/Michael Zollhoefer; The Max Planck Institute for Informatics;

University of Washington; Carnegie Mellon; University Colorado Denver,

“https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-

deepfakes/,” CNN Business, [Online]. Available:

53

https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-

deepfakes/

[19] D. Shapiro, “Artificial Intelligence and Bad Data,” Towards Data Science, 6

November 2017. [Online]. Available: https://towardsdatascience.com/artificial-

intelligence-and-bad-data-fbf2564c541a

[20] D. Funke, “Reporters: Stop calling everything ‘fake news’,” Poynter, 29 August

2018. [Online]. Available: https://www.poynter.org/fact-checking/2018/reporters-

stop-calling-everything-fake-news/

[21] E. Van Duyn e J. Collier, “Priming and Fake News: The Effects of Elite Discourse

on Evaluations of News Media,” Mass Communication and Society, vol. 22, nº 1,

pp. 29-48, 2019

[22] C. Wardle, “Fake news. It’s complicated.,” First Draft, 16 February 2017. [Online].

Available: https://firstdraftnews.org/fake-news-complicated/

[23] P. R. S. S.-S. J. T. Hamid Karimi, “Multi-Source Multi-Class Fake News Detection,”

em Association for Computational Linguistics, Santa Fe, 2018

[24] P. Mike Tamir, “Detecting Fake News using Machine Learning,” Analytics Vidhya,

11 April 2019. [Online]. Available: https://medium.com/analytics-vidhya/detecting-

fake-news-using-machine-learning-with-mike-tamir-ph-d-dd97277742ff

[25] S. &. K. A. P. Parikh, “Media-Rich Fake News Detection: A Survey.,” em MIPR

2018, Miami, 2018

[26] D. Harrison e D. Rubinfeld, “Housing Values in Suburbs of Boston,” [Online].

Available: https://www.kaggle.com/c/boston-housing/overview

[27] Y. LeCun, C. Cortes e C. J. Burges, “THE MNIST DATABASE,” [Online].

Available: http://yann.lecun.com/exdb/mnist/

[28] S. P. M. A. S. S. E. D. T. J. B. G. K. K. Mehdi Allahyari, “A Brief Survey of Text

Mining: Classification, Clustering and Extraction Techniques,” University of

Georgia, 28 July 2017. [Online]. Available: https://arxiv.org/abs/1707.02919

[29] J. Brownlee, “A Gentle Introduction to the Bag-of-Words Model,” Machine

Learning Mastery, 9 October 2017. [Online]. Available:

https://machinelearningmastery.com/gentle-introduction-bag-words-model/

54

[30] D. Jurafsky, “Language Modeling - Introduction to N-grams,” Stanford University,

[Online]. Available:

https://web.stanford.edu/class/cs124/lec/languagemodeling2017.pdf

[31] E. G. P. B. T. M. Armand Joulin, “Bag of Tricks for Efficient Text Classification,”

Facebook AI Research, 6 July 2016. [Online]. Available:

https://arxiv.org/abs/1607.01759

[32] P. R. Christopher D. Manning e Hinrich Schütze, “Scoring, term weighting & the

vector space model,” em Introduction to Information Retrieval, Cambridge

University Press. 2008, 2008, pp. 109-133

[33] B. A. Asaad e M. Erascu, “A Tool for Fake News Detection,” em 2018 20th

International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), Timisoara, 2018

[34] Á. A. I. C. Edmundo Hoyle, “GLOBOPLAY THUMBNAILS: USING AI TO

EXTRACT THE BEST FRAME TO REPRESENT DRAMA SERIES,” em IBC

2019, Amsterdam, 2019

[35] P. e. al., “Scikit-learn: Machine Learning in Python,” JMLR 12, pp. 2825-2830, 2011

[36] R. R. a. P. Sojka, “Software Framework for Topic Modelling with Large Corpora,”

em Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, Valletta, Malta, ELRA, 2010, pp. 45-50

[37] Tomas Mikolov; Ilya Sutskever; Kai Chen; Greg Corrado; Jeffrey Dean; Google

Inc., “Distributed representations of words and phrases and their compositionality,”

NIPS'13 Proceedings of the 26th International Conference on Neural Information

Processing Systems, vol. 2, pp. 3111-3119, 2013

[38] D. M. Blei, A. Y. Ng e M. I. Jordan, “Latent Dirichlet Allocation,” Journal of

Machine Learning Research, vol. 3, pp. 993-1022, 2003

[39] S. Li, “Topic Modeling and Latent Dirichlet Allocation (LDA) in Python,” Towards

Data Science, 31 May 2018. [Online]. Available:

https://towardsdatascience.com/topic-modeling-and-latent-dirichlet-allocation-in-

python-9bf156893c24

[40] “FakerFact,” 2018. [Online]. Available: https://www.fakerfact.org/about

[41] T. M. Quoc V. Le, “Distributed Representations of Sentences and Documents,”

Google Inc, 22 May 2014. [Online]. Available: https://arxiv.org/abs/1405.4053v2

55

[42] W. C. W. Herley Shaori Al-Ash, “Fake News Identification Characteristics Using

Named Entity Recognition and Phrase Detection,” em 10th International

Conference on Information Technology and Electrical Engineering (ICITEE), Kuta,

Indonesia, 2018

[43] S. A. Benjamin D. Horne, “This Just In: Fake News Packs a Lot in Title, Uses

Simpler, Repetitive Content in Text Body, More Similar to Satire than Real News,”

ArXiv, 2017. [Online]. Available: https://arxiv.org/abs/1703.09398

[44] “Natural Language Toolkit,” NLTK Project, 2005. [Online]. Available:

https://www.nltk.org

[45] M. a. M. I. Honnibal, “Natural language understanding with Bloom embeddings,

convolutional neural networks and incremental parsing,” Spacy, 2017. [Online].

Available: https://spacy.io/

[46] Mark A. Hall; The University of Waikato, Correlation-based Feature Selection for

Machine Learning, Hamilton, New Zealand, 1999

[47] S. &. S. U. &. T. S. &. D. S. &. S. D. &. S. R. &. P. S. &. L. M. Mishra, “Principal

Component Analysis,” International Journal of Livestock Research, 2017

[48] MIT, “Singular Value Decomposition (SVD) tutorial,” [Online]. Available:

http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm

[49] K. B. G. L. Yi Mao, “Dimensionality Reduction for Text using Domain

Knowledge,” ACL Anthology, vol. Coling 2010: Posters, pp. 801-809, 2010

[50] L. v. d. Maaten e G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine

Learning Research , vol. 9, pp. 2579-2605, 2008.

[51] Jacob Goldberger, Sam Roweis, Geoff Hinton, Ruslan Salakhutdinov; Department

of Computer Science, University of Toronto, “Neighbourhood Components

Analysis,” [Online]. Available: https://www.cs.toronto.edu/~hinton/absps/nca.pdf

[52] A. Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks,”

Andrej Karpathy blog, 21 May 2015. [Online]. Available:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[53] C. Olah, “Colah's blog,” 27 August 2015. [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

56

[54] Oluwaseun Ajao; Deepayan Bhowmik; Shahrzad Zargari; C3Ri Research Institute,

“Fake News Identification on Twitter with Hybrid CNN and RNN Models,”

Arxiv.org, 29 Jun 2018. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1806/1806.11316.pdf

[55] F. Y. A. M. Sohan De Sarkar, “Attending Sentences to detect Satirical Fake News,”

em COLING, 2018.

[56] A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,”

Stanford.EDU, 2019. [Online]. Available: http://cs231n.github.io/convolutional-

networks/

[57] C. Nicholson, “A Beginner’s Guide to Important Topics in AI, Machine Learning,

and Deep Learning,” Skymind, 2019. [Online]. Available:

https://skymind.com/wiki/attention-mechanism-memory-network

[58] N. S. N. P. J. U. L. J. A. N. G. L. K. I. P. Ashish Vaswani, “Attention Is All You

Need,” Arxiv.org, December 2017. [Online]. Available:

https://arxiv.org/abs/1706.03762

[59] K. Dembczynski, W. Kotlowski e S. Roman, “Ensemble of Decision Rules for

Ordinal Classification with Monotonicity Constraints.,” em Rough Sets and

Knowledge Technology, Third International Conference, Chengdu, China, 2008.

[60] Jaime S. Cardoso; Joaquim F. Pinto da Costa; Universidade do Porto, “Learning to

Classify Ordinal Data: The Data Replication Method,” Journal of Machine Learning

Research, vol. 8, pp. 1393-1429, 2007

[61] M. C. Heredia-Gomez, S. Garcıa, P. A. Gutierrez e F. Herrera, “OCAPIS: R package

for Ordinal Classification And Preprocessing In Scala,” Arxiv.org, 17 March 2019.

[Online]. Available: https://arxiv.org/abs/1810.09733

[62] P. J. R. B. M. H. Michael J. Wurm, “Regularized Ordinal Regression and the

ordinalNet R Package,” Arxiv.org, 15 Jun 2017. [Online]. Available:

https://arxiv.org/abs/1706.05003

[63] J. N. Gaudette L., “Evaluation Methods for Ordinal Classification,” em Canadian

Conference on Artificial Intelligence, 2009

[64] Jaime S. Cardoso, Ricardo Gamelas Sousa, University of Porto, “Measuring the

Performance of Ordinal Classification,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 25, pp. 1173-1195, 2011

57

[65] W. Yang Wang, “Index of /~william/data,” University of California, Santa Barbara,

23 April 2017. [Online]. Available: https://sites.cs.ucsb.edu/~william/data/

[66] Poynter Institute, “PolitiFact,” 1 January 2007. [Online]. Available:

https://www.politifact.com/

[67] Poynter Institute for Media Studies, “Poynter,” 1 January 1975. [Online]. Available:

https://www.poynter.org/

[68] Tampa Bay Newspaper, “Tampa Bay Newspaper,” 1 January 1884. [Online].

Available: https://www.tampabay.com/

[69] Python Software Foundation, “python,” 2001. [Online]. Available:

https://www.python.org/

[70] Jupyter Project and Community, “jupyter,” 2014. [Online]. Available:

https://jupyter.org

[71] Igor Bichara; Carlos Eduardo Pedreira; Geraldo Xexéo, “fakenews-LIAR,” COPPE

- PESC, 2019. [Online]. Available: https://github.com/ibichara/fakenews-LIAR

[72] Pandas Community, “Pandas Data Analysis Library,” NumFOCUS, 2014. [Online].

Available: https://pandas.pydata.org/

[73] NumPy developers, “NumPy,” NumFOCUS, 2001. [Online]. Available:

https://www.numpy.org/

[74] N. Project, “Categorizing and Tagging Words,” 1 April 2019. [Online]. Available:

https://www.nltk.org/book/ch05.html

[75] N. Project, “Accessing Text Corpora and Lexical Resources,” 1 April 2019.

[Online]. Available: https://www.nltk.org/book/ch02.html

[76] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science and

Engineering, vol. 9, nº 3, pp. 90-95, 2007.

[77] MathWorks, “Feature selection using neighborhood component analysis for

classification,” [Online]. Available:

https://www.mathworks.com/help/stats/fscnca.html

[78] The MathWorks, Inc., “MathWorks,” 1994. [Online]. Available:

https://www.mathworks.com/products/matlab.html

58

[79] J. Brownlee, “Machine Learning Mastery,” 28 July 2017. [Online]. Available:

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-

learning/

[80] S. Learn, “GridSearchCV,” [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

[81] T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2009

[82] Hassall, John; University of Wolverhampton, “Methods of Analysing

Ordinal/Interval Questionnaire Data using Fuzzy Mathematical Principle,”

Wolverhampton, 1999

