ON DIGRAPHS WITH A ROOTED TREE
STRUCTURE

Jayme L. Szwarcfiter

NCE-04/83

Dezembro 1983

Jayme Luiz Szwarcfiter
Universidade Federal do Rio de Janeiro
Nucleo de Computacao Eletronica
Caixa Postal 2324
20.001, Rio de Janeiro, RJ, Brasil

RESUMO

Una classe especial de digrafos redutiveis e caracterizada e algoritmos polino-
miais sao descritos para o0 seu reconhecimento, isomorfismo e determina
nar digrafos equivalentes minimos. Um algoritmo aproximativo € tambem apresen-
tado para resolver este ultimo problema, em seu caso geral. 0O tamanho da aproxi
macao obtida € sempre menor do que o dobro da solucdo exata. Em adicao, o iso-
morfismo de busca em profundidade e resolvido como um caso especial do isomor
fismo dessa classe.

"ABSTRACT

A special class of reducible digraphs is characterized and polynomial time
algorithms are described for their recognition, isomorphism and
finding minimum equivalent digraphs. An approximative algorithm is also given
for solving this last problem in its general case. The size of the approximation
is always less than twice the exact solution. In addition, isomorphism of

depth first search is solved as a special case of isomorphism of this class.

1. Introduction

We examine a special class of reducible digraphs named tree
reducible (TR) which are closely related to depth first search
(DFS). A characterization of the class is first considered. Based
on it we describe élgorithms for the problems of recognition,
finding a minimum equivalent (MEQ) and isomorphism of TR digraphs.
The time bounds of these three algorithms is the same as recognizing
reducible digraphs, i.e. almost linear [9]. In contrast, the MEQ
problem is NP-hard for general digraphs [3,8], whereas isomorphism
of reducible digraphs is complete, i.e. equivalent to the general
case (because reducible digraphs contain acyclic digraphs, whose
isomorphism is known to be complete). In addition, an approximative
algorithm is proposed for finding the MEQ of a general digraph.
The size (number of edges) of the approximation obtained is always
less than twice that of the optimal solution. Finally, we consider
the problem of verifying whether two DFS's of an undirected graph
are isomorphic. This is shown to be a special case of TR digraph
isomorphism and solvable in linear time in the size of the graphs.

The following describes the terminology.
The vertices of a graph can be traversed according to predefined

rules, such as those of depth first search (DFS). A DFS of an
undirected graph divides its edges into two disjoint subsets,

tree edges and fronds, respectively. For a digraph it produces
four disjoint subsets, the tree, forward, back and cross edges,

respectively. The initial vertex of a DFS is the start of the

search. The positive integer indicating the order in which each
vertex v has been first considered is the DFS-number of v. A

description of DFS can be found in [1], for instance.

Let D(V,E) be a digraph. If there exists a path from v eV to
weV then v is said to reach w. If v, w are such that neither
of them reaches the other then v, w are incomparable. If every

vertex of D is reachable from a vertex s eV then s is a root of
D. If any DFS of D starting at some fixed root s determines the same
set B of back edges then D is (fully) reducible. The digraph

DA(V, E-B) is the directed acyclic graph (dag) associated to D.

If D is reducible then DA is unique. See [2, 4-5, 7] for other
characterizations of reducible digraphs.

Figure 1: A TR digraph of root v, and the transitive reduction of its dag.

(b)

(2) ==>(3): Suppose the transitive closure of D, contains

A
figure 2 as an induced subgraph. Then Vis Vo reach w while Vis Vo
are incomparable in DA‘ Let A be a DFS of D and vy the first

vertex among vy, Vos W to be considered in A. Then any path from

Vo to w in DA contains a cross edge of A. The same applies if we

Vo

Figure 2: The forbidden induced subdigraph for the transitive closure of
the dag of a TR digraph

#Qt(vg v,)

v, {1,3}

Figure 3: The labelled rooted tree L(a(D))

PFICOCTT VO uM MUdo L Luunitdlill 4 o lnlpitc padihi v-l,..., vk_], vk, R = O
from VEV, to LA Consider now a canonical DFS of D and examine
edge (Vk—l’ vk). It can not be a tree edge since (v,w)s(v],vk)
is one, by hypothesis. (vk_], vk) is not a back edge because it
would violate reducibility: there would be a path in D from s to
Vi avoiding vy (namely, the path from s to VEV, in T followed
by the path Viseoes Vi in DM). There are no cross edges. The

only possibility is therefore gvk_], vk) to be a forward edge and
v#s. In this case the digraph (V, [EM-(vk_], vk)] u {(v,w)}) is
also a MEQ of D and contains one more edge of'ET than DM. This
completes the proo&

From the above 1eﬁma we conclude that every TR digraph D(V,E)
has a MEQ of the form (V,ET u E'), where ET is the set of tree
edges of a canonical DFS of D and E' a subset of back edges. The
computation of E' can be done by iteratively selecting the back
edge (w,b(w)) from a leaf w of T to its oldest ancestor b(w) and
then collapsing into b(w) the path in T from b(w) to w. The
collapsing operation becomes simpler when the leaf w is chosen so
as to maximize the Jevel in T of b(w). The formulation below
describes the process.

Initial step:

let D(V,E) be a given TR digraph
A a canonical DFS of D
T(V, ET) the spanning tree of A

and W(T) the set of leaves of T

E':= ¢
for each v ¢V define
actual(v) := v
level(v) := level of v in T

B(v) := {weV|(v,w) is a back edgel
~if B(v) = ¢ then b(v) := v
" otherwise b(v) := w, where weB(v) satisfies
level(w) <level(w'), faor all w' eB(v)

General step:

if W(T) = ¢ then stop: (V, ET v E') is a MEQ of D
otherwise choose w e W(T) such that
level (b(w)) > level(b(w')), for all w'e W(T)
if b(w) = w then remove w from T
“‘otherwise let Viseees V) be the path P in T from Vi = b(w) to Ve =W
E' := E' u{(actua](vk), v])}
find a vertex Vj in P such that
level (b(vj)) s]eve](b(vi)),for all 1 <ick
b(v]) 1= b(vj)

actua](v]) 1= actua](vj)
; collapse the path Viseoes Vy into vy in T
(i.e. remove Vos.ous Vi from T
and set A (T) := U A (T)-{v,s.e.y V1)
vy 1<ick Vi 2 k

repete the general ste&

Next is described an approximative algorithm for finding a MEQ
of a general digraph.

Let D be a strongly connected digraph. In the initial step,
label all vertices uncovered. Then choose an arbitrary cycle Cq and
lTabel covered each vertex of c,.

cycles c],.;., Cj, j=>1, have already been chosen, with the union

In the general step, assume the

) of them defining a strongly connected subdigraph Dj and that a
’ vertex v of D is covered iff v is in Dj‘ Now, if all vertices are
covered the process terminates: Dj is the approximative MEQ.

Otherwise, find a path P(v,w) from v to w in D, such that

(i) v and w are covered and not necessarily distinct vertices, and

(ii) except for its ends v and w, P(v,w) contains solely
vertices labeled uncovered,

This path is easy to find and since D is strongly connected it
necessarily exists. Then define cycle Cj41 @S consisting of P(v,w)
followed by an arbitrary (simple) path from w to v in Dj’ Finally,
label covered each vertex of P(v,w) and repeat the general step.
It is clear that the required assumptions are all met.

This process takes linear time in the size of D.

If D is strongly connected apply standard techniques: use the

", above algorithm for each strongly connected component and then

add the edges corresponding to the transitive reduction of the
condensation digraph D, of D (Dcrhas one vertex for each component

Si of D and an edge (Si’ S.) if there is some edge in D from a
vertex of S; to another of Sj)'

To evaluate the quality of the proposed approximation, suppose
first that the given digraph D is strongly connected. Let us
compute the number of edges of the approximative MEQ Dk constructed
by the algorithm. Recall that Dk is a union of cycles Cysevns Cpo
The first cycle €y coversny> 1 vertices and has n, edges. Each
subsequent cycle Cj’ 1<j<k, covers nj >0 new vertices (not covered
by any of the preceding Cloeers Cj-l) and has precisely nj+1 edges
not belonging to any of Cro-ens 5.1 Since Enj = |V|, we conclude
that D, has at most 2|V|-2 edges. On the other hand, the actual MEQ
of D has 'at least |V| edges. Therefore the number of edges of the
approximation is less than twice that of the actual MEQ. If D is
not strongly connected the edges connecting different components
occur in the approximation with the same frequency as in the actual
MEQ. Therefore the bound applies in general.

4. Isomorphism

In this section is described an algorithm for isomorphism of TR
digraphs.

Let D(V,E) be a TR digraph. Define a(D) to be the digraph
obtained as follows:

(i) Perform a canonical DFS of D. Let T be the corresponding DFS
spanning tree.

(i1) Find a subdivision a(D) of T, i.e. define o(D) := T and then
replace each edge (v,w) of o(D) by the pair of directed
edges (v, t(v, w)) and (t(v,w),w), where t(v,w) is a newly

introduced vertex.

(iii) For each forward edge (v], VZ) ek add to a(D) the edge
(t(v], w),v2), where w is the son of Vi in the path from
vy to vy in T.

(iv) For each back edge (v], VZ) eE add to o(D) the edge (vz,v]).

a(D) is clearly TR and acyclic. Furthermore it preserves
isomorphism, i.e. if Dy, D, are TR digraphs then D];D2 iff
a(D1) = a(Dz)-

Let H be a general acyclic TR digraph. Define L(H) to be the
lTabelled rooted tree obtained as follows:

(1) Perform a canonical DFS of H. Let L(H) be the corresponding
DFS spanning tree.

(ii) Compute level(v), the level in L(H) of each vertex v of L(H).

(iii) To each vertex w of L(H) assign a set L(w) of positive
integer labels, defined by:

L{w) := {level(v)|(v,w) is a forward edge of H}.

As an example, if D is the TR digraph of figure 1(a) then L(a(D))
is the one of figure 3.

It follows that there is a one-to-one correspondence between
acyclic TR digraphs and labelled rooted trees such that the Tabels
of each vertex v form a subset of {1,2,..., level(v)-2}.

be TR digraphs. Then D,=D

Lemma 3: Let D], D2 1D,

as labelled rooted trees.

iff L(a(Dq)F L(a(D,))

An isomorphism algorithm can be formulated as follows. Let D-l and
D, be two giyen TR digraphs. Construct q(D]) and a(Dz). Then L@(D1H
and L(a(D,)). Verify whether or not L(a(Dy)) and L(a(D,)) are
isomorphic labelled rooted trees, using [6]. By lemma 3, this answers

the isomorphism of D] and DZ'

.10.

(a) v 3 (b)

(c) (d)

4Fig. 4: An undirected graph and three possible DFS

1.

. 5. Isomorphism of DFS

Let G(V,E) be an undirected graph and bys b, two DFS's of G,
starting respectively at vertices sy and s,. Ay and 4, are
isomorphic when there exists a permutation f of V such that

52=f(s]) and for every edge (v,w) ¢E,

(v,w) is a tree (back) edge of A,

(;

(f(v),f(w))is a tree (back) edge of by

For example, figure 4 shows an undirected graph and three DFS's
of it. Those of 4(b) and 4(d) are isomorphic, while 4(b) and 4(c)
are not.

Consider a DFS & of a connected undirected graph G. Denote by
G?h the digraph obtained by directing each edge of G from lower
to higher DFS-number of its vertices. GTA is acyclic, TR and unique
for each DFS.

The following is a simple algorithm for DFS isomorphism. Let
G(V,E) be a connected graph and Ays by two DFS's of it. Construct
GTZ] and G?lz. Verify whether these digraphs are isomorphic, using

X}

§4. Then &y 5 &, iff 6,5, = 6,4

2 1 2°

6. Conclusions

The class of TR digraphs has been considered. Some problems were
shown to admit special algorithms for TR digraphs, which are better
than those known for the general case. The same applies also for
some other problems, such as computing minimal chain decompositions
and finding dominators. -

2.

REFERENCES

[13 A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis

- of Computer Algorithms, Addison-Wesley, Reading, 1974.

[2] J.Cocke and J.T. Schwantz, "Programming Languages and their
Compi]ers: pre]iminary notes"”, Courant Institute of Math.
Sci. (1970).

(3] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, San Francisco,
1979.

[4] M.S. Hecht and J.D. Ullman, "Flow Graph Reducibility", SIAM
~J. Comp., 1, 188-202 (1972).
[5] M.S. Hecht and J.D. Ullman, "Characterizations of Reducible
Flow Graphs", J. of ‘the ‘ACM, 21, 367-375 (1974).

{61 J.E. Hopcroft and R.E. Tarjan, "Isomorphism of Planar Graphs",
in Complexity of Computer Computations, R.E. Mi]]er and J.W.
Thatchet, eds., Plenum Press, New York, 1972.

(7] V.N. Kasyanov, "Some Properties of Fully Reducible Graphs"
Inf. Proc. Letters, 2, 113-117 (1973).

[8) S.Sahni, "Computationally Related Problems", SIAM J. Comp.,
3, 262-279 (1974). |

[9] R.E. TarJan, “"Testing Flow Graph Reducibility", J. Comp.
"Systems Sciences, 9, 355-365 (1974).

