
FINITE ELEMENT MESH MULTIPLICATION WITH BOUNDARY SMOOTHING

Rômulo Montalvão Silva

Dissertação de Mestrado apresentada ao Programa
de Pós-graduação em Engenharia Civil, COPPE,
da Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia Civil.

Orientadores: Alvaro Luiz Gayoso de Azeredo
Coutinho
Renato Nascimento Elias

Rio de Janeiro
Fevereiro de 2019

Silva, Rômulo Montalvão
Finite Element Mesh Multiplication with Boundary

Smoothing/Rômulo Montalvão Silva. – Rio de Janeiro:
UFRJ/COPPE, 2019.

XI, 59 p.: il.; 29, 7cm.
Orientadores: Alvaro Luiz Gayoso de Azeredo Coutinho

Renato Nascimento Elias
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Civil, 2019.
Referências Bibliográficas: p. 51 – 59.
1. Finite Element Method. 2. Boundary Smoothing.

3. Mesh Multiplication. 4. High Performance Computing.
I. Coutinho, Alvaro Luiz Gayoso de Azeredo et al. II.
Universidade Federal do Rio de Janeiro, COPPE, Programa de
Engenharia Civil. III. Título.

iii

Agradecimentos

Aos meus orientadores Alvaro Coutinho e Renato Elias, por toda dedicação, orien-
tação, paciência e conversas empolgantes ao longo desta pesquisa, ajudando-me a chegar
tão longe, tornando essa jornada muito mais divertida que o esperado.

Aos meus pais, Fátima e Vanivaldo, pelo amor e apoio, constantes e incondicionais.

À minha namorada, Patricia Figuereido, por todo amor, apoio, carinho, alegria e
atenção, mesmo nos momentos mais difíceis.

Aos meus amigos de longa data, em especial Luiz Eduardo, José Ewerton e José Neto.
Mesmo à distância vocês me proporcionaram momentos divertidos durante essa jornada.

Aos amigos que este mestrado me trouxe, em especial Gabriel Freguglia, Lucas
Teotônio e Fellipe Araujo.

Aos amigos e colegas do Núcleo Avançado de Computação de Alto Desempenho -
NACAD, por terem me proporcionado um ambiente agradável durante a realização deste
trabalho.

Aos membros da banca avaliadora por todas as contribuições a este trabalho.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq pelo fi-
nanciamento dessa pesquisa.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MULTIPLICAÇÃO DE MALHAS DE ELEMENTOS FINITOS COM SUAVIZAÇÃO
DE SUPERFÍCIE

Rômulo Montalvão Silva

Fevereiro/2019

Orientadores: Alvaro Luiz Gayoso de Azeredo Coutinho
Renato Nascimento Elias

Programa: Engenharia Civil

Este trabalho apresenta um procedimento para melhoria da representação da superfície
de malhas de elementos finitos quando refinadas por um processo de subdivisão. Inicial-
mente, a malha inicial é submetida a um refinamento uniforme por meio da subdivisão
dos elementos, mantendo a representação inicial do contorno da geometria. Em seguida,
os nós do contorno da geometria são filtrados para serem reposicionados utilizando um
modelo geométrico de referência. Com o intuito de evitar buscas excessivas durante o
processo de reposicionamento, é utilizada uma técnica de subdivisão espacial. Para o
reposicionamento dos nós restantes (os nós internos), é utilizado um esquema simples,
geralmente aplicado à problemas de interfaces móveis. Para ilustração dos resultados
desse procedimento, são apresentados os estágios da geometria ao longo do processo,
bem como a convergência volumétrica do sólido para cada nível de refinamento. Esse
procedimento visa ajudar na geração de grandes malhas para simulações de larga escala
em tempo de execução, evitando o procedimento tradicional de geração de malhas.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

FINITE ELEMENT MESH MULTIPLICATION WITH BOUNDARY SMOOTHING

Rômulo Montalvão Silva

February/2019

Advisors: Alvaro Luiz Gayoso de Azeredo Coutinho
Renato Nascimento Elias

Department: Civil Engineering

A procedure to improve the boundary geometry of refined finite element meshes is
presented. Initially, the coarse mesh is submitted to an uniform refinement by splitting the
elements, but maintaining the coarse boundary. Then, the boundary nodes of the refined
mesh are filtered. To avoid search overheads, a spatial subdivision technique is applied to
the set of reference nodes. To repositionate the remaining nodes i.e., the internal nodes,
a simple scheme widely used for moving boundary problems is applied. The capability
of this procedure is illustrated showing the stages of the geometry during the process, as
well as the mesh volumetric convergence for each level of refinement. This procedure
aims to help generating meshes for large-scale problems at runtime instead of generating
those meshes using traditional mesh generators.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Challenges of High Performance Computing 1
1.2 Generating Unstructured Meshes for Large-Scale Simulations 4

1.2.1 Adaptive Mesh Refinement . 4
1.2.2 Uniform Mesh Refinement . 5
1.2.3 Communication-Avoiding Parallel Mesh Multiplication 6

1.3 Thesis Proposal and Organization . 6

2 EdgeCFD: A Parallel Multiphysis Implicit Solver 8
2.1 Presentation . 8
2.2 Threaded parallelism . 10
2.3 Distributed Memory Parallelism . 10

3 Mesh Multiplication Method 14
3.1 Communication-Free Parallel Mesh Multiplication 15

3.1.1 Communication Map . 15
3.1.2 Assigning Processes to New Communication Nodes 17

4 Boundary Smoothing 20
4.1 Spatial Data Structures . 21

4.1.1 Brute Force Search . 21
4.1.2 BINs . 21
4.1.3 kD-trees . 22

4.2 Estimating the Normal Vectors at the Nodes 24
4.3 Surface Correction . 25

5 Internal Nodes Repositioning 27
5.1 Setting the problem . 28

vii

5.1.1 Strong form of the problem . 28
5.1.2 Weak form of the problem . 28

5.2 Modified re-positioning problem . 29

6 Mesh Quality Measurement 31
6.1 Mesh Quality Methods Review . 31

7 Results 34
7.1 Performance Evaluation of the Communication-Free Parallel Mesh Mul-

tiplication . 34
7.2 Boundary Approximation . 36

7.2.1 Case 01 . 37
7.2.2 Case 02 . 42
7.2.3 Case 03 . 46

8 Conclusions 49

Bibliography 51

viii

List of Figures

1.1 Roofline scheme . 3
1.2 Tetrahedral split . 5

2.1 Tetrahedra element matrix being disassembled into edges contributions . . 10
2.2 Master and Slave classification according to partition IDs 12
2.3 Mesh partition and GID generation . 13

3.1 Regular refinement (8-subtetrahedron subdivision). 14
3.2 Pairing functions . 18
3.3 Problem to assigning processes to new communication nodes (left). New

partition assigned from nodes A and B (right). A ∩ B returns wrong
partition assignment, suggesting this information should not be inherited
from edges . 18

3.4 Ghost Elements for partitions 0 and 1 19

4.1 BINs in two-dimensions. The black circles are the points to be searched. . 22
4.2 Distorted sphere geometry caused by a elevated number of BINs (left) and

the real or target geometry (right). 23
4.3 kD-tree representation . 23
4.4 Projection scheme to determine the new node’s position 26

5.1 Variation of τ e with the element’s volume V e 30

7.1 Unstructured base mesh for YF-17 . 35
7.2 Unstructured mesh for YF-17 at the second level of refinement 36
7.3 Mesh multiplication hotspots for 512 cores and 4 refinement levels 36
7.4 Elements Quality for each refinement level. 38
7.5 Coarse or Base mesh . 39
7.6 Base and Target geometry . 39
7.7 Unit normal vectors of the surface . 40
7.8 Distance Field Magnitude for the 2nd Mesh Level 40
7.9 Distance Field Magnitude for the 3rd Mesh Level 41

ix

7.10 Distance Field Magnitude for the 4th Mesh Level 41
7.11 Elements Quality for each refinement level. 42
7.12 Dragon Geometry - Base Mesh. 43
7.13 Dragon Geometry - Target Mesh. 43
7.14 Dragon’s Head - Level 02 without Boundary Smoothing. 44
7.15 Dragon’s Head - Level 02 with Boundary Smoothing. 45
7.16 Dragon Geometry - Distance Field. 45
7.17 Riser Geometry - Overall Mesh. 46
7.18 Strake Geometry - Target Mesh. 47
7.19 Strake Geometry - Distance Field. 47
7.20 Elements Quality for each refinement level. 48

x

List of Tables

3.1 Indexes combinations that provide the maximum paired values for each
var size . 17

6.1 A list of tetrahedron shape measures used in literature [1] 31

7.1 Time spent by refinement level (512 cores) 34
7.2 Mesh multiplication strong scalability. 35
7.3 Element quality histogram . 37
7.4 Element quality degradation for one level refinement of the reference

tetrahedron . 37
7.5 Mesh details - Sphere Mesh . 38
7.6 Volume Convergence and algorithm performance- Sphere Mesh 42
7.7 Mesh details - Dragon Mesh . 44
7.8 Volume convergence and algorithm performance - Dragon Mesh 46
7.9 Mesh details - Riser Mesh . 47
7.10 Volume Convergence and algorithm performance - Riser Mesh 48

xi

Chapter 1

Introduction

The need to solve challenging problems in science and engineering often results in
using tools powered by the three pillars of empirical sciences: Theoretical, experimental
and computational. Keeping in mind the difficulties of doing experiments and developing
new theoretical models to solve those problems, the computational sciences aim to support
the other two pillars. To achieve high levels of physical fidelity and accuracy, the use of
large-scale computing resources is indispensable. There are many applications where the
use of these tools have become essential over the last years [2]:

• Large scale experiments in physics.

• wind-tunnel for aeronautics and automotive applications.

• water-tunnel for naval engineering applications.

• efficiency of mobile communications in telecom engineering analyses.

The solution of those problems usually relies in numerically solving PDEs, often im-
plying in large nonlinear systems of equations. But, when the problem comes to the large
scale, the generation of high fidelity models becomes a burden, specially the generation
of unstructured boundary filled meshes.

The remaining sections show the current challenges of the use of High Performance
Computing to run science and engineering problems (section 1.1), and do a short introduc-
tion about the generation of large unstructured meshes (section 1.2). Section 1.3 shows
the proposal and organization of this work.

1.1 Challenges of High Performance Computing

Computational power has grown over the last years. Now, scientists are aiming to
achieve the Exascale Computing Era, allowing supercomputers to get the computing ca-
pability of doing 1018FLOP/s. These machines can help us to solve more bigger and

1

bigger science and engineering problems. Recently, for a very specific application of
deep learning in climate analytics, Kurth et al. [3] achieved a peak and sustained through-
put of 1.13 EFlop/s and 999.0 PFlop/s respectively during the training stage of a network
running in half-precision on Summit supercomputer. Notice that the half-precision float-
ing point arithmetic differs from the industry standard which usually works with single
and double precision standards. Furthermore, there are at least four major challenges
difficulting us reaching to the Exascale computing [4]:

1. Energy and Power Challenge: maybe the most important of the four, which lies
in the difficulty of develop mature technologies and combine them.

2. Memory and Storage Challenge: refers to the lack of available technology to store
data, and to access it at desirable rates. Furthermore, some applications may have
its performance bounded by memory access.

3. Concurrency and Locality Challenge: with the limitation of clock rates and the
end of increasing single thread performance, the only mechanism to increase the
performance of our applications consists in parallel programming. More and more
studies try to find efficient parallel programming models to the current available
hardware.

4. Resiliency Challenge: related to the ability of a system to continue operating even
in the presence of faults or performance fluctuations.

New hardware technologies and architectures must be developed and optimized to
reach the Exascale. But it is also necessary to develop new programming models for
these new architectures, and look for new algorithms to extract more performance from
the hardware and achieve more energetic efficiency as power became a first-order design
constraint for large-scale parallel computing [5].

The more the running time of an application is increased, the more we increase the
energy consumption. This way, it is obviously necessary to reduce the running time of
scientific applications.

The two main cost sources of the algorithms can be summarized as:

• Arithmetic: quantity of floating points operations per second, FLOPs, and the
time per each FLOP operation, TFLOP .

• Communication: the movement of data between levels of a memory hierarchy
(Moved Data / Bandwidth) or between processors over a network (Messages×
Latency).

Furthermore, the total running time, RT , can be expressed as [6]:

2

RT = FLOPs× TFLOP +
Moved Data

Bandwidth
+Messages× Latency (1.1)

where the red part is associated to communication and the remaining part is linked to
arithmetic operations.

To reduce the running time associated to the communication process, it turns attrac-
tive to use communication-avoiding algorithms. These algorithms can help us to achieve
larger speedups for tasks like matrix multiplication, tensor contractions, N-body direct
simulations, combustion simulation, Tall skinny QR, Unstructured Mesh Simulations and
more [6].

It is expected that a computer must spend most of its computation time by doing arith-
metic operations instead of changing information between processes or memory levels.
Measuring only the running time is not so efficient on disclosing where or how to opti-
mize the code. An attempt to understand the performance limitations is estimating how
many data the code is sending/receiving and the number of floating points operations for
a time interval. In other words, it is necessary to try to relate processor performance to
memory traffic as proposed by William et al. [7]. This relation is called Arithmetic
Intensity.

Figure 1.1 shows a model capable to represent together memory and floating-point
performance called Roofline model [7]. To build such graph it is necessary to access
the specifications of memory and processor, which can be found through benchmarks or
looking at the hardware specifications. Some code profiling tools, like IntelTMVtune, are
capable to show hotspots like entire functions or loops whose arithmetic intensity is high
limitated by communication.

Arithmetic Intensity (Flop:Byte)

Attainable Flop/s

DRAM
GB/s

Peak Flop/s

Compute-boundMemory-bound

Figure 1.1: Roofline scheme

3

1.2 Generating Unstructured Meshes for Large-Scale
Simulations

Computational scientists and engineers have now the ability to run simulations on
unstructured meshes with millions or even billions of elements, as for example [8–11].
However, building such large meshes is still a cumbersome task even in today’s largest
computers and parallel mesh generation represents an open and active research topic [12].

A possible solution to generate those big meshes is to refine a initial coarse mesh
whose price to be generated is meaningless, and then refine the mesh using one of the well
known mesh refinement methods like the Adaptive Mesh Refinement and the Uniform
Mesh Refinement.

1.2.1 Adaptive Mesh Refinement

During adaptive mesh refinement, a base mesh is refined according to some metric
which guides in what regions elements must be refined or coarsened [13]. In a parallel
environment, this process usually leads to unbalanced mesh partitions. Elements and
nodes must be exchanged among processes to recover a nearly uniform mesh distribution
per processor. This operation relies on message passing, often at a high computational
cost.

Mesri et al [14], for instance, proposes to keep parallel interfaces unchanged, during
local re-meshing, and leave interface refinements for a later phase to reduce communica-
tion costs. Another common issue in parallel adaptive mesh refinement is keeping track
of mesh entities shared among processes. These entities are responsible for synchroniz-
ing the solution for the whole mesh, making it consistent, and are also used during the
solution phase in point–to–point (usually non-blocking) message passing [15].

Bauman and Stogner in [16] present a review of parallel adaptive software libraries.
In particular they discuss MOOSE [17], FEniCS [18], deal.II [19] and libMesh [20]. In
their paper, they propose GRINS, a framework built on top of libMesh to support multi-
physics applications. In particular, libMesh does mesh partitioning through interfaces to
several packages, including Hilbert space-filling curves and graph-based algorithms such
as Metis and ParMetis [21]. GRINS and MOOSE also share the same mesh partitioning
and adaptive strategies of libMesh. Currently libMesh scales to hundreds of thousands of
cores [16]. Bangerth et al. in [22] extended the open source deal.II library functionality,
offering the ability to solve finite element problems on fully adaptive meshes with billions
of cells and several billion unknowns. p4est [23] library is used to efficiently generate and
partition hierarchically refined meshes on several thousands of cores. It also provides in-
formation on the distributed nature of the mesh through a well-defined set of queries and
executes directives to coarsen, refine, and re-partition the mesh. P4est is based on avoid-

4

ing global communication wherever possible in favor of gather/scatter and point–to–point
operations.

1.2.2 Uniform Mesh Refinement

A different approach for quickly building large-scale parallel meshes is based on uni-
form element subdivision, a technique usually called mesh multiplication [10, 24, 25]. In
this method, each element of the original coarse mesh is subdivided into smaller elements
following a common pattern for the entire mesh. Fig. 1.2 shows how this process applies
to a single tetrahedron being divided into eight smaller ones. By applying the same sub-
division for all mesh elements, a new and finer mesh, eight times larger is created. The
process can be applied hierarchically creating different refinement levels and could also
be extended to other elements [26]. The benefit of such approach is that element creation
is known a priori and follows a constant pattern.

Figure 1.2: Tetrahedral split

Therefore, distributed parallel processes may apply the same algorithm independently.
However, as the interface among processes is also subdivided, new shared mesh entities
(nodes, edges, and element faces for instance) are created and must be accounted for in
the refinement process. It is well known that the main computational cost from paral-
lel adaptive mesh refinement comes from keeping this shared entities consistent [18–20].
These operations are usually performed with the help of a dual or nodal graph, storing the
neighborhood structure of each parallel process and mesh partitions [27], and must be up-
dated as new nodes and elements are created due to the refinement process. Moreover, in
the mesh multiplication method, the finer mesh preserves the original element distribution
and, consequently, the refinement pattern of the original coarser mesh.

Mesh multiplication methods found in the literature still relies on communication
when the parallel interface is modified due to element refinements. In [10], the array
holding nodes, that must be communicated during the solution phase, is updated to take
into account new nodes created at the parallel interface. In [25], a linked list holding in-

5

formation about parallel edges, local and global indexes is built and communicated using
specialized routines developed by the authors. Kabelikova et al in [9], also reports the
need for communicating data across parallel interfaces to re-index global nodes.

1.2.3 Communication-Avoiding Parallel Mesh Multiplication

To overcome the performance bottleneck due to communication during the genera-
tion of big meshes, a fast tetrahedral mesh multiplication technique is implemented inside
in the multiphysics finite element code, EdgeCFD, described in Chapter 2. Although
general, it can be used as a standalone procedure or incorporated into an unstructured
grid multiphysics solver [28]. The method is based on a uniform tetrahedral mesh re-
finement scheme applying recursively edge bisection (also called Bey’s refinement [29]).
The method is very fast and does not require any communication among processes. This
is achieved by applying a particular pairing function to create unique indexes for glob-
ally shared mesh entities. The method is tested and produces unstructured meshes with
billions of elements very quickly as we shall see.

1.3 Thesis Proposal and Organization

This work proposes an improvement of the mesh multiplication procedure of
EdgeCFD, which at first is not capable to improve the boundary of the geometry even
after the refinement. To improve the geometry representation and consequently more ac-
curate results, the new nodes inserted during the refinement are repositioned by using a
reference geometry. The secondary objectives and the structure of the remaining chapters
are listed below:

• Chapter 2 describes the multiphysics solver developed at the High Performance
Computing Center - NACAD-COPPE/UFRJ, in which the present contribution is
implemented. Furthermore, details about its features (Section 2.1) and parallelism
(Sections 2.2 and 2.3) are discussed.

• Chapter 3 shows some details about the mesh multiplication (MM) method
including the introduction on how to multiply a mesh with a communication-free
scheme.

• Chapter 4 presents a simple methodology to do the boundary smoothing of a given
mesh using a reference geometry, and shows some data structures to do an efficient
spatial search and a brief review on how to estimate the normal vectors at nodes
lying over a surface mesh.

6

• Chapter 5 sets the problem of repositioning mesh nodes using a simple mesh
diffusion scheme, showing how to formulate the problem to solve over the same
mesh used to do the simulations and how to get boundary conditions from the
boundary smoothing problem.

• Chapter 6 shows a review of methods to measure mesh quality, and shows the
evaluation of one particular metric in the meshes produced by MM with and without
boundary smoothing.

• Chapter 7 presents the results generated by applying the MM procedure with and
without the boundary smoothing, and performs evaluations of mesh quality for all
generated meshes.

• Finally, Chapter 8 presents the conclusions for this work, as well as some
suggestions for future ones.

7

Chapter 2

EdgeCFD: A Parallel Multiphysis
Implicit Solver

2.1 Presentation

The uniform mesh refinement process presented in this work is implemented in
EdgeCFD, a multiphysics simulation tool capable to run problems such as [30–32]:

• Incompressible, Compressible and Free Surface flows.

• Transient Advection-Diffusion of multiple scalar fields.

• Fluid-Object Interaction (FOI) problems using an Arbitrary Lagrangian-Eulerian
(ALE) formulation [33].

• Stabilized and Residual-Based Variational Multiscale (RBVMS) formulations for
the Navier-Stokes equations (incompressible and compressible).

• SUPG formulation with discontinuity-capturing for scalar Advection-Diffusion
Transport [31] and [32].

• Treatement of Turbulence by Smagorinsky’s model (static and/or dynamic) or by
RBVMS as described in [34].

• Simulation of Particle-Laden flows [35].

The code is entirely written in Fortran 90 and is built from scratch supporting hybrid
parallelism. It consists of an outer time integration loop of staggered systems of equations
for solving each physics: incompressible and compressible flows, mesh movement for
fluid-object interaction and transport of an arbitrary number of scalar fields (also used by
Volume-of-Fluid and Level Set solvers).

8

Time integration is a predictor-multicorrector algorithm with adaptive time stepping
by a Proportional-Integral-Derivative (PID) controller (further details available in [36]).
Within the flow solution loop, the multi-correction steps correspond to the Inexact-
Newton method with backtracking as described in [30].

All solvers are fully implicit and require the solution of linear(ized) system of equa-
tions. For this purpose, the Generalized Minimal Residual Method (GMRES) is used for
the flow and transport solvers and Preconditioned Conjugate Gradients (PCG) for mesh
movement on FOI problems. Furthermore, a nodal block-diagonal and diagonal precon-
ditioner are used respectively for flow and transport (and PCG).

Most of the computational effort spent in the solution phase is devoted to sparse
matrix-vector products. To compute such operations more efficiently, it is applied an
edge-based data structure as detailed in [30].

In threaded memory parallelism, EdgeCFD main loops are blocked to remove memory
dependency and are parallelized by OpenMP directives. Distributed paralelism is reached
by applying Metis or Parmetis [21], a graph partitioner, to split the original mesh into “p”
parts, where “p” is usually the number of processors (cores). Shared information about
nodes and edges are duplicated and synchronized by Message Passing Interface (MPI)
calls. No ghost/halo information is required in EdgeCFD.

More details about the threaded and distributed memory parallelism will be given later
on this section. All mesh entities (nodes, edges, elements) are reordered to improve data
locality as in [37]. The mesh refinement method, proposed here, takes full advantage from
the data structure implemented in EdgeCFD as new elements are successively obtained
by edges bisection.

Most of the computational costs involved in our implicit solvers come from (a) for-
mation and (b) solution of linear(ized) system of equations of the form Ax = b where A

comes from the assembling of edge matrices contributions, T e; x the vector of unknowns
and b the right-hand side vector, usually the residual. During the formation phase, ele-
ment matrices are computed and disassembled into edge contributions before being stored
as edge matrices, T e, as shown in Fig. 2.1. During the same phase, residua are also com-
puted and stored for the whole mesh. In phase (b), the major computational costs are due
to sparse matrix–vector products, executed edge-by-edge [30]. Performance comparisons
among the usual data structures in FEM for sparse matrix–vector products are given in
[38] and the comparison clearly favors edge–based data structures in the case of linear
tetrahedra.

For transient and nonlinear problems, several linear(ized) systems of equations must
be solved until the tolerance determined by the Inexact Newton method is reached. This
process is repeated for each time step. In summary, computational costs from phases (a)
and (b) are directly related to refinement in space and time and the nonlinear character
of the problem being solved. In order to scale up the software and keep portability, it is

9

chosen to follow what became a standard for modern discrete solvers and employed both
threaded and distributed parallelism ([15]) as described in the following sub-sections.

Figure 2.1: Tetrahedra element matrix being disassembled into edges contributions

2.2 Threaded parallelism

Threaded parallelism in EdgeCFD is implemented by removing memory dependency
from major arrays shared by the solvers. This is done by applying a greedy algorithm
to the graph of element incidences, splitting them into blocks of disjoint entities. This
process is also known as mesh coloring [39–41] and used earlier for vectorization. Edge’s
information are extracted after the mesh coloring process and is naturally safe regard-
ing memory dependency as well. Therefore, loops involving element matrices, residua
and edge-based matrix–vector computations are blocked and can be executed in multi-
ple threads, using also vector instructions, if available. The outer loop iterates over each
block/color while the inner loop is shared by threads in parallel.

Moreover, the granularity of inner and outer loops are controlled by the number of
entities in each block and is a parameter supplied to the greedy algorithm.

2.3 Distributed Memory Parallelism

It is well known that the size of the linear system of equations, Ax = b, obtained in
the finite element method is directly associated to the refinement level of the discretization.

10

Therefore, a natural way of thinking in distributed memory parallelism is to break the
original problem into smaller parts and associate each part to a processor (or core). This
can be accomplished by using a graph partitioner library, such as Metis, which, given an
input graph G = (V,E), with n vertices V and m edges E, will partition G into p subsets
V1, V2, ..., Vp such that |Vi| ≈ n/p as described in [21].

The number of subsets p is usually associated to the number of processors (or cores)
that will treat the problem. Moreover, the computational effort is related to the number of
vertices for each subset and, for uniform parallel computers, is desired to be nearly equal,
to produce a balanced workload. Note that, although partitioned, the original problem can
be reassembled since G =

∪
Gp. From the partitioned problem, it is needed to guarantee

the equivalence with the original and global system of equations, Ax = b. This is accom-
plished by exchanging information among processors about common data shared through
a "parallel interface" – formed by faces, edges and nodes that are assigned to more than
one processor as illustrated, in 2D, by Fig2.2(a) where a mesh of quadrilateral elements
is partitioned in four processes and nodes 1-10 and edges drawn in blue are shared form-
ing the parallel interface. This task is done by calling Message Passing Interface (MPI)
library routines, to deal with communication between processors.

The way this data exchange is performed is crucial for software scalability in current
parallel systems. MPI provides communication models to cover different needs, from
collective to point–to–point (p2p) routines, regarding the number of processors involved
in the communication process; blocking, non-blocking, synchronous and asynchronous
referring to how data exchange is performed.

In EdgeCFD, data synchronization is required every time a global result from matrix-
vector and dot products (L2 norms) are computed as well as the formation of residua
vector. Matrix–vector and residua computations relies on p2p non-blocking operations
over nodes lying on the parallel interface. It is important to clarify how these operations
are carried out, as the mesh refinement will affect the parallel interface and how processes
exchange information as well.

EdgeCFD follows a similar scheme as the one described in Karanam et al [42], for
non-blocking p2p communication, as illustrated in Fig. 2.2(a) and (b) where a 2D mesh
of quadrilaterals is partitioned in four parts that will be assigned to a processor. Partitions
are classified as "master" or "slaves" according to each one id number such that, if i > j

Pi will be master of Pj . Thus, P2 is classified as master of P1 regarding nodes 5 and 10
while it is a slave of P3 regarding node 7 and slave of P4, as well, for nodes 1, 4 and
9. This master–slave relationship is created for each parallel node lying on the parallel
(or communication) interface defining the "communication map", and summarized by the
neighborhood graph in Figure 2.2b. Filled and hollow circles in Figure 2.2a define, re-
spectively, master and slave node images while arrows indicate the direction slave-master
that the communication will take place.

11

Therefore, taking for instance the residua assembly for the mesh shown in Figure 2.2a,
a synchronization process will be necessary after all local computations are done. The pro-
cessors will send their slave nodes information to be combined by the processors classified
as masters and the results will be given back to the slaves when the process finishes. A
similar procedure is needed to assemble the results of the edge–by–edge sparse matrix–
vector product.

(a) 4 mesh partitions

P1 P2

P3 P4

(b) Master-slave communication map

Figure 2.2: Master and Slave classification according to partition IDs

Note that the communication map must take into account any change in the parallel in-
terface, so as the synchronization process preserves its consistency. It is also important to
discuss other aspects regarding EdgeCFD’s implementation before tackling the proposed
mesh multiplication method. After partitioning, all mesh entities (elements, nodes, and
edges) are locally renumbered and, eventually, reordered as shown in Fig. 2.3 where 6
tetrahedra are broken into 3 parts. The original global ids (gid) will be replaced by a new
local numbering scheme. Moreover, the new local ids (lid) do not follow any specific rule
to preserve the correspondence with the global numbering scheme given by the original
mesh.

In fact, EdgeCFD can apply independently any ordering scheme to the partitions with-
out losing global consistency. Global ids are preserved only for "parallel nodes" (nodes
lying in the parallel interface) and are important in our mesh multiplication scheme to
insert new nodes in the communication map.

The communication map in EdgeCFD is implemented as a derived data type as shown
in code 2.1. Each process will store the list of SendTo (masters) and GetFrom (slaves)
entities to be used during communication. To succeed, the messages sent, from one pro-
cess to another must match not only in MessageSize but also in how data is stored in
the communication buffer. In other words, taking Fig.2.2a as an example, when P1 sends

12

Figure 2.3: Mesh partition and GID generation

nodes 3, 4 and 5 to P2, P2 must be expecting that the data it is receiving corresponds
to local nodes 4, 2 and 3, in this sequence. Therefore, EdgeCFD relies on global ids of
parallel nodes to sort the list of data that must be sent to (or gotten from) a process when
the communication map is built.

Listing 2.1: Communication map definition
type TMessageInfo

integer :: NumberOfMessages ! Number of messages (number of neighbors)

integer :: NumberOfSharedEntities ! Number of shared entities

integer, allocatable :: MessageSize(:) ! Number of nodes to be sent/got per neighbor

integer, allocatable :: Proc(:) ! Neighbors ID

integer, allocatable :: SharedID(:) ! Shared entitys ID

end type TMessageInfo

type(TMessageInfo), pointer :: SendNodeTo ! Data that must be sent

type(TMessageInfo), pointer :: GetNodeFrom ! Data that must be gotten

13

Chapter 3

Mesh Multiplication Method

The Mesh Multiplication method or simply MM consists on a straightforward uniform
mesh refinement, which can be achieved by doing the subdivision of all elements [43].
Starting from an initial coarse mesh, the elements subdivision can be done progressively
until the desired refinement level is reached. This kind of refinement is also called SUB8

or Bey’s refinement. Each triangular face of a tetrahedron T (Fig. 3.1) is refined into four
sub-triangles by connecting the midpoints of the edges resulting in 8 new tetrahedra [44].

x
0

x
01

x
1

x
2

x
3

x
02

x
23

x
13

x
12

x
03

Figure 3.1: Regular refinement (8-subtetrahedron subdivision).

The nodal map for each element after the subdivision is given by

T =

T1(x0, x01, x02, x03)

T2(x01, x1, x12, x13)

T3(x02, x12, x2, x23)

T4(x03, x13, x23, x3)

T5(x01, x13, x03, x02)

T6(x01, x12, x13, x02)

T7(x23, x02, x12, x13)

T8(x23, x03, x02, x13)

(3.1)

14

,
and the indices i and j are restricted to be xij = (xi + xj)/2, i < j.

This simple, but powerful method allows to decrease the bottleneck of generating
bigger meshes for large-scale simulations [9].

Some authors have applied this scheme successfully, but using a more old-fashioned
approach for the communication scheme [8, 10, 25, 45].

• Houzeaux et al (2013) [10] used the parallel mesh multiplication method inside a
Navier-Stokes solver, in order to avoid serial mesh generators.

• To run problems with billions of elements, Wang et al (2017) [8], used schemes
like parallel mesh generation, parallel surface recovery, parallel boundary updating,
and parallel mesh multiplication.

• Casoni et al (2015) [45] used mesh multiplication to generate a mesh with 250
million tetrahedral elements on 8000 cores.

• Yilmaz & Aliabadi (2013) [25] needed to correct the boundary surface by using a
master fine mesh in the CaMEL mesh format (standard format for the CaMEL flow
solver). The master fine mesh was generated by the same geometry and the same
generator of the coarse mesh.

3.1 Communication-Free Parallel Mesh Multiplication

3.1.1 Communication Map

Based on how the communication map is built, now, it is necessary to find a way to
keep it updated and consistent while creating new nodes, due to the refinement process.
Moreover, it is desirable that the proposed method avoid communication. Indeed, the
proposed method does not require any communication at all. The problem is illustrated in
Fig. 2.3 where new nodes are created after bisection of the parallel edge shared by three
partitions.

New lids are freely created by each process, as previously explained, however, as
these nodes are the same in the global problem, a unique gid must be computed by the dif-
ferent processes. Therefore, we must find a way to create new global ids that are unique
across shared partitions, ideally, without having to exchange information among proces-
sors. To create these new gids, EdgeCFD supports the application of pairing functions.
By definition, a pairing function is a bijection f : N×N → N where f is strictly monotone
in each argument such that: ∀i, j ∈ N ⇒ f(i, j) < f(i + 1, j) and f(i, j) < f(i, j + 1)

are true [46].

15

Pairing bijection functions have the property to map two natural numbers onto a sin-
gle one. Its inverse, f−1, is called unpairing functions. They were made popular after
Cantor’s work in the second half of the 19th century on set theory [47] and are used in
the theory of recursive functions, multidimensional dynamic arrays, network mapping, in-
dexing and proximity search using space-filling curves [48–50], computational systems,
among many other applications. Pairing bijection functions may be constructed to ful-
fill specific requirements. In Rosenberg [46] and Tarau [47] the authors discuss different
methods for creating these functions. However, consider the classical Cantor pairing func-
tion, defined by: f(i, j) = (i+ j)(i+ j+1)/2+ i, which assigns consecutive numbers to
points along diagonals in the plane, as shown in Figure 3.2a, this function can be applied
for building new global ids during the refinement process. For this purpose, global ids
for nodes i and j of parallel edges, are paired to create a new global id. Note that, since
Cantor’s function is a bijection, the inverse operation is possible and nodes i and j could
be recovered at any time by solving:

k = f(i, j)

w =

⌊√
8k + 1− 1

2

⌋
t =

w2 + w

2
(3.2)

j = k − t

i = w − j

Although Cantor’s pairing function supplies a straightforward way for building new
global ids, it must be discussed its limitations when used in a computer program. Note
that, taking two 16-bits integer numbers, ranging from 0 to 216 − 1, there will be
216 × 216 − 1 possible combinations and, from the Pigeonhole principle, an output of
size 216 × (216 − 1) which equals to 232 × 216 will be necessary. In other words, a suc-
cessful pairing function from two 16-bits integer would require, at least, a 32-bits integer
as output 1. Therefore, for practical purposes in large-scale simulations, a good pairing
function should be capable of mapping the largest index values possible within the range
of the output number representation. Now, let’s check this assumption for Cantor’s pair-
ing function. For this purpose, consider the pair ⟨65535; 65535⟩, of the largest unsigned
16-bit integers. It returns 8589803520 when paired by Cantor’s function, which is a num-
ber greater than the largest unsigned 32-bits integer (232) and, consequently, limits its
use for our purposes. To overcome this limitation, the Szudzik’s or "Elegant" pairing

1this discussion originally initiated at http://stackoverflow.com/questions/919612/mapping-two-integers-
to-one-in-a-unique-and-deterministic-way

16

http://stackoverflow.com/questions/919612/mapping-two-integers-to-one-in-a-unique-and-deterministic-way
http://stackoverflow.com/questions/919612/mapping-two-integers-to-one-in-a-unique-and-deterministic-way

(Figure 3.2b) bijection presented in [51] was adopted and is expressed by

f(i, j) =

j2 + i if i < j

i2 + i+ j if i ≥ j
. (3.3)

The Unpair function for the Elegant scheme is given by

k = f(i, j)

s1 =
⌊√

k
⌋

s2 = s21 (3.4)

i =

s1 if k − s2 ≥ s1

k − s2 if k − s2 < s1

j =

k − s2 − s1 if k − s2 ≥ s1

s1 if k − s2 < s1

which for the pair of the largest 16-bit integers it returns f(65535, 65535) = 4294967295

that is less than the value generated by using Cantor’s pairing for the same indexes. In
addition, Table 3.1 shows the indexes that provide the maximum unsigned 32 and 16-
bit integers using both, Cantor’s and the Elegant pairing. Notice that for the 32 − bit

unsigned int the Elegant Unpairing returns equal maximum indexes which correspond to
the maximum admissible value for a 16 − bit unsigned int (the same relation remains
between 16− bit and 8− bit unsigned int).

Table 3.1: Indexes combinations that provide the maximum paired values for each var
size

Cantor’s Pairing Elegant Pairing

Type Value range imax jmax imax jmax

unsigned int (16− bit) 65535 167 194 255 255
unsigned int (32− bit) 4294967295 55607 37074 65535 65535

3.1.2 Assigning Processes to New Communication Nodes

The following question expresses another common issue that may appear in mesh
multiplication methods: how to correctly assign parallel partitions to nodes created at

the communication interface? This question is illustrated in Fig 3.3, where a new node
is created after bisection of edge AB. It is shown that nodes A and B are shared by

17

(a) Cantor’s Pairing (b) Szudzik’s Pairing

Figure 3.2: Pairing functions

partitions 0 (blue), 1 (red) and 2 (green), however, the new created node will only be
part of partitions 1 and 2. We can see that this information can not be obtained from the
intersection of the sets of processes shared by nodes i and j of an edge. Moreover, the sets
of processes shared by edges would also lead to erroneous results since, in 3D, edges can
be shared by an unknown number of elements. In other words, this information should
not be built from mesh entities that have a varying number of sharing processes such as
nodes and edges. Therefore, the processes are assigned to new communication nodes with
the help of ghost (or halo) elements.

Figure 3.3: Problem to assigning processes to new communication nodes (left). New
partition assigned from nodes A and B (right). A∩B returns wrong partition assignment,
suggesting this information should not be inherited from edges

A ghost element for a partition i is defined by the set of elements from other partitions
that share information with i and is illustrated in Fig. 3.4. Note that, for the problem of
assigning processes to new parallel nodes, only elements sharing at least one edge with

18

partition i are required. This information is held by a data structure which is updated
during the refinement process. Thus, ghost elements must also be multiplied following
the same method described for regular elements.

Figure 3.4: Ghost Elements for partitions 0 and 1

However, the new nodes are inserted in the edge midpoints. Consequently as we refine
the mesh the geometry is not improved since at first the new nodes are not moved in order
to do a better approximation of the geometry. A way of impose the geometry in the new
mesh is discussed in Chapter 4 below.

19

Chapter 4

Boundary Smoothing

Many classical CFD problems involve the simulation of fluid flow over an object (fluid
flow around a sphere, a car, aircraft and others). Since MM does not modify the geometry
boundary, we need to apply a scheme in order to repositionate the new nodes created over
the geometry boundary to make them more closer to the real geometry (here called target

geometry). To do so, it is necessary to use a reliable representation of the real geometry,
which consists in a discrete surface if we are running a 3D problem, and is much less
expensive to generate than a complete 3D volumetric mesh. We consider that the target
geometry is given in VTK file format [52].

The steps to repositionate the nodes is presented bellow:

1. Extraction of boundary information: It is necessary to extract the boundary faces
and its respective nodes. To do so, we must use a built-in tool of EdgeCFD called
FaceTools which is capable to handle any information associated with elements’
faces.

2. Looking for nearest nodes: The process of finding the position of the new created
nodes described in section 4.3 relies in finding the closest node that lies in the
reference domain (it must be done for each new boundary node created by MM).
Section 4.1 justifies why we need to use spatial data structures to do that task, and
shows two alternatives to create a spatial data structure.

3. Estimating normal vectors at the nodes: Section 4.2 indicates how to estimate
the normal vectors at the boundary nodes that are needed to do the procedure in
section 4.3. This task also depends on FaceTools.

4. Setting the nodal displacement for boundary nodes: Section 4.3 shows how to
use the nearest VTK node information and the normal vector at the boundary nodes
to set the nodal displacement as presented in Figure 4.4.

20

4.1 Spatial Data Structures

Many computational procedures are dependent of a fundamental intrinsic operation
called searching. This operation consists in retrieving some desirable information from
a large amount of data. Usually, the data is partitioned into records, in a way that each
record has its own key, which is used during the searching process. The goal is to find
data matching with a given key [53].

Considering particularly point data (which is the case of the data used in this work),
it is possible to represent it in a variety of ways, whose influence comes from the type of
operations that we need to perform with the data [54].

The procedure presented in section 4.3 is extremely dependent of searching operations
which incite the research about searching and k-Nearest Neighbor (kNN) methods. The
following sections present three kNN methods and their brief descriptions.

4.1.1 Brute Force Search

It consists on a search for the nearest neighbor in a whole set of nodes including the
most distant ones, which implies in a high complexity algorithm with a high overhead.

Given a set C ∈ RD containing np points, if we try to perform a search for the nearest
neighbor of each node inside this set, the number of distance computations would be
of order O(n2

p), and the number of operations to compute each distance depends on the
dimension D of the set.

The quadratic complexity of using brute force algorithms to do nearest neighbor
search motivates us to use alternatives based on first building a data structure to orga-
nize the set and then, perform a much faster search for nearest neighbors like kD-trees,
BINs [55–57].

4.1.2 BINs

The search for closest points does not need to be performed for points in distant re-
gions on the domain, and Figure 4.1 shows one simple way to reduced the search overhead:
a subdivision of the spatial domain using BINs [58] to classify the data inside a regular
mesh of bricks with nsubx × nsuby × nsubz subdivisions.

The size of the bins must be

∆x = (xmax − xmin)/nsubx

∆y = (ymax − ymin)/nsuby

∆z = (zmax − zmin)/nsubz,

(4.1)

where xmin/max, ymin/max and zmin/max denote the limits of the spatial domain.
To determine the bin into which each point falls we must compute

21

Δx

Δy

Figure 4.1: BINs in two-dimensions. The black circles are the points to be searched.

isubx = (xi − xmin)/∆x

isuby = (yi − ymin)/∆y

isubz = (zi − zmin)/∆z,

(4.2)

and the global ID of the bin in which the point falls is given by

ibin = 1 + isubx + nsubx*isuby + nsubx*nsuby*isubz (4.3)

The data produced after the domain subdivision is stored into two arrays:
lbin1(1:npoin) and lbin2(1:nbins+1), where npoin and nbins are the
number of points and BINs, respectively. The lbin1 array stores the point’s ids, which
are already ordered according to the bin into each point falls, and the lbin2 array indi-
cates the BINs for each interval of points inside the lbin1 array.

The more we subdivide our spatial domain into more BINs, the more efficient are the
searches. The problem about using BINs in cases that we have multiple domains (Γ and
Γref , in our case) and doing the searches only inside the BINs containing the point, is that
there is the possibility to find no reference points in some BINs that we have points to be
placed in their position over the real geometry, which sometimes implies in getting totally
distorted geometries (Figure 4.2).

4.1.3 kD-trees

A tree data structure associate each node point to a number of nodes (Figure 4.3). So,
unlike the linked lists the kD-tree is considered a non-linear data structure, which allows
us to represent the hierarchy of a data set in a graph form [59].

The kD-tree can be used to describe space decomposition methods that proceed by
recursive decomposition across a single spatial dimension containing the data until some
condition is met such as that the resulting blocks contain no more than b objects (e.g.,

22

Figure 4.2: Distorted sphere geometry caused by a elevated number of BINs (left) and the
real or target geometry (right).

points, line segments, etc.) or that the blocks are homogeneous. The kD-tree is usually a
data structure for points which cycle through the dimensions as it decomposes the under-
lying space [60].

B

A

E

F

D

C

(a) Spatial decomposition

x

y

x

y

A (40, 45)

B (15, 70)

C (70, 10)

D (69, 50)

E (66, 85) F (85, 90)

(b) kD-tree scheme

Figure 4.3: kD-tree representation

Given a point x ∈ RD that lies in C ∈ RD, the kD-tree building and searching process
basically consists on sorting the data base and performing a recursive binary bisection,
narrowing the data base to get close to the possible neighbors of x until it is possible to
find the true nearest neighbors. It will usually take an average of O(log np) bisections to
locate the nearest neighbor, which is less expensive than doing an exhaustive brute force
search.

23

The KDTREE2 package used in this work was implemented and described by Kennel
(2004) [55]. It consists on a Fortran 95 module, and a set of C++ classes implementing the
construction and searching routines to use the kD-trees. Some details about the building
and searching process of this package are summarized bellow.

Building:

• The package assumes that the input data set is fixed and can not be changed, and
builds the kD-tree structure for the whole data set.

• The root node corresponds to the whole data set.

• Aiming for performance, the build procedure can create a copy of the data set and
permute its order to store the data contiguously in memory and achieve more CPU
cache efficiency.

Searching:

• There are two search modes where the first one consists on searching for a fixed
number of neighbors (find all k nearest neighbor of a given point), and the second
one consists on looking for all neighbors in a given radius r (find all points pi in
which d(pi,x) ≤ r).

4.2 Estimating the Normal Vectors at the Nodes

There some approaches to compute the normal vector at a boundary node of a given
mesh. In general, all the methods to do that involve the computation of the normal of the
faces surrounding the node, and weighting each face’s normal to get the node’s normal
vector. The most common weighting approaches are [61, 62]:

• weighted with the surface area of each triangle,

• weighted with the inverse of the surface area,

• weighted with the angle made by the two edges connected in the node under con-
sideration.

The use of those standard techniques to approximate the normal vectors of a node
present some issues in problems like mesh generation as reported by Pirzadeh [63]. But
to avoid an optimization problem [61, 62] to find the normal at a given node, a simple
approach can be acceptable.

In general, the procedure of estimating the normal at a given boundary node can be
described in a few ways:

24

1. Extract the faces of the whole mesh.

2. Select the faces of the interest region.

3. Search for nodes over the region of interest.

4. Perform an inverse mapping of the connectivity array in order to find the faces
surrounding each node.

5. Compute information about the faces surrounding the nodes (usually face’s normal
and area).

4.3 Surface Correction

Making use of a tool called FaceTools already implemented in EdgeCFD, we are
capable to get information about some geometric characteristics of a mesh, including
the set of points to be re-positioned and its own normal vectors. We also need a target
geometry Γref ⊂ Rnsd to guide the new nodes to the real position.

For each node over the boundary of the refined mesh, we need to perform a fast search
operation to find the nearest neighbor that lies in Γref , and compute the projection of the
distance vector between these two points in the normal direction of the node of the refined
geometry

∆uΓ = d · n, (4.4)

where ∆uΓ represents the coordinate correction for a node, d is the distance between the
two nodes, and n is the unit normal vector.

The position of a boundary node can be updated computing

xi = xi +∆uΓn (4.5)

There is also the possibility to apply the same scheme recursively. However, depend-
ing on the way that it is done, it could imply in computing the normal vectors for each
node every time we update the nodes’ position. But, even a recursive scheme will not be
able to correct geometries with a too bad initial representation (which makes impossible
to achieve the target geometry in regions with high curvature). Apart from this, one can
conclude that it is not so effective to apply the surface correction recursively keeping in
mind that there will be so much computational effort computing normal vectors for each
time we apply the procedure.

25

Figure 4.4: Projection scheme to determine the new node’s position

26

Chapter 5

Internal Nodes Repositioning

There are a huge variety of discrete problems that usually require the adoption of a
scheme to modify the mesh during the simulation. The main ones are compressible and
incompressible flow problems with free surfaces, two-liquid interfaces, moving mechani-
cal components, and fluid-object and fluid-particle interactions [64]. It is also important
to keep in mind that the shape of the spatial domain changes with time, which turns the
mesh update an expensive computation.

There are some ways to update the mesh during the simulation time. The first one,
which is not the most efficient is the remeshing approach. This method try to call an auto-
matic mesh generator during the simulation, which causes at least three disadvantages:

• The error associated to the projection of the old mesh solution to the new mesh.

• The cost of calling an automatic mesh generator at each time step to generate a new
mesh from scratch.

• The difficulties to make the mesh generator work correctly while running the simu-
lation in parallel machines.

Those disadvantages have motivated the use of mesh moving techniques built on top
of elasticity [65] and diffusion models [66], which consist on solving a PDE over the same
mesh to find the new position of each node. The boundary conditions come from the dis-
placements of the moving interfaces according to the physics of the problem. Considering
the boundary smoothing problem, those boundary conditions come from approaches like
the one presented in chapter 4.

27

5.1 Setting the problem

5.1.1 Strong form of the problem

Given a mesh whose the internal nodes need to be repositioned, we can set the problem
as: Let Ω̄ = Ω ∪ Γ represent the union between our domain (Ω) and boundary (Γ), and
note that Ω̄ ⊂ Rnsd , where nsd ≥ 2 represents the number of spatial dimensions. Let’s
also assume that our boundary Γ admits the decomposition bellow [66]:

Γ = Γm ∪ Γf (5.1)

and

Γm ∩ Γf = ∅. (5.2)

Here, Γf represents the fixed boundary (the 6 external faces of the fluid domain if we
are solving a 3D fluid flow problem), while Γm represents the moving boundary (usually
the surface nodes of the body immersed in the fluid domain).

So, given the prescribed mesh displacement g at Γm, find the mesh displacement field
u : Ω → Rnsd , such that

∆u = 0 in Ω (5.3)

u = g in Γm (5.4)

u = 0 in Γf (5.5)

Equation (5.3) is the governing equation, while Eqs. (5.4) and (5.5) are the moving
and fixed boundary conditions. The linear system of equations resulting from the problem
exposed here is solved by using the Preconditioned Conjugate Gradients (PCG) method
with diagonal preconditioning.

5.1.2 Weak form of the problem

Applying the Galerkin’s method to the weak formulation of the problem Eqs. (5.3)-
(5.5), we reach to the following finite dimensional variational problem:

Find uh ∈ Sh such that

a(wh,uh) = 0, (5.6)

28

for all wh ∈ Vh, where

a(wh,uh) =

∫
Ω

∇uh : ∇whdΩ = 0 (5.7)

and Sh and Vh are finite dimensional subspaces satisfying

Sh ⊂ S = {u ∈ H1(Ω)|u = g in Γm and u = 0 in Γf}, (5.8)

Vh ⊂ V = {w ∈ H1(Ω)|w = 0 in Γ} = H1
0 (Ω). (5.9)

5.2 Modified re-positioning problem

Usually, some mesh regions are more refined than others due to the variations on the
solution’s gradient. It is reasonable to require the larger elements to absorb the great
part of the distortion of the mesh, while the small elements are supposed to absorb less
amounts of distortion. To do so, we can build our weighting functions to take into account
the characteristics (the element’s volume in this case) of each element and do a better
distortion distribution [66, 67].

Playing with the aspect ratio of the elements could usually deteriorate the element’s
quality. The presence of highly refined mesh regions indicates that we want more accuracy
of the results for those particular regions which are usually next to the moving boundary
Γm. This way, it is possible to use the approximation proposed by Masud and Hughes
[68], which for 3D elements leads to

τ e =
1− Vmin/Vmax

V e/Vmax

, (5.10)

where V e is the volume of the current element, and Vmin and Vmax are the volumes of the
smaller and bigger elements in a given mesh, respectively.

The new variational problem stated on Eq. (5.6) can be re-written as [67]

a(wh,uh) +

nel∑
e=1

τ ea(wh,uh)Ωe = 0 (5.11)

where nel is the number of elements in the mesh.
If we try to look to the previous equation with a element-wise perspective, we could

note that the new included term τ e corresponds to an artificial stiffness or artificial dif-
fusion, and by re-arranging the terms of Eq. (5.11) and writing it for the domain Ωe we
come up with

29

nel∑
e=1

(1 + τ e) a(wh,uh)Ωe = 0 (5.12)

Figure 5.1 shows the behavior of τ e with the variation of V e, for a mesh with Vmin =

0.1 and Vmax = 1.0. Notice that, as expected, the larger elements are less stiff than the
smaller ones, and will absorb most part of the distortion caused by the mesh motion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

9

Figure 5.1: Variation of τ e with the element’s volume V e

Fluid Mechanics problems are usually discretized by using a box to represent the fluid
domain with a object immersed inside the fluid domain. Clearly, the boundary conditions
to solve the variational problem will be given for the external fixed faces of the box (Γf)

and at the body’s boundary (Γm), where the second one is provided by the boundary
smoothing scheme presented in Section 4.3.

30

Chapter 6

Mesh Quality Measurement

6.1 Mesh Quality Methods Review

Some mesh improvement techniques like edge swapping, smoothing and optimization

lie in the use of quality metrics. In addition, quality constraints can also be imposed
prior to the mesh creation processes, and those quality metrics can be used to do a quality

control before passing it to a client or doing your own simulations [69], involving com-
plex problems with irregular geometries, multi-material domains and variations of spatial
scales. In addition, simulations involving moving boundaries are specially affected by
cells quality resulting in loss of computational effectiveness, requiring shorter time-steps
and more iterations.

Unfortunately, MM also affects the elements quality. The more the mesh is multiplied,
the more it loses quality, since that for each element, the new sub-tetrahedron are worse
than the original one. Table 6.1 shows a list of methods published until the 90’s to measure
the quality of tetrahedron elements. All those methods were compared by Parthasarathy
et al in [1], showing the advantage of methods using the root mean square of the edge
lengths and volume, whose computational effort is less expensive to do the assessment of
element quality.

Table 6.1: A list of tetrahedron shape measures used in literature [1]

Aspect ratio measure Value for a equilateral tetrahedron Used in

β = CR
IR

β∗ = 3.0 [70]
σ = Smax

IR
σ∗ = 4.898979 [71]

ω = CR
Smax

ω∗ = 0.612507 [71]
τ = Smax

Smin
τ ∗ = 1.0 [71]

κ = V 4

[
∑4

i=1 SA
2]

3 κ∗ = 4.58457E − 04 [72]

α =
S3
avg

V
α∗ = 8.479670 [73]

γ = S3
rms

V
γ∗ = 8.479670 [74]

31

In Table 6.1, CR is the radius of the circumscribed sphere, IR the radius of the in-
scribed sphere, Si the length of any edge i, Smax = max(Si) (i = 1, ..., 6), Smin =

min(Si) (i = 1, ..., 6), SA the surface area of a triangular facet, Savg = average(Si)

(i = 1, ..., 6), Srms = root mean square(Si) (i = 1, ..., 6), V the volume of the tetrahe-
dron, and

V =
1

6

∣∣∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
, IR =

4V[∑4
i=1 SA

] , Srms =

√√√√1

6

6∑
i=1

S2
i (6.1)

There are also other approaches that are capable to compute elements’ quality for
general shapes as presented by Knupp (2001) [69]. Another approach to measure the
quality of general shape elements is presented by Branets & Carey [75]. Their approach
give a local measurement of cell quality with an associated scalar, and it is based on
mapping a reference cell and its Jacobian.

They consider a Laplace system which is a simple elliptic problem and a powerful
tool for generating meshes using PDE-based methods [76]. The main characteristics of
elliptic methods for generating meshes are:

1. The ability to preserve grid orthogonality near to the boundary nodes.

2. The grid smoothness over the entire domain which is inherent from elliptic prob-
lems.

3. The discontinuities over the boundary are not far propagated over the entire domain.

4. The coordinate system comes from a solution of a PDEs’ system whose computa-
tional cost to solve is greater than other methods of mesh generation.

One simple Laplace system can be defined as

∆xi = 0 i = 1, ..., nsd (6.2)

which can be more conveniently represented in a non-convex physical domain

∆ξi = 0 i = 1, ..., nsd (6.3)

Both systems represent the Euler-Lagrange equations that minimize the integral

I =

∫
Ω̂

nsd∑
i=1

∥∇ξi∥2dΩ̂ (6.4)

where ∥∇ξi∥ is the grid point density along a line for a variation of ξi(ξ1 = ξ, ξ2 = η, ...).

32

It is also possible to represent Equation (6.4) in a compact way∫
Ω̂

tr(STS)

detS
dΩ̂ (6.5)

where tr denotes the trace and S is the so called Jacobian matrix that maps one frame
from onto the other.

Branets & Carey [75] follow the idea of using metric-tensor invariants or functions of
the Jacobian matrix to describe grid quality, and define the local distortion measure

β(S) =

[
1

nsd
tr(STS)

]nsd/2

detS
(6.6)

and then, it is possible to define the local mesh quality as Q0 = β−1. Branets & Carey
[75] show that β(S) is related to cell angles (the angles between the edges of a cell), and
β(S) = 1 enforces more uniform cell angles which implies in well-shaped cells.

Considering the simplex element in 3D, the tetrahedron, starting from Equation (6.6)
with a Jacobian matrix of a tetrahedron it leads to Equation (6.7), which allows us to
estimate a cell quality by computing

Q0 =
72
√
3V(∑6

i=1 l
2
i

)3/2 . (6.7)

33

Chapter 7

Results

7.1 Performance Evaluation of the Communication-Free
Parallel Mesh Multiplication

This section evaluate the performance of the parallel mesh multiplication without com-
munication. Consider the YF-17 aircraft model [77] shown in Fig. 7.1. The original mesh,
(level 1) or "base mesh", formed by 528, 915 elements, 639, 846 edges, and 97, 104 nodes
is refined up to 2.2 billions of elements in 512 cores on Stampede (a supercomputer lo-
cated at Texas Advanced Computing Center - TACC in the University of Texas at Austin).
It was necessary 5 minutes (wall time) to perform four multiplication levels and reach 2.2

billion elements as shown in Table 7.1, where NElem is the number of elements (tetra-
hedra), NNodes the number of nodes (vertices) and NEdges the number of edges. For
good visualization, it is showed in Figure 7.2 just the 2nd mesh level of a total 5.

For the sake of simplicity, this example discards any improvements on the geometry
as the mesh is refined. The important issue in this scalability study is the index generation
for the sub-domain boundaries and not the insertion of new points and faces to improve
the object shape as the mesh is refined.

Table 7.1: Time spent by refinement level (512 cores)

Levels NElem NNodes NEdges Time (sec)
1 528,915 97,104 719,744 -
2 4,231,320 3,579,392 5,370,398 2.99
3 33,850,560 8,949,760 41,470,464 7.07
4 270,804,480 50,420,224 325,909,504 21.44
5 2,166,535,840 376,329,728 2,584,090,624 275.23

A strong scalability evaluation is performed considering 128, 256 and 512 cores and
the results are listed in Table 7.2. As one may note, a superlinear speedup is achieved
when using two and four times more processors for the same computational effort – to

34

Figure 7.1: Unstructured base mesh for YF-17

perform four parallel mesh multiplication sweeps and reach 2.2 billion elements. It turns
out that this may be explained by (a) cache effects (b) unnecessary communication. Thus,
as the processors do not require communication, if the mesh is distributed in a larger
number of cores, the partitions will be smaller and more feasible to fit in lower and faster
memory cache levels.

Table 7.2: Mesh multiplication strong scalability.

Cores NElem/Core NNodes/Core NEdges/Core time (sec) Speedup
128 16,925,280 2,940,076 20,188,208 1237.74 1.00
256 8,462,640 1,470,038 10,094,104 567.72 2.18
512 4,231,320 735,019 5,047,052 275.23 4.50

Figure 7.3 shows the evaluation of the hot spots for the proposed method when run-
ning on 512 cores. For this purpose, the mesh multiplication scheme is instrumented by
TAU (Tuning Analysis Utility) tool [78]. In this figure, routines are listed by inclusive
time. The top consuming time routines are GetGlobalID and AddNode, both from
ParallelNodesModule, a Fortran90 module responsible to manage the list of par-
allel nodes, storing the corresponding local ids of nodes and neighboring information.
AddNode is called every time a new lid and corresponding gid is created. The new node
is inserted in a linked list sorted by gid, which justifies the time consumption due to linked
list traversal. GetGlobalID is called when, in the final stage of mesh multiplication, a
new communication map is created. The kernel of this routine consists in traverse the list
of global ids shared by each neighboring processor. Note that no MPI calls exist within

35

Figure 7.2: Unstructured mesh for YF-17 at the second level of refinement

MeshSubdivision module, what confirms that the proposed method is completely
parallel and communication-free.

Figure 7.3: Mesh multiplication hotspots for 512 cores and 4 refinement levels

Table 7.3 shows the element quality histogram computed using the metric given by
Equation 6.7. It may be observed that most of the elements have 0.4 < Q0 ≤ 0.8 and
around 10% of them have low quality and 20% high quality. The element quality degra-
dation between two levels of refinement with respect to an arbitrary reference tetrahedron
is shown in Table 7.4. We may see that the element quality deteriorates more than 25% in
the worst case.

7.2 Boundary Approximation

All the following examples were executed on Lobo Carneiro Supercomputer which is
a resource provided by the HPC Center at COPPE/Federal University of Rio de Janeiro.
Due to the current capabilities of FaceTools, the algorithm needed to be executed in serial

36

Table 7.3: Element quality histogram

Level 0.4 < Q0 0.4 < Q0 ≤ 0.8 Q0 > 0.8 NElem
1 5,497 251,392 272,026 528,915
2 158,974 2,572,928 1,499,418 4,231,320
3 1,649,466 21,871,860 10,329,234 33,850,560
4 21,286,830 178,223,742 71,293,908 270,804,480
5 234,455,754 1,433,010,008 498,970,078 2,166,435,840

Table 7.4: Element quality degradation for one level refinement of the reference tetrahe-
dron

Level/Tet Q0 Relative Q0

1/1 0.7698
2/1 0.7698 0%
2/2 0.7698 0%
2/3 0.7698 0%
2/4 0.7698 0%
2/5 0.6572 -15%
2/6 0.5697 -26%
2/7 0.5697 -26%
2/8 0.6572 -15%

mode. Some experiments of this code showed a tolerance of 10E− 2 for the linear solver
to be enough for the simple problem of repositioning the internal nodes. The meshes
presented bellow were generated using GMSH [79] and/or ANSYS [80].

7.2.1 Case 01

The example consists on approaching the boundary of a trivial geometry, the sphere,
whose volume can be exactly computed and used to test the volume convergence of in-
creasingly refined meshes using the approach proposed in chapter 4. In this example the
volume is compared for 4 mesh levels (the base mesh and three more refinement levels).

Base and Target Geometry

Figure 7.5 shows the usual mesh for a problem of fluid flow around a sphere, while Fig-
ure 7.6 shows the base or coarse geometry (Figure 7.6a) which is inside the fluid domain,
and the target or reference geometry which consists on a surface mesh (Figure 7.6b).

The technique presented in chapter 4 is applied to reposition the new nodes to ap-
proach the true geometry.

37

Level 1 Level 2 Level 3 Level 4 Level 5
0

10

20

30

40

50

60

70

80

P
er

ce
n

tu
al

Q
0
 0.4 (bad) 0.4 < Q

0
 0.8 (fair) Q

0
 > 0.8 (good)

Figure 7.4: Elements Quality for each refinement level.

Mesh Details

Table 7.5 shows the number of equations that comes from the problem of reposition
the internal nodes for each mesh level and their respective number of elements. Notice
that, as expected, the number of elements grow with a factor of 8.

Table 7.5: Mesh details - Sphere Mesh

Mesh Level Neq Nel NΓ

Reference - - 65538
Level 01 - 23841 18
Level 02 161886 190728 66
Level 03 1414632 1525824 258
Level 04 11770140 12206592 1026

Normal vectors to the sphere surface

We first estimate the normal vector for each node that lies over the surface (Figure 7.7)
aiming to project the distance vectors from each node over the base mesh to the nearest
neighbor on the refined mesh.

Distance Field for each Refinement Level

Once we determined the base mesh as Mesh Level 1, here we start to show the distance
field for each level starting at level 2. Figures 7.8, 7.9 and 7.10 show the distance field
(the distance that the points were moved in order to approach the geometry) for some
refinement levels.

38

Figure 7.5: Coarse or Base mesh

(a) Coarse or Base mesh (b) Refined or Reference Mesh

Figure 7.6: Base and Target geometry

Volume Convergence and Algorithm Performance

Table 7.6 shows the volumetric convergence of the geometry, presenting the relative
error related to the real volume (the volume of the reference geometry). It is valid to
highlight that without the repositioning, all levels would have the same error presented in

39

Figure 7.7: Unit normal vectors of the surface

Figure 7.8: Distance Field Magnitude for the 2nd Mesh Level

level 01. The table also shows the time to repositionate the boundary nodes, SStime, the
time solve the linear system to repositionate the internal nodes, PCGtime, and the number
of iterations, PCGit, to achieve the prescribed tolerance.

Mesh Quality

Figure 7.11 shows the information about the elements’ quality for all the four mesh
levels. It is possible to see that as well as in the YF17 example, at each refinement level

40

Figure 7.9: Distance Field Magnitude for the 3rd Mesh Level

Figure 7.10: Distance Field Magnitude for the 4th Mesh Level

the quality of the elements is deteriorated.
The quality of the elements was measured before and after the surface correction and

it induces no improvement of elements’ quality.

41

Table 7.6: Volume Convergence and algorithm performance- Sphere Mesh

Mesh Level Volume Error (%) SStime(s) PCGtime(s) PCGit

Reference 0.523551 - - - -
Level 01 0.367964 29.718 - - -
Level 02 0.475995 9.083 2E − 2 8E − 3 4
Level 03 0.504606 3.619 0.12 4.79E − 2 3
Level 04 0.510612 2.471 1.584 0.252 1

Level 1 Level 2 Level 3 Level 4
0

20

40

60

80

100

P
er

ce
n

tu
al

Q
0
 0.4 (bad) 0.4 < Q

0
 0.8 (fair) Q

0
 > 0.8 (good)

Figure 7.11: Elements Quality for each refinement level.

7.2.2 Case 02

Base and Target Geometry

This problem consists on refining and re-positioning the boundary nodes of a dragon
immersed in a fluid domain. The base mesh (level 01) has 6, 631, 080 elements and
1, 244, 579 nodes.

Figure 7.12 shows the base geometry whereas Figure 7.13 shows the target geometry.

Mesh Details

Table 7.7 shows the number of equations of the system that solves the problem of
repositioning the internal nodes (Neq), the number of elements for the first two levels
(Nel) and the number of nodes over the boundary surface (NΓ).

Distance Field

Figures 7.14 and 7.15 show some details over the surface of the dragon‘s head. Fig-
ure 7.14 presents the multiplied (or refined) mesh without the application of the boundary

42

Figure 7.12: Dragon Geometry - Base Mesh.

Figure 7.13: Dragon Geometry - Target Mesh.

smoothing, and it is possible to see that this image is more faceted than Figure 7.14.
Figure 7.16 shows the distance field over the whole surface. In this case, instead of

presenting the magnitude of the distance field, the signal is used to indicate that some

43

Table 7.7: Mesh details - Dragon Mesh

Mesh Level Neq Nel NΓ

Reference - - 412746
Level 01 - 828885 71281
Level 02 5714094 6631080 285148

nodes were moved in the same direction of the external normal (cold colors) while other
nodes are moved in the opposite direction (hot colors).

Figure 7.14: Dragon’s Head - Level 02 without Boundary Smoothing.

Volume convergence and algorithm performance

Table 7.8 shows the volumetric convergence of the geometry, presenting the relative
error related to the real volume (the volume of the reference geometry). The table also
shows the time to repositionate the boundary nodes SStime, the time solve the linear
system to repositionate the internal nodes, PCGtime, and the number of iterations, PCGit

to achieve the prescribed tolerance.

Mesh Quality

The base dragon mesh already had a mesh with excellent quality whose almost all
elements presented Q0 > 0.8. Even applying the MM algorithm, the mesh quality had
suffered almost no deterioration. This observation could indicate that for a mesh with

44

Figure 7.15: Dragon’s Head - Level 02 with Boundary Smoothing.

Figure 7.16: Dragon Geometry - Distance Field.

sufficient good quality MM does not affect the mesh quality at all (it is discussed at chapter
8).

45

Table 7.8: Volume convergence and algorithm performance - Dragon Mesh

Mesh Level Volume (u.v.) Error (%) SStime(s) PCGtime(s) PCGit

Reference 4114567424 - - - -
Level 01 4109478656 0.124 - - -
Level 02 4113457920 0.027 875.64 0.4 4

7.2.3 Case 03

Base and Target Geometry

This problem consists on refining and re-positioning the boundary nodes of an im-
proved riser geometry [81] immersed in a fluid domain. The base mesh (level 01)
has 2291547 elements. Figure 7.17 shows the geometry immersed in the fluid domain,
whereas Figure 7.18 shows the target geometry.

Figure 7.17: Riser Geometry - Overall Mesh.

Mesh Details

Table 7.9 shows the number of equations of the system that solves the problem of
repositioning the internal nodes (Neq), the number of elements for the first two levels
(Nel) and the number of nodes over the boundary surface (NΓ).

46

Figure 7.18: Strake Geometry - Target Mesh.

Table 7.9: Mesh details - Riser Mesh

Mesh Level Neq Nel NΓ

Reference - - 5398848
Level 01 - 2291547 34209
Level 02 17042664 18332376 136458

Distance Field

Figure 7.19 shows the distance field over the whole surface. Since the surface mesh
follows a pattern (it is a structured mesh), we can see that the distance field in Figure 7.19
also follows a pattern, which is expected from this case.

Figure 7.19: Strake Geometry - Distance Field.

47

Volume Convergence and Algorithm Performance

Table 7.10 shows the volume convergence of the geometry, presenting the relative
error related to the real volume (the volume of the reference geometry). Notice that there
is a reduction of more than 6 times of the volumetric error between the two refinement
levels. The table also shows the time to repositionate the boundary nodes, SStime, the time
to solve the linear system to repositionate the internal nodes, PCGtime, and the number
of iterations, PCGit to achieve the prescribed tolerance.

Table 7.10: Volume Convergence and algorithm performance - Riser Mesh

Mesh Level Volume (u.v.) Error (%) SStime(s) PCGtime(s) PCGit

Reference 494.484161 - - - -
Level 01 494.262146 0.045 - - -
Level 02 494.450073 0.007 472.2 0.42 1

Mesh Quality

Figure 7.20 shows the information about the elements’ quality for all the four mesh
levels. It is possible to see that as well as in the YF17 and sphere examples, at each
refinement level the quality of the elements is deteriorated. As in the sphere example,
the quality of the elements was measured before and after the surface correction and it
induces no improvement of elements’ quality.

Level 01 Level 02
0

10

20

30

40

50

60

70

80

90

P
er

ce
n

tu
al

Q
0
 0.4 (bad) 0.4 < Q

0
 0.8 (fair) Q

0
 > 0.8 (good)

Figure 7.20: Elements Quality for each refinement level.

48

Chapter 8

Conclusions

The MM scheme involves no communication thanks to the index generation in each
processor, which is based on the elegant pairing technique. Experimental results show
the strong scalability of the scheme on generating an unstructured grid with 2 billion
of tetrahedra. A hot spot analysis on 512 cores demonstrates that the whole process is
communication-free.

The surface correction technique showed to be efficient in the sense of approximating
the base mesh to the target mesh, diminishing the volumetric error in 12 times in com-
parison with the base mesh for the best case. The great issue of this technique relies on
how to get correctly all information regarding the faces properties given by FaceTools
while running the problem in parallel, whereas FaceTools has problems to distinguish
the boundary nodes of the immersed geometry from the communication nodes (of course
it is affected by the wrong extraction of the faces).

For each tetrahedron, MM produces 8 new ones with the same or less quality than
the original one as showed in Table 7.4. Thus, the greater the number of good elements
is, the lower will be the quality degradation at each refinement level. It was possible to
see that the scheme to repositioning the internal nodes does almost nothing to the overall
mesh quality thanks to the modification presented in section 5.2 that makes the small
elements move without suffering with exaggerated distortion. Since we have more small
elements (which is more usual), the statistics about elements quality almost do not change.
So, if a refinement level has a small number of bad elements, just a few worst elements
will appear at the next refinement level, and if a level has a considerable number of bad
elements, there will be several new bad elements at the next refinement level.

Considering the current implementation of FaceTools, the execution of the code can
only be done in serial mode due to its difficult to identify correctly the boundary nodes
even considering the communication nodes. This fact, makes the boundary smoothing to
take a considerable time to run in case of surfaces with a great number of nodes.

Future works may include the use of optimization techniques to improve the mesh
quality, or simply using packages like MESQUITE [82]. The objective function for the

49

optimization process could be a cell metric quality [83]. By using those techniques, the
boundary nodes could be immediately moved without applying a mesh moving scheme
for the internal nodes, and solving the problem of bad elements by just imposing the
elements to have a good aspect ratio through cell quality techniques.

50

Bibliography

[1] PARTHASARATHY, V. N., GRAICHEN, C. M., HATHAWAY, A. F. “A comparison
of tetrahedron quality measures”. In: Finite Elements in Analysis and Design,
v. 15, pp. 255–261, 1993.

[2] LÖHNER, R., BAUM, J. D. “Scaling Up Multiphysics”. Springer, 2014. doi: 10.
1007/978-3-319-06136-8_15.

[3] KURTH, T., TREICHLER, S., ROMERO, J., MUDIGONDA, M., LUEHR, N.,
PHILLIPS, E., MAHESH, A., MATHESON, M., DESLIPPE, J., FATICA, M.,
PRABHAT, HOUSTON, M. “Exascale Deep Learning for Climate Analytics”,
oct 2018.

[4] BERGMAN, K., BORKAR, S., CAMPBELL, D., CARLSON, W., DALLY, W.,
DENNEAU, M., FRANZON, P., HARROD, W., HILLER, J., KARP, S.,
KECKLER, S., KLEIN, D., LUCAS, R., RICHARDS, M., SCARPELLI, A.,
SCOTT, S., SNAVELY, A., STERLING, T., WILLIAMS, R. S., YELICK, K.,
KOGGE, P. “ExaScale Computing Study: Technology Challenges in Achiev-
ing Exascale Systems Peter Kogge, Editor & Study Lead”, 2008.

[5] ROUNTREE, B., LOWENTHAL, D. K., FUNK, S., FREEH, V. W., DE SUPINSKI,
B. R., SCHULZ, M. “Bounding energy consumption in large-scale MPI pro-
grams”, Proceedings of the 2007 ACM/IEEE conference on Supercomputing -

SC ’07, p. 1, 2007. doi: 10.1145/1362622.1362688.

[6] DEMMEL, J. “Communication-avoiding algorithms for linear algebra and beyond”.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-

cessing, pp. 585–585, May 2013. doi: 10.1109/IPDPS.2013.123.

[7] WILLIAMS, S., WATERMAN, A., PATTERSON, D. “Roofline: An Insightful Vi-
sual Performance Model For Multicore Architectures”, Communications of

the ACM, v. 52, n. 4, pp. 65, 2009. ISSN: 00010782. doi: 10.1145/1498765.
1498785.

[8] WANG, X.-Q., JIN, X.-L., KOU, D.-Z., CHEN, J.-H. “A Parallel Approach
for the Generation of Unstructured Meshes with Billions of Elements on

51

Distributed-Memory Supercomputers”, International Journal of Parallel Pro-

gramming, v. 45, n. 3, pp. 680–710, 2017. ISSN: 1573-7640. doi: 10.1007/
s10766-016-0452-3.

[9] KABELIKOVA, P., RONOVSKY, A., VONDRAKA, V. Parallel Mesh Multiplication

for Code_Saturne. PRACE, Partnership for Advanced Computing in Europe,
Prace white paper available online at.

[10] HOUZEAUX, G., DE LA CRUZ, R., OWEN, H., VÁZQUEZ, M. “Parallel uniform
mesh multiplication applied to a Navier-Stokes solver”, Computers and Fluids,
v. 80, n. 1, pp. 142–151, 2013. ISSN: 00457930. doi: 10.1016/j.compfluid.
2012.04.017.

[11] SILVA, R. M., LIMA, B. S. J., CAMATA, J. J., ELIAS, R. N., COUTINHO, A.
L. G. A. “Communication-Free Parallel Mesh Multiplication for Large Scale
Simulations”. In: VECPAR 2018 Proceedings, Springer, 2019.

[12] ROUNDTABLE, I. M. “Conferences - Meshing Research Corner”. Available at
https://imr.sandia.gov/papers/topics.html.

[13] CAREY, G. F., GENERATION, C. G. Adaptation and Solution Strategies. Taylor
& Francis, Series in Computational and Physical Processes in Mechanics and
Thermal Sciences, 1997.

[14] MESRI, Y., ZERGUINE, W., DIGONNET, H., SILVA, L., COUPEZ, T. “Dynamic
Parallel Adaptation for Three Dimensional Unstructured Meshes: Application
to Interface Tracking”. In: Proceedings of the 17th International Meshing

Roundtable, pp. 195–212, 2008.

[15] ELIAS, R. N., CAMATA, J. J., AVELEDA, A., COUTINHO, A. L. “Evaluation of
message passing communication patterns in finite element solution of coupled
problems”. In: International Conference on High Performance Computing for

Computational Science, pp. 306–313. Springer, 2010.

[16] BAUMAN, P. T., STOGNER, R. H. “GRINS: a multiphysics framework based on
the libmesh finite element library”, SIAM Journal on Scientific Computing,
v. 38, n. 5, pp. S78–S100, 2016.

[17] GASTON, D. R., PERMANN, C. J., PETERSON, J. W., SLAUGHTER, A. E., AN-
DRES, D., WANG, Y., SHORT, M. P., PEREZ, D. M., TONKS, M. R., OR-
TENSI, J., MARTINEAU, R. C. “Physics- based multiscale coupling for full
core nuclear reactor simulation”, Annals of Nuclear Energy, Special Issue on

Multi-Physics Modelling of LWR Static and Transient Behaviour, v. 84, pp. 45–
54, 2015. doi: http://dx.doi.org/10.1016/j.anucene.2014.09.060.

52

https://imr.sandia.gov/papers/topics.html

[18] Logg, A., Mardal, K.-A., Wells, G. (Eds.). Automated Solution of Differential Equa-

tions by the Finite Element Method, v. 84. Springer, of Lecture Notes in Com-
putational Science and Engineering, 2012.

[19] BANGERTH, W., HARTMANN, R., KANSCHAT, G. “deal. II-A general-purpose
object-oriented finite element library”, ACM Transactions on Mathematical

Software (TOMS), v. 33, n. 4, pp. 24, 2007.

[20] KIRK, B. S., PETERSON, J. W., STOGNER, R. H., CAREY, G. F. “libMesh: A C++
library for parallel adaptive mesh refinement/coarsening simulations”, Engi-

neering with Computers, v. 22, pp. 237–254, 2006.

[21] G., K., KUMAR, V. M. . “Unstructured Graph Partitioning and Sparse Matrix Order-
ing System”, Technical Report. Depart. of Comp. Science, Univ. of Minnesota,
Mineapolis, EUA, 1998.

[22] BANGERTH, W., BURSTEDDE, C., HEISTER, T., KRONBICHLER, M. “Algo-
rithms and data structures for massively parallel generic adaptive finite ele-
ment codes”, ACM Transactions on Mathematical Software (TOMS), v. 38,
n. 2, pp. 14, 2011.

[23] BURSTEDDE, C., WILCOX, L. C., GHATTAS, O. “p4est: Scalable Algorithms
for Parallel Adaptive Mesh Refinement on Forests of Octrees”, SIAM J. Sci.

Comput, v. 3(33), pp. 1103–1133, 2011.

[24] VAZQUEZ, M., HOUZEAUX, G., KORIC, S., ARTIGUES, A., AGUADO-
SIERRA, J., ARÍS, R., MIRA, D., CALMET, H., CUCCHIETTI, F., OWEN,
H., TAHA, A., BURNESS, E. D., CELA, J. M., VALERO, M. “Alya: Mul-
tiphysics engineering simulation toward exascale”, Journal of Computational

Science, v. 14, pp. 15 – 27, 2016.

[25] YILMAZ, E., ALIABADI, S. “Surface conformed linear mesh and data subdivision
technique for large-scale flow simulation and visualization in Variable Inten-
sity Computational Environment”, Computers and Fluids, v. 80, n. Complete,
pp. 388–402, 2013. doi: 10.1016/j.compfluid.2012.01.017.

[26] GARGALLO-PEIRÓ, A., HOUZEAUX, G., ROCA, X. “Subdividing triangular and
quadrilateral meshes in parallel to approximate curved geometries”, Procedia

Engineering, v. 203, pp. 310 – 322, 2017. ISSN: 1877-7058. 26th International
Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain.

[27] OVCHARENKO, A., IBANEZ, D., DELALONDRE, F., SAHNI, O., JANSEN,
K. E., CAROTHERS, C. D., SHEPHARD, M. S. “Neighborhood Com-

53

munication Paradigm to Increase Scalability in Large-Scale Dynamic Sci-
entific Applications”, Parallel Computing, v. 38, pp. 140–156, 2012. doi:
https://doi.org/10.1016/j.parco.2011.10.013.

[28] MIRAS, T., CAMATA, J. J., ELIAS, R. N., ALVES, J. L., ROCHINHA, F. A.,
COUTINHO, A. L. “A staggered procedure for fluid–object interaction with
free surfaces, large rotations and driven by adaptive time stepping”, Journal

of the Brazilian Society of Mechanical Sciences and Engineering, v. 40, n. 4,
pp. 239, 2018.

[29] BEY, J. “Simplicial grid refinement: on Freudenthal’s algorithm and the optimal
number of congruence classes”, Numer. Math, v. 85, pp. 1–29, 2000.

[30] ELIAS, R. N., MARTINS, M. A. D., COUTINHO, A. L. G. A. “Parallel Edge-
Based Inexact Newton Solution of Steady Incompressible 3D Navier-Stokes
Equations”. In: Lecture Notes in Computer Science, pp. 1237–1245, 2005. doi:
10.1007/11549468_135.

[31] ELIAS, R. N., COUTINHO, A. L. G. A. “Stabilized edge-based finite element
simulation of free-surface flows”, International Journal for Numerical Meth-

ods in Fluids, v. 54, n. 6-8, pp. 965–993, jun 2007. ISSN: 02712091. doi:
10.1002/fld.1475.

[32] ELIAS, R. N., GONCALVES, M. A., COUTINHO, A. L. G. A., ESPERANCA,
P. T. T., MARTINS, M. A. D., FERREIRA, M. D. A. S. “Computational
Techniques for Stabilized Edge-Based Finite Element Simulation of Nonlinear
Free-Surface Flows”, Journal of Offshore Mechanics and Arctic Engineering,
v. 131, n. 4, pp. 041103, 2009. ISSN: 08927219. doi: 10.1115/1.3124136.

[33] BAZILEVS, Y., TAKIZAWA, K., TEZDUYAR, T. E. Computational Fluid-

Structure Interaction: Methods and Applications. Chichester, UK, John Wiley
& Sons, Ltd, jan 2012. ISBN: 9780470978771. doi: 10.1002/9781118483565.

[34] LINS, E. F., ELIAS, R. N., GUERRA, G. M., ROCHINHA, F. A., COUTINHO,
A. L. G. A. “Edge-based finite element implementation of the residual-based
variational multiscale method”, International Journal for Numerical Methods

in Fluids, v. 61, n. 1, pp. 1–22, sep 2009. ISSN: 02712091. doi: 10.1002/fld.
1941.

[35] GUERRA, G. M., ZIO, S., CAMATA, J. J., DIAS, J., ELIAS, R. N., MATTOSO,
M., B. PARAIZO, P. L., G. A. COUTINHO, A. L., ROCHINHA, F. A. “Un-
certainty quantification in numerical simulation of particle-laden flows”, Com-

54

putational Geosciences, v. 20, n. 1, pp. 265–281, feb 2016. ISSN: 1420-0597.
doi: 10.1007/s10596-016-9563-6.

[36] VALLI, A. M. P., CAREY, G. F., COUTINHO, A. L. G. A. “Control strategies
for timestep selection in finite element simulation of incompressible flows and
coupled reaction-convection-diffusion processes”, International Journal for

Numerical Methods in Fluids, v. 47, n. 3, pp. 201–231, jan 2005. ISSN: 0271-
2091. doi: 10.1002/fld.805.

[37] COUTINHO, A. L. G. A., MARTINS, M. A. D., SYDENSTRICKER, R. M.,
ELIAS, R. N. “Performance comparison of data-reordering algorithms for
sparse matrixvector multiplication in edge-based unstructured grid computa-
tions”, International Journal for Numerical Methods in Engineering, v. 66,
n. 3, pp. 431–460, apr 2006. ISSN: 0029-5981. doi: 10.1002/nme.1557.

[38] RIBEIRO, F. L. B., COUTINHO, A. L. G. A. “Comparison between element, edge
and compressed storage schemes for iterative solutions in finite element analy-
ses”, International Journal for Numerical Methods in Engineering, v. 63, n. 4,
pp. 569–588, may 2005. ISSN: 0029-5981. doi: 10.1002/nme.1290.

[39] HUGHES, T. J. R., FERENCZ, R. M., HALLQUIST, J. O. “Large-scale vectorized
implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE
preconditioned conjugate gradients”, Computer Methods in Applied Mechan-

ics and Engineering, v. 61, n. 2, pp. 215–248, 1987. ISSN: 00457825. doi:
10.1016/0045-7825(87)90005-3.

[40] COUTINHO, A. L. G. A., ALVES, J. L. D., LIMA, E. C. P., EBECKEN, N. F. F.
“An Element-by-Element Lanczos Solver for Large Sets of FEM Equations”.
In: 1st World Congress in Computational Mechanics, Austin, Texas, 1986.

[41] SOTO, O., LÖHNER, R., CEBRAL, J., CAMELLI, F. “A stabilized edge-based
implicit incompressible flow formulation”, Computer Methods in Applied Me-

chanics and Engineering, v. 193, n. 23-26, pp. 2139–2154, jun 2004. ISSN:
0045-7825. doi: 10.1016/J.CMA.2004.01.018.

[42] KARANAM, A. K., JANSEN, K. E., WHITING, C. H. “Geometry based pre-
processor for parallel fluid dynamic simulations using a hierarchical basis”,
Engineering with Computers, v. 24, n. 1, pp. 17–26, Mar 2008. ISSN: 1435-
5663. doi: 10.1007/s00366-007-0063-0.

[43] BEY, J. “Simplicial grid refinement: on Freudenthal’s algorithm and the optimal
number of congruence classes”, Numerische Mathematik, v. 85, n. 1, pp. 1–29,
2000. ISSN: 0029599X. doi: 0.1007/s002110050475.

55

[44] LIU, A., JOE, B. “Quality Local Refinement of Tetrahedral Meshes Based on Bi-
section”, SIAM Journal on Scientific Computing, v. 16, n. 6, pp. 1269–1291,
1995. ISSN: 1064-8275. doi: 10.1137/0916074.

[45] CASONI, E., JÉRUSALEM, A., SAMANIEGO, C., EGUZKITZA, B., LAFOR-
TUNE, P., TJAHJANTO, D. D., SÁEZ, X., HOUZEAUX, G., VÁZQUEZ,
M. “Alya: Computational Solid Mechanics for Supercomputers”, Archives of

Computational Methods in Engineering, v. 22, n. 4, pp. 557–576, 2015. ISSN:
11343060. doi: 10.1007/s11831-014-9126-8.

[46] ROSENBERG, A. L. “Efficient pairing functions-and why you should care”. In: Pro-

ceedings 16th International Parallel and Distributed Processing Symposium,
pp. 7 pp–, April 2002. doi: 10.1109/IPDPS.2002.1016532.

[47] TARAU, P. “On Two Infinite Families of Pairing Bijections”, CoRR,
v. abs/1301.0129, 2013.

[48] LAWDER, J., KING, P. “Using space-filling curves for multi-dimensional index-
ing”, Lecture Notes in Computer Science, v. 1832, pp. 20–35, 2000.

[49] K LAWDER, J. “Calculation of Mappings Between One and n-dimensional Values
Using the Hilbert Space-filling Curve”, 2000.

[50] LAWDER, J. K., KING, P. J. H. “Querying multi-dimensional data indexed using
the hilbert space-filling curve”, SIGMOD Rec, v. 30, pp. 19–24, 2001.

[51] SZUDZIK, M. “An elegant pairing function”. In: NKS 2006 Wolfram Science Con-

ference, 2006. S lides at http://szudzik.com/ElegantPairing.pdf.

[52] SCHROEDER, W., MARTIN, K., LORENSEN, B., KITWARE, I. The visualization

toolkit : an object-oriented approach to 3D graphics. Kitware, 2006. ISBN:
193093419X.

[53] SEDGEWICK, R. Algorithms in C. Addison-Wesley, 1998. ISBN: 0201314525.

[54] SAMET, H. The design and analysis of spatial data structures. 1990.

[55] KENNEL, M. B. “KDTREE 2: Fortran 95 and C++ software to efficiently search
for near neighbors in a multi-dimensional Euclidean space”, aug 2004.

[56] OTAIR, M. “Approximate K-Nearest Neighbour Based Spatial Clustering Using K-
D Tree”, International Journal of Database Management Systems, v. 5, n. 1,
pp. 97–108, feb 2013. ISSN: 09755985. doi: 10.5121/ijdms.2013.5108.

56

[57] LOHNER, R. Applied Computational Fluid Dynamics Techniques: An Introduction

Based on Finite Element Methods, v. 508. 2004. ISBN: 9780470519073. doi:
10.1017/S0022112004229603.

[58] LOHNER, R. Applied Computational Fluid Dynamics Techniques: An Introduction

Based on Finite Element Methods, v. 508. 2004.

[59] KARUMANCHI, N. Data Structures and Algorithms Made Easy: Data Struc-

tures and Algorithmic Puzzles. CareerMonk Plublications, 2017. ISBN: ,978-
8193245279.

[60] MIKHAIL J. ATALLAH, M. B. Algorithms and Theory of Computation Handbook,

Second Edition, Volume 1: General Concepts and Techniques (Chapman &

Hall/CRC Applied Algorithms and Data Structures series).

[61] AUBRY, R., LÖHNER, R. “On the most normal’ normal”, Communications in

Numerical Methods in Engineering, v. 24, n. 12, pp. 1641–1652, oct 2007.
ISSN: 10698299. doi: 10.1002/cnm.1056.

[62] AUBRY, R., MESTREAU, E. L., DEY, S., KARAMETE, B. K., GAYMAN, D. “On
the ’most normal’ normal-Part 2”, Finite Elements in Analysis and Design,
v. 97, pp. 54–63, 2015. doi: 10.1016/j.finel.2015.01.005.

[63] PIRZADEH, S. “Three-dimensional unstructured viscous grids by the advancing-
layers method”, AIAA Journal, v. 34, n. 1, pp. 43–49, jan 1996. ISSN: 0001-
1452. doi: 10.2514/3.13019.

[64] JOHNSON, A., TEZDUYAR, T. “Mesh update strategies in parallel finite element
computations of flow problems with moving boundaries and interfaces”, Com-

puter Methods in Applied Mechanics and Engineering, v. 119, n. 1-2, pp. 73–
94, nov 1994. ISSN: 0045-7825. doi: 10.1016/0045-7825(94)00077-8.

[65] STEIN, K., TEZDUYAR, T., BENNEY, R. “Mesh Moving Techniques for Fluid-
Structure Interactions with Large Displacements”, Journal of Applied Mechan-

ics, 2003. ISSN: 00218936. doi: 10.1115/1.1530635.

[66] MASUD, A., BHANABHAGVANWALA, M., KHURRAM, R. A. “An adaptive
mesh rezoning scheme for moving boundary flows and fluid-structure interac-
tion”, Computers and Fluids, v. 36, n. 1, pp. 77–91, 2007. ISSN: 00457930.
doi: 10.1016/j.compfluid.2005.07.013.

[67] KANCHI, H., MASUD, A. “A 3D adaptive mesh moving scheme”, International

Journal for Numerical Methods in Fluids, v. 54, n. 6-8, pp. 923–944, jun 2007.
ISSN: 02712091. doi: 10.1002/fld.1512.

57

[68] MASUD, A., HUGHES, T. J. “A space-time Galerkin/least-squares finite ele-
ment formulation of the Navier-Stokes equations for moving domain prob-
lems”, Computer Methods in Applied Mechanics and Engineering, v. 146, n.
1-2, pp. 91–126, jul 1997. ISSN: 00457825. doi: 10.1016/S0045-7825(96)
01222-4.

[69] KNUPP, P. M. “Algebraic Mesh Quality Metrics”, SIAM Journal on Scientific

Computing, v. 23, n. 1, pp. 193–218, jan 2001. ISSN: 1064-8275. doi:
10.1137/S1064827500371499.

[70] CAENDISH, J. C., FIELD, D. A., FREY, W. H. “An approach to automatic three-
dimensional finite element mesh generation”, International Journal for Nu-

merical Methods in Engineering, v. 21, n. 2, pp. 329–347, feb 1985. ISSN:
0029-5981. doi: 10.1002/nme.1620210210.

[71] BAKER, T. J. “Element quality in tetrahedral meshes”. In: Proc. 7th Int. Conf. on

Finite Element Methods in Flow Problems, pp. 1018–1024, 1989.

[72] DE COUGNY, H. L., GEORGES, M. K., SHEPHARD, M. S. Explicit node point

mesh smoothing within the octree mesh generator. Program for Atuomated
Modeling, Scientific Computation Research Center, Rensselaer Polytechnic
Inst., 1990.

[73] DANNELONGUE, H., TANGUY, P. “Three-dimensional adaptive finite element
computations and applications to non-Newtonian fluids”, International jour-

nal for numerical methods in fluids, v. 13, n. 2, pp. 145–165, 1991.

[74] GRAICHEN, C., PARTHASARATHY, V. OCTREE Theoretical Manual. Relatório
técnico, GE-CRD Report, 1991.

[75] BRANETS, L., CAREY, G. F. “A local cell quality metric and variational grid
smoothing algorithm”, Engineering with Computers, v. 21, n. 1, pp. 19–28,
nov 2005. ISSN: 1435-5663. doi: 10.1007/s00366-005-0309-7.

[76] FREY, P. J., GEORGE, P. L. Mesh generation : application to finite elements. ISTE,
2008. ISBN: 9781118623824.

[77] CGNS. “Unstructured mesh for YF-17”. Disponível em: <https://cgns.
github.io/CGNSFiles.html>. Accessed: 2018-08-22.

[78] SHENDE, S. S., MALONY, A. D. “The TAU parallel performance system”, The

International Journal of High Performance Computing Applications, v. 20,
n. 2, pp. 287–311, 2006.

58

https://cgns.github.io/CGNSFiles.html
https://cgns.github.io/CGNSFiles.html

[79] GEUZAINE, C., REMACLE, J.-F. “Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities”, International Journal for Nu-

merical Methods in Engineering, v. 79, pp. 1309 – 1331, 2009.

[80] ANSYS INC. Programmer’s Manual for ANSYS - ANSYS Release 11.0, 2007.

[81] KORKISCHKO, I., MENEGHINI, J. R. Experimental investigation of flow-induced

vibration on isolated and tandem circular cylinders fitted with strakes. Re-
latório técnico, 2010.

[82] BREWER, M. L., DIACHIN, L. F., KNUPP, P. M., LEURENT, T., MELANDER,
D. J. “The Mesquite Mesh Quality Improvement Toolkit.” In: IMR, 2003.

[83] KIM, J., PANITANARAK, T., SHONTZ, S. M. “A multiobjective mesh optimiza-
tion framework for mesh quality improvement and mesh untangling”, Interna-

tional Journal for Numerical Methods in Engineering, v. 94, n. 1, pp. 20–42,
2013. doi: 10.1002/nme.4431.

59

