
POSITION ESTIMATION BY MERGING LOW COST IMU AND CAMERA
DATA USING THE EXTENDED KALMAN FILTER

Philipe Miranda de Moura

Projeto de Graduação apresentado ao Curso de
Engenharia de Controle e Automação da Escola
Politécnica, Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Engenheiro.

Orientador: Fernando Cesar Lizarralde

Rio de Janeiro
Dezembro de 2018

Miranda de Moura, Philipe
Position Estimation by Merging Low Cost IMU and

Camera Data Using the Extended Kalman Filter/Philipe
Miranda de Moura. – Rio de Janeiro: UFRJ/ Escola
Politécnica, 2018.

XII, 72 p.: il.; 29, 7cm.
Orientador: Fernando Cesar Lizarralde
Projeto de Graduação – UFRJ/ Escola Politécnica/

Curso de Engenharia de Controle e Automação, 2018.
Bibliography: p. 55 – 58.
1. Localization. 2. Kalman Filter. 3. ZUPT. I.

Lizarralde, Fernando Cesar. II. Universidade Federal do
Rio de Janeiro, Escola Politécnica, Curso de Engenharia
de Controle e Automação. III. Título.

iii

À minha avó.

iv

Agradecimentos

Eu poderia passar páginas e páginas agradecendo a cada uma das pessoas que direta
e indiretamente contribuíram na minha formação e para a realização desse trabalho.
Ainda que certamente eu não consiga cobrir cada uma das pessoas que merecem,
não seria justo eu deixar de tentar.

Primeiramente eu gostaria de agradecer à banca por abraçar o trabalho aqui
descrito. Junto a isso, eu gostaria também de agradecer a Evert Schippers, quem
me guiou pessoalmente ao longo de todo o desenvolvimento.

Em seguida, eu gostaria de agradecer à minha avó, quem sempre me deu todo o
apoio necessário para eu estar aqui hoje. Você é brilhante e a minha admiração por
você não poderia ser maior. Agradeço também à toda a minha família, em especial
ao meu padrinho por me possibilitar acesso uma educação de base de ponta.

Com respeito à minha formação acadêmica, eu agradeço a todos os bons profes-
sores que eu tive, especialmente à Valny Boechat. No Liceu Franco-Brasileiro vocês
foram muitos, mas me atenho a destacar apenas Rosângela Nezi, quem acabou por
se tornar uma grande amiga.

Aos meus amigos deixo meu muito obrigado também. Amigos de escola, da
equipe FrancoDroid de robótica, da turma T-17 da faculdade, da equipe UFRJ
MinervaBots de robótica, de intercâmbio e todos os outros que por não virem de
nenhuma dessas caixinhas se tornaram amigos da vida, como a Sarah Iaquinta, que
me deu apoio incessável durante a escrita e a revisão desse trabalho.

Por fim, eu agradeço imensamente às pessoas que tornaram a minha colação de
grau possível ao desbravar para mim as intermináveis burocracia e falta de planeja-
mento da UFRJ enquanto eu estava do outro lado do oceano: Daniel Becker, Felipe
Matheus, Gabriela Lucidi, Pedro Nori, Rômulo Ribeiro e funcionários prestativos
da UFRJ.

v

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ como
parte dos requisitos necessários para a obtenção do grau de Engenheiro de
Automação.

POSITION ESTIMATION BY MERGING LOW COST IMU AND CAMERA
DATA USING THE EXTENDED KALMAN FILTER

Philipe Miranda de Moura

Dezembro/2018

Orientador: Fernando Cesar Lizarralde

Curso: Engenharia de Controle e Automação

Esse trabalho detalha o desenvolvimento de um sistema de posicionamento que
acopla visão computacional e navegação inercial com o objetivo de aumentar a se-
gurança de uma refinaria. Essa combinação de sensores foi feita porque tipicamente
refinarias são áreas com capacidade limitada para uso de sistemas de navegação por
satélite e requerem que um celular tenha certificação de não emissão de centelhas
para que possa ser utilizado. A refinaria estudada possui cerca de 20 mil válvulas e
flanges que precisam ser manipulados. Assegurar que intervenções sejam aplicadas
no objeto correto atualmente é feito feito através da checagem de QR codes afixados
a cada um deles. No entanto, a solução atual tem alto custo de manutenção e não
permite navegação na planta.

Navegação baseada em visão computacional é provida pelo sistema QuickVision
desenvolvido por uma companhia. Ele consiste em uma câmera capaz de detectar um
padrão pré-definido e determinar sua pose com relação ao sistema de coordenadas
do padrão.

A informação de navegação inercial foi obtida usando uma IMU MEMS com
um acelerômetro e um giroscópio de três eixos cada. Além disso, o fato de o celu-
lar ser operado por um humano andando pela planta permitiu que a hipótese de
ZUPT tenha sido implementada para o eixo vertical para reduzir deriva. A prin-
cipal contribuição desse trabalho foi a investigação da acurácia de estimação de
posição baseada em IMU ao longo do tempo na ausência de padrões visuais.

Os resultados obtidos sob condições ideais mostram que o ruído do giroscópio
tipicamente causa o passeio aleatório na orientação estimada em 1° em relação à
orientação real, gerando erro na posição estimada na ordem de alguns metros após
10s sem ajuda visual.

vi

Ao comparar os resultados, pode ser inferido que IMU MEMS não são viáveis
para aplicações de navegação estimada sem restrições holonômicas para períodos
superiores a alguns segundos. Como consequência, informação visual deveria ser
usada durante ausência de padrões visuais em vista pelo rastreamento de features
nas imagens.

vii

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment
of the requirements for the degree of Engineer.

POSITION ESTIMATION BY MERGING LOW COST IMU AND CAMERA
DATA USING THE EXTENDED KALMAN FILTER

Philipe Miranda de Moura

December/2018

Advisor: Fernando Cesar Lizarralde

Course: Automation and Control Engineering

This work details the development of a positioning system that couples computer
vision and inertial navigation in order to improve safety in a refinery. This combi-
nation of sensors was made since refineries typically are partially indoor – limiting
the use of global-navigation-satellite-systems – and require a particular spark-free
certified smartphone to be used. The studied refinery has about 20,000 assets –
among flanges and valves – that need to be opened, closed or maintained. Ensur-
ing intervention is performed in the correct asset is currently done by checking QR
codes attached to each one of them. However, the current solution is expensive to
be maintained and does not allow navigation.

The navigation based on computer vision is provided by the QuickVision system
developed by a company. It consists of a camera able to detect a preset pattern and
determine its pose with respect to the pattern coordinate frame.

The inertial navigation information was obtained using a MEMS IMU equipped
with both a 3D accelerometer and gyroscope. In addition, the fact that the smart-
phone is hand-held by a human being walking through the plant allowed a Zero
Velocity Update (ZUPT) to be implemented in the vertical component in order to
reduce drift. The main contribution of this work was to investigate the accuracy
over time of IMU-based position estimation when no visual patterns were in view.

The results obtained in the office under perfect conditions show that the gyro-
scope’s noise causes random walk in the estimated orientation typically 1° off the
true orientation, generating error in the estimated position in the order of a few
meters after 10s without visual aiding.

By comparing the results, it can be inferred that MEMS IMU are not suitable
for dead reckoning applications without holonomic constraints, for amounts of time
greater than a few seconds. As consequence, visual information should be used
during pattern absence as aid by tracking features present on images.

viii

Contents

List of Figures xi
Notation . 1
1 Introduction . 4

1.1 Background . 4
1.2 Objectives . 5
1.3 Dissertation Outline . 5
1.4 Navigation . 6
1.5 SITE-SPOT . 7
1.6 QuickVision . 7

2 Reference Frames . 9
3 Inertial Sensors . 11

3.1 Overview . 11
3.2 Coning and Sculling . 11
3.3 Error Characteristics . 12
3.4 Error Model . 14

4 Strapdown System Mechanization . 15
5 Stochastic Processes . 17

5.1 Gaussian Distributions . 17
5.2 Random Noise Unfolding . 17
5.3 Synthesis of Notations Equivalences 18

6 The Kalman Filter . 21
6.1 An overview . 21
6.2 The Standard Kalman Filter algorithm 21
6.3 A Simple Example . 24
6.4 The Extended Kalman Filter algorithm 25

7 Numerical Issues . 27
7.1 Covariance Matrix Symmetry 27
7.2 Matrix Positiveness . 27
7.3 Quaternion Normalization . 27
7.4 Quaternion Ambiguity . 28

ix

8 Application . 30
8.1 The Prediction Model . 30
8.2 Camera Aiding . 32
8.3 Zero Velocity Update (ZUPT) 32
8.4 Integration Architecture . 33
8.5 Data Rejection . 34
8.6 Implementation . 36
8.7 Material . 36

9 Tests and Results . 38
9.1 Calibration Using Robot ABB IRB-120 38
9.2 The First Dataset - Static Indoor 39
9.3 The Second Dataset - RDM Training Plant 43
9.4 The Third Dataset - Outdoor 46

10 Conclusions and Recommendations 52
10.1 Conclusions . 52
10.2 Recommendations for Further Research 53

Bibliography 55

Appendices 59
A Attitude Representation . 60

A.1 Introduction . 60
A.2 Euler Angles . 60
A.3 Direction Cosine Matrix . 61
A.4 Axis-Angle . 63
A.5 Quaternions . 64
A.6 The Choice of Attitude Representation 64

B Deterministic Processes . 65
B.1 Continuous-Time Systems Models 65
B.2 Discrete-Time Systems Equivalent Models 67
B.3 Observability . 69

C Other Notations . 71

x

List of Figures

1 View of laser scan intensities on RDM Training Plant extracted from
SITE-SPOT. 7

2 View of camera data on RDM Training Plant extracted from SITE-
SPOT. 7

3 Render of an underwater application of QuickVision. 8
4 AR application of QuickVision in a refinery training plant. Assets

that are not in view are represented in the image’s border, pointing
to their directions. From the image, it is straightforward to identify
flanges 002, 003, 004 and valve 005. 8

5 Representation of the axis of the inertial frame i, Earth frame e,
navigation frame n (from [12]). 10

6 Representation of the axis of the body frame b and camera frame cam. 10
7 Block diagram illustrating the steps to estimate position in a strap-

down system. 15
8 Block diagram of the Kalman filter state equations. 23
9 Rearrenged block diagram of the Kalman, making clearer the exis-

tence of a closed-loop. 23
10 Filter steps in time according to sensor data arrival. 33
11 Result of data rejection algorithm application in an indoor static

dataset. 35
12 Some of the static poses performed using robot IRB-120. 39
13 Magnitude of the specific force output by the accelerometers in a

calibration dataset collected using the robot. 40
14 Results obtained for orientation and position estimation during a 300-

seconds period without feeding aiding from t = 550s to t = 850s. . . . 42
15 Refinery training plant overview. 43
16 Refinery training plant flanges closeup. 44
17 Last pose containing camera aiding (t = 156.6s). 45
18 Error in position x−component (blue dashed line) and y−component

(orange solid line) estimation in meters over time for the second dataset. 46

xi

19 Sequence of estimated poses during a 5-seconds period without cam-
era aiding followed by aiding reestablishment. 47

20 Equipment used for the third dataset. On top, the antenna. At
bottom-left, the Rovins. Between the computer and the Rovins, the
Camera mounted to the DMU-11. Under the computer, the StarPort
and StarPack. 48

21 Equipment used for the third dataset, zoomed in around the camera
area. 48

22 Arrangement of patterns for third dataset, allowing a circular path of
about 8 meters of diameter. 49

23 Trajectory traversed during third dataset. 50
24 Results obtained for the dataset using a FOG to determine vertical

and heading. 51
25 Illustration of the gimbal lock limitation of Euler Angles representa-

tion of attitude. 61
26 Illustration of Axis-Angle orientation representation 63

xii

Notation

1. Standard Lowercase Latin Alphabet

b Body frame
e Earth frame
f Transition function
h Output function
i Inertial frame
j j-ith instant
k k-ith instant
l Local frame
n Navigation frame
p Pattern frame
t Time
x x-component
y y-component
z z-component

2. Bold Lowercase Upright Latin Alphabet are vectors

a Acceleration
b Bias
f Specific force
g Gravity
q Generic quaternion
r Position
u Control input
v Velocity
w Noise
x System state
y Output state and Residual
z Observation state

3. Bold Lowercase Italic Latin Alphabet

u Generic (3D) vector
v Generic (3D) vector

4. Standard Uppercase Latin Alphabet

L Latitude

5. Bold Uppercase Upright Latin Alphabet are matrices

1

A Continuous-time transition
B Continuous-time input
C Continuous-time output
D Continuous-time feedforward
F Continuous-time transition Jacobian
G Noise transition
H Continuous-time observation Jacobian
K Kalman gain
M Observability
P State covariance
Q Prediction model covariance
R Observation covariance
S Innovation covariance

6. Bold Uppercase Italic Latin Alphabet are matrices

C Rotation
I Identity
Q Matrix obtained from QR decomposition
R Matrix obtained from QR decomposition

7. Standard Lowercase Greek Alphabet

µ Quaternion angle of rotation
ω Angular velocity

8. Bold Lowercase Greek Alphabet are vectors

λ Scale factor
ψ Orientation
ω Angular velocities

9. Bold Uppercase Greek Alphabet

Γ Discrete-time input matrix
Λ diag(λ)

Υ Q
(
q(ω)

)
Φ Discrete-time transition matrix
Ω Skew-matrix of angular velocities

10. Acronyms

AV Allan Variance

DCM Direction Cosine Matrix

2

ECEF Earth-Centered Earth-Fixed

EKF Extended Kalman Filter

ENU East-North-Up

FOG Fiber Optic Gyroscope

GPS Global Positioning System

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

INS Inertial Navigation System

MEMS Microelectromechanical systems

NED North-East-Down

ODE Ordinary Differential Equation

PSD Power Spectral Density

QR Quick Response Code or QR factorization

ZUPT Zero Velocity Update

3

1 Introduction

1.1 Background

Localization is a crucial task accomplished by humans on a daily basis for moving
between reference points (such as home and work) and for identifying assets, thus
avoiding hazards (such as moving vehicles). In less friendly environments as power
plants and refineries, localizing can be significantly tougher, given the large quan-
tity of similar features (pipes, valves and flanges) in view. Also, the consequences
of a mistaken localization can be catastrophic, potentially leading to explosions
and deaths. In these scenarios, one may appreciate techniques for aiding the right
decision to be taken.

A refinery has approximately 20,000 flanges that need to undergo maintenance
regularly. Hence, they are interested in having a low-cost reliable solution to identify
them, improving safety while reducing time and therefore costs.

Nowadays a first step towards the automation of this process is already being
used. It consists of having a QR code attached to each one of their flanges. The
operator receives on a mobile phone application a list of instructions containing the
ID numbers of the flanges that need some kind of intervention. Apart from flange
replacement, another common procedure is to isolate two sides of a pipe, which is
known as blinding the pipe. Once the operator reaches a flange on the list using the
refinery blueprint, he scans the QR to verify he is looking to the right one. Then he
intervenes on it and rescans to mark the specific flange as done. The main point is
to ensure all interventions were performed at the right locations. Additionally, this
method also allows soft real-time monitoring and avoids typing errors by removing all
typing requirements. The main drawback of the current solution is the requirement
to install and maintain one QR code per flange.

As an alternative, a company is currently developing a solution that will integrate
two of its existing products – QuickVision and Site-Spot – with inertial navigation.
QuickVision allows pose estimation in camera images with preloaded patterns in
view, while Site-Spot is a web service capable of interacting in a screen with 2D and
3D environments previously scanned by the company. Combining both solutions,
one should be able to define the position of flanges in the 3D model and pinpoint
them in camera images. This fusion alone would already represent an improvement
to the QR code strategy by allowing the detection of multiple flanges with a single
pattern in view.

There is a high operational cost 20,000 QR codes. One of the aims of this
work is to facilitate this task by replacing all the QR codes by a small quantity
of QuickVision patterns. This work proposes accomplishing this objective by using
inertial sensors to determine mobile phone pose during periods in which patterns

4

are not available.
Fiber Optic Gyroscopes (FOGs) are a type of high grade inertial sensors that

have been used for the past few decades for localization purposes during long periods
and distances. However, such an alternative is not suitable for this application due
to its size (∼ 20×20×20cm), weight (∼ 10kg) and cost (starting from 50,000e). A
lighter, smaller and cheaper type of inertial sensors are the Microelectromechanical
systems (MEMS). Their weight can range from 0.5g to 350g, measuring between
2 × 2 × 0.2cm and 7 × 7 × 7cm, with the price ranging from 10e to 6,000e. Its
downside is the poor performance for navigation purposes. Nevertheless, there are
some works in the subject, as in [1–5].

1.2 Objectives

This project aims to develop an algorithm of pose estimation merging camera and
inertial sensors data that achieves the given requirements. For data fusion, a Ex-
tended Kalman Filter algorithm will be implemented.

It is well known that MEMS devices can cause position drift to grow considerably
fast compared to FOG devices. Because of it, this work focuses on investigating the
filter performance during small aiding outage periods, i.e. up to 30 seconds. Since
this work intents to obtain a Proof of Concept (PoC), we are using sensors that
are larger than the ones typically found in smartphones because it is more suitable
to integrate in our prototype. The gathered data is post-processed in an external
computer.

1.3 Dissertation Outline

In the remaining part of this chapter, some basic concepts are presented. Also,
the two Fugro’s products (QuickVision and SITE-SPOT) that aided to calculate
navigation data are explained.

In chapter 2, the reference frames used in this work are presented. Chapter A is
dedicated to present different attitude representations, as well as its advantages and
drawbacks. By the end of the chapter, a choice is made and explained. Chapter B
covers the basics of deterministic systems, including the relation between different
representations alternatives, the equivalence between continuous and discrete-time
equations. The concept of observability is also introduced.

Chapter 3 details the main sources of error of an IMU and describes the model
that will be used to represent them and in chapter 4, forward INS mechanization
will be stated. Following, chapter 5 introduces the concept of stochastic processes
that arises from taking noise into account in deterministic processes. The Kalman
Filter algorithm is enclosed by chapter 6, while 7 explains the main numerical issues

5

faced during the development of this thesis and presents the approaches used to
overcome them.

Finally, chapter 8 wraps all concepts previously presented, allowing chapter 9 to
summarize the major findings of this research and chapter 10 to draw conclusions
and suggest further research.

1.4 Navigation

As can be inferred by comparing the definition of navigation given by [6] and [7],
there is no absolute consensus of what it exactly is. Nevertheless, they both agree
navigation is the capacity to determine position with respect to a known reference
frame. Often this concept is extended to the ability of reach desired positions, in
addition to determining them. This extension is out of the scope of this work,
that focuses only in presenting a short-hand theory background on aided inertial
navigation. There are different techniques for achieving required specifications and
usually the adopted solution is a combination of them, respecting a compromise
between cost and accuracy.

Position Fixing

Position Fixing consists on measuring variables (e.g. position, orientation, time
of travel, speed, etc) with respect to usually mapped objects in different reference
frames. This category encloses GPS and radar technologies, for instance. The
main disadvantage of this approach is the dependency on external environment for
position determination.

Dead Reckoning

Dead Reckoning relies on measuring the velocity or acceleration of an object with
respect to a known reference frame (from now on called navigation-frame) so that
it can be integrated in order to determine the object’s position. In most cases, the
object’s reference frame (body-frame) rotates with respect to the navigation-frame
over time, making it necessary to take the rotation between them into account for
proper position determination. In addition, this method requires correct position
initialization for it to work. Apart from it, the requirement of precise velocity or
acceleration measurement is considered to be its main drawback, especially when
low-grade sensors are used.

6

1.5 SITE-SPOT

SITE-SPOT is a web-based service that allows visualization of 3D laser-scanned
areas. Fugro is able to collect data from 360° laser scanners and cameras placed in
several locations. Afterwards, all data is linked with respect to each other, creating
a model of an entire site. Laser data is responsible to obtain 3D points and the
camera improves the appearance for the user. Once the model exists, it is possible
to extract coordinates of objects in the model, as well as overlay text or 3D models
on the screen.

Figure 1 illustrates data obtained from the laser, while figure 2 displays the same
scene after laser-camera data matching.

Figure 1: View of laser scan intensities on RDM Training Plant extracted from
SITE-SPOT.

Figure 2: View of camera data on RDM Training Plant extracted from SITE-SPOT.

1.6 QuickVision
QuickVision is a product developed by Fugro to allow real-time tracking of a pattern
position and orientation. By extension, it also allows to keep track of an object with
a pattern attached to it if the latter is measured with respect to the former. A
pattern consists on printing round dots on an uniform background. The computer

7

running QuickVision algorithm knows beforehand which patterns it is trying to find
in the image and is able to locate them even if they are tilted or partially occluded.
QuickVision also enables augmented reality (AR): a 3D model can be shown on the
computer screen based on patterns’ poses with respect to the camera. An example
of the use of the QuickVision for coupling two underwater structures is depicted on
figure 3.

Figure 3: Render of an underwater application of QuickVision.

An example of the AR capabilities of QuickVision product is illustrated by figure
4. Note that the assets position’s were obtained after extracting their coordinates
from the 3D SITE-SPOT model. Also, it was needed to relate the reference frame
used on SITE-SPOT with the one used by the patterns.

Figure 4: AR application of QuickVision in a refinery training plant. Assets that
are not in view are represented in the image’s border, pointing to their directions.
From the image, it is straightforward to identify flanges 002, 003, 004 and valve 005.

8

2 Reference Frames

This section gives a brief explanation about the reference frames adopted throughout
the thesis. As done in [1] [2], this chapter is intended only to give the reader the
basic knowledge for the following sections.

The inertial frame i is the coordinate frame with origin at the center of the earth,
with z pointing north and aligned with the Earth’s spinning axis, x pointing
to the vernal equinox and y completing the right hand rule.

The Earth frame e a.k.a. Earth-Centered Earth-Fixed (ECEF), is a coordinate
frame with the same origin and z axis as the inertial frame i, having x pointing
to the Greenwich meridian and y completing the right hand rule.

The navigation frame n is the coordinate frame in which the problem is desired
to be resolved. Its origin is in the plane tangent to the Earth at the location
the navigation is performed, with x pointing north, z pointing away from the
center of the Earth and y completing the right hand rule. The origin of the
navigation frame n is not fixed with respect to the origin of the ECEF frame, it
moves along with the location at which the navigation is performed. However,
this work considers it fixed, since the location studied varies in a range of less
than 100m, representing a change in latitude and longitude at the order of
10−4°.

The local frame l has the same origin as the navigation frame n, with x pointing
north, z pointing towards the center of the Earth and y completing the right
hand rule.

The pattern frame p is the right-handed coordinate frame with the same origin
as the local frame l, same z axis and a fixed x and y misalignment from the
navigation frame n.

The body frame b is the right-handed coordinate frame with the same origin as
the navigation frame n (and, consequently, as the local frame l as well), fixed
with respect to the IMU and with axis determined by the IMU manufacturer,
at which the IMU outputs are valid.

The camera frame cam is the coordinate frame with origin at the camera pinhole,
with y pointing forward, z pointing up and x completing the right hand rule.

Figure 5 illustrate the frames presented. Note that the frames are denoted by
superscripts.

9

Figure 5: Representation of the axis of the inertial frame i, Earth frame e, navigation
frame n (from [12]).

Camera cam

y

x

x

z

y

z

IMU Sensor b

Figure 6: Representation of the axis of the body frame b and camera frame cam.

10

3 Inertial Sensors

3.1 Overview

Inertial sensors are sensors capable of measuring a physical quantity with respect to a
inertial reference frame, as the name suggests. They mainly consist of accelerometers
and gyroscopes. Making no differentiation between inertial sensors and inertial
measurement units (IMUs) can lead to misleading assumptions.

An IMU is a device that encapsulates multiple accelerometers and gyroscopes
in order to deliver the information of the entire inertial movement. More precisely,
IMUs commonly have three single-axis orthogonal gyroscopes aligned with three
single-axis accelerometers.

Accelerometers are sensors that measure the sum of forces applied to them,
meaning that in an ideal scenario their output will only be null during free fall
periods. Similarly, gyroscopes are sensors that measure the angular rates they suffer
and therefore will only have null output when their angular rates compensates the
Earth’s one.

There are many different types of inertial sensors, widely varying in price, size,
weight, accuracy and precision. Here, only the ones used during experiments will be
described, keeping in mind that the main goal is understand the big picture of their
working principles so that we can develop models for their main sources of errors.

This chapter was conceived based on [1–4, 6–9, 11, 12, 22, 23]. They have
some intersection areas, specially concerning inertial sensors’ error characteristics
and error models as well. Others are more dedicated in explaining various types of
inertial sensors or in comparing results obtained by different error models.

3.2 Coning and Sculling

Most of modern IMUs are not mounted on gimbaled leveled platforms, due to the
difficulty, cost, size and weight to produce them. They are instead rigidly fastened to
the moving object, causing it to rotate with that object and thus making it necessary
to compensate for misaligned frames between two different output timestamps.

In order to get proper results, this computation needs to be done at high fre-
quencies typically around 1000Hz. To avoid overloading the device receiving the
sensor measurements, coning and sculling computations are frequently done in the
IMU, which allows it to output at about 100 ∼ 200Hz.

The output is, then, a delta angle over delta time, instead of an angular rate,
meaning that angular rate was internally integrated a few times before being output.
However, one should notice that the orientation is changing when the angular rate
is not null, thus leading the integration to be orientation-dependent. To sum it up,

11

coning is the error that arises by computing this integral without properly taking
different orientations into account.

Similarly, sculling is the error that arises by computing the acceleration average
without properly taking different orientations into account.

3.3 Error Characteristics

Sensors in general are subjected to different sources of measurement errors, compris-
ing bias, scale factor, cross-coupling and random noise. One of the characteristics
that distinguishes a high grade sensor from a low grade one is the magnitude of such
errors. Each of them will be briefly discussed below in the extent of inertial sensors.

Bias

Bias is a measurement error said to be constant1 and independent of the environment
in which the sensor is or the motion experienced by it. In other words, in the
particular scenario in which a gyroscope is still, its bias in x, y and z are the
averages of readings in each one of these axis, respectively. Considering bias as the
only source of measurement imperfection, we would have2:

fmeasured = ftrue + bf (1a)

ωmeasured = ωtrue + bω (1b)

where f is the specific force and ω is the angular rate and b is the bias3.

Scale Factor and Cross-coupling

The error called scale factor is the one that linearly grows with the true motion
values. For gaining the intuition of how it is possible, one could think about the
distance measurement using a plastic tape measure: the longer the distance to be
measured, the longer the tape stretches.

Cross-coupling is the error that arises from non-mutual-orthogonality among the
axis. An acceleration along the forward axis of an accelerometer should only cause
the forward-axis measurements to change, but, if its two other axis are not perfectly
orthogonal to the forward one, then a small component of a forward acceleration
will also be sensed by the non-forward axis. This source of error can be considered
constant and suitable for calibration during production phase. Therefore, this work

1In reality, bias as well as other sources of error often depends, for instance, on the temperature,
which is not an issue, given that it can be calibrated by the sensor’s manufacturer.

2Subscripts and superscripts dropped for simplicity
3Remember that since f and ω are both 3D vectors, bf and bω are too.

12

will assume a proper calibration by the manufacturer and will neglect any remaining
associated error.

As done for the bias, consider the scale factor as being the only source of error
in a measurement. Then, we obtain:

fx,measured = fx,true + λfxfx,true = (1 + λfx)fx,true

fy,measured = fy,true + λfy fy,true = (1 + λfy)fy,true

fz,measured = fz,true + λfz fz,true = (1 + λfz)fz,true

(2a)


ωx,measured = ωx,true + λωxωx,true = (1 + λωx)ωx,true

ωy,measured = ωy,true + λωyωy,true = (1 + λωy)ωy,true

ωz,measured = ωz,true + λωzωz,true = (1 + λωz)ωz,true

(2b)

where λf and λω are the scale factors (vectors) for the accelerometer and the
gyroscope, respectively. Note that the operation (1 + λf)f (resp. (1 + λω)ω) is not
defined, since λf (resp. λω) is a vector. To simplify the notation, we define:

Λ~u , diag(λ)~u =

λx 0 0

0 λy 0

0 0 λz

 ~u =

λxuxλyuy

λzuz

 (3)

being ~u a generic 3D vector.

Note that the off-diagonal elements of the matrix

λx 0 0

0 λy 0

0 0 λz

 correspond to the

cross-coupling, the element aij (∀i 6= j) being proportional to the non-orthogonality
between axis i and j.

Random Noise

As explained in [6], besides bias, scale factor and cross-coupling, inertial sensors
output also have another kind of imperfection, called random noise, which is a
random variable, meaning its values are not predictable and, thus, not possible to be
modeled with respect to time. In this work the random noise will be represented by
w (or by w for multidimensional variables). Random variables can be characterized
by several different models, being the Gaussian distribution particularly useful and
will be presented in 5. Further details about its characteristics and parametrization
can be found in the references presented in the beginning of this chapter.

13

Full Error Characteristic

Up to now, this sub-chapter presented separately each one of the imperfections
present in the inertial sensors output. Here, the full error characteristic will be
presented. Note that the subscripts true andmeasured are replaced by the qualifiers
˜and ,̂ respectively.

f̃ = (I3 + Λf)f̂ + bf + wf (4a)

ω̃ = (I3 + Λω)ω̂ + bω + wω (4b)

3.4 Error Model

As presented throughout the chapter, an inertial sensor output is the combination
of the true value with other aspects, as bias, scale factor, cross-coupling and random
noise, all of them also evolving over time. This chapter will briefly present a model
often used to represent their dynamics. Several studies have been conducted during
the last couple of decades. [22] compares the performance achieved using different
models, [3] and [1] implement one of these models within the context of GPS/INS
integration, while [23] and [4] explore in details Power Spectral Density (PSD) and
Allan-Variance (AV), two important methods for modeling IMUs that will not be
covered in this work, since Fugro had already performed them.

The first order Gauss-Markov process is stated by the references as being a
relatively simple model that represents accurately the evolution of bias and scale
factor, as follows:

ẋ = − 1

Tc
x + w (5)

where Tc is the correlation time of the process driven by the white noise w. Tc can
be obtained by Allan-Variance method and its value is usually big, meaning xk is
approximately constant over small periods of time.

The discrete-time equivalence used in this work is:

xk =

(
1− ∆t

Tc

)
xk−1 + wk (6)

14

4 Strapdown System Mechanization

While chapter 3 was dedicated to explain the errors involved in a inertial sensor
output, the present one is focused on the algebric manipulation needed for position
estimation. An IMU measures two physical quantities: acceleration and angular
rates. More precisely, it senses the proper acceleration (also called specific force) f b

at body frame b, meaning that a free fall towards the center of earth results in a
null output. Concerning the gyroscope, it measures the angular rate of the body
frame b with respect to the inertial frame i. This quantity is denoted by ωb

ib. As
consequence, a gyroscope is, in theory, able to measure the Earth’s angular rate.

Figure 7 schematizes the computation needed to determine position based on
gyroscopes and accelerometers. First, initial values for the orientation, velocity and
position must be given. Then, the attitude computer calculates the current orien-
tation based on the gyroscopes. Next, the gravity compensator uses the orientation
to subtract the gravity from the accelerometers readings, obtaining the acceleration
in the navigation frame. Next, the velocity computer uses this value along with the
initial velocity to output the current velocity, which, in turn, is used as input by the
position computer, together with the initial position to determine the current one.

Figure 7: Block diagram illustrating the steps to estimate position in a strapdown
system.

All equations are well detailed in the literature [3, 6–11, 24]. Therefore, the
equations will simply be stated and a brief explanation will be given concerning
notations and simplifications adopted.

From [6], equation 7 is extracted.

15

Ċn
b = Cn

b Ωb
nb = Cn

b Ωb
ib − (Ωn

ie + Ωn
en)Cn

b (7a)

v̇n
eb = Cn

b f b
ib + gn

b − (Ωn
en + 2Ωn

ie)vn
eb (7b)

ṙn
eb = vn

eb (7c)

Ωn
ie = ωie

 0 sin(L) 0

− sin(L) 0 − cos(L)

0 cos(L) 0

 , where ωie = 7.292115× 10−5rad/s (8a)

gn
b ,

(
0 0 g(L)

)T
(8b)

g(L) = 9.7803253359

(
1 + 0.00193185265241 sin(L)2√
1− 0.00669437999013 sin(L)2

)
ms−2 (8c)

A brief explanation follows:

• Ωb
ib is the true angular rate matrix, i.e. the angular rate matrix extracted from

the gyroscope output after correction for bias and scale factor.

• ωie is the angular velocity between the i-frame and the e-frame z-axis.

• f b
ib is the true specific force, i.e. the specific force output by the accelerometer
and corrected for bias and scale factor.

The simplifications below are adopted, yielding to equation 9:

• Given that e-frame is considered static with respect to n-frame, Ωn
en is 03×3

• Given that the device is going to be used by walking human beings, the velocity
vn

eb is assumed to be low (below 2m/s), and 2Ωn
ievn

eb is neglected

Ċn
b = Cn

b Ωb
ib −Ωn

ieCn
b (9a)

v̇n
eb = Cn

b f b
ib + gn

b (9b)

ṙn
eb = vn

eb (9c)

From equation 9 it is possible to reexplain the diagram on figure 7. Equation
9a is the attitude computer; equation 9b is both the gravity compensator and the
velocity computer; equation 9c is the position computer.

16

5 Stochastic Processes

Last chapter was dedicated to present deterministic processes and different forms of
representing them. The models presented were considered to be perfectly accurate.
In other words, for the cart example, the input force f(t) was supposed to be accu-
rately known during all times. However, in a real-world application, some physical
quantities are obtained through sensors, which are intrinsically noisy, meaning their
output is not really true. This characteristic needs to be taken into account when
estimating a system’s state variables. This chapter will only serve as a bridge be-
tween the previous and the next one. Details on stochastic processes can be found
in [10, 19, 25].

5.1 Gaussian Distributions

As presented in section 3, sensors (especially the ones used in this work) are in-
herently noisy. Due to different reasons, their output is usually off the true value.
Once both scale factor and bias are removed, there is still the a factor left leading to
uncertainties in the measurement. This value is random and was presented in 3.3.

Noise is often modeled as a Gaussian distribution for convenience and accuracy,
given that such distribution is fully described by two values: a mean µ and a vari-
ance σ2, being represented as x ∼ N(µ, σ2). In this context, accuracy was used in
italic font because it is usually not possible to prove that a random variable perfectly
behaves according to a Gaussian distribution, but at least it is usually a reasonable
assumption, since as it is expected to happen in the real world, a Gaussian distri-
bution states that the farther from the actual value an output is, the less likely it is
to occur.

Its density function is described by:

px(X) =
1√
2πσ

exp

(
−(X − µ)2

2σ2

)
(10)

5.2 Random Noise Unfolding

After random noise and Gaussian distributions have been briefly introduced, it is
needed to include it in a deterministic process, taking into account the consequences
of it into the state variables.

Imagine the simple scenario of a frictionless cart restricted to an unidimensional
movement along a x−axis and equipped with a perfectly aligned accelerometer able
to measure the cart’s acceleration with respect to a fixed object without bias or
scale-factor issues. One wants to estimate the cart’s position based only on the

17

accelerometer. The problem might be modeled as follows 4:(
x

ẋ

)
k+1

=

[
1 ∆t

0 1 + ∆tẍkẋ
−1
k

](
x

ẋ

)
k

(11)

xk+1 = Φkxk (12)

And, taking into account the noise output by the sensor, we obtain:(
x

ẋ

)
k+1

=

[
1 ∆t

0 1 + ∆tẍk/ẋk

](
x

ẋ

)
k

+

[
0

∆t

](
w
)
k

(13)

That can be rewritten as:

xk+1 = Φkxk + Gkwk (14)

Of course a given uncertainty in the acceleration unfolds bigger uncertainty in
velocity and an even bigger uncertainty in position. Here the convenience evoked in
last section arises again: Gaussian distributions make easy to compute the uncer-
tainty propagation. The equations will be presented along with the Kalman filter
in chapter 6.

5.3 Synthesis of Notations Equivalences

Even though this work has a list of symbols, the present chapter appeared to be
useful to make sure no confusion is caused by the notation adopted for dynamic
systems in this work, which might differ from some reference books, notably from
[18]. The reader should be able to spot the notation with which he/she is most
familiar and, by inspection, find its equivalents adopted in this thesis.

General Notation

Professionals with background in signal processing or designing control systems are
probably more comfortable with the following notation:

4Note that ∆tẍkẋ
−1
k ẋk has no singularities.

18

System type Continuous model Discrete model

Linear time-invariant ẋ(t) = Ax(t) + Bu(t) xk+1 = Axk + Buk

y(t) = Cx(t) + Du(t) yk = Cxk + Duk

Linear time-variant ẋ(t) = A(t)x(t) + B(t)u(t) xk+1 = Akxk + Bkuk

y(t) = C(t)x(t) + D(t)u(t) yk = Ckxk + Dkuk

Non-linear time-invariant ẋ(t) = a(x(t),u(t)) xk+1 = a(xk,uk)

y(t) = c(x(t),u(t)) yk = c(xk,uk)

Non-linear time-variant ẋ(t) = a(t,x(t),u(t)) xk+1 = ak(xk,uk)

y(t) = c(t,x(t),u(t)) yk = ck(xk,uk)

Note that even though both continuous-time and discrete-time equations are
represented using the same letters, A(t) 6= Ak, as presented on chapter B.2. This
fact is also clearer in the notation adopted by this thesis.

Often time notation is dropped, leading to:

System type Continuous model Discrete model

Linear ẋ = Ax + Bu xk+1 = Axk + Bu

y = Cx + Du y = Cx + Du

Non-linear ẋ = a(x,u) xk+1 = a(xk,u)

y = c(x,u) y = c(x,u)

Once again it is important to note that in such a simplified notation, there is
no difference between the representation of a time-invariant system, compared to a
time-variant one. At first glance, this notation may appear to be misleading, but
one should be able to clearly identify the type of the system from the context.

This Thesis’ Notation

The notation used throughout this work is mainly inspired on [6, 10]. They both
follow the same notation as other reference books within the Kalman filter5 domain,
as [26].

For simplicity, only the time-dropped notation will be presented.

System type Continuous model Discrete model

Linear ẋ = Fx + Gw xk+1 = Φxk + Gw

z = Hx + ν z = Hx + ν

Non-linear ẋ = f(x,u) + g(w) xk+1 = f(xk,u) + g(w)

z = h(x,u) + ν z = h(x,u) + ν

5The Kalman filter is presented on 6

19

Please note that Ax + Bu (resp. Axk + Buk) has been encapsulated by Fx

(resp. Φxk). Also, Gw is a new term, responsible for describing the system noise,
as it is described on 5.

20

6 The Kalman Filter

There are several books written about the Kalman Filter presenting the whole theory
along with demonstrations, like [19]. Therefore, it is not worth redeveloping all from
scratch. This chapter will rather just explain the filter from a practical point of view.
Readers feeling the explanation throughout this chapter is not enough are kindly
invited to refer to [25, 27].

6.1 An overview

As discussed in previous chapters, all sensors are noisy. Also, mathematical models
for describing real phenomena are never perfectly accurate. The Kalman Filter
was created for taking into account uncertainties related to both measurements and
models. The filter is a recursive Bayesian filter for multivariate normal distributions
and, by construction, is optimal when some assumptions are true [19].

The filter’s goal is to compute the most likely output, based on the confidence we
have on both model and measurements. For the Kalman Filter to work optimally,
the three following hypothesis must be satisfied:

• The noise is white (a zero-mean uncorrelated Gaussian distribution);

• The process is a Markov’s chain;

• The system is linear and time invariant.

A Markov chain may be roughly described as a memoryless stochastic process,
which means the next step state vector depend only on the present one (and not
on previous ones), which is usually true for a system properly represented using
state-space representation.

The system’s linearity and time invariance allows us to use the linear algebra
described on Kalman’s equations.

In case the studied system does not match these conditions, variations of the
filter may still work satisfactorily. In particular, for systems that are locally linear
and time invariant under zero-mean uncorrelated noise, the Extended Kalman Filter
(EKF) is claimed to work fine [1, 6, 8].

6.2 The Standard Kalman Filter algorithm

The most likely output is the output that minimizes the quadratic weighted error
between measurements and predicted state, as stated by equation 15. Note that
x̂ represents an estimation on x, ỹ represent the approximated error between the

21

measurement and the state, the subscript k represents the instant k and Ga|b is the
Bayes’ rule notation.

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (15a)

Pk|k−1 = FkPk−1|k−1F
T
k + Q (15b)

ỹk = zk −Hkx̂k|k−1 (15c)

Sk = HkPk|k−1H
T
k + R (15d)

Kk = Pk|k−1H
T
k S−1

k (15e)

x̂k|k = x̂k|k−1 + Kkỹk (15f)

Pk|k = (I −KkHk)Pk|k−1 (15g)

Before diving in the next section with a simple example, it is important to under-
stand the concept of this bunch of letters. Figure 8 is a graphic representation of
the equation 15. The lower block (containing A, C and x) is the real system (the
process) with the state variables to be estimated. It is a black box that outputs ȳ

given the current state x and the input u. The upper block is a mathematical model
supposed to represent accurately enough the real process, so that the estimated state
variables x̂ are equal (or almost) to the hidden internal true state variables x. If both
model and process were exactly the same (and had been initialized with the same
values), they would output the same results. Of course, no mathematical model
represents the reality perfectly, so the model tends to diverge from the process over
time. To overcome it, the model’s output is compared to the process’ output, re-
sulting in what is called innovation (or "error", loosely speaking). This error is
weighted by a gain K and added to the a priori (to the innovation) estimated state
x̂k|k−1, turning into the a posteriori (again, to the innovation) estimated state x̂k|k

being fed to the model.
A control engineer should now be able to realize that in a problem of state

estimation, the output is the vector of estimated state variables x̂, rather than
the system output y itself. In addition, the set point is the process’ output, the
"measured quantity" is the predicted output ŷ and the "error" is the difference
between them. Basically, a closed-loop control may be more easily seen on figure 9.

To sum it up, the steps are:

1. Predict the estimated state x̂ at instant k, using the estimated state at the
previous instant k− 1 and the mathematical model. The result is the a priori
state estimate denoted by x̂k|k−1

2. Compute the innovation ỹk at the instant k by comparing the output ŷk (also

22

Figure 8: Block diagram of the Kalman filter state equations.

Figure 9: Rearrenged block diagram of the Kalman, making clearer the existence of
a closed-loop.

at the instant k) given by the model with the output ȳk (again, at the same
instant k) given by the real process.

3. Update the estimated state x̂ at instant k, given the innovation ỹk through
the equation 15f.

Now, one might wonder how the gain K6 is computed. The Kalman filter’s
estimates are, in fact, Gaussian distributions, in which the estimated state variables
form a multi-dimensional mean vector and have an associated covariance matrix P

that loosely speaking expresses the confidence for each of the state variables. The
algorithm also uses covariance matrix Q that expresses the confidence we have at the
mathematical model of prediction and another covariance matrix R that express the
confidence we have at the output given by the process. As the example in the next
section shows, the Kalman gain K is a sort of ratio between these three covariance
matrices.

Finally, given that the internal state variables x are never really known, some-
times a notation that drops the hat accent (ˆ) is preferred for simplicity.

6Remark that the lowercase k is used for denoting instants, while the uppercase K (or K, its
matrix version) is the Kalman gain.

23

6.3 A Simple Example

At first glance, it is not trivial to infer the role of each equation. Labbe [25] did a
great job writing an interactive book with plenty of examples and intuitive thoughts
about the Kalman filter, that served as inspiration for the following example. Imag-
ine a scenario in which an almost-static one-dimensional system is estimated. That
is one of the simplest possible cases, since Fk = 1 (since x̂k = x̂k−1), Hk = 1 (mean-
ing the state is directly measured) and B = 0 (meaning the is no inputs acting on
the system). Remark that scalars are nothing but 1×1 matrices. As consequence, a
matrix inversion turns into a division, while a transposition is the scalar itself. That
said, equations become:

x̂k|k−1 = x̂k−1|k−1 (16a)

Pk|k−1 = Pk−1|k−1 + Q (16b)

ỹk = zk − x̂k|k−1 (16c)

Sk = Pk|k−1 + R (16d)

Kk = Pk|k−1Sk
−1 (16e)

x̂k|k = x̂k|k−1 + Kkỹk (16f)

Pk|k = (1−Kk)Pk|k−1 (16g)

The equations above could be true for tracking the position xk of an object (let’s
say an offshore platform) that measures directly its position (zk = xk|k−1, for ỹ = 0)
and is supposed static, given that xk|k−1 = xk−1|k−1.
16a is the predicted state estimation
16b is the predicted state covariance
16c is the innovation (i.e. the difference between measurement and prediction)
16d is the innovation covariance
16e is the optimal Kalman gain
16f is the updated state covariance
16g is the updated state covariance
To better understanding, let’s analyze the Kalman gain equation 16e Kk when

Fk = 1 and Hk = 1:

Kk =
Pk−1|k−1 + Q

Pk−1|k−1 + Q + R
(17)

Analyzing equation 17, it is possible to verify that 0 < Kk < 1. It is near to 0

(resp 1) if R � Q (resp R � Q). Imagine, now, the platform is on furious waters
and it is equipped with a high precision sensor. Therefore, Q would be large (or
big) and R would be narrow (or small). So, K ≈ 1, means the updated position

24

x̂k|k ≈ x̂k|k−1 + ỹk. Its retained from 17 that modifying Q and R plays significantly
on the filter’s behavior, leading to fast convergence or catastrophic divergence.

When Fk and Hk are matrices, rather than a scalar as in the example, it is harder
to understand the impact of each element of the Q and R matrices on the Kalman
gain matrix. Even so, the important idea to retain is that the off-diagonal values of
Q and R are usually null, given that usually there is no correlation between states.
Also, the smaller an on-diagonal element is, the more confident about this variable
we are. In particular, the smaller an on-diagonal element of Q is, the more confident
about having both an accurate prediction model of this particular state variable and
a small amount of disturbance being applied to it we are. Similarly, the smaller an
on-diagonal element of R is, the more confident about having proper precision of
this particular measured variable we are.

6.4 The Extended Kalman Filter algorithm

The Extended Kalman Filter equations simply are the Standard Kalman Filter ones
linearized around the operation point x̂k, thanks to the Jacobian matrices 18b and
18e. Modifying Q and R over time is not only possible, as it is necessary for systems
with variable integration time-step, given that the bigger the time-step is, the more
uncertainty is added to the process.

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (18a)

Fk−1 =
∂f

∂x

∣∣∣
x̂k−1|k−1,uk−1

(18b)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1 (18c)

ỹk = zk − h(x̂k|k−1) (18d)

Hk =
∂h

∂x

∣∣∣
x̂k|k−1

(18e)

Sk = HkPk|k−1H
T
k + Rk (18f)

Kk = Pk|k−1H
T
k S−1

k (18g)

x̂k|k = x̂k|k−1 + Kkỹk (18h)

Pk|k = (I −KkHk)Pk|k−1 (18i)

The notation above, coming from the Bayes’ rule, is quite verbose and will not
be adopted in this work. Instead, the following equation will be used:

x̂k = f(xk−1,uk−1) (19a)

25

Fk−1 =
∂f

∂x

∣∣∣
xk−1,uk−1

(19b)

P̄k = Fk−1Pk−1F
T
k−1 + Qk−1 (19c)

ỹk = zk − h(x̂k) (19d)

Hk =
∂h

∂x

∣∣∣
x̂k

(19e)

Sk = HkP̄kH
T
k + Rk (19f)

Kk = P̄kH
T
k S−1

k (19g)

xk = x̂k + Kkỹk (19h)

Pk = (I −KkHk)P̄k (19i)

26

7 Numerical Issues

Due to numerical intrinsic truncation process in floating point computations, several
rounding errors issues often raise. This chapter aims to present the strategies used
to get around the main issues that deteriorated the numerical solution and led the
simulation to diverge in some cases.

7.1 Covariance Matrix Symmetry

The covariance matrices P and S on the Kalman Filter Algorithm are, each of them,
symmetric by definition. On the literature [8], some algorithms are proposed to get
around the asymmetry caused by floating point finite precision. The alternatives
present a trade-off between computational cost and accuracy to the analytical solu-
tion, in such a way that there is no consensus among experienced designers about
which of them would be the most suitable algorithm regardless the application.

For simplicity, this thesis adopts:

A = 0.5(Ã + ÃT), (20)

where Ã is a possibly asymmetrical covariance matrix and A is its corrected
form.

7.2 Matrix Positiveness

Covariance matrices should be, by definition, positive semi-definite. That is, none
of its eigenvalues should be strictly negative. Again, due to floating point precision,
covariance matrices computations may result in non-positive semi-definite matrices.
Tests were conducted and some of the eigenvalues were indeed slightly negative in
some steps, typically reaching values up to −10−10. It was chosen, then, to neglect
this issue in the present work.

7.3 Quaternion Normalization

In this work, quaternions are used to represent rotations and therefore must have
their norm equal to one. Details about operations involving quaternions are pre-
sented in [16] and the most usual computations are presented in [13].

The works of [7, 8, 24] present different approaches, leading to three slightly
different numerical procedures with similar results.

Within this subsection, q̃ will be used to denote the quaternion that possibly is
not normalized, while q will stand for its corrected version, i.e. normalized.

27

We recall that in the quaternion context, 1 ,
(

1 0 0 0
)T

is defined as being
the identity quaternion.

The prior presents that the normalized quaternion is the computed one divided
by its norm:

q =
q̃

||q̃||
(21)

An alternative procedure takes advantage of the property that the multiplication
of a rotation quaternion by its conjugate should result in an identity quaternion
(q · q∗ = 1) to define an error quaternion ∆q as being the difference to the identity
to proceed the normalization. The equations from [7] are re-written below:

∆q = 1− q̃ · q̃∗ (22a)

q =
q̃√

q̃ · q̃∗
(22b)

q = (q̃ · q̃∗)−0.5 · q̃ (22c)

q ≈ (q̃ + 0.5∆q) · q̃ (22d)

Finally, [8] states the following procedure:

q̃ = q + δq (23a)

q · q∗ = 1 (23b)

q̃ · q̃∗ = q · q∗ + q · δq∗ + δq · q∗ + δq · δq∗ ≈ q · q∗ + q · δq∗ + δq · q∗ (23c)

δq = εq · q (23d)

q̃ · q̃∗ = q · q∗ + εq · q · q∗ = (1 + 2εq) · q · q∗ = 1 + 2εq (23e)

εq = 0.5(q̃ · q̃∗ − 1) (23f)

q = (1− εq) · q̃ (23g)

Tests were conducted in order to compare the normalized quaternion computed
using each of these three methods and only difference at execution time level was
observed, being the prior method the fastest and, therefore, the one adopted here.

7.4 Quaternion Ambiguity

As evoked in [16], a single orientation can be represented with quaternions using both
q and −q. This fact only becomes an issue when in the presence of orientation aiding
in a Kalman filter environment, since it leads to a huge residual in the orientation
components, what degrades the filter’s performance.

28

Imagine the two following scenarios in which the prediction matches the observa-
tion, except from the ambiguity in the second one, i.e. in equation 24a the observed
orientation is numerically the same as the predicted one, while in 24b although the
observed orientation is the same as the predicted one, it was represented by its sym-
metric, causing the residual y to be considerably bigger than what it should be,
leading to an undesired correction to the a posteriori state estimate.

y = z− h(x) =


0.6

0

0.8

0

−


0.6

0

0.8

0

 =


0

0

0

0

 (24a)

y = z− h(x) =


−0.6

0

−0.8

0

−


0.6

0

0.8

0

 =


1.2

0

1.6

0

 (24b)

Ensuring smoothness7 in the observed orientation representation over time is
enough to keep the residuals also smooth. Recalling a quaternion is, up to an
extent, a generalization of a complex number, one might try to ensure smoothness
by simply keeping positive the quaternion’s real component. However, given that
the predictions are smooth, the estimated real component can assume both positive
and negative values. For this reason, the following algorithm is adopted:

straight_difference← qi−1 − qi

straight_sum← Σstraight_difference
symmetric_difference← −qi−1 − qi

symmetric_sum← Σsymmetric_difference
if straight_sum > symmetric_sum then

qi ← −qi

end
Algorithm 1: Ensures smoothness of observed orientation representation over
time

7In this context, smooth quaternion data is a stream that does not swap with between the
two possible attitude representations. In other words, if the stream was continuous (rather than
discrete), it would mean that each of its components would be differentiable.

29

8 Application

This chapter gathers the pieces of information presented over the project that allow
the tests and results on chapter 9. The discrete-time equivalences were computed
using the method explained in chapter B.2. New symbols are used and their meaning
can be found on appendix C. Furthermore, part of the subscripts were dropped for
improving readability.

The objective of this work is to estimate the pose of assets from a refinery
with respect to a smartphone so that an augmented reality application can use
this information to overlay the camera image with the assets’ labels, improving the
operator’s safety. In order to do so, the IMU will be used to feed a prediction model,
while the visual patterns will be used as landmarks to update the model in a Kalman
Filter framework.

8.1 The Prediction Model

As presented on chapter 6, the position estimation is made by merging the output
of a mathematical model with observations made by aiding sources. Chapter 4
presented the mechanization equations, while chapter 3 modeled the inertial sensors
that measure both 3D linear acceleration and 3D angular rates necessary to solve for
position. Chapter 8.1 presents the simplified kinematic model in which the sensors
errors are not taken into account and chapter 8.1 addresses the sensors.

The Simplified Kinematic Model

The state variables are defined on equation 25 and unfolded on equation 26. It
comprises the 3D position, 3D velocity and orientation, expressed by a unitary
quaternion as explained on chapter A.

x̂ =
(
r̂n v̂n ψ̂n

b

)
(25)

x̂ =
(
xn yn zn ẋn ẏn żn q0

n
b q1

n
b q2

n
b q3

n
b

)T
(26)

In this context, u is not the usual control input that allows the process to be
driven to a desired state, but rather a control input that (at least in theory) allows
the estimated state to be driven to the desired values. It follows from the discussion
dedicated to control engineers on chapter 6.2. After all, it is just an input to the
system and it makes no difference calling it as control input or simply input. It
consists of the IMU measurements and is presented on equation 27.

30

ũ =
(
f̃ b ω̃b

ib

)T
=
(
f̃xb f̃yb f̃zb ω̃x

b
ib ω̃y

b
ib ω̃z

b
ib

)T
(27)

The continuous-time equations are rewritten (equation 28) from equation 9 for
convenience.  ṙn

v̇n

ψ̇n
b

 = f(t) =


vn

gn +Cn
b f b

0.5
(
Q
(
q(ωb

ib)
)

+Q
(
q(ωn

ie)
))
ψn

b

 (28)

F(t) =



0 1 0 0

0 0 1
∂(Cnb fb)

∂ψn
b

0 0 0 0

0 0 0
∂

(
0.5
(
Q(q(ωb

ib))+Q(q(ωn
ie))

)
ψn

b

)
∂ψn

b


(29)

The Full Kinematic Model

The full kinematic model is the assembly of the so-called simplified with the model
that describes the sensors’ bias and scale factors only, as equation 30 expresses.

¯̂x
(
x̂ λa ba λω bω

)T
(30)

The augmented prediction function faug is defined for convenience as stated on
equation 31.

faug(¯̂x,u) = f(x̂,u) + f̄(x̂,u) (31)

f̄(x̂,u) =



0

Cn
b Λa +Cn

b bab

0

0.5Q
(
q(Λω

)
)ψ + 0.5Q

(
q(bω)

)
ψ

λa

ba

λω

bω


(32)

31

8.2 Camera Aiding

Camera to IMU Calibration

As described on chapter 2 and depicted on figures 6 and 21, the camera and IMU
are mounted together on an aluminum profile and the origins of their frames are
not coincident. The translational offset is determined using a Vernier caliper, but,
due to the difficult to determine the exact origin of the IMU and the impossibil-
ity of reaching the origin of the camera, the expected accuracy is at the order of
millimeters.

For determining the attitude offset between both frames, Fugro has created a
Levenberg–Marquardt algorithm implementation for it. The camera orientation
over time is extracted from QuickVision, allowing rotation matrices Ck

k−1 between
every pair of two consecutive time-stamps to be computed. For an ideal gyroscope,
the same rotation matrices can by computed by integration. The algorithm inputs
camera and IMU data and estimates not only the attitude offset, but also the gy-
roscope bias and scale factor, as well as the time drift between the camera and the
IMU clocks.

Observation Equations

Even after calibration, a small error in the orientation offset between camera and
IMU might remain. As explained on chapter 6, the error of the aiding can be noisy,
as long as it is zero-mean. As this condition cannot be satisfied, the camera aid is
restricted to the position vector.

z =
(
x̃n ỹn z̃n

)T
(33)

y = z− h(x̂) =
(
r̃n

)
−
(
r̂n

)
(34)

H =
∂h

∂x̂
=
[
I3 03×3 03×4

]
(35)

8.3 Zero Velocity Update (ZUPT)

Zero Velocity Update is a kind of virtual aiding that one can implement to enforce
an existing constraint. Cars in general are supposed not to move laterally or up and
down. [1] takes advantage of this behavior by creating a virtual sensor that outputs
measures of zero velocity for both lateral and vertical components.

Other works focus entirely on ZUPT: its detection, benefits, applications and
limitations. Both [28] and [5] develop algorithms for detecting zero-velocity periods,

32

so that ZUPT can be used. The topic is also addressed on [6] and [11] for explaining
alignment and early usage of ZUPT. Algorithms to detect stationary periods that
allow ZUPT to be performed may vary according to the application, available sensors
and performance requirements.

For the system studied in the present work, in which the IMU is held by a
human that is walking, it is reasonable to state that the vertical component of the
mobile phone’s velocity is - in average - zero and, from experiments, can hardly
reach 7km/h (about 2m/s). Vertical stationary periods are assumed at all times
and vertical ZUPT is, then, always performed.

zzupt =
(

0
)

(36)

yzupt = zzupt − hzupt(x̂) =
(

0
)
−
(
v̂z

n

)
(37)

Hzupt =
∂hzupt
∂x̂

=
[
01×5 I1 01×4

]
(38)

8.4 Integration Architecture

For the Kalman Filter to work properly, it is crucial to use the adequate data in
every single step. Figure 10 depicts a simplified scenario of data arrival time.

time

s1

c1

s2 s3

c3

s4 s5

c4

s6 s7 s12 s13 s14 s15 s16s8

c5

s9 s10

c6

s11

c0

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16k17k18 k19k20k21k0

s0

camera
IMU

Camera sample

Legend

IMU sample

IMU sample with ZUPT

Figure 10: Filter steps in time according to sensor data arrival.

As explained in chapter 3.2, sj is IMU sample that is not the ωb
ib,j (i.e. the angular

velocity at time j), but ψbj
bj−1

/(tj − tj−1) (i.e. the rotation from the instant j − 1 to
j divided by the period between IMU samples). The straightforward consequence is
that sj is only valid between sj−1 and sj. For that reason, a camera sample is not
used until another IMU sample arrives.

Lets use figure 10 to exemplify, starting from s1. By c1 arrival, the algorithm
raises a flag for camera aiding availability, stores its values and time-stamp. With
the arrival of s2, the algorithm obtains values valid from s1 to s2, what comprises
c1. Updating to s2 is then made in three steps:

33

1 - Prediction of the state at c1 using the ones from s1 and the IMU readings at
s2

2 - Update the state at c1 using the camera measurements (which are also at c1)

3 - Prediction of the state at s2 using the ones from c1 and the IMU readings at
s2

After frequencycamera/frequencyIMU seconds without new camera samples in-
jected into the algorithm (i.e. after a camera sample not arriving when it was
supposed to), the algorithm enters in ZUPT mode, represented by bullet points in
figure 10. In other words, a camera observation sample was supposed to arrive be-
tween s7 and s8, given that the IMU frequency is double the camera one for this
example. ZUPT procedure is described below:

1 - Prediction of the state at sj using the ones from sj−1 and the IMU readings
at sj

2 - Update the state at sj using the zero velocity assumption at sj

8.5 Data Rejection

Due to lightening conditions, camera eventually may output one aberrant observa-
tion, off from the reality by more than three times the standard deviation8. Hence-
forth it will be called outlier and it corresponds to spikes when plotting observations
over time. As this kind of disturbance is not a zero-mean Gaussian noise as the
Kalman filter assumes, it drastically degrades the filter’s performance. Of course
there are no means to guarantee perfect data acquisition so it would allow to filter
such anomalies out. Nevertheless, it is possible to develop an algorithm that will
decide whether a given observation will be considered an outlier or not based on its
neighbors.

The procedure of approving or rejecting an observation is described in the algo-
rithm 2, in which th is a fixed threshold, the subscript k is a fixed number defining
how many previous observations will be taken into account and s is the sum of the
position’s components observed by the camera.

Figure 11 illustrates the result of applying data rejection algorithm to camera
observations for an indoor static dataset.

A static dataset was chosen to have its results presented so that every major
spike can be easily spotted by the reader as an outlier. Figure 11a displays the x-
component of the camera position before the algorithm was applied, while figure 11b

8Recall that for a Gaussian distribution, three times the standard deviation around the mean
covers 99% of points belonging to the distribution

34

si = rx,i + ry,i + rz,i
if si < median(si, si−1, . . . , si−k) + th and si >
median(si, si−1, . . . , si−k)− th then

observation is used for the Kalman filter
else

observation is rejected
end

Algorithm 2: Filter that determines which measurements will be considered as
outliers, based on k previous measurements and a constant threshold th.

(a) x-component of camera measured position before (blue dashed line) and after (orange
solid line) applying the median filter.

(b) x-component of camera measured position after applying the median filter.

Figure 11: Result of data rejection algorithm application in an indoor static dataset.

presents the remaining samples after the filter. It is important to remark that even
for this indoor static dataset under roughly the same light conditions over the whole
dataset, the spikes overcome 1.7m. In addition, from figure 11b, a subcentimetric
precision is observed.

35

8.6 Implementation

This subsection presents a pseudo code that wraps up the previous explanation.

counter ← 0;
set Q;
set R;
while detection of a pattern fails do

wait;
end
set initial conditions;
while True do

compute F;
compute xk|k−1;
compute P;
if there is zcam and zcam is not an outlier then

compute ycam;
compute Hcam;
compute Scam;
compute Kcam;
compute xk|k;
compute Pk|k;
counter ← 0;

else if there is no zcam and counter > 2× freqimu/freqcamera then
compute yzupt;
compute Hzupt;
compute Szupt;
compute Kzupt;
compute xk|k;
compute Pk|k;
counter ← counter + 1;

else
xk|k ← xk|k−1;

end
end
Algorithm 3: Pseudo code of the implementation created for this work

It is important to note that the formulas for computing each of the variables
were presented at section 6.4. Also, the ZUPT hypothesis was previously discussed
and its integration was explained at section 8.4. The outlier detection was presented
was presented at section 8.5.

8.7 Material

For the first and the second datasets (chapters 9.2 and 9.3 respectively), the equip-
ment consisted of:

36

• One camera AlliedVision Manta G504-B [29]

• One MEMS IMU Silicon Sensing DMU-11 [30] [31]

• One computer

• 20 size A2 patterns

The material involved on the third dataset is detailed in the beginning of its section.
Contrarily to the DMU-11, this particular camera is able to time-stamp its output

with respect to the time it was turned on. The IMU time-stamping needs, then, to
be done by the computer. However, a computer is not designed to be good at time-
stamping. Instead, it is designed to make the user have the impression that multiple
functions are performed simultaneously. To do so, it spends a portion of time to
a task and then swaps to another one. As consequence, IMU samples are times-
stamped with a variable delay. To get around this issue, the following procedure is
adopted using a sample counter output by the IMU:

1. Time-stamp the first logged sample

2. Time-stamp the last logged sample

3. Determine the frequency of output by dividing the value of the counter of the
last logged sample by the difference between the time-stamps of the first and
the last logged samples

4. Re-time-stamp the intermediate samples based on the counter value and the
computed frequency

In the worst scenario, by the moment the first sample arrives to the computer, it
is not busy and time-stamp it correctly, and by the moment the last sample arrives,
the computer is busy and time-stamps the sample after 6ms. However, the camera
to IMU calibration explained on chapter 8.2 also corrects for this time drift.

The software was developed using the distribution Anaconda of Python 3.6.4.
Numpy, Scipy and Pyquaternion libraries were used and all computations were per-
formed using double-precision floating-point format.

37

9 Tests and Results

In order to analyze the results obtained under different conditions, some data sets
were collected. The first one is used for calibrating the IMU’s biases and scale
factors. The second data set is a static one (with respect to the e−frame) so that
the simplifying assumptions were met. This set allowed to determine the drift caused
by random walk by removing from the data set a subset of camera observations.

Next, a data set was collect at a training plant and allowed to investigate the
performance under a real scenario, from where point cloud data was available from
the SITE-SPOT web-based service. Last, an idealized data set was collected to
investigate some doubts on the reliability of weakly linked patterns as well as on
how each sample was timestamped.

The camera was used in all data sets. Therefore, when there is no camera
observation on the plots on this section it is due to one of the following reasons:

• Camera measurements were not fed to the filter, allowing direct comparison
between the camera data and the filter estimates or

• No patterns were in view or
• No patterns were detected by the QuickVision algorithm

9.1 Calibration Using Robot ABB IRB-120

As explained in chapter 3, sensors output are off the true value by cross-coupling,
scale factor and bias. The main objective of this calibration is to determine such
parameters. For it, we take advantage of the fact that, during static periods, only
the specific force is sensed by the accelerometer. Hence, the magnitude of the
measurements output by the 3D accelerometer should be constant regardless the
pose, what can be achieved after estimating the parameters to their corrected values.

Imagine the following simple scenario in which only the bias plays. One places
a 1D accelerometer vertically and outputs 9.85ms−2. Then, the same accelerometer
is turned upside down and outputs −9.75ms−2. It would be possible to infer a bias
of 0.05ms−2. However, a noisy measurement would impair such conclusion, given
that it would be no longer possible, for a single measurement, to distinguish between
noise and bias. For a zero-mean noise, averaging the output removes noise and allows
determining the bias under the additional circumstance of an unbiased dataset9. For
instance, if data from the example were collected 10 minutes with the sensor upside
up and only 1 minute with it upside down, the resulting average magnitude would
be 9.84ms−2, which would be 0.04ms−2 off from an unbiased dataset collected the

9Do not confuse biased dataset with biased sensor. A biased sensor outputs biased data, while
a biased dataset is a dataset that leads to biased results. In other words, an unbiased dataset may
contain biased data as long as unbiased results can be achieved.

38

same amount of time both upside up and upside down.
For a 3D accelerometer also presenting scale factor and cross-coupling (apart

from noise and bias), a similar stochastic approach and an unbiased dataset are
also needed. For a 3D case, the unbiased dataset no longer consists of an static
upside-down-upside-up setup, but of equally distributed poses around a sphere.

Figure 12: Some of the static poses performed using robot IRB-120.

The robot IRB-120, manufactured by ABB, was used for collect a few datasets
with fixed amount of time static intervals in several different poses, equally dis-
tributed around the sphere created by turning its axis number 5 and 6, as defined
on the robot’s manual [32]. The robot was programmed to this task, increasing
repeatability. Figure 12 illustrates some of the poses reached by the robot.

Datasets were collected under different temperature conditions, with different
turn-on bias and with two different units of the IMU model DMU-11. For a given
unit, the results obtained were the same regardless other varying conditions. Figure
13 shows the accelerations’ magnitudes obtained from one of the datasets. Note
that the spikes correspond to the moments at which the pose was not static, i.e. the
periods during which the robot was moving from a pose to another.

9.2 The First Dataset - Static Indoor

Vertical and Heading Determination

Chapter 4 presents the importance of compensating gravity in n-frame from the
specific force sensed by the accelerometers in b-frame. A challenge related to it is
determining where vertical points to. A plumb-bob method is presented on [8] and

39

(a) Magnitude of specific force output by the accelerometers before bias, scale factor and
cross-coupling estimation.

(b) Previous plot zoomed in vertically, from where it is possible to verify orientation depen-
dency in the output magnitude, characteristic typically presented in sensors with different
bias and scale factors among axis.

Figure 13: Magnitude of the specific force output by the accelerometers in a cali-
bration dataset collected using the robot.

40

is used for this particular dataset. A elastic string is hooked to the ceiling and a
block of metal is attached to the other end and immersed in a bowl containing water,
without touching its surface. The water in the bowl damps the string, allowing a
static vertical scenario to be achieved relatively fast.

From a calibration dataset, the user indicates two locations of the string for a
dozen of images taken from different poses. After it, an optimizer determines what
is vertical and this axis is adopted for the pattern frame p, as described on chapter
2. The heading is indirectly determined from another previously calibrated pattern
within 2° of accuracy.

Results

Knowing that the DMU-11 does not perform coning and sculling calculations, a
static setup was created for this first dataset, by fixing the camera-IMU assembly to
an untouched table. The goal is to get coning and sculling related errors out of the
equations by ensuring the angular velocity is constant (zero in this case) between
two outputs. Then, 15 minutes of data was acquired, the calibration procedures
mentioned before were applied, camera data was despiked and the filter received as
input all the camera data, except from the data comprised between 550s and 850s.
Basically, a virtual gap (i.e. a fake aiding outage) was created in the camera data,
so that it would be possible to compare the filter’s performance with camera data.

Figure 14a shows roll and pitch angles computed by both camera and EKF, while
figure 14b depicts the difference between them.

The errors achieved for roll and pitch are under 0.5° and they seem to be a Brow-
nian motion arising from integrating random noised gyroscopes’ outputs, since bias
would produce clearer trends, like a ramp. The orientation was, then, injected into
the mechanization equations 10 to allow velocity and position estimations. During
this process, the average magnitude of the corrected accelerometers were scaled to
the magnitude of the gravity computed from the theoretical model, so that a proper
mechanization would result in no acceleration. Furthermore, vertical ZUPT was
applied. Figure 14b presents the drift in position for both x and y components in
meters.

From figure 14b, it is possible to make three important conclusions:

1. The tiniest error in attitude yields to massive errors in position: after 20
seconds of outage, an error of 1.2m in the x−component was reached.

2. An attitude error that oscillates around zero can lead to a correct position
estimation: during this particular aiding outage period, the y−component
error is zero around 680s and 780s.

10recall diagram on figure 7

41

(a) Roll (upper lines) and pitch (lower lines) computed by both camera (continuous lines)
and EKF (discontinuous lines) in degrees over time.

(b) Error in estimated roll (blue dashed line) and pitch (orange solid line) in degrees over
time.

(c) Error in estimated position x−component (blue dashed line) and y−component (orange
solid line) in meters over time.

Figure 14: Results obtained for orientation and position estimation during a 300-
seconds period without feeding aiding from t = 550s to t = 850s.

42

3. MEMS IMU random noises make unfeasible their use for dead reckoning, even
during outage periods of about 10s.

These conclusions are consistent with results obtained by [33]. Even so, other
tests were conducted in order to:

1. Collect and analyze data from a training plant.

2. Investigate the possibility of using as IMU to bridge between two camera
samples.

9.3 The Second Dataset - RDM Training Plant

Overview

RDM training plant is a site mainly dedicated to be used to prepare employees for
going to the field in safety. It contains elements from a real chemical plant, as pipes
with valves and flanges without any chemical products running through it and, thus,
was chosen for collecting datasets. Figure 15 gives an overview of the plant, while
figure 16 depicts the area at where the results will be presented.

Figure 15: Refinery training plant overview.

The datasets were collected using a camera Allied Vision G504-B [29] mounted
on an IMU Silicon Sensing DMU-11 [30], both connected to a computer for logging,
as well as to a portable energy supply. The assembly resembles the one previously
depicted on picture 12 and was hand-held, as it is going to be once it is operational

43

Figure 16: Refinery training plant flanges closeup.

in the refinery. In addition, the results here presented are from a dataset in which a
human acted as if he/she was looking for a specific flange. In other words, the human
walked with a typical human-like velocity and moved the camera as the refinery’s
employee is expected to move.

Vertical and Heading Determination

As it can be seen from both figures 15 and 16, the plant consists of an outdoor
area and, thus, the plumb-bob method described on chapter 9.2 could not be used.
Instead, the vertical and heading provided by the SITE-SPOT model were used.
From chapter 9.2 it is known that the least inaccuracy in tilt orientation is not
enough for fast drifts in position estimates. Nevertheless, the results let us conclude
that level in SITE-SPOT is accurate within 0.05°.

Results

Figure 17 presents the result the employee would see in the smartphone’s screen for a
frame11 in which a pattern was detected and served as aiding to position estimation.
This figure is obtained after reprojecting the asset’s labels into the camera image
using the pose estimated by the filter. From the image, it is possible to infer that
the camera’s auto-exposure software did not manage to reduce the exposure time
enough to avoid flare. It is believed that the camera’s iris was too open for an
outdoor environment and that it might have degraded the performance of pattern
detection of QuickVision algorithm, which is a reasonable explanation for the pattern
not have been detected on image 19e.

11Please note that in this context, frame is equivalent to photo, rather than to coordinate frame.

44

Figure 17: Last pose containing camera aiding (t = 156.6s).

Figure 18 presents the error in x and y components of the estimated positions
over a 5-seconds period (for 156.7s < t < 162.5s) during which no patterns were
either in view or detected. Figure 17 is also the last camera image from which a
pattern was detected before the sequence of figures presented on 19, that displays
the results the user would see at the smartphone’s screen over this aiding outage
period cropped around the flange 013 for the convenience of the reader.

From the images, it can be seen that after 4s of outage, it is no longer possible
to determine with certainty flange’s 013 location.

45

Figure 18: Error in position x−component (blue dashed line) and y−component
(orange solid line) estimation in meters over time for the second dataset.

9.4 The Third Dataset - Outdoor

Overview and Setup

This dataset was taken to investigate the repeatability of the previous results under
an ideal controlled environment. In other words, additional equipment and sensors
were used in order to improve accuracy in time-stamping and vertical and heading
determination. The equipment used for this dataset consists of:

• Camera Allied Vision G504-B, as before
• MEMS IMU Silicon Sensing DMU-11, as before
• FOG IMU iXblue Rovins, allowing to determine heading and level in another

way compared to previous datasets
• GNSS Antenna Fugro AD-492, allowing to receive Pulse-per-second (PPS)

signal from satellites for better time-stamping accuracy
• GNSS-Receiver Platform Fugro StarPack, allowing to interpret PPS signal

from the antenna12

• Synchronization Platform Fugro StarPort, allowing to synchronously time-
stamp data from sensors

• Computer equipped with StarFix 2016, allowing to log data from StarPort
• Trolley with soft wheels, allowing to move the equipment
Figure 20 shows the assembly of the equipment, while figure 21 zooms in around

12It is important to note that GNSS-receiver was only used in order to have access to PPS signal.
No location GNSS-based location data was recorded.

46

(a) After 1s without aiding (t = 157.6s). (b) After 2s without aiding (t = 158.6s).

(c) After 3s without aiding (t = 159.6s). (d) After 4s without aiding (t = 160.6s).

(e) After 5s without aiding (t = 161.6s). (f) Aiding reestablished (t = 162.6s).

Figure 19: Sequence of estimated poses during a 5-seconds period without camera
aiding followed by aiding reestablishment.

47

the camera area. Note that vertical is determined by the FOG IMU and that the
antenna is on top to improve GNSS signal. Also, camera, Rovins and DMU-11 are
mounted to the same rigid body. Mounting this equipment on a trolley may not
produce the same kind of movement a human would perform in the real scenario,
but it was the only way found to include Rovins, GNSS-Antenna, StarPack and
StarPort in the setup.

Figure 20: Equipment used for the third dataset. On top, the antenna. At bottom-
left, the Rovins. Between the computer and the Rovins, the Camera mounted to
the DMU-11. Under the computer, the StarPort and StarPack.

Figure 21: Equipment used for the third dataset, zoomed in around the camera
area.

48

Pursuing perfect data, 4 crates were disposed in a square shape, with a container
in its center. A size A2 pattern was placed against each of the vertical faces. This
setup allows strong links between patterns, since patterns at opposite locations can
be both seen in a single camera image. Figure 22 illustrates the arrangement. In
addition, it is worth remarking that the FOG was turned on one hour before data
was collected in order to initialize itself.

Figure 22: Arrangement of patterns for third dataset, allowing a circular path of
about 8 meters of diameter.

In one hand, from the datasets presented before, it was observed that drifts
bigger than 0.25m in either x or y components of the estimated positions can result
in misleading augmented reality reprojections on the user’s smartphone. In the
other hand, pattern detection is an expensive computational task and may not be
executed at a high rate. This dataset investigate the filter’s performance under a
low aiding frequency of 0.3Hz, compared to 15Hz from the previous ones. Note
that camera images were logged at 1.8Hz and the filter was fed with only one every
six frames. In this way, the ground truth is known every 0.555s, instead of every
3.33s.

Results

The collected dataset consists of an initial 500 seconds static period followed by 480
seconds of two and a quarter circular turns around the crates, as depicted on figure
23.

The results are presented in figure 24. Figure 24a displays the error between the
ground truth (i.e. the camera) and the filter estimates, while figure 24b depicts the
elapsed time between a camera sample and the previous one fed to the filter. From
the image, it is clear that the camera time step is variable, what is expected since
it depends on the exposure time, that varies according to light conditions.

Analyzing figure 24 as a whole, it is possible to infer that, even though the

49

Figure 23: Trajectory traversed during third dataset.

estimated y-component was trying to fly away, the accuracy requirement for position
was respected from t = 680s to t = 731.6s, thanks to camera aiding. However, the
camera sample expected to aid around t = 735s did not exist and the errors of the
estimates exceeded 0.25m. Several different factors could explain the absence of a
sample:

• The User Datagram Protocol (UDP) used for the communication between the
sensors and the computer does not ensure data transmission.

• Overexposure might have occurred, as happened with the previous dataset.

• The sample might have been considered an outlier by the data rejection algo-
rithm.

• The QuickVision algorithm might have failed to identify patterns from the
image.

Still from figure 24, it is possible to notice that the error after the outage period
is bigger than the error before the outage. From chapter 6 it is recalled that the
filter needs time to converge, especially in the case the covariance matrices Q and
R are not optimally tuned or the system is non-linear.

50

(a) Error in estimated position x-component (blue dashed line) and y-component (orange
solid line) in meters over time.

(b) Time step between two consecutive camera observations.
Figure 24: Results obtained for the dataset using a FOG to determine vertical and
heading.

51

10 Conclusions and Recommendations

10.1 Conclusions

The main objective of this dissertation is to investigate the performance of position
estimation by merging data from a camera and a MEMS IMU with an Extended
Kalman Filter algorithm. Visual aiding consists of the IMU’s position in pattern
frame p and is provided by QuickVision software for every image a previously loaded
pattern is detected.

The background knowledge required to accomplish this task is developed
throughout the early chapters, as well as the simplifying assumptions adopted on
this work.

Chapter 8 summarizes the theory previously presented and details other aspects
of the implementation, as ZUPT aiding, the integration architecture and the material
used for the datasets. Then, three different tests are presented in chapter 9, from
which the following conclusions are inferred:

• Biases and scale factors cannot be distinguished for static data Therefore, the
estimation vector is only fully observable for dynamic datasets.

• From a static dataset, in which the simplifying assumptions meet the non-
simplified mathematical model, roll and pitch were observed to random walk
around the ground truth due to random noise integration, reaching errors up
to 0.5° for roll and pitch after a 300-seconds period of visual aiding outage.

• Such errors in the orientation estimation caused the position estimation to
drift 1.2m within the first 20s of outage for the same static data, which is not
sufficient for the augmented reality application.

• Implementing vertical ZUPT allowed to stabilize the position vertical compo-
nent, regardless discrepancies between the gravity model and the specific force
output by the IMU. Minor improvements were also observed in the remaining
components.

• From the dataset collected at a training plant where the position of some
assets were known, it was possible to compute the augmented reality overlay
by reprojecting assets into the camera images. Drifts around 30cm for one of
the components can lead to an asset misdetection.

• Position estimation stays within the requirement boundaries even if only one
visual aiding sample is available every 3 seconds. However, after a 6-seconds
gap the position estimation might be jittered for about half a minute and not
reliable within the desired accuracy.

52

10.2 Recommendations for Further Research

• For a soft real-time application running in a mobile phone, time-stamping
might be an issue to be investigated. Initially, this work supposed there was
no relative time drift between the camera and DMU-11, which proved to be a
naive assumption after the calibration presented in chapter 9.1 was performed.
In addition, an investigation on time-stamping accomplished by the mobile
operating system adopted may be necessary, given that Windows clock can
reach up to 3ms of error compared to GNSS-time, and that an IMU typically
outputs every 5ms.

• Coning and sculling computations need to be carefully investigated. The
MEMS IMU used in this work is of a higher grade than IMUs found on mobile
phones and even so it does not compute coning and sculling internally. From
a static dataset, it seems that coning is not the single source of error during
orientation estimation, though.

• This thesis made a couple of simplifications reportedly said to degrade the
filter’s performance, under the assumption that the velocities are always low
(especially compared to cars and airplanes), like that Coriolis and transport
rate were negligible. Also, during development phase, the ODEs’ first and sec-
ond orders numerical approximations were briefly compared and the difference
in results was insignificant, appearing to be hidden by other major sources of
error.

• During the development of the present work, determination of the local gravity
vector appeared to be one of the major sources of error in position estimation.
[34] affirms to be able to observe it in the presence of a known calibration
target.

• Performance limitation under non-linearities of Extended Kalman Filter
(EKF) over Unscent Kalman Filter (UKF) is not a consensus among authors.
While [6] and [10] cover EKF only, [1] covers both of them and states the lat-
ter achieves better results. Yet another approach is developed by integrating
Extended Kalman Filter with neural networks [35].

• Allan Variance and Power Spectral Density provide statistics at sensor level
only (rather than at process level). In addition, these techniques are not suit-
able for low grade IMUs [1]. Hence, these methods may lead to non-optimal
covariance matrices and fine tuning might be performed. An automated algo-
rithm is proposed by [36].

53

• Given all MEMS IMU limitations explained throughout the thesis, the orien-
tation estimation achieved from them proved not to be enough for position
estimation. An alternative to be studied is creating a camera-based aiding
relying on image feature detection and tracking.

• Even though QuickVision software is able to determine the full pose of the
camera (position and attitude), the smallest inaccuracy in the camera-IMU
mounting angles calibration can create a systematic error in the orientation
from the visual aiding. Therefore, only the position serves as aiding, rather
then the full pose. Augmenting the estimation vector with the mounting angles
between the camera and the IMU could be implemented to investigate the
impact on position estimation.

54

Bibliography

[1] SHIN, E.-H. “Estimation techniques for low-cost inertial navigation”, UCGE
report, v. 20219, 2005.

[2] SHIN, E.-H. Accuarcy improvement of low cost INS/GPS for land applications.
University of Calgary, 2001.

[3] HJORTSMARKER, N. Experimental system for validating GPS/INS integration
algorithms. 2005.

[4] FLENNIKEN, W. Modeling inertial measurement units and anlyzing the effect
of their errors in navigation applications. Tese de Doutorado, 2005.

[5] ABDULRAHIM, K., MOORE, T., HIDE, C., et al. “Understanding the perfor-
mance of zero velocity updates in MEMS-based pedestrian navigation”,
International Journal of Advancements in Technology, v. 5, n. 2, pp. 53–
60, 2014.

[6] GROVES, P. Principles of GNSS, Inertial, and Multisensor Integrated Naviga-
tion Systems. GNSS technology and applications series. Artech House,
2008. ISBN: 9781580532556. Disponível em: <https://books.google.
nl/books?id=WssZAQAAIAAJ>.

[7] TITTERTON, D., WESTON, J., WESTON, J., et al. Strapdown Inertial Nav-
igation Technology. Electromagnetics and Radar Series. Institution of
Engineering and Technology, 2004. ISBN: 9780863413582. Disponível em:
<https://books.google.nl/books?id=WwrCrn54n5cC>.

[8] SAVAGE, P. Strapdown Analytics. N. v. 1, Strapdown analytics. Strap-
down Associates, 2000. ISBN: 9780971778603. Disponível em: <https:
//books.google.nl/books?id=pltgRAAACAAJ>.

[9] FARRELL, J. The Global Positioning System & Inertial Navigation. McGraw-
Hill Education, 1999. ISBN: 9780071369442. Disponível em: <https:
//books.google.nl/books?id=fW4foWASY6wC>.

55

https://books.google.nl/books?id=WssZAQAAIAAJ
https://books.google.nl/books?id=WssZAQAAIAAJ
https://books.google.nl/books?id=WwrCrn54n5cC
https://books.google.nl/books?id=pltgRAAACAAJ
https://books.google.nl/books?id=pltgRAAACAAJ
https://books.google.nl/books?id=fW4foWASY6wC
https://books.google.nl/books?id=fW4foWASY6wC

[10] FARRELL, J. Aided navigation: GPS with high rate sensors. McGraw-Hill
New York, 2008.

[11] JEKELI, C. Inertial navigation systems with geodetic applications. Walter de
Gruyter, 2000. ISBN: 9783110159035. Disponível em: <https://books.
google.nl/books?id=VPtQAAAAMAAJ>.

[12] KOK, M., HOL, J. D., SCHÖN, T. B. “Using inertial sensors for position and
orientation estimation”, arXiv preprint arXiv:1704.06053, 2017.

[13] DIEBEL, J. “Representing attitude: Euler angles, unit quaternions, and rota-
tion vectors”, Matrix, v. 58, n. 15-16, 2006.

[14] STRANG, G. Linear Algebra and Its Applications. Harcourt, Brace, Jo-
vanovich, Publishers, 1988. ISBN: 9780155510050. Disponível em:
<https://books.google.nl/books?id=EIZMnAEACAAJ>.

[15] BROWN, J., CHURCHILL, R. Complex variables and applications.
N. v. 1, Churchill-Brown series. McGraw-Hill, 1996. ISBN:
9780079121462. Disponível em: <https://books.google.nl/books?
id=RCzvAAAAMAAJ>.

[16] KUIPERS, J. B., OTHERS. Quaternions and rotation sequences, v. 66. Prince-
ton university press Princeton, 1999.

[17] SOLA, J. “Quaternion kinematics for the error-state Kalman filter”, 2017.

[18] OGATA, K. Modern Control Engineering. Instrumentation and controls series.
Prentice Hall, 2010. ISBN: 9780136156734. Disponível em: <https:
//books.google.nl/books?id=Wu5GpNAelzkC>.

[19] THRUN, S. “Probabilistic robotics”, Communications of the ACM, v. 45, n. 3,
2002.

[20] DEL NERO GOMES, A. C. “Sinais e Sistemas - Notas de Aula”. Disponível
em: <http://coep.ufrj.br/~nero/notas.pdf>.

[21] PAIGE, C. “Properties of numerical algorithms related to computing controlla-
bility”, IEEE Transactions on Automatic Control, v. 26, n. 1, pp. 130–138,
1981.

[22] QUINCHIA, A. G., FALCO, G., FALLETTI, E., et al. “A comparison be-
tween different error modeling of MEMS applied to GPS/INS integrated
systems”, Sensors, v. 13, n. 8, pp. 9549–9588, 2013.

56

https://books.google.nl/books?id=VPtQAAAAMAAJ
https://books.google.nl/books?id=VPtQAAAAMAAJ
https://books.google.nl/books?id=EIZMnAEACAAJ
https://books.google.nl/books?id=RCzvAAAAMAAJ
https://books.google.nl/books?id=RCzvAAAAMAAJ
https://books.google.nl/books?id=Wu5GpNAelzkC
https://books.google.nl/books?id=Wu5GpNAelzkC
http://coep.ufrj.br/~nero/notas.pdf

[23] HOU, H. Modeling inertial sensors errors using Allan variance. University of
Calgary, Department of Geomatics Engineering, 2004.

[24] STEVENS, B., LEWIS, F., JOHNSON, E. Aircraft Control and Simulation:
Dynamics, Controls Design, and Autonomous Systems. Wiley, 2015.
ISBN: 9781118870976. Disponível em: <https://books.google.nl/
books?id=N4abCgAAQBAJ>.

[25] LABBE, R. “Kalman and bayesian filters in python”. 2014.

[26] GREWAL, M., ANDREWS, A. Kalman filtering: theory and practice using
MATLAB. [Wiley InterScience Online Books, Electronic and Electrical
Engineering Collection]. Wiley, 2001. ISBN: 9780471392545. Disponível
em: <https://books.google.nl/books?id=9UoZAQAAIAAJ>.

[27] SOLA, J. “Simulataneous localization and mapping with the extended kalman
filter”, Avery quick guide with MATLAB code, 2013.

[28] GREJNER-BRZEZINSKA, D. A., YI, Y., TOTH, C. K. “Bridging GPS gaps in
urban canyons: The benefits of ZUPTs”, Navigation, v. 48, n. 4, pp. 216–
226, 2001.

[29] Manta G-504B Technical Datasheet. Disponível em: <file:///C:
/Users/p.mirandademoura/Downloads/Manta_DataSheet_G-504_

V5.7.0_en.pdf>.

[30] DMU11 Technical Datasheet, . Disponível em: <https://www.
siliconsensing.com/media/30933/dmu11-00-0100-132-rev-4.pdf>.

[31] DMU11 Evaluation Kit User Manual, . Disponível em: <https://www.
siliconsensing.com/media/30895/dmu11-00-0100-910-rev3.pdf>.

[32] Product Manual IRB 120. Disponível em: <http://isa.uniovi.es/
~jalvarez/abb/en/3HAC035728-en.pdf>.

[33] WOODMAN, O. J. An introduction to inertial navigation. Relatório técnico,
University of Cambridge, Computer Laboratory, 2007.

[34] KELLY, J. “On the Observability and Self-Calibration of Visual-Inertial Nav-
igation Systems”, University of Southern California, Los Angeles, USA,
Tech. Rep. CRES-08-005, 2008.

[35] GOODALL, C. L. “Improving usability of low-cost INS/GPS navigation sys-
tems using intelligent techniques”, Thesis, 2009.

57

https://books.google.nl/books?id=N4abCgAAQBAJ
https://books.google.nl/books?id=N4abCgAAQBAJ
https://books.google.nl/books?id=9UoZAQAAIAAJ
file:///C:/Users/p.mirandademoura/Downloads/Manta_DataSheet_G-504_V5.7.0_en.pdf
file:///C:/Users/p.mirandademoura/Downloads/Manta_DataSheet_G-504_V5.7.0_en.pdf
file:///C:/Users/p.mirandademoura/Downloads/Manta_DataSheet_G-504_V5.7.0_en.pdf
https://www.siliconsensing.com/media/30933/dmu11-00-0100-132-rev-4.pdf
https://www.siliconsensing.com/media/30933/dmu11-00-0100-132-rev-4.pdf
https://www.siliconsensing.com/media/30895/dmu11-00-0100-910-rev3.pdf
https://www.siliconsensing.com/media/30895/dmu11-00-0100-910-rev3.pdf
http://isa.uniovi.es/~jalvarez/abb/en/3HAC035728-en.pdf
http://isa.uniovi.es/~jalvarez/abb/en/3HAC035728-en.pdf

[36] STRASZEWSKI, W., DROZDZ, M., WOUTERS, H. “Automated tuning of
Kalman filter: Kalman filter tuning in the Windows Azure Cloud en-
vironment”. In: Inertial Sensors and Systems (INERTIAL), 2018 IEEE
International Symposium on, pp. 1–4. IEEE, 2018.

58

Appendices

59

A Attitude Representation

A.1 Introduction

Many books and articles [6–9, 13] dedicate entire sections on describing the math-
ematics behind different attitude representations. The goal of this section is to
present the basics of attitude representations, helping the reader to understand the
advantages and disadvantages of each one of them, as well as how to convert between
them.

In this work, all rotations are around an orthogonal right-handed axis set and a
positive rotation is the one in the clockwise direction along the axis from the origin
to positive infinity, accordingly to what is used by most authors. Also, given that
sometimes there are several different possible options for a frame to be defined (ENU
- x-East, y-North, z-Up – NED - x-North, y-East, z-Down – and others), to avoid
confusion, rotations around x, y and z as roll, pitch and yaw when possible. Roll is
defined to be the rotation around the forward axis, while yaw is the one around the
vertical axis and pitch is the one around the remaining axis, regardless axis naming.

Some authors explicitly distinguish roll, pitch and yaw from bank, elevation and
heading, stating that the first three terms are the angular velocities associated with
the angular positions expressed by last three terms, respectively. Since some other
authors use all six words when referring to angular position, this convention will also
be adopted in this thesis, except when stated otherwise. Angular velocities will be
usually represented by the lowercase Greek letter omega (ω) and rotation matrices
will be denoted by C (and not C).

There are at least four different representations of attitude:

• Euler Angles

• Direction Cosine Matrix

• Axis-Angle

• Quaternions

A.2 Euler Angles

Euler Angles probably are the most intuitive way of imagine and interpret rotations.
It consists on three successive rotations around each one of the x − y − z axis in a
given sequence i.e. C = C1C2C3, where Ci is the rotation around the axis i. Often
the first rotation applied is roll (around the forward axis), then comes pitch (around
the lateral axis) and finally comes yaw (around the vertical axis). It is important
to remark that the order in which the rotations are applied matters, given that

60

(a) Gimbal Free (b) Gimbal Locked

Figure 25: Illustration of the gimbal lock limitation of Euler Angles representation
of attitude.

matrix multiplication is not a commutative operation. The greatest advantage of
this particular order is that it keeps the heading constant regardless the roll and
pitch applied, therefore explaining its wide use - especially in marine applications.

Using Euler Angles to represent orientation has a huge drawback, the limitation
known as gimbal lock. Euler Angles correspond, by construction, to the rotation
angles of each one of the axis of a set of three gimbals, as shown in the image 25, in
which roll is the rotation around the blue axis, pitch is the rotation around the green
axis and heading is the rotation around the pink axis. Defining the full rotation as
so creates a singularity point when pitch equals ±90°. This means that the airplane
in the figure 25b cannot rotate around the axis perpendicular to both green and
pink ones, given that the blue axis has became aligned with the pink one as direct
consequence of pitching. This disadvantage is enough for avoiding this technique for
representing orientation during computation. Nevertheless, Euler Angles will still
be used for displaying results.

A.3 Direction Cosine Matrix

Overview

A Direction Cosine Matrix (DCM) is a 3× 3 rotation matrix that relates vectors in
two different frames, as follows:

rb = Cb
ar

a, (39)

where Cb
a is the rotation matrix expressing rotation from frame a to frame b. It

is important to keep in mind that a rotation matrix must be orthonormal with
determinant equals to positive 1, by definition. It needs to have determinant +1 in
order not to scale the output vector with respect to the input vector. A matrix can
only be orthogonal if it is a square matrix [14], which implies that a vector rotation
always leads to an output vector with the same dimension of the input one. The

61

definition of an orthonormal matrix is tied up by equation 4013

C−1 = CT , (40)

Given the high cost of inversion of a general matrix, this property of rotation
matrices will prove to be very handy, since the matrix inversion is, in this case,
synonym to matrix transposition. For better understanding, we are going to multiply(
Cb

a

)−1

on the left of both sides of equation 39, resulting in:

(
Cb

a

)−1

rb =
(
Cb

a

)−1

Cb
ar

a (41a)

(
Cb

a

)−1

rb = ra (41b)(
Cb

a

)T
rb = ra (41c)

Ca
br

b = ra (41d)

Derivative of a Rotation

In order to be able to compute the orientation at every discrete instant k, one needs
to solve the differential equation that establishes the relation between the orientation
and its derivative.

Ċ
a

b (t) = lim
∆t→0

Ca
b (t+ ∆t)−Ca

b (t)

∆t
(42)

Given that Ca
b (t+ ∆t) is also a rotation, then there is a matrix S(t,∆t) so that

Ca
b (t+ ∆t) = S(t,∆t)Ca

b (t), leading to:

Ċ
a

b (t) = lim
∆t→0

S(t,∆t)Ca
b (t)−Ca

b (t)

∆t
(43a)

Ċ
a

b (t) =

[
lim

∆t→0

S(t,∆t)− I
∆t

]
Ca

b (t) , Ωa
ab(t)C

a
b (t), (43b)

in which Ω is called rotation rate matrix and shall not be confused with rotation
matrix, meaning that rotation matrices properties may not apply.

According to [6], Ω is a skew-symmetric matrix, i.e. −Ω = ΩT . In other words,

the vector
(
ωx ωy ωz

)T
of angular velocities around x, y and z respectively leads

to [11]:

Ωa
ab =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (44)

13frames notations dropped for simplicity, without losing generality

62

that should be read as the angular velocity of the b-frame with respect to a-frame,
expressed in a-frame. Note that ω also has the same subscripts and superscripts,
that were dropped for convenience.

Contrarily to the Euler Angles representation, Direction Cosine Matrices present
no singularity and are, thus, most suitable for a general application. Its downside
comes, however, from a practical point of view: 3× 3 = 9 variables must be stored
in memory. Also, reminding that floating point precision is a restriction, Direction
Cosine Matrices can rapidly loose orthogonality, hence ceasing to be a rotation
matrix (recall basic properties of rotation matrices in A.3). An algorithm may be
performed to re-obtain a rotation matrix to get around this issue.

A.4 Axis-Angle

Axis-Angle, also named rotation vector, is a orientation representation mainly used
for introducing quaternions, and it will be the case here. Axis-angle describes a
rotation with a (usually unitary) vector and a scalar, in which the vector defines the
axis around which the rotation will occur, while the scalar is in charge of the amount
of rotation. Figure 26 presents a visualization for it, being the dark green line the

axis,
(

1 0 0
)T

the vector before rotation, the black line the rotated vector and
the blue arc the amount of rotation.

Figure 26: Illustration of Axis-Angle orientation representation

One might get confused with the fact that a rotation in a 3-dimensional space
was defined using four parameters. To solve this, it is possible to incorporate the
amount of rotation into the director vector, by simply scaling it up or down. In

63

other words, three parameters are sufficient to define a 3-dimensional space and a
fourth one was introduced for convenience.

A.5 Quaternions

Similarly to the Axis-Angle representation, a rotation quaternion q (henceforth sim-
ply called quaternion) is defined as follows: 14

q =


q0

q1

q2

q3

 =


cos(µ/2)

(µx/µ) sin(µ/2)

(µy/µ) sin(µ/2)

(µz/µ) sin(µ/2)

 , (45)

where µ is a rotation vector with magnitude µ and components
(
µx µy µz

)T
.

A quaternion is, therefore, a particular case of Axis-Angle representation. By in-
spection, q0 is the term corresponding to the amount of angle, while the others define
the axis of rotation. The main advantage of defining the rotation in such way is that
its magnitude is always equals to 1, characteristic that will be used to get around
numerical precision issues, as addressed in 7.3.

It may be familiar to the reader the close existing relation between complex
numbers and rotations around one axis [15]. Quaternions can be seen as an extension
of complex numbers, with three imaginary components, instead of only one, allowing
rotations around any combinations of x− y− z axis. Hence, quaternions operations
derivate from complex numbers operations.

Quaternions do not present any singularities, contrarily to Euler Angles. Also,
quaternions are represented by fewer parameters than DCMs (four compared to
nine), which requires less memory to storage. Finally, since quaternions transforma-
tions are inherently orthonormal, one may only need to apply normalization, instead
of matrix orthogonalization, being the latter more costly.

Further details can be found in [13, 16, 17].

A.6 The Choice of Attitude Representation

For the reasons discussed throughout the chapter, quaternion will be adopted as
attitude representation. Nevertheless, the notation used is a mix between DCM and
quaternion. As explained previously, quaternion operations are special and often it
is preferable to convert a quaternion into a DCM. Performance of the two methods
should not be an issue for modern computers. Numerical issues are discussed in 7.3.

14Note that only rotation quaternions are defined as 45

64

B Deterministic Processes

Up to now, equations were presented modeling each parameter’s dynamics over time.
This chapter will be dedicated to clarify the meaning of previous equations, as well
as to present other alternative representations for them that might be more familiar
or intuitive for the reader. This chapter will also present the equivalence between
the continuous and the discrete-time models and other useful concepts, specially for
understanding the following chapter about stochastic processes.

It is important to remark that many localization-related books do not address
this topic in a dedicated section, what can lead to confusion. One exception is [10]
– having inspired this chapter’s structure – and other alternatives are mainly books
on control theory, robotics or signal and systems, such as [18–20].

B.1 Continuous-Time Systems Models

Ordinary Differential Equations

According to [10], a single-input single-output linear dynamic system can be written
in the form of the ordinary differential equation (ODE) 46

y(n)(t) = αn−1(t)y(n−1)(t) + . . .+ α1(t)ẏ(t) + α0(t)y(t)+

βm(t)u(m)(t) + . . .+ β1(t)u̇(t) + β0(t)u(t)
(46)

In this context, y is the system output, u is the system input and the superscripts
are the j-th derivative. Note that order of an ODE is defined to be the highest
derivative term present on it and that its solution depends on the initial conditions
y(0)(t = t0), y(1)(t = t0), . . . , y(n−1)(t = t0), where t0 denotes the initial time.

The equations developed in [20] for a frictionless cart attached to a vertical wall
by a horizontal spring and damper moving along a horizontal straight rail, obtaining
its position equation 47 after having applied Newton’s laws to the free body diagram:

ÿ(t) +
B

M
ẏ(t) +

K

M
y(t) = f(t)⇔ ÿ +

B

M
ẏ +

K

M
y = f (47)

where M is the mass of the cart, K is the Hooke’s constant of the spring, B is
the damping coefficient and f is the horizontal force applied to the cart. Given that
its highest derivative is the second one, it consists of a second order ODE.

Carrying the time-dependency notation (t) is often cumbersome and, thus, is
dropped. When it is the case, one needs to infer from the context which of the vari-
ables are constant or might vary in time. The equation 47 presented both notations
and by only looking the latter it is difficult to state if M , B, K and f are constant

65

or not, but from the context it is reasonable to assume that the mass, the spring
and the damping coefficients are constant, while the applied force may vary.

Ordinary differential equations are intuitive and usually is the first representation
undergraduates study. However it is not the most suitable one to be solved, either
by hand or by computers.

Transfer Functions

Transfer functions arise from the application of the Laplace Transform on equation
46, which is a powerful method of solving ordinary differential equations. Even
though its relevance is within this domain, its use goes beyond the scope of this
work, since the studied systems are time-variant for which the solutions presented
are obtained using numerical methods.

Nevertheless, block diagrams will be used along the thesis and the goal of the
current section is to ask the reader to extrapolate the concept of block diagrams to
time-variant systems.

State Space

State space representation is an alternative to ordinary differential (and difference
15) equations. One ODE of order n can be represented by n equations of order 1
[20].

Recall the cart’s ODE:

ÿ(t) = f(t)− B

M
ẏ(t)− K

M
y(t) (48)

Let x1(t) = y(t) and x2(t) = ẏ(t), yielding to:ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) = ÿ(t) = − B
M
x2(t)− K

M
x1(t) + f(t)

(49)

The equation 49 can be rewritten in the matrix form 50, in which y(t) is the out-
put of the system, typically defined as the system’s parameter that can be measured.
In the example, it is the cart’s position.

ẋ1(t)

ẋ2(t)

 =

 0 1

−K
M
− B

M

x1(t)

x2(t)

+

0

1

 f(t)

y(t) =
[
1 0

]x1(t)

x2(t)

+
[
0
]
f(t)

(50)

15This term is properly defined in section B.2

66

Again, the time-notation can be dropped and equation 50 may be rewritten for
a general case as 51. ẋ = Fx + Bu

y = Hx + Du
(51)

where x is the state vector, y is the output vector, u is the input vector, F is the
system transition matrix, B is the control matrix, H is the output matrix and D

is the feedthrough matrix. The state vector (x) is composed of state variables (xi)
and by definition has the smallest possible dimension able to represent the system.

Note that in this context y refers to the ODE’s physical quantities, while y and
y are the system output for the scalar and vectorial cases, respectively.

State-space representation usually makes clearer which of the physical quantities
can be seen or measured. In other words, disregarding the feedthrough matrix D

(that rarely exists), the output is the product between H and x. In the previous
example, only the cart’s position can be sensed, given that H =

[
1 0

]
(and that

x =
(
y ẏ

)T
). Sometimes it is desired to infer hidden state variables (ẏ in this case),

a process known as state estimation. Chapter B.3 explains the conditions in which
this problem is solvable, while chapter 6 presents one particular state estimator: the
Kalman filter.

Even so, a system can be defined using state-space representation in infinite
different ways [18]. One of those infinite representations is usually more appropriate
than others for solving a particular problem. An intuitive way of understanding it
is presented by [14] when approaching change of basis. By inspection, the reader
should be able to recognize the same pattern in both cases.

B.2 Discrete-Time Systems Equivalent Models

As most of applications nowadays, in this work a computer will be used to numer-
ically solve the equations presented along the past chapters. However, a computer
does not work in continuous time: it is based on cycles and, for that reason, is said
to operate in discrete times, where the continuous-time equations just presented
are not valid anymore. It is needed to derive the discrete-time equivalent equations,
then. For a computer, solving n 1st order ODE is much easier then solving 1 ODE of
order n, hence the power of state-space representation. As a detailed development is
made on [10], the following chapter will present a slightly different approach, aiming
to give the reader the basics only.

67

Calculation of Φk from F(t)

The solution of a scalar ODE of form ẋ(t) = ax(t) is well known from calculus
courses, stated as:

x(t) = x0e
−at (52)

Analogously, the solution of the matrix ODE ẋ(t) = Fx(t) is:

x(t) = x0e
−Ft (53)

One could get stuck when facing the exponential of a matrix, but it should not be
a problem if we take the power series approach to compute it, from where equation
54:

eat =
∞∑
n=0

an

n!
tn = 1 + at+

a2

2!
t2 + . . .+

an

n!
tn + . . . (54)

For matrices, the expansion is straightforward, noting only that 1 is replaced by
the identity matrix I. If the solution interval is sufficient small, a first order approx-
imation may be accurate enough, yielding to the following discrete-time equivalent
model:

eF∆t =
∞∑
n=0

(F∆t)n

n!
= I + F∆t+

(F∆t)2

2!
+

(F∆t)3

3!
+ · · · ≈ I + F∆t , Φ (55)

In case F varies in time (F(t)), it is usually possible to linearize it around the
operation point using Taylor series expansion and assume F(t) is constant during
tiny time intervals ∆t. Note that non-linear systems may be seen as linear time-
variant systems (as exemplified on equation 56) and, therefore, usually can also be
considered constant during small time intervals.(

x

ẋ

)
k+1

=

[
1 ∆t

0 1

](
x

ẋ

)
k

+

[
0

∆t

](
ẍ
)
k

(56a)

(
x

ẋ

)
k+1

=

[
1 ∆t

0 1 + ∆tẍkẋ
−1
k

](
x

ẋ

)
k

(56b)

ẋ = Fx (57)

With the discrete form being:

xk+1 = Φkxk (58)

68

B.3 Observability

A system is called (completely) observable if it is possible to infer each of its inter-
nal state variables x from a finite time interval of its outputs y. By definition, a
non-(completely-)observable system cannot have all its internal state variables esti-
mated. Therefore, before trying to estimate a system’s internal state variables, it is
important to verify if such a task is mathematically solvable.

From the system model, it is possible to compute the Observability Matrix M.
The number observable states is the rank of M. As a refresher, the rank of a matrix
is the number of dimensions of the space spanned by its columns (or rows). In
other words, it is the number of linearly-independent columns (or rows). Indeed,
if a column (or row) can be expressed as a linear combination of others, then this
column (or row) belongs to the already covered hyper-space and thus is not able to
point towards a new dimension.

Still, another way to get the intuition about the meaning of the rank of a matrix
in the special case of a square matrix is to look at its eigenvalues and eigenvectors.
Basically, if a matrix has one eigenvalue equals to zero, it means there is a pair of
eigenvectors (~u,~v) whose cross-product ~u×~v is also zero. Neglecting the trivial case
in which ||~u|| = 0 or ||~v|| = 0, the cross-product is null if and only if ~u is parallel to
~v, given that ~u × ~v = ||~u||||~v|| sin(θ)~n, where θ is the angle between ~u and ~v and ~n
is the director (unitary) vector, normal to both ~u and ~v.

For rectangular matrices, one can benefit from approach just presented thanks to
the QR decomposition. Every matrix A can be decomposed into the multiplication
of two matrices Q and R in such a way that A = QR, where R is a upper triangular
(square) matrix with the same rank as A [14].

The following subsections present the observability matrix only and the reader
is invited to refer to [10] and [18] for details concerning the fundamentals behind
them.

Continuous Linear Time-Invariant Case

The Continuous Linear Time-Invariant case is addressed in [18]. Consider the system
below: ẋ = Ax + Bu

y = Cx + Du
(59)

The Observability Matrix M for the system 59 is defined as follows.

69

M =


C

CA
...

CAn−1

 (60)

where n is the number of internal state variables of x

Discrete Linear Time-Variant Case

The Discrete Linear Time-Variant case is addressed in details in [10]. Consider the
system below: ẋk = Φkxk−1 + Γkuk

yk = Hkxk + Dkuk

(61)

The Observability Matrix M for the system 61 is defined as follows.

M =


Hk−N

Hk−N+1Φk−N
...

HkΦk−1 . . .Φk−N

 (62)

where N is a sufficiently big finite integer. For linear time-invariant systems, n (from
the previous chapter) and N are the same. However, for linear time-variant systems
whose observability depends on the internal state variables, N may be greater than
n.

Furthermore, for a linear time-variant system, observability may be determined
numerically from collected data, challenge addressed on [21].

70

C Other Notations

~q = q =
(
a b c d

)T
=
(
−a −b −c −d

)T
(63)

C = C(q) =

a
2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 (64)

qED = qDE
∗ =

(
a b c d

)T
, where qED

∗ = qDE =
(
a −b −c −d

)T
(65)

Q = Q(q) =


a −b −c −d
b a d −c
c −d a b

d c −b a

 (66) Q̄ = Q̄(q) =


a −b −c −d
b a −d c

c d a −b
d −c b a

 (67)

qa · qb = Q(qa)qb = Q̄(qb)qa (68)

dC

dq
=
[
dC
da

dC
db

dC
dc

dC
dd

]
(69)

dC

da
= 2

 a −d c

d a −b
−c b a

 (70)
dC

db
= 2

b c d

c −b −a
d a −b

 (71)

dC

dc
= 2

−c b a

b c d

−a d −c

 (72)
dC

dd
= 2

−d −a b

a −d c

b c d

 (73)

d

dq

(
C~ux,y,z

)
=
dC

dq


~ux,y,z 03×1 03×1 03×1

03×1 ~ux,y,z 03×1 03×1

03×1 03×1 ~ux,y,z 03×1

03×1 03×1 03×1 ~ux,y,z

 (74)

71

d

dqa

(
Q(qa)qb

)
= Q̄(qb) (75)

q
(
~ux,y,z

)
,
(

0 ux uy uz

)T
(76)

72

