————e
—————— .

T

OPTIMAL MULTIWAY SEARCH TREES
* FOR VARIABLE SIZE KEYS

Jayme Luiz Szwafcfiter

NCE-0282

Qutubro 1982 - ’

Jayme Luiz Szwarcfiter
Universidade Federal do Rio de Janeiro

Nucleo de Computacao Eletronica

Caixa Postal 2324
20.001 Rio de Janeiro RJ

RESUMO

Dada uma sequencia de n chayves de tamanho variavel, consideram-se
algumas arvores otimas de busca. A construcao de arvores multibi
furcadas de busca de custo Otimo @ NP-dificil, embora o problema
seja solivel em tempo pseudo-polinomial 0(n3L) e espago O(n®L),on
de L & 0 limite dado para o tamanho da pagina. Tais arvores de es
pacgo otimo podem ser obtidas em tempo 0(n%) e espago 0(n?),enquan
to que ads de altura otima sao encontraveis em tempo O(n®logn) e
espago O(nlogny. O principio da monotonicidadé nao se aplica para
os casos acima. A determinagao de uma arvore B dera] de custo oti
mo € um probleﬁa tambem NP-dificil. Contudo, uma arvore B geral de
altura 2 e tamanho minimo de raiz 'pode ser construida em tempo
O(nlogn) e espago 0(n). Alem disso, caso o numero de chaves na
raiz seja fixado em M, a complexidade de tempo aumenta para
0(n2M). Isto responde a uma conjectura de McCreight [111. '

1]

ABSTRACT

Given a sequence of n keys of variable sizes, some optimal search
trees are considered. Constructihg optimal cost multiway search
trees is NP—hard,-although it can be done in pseudo-polynomial

time 0(n3L) and space 0(n?L) where L is the page size limit. Optimal
space multiway search trees are obtained in 0(n?®) time and 0(n?)
space, while the obtimaT height problem is solved in 0(n?logn) time
and 0(nlogn) space. The monotonicity principle does not apply to
the above cases. Finding optimal cost general B-trees is NP-hard.
But a general B-tree of height 2 and minimal root size can be
constructed in O(nlogn) time and 0(n) space. In addition, if its
root is restricted to contain M keys then the time complexity
increases to.O(nzM). This answers a conjecture by McMcCreight [(111.

1. Introduction

Optimal cost binary search trees were constructed by Gilbert
and Moore [2] in 0(n®) time. Knuth [9] described an algorithm
including gap weights and proved a monotonicity principle which
decreased the time complexity to 0(n?). Garey {1] and Wessner
[13] found the above trees with a height restriction. The space
bound for the mentioned .algorithms is 0(n2?). Hu and Tucker [6]
showed that optimal cost binary alphabetic trees can Qe found
more efficieq;]y in O(nlogn) time and 0(n) space. Itai [7]
presented an algorithm for optimal cost multiway dlphabetic
trees, while Vaishnavi, Kriegel and Wood [12] and Gotlieb [3]
solved the corresponding problem for multiway search trees.' The
algorithms [3, 7, 12] require 0(n®t) time and 0(n?t) space whene
t is the given maximum number of keys per node. éot]ieb [3] and
Gotlieb and Wood [4]1 showed that an extension of the'monotonicity
principle does not apply to general mu]ti&ay trees. However %t
does when the gap weights are absent, which reduces the
running time in this case to O(n?t) [37. Itai [7] describes a
technique for reducing the factor t to logt, in the above time
complexity. [

Multiway trees for variable size keys were discussed in [5, 101
and with more detail by Hdhfight [11]. The present paper
considers finding some optimal trees of this kind. It is shown
that the problem of constructing an optimal cost multiway search
tree is NP-hard. However it can be solved in pseudo-polinomial
time 0(n3L) and space 0(n2?L) where L is the given page size
1imit. Optimal space multiway search trees are constructed in
0(n?®) time and 0(n?) space, while the optimal height problem is
solved in time 0(n?logn) and space O(nlogn). These two algorithms
are described by a common formulation. Next it is shown that
the problem of constructing an optimal cost general B-tree is
NP-hard, although it also admits a pseudo-polynomial time
solution. These trees are generalizations of B-trees, in which
the lower and upper page size limits may be independent. numbers.:
Following is described an O(nlogn) time algorithm for constructing
a general B-tree of height 2 and minimal root size. If additionaly
its root is restricted to be formed by a given number M of keys
then a different algorithm is applied. The latter has time

complexity 0(n?M), while both require 0(n) space. This solves

a problem by McCreight. In [11], O(nlogn) time algorithms were
described for M = 2 or 3 and the case of general M has been
proposed as an open problem. Finally simple examples show that
the monotonicity principle does not extend to any of the

above multiway search tree algorithms. In particular it fails
also for the optimal cost criterion with no gap weights. In any
of the cases, the rightmost key in the root may move right

when a new key is added at the, left of the key sequence.

\

2. Preliminaries
|

Let E = <el,,,; e > be a sequence of elements called keys,
each e with a non-negative integer size Ss and an arbitrary
valuég Yis satisfying Yi < ¥iio 1 <1< n. Let T be a multiway
search tree for the key sequence E and x a node of T. The size
of x: is the sum of the,sizes of the keys in x. Let L be an

.integer. T has page limit (or limit) L whenever x has size at

most L, for all nodes x of T. The level of x is the number of
nodes in the path between x and the root of T. The height of
the tree is the maximum level among the nodes. The space of T
is its number of nodes. Now, suppose associated to E non-negative
real key weights p,,..., Pn and gap weights dgs=-++s Qp- Let

W= I p. + T q.. Define Yo = - % and y 4, = Tt oo Then
1<i<n 0<j=<n n+1

(i) pi/w and (ii) qj/w are the probabilities that the search
argument has value, respectively (i) Y; and (ii) strictly

between yi and yj+1‘ The cost of T is the sum

T p. level(e.) +)} q. (level(e*)-1),
1<i<n ! 1 O<j<n J J

where e*j denotes the leaf of T representing the missing key
range (.Yjs Yj+1)-

Except [61, all known optimal cost algorithms are of dynamic
programming. They employ the following decomposition. Let
<e1,...,'ej> be a key sequence and T the corresponding (t+1)—ary
optimal cost tree. The problem of finding T is decomposed in

those of finding optimal cost trees TL and TR for <ei“..,ekq>
and Byt ej>, respectively. Suppose the root r of T consists

of m keys:

case 1: m = 1. Then ey js the key in r and TL s TR are both
t-ary trees.
case 2: m > 1. Then (i) e, is the rightmost key in r and
(i) Ty Tp are both t-ary trees, except that the root of T, is
restricted to m-1 keys. '
\
This decomposition was first described in {23 for binary

trees (case 1) and genéraﬂized in [7]. i
t

f

3. Optimal cost multiway search trees [

[
)

In this section we use optimal tree meaning an optimal cost
multiway search tree. Let E = <e.> be a sequence of keys with
sizes Sy key weights P; and gap weights qj’ J<i<n and O<j<n.

Let L and C be positive integers, L>s.-

Lemma 1: Deciding whether there exists a multiway search
tree for E having page limit L and cost < C is NP-complete,

Proof: Transformation from partition [8]. Its instance is a
set A = {a;,--->» apls each a with a non-negative integer value

Vi Denote b = % v v.. Define the key sequence <e;s...s €p>
a.eA
J

such that (1) s; = Py © Vis J<i<n and (ii) 95 = 0, Osjén. It
follows that there exists a subset A'C A satisfying . EA'Vj = b
J

iff there exists a multiway search tree for E, having page Timit
b and cost < 3b. Such a tree would have height 2 and the subset
of keys in the root is in one-to-one correspondence with A;

observe that the NP-completeness remains even if all gap
weights are zero, ecach key size equals the corresponding key
weight and the height h of the tree is fixed, h > 1.

case 1

case 2

Fig. 1: The decomposition rule

However an optimal tree can be constructed in pseudo-polynomial
time. Let E = <e1,.}., e be a key sequence as above and L the
1imit of the desired optimal tree T for E. For Os<i<j<n and
Oem<L define:

W(i, j) = z . pk + . L . qk

oo , when sk:>m for all k, i<k<]. Otherwise

cost of the optimal tree of limit L for <e. ipp0ee €57
such that the root has size <m. ! J

For O<isn and O<m<L define a (1, i, m) = g; and w(i, i, m) =
Clearly, a(D, n, L) 1s the cost of the desired optimal tree.

Applying the decompos1t1on of § 2, let e be the rwghtmost key

in the root of T. Then TR is an optimal tree of limit L. So is
TL, except that in cagse 2 its root is restricted to size at.
most m-s, . Therefore | : N
r
o , when S > m for all i<k<j. Otherwise
a(i, j, m) =4
: ' min {min[a(i, k-1, m°5k)’ a(i: k-1, L) + w(i, k-1)1-+ pk+

T« k<J
such that + U(ka j, L) + W(k, j)}

LS <m

for O<m<L
O<i<j<n.

This algorithm requires 0(n®L) time and 0(n2L) space. The time
bound can not be reduced by the application of the monotonicity
principle. Unlike the fixed size key case [31, it does not
apply even if all gap weights are zero. See figure 2.

4. Optimal height or space multiway search trees

Through this section, an optimal tree means an optimal
height or space multiway search tree. Below is described an-
algorithm for finding an optimal tree for a given key sequence
gnd limit. It uses the decomposition of section 2, as follows.

Optimal cost tree of page limit 2 for <e,, e, ey>

key sequence

Fig. 2: Failure of the monotonicity principle for the cost criterion

Let T be an optimal tree of limit L, having space S and
height H. Suppose T 1is space optimal. Then TR is space optimal
and of limit L. Let S' be the space of TR. In case 1, T is space
optimal, has Timit L and space S - S' - 1.50 in case 2, except
that its root is restricted to size at most L - Sk and its space
is S - S'. Suppose now T is height optimal. Then TL has height
at most H - 1 in case 1 and at most H otherwise. The height of
TR~is no more then H - 1. Clearly, TL or TR is height optimal,
but we can rlestrict the search to the case in which both are.

A quasi-multiway search tree of limit L is a multiway search

tree of 1imit L, except for the root whose size is unbounded.
A multiway (or quasi multiway) search tree has parameter z when
jts height or space is z. Let E = <e;,..., €. each key e,

with size Sy For given L and z>0 define:

0, when i>j. Otherwise
a (i, 3, 2) = size of the root of the guasi-multiway search

' tree of 1imit L and parameter z for the key
sequence <€.,..., e.> and such that the root

has minimal size.

When z <0, define a(i, j, z) = for all i, j. Now Tlet

oo , when a(i, j, z)>L for all z', 1<Z<z. Otherwise

8(i, 3, z) =
min {z'|a(i, §, 2)<L}.
1<z'<z
0, when §(i, Jj, z)<z. Otherwise
B(i, 3, z) =

0

In other words, &(i, j, z) equals the minimal parameter z'
of the optimal tree of 1imit L for <@L ej>, such that
7' < z. If no such tree exists then §(i, j, z) =o°0 . Now, o can

be computed by

o (i, §, z) = min {minfa(i, k-1, f(k, 3, 2)),8(3, k-1, f(k, 3, 2)-1)1 + s}
i<k<]

for z = 2, 3,...

1<igj<n,

z - &§(k+1, j, z-1) for space minimization

where f(k, j, z) =
z - g(k+1, j, z-1) for height minimization,

The process 1is initiated by

ali, Js 1) = T Sy l<i<j<n,

After ca1cu1)at1'ng each o the corresponding § and B are evaluated.
A1l computations are common for height or space minimization,
except f. The process stops at the least z such that o (1, n, z) <™.

The following is clear.

00 and
s(i, 3, z).

0 = g(i, j+1, 2)
0 = &(i, j, z+1)

1]

Lemma 2: B(i, i, Z)
B(i, 3, 2)

A straightforward implementation of this algorithm requires
0(n%®Z) time and 0(n?Z) space, where Z js the parameter of .the
optimal tree. By using lemma 2 above it is possible to modify it
in such a way that a(i, J, z) is computed at most twice for each
pair i, j (at most once obtaining a value o > L and exactly once
@ < L). The new formulation runs in 0(n3®) time and 0(n?) space.

Now, restrict attention to height minimization. Let
Q(i, J, Z) denote the multiset of the finite operands in which
the minimization of the above expression a(i, j,'z) js carried
out. Denote By Qk the operand of Q corresponding to k, i.e.
Qk = min [a(i, k-1, f(k, 3, z)), B(i, k-1, f(k, J, z) - N+ Sy
Suppose B(i, J» z) = 0. Then Q(i, j+1, z) can be constructed from

Q(i, 3, z) by the inclusion of the value minfa(i, J, z), B(i, J z—])]+sj+1

and the exclusion of each Qk forwhichB(Kﬂ, j+1, z-1) = oo . This
allows the computation of a (i, j+1,2z). Now suppose B(i, j+1, z) =@
In this case, call j+1 a i-starting point . Then construct Q(i, j+1, z+1)

by including 1in Q(i, t, z) the operands s s S

St+1 [& i j+1?

where t is the Tlargest i-starting point <j+1. This allows
the computation of ali, j+1, z+1). Is this scheme, the

progress of the computation is i = n, n-1,..., 1. Only one of
the o values need to be kept, while redundant B's may be avoided.

The above observations and the use of priority queues reduce
the time bound to 0(n%logn) and space to o(nZ). Clearly, the
minimal height Z is 0(logn),

The monotonicity principle can not be applied to any of the
above algorithms. See figure 3.

’
5. Optimal cost general B-trees

Let L, and L, be integers, 0<LlsL; A general B-tree is a

multiway search tree T satisfying (i) l<size(r)slL,, where r 1is
the root of T, (ii) Lissize(x)sL,, for all nodes x#r of T and
(iii) level(x) = height(T), for all leaves x of T. L, and L, are
respectively the lower and upper page 1imits of T or simply

limits and denoted as (L;, L,). Clearly, a B-tree is a general
B-tree with L, = [L2/2].

Lemma 3: Let E be a key sequence, Ly, L, and C positive
integers. Deciding whether there exists a general B-tree for t
of 1imits (L1, L2) and cost <C is NP-complete.

Proof: Transformation from partition. Its instance is a set
A= {ays---> an} each a having a non-negative integer value
v

such that b = % LV, is an integer. Construct a key sequence
E= <«,,..., &,,,>as formed by 4 types of keys.
Type K, : key e, with s, = p; = n(b+1)
K, : key e, Wwith s, = p, = n
Ks : keys €3, €55...5 € . with S = Py = 1,k =3, 5,...,2n+3

K, : keys ey, €gs5...5 € nts’ with S = Pk = nv(k_z)/z,k=4,6,...,2n+2

.10.

Optimal height and space tree of page 1imit 4 for <ez, €3, €u, €5, €67, having

minimal root size,

€3 €e

e; €2 ’(eu €s)

Optimal height and space tree of page limit 4 for <@y, €2, €3, €us Es, €6>,

having

minimal root size.

key seguence

Fig. 3: Failure of the monotonicity principle for either height or space

criterion.

| 1.

A1l q; = 0, O<i<2n+3. See figure 4. It follows that there
exists a subset A'C A such that _ L, vy = b if and only if
;€

there exists a general B-tree for E with 1imits (1, nb+n) and
cost <5nb + 5n + 2. Such a tree would have height 2 and the
subset of keys in the root is in one-to-one correspondence
with A'y

Observe that the problem remains NP-complete even if all
g. = 0, all s; = Py and the height h of the tree is fixed, h>1.
Again the NP-completeness is not strong. An optimal cost general
B-tree can be found 1in pseudo—po]ynomia] time by conveniently
extending the algorithm of section 3.

6. General B-trees of height 2

Given a key sequence E = <ej,..., €,>, each e, with size
S, and given integers L, L, with O<L,<L,, find a general B-tree
T for E having limits (L;, L2)> height 2 and minimal root size.
We assume IS; >L,, otherwise there is no reason for a tree of
height 2.

Clearly, T can be determined just by finding the subset of
keys which forms the root. We construct an acyclic digraph with
vertex set {uo, Ujs-eos un+i}’ There is one directed edge

(ui, uj) and a distance dij for O<i<j<n+1, as follows:

S50 when L < X S S L,. Otherwise

4 - i<k<j
1)
004

where s = 0. Let Di be the length dij+"’+ dk,n+1 of the

n+l
shortest path Pi from u, to Unet- If D0 >L, then T does not
exist. Otherwise the root of T is formed by the keys

{ej|uje P0 - {uo, un+]}}. A straightforward implementation of

this process gives an 0(n?) time and space algorithm. However
it can be improved by taking advantage of the special distribution
of the edge distances. For O<is<n, define:

): .
5. (i) - n+2, when . 2 . Si< L,.Otherwise
1

min'{j|i<§<j S\ 2 L,, i<js<n+1}

A
al a2 33 an
0 e @ . . . 0
Y Y] 4
e e e e e e e ‘ e e e
2 3 y 5 6 | 7 8 2n+1 2N+2 2N+3
A O e o e O o . o o O @ O
E

Fig. 4: Construction of the key sequence (lemma 3),

13,

. n+1, when i = n. Otherwise
62(1) =) . .
max {j| T s <l2, i< jsn+ll,
i< k< J -

In other words, if uj is the vertex that follows u in Pi then

j is in the interval [6,(i), 62(i)1. For O<is<n, define the multiset

Q; = {dyy + Dk|1<ksn+1}.

Then D, can be computed by

0
Dn+] =0
Di = min Qi
for i = n, n-1,..., 0. After each iteration i>0, Q; 4 1s

constructed from Q5 by insertim {sg + Dklél(i—l)sk<6,(1)} .and

deleting { sy + Dk‘62(1—1)<k562(i)}. Using a priority queue to
represent the Qi‘s is possible to implement the algorithm in

0(nlogn) time and 0(n) space. Observe that the digraph is not
explicitly constructed in this scheme. The algorithm would
find a multiway search tree of limit L,, height 2 and minimal

root size by setting L, =0 and &;(i) = i+l,0<iz<n.

Consider now the following variation of the above problem.
In addition to the stated conditions, the root of T is required
to be formed by a given number M of keys [11]. A dynamic
programming algorithm can be described for this variation based
again in the decdmposition of § 2. Let ey be the righmost key

in the root of T. Then L;< I s, = L,. In case 1,k L s.<L,.
k< i<n 1<ick

In case 2, TL is a general B-tree for <ej,..., ek_1> of 1Timits

(Lys L) height 2, minimal root size and having M-1 keys in
the root. For l1<i<j<n and m>0, define:
size of the root of the general B-tree for<e.,..., e.> of
limits (Li, L2), height 2, minimal root size and havihg m
a(i,j.m) = { keys in the root.

oo » whenever the above tree does not exist.

14,

For 1<i<jzn, define:

0, when L;< I S < L,. Otherwise
a(i,j,0) = i<k<J '
(o0 8

The solution is clearly ao(l, n, M) which can be computed by the
following equation:

a(l,j,m) = »min {a(1, k-1, m-T) + S * a(k+1, 3, 0) 1,

for m 1, 2,..., M

2m+l, 2m+2,..., n.

Note that if i,-1,<2i; then a(i,, i,, i,) =oo . Using the
functions &,(i) and 8,(i) as defined it is possible to evaluate
.a(i, j» 0) in constant time and compute a(l, n, M) in 0(n% M)
time and 0(n) space.

7. Conclusions

Problems of finding some optimal multiway search trees and
general B-trees for variable size keys have been considered. In
specia], finding optimal cost trees is NP-hard for both cases,
although admit pseudo-polynomial time algorithms. But in some
applications the limits of the trees have order of magnitude
not greater then the number of keys. Clearly, the algorithms are
polynomial for this class of problems.

It might be interesting to consider an alternative strategy
for B-trees of variable size keys. Namely, to adopt as lower
limit a given number of keys, while maintaining the size as
upper limit. The optimal cost problem remains of course NP-hard.
But the trees may become easier to manipulate. For instance, an
optimal height B-tree can be found in polynomial time if this
alternative is adopted. When controling nodes only by sizes, the
construction of a B-tree of height 2 can be done in polynomial
time (section 6). It would be worth examining the case height > 3.

ACKNOWLEDGEMENTS: To Ysmar V. Silva FQ for all the discussions and
insightful remarks.

10.

11.

.15,

REFERENCES

GAREY, M. R. Optimal binary search trees with restricted
maximal depth. SIAM J. COMP. 2 (1974), 101-110.

GILBERT, E. N,, and MOORE, E. F. Variable-length binary
encodings . Bell System Tech. J. 38 (1959), 933-968.

GOTLIEB, L. Optimal multiway search trees. SIAM J. COMP. 10
(1981), 422-433.

GOTLIEB, L., and W0OD, D. The construction of optimal multiway
search trees and the monotonicity principle, Intern. J. Comp.
Math., Sc. A 9 (1981), 17-24.

HOROWITZ, E., and SAHNI, S. Fundamentals of Data Structures.
Computer Science Press, Potomac, 1976.

HU, T.C., and TUCKER, A.C. Optimum computer search trees. SIAM

J. Appl. Math. 21 (1971), 514-532.

ITAI, A. Optimal Alphabetic Trees. SIAM J. COMP. 5 (197%),
9-18,

KARP, R. M. Reducibility among combinatorial problems. In
Complexity of Computer Computations, R. E. Miller and J. W.

Thatcher, Eds. Plenum Press, New York, 1972, 85-103.

KNUTH, D. E. Optimum binary search trees. Acta Informat. 1
(1971), 14-25.

KNUTH, D. E. The Art of Computer Programming, 3: Sorting and
Searching . Addison-Wesley, Reading, 1973.

McCREIGHT, E.M. Pagination of B*-trees with variable length
records. Comm. ACM 20 (1977), 670-674.

12.

13.

.16.

VAISHNAVI, V. K., KRIEGEL, H. P. and WO0OD, D. Optimum
multiway search trees. Acta Informat. 14 (1980), 119-133.

WESSNER, R. L. Optimum alphabetic search trees with restricted
maximal height. Inform. Proc. Lett. 4 (1976), 90-94.

