

Modelagem, Simulação e Adequação de um Separador Trifásico em uma Plataforma de Petróleo Utilizando o EMSO

Samir Silva Abunahman

Projeto de Final de Curso

Orientadores

Prof. Argimiro Resende Secchi, D.Sc.

Prof. Evaristo Chalbaud Biscaia Junior, D.Sc.

Abril de 2011

Modelagem, Simulação e Adequação de um Separador Trifásico em uma Plataforma de Petróleo Utilizando o EMSO.

Samir Silva Abunahman

Projeto Final de Curso submetido ao Corpo Docente da Escola de Química, como parte dos requisitos necessários à obtenção do grau de Engenharia Química.

Aprovado por:

Prof. Maurício Bezerra de Souza Jr., D.Sc.

Hebranlajas Jandus Prof. Helbisa Lajas Sanches, D.Sc.

-inou de lawalh migoshi

Eng. Simone Carvalho Miyoshi, M.Sc.

Orientado por:

An- Nhl. Prof. Argimiro Resende Secchi, D.Sc.

Discoia Prof. Evaristo Chalbaud Biscaia Junior, D.Sc

Rio de Janeiro, RJ-Brasil Abril de 2011

Abunahman, Samir Silva.

Modelagem, Simulação e adequação de um separador trifásico em uma plataforma de petróleo utilizando o EMSO / Samir Silva Abunahman. Rio de Janeiro: UFRJ / EQ, 2011.

x, 119 p.;il.

(Projeto Final) – Universidade Federal do Rio de Janeiro, Escola de Química, 2011.

Orientadores Argimiro Resende Secchi e Evaristo Chalbaud Biscaia Junior.

1. Separador Trifásico. 2. Ciclo de Compressão. 3. EMSO. 4. Projeto Final (Graduação – UFRJ/EQ). 5. Argimiro Resende Secchi e Evaristo Chalbaud Biscaia Junior. I. Título.

À minha família, aos meus mestres e aos meus amigos.

"Engenheiros Químicos não são pessoas suaves, eles gostam de altas temperaturas e altas pressões." (Steve LeBlanc)

AGRADECIMENTOS

Primeiramente, agradeço aos meus orientadores, professores Argimiro e Evaristo, pela dedicação, instrução e paciência durante o projeto. Sem eles, este trabalho seria impossível de ser concluído a tempo.

Agradeço à coordenadora da Graduação da Escola de Química, professora Andréa, por ser compreensiva com a minha situação, e adiantar a apresentação deste trabalho.

Agradeço à minha família, sempre presente ao meu lado, seja nos momentos bons, seja nos momentos ruins.

Agradeço ao grupo do LADES, especialmente à Simone, por ter escrito o modelo do ciclo de compressão no EMSO (sem o separador), que eu precisei para este trabalho.

Agradeço também aos meus amigos, pelo grande apoio moral empregado a mim, sempre me incentivando a ir em frente quando mais precisei.

Por último, agradeço à banca julgadora pela disponibilidade e interesse no meu trabalho.

Resumo do Projeto Final de Curso apresentado à Escola de Química como parte dos requisitos para a obtenção do grau de Engenheiro Químico.

Modelagem, Simulação e Adequação de um Separador Trifásico em uma Plataforma de Petróleo Utilizando o EMSO.

Samir Silva Abunahman

Abril, 2011

Orientadores: Prof. Argimiro Resende Secchi, D.Sc. Prof. Evaristo Chalbaud Biscaia Junior, D.Sc.

Com as novas descobertas do Pré-sal, há atualmente uma grande sucessão de estudos em relação ao processo de extração de petróleo e, consequentemente, aumentou-se a necessidade de realizar simulações dinâmicas dos equipamentos contidos nesse sistema. Neste trabalho, são feitas simulações de um separador trifásico no pacote simulador EMSO em dois casos diferentes: BlackOil, que desconsidera efeitos de composição (ou seja, não há flash), e Composicional, que já considera o cálculo de um flash trifásico para tal fim. Além disso, é feita também no EMSO uma integração do separador com um ciclo de compressão resumido (trocador de calor + vaso de flash + turbina + compressor, com reciclo), utilizando dados de uma planta de uma plataforma de extração de petróleo. Dentre os resultados apresentados no trabalho, são analisadas respostas das variáveis de saída do separador em relação a degraus nos Set Points e a degraus na alimentação, e o efeito da variação da composição de entrada do ciclo em diversas variáveis do compressor.

E

CAPITULO I - INTRODUÇÃO	1
I.1 Objetivo	1
I.2 Motivação	2
I.3 Organização do Texto	3
CAPITULO II – REVISAO BIBLIOGRAFICA	4
II.1 Modelo <i>BlackOil</i>	4
II.2 Modelo Composicional	6
II.3 Simuladores de Processo	6
II.3.1 Ambiente de Simulação EMSO	7
II.3.2 Motivos para a Escolha do EMSO	10
CAPÍTULO III – METODOLOGIA E MODELAGEM	11
III.1 Metodologia de Implementação	11
III.2 Modelagem do Caso BlackOil	12
III.2.1 Sem Dispersão	15
III.2.2 Com Dispersão	18
III.2.3 Adaptação para o EMSO	21
III.3 Modelagem do Caso Composicional	23
III.3.1 Modelo Original	23
III.3.2 Adaptação para o EMSO	27
CAPÍTULO IV – INTEGRAÇÃO DO SEPARADOR COM O CICLO	DE
COMPRESSÃO	28
IV 1 Equipamentos Envolvidos no Ciclo	28
IV 2 Modelagem do Compressor e da Turbina no Ciclo	29
IV 3 Metodologia de Implementação do Sistema no FMSO	23
CAPÍTIII O V - RESULTADOS	36
V 1 Modele <i>BlackOil</i> Original	36
V.1 Modelo <i>BlackOil</i> Oligilia	12
V.2 Modele Composicional	40
V.3 Modelo Composicional	
	00
CAPITULO VI - CUNCLUSUES E SUGESTUES PARA TRADALI	03
	80
	82
APENDICE	84
A.1 Modelagem do Caso BlackOll Adaptado para o EMSO	84
A.1.1 Modelo tristreams e seus Derivados	84
A.1.2 Modelo trisource	85
A.1.3 Modelos trichanger	86
A.1.4 Modelo triseparator	88
A.1.5 Modelo trisep_control	92
A.1.6 Flow Sheet Trisep	95
A.2 Modelagem do Caso Composicional Adaptado para o EMSO	98
A.2.1 Modelo tristreams	98
A.2.2 Modelo trisource	98
A.2.3 Modelo triseparator 1	00
A.2.4 Modelo triseparator_control1	05
A.2.5 Flow Sheet Trisep_Comp1	09
A.3 Integração com o Ciclo de Compressão no EMSO 1	11
A.3.1 Modelo Compression_cycle1	11
A.3.2 Flow Sheet Trem_Compressores1	14

ÍNDICE DE TABELAS

TABELA 1: PERTURBAÇÕES NA ALIMENTAÇÃO (NUNES, 1994)
TABELA 2: NOMENCLATURA DAS VARIÁVEIS UTILIZADAS NAS MODELAGENS BLACKOIL.
TABELA 3: VARIÁVEIS PRESENTES APENAS NO CASO COMPOSICIONAL
TABELA 4 - VARIÁVEIS PARA A MODELAGEM DO COMPRESSOR+TURBINA. 29
TABELA 5 - PARÂMETROS PARA O MODELO DE SILVEIRA (2006). 36
TABELA 6 - VARIÁVEIS DE CONTROLE E CONDIÇÕES INICIAIS PARA O MODELO DE
SILVEIRA (2006)
TABELA 7 - PARÂMETROS DA PLANTA PARA O MODELO BLACKOIL ADAPTADO 43
TABELA 8 - VARIÁVEIS DE CONTROLE E CONDIÇÕES INICIAIS PARA O MODELO
BLACKOIL ADAPTADO
TABELA 9 - COMPOSIÇÃO DA CARGA DE ALIMENTAÇÃO. 51
TABELA 10 - DADOS DA ALIMENTAÇÃO DO FLASH.52
TABELA 11 - COMPARAÇÃO DA COMPOSIÇÃO DO ÓLEO ENTRE A TEÓRICA E A
CALCULADA
TABELA 12 - COMPARAÇÃO DA COMPOSIÇÃO DO GÁS ENTRE A TEÓRICA E A
CALCULADA
TABELA 13 - COMPARAÇÃO DE VALORES DE ALGUMAS VARIÁVEIS IMPORTANTES
ENTRE OS TEÓRICOS E OS CALCULADOS NO EMSO
TABELA 14 - COMPARAÇÃO ENTRE TETRACOSANO E O C12+
TABELA 15 - PARÂMETROS E VALORES INICIAIS PARA O MODELO COMPOSICIONAL 56
TABELA 16 - DADOS DO CICLO DE COMPRESSÃO

ÍNDICE DE FIGURAS

FIGURA 1 – FORMAÇÃO DE GOLFADAS EM CADA FASE DE ALIMENTAÇÃO (PINTO, 200)9).
	5
FIGURA 2 - FORMAÇÃO DE GOLFADAS DE LÍQUIDO NA ALIMENTAÇÃO (SILVEIRA, 2006	3).5
FIGURA 3 - MODELOS UTILIZADOS PARA O SEPARADOR TRIFÁSICO BLACKOIL	NO
EMSO	12
FIGURA 4 - ESQUEMA SIMPLIFICADO DAS VARIÁVEIS DENTRO DO SEPARAD	DOR
TRIFÁSICO	12
FIGURA 5 - DIAGRAMA RESUMIDO DO SISTEMA INTEGRADO SEPARADOR TRIFÁSICO	0 +
CICLO DE COMPRESSÃO	28
FIGURA 6 - O SISTEMA SEPARADOR + CICLO DE COMPRESSÃO RESUMIDAMENTE	DA
MANEIRA COMO O EMSO INTERPRETA	34
FIGURA 7 - PERTURBAÇÃO NO SET POINT.	. 39
FIGURA 8 - EFEITO DA PERTURBAÇÃO NO SET POINT DO NÍVEL DE ÁGUA, DE ACOF	۶DO
COM SILVEIRA [2] E COM O EMSO.	. 39
FIGURA 9 - PERTURBAÇÃO NA ALIMENTAÇÃO LÍQUIDA (ÁGUA + ÓLEO)	40
FIGURA 10 - EFEITO DA PERTURBAÇÃO NA ALIMENTAÇÃO LÍQUIDA, DE ACORDO C	Ю
SILVEIRA [2] E COM O EMSO.	40
FIGURA 11 – EFEITO DE GOLFADAS UTILIZADO NO TRABALHO DE SILVEIRA [2]	41
FIGURA 12 - FUNÇÃO INTERPOLADA DAS GOLFADAS NO EMSO, EM RELAÇÃO A	٩OS
VALORES EXPERIMENTAIS.	42
FIGURA 13 - EFEITO DAS GOLFADAS NO NÍVEL DE ÁGUA, EM COMPARAÇÃO ENTR	ΕO
RESULTADO DE SILVEIRA [2] E O CALCULADO PELO EMSO.	42
FIGURA 14 - DEGRAU NA VAZÃO DE ALIMENTAÇÃO.	45
FIGURA 15 - VAZÃO DE SAÍDA DE GÁS.	46
FIGURA 16 - DENSIDADE DO GÁS.	46
FIGURA 17 - ALTURA DE ÁGUA	47
FIGURA 18 – PRESSÃO NO SEPARADOR	47
FIGURA 19 - ALTURA DE ÓLEO NA CÂMARA CL.	48
FIGURA 20 - NÍVEL DE ÓLEO E SEU SET POINT.	48
FIGURA 21 - INTERFACE ÁGUA/ÓLEO E SEU SET POINT	49
FIGURA 22 - EFEITO DO DEGRAU PARA A PRESSÃO.	49
FIGURA 23 - VAZÃO DE SAÍDA DO GÁS	50
FIGURA 24 - DENSIDADE DO GÁS NA SAÍDA	50
FIGURA 25 - PERTURBAÇÃO NA ALIMENTAÇÃO.	57
FIGURA 26 - PRESSÃO NO SEPARADOR E SEU SET POINT.	57
FIGURA 27 - INTERFACE ÀGUA/ÓLEO NA CÂMARA CS E SEU SET POINT.	58
FIGURA 28 - NÍVEL DE ÓLEO NA CÂMARA CL E SEU SET POINT.	.58
FIGURA 29 - VAZÃO DE SAÍDA DE GÁS.	59
FIGURA 30 - DENSIDADE DO GÁS.	59
FIGURA 31 - MASSA MOLAR DO GÁS.	60
FIGURA 32 - FATOR DE COMPRESSIBILIDADE DO GÁS.	60
FIGURA 33 - CP/CV PARA O GÁS	61
FIGURA 34 - PRESSÃO NO SEPARADOR E SEU SET POINT.	.61
FIGURA 35 - VAZÃO DE SAÍDA DE GÁS	62
FIGURA 36 - DENSIDADE DO GÁS	62
FIGURA 37 - MASSA MOLAR DO GÁS	63
FIGURA 38 - FATOR DE COMPRESSIBILIDADE DO GÁS	63
FIGURA 39 - CP/CV PARA O GÁS.	64
	• •

FIGURA 40 - NÍVEL DE ÓLEO NA CÂMARA CL E SEU SET POINT	64
FIGURA 41 - NÍVEL DA INTERFACE ÁGUA/ÓLEO NA CÂMARA CS E SEU SET POINT	65
FIGURA 42 - FATOR DE COMPRESSIBILIDADE MÉDIO.	68
FIGURA 43 - HEAD DO COMPRESSOR	69
FIGURA 44 - TEMPERATURA ISENTRÓPICA	69
FIGURA 45 - MASSA MOLAR MÉDIA	70
FIGURA 46 - VAZÃO VOLUMÉTRICA NA SUCÇÃO	70
FIGURA 47 - MASSA ESPECÍFICA.	71
FIGURA 48 - TEMPERATURAS DE ENTRADA E DE SAÍDA.	71
FIGURA 49 - PRESSÕES DE ENTRADA E DE SAÍDA	72
FIGURA 50 - ENTALPIA DE ENTRADA E DE SAÍDA	72
FIGURA 51 - ENTROPIA DE ENTRADA E DE SAÍDA	73
FIGURA 52 - FATOR DE COMPRESSIBILIDADE	74
FIGURA 53 - HEAD DO COMPRESSOR	74
FIGURA 54 - TEMPERATURA ISENTRÓPICA	75
FIGURA 55 - MASSA MOLAR MÉDIA	75
FIGURA 56 - VAZÃO VOLUMÉTRICA NA SUCÇÃO	76
FIGURA 57 - MASSA ESPECÍFICA.	76
FIGURA 58 - TEMPERATURA DE ENTRADA E DE SAÍDA	77
FIGURA 59 - PRESSÃO DE ENTRADA E DE SAÍDA	77
FIGURA 60 - ENTALPIA DE ENTRADA E DE SAÍDA	78
FIGURA 61 - ENTROPIA DE ENTRADA E DE SAÍDA	78

CAPÍTULO I - INTRODUÇÃO

O petróleo é uma das principais fontes de energia do mundo, além de ser matéria-prima de plásticos, borrachas sintéticas, solventes, adesivos, tintas, corantes, explosivos, entre outros. Assim, ele possui uma enorme importância para a sociedade.

A maior parte do petróleo é extraída a partir de campos marítimos, onde é feito o seu tratamento primário em sistemas *offshore*.

Nesse tratamento, pode haver grandes flutuações na carga devido ao caráter multifásico do escoamento (água, óleo e gás). O separador gravitacional trifásico age no sentido de absorver essas flutuações (golfadas) e, além disso, separar as fases de modo eficiente, a partir da diferença de densidades entre a água e o óleo.

A saída aquosa do equipamento vai para um sistema de hidrociclones, que visam retirar o óleo que lhe foi arrastado. O óleo separado segue para um separador eletrostático e um separador gravitacional bifásico, a fim de retirar a água que também pode estar arrastada nele. Além disso, a saída gasosa é enviada a um ciclo de compressão, junto com a saída gasosa do separador gravitacional. Parte do gás que sai do ciclo de compressores volta ao início da planta, em um sistema de *gas lift*, para facilitar a extração do petróleo.

Normalmente são empregados três controladores *feedback* no separador:

- Controle de nível de interface aquosa, que atua sobre a vazão de saída da fase aquosa;
- Controle de nível da fase oleosa na câmara de óleo, que atua sobre a vazão de saída da fase oleosa;
- Controle de pressão, que atua sobre a vazão de saída de gás.

I.1 Objetivo

O objetivo deste trabalho é uma modelagem efetiva do separador trifásico com foco no gás produzido, que é conectado a um ciclo de compressão contendo um compressor, utilizando um pacote simulador de processos.

Dessa forma, é possível uma futura otimização da extração de petróleo nesse sistema, já que esta depende fortemente do *gas lift*, que depende da eficiência dos compressores.

Dentre os resultados, serão analisadas respostas das perturbações nos Set Points dos controladores do equipamento em diversas variáveis dele, além do efeito da alimentação em diversas variáveis do compressor a jusante.

I.2 Motivação

Embora o petróleo seja consumido no mundo a uma enorme velocidade, descobertas de grandes poços ainda são feitas, fazendo com que ele seja sempre requisitado. Com isso, cada vez mais empresas têm focado mais na exploração do petróleo que inclusive no seu refino, o que tornam ainda mais necessárias as simulações de processos em plataformas.

Além disso, a água é considerada um dos maiores contaminantes no processo de obtenção do petróleo, por seu elevado teor de sal, o que acarreta problemas severos no sistema de bombeamento e transferência e na operação dos processos nas refinarias. Por isso, o separador trifásico é de grande importância para a eficiência e a manutenção do sistema de extração de petróleo.

Os ciclos de compressão também são de grande importância na planta. Eles, ao aumentarem a pressão do gás, contribuem fortemente para o sistema de *gas lift*, que consiste em introduzir uma carga de gás a altas pressões no espaço anular do poço para fornecer uma extração maior do restante do petróleo inexplorado.

Diversas variáveis no sistema de compressão a jusante do separador dependem de como o gás foi separado dos líquidos. Além do mais, entender como se processa a separação pode auxiliar na otimização da produção de óleo através de melhorias das condições de processo. Dessa forma, é necessário que haja uma modelagem eficiente desse equipamento e que seja compatível com a integração não só com o ciclo de compressores, mas com qualquer outro sistema que possa ser necessário (por exemplo, o sistema de hidrociclones citado anteriormente). Além disso, o uso de simuladores de processos vem ganhando, cada vez mais, um significativo espaço na área de engenharia, pois apresentam grandes vantagens, tais como [6]:

- Contenção de despesas;
- Possibilidade de implementação de processos fortemente integrados com diversos reciclos de massa e energia;
- Necessidade de maior compreensão de processos cada vez mais complexos;
- Otimização e construção de processos otimizados;
- Possibilidade de construções de protótipos virtuais, verificação de projetos, etc.;

Por isso que a simulação é de vital importância em qualquer processo.

I.3 Organização do Texto

Este trabalho se divide em seis capítulos, organizados da seguinte forma:

- Capítulo I contextualização do cenário industrial, objetivos e motivação do trabalho;
- Capítulo II As diferenças entre as principais formas de modelagem do separador trifásico e suas hipóteses simplificadoras, e uma explicação resumida sobre o pacote simulador escolhido, o EMSO;
- Capítulo III As equações que regem essas modelagens, além da explicação da forma como elas foram implementadas no EMSO;
- Capítulo IV Integração do separador trifásico com um ciclo de compressão, contendo os equipamentos e como eles estão organizados no ciclo, além de uma modelagem resumida do compressor, que é o seu elemento principal.
- Capítulo V Principais resultados obtidos a partir das modelagens do sistema;
- Capítulo VI Conclusões em relação aos resultados acima e as sugestões para trabalhos futuros;
- Apêndice Código de programação das modelagens feitas no simulador EMSO.

CAPÍTULO II – REVISÃO BIBLIOGRÁFICA

Um separador trifásico é um equipamento muito complexo para ser simulado precisamente, já que depende de muitas condições iniciais que satisfaçam os sistemas gerados. Por isso, diversos autores utilizaram hipóteses distintas para alcançarem seus objetivos.

No geral, a modelagem do separador trifásico pode ser dividida em dois casos: *BlackOil* e Composicional.

II.1 Modelo BlackOil

Neste caso, os componentes dentro do equipamento são tratados simplesmente como água, óleo e gás, e suas propriedades (por exemplo, densidade) são valores médios e constantes. Outra consequência é a ausência de efeitos de *flash* no sistema, pelo fato das fases estarem definidas.

Apesar da simulação dinâmica para este caso apresentar divergências em relação à realidade, este tipo de modelo pode auxiliar em melhorias de controle de processo, por ser mais simples.

Dentro deste caso, ainda mais hipóteses simplificadoras podem ser feitas:

- Densidades da fase aquosa e oleosa iguais entre si, transformando balanços de massa em balanços de volume;
- Gás Ideal, pela inviabilidade de estimar parâmetros do pseudocomponente "gás";

Foram estudadas duas abordagens diferentes do separador no caso *BlackOil*: o trabalho de Pinto [1] e a dissertação de Silveira [2].

Além disso, dependendo do enfoque do trabalho, pode-se considerar [2] ou não [1] a presença de dispersões de água em óleo e de óleo em água. Neste trabalho, como o objetivo é na fase gasosa, nos modelos adaptados ao EMSO, as dispersões são desprezadas.

Quanto às cargas de alimentação, Pinto criou golfadas simples para testar as respostas na saída do equipamento simulado. Essa é uma forma mais simples de simular, apesar de que, desconsiderando ruídos, deixa a desejar na representação do processo real.

Figura 1 – Formação de golfadas em cada fase de alimentação (Pinto, 2009).

Por outro lado, Silveira (2006) considerou a formação de golfadas reais, com ruído branco, para tentar representar mais fielmente as saídas do separador. Entretanto, ele considerou a vazão de gás constante, pela pouca disponibilidade de dados reais dessa fase.

Figura 2 - Formação de golfadas de líquido na alimentação (Silveira, 2006).

II.2 Modelo Composicional

O modelo composicional já é bem mais complexo: a composição das três fases é explicitada; assim é necessário utilizar modelos termodinâmicos (por exemplo, Peng-Robinson) para encontrar as composições nas saídas.

Da mesma forma que no *BlackOil*, pode-se considerar ou desprezar a presença de dispersão entre os líquidos.

A modelagem feita por Nunes [3] considerou as dispersões, e inclusive estimou a eficiência de coleta a partir de um diâmetro médio das bolhas.

Quanto à alimentação, o autor optou por utilizar diversos degraus na vazão e nas frações molares, conforme mostra a tabela abaixo:

Tempo	Carga	Frações molares		
(min)	(kmol/min)	óleo	água	gás
0	36	0.033	0.935	0.032
5	9.621	0.032	0.910	0.057
10	44.53	0.034	0.954	0.012
30.8	64.36	0.031	0.882	0.087
32.8	16.821	0.021	0.600	0.378
35	9.621	0.032	0.910	0.057

Tabela 1: Perturbações na alimentação (Nunes, 1994).

Neste trabalho, a simulação composicional feita no EMSO consiste em uma simplificação desse modelo, por desprezar os efeitos de dispersão.

II.3 Simuladores de Processo

Simuladores de processos consistem em programas computacionais que visam à representação do comportamento de um processo sob certa condição; compreendem os modelos, utilizados para dimensionar e modelar equipamentos de forma geral, e sua simulação, onde o modelo é utilizado para reproduzir o comportamento de um processo já dimensionado quando operado em condições outras que não as do projeto.

Os simuladores de processo são indispensáveis no atual cenário tecnológico, pois são ferramentas fundamentais para qualquer análise de processo. Consequentemente são essenciais na indústria química e foco de muita pesquisa e desenvolvimento para melhorar suas performances [8].

Para utilizar um simulador, seus modelos devem conter todas as equações matemáticas ou sequências lógicas que representem um equipamento ou fenômeno. O modelo deve ser capaz de gerar saídas a partir de dados de entrada, que devem ser fornecidas pelo usuário. Além disso, a fim de haver conexão entre os modelos, é recomendado que haja um padrão nas correntes de entrada e saída de cada modelo (ou seja, elas devem possuir as mesmas variáveis).

As equações dos modelos são resolvidas a partir de métodos numéricos apropriados [11]. Estes devem ser adequados para obter a convergência das diversas equações possíveis de diferentes tipos de modelagem implementados na rotina do simulador ou no próprio modelo.

Atualmente, diversos tipos de simuladores são disponibilizados e comercializados, o que possibilita o atendimento de uma grande e variada demanda.

II.3.1 Ambiente de Simulação EMSO

EMSO é a sigla para *Environment for Modeling, Simulation and Optimization,* sendo este um *software* de simulação de processos do projeto ALSOC. Sua construção foi iniciada em 2001, pelo então aluno de mestrado da Universidade Federal do Rio Grande do Sul Rafael de Pelegrini Soares. ALSOC é a sigla utilizada para identificar o projeto de um **A**mbiente **L**ivre para **S**imulação, **O**timização e **C**ontrole de Processos, que é o resultado de um esforço da aproximação universidade–indústria através da padronização e distribuição sem custo de especificações e ferramentas de *software* entre universidades e empresas consorciadas [8].

No EMSO tem-se um ambiente gráfico onde o usuário pode representar processos complexos simplesmente selecionando e conectando os modelos dos equipamentos, em forma de blocos. Na maioria dos casos, os modelos disponíveis na biblioteca de modelos do EMSO (<u>EML</u> - *EMSO Modeling Library* [12]) podem ser utilizados sem modificações. Mas, se houver em um sistema algum equipamento inexistente na EML, o usuário pode desenvolver seus próprios modelos utilizando a linguagem de modelagem do sistema.

A linguagem de modelagem do EMSO se apresenta na forma equacional, não envolvendo a programação dos métodos numéricos associados à sua resolução. Por essa simplicidade do código, a elaboração de novos equipamentos e sua modelagem é facilitada.

Um exemplo de simulação é o próprio tutorial, que consiste na reprodução de um sistema com três tanques de nível em série [6]. A simulação acontece de forma dinâmica, ou seja, é possível ver a variação do nível do tanque em função do tempo de simulação.

Para elaborar tal simulação de processo, utilizaram-se basicamente dois arquivos. O primeiro foi um modelo representativo de um tanque de nível, que apresentava as devidas equações para sua modelagem; o segundo foi o *Flow Sheet*, que representa o processo com suas devidas conexões dos modelos representativos e as especificações da entrada.

Como há três tanques nesse exemplo, foram criados no *Flow Sheet* três dispositivos (*Devices*) que representam esse modelo, e estes foram devidamente conectados.

Para melhor esclarecimento da linguagem adotada pelo EMSO, segue abaixo o modelo do tanque e o *Flow Sheet* da simulação apresentados resumidamente.

Modelo do tanque:

Model tank_simplified

PARAMETERS
k as Real (Brief="Valve Constant", Unit = 'm^2.5/h',
Default=4);
A as area (Brief="Tank area", Default=2);
VARIABLES
Level as length (Brief = "Tank level");
in Fin as flow_vol (Brief = "Input flow");
out Fout as flow vol (Brief = "Output flow");

```
EQUATIONS

"Mass balance"

diff(A*Level) = Fin - Fout;

"Valve equation"

Fout = k*sqrt(Level);

end
```

• Flow Sheet do processo dos três tanques em série:

```
FlowSheet ThreeTank
     VARIABLES
     Feed as flow_vol;
     DEVICES
     Tank1 as tank_simplified;
     Tank2 as tank_simplified;
     Tank3 as tank_simplified;
     CONNECTIONS
     Feed
               to Tank1.Fin;
     Tank1.Fout to Tank2.Fin;
     Tank2.Fout to Tank3.Fin;
     SPECIFY
     Feed = 10 * 'm^3/h';
     INITIAL
     Tank1.Level = 1 * 'm';
     Tank2.Level = 2 * 'm';
     Tank3.Level = 1 * 'm';
     SET
     Tank2.k = 8 * 'm^2.5/h';
     Tank2.A = 4 * 'm^2';
     OPTIONS
```

```
TimeStep = 0.1;
TimeEnd = 2;
TimeUnit = 'h';
```

```
End
```

II.3.2 Motivos para a Escolha do EMSO

A escolha do simulador EMSO como o simulador utilizado neste trabalho se deu basicamente por este ser um simulador orientado a equações. Isso implica que:

- Os métodos numéricos para a resolução das equações dos modelos, além destes, são separados;
- Os modelos são escritos em linguagem de modelagem;
- Os códigos de modelagem são abertos, o que possibilita estudos e elaborações de diferentes modelos;
- O EMSO foi elaborado com um sistema orientado a objetos, facilitando assim a criação de novos modelos a partir de outros já existentes.

Além disso, o EMSO ainda apresenta mais vantagens fundamentais para a sua escolha, tais como:

- Gratuidade para uso acadêmico e instituições de pesquisa;
- Realização de simulações dinâmicas;
- Eficiência computacional;
- Facilidade de manipulação dos resultados, podendo exportá-los em formato de arquivo de Excel.

CAPÍTULO III – METODOLOGIA E MODELAGEM

III.1 Metodologia de Implementação

Todas as simulações foram feitas completamente no EMSO, seguindo o banco de dados do programa *VRTherm*.

Cada um dos sistemas gerados neste capítulo consiste em sistemas de equações algébrico-diferenciais (EADs), que podem ser resolvidos utilizando rotinas computacionais internas de resolução, como o código DASSL [4].

Para poder conectar a alimentação ao modelo, foi criado um modelo separadamente, em que o usuário precisa especificar suas variáveis (vazão, temperatura, pressão, por exemplo) e a saída desse modelo é automaticamente ligada à entrada do separador (o código se encontra no Apêndice).

Além disso, esses modelos são criados para que eles sejam conectados a outros modelos previamente criados e armazenados na EML [12], portanto eles devem ser padronizados para que haja esse encaixe.

No caso *BlackOil*, como não se considera composição das fases, foi preciso criar um modelo intermediário, denominado *trichanger* (seu código está explicitado no Apêndice). Nele foi criado um conjunto de variáveis de entrada como corrente trifásica e um conjunto de variáveis de saída como corrente bifásica (padrão da EML). Nas equações, foram feitas igualdades entre variáveis análogas (temperatura, pressão, vazão total etc.) e, quando havia diferenciação de variáveis, foram feitas adequações para que satisfaçam os graus de liberdade do problema (por exemplo, especificar uma composição de saída, de acordo com os dados das correntes e equipamentos à jusante). Além disso, no modelo adaptado foram adicionadas as equações de válvula, para facilitar a manipulação delas, por exemplo, se houver a necessidade de fazer testes sem alguma válvula. A seguir, encontra-se abaixo um diagrama dos blocos utilizados no EMSO.

Figura 3 - Modelos utilizados para o Separador Trifásico BlackOil no EMSO.

No caso do modelo composicional, essa adaptação não foi mais necessário, pois as composições já eram especificadas ou calculadas desde o começo. Assim, as saídas puderam ser diretamente correntes padronizadas da EML (*streams*). Entretanto, o modelo para a alimentação ainda teve de ser criado, já que ela ainda é trifásica.

III.2 Modelagem do Caso BlackOil

O separador trifásico a ser estudado neste trabalho é dividido em duas câmaras: Câmara de Separação (CS), onde há a fase oleosa e a fase aquosa, e Câmara de Óleo (CL), onde há apenas fase oleosa. Elas estão separadas por um vertedouro de tamanho definido, conforme mostra a figura abaixo:

Figura 4 - Esquema simplificado das variáveis dentro do separador trifásico.

Além disso, para as modelagens abaixo, a seguinte nomenclatura foi utilizada:

BSW (Basic Sediments and Water)	Concentração volumétrica de água na fase oleosa da alimentação (m³/m³)
C _{cl}	Comprimento da câmara de óleo CL (m)
C _{cs}	Comprimento da câmara de separação CS (m)
C _{vert}	Comprimento do vertedouro (m)
C_v^{maxl}	Constante de válvula para a fase oleosa
C_v^{maxw}	Constante de válvula para a fase aquosa
C_v^{maxg}	Constante de válvula para a fase gasosa
D	Diâmetro do separador (m)
ef_{lw}	Eficiência de coleta de óleo na fase aquosa
ef _{wl}	Eficiência de coleta de água na fase oleosa
g	Constante gravitacional (m/s²)
G _e	Vazão molar de entrada de gás (kmol/h)
G _s	Vazão molar de saída de gás (kmol/h)
h _{cl}	Altura total de líquido na câmara de óleo (m)
h _{cs}	Altura total de líquido na câmara de separação (m)
h _{fwcs}	Altura da interface água/óleo na câmara de separação (m)
h _{vert}	Altura do vertedouro (m)
L _e	Vazão molar de entrada de óleo (kmol/h)
L _s	Vazão molar de saída de óleo (kmol/h)
N _{cl}	Número de mols de líquido na câmara de óleo (kmol)

Tabela 2: Nomenclatura das variáveis utilizadas nas modelagens BlackOil.

N _{cs}	Número de mols de líquido na câmara de separação (kmol)
N _{flcs}	Número de mols de óleo na câmara de separação (kmol)
N _{fwcs}	Número de mols de água na câmara de separação (kmol)
Р	Pressão dentro do separador (kPa)
P_l	Pressão a jusante da saída de óleo (kPa)
P_{w}	Pressão a jusante da saída de água (kPa)
P_{g}	Pressão a jusante da saída de gás (kPa)
PM _{ar}	Massa molar do ar (kg/kmol)
PM_g	Massa molar do gás separado (kg/kmol)
PM _l	Massa molar da água separada (kg/kmol)
PM_w	Massa molar do óleo separado (kg/kmol)
Q_{gi}	Vazão volumétrica de entrada de gás (m³/s)
Q_{go}	Vazão volumétrica de saída de gás (m3/s)
Q_{li}	Vazão volumétrica de entrada de óleo (m3/s)
Q _{lo}	Vazão volumétrica de saída de óleo (m3/s)
Q_{lv}	Vazão volumétrica do vertedouro (m ³ /s)
Q _{wi}	Vazão volumétrica de entrada de água (m ³ /s)
Q_{wo}	Vazão volumétrica de saída de água (m ³ /s)
Т	Temperatura dentro do separador
<i>TOG</i> (Total Oil and Grease)	Concentração volumétrica de óleo na fase aquosa da alimentação (m ³ /m ³)
V _{CL}	Volume de líquido na câmara de óleo (m ³)
V _{CS}	Volume de líquido na câmara de separação (m ³)

V _{FLCS}	Volume de óleo na câmara de separação (m ³)
V _{FWCS}	Volume de água na câmara de separação (m ³)
V _{LFWCS}	Volume de óleo em fase aquosa na câmara de separação (m³)
V _{WCL}	Volume de água na câmara de óleo (m³)
V _{WFLCS}	Volume de água em fase oleosa na câmara de separação (m³)
V_T	Volume total do separador (m ³)
W _e	Vazão molar de entrada de água (kmol/h)
Ws	Vazão molar de saída de água (kmol/h)
$ ho_g$	Densidade do gás separado (kg/m³)
ρ_l	Densidade do óleo separado (kg/m³)
$ ho_{ref}$	Densidade padrão - água a 15.5℃ e 1bar (kg/m³)
ρ_w	Densidade da água separada (kg/m³)

III.2.1 Sem Dispersão

Como foi considerado o balanço de volume, antes da modelagem em si cabe explicitar o seguinte:

O volume de uma seção de cilindro ocupada por líquido é dada por:

$$V = \frac{V_c}{\pi} \left[\cos^{-1} \left(1 - \frac{2h}{D} \right) - \frac{2(D - 2h)\sqrt{h(D - h)}}{D^2} \right]$$
(3.1)

Onde V_c é o volume total do cilindro. Ao derivar a equação (3.1), sabendo-se que $V_c = C \frac{\pi D^2}{4}$, segue que:

$$\frac{dV}{dh} = 2C\sqrt{h(D-h)} \quad (3.2)$$

Assim, para transformar a derivada do volume em função de tempo para a derivada temporal da altura utiliza-se a seguinte expressão:

$$\frac{dV}{dt} = \frac{dV}{dh}\frac{dh}{dt} = 2C\sqrt{h(D-h)}\frac{dh}{dt}$$
(3.3)

$$\therefore \frac{dh}{dt} = \frac{\frac{dV}{dt}}{2C\sqrt{h(D-h)}} \quad (3.4)$$

Considerando todas as hipóteses feitas na revisão bibliográfica (Pinto, 2009), as equações que regem o sistema são:

• Balanço total de líquido em CS:

$$\frac{dh_{cs}}{dt} = \frac{Q_{wi} + Q_{li} - Q_{lv} - Q_{wo}}{2C_{cs}\sqrt{h_{cs}(D - h_{cs})}}$$
(3.5)

Se $h_{cl} < h_{cs}$:

• Balanço de líquido em CL:

$$\frac{dh_{cl}}{dt} = \frac{Q_{lv} - Q_{lo}}{2C_{cl}\sqrt{h_{cl}(D - h_{cl})}}$$
(3.6*a*)

Se $h_{cl} \ge h_{cs}$:

• Balanço de líquido em CL (alturas iguais):

$$\frac{dh_{cl}}{dt} = \frac{dh_{cs}}{dt} \quad (3.6b)$$

• Balanço de água em CS:

$$\frac{dh_{fwcs}}{dt} = \frac{Q_{wi} - Q_{wo}}{2C_{cs}\sqrt{h_{fwcs}(D - h_{fwcs})}}$$
(3.7)

• Balanço de gás no tanque, em termos de pressão do gás:

$$\frac{dP}{dt} = \frac{P(Q_{li} + Q_{wi} + Q_{gi} - Q_{lo} - Q_{wo} - Q_{go})}{V_t - V_{cs} - V_{cl}}$$
(3.8)

• Volume de líquido no compartimento CS:

$$V_{CS} = C_{CS} \left[\left(\frac{D^2}{4} \right) \cos^{-1} \left(1 - \frac{2h_{cs}}{D} \right) - \frac{(D - 2h_{cs})\sqrt{h_{cs}(D - h_{cs})}}{2} \right]$$
(3.9)

• Volume de líquido no compartimento CL:

$$V_{CL} = C_{CL} \left[\left(\frac{D^2}{4} \right) \cos^{-1} \left(1 - \frac{2h_{cl}}{D} \right) - \frac{(D - 2h_{cl})\sqrt{h_{cl}(D - h_{cl})}}{2} \right]$$
(3.10)

• Volume de água em CS:

$$V_{FWCS} = C_{CS} \left[\left(\frac{D^2}{4} \right) \cos^{-1} \left(1 - \frac{2h_{fWCS}}{D} \right) - \frac{(D - 2h_{fWCS}) \sqrt{h_{fWCS} (D - h_{fWCS})}}{2} \right]$$
(3.11)

• Volume de óleo em CS:

$$V_{FLCS} = V_{CS} - V_{FWCS} \quad (3.12)$$

• Vazão de óleo no vertedouro:

$$Q_{lv} = 0.415\sqrt{2g}[C_{vert} - 0.2(h_{cs} - h_{vert})](h_{cs} - h_{vert})^{1.5}$$
(3.13)

Onde:

-

$$C_{vert} = 2\sqrt{h_{vert}(D - h_{vert})} \quad (3.14)$$

• Saída de óleo com válvula [1]:

$$Q_{lo} = 2.4028 * 10^{-4} C_{v}^{maxl} x_{l} \sqrt{\frac{P - P_{l} + \rho_{l} g h_{cl}}{\rho_{l}}} \quad (3.15)$$

• Saída de água com válvula [1]:

$$Q_{wo} = 2.4028 * 10^{-4} C_v^{maxw} x_w \sqrt{P - P_w + \rho_w g h_{fwcs} + \rho_l g (h_{cs} - h_{fwcs})}$$
(3.16)

• Saída de gás com válvula [1]:

$$Q_{go} = 2.4028 * 10^{-4} C_v^{maxg} x_g \sqrt{\frac{(P - P_g)(P + P_g)T\frac{PM_{ar}}{PM_g}}{P^2}}$$
(3.17)

III.2.2 Com Dispersão

Neste caso, dispersões de água em óleo e vice-versa foram levadas em conta. Ou seja, há uma transferência de massa entre as fases líquidas, a partir de micro bolhas da fase dispersa na dispersante.

No geral, os balanços seguem a mesma linha da modelagem anterior, ou seja, eles foram deduzidos a partir de balanços de massa volumétricos, considerando as densidades das fases líquidas iguais entre si. Assim, as derivadas em relação às alturas foram encontradas da mesma maneira.

Entretanto, há algumas outras diferenças nesta modelagem, conforme mostram as seguintes equações:

Se $h_{cl} < h_{vert}$:

Balanço total de líquido em CS:

$$\frac{dh_{cs}}{dt} = \frac{Q_{wi} + Q_{li} - Q_{lv} - Q_{wo}}{2C_{cs}\sqrt{h_{cs}(D - h_{cs})}}$$
(3.18*a*)

Balanço total de líquido em CL:

$$\frac{dh_{cl}}{dt} = \frac{Q_{lv} - Q_{lo}}{2C_{cl}\sqrt{h_{cl}(D - h_{cl})}}$$
(3.19*a*)

Se $h_{cl} \ge h_{vert}$:

• Balanço total de líquido:

$$\frac{dh_{cs}}{dt} = \frac{Q_{wi} + Q_{li} - Q_{lo} - Q_{wo}}{2C_{cs}\sqrt{h_{cs}(D - h_{cs})}}$$
(3.18b)

• Balanço total de líquido em CL (alturas iguais):

$$\frac{dh_{cl}}{dt} = \frac{dh_{cs}}{dt} \quad (3.19b)$$

• Balanço de água em CS:

$$\frac{dh_{fwcs}}{dt} = \frac{Q_{wi}(1 - TOG.\,ef_{lw}) + Q_{li}.\,BSW.\,ef_{wl} - Q_{wo}}{2C_{cs}\sqrt{h_{fwcs}(D - h_{fwcs})}}$$
(3.20)

• Balanço de massa para a fase gasosa em termos de pressão:

$$\frac{dP}{dt} = \frac{P(Q_{li} + Q_{wi} + Q_{gi} - Q_{lo} - Q_{wo} - Q_{go})}{V_t - V_{cs} - V_{cl}}$$
(3.21)

• Balanço de água dispersa em óleo no compartimento CS:

$$\frac{dV_{wflcs}}{dt} = Q_{li}.BSW.(1 - ef_{wl}) - Q_{lv}x_{wflcs}$$
(3.22)

Sendo:

$$x_{wflcs} = \frac{V_{WFLCS}}{V_{CS} - V_{FWCS}} \quad (3.23)$$

• Balanço de óleo disperso em água no compartimento CS:

$$\frac{dV_{lfwcs}}{dt} = Q_{wi}.TOG.(1 - ef_{lw}) - Q_{wo}x_{lfwcs}$$
(3.24)

Sendo:

$$x_{lfwcs} = \frac{V_{LFWCS}}{V_{FWCS}}$$
(3.25)

• Balanço de água dispersa em óleo no compartimento CL:

$$\frac{dV_{WCL}}{dt} = Q_{lv} x_{wflcs} - Q_{lo} x_{wcl} \quad (3.26)$$

Sendo:

$$x_{wcl} = \frac{V_{WCL}}{V_{CL}} \quad (3.27)$$

• Volume de líquido no compartimento CS:

$$V_{CS} = \frac{C_{CS} \cdot D^2}{4} (\theta_t - \sin \theta_t \cos \theta_t)$$
(3.28)

Sendo:

$$\theta_{\rm t} = \cos^{-1} \left(1 - \frac{2h_{\rm cs}}{D} \right) \quad (3.29)$$

• Volume de líquido no compartimento CL:

$$V_{CL} = \frac{C_{CL} \cdot D^2}{4} (\theta_l - \sin \theta_l \cos \theta_l)$$
(3.30)

Sendo:

$$\theta_l = \cos^{-1}\left(1 - \frac{2h_{cl}}{D}\right) \quad (3.31)$$

• Volume de água em CS:

$$V_{FWCS} = \frac{C_{CS} \cdot D^2}{4} (\theta_w - \sin \theta_w \cos \theta_w) \quad (3.32)$$

Sendo:

$$\theta_w = \cos^{-1}\left(1 - \frac{2h_{fwcs}}{D}\right) \quad (3.33)$$

• Vazão no vertedouro:

$$Q_{lv} = 0.415\sqrt{2g}[C_{vert} - 0.2(h_{cs} - h_{vert})](h_{cs} - h_{vert})^{1.5}$$
(3.34)

Onde C_{vert} é definido pela equação (3.14).

• Saída de óleo com válvula [2]:

$$Q_{lo} = \frac{C_{v}^{maxl} x_{l}}{70.028} \sqrt{\frac{P + \rho_{l} g. h_{cl} - P_{l}}{\rho_{l}}}$$
(3.35)

• Saída de água com válvula [2]:

$$Q_{wo} = \frac{C_v^{maxw} x_w}{70.028} \sqrt{\frac{P - P_w + \rho_w g \cdot h_{fwcs} + \rho_l \cdot g(h_{cs} - h_{fwcs})}{\frac{\rho_w}{\rho_{ref}}}}$$
(3.36)

• Saída de gás com válvula [2]:

$$Q_{go} = \frac{C_{v}^{maxg} x_{g}}{70.028} \sqrt{\frac{(P - P_{g})(P + P_{g})T\frac{PM_{ar}}{PM_{g}}}{P^{2}}}$$
(3.37)

III.2.3 Adaptação para o EMSO

Para a modelagem ser escrita conforme o padrão de correntes do EMSO, e para aumentar o nível de precisão da modelagem, adequando melhor ao sistema de extração de petróleo, as seguintes modificações foram feitas:

- As densidades de cada fase foram consideradas diferentes entre si, e inclusive considera dispersões, se houver, para realizar os balanços;
- Idem para as massas molares;
- Foram feitos balanços molares em vez de volumétricos;
- As equações de válvula foram modificadas de acordo com Nunes, Medeiros e Araújo [9];
- A equação da pressão do gás se tornou balanço molar para a fase gasosa, já que aquele considerava obrigatoriamente gás ideal, enquanto este pode ou não considerá-lo e, além do mais, foi adicionado um fator de compressibilidade que é calculado a partir dos cálculos das propriedades do gás dentro do ciclo de compressão, que já possui uma composição específica;
- As dispersões foram desprezadas, pois na planta de extração não havia dados especificando-as.
- Como o tanque pode ser considerado muito grande, foram adicionadas equações de hidrostática para definir, aproximadamente, as saídas de pressão, para motivos de organização das equações no EMSO:

$$P_{l} = P + \rho_{l}gh_{cl} \quad (3.38)$$

$$P_{w} = P + \rho_{cs}gh_{cs} \quad (3.39)$$

Na literatura, não foi encontrada nenhuma modelagem de separador trifásico feita desta forma (balanços molares em modelo *BlackOil*).

Seguem abaixo as equações:

• Balanço de gás no separador:

$$\frac{dN_g}{dt} = G_e - G_s \quad (3.40)$$

Se $h_{cl} < h_{vert}$:

Balanço total de líquido em CS:

$$\frac{dN_{cs}}{dt} = W_e + L_e - L_v - W_s$$
(3.41*a*)

• Balanço total de líquido em CL:

$$\frac{dN_{cl}}{dt} = L_v - L_s \quad (3.42a)$$

Se $h_{cl} \ge h_{vert}$:

• Balanço total de líquido em CS:

$$\frac{d(N_{cs} + N_{cl})}{dt} = W_e + L_e - L_s - W_s$$
(3.41b)

- Balanço total de líquido em CL (alturas iguais): $h_{cs} = h_{cl} (3.42b)$
- Balanço de água em CS:

$$\frac{dN_{fwcs}}{dt} = W_e - W_s \quad (3.43)$$

Se $h_{cs} > h_{vert}$:

Vazão molar de óleo no vertedouro:

$$L_{v} = 0.415\sqrt{2g} \left(\frac{\rho_{l}}{PM_{l}}\right) [C_{vert} - 0.2(h_{cs} - h_{vert})](h_{cs} - h_{vert})^{1.5}$$
(3.44a)

Onde Cvert é calculado pela equação (3.14).

Se $h_{cs} \leq h_{vert}$:

Vazão nula do vertedouro:

$$L_v = 0 \quad (3.44b)$$

- Os cálculos dos volumes de líquidos no separador são os mesmos contidos entre as equações (3.28) a (3.33).
- Vazões de saída com válvulas [9]:

$$L_{s} = 2.4 * 10^{-4} \left(\frac{\rho_{l}}{PM_{l}}\right) C_{vmax}^{l} x_{l} \sqrt{\frac{P - P_{l} + \rho_{l}.g.h_{cl}}{\rho_{l}}} \quad (3.45)$$

$$W_{s} = 2.4 * 10^{-4} \left(\frac{\rho_{w}}{PM_{w}}\right) C_{vmax}^{w} x_{w} \sqrt{\frac{P - P_{w}\rho_{w}.g.h_{fwcs} + \rho_{l}.g(h_{cs} - h_{fwcs})}{\rho_{w}/\rho_{ref}}}$$
(3.46)

$$G_{s} = 2.4 * 10^{-4} \left(\frac{\rho_{g}}{PM_{g}}\right) C_{vmax}^{g} x_{g} \sqrt{\frac{(P+P_{g})(P-P_{g})}{\rho_{g}}} (3.47)$$

III.3 Modelagem do Caso Composicional

III.3.1 Modelo Original

Nunes [3] modelou o separador trifásico com grande robustez. Assim, diversas variáveis foram modificadas. Segue abaixo a tabela dessas variáveis:

F	Vazão molar total de entrada (kmol/h)
H_{f}	Entalpia da carga (kJ)
H_g	Entalpia da saída gasosa (kJ)
H_l	Entalpia da saída oleosa (kJ)
H_t	Entalpia total do separador (kJ)
H _w	Entalpia da saída aquosa (kJ)
K _{l,i}	Constante de equilíbrio termodinâmico entre a fase oleosa e a fase gasosa para o componente <i>i</i>
K _{w,i}	Constante de equilíbrio termodinâmico entre a fase aquosa e a fase gasosa para o componente <i>i</i>
L_v	Vazão molar no vertedouro (kmol/h)
N _l	Número de mols totais na fase oleosa (kmol)
N _{lfwcs}	Número de mols de óleo em fase aquosa na câmara de separação (kmol)
N _{wflcs}	Número de mols de água em fase oleosa na câmara de separação (kmol)
N _{wcl}	Número de mols de água em fase oleosa na câmara de óleo (kmol)
x _i	Composição molar do componente <i>i</i> na fase oleosa
<i>y</i> _i	Composição molar do componente <i>i</i> na fase gasosa

Tabela 3: Variáveis presentes apenas no caso composicional.

w _i	Composição molar do componente <i>i</i> na fase aquosa
Z_g	Fator de compressibilidade do gás separado

Dessa forma, suas equações são:

• Balanço de massa por componente:

$$\frac{dN_i}{dt} = Fz_i - [L_s(1 - x_{wflcs}) + W_s x_{lfwcs}]x_i - [W_s(1 - x_{lfwcs}) + L_s x_{wcl}]w_i - G_s y_i$$
(3.48)

Sendo:

$$N_{i} = N_{g}y_{i} + N_{l}x_{i} + N_{w}w_{i} \quad (3.49)$$

$$N_{l} = N_{flcs} - N_{wflcs} + N_{cl} - N_{wcl} + N_{lfwcs} \quad (3.50)$$

$$N_{w} = N_{wflcs} + N_{wcl} + N_{fwcs} - N_{lfwcs} \quad (3.51)$$

Se $h_{cl} < h_{vert}$:

• Balanço de massa no compartimento CL:

$$\frac{dN_{cl}}{dt} = L_{ver} - L_s \quad (3.52a)$$

Se $h_{cl} \ge h_{vert}$:

• Altura de líquido no compartimento CL:

$$h_{cl} = h_{cs} \quad (3.52b)$$

• Balanço de massa de água em fase oleosa no compartimento CS:

$$\frac{dN_{wflcs}}{dt} = F.BSW\beta_l R_{lw}(1 - ef_{wl}) - L_v x_{wflcs}$$
(3.53)

Sendo:

$$R_{lw} = \frac{PM_l\rho_w}{PM_w\rho_l} \quad (3.54)$$
$$x_{wflcs} = \frac{N_{wflcs}}{N_{flcs}} \quad (3.55)$$

• Balanço de massa de água em fase oleosa no compartimento CL:

$$\frac{dN_{wcl}}{dt} = L_v x_{wflcs} - L_s x_{wcl} \quad (3.56)$$

Sendo:

$$x_{wcl} = \frac{N_{wcl}}{N_{cl}} \quad (3.57)$$

• Balanço de massa de óleo em fase aquosa no compartimento CS:

$$\frac{dN_{lfwcs}}{dt} = F.BSW\beta_l(1 - ef_{lw}) - W_s x_{lfwcs}$$
(3.58)

Sendo:

$$x_{wcl} = \frac{N_{lfwcs}}{N_{fwcs}} \quad (3.59)$$

• Balanço de energia:

$$\frac{dH_t}{dt} = FH_f - V_sH_g - L_sH_l - W_sH_w$$
(3.60)

Sendo:

$$H_t = N_g H_g + N_l H_l + N_w H_w$$
(361)

• Equilíbrio de fases:

$$x_i = K_{l,i} y_i \quad (3.62)$$
$$w_i = K_{w,i} y_i \quad (3.63)$$

• Normalização das frações molares:

$$\sum_{i} x_{i} = \sum_{i} w_{i} = \sum_{i} y_{i} = 1$$
(3.64)

• Volume total do separador (restrição de volume):

$$\frac{N_g RTZ_g}{P} + \frac{N_l PM_l}{\rho_l} + \frac{N_w PM_w}{\rho_w} = (C_{cs} + C_{cl})\frac{\pi D^2}{4}$$
(3.65)

• Volume de água no compartimento CS:

$$\frac{N_{fwcs}PM_w}{\rho_w} = \frac{C_{cs}D^2}{4}(\alpha - \cos\alpha\sin\alpha)$$
(3.66)
Sendo:

$$\alpha = \cos^{-1}\left(1 - \frac{2h_{fwcs}}{D}\right) \quad (3.67)$$

• Volume total de líquido no compartimento CS:

$$\frac{N_{fwcs}PM_w}{\rho_w} + \frac{N_{flcs}PM_l}{\rho_l} = \frac{C_{cs}D^2}{4}(\theta - \cos\theta\sin\theta)$$
(3.68)

Sendo:

$$\theta = \cos^{-1}\left(1 - \frac{2h_{cs}}{D}\right) \quad (3.69)$$

• Volume total de líquido no compartimento CL:

$$\frac{N_{cl}PM_l}{\rho_l} = \frac{C_{cl}D^2}{4}(\varphi - \cos\varphi\sin\varphi)$$
(3.70)

Sendo:

$$\varphi = \cos^{-1} \left(1 - \frac{2h_{flcl}}{D} \right) \quad (3.71)$$

• Saída de óleo com válvula:

$$L_{s} = C_{v}^{maxl} x_{l} \frac{\sqrt{d_{l}(P - P_{l} + \rho_{l}.g.h_{cl})}}{0.0693PM_{l}} \quad (3.72)$$

Sendo:

$$d_l = \frac{\rho_l}{\rho_{ref}} \quad (3.73)$$

• Saída de água com válvula:

$$W_{s} = C_{v}^{maxw} x_{w} \frac{\sqrt{d_{w} \left(P - P_{w} + \rho_{w}. g. h_{fwcs} + \rho_{l}. g\left(h_{cs} - h_{fwcs}\right)\right)}}{0.0693 P M_{w}}$$
(3.74)

Sendo:

$$d_w = \frac{\rho_w}{\rho_{ref}} \quad (3.75)$$

• Saída de gás com válvula:

$$G_{s} = C_{v}^{maxg} x_{g} \frac{\sqrt{d_{g} (P - P_{g}) (P + P_{g})}}{2.832 P M_{g}} \quad (3.76)$$

• Vazão do vertedouro:

$$L_{v} = 24.88 \frac{\rho_{l}}{PM_{l}} \sqrt{2g} [C_{vert} - 0.2(h_{cs} - h_{chic})](h_{cs} - h_{chic})^{1.5}$$
(3.77)

III.3.2 Adaptação para o EMSO

Neste caso, não foram precisas muitas modificações. A principal delas, para fins de simplificação de cálculos e pelo mesmo motivo do caso *BlackOil*, foi desprezar as dispersões na modelagem adaptada ao *EMSO*. Assim, as equações (3.46), (3.48) e (3.49) se tornam, respectivamente:

$$\frac{dN_i}{dt} = Fz_i - L_s x_i - W_s w_i - G_s y_i \quad (3.76)$$

$$\boxed{N_l = N_{flcs} + N_{cl}} \quad (3.77)$$

$$\boxed{N_w = N_{fwcs}} \quad (3.78)$$

As equações (3.53) até (3.59) foram desprezadas, pois são relativas às dispersões. As equações (3.38) e (3.39), relativas às quedas de pressão no equipamento, foram adicionadas, pelo mesmo motivo do *BlackOil*.

Além disso, foi decidido que os controles do separador atuassem diretamente nas vazões de saída, em vez de atuarem nas aberturas das respectivas válvulas, como foi proposto até agora. Os principais motivos para tal decisão são:

- Desde que não haja uma mudança de dinâmica da válvula, o resultado continua o mesmo;
- O número de equações diminui, pois não há mais as equações das válvulas, e sim a especificação direta das vazões, ou seja, há uma simplificação do modelo;

CAPÍTULO IV – INTEGRAÇÃO DO SEPARADOR COM O CICLO DE COMPRESSÃO

IV.1 Equipamentos Envolvidos no Ciclo

Resumidamente, o ciclo analisado consiste em um trocador de calor, um vaso de flash e um compressor, com uma turbina fornecendo trabalho para ele. Após o compressor, sai uma corrente de reciclo para antes do trocador. Na prática, há vários desses ciclos em paralelo na planta de extração de petróleo.

Um dos problemas comuns no ciclo de compressão é o chamado *surge,* que ocorre quando a demanda da carga a jusante muda e fica fora do ponto de operação do compressor. Dessa forma, pode ocorrer uma reversão de fluxo dentro do compressor. Sem uma intervenção externa, o ciclo de reversão de fluxo continuará a prejudicar o compressor até que haja uma falha completa nesse equipamento [15].

Para evitar essa situação, divide-se a linha em duas: uma segue para o equipamento seguinte, enquanto a outra volta para o início do sistema, como uma vazão de reciclo. A vazão reciclada deve ser controlada de forma que, indiferentemente da demanda de carga nos equipamentos seguintes, não haja alterações no compressor. Esta é a função do *Anti-Surge*.

A figura abaixo mostra um diagrama resumido dos equipamentos no sistema estudado neste trabalho.

Figura 5 - Diagrama resumido do sistema integrado separador trifásico + ciclo de compressão.

De acordo com a figura 6, reconhecem-se os seguintes itens:

- SG1 Separador trifásico gravitacional: separa o gás para o ciclo de compressão;
- R1 Trocador de calor (*Cooler*): resfria os gases menos leves, para que eles não entrem no compressor e se condensem dentro dele;
- F1 Vaso de flash: separa o que foi condensado no *cooler*, para entrar apenas gás no compressor;
- T1 Turbina centrífuga: fornece trabalho necessário ao compressor;
- C1 Compressor centrífugo: promove a compressão propriamente dita do gás, que serve para, principalmente, ajudar no sistema de gas lift;
- LC1 Controlador de nível de água em SG1;
- LC2 Controlador de nível de óleo em SG1;
- PC1 Controlador de pressão em SG1;
- LC3 Controlador de nível em F1;
- PC2 Controlador de pressão em F1;
- AS1 Controlador Anti-Surge.

IV.2 Modelagem do Compressor e da Turbina no Ciclo

O compressor, por ser o equipamento principal do ciclo, também será modelado neste trabalho [7], embora de um modo resumido. A sua principal consideração é que não há acúmulo nele. Portanto, não há equações diferenciais neste modelo.

Além disso, a turbina, por ser intimamente conectada ao compressor, também está modelada aqui. Para ela, já existe uma equação diferencial, pois a sua velocidade de rotação varia com o tempo. Entretanto, a sua modelagem é considerada de primeira ordem, por possuir uma dinâmica muito rápida.

A nomenclatura referente a esta modelagem é a seguinte:

F _e	Vazão de Entrada no Compressor (kmol/h)
F _s	Vazão de Saída no Compressor (<i>kmol/h</i>)
F _{vol}	Vazão Volumétrica de Entrada no Compressor (m^3/h)
Н	Head do Compressor (kJ/kg)

Tabela 4 - Variáveis para a modelagem do compressor+turbina.

H _{isen}	Head Isentrópico do Compressor (kJ/kg)		
H _{poli}	Head Politrópico do Compressor (kJ/kg)		
h(T, P, y)	Entalpia em Função de Temperatura, Pressão e Composição (kJ/kmol)		
h _e	Entalpia de Entrada do Compressor (<i>kJ/kmol</i>)		
h _s	Entalpia de Saída do Compressor (kJ/kmol)		
k _{isen}	Coeficiente Isentrópico		
k _{poli}	Coeficiente Politrópico		
MW _m	Massa Molar Média do Compressor (kg/kmol)		
Pe	Pressão de Entrada do Compressor (kPa)		
Ps	Pressão de Saída do Compressor (kPa)		
R	Velocidade de Rotação da Turbina (<i>rpm</i>)		
RPM	Velocidade de Rotação Definida na Turbina (rpm)		
R _{ref}	Velocidade de Rotação de Referência na Turbina (<i>rpm</i>)		
R _{gas}	Constante dos Gases (kJ/kg/K)		
s(T, P, y)	Entropia em Função de Temperatura, Pressão e Composição (kJ/kg/K)		
T _e	Temperatura de Entrada do Compressor (K)		
T _s	Temperatura de Saída do Compressor (K)		
T _{isen}	Temperatura Isentrópica no Compressor (K)		
W _b	Brake Power no Compressor (kW)		
W _f	Potência do Fluido (<i>Fluid Power</i>) no Compressor (<i>kW</i>)		
W_p	Perda de Potência no Compressor (kW)		
We	Trabalho de Entrada no Compressor (kW)		
W _{reft}	Trabalho de Referência na Turbina (<i>kW</i>)		
W _{st}	Trabalho de Saída da Turbina (kW)		

y _{e,i}	Composição do Componente <i>i</i> na Entrada do Compressor			
$y_{s,i}$	Composição do Componente <i>i</i> na Saída do Compressor			
Z _e	Fator de Compressibilidade na Entrada do Compressor			
Zs	Fator de Compressibilidade na Saída do Compressor			
Е	Eficiência de Operação do Compressor			
E _{isen}	Eficiência Isentrópica do Compressor			
ε _m	Eficiência Mecânica do Compressor			
$arepsilon_{poli}$	Eficiência Politrópica do Compressor			
$ ho_g$	Densidade do Gás Dentro do Compressor (kg/m^3)			
τ	Constante de Tempo na Turbina (s)			

No compressor:

• Balanço de Massa Global:

$$F_e = F_s \quad (4.1)$$

• Balanço de Massa por Componente:

$$y_{e,i} = y_{s,i}$$
 (4.2)

• Head Isentrópico:

$$H_{isen}MW_m = h(T_{isen}, P_s, y_{s,i}) - h_e$$
 (4.3)

• Balanço de energia:

$$H.MW_m = h_s - h_e \quad (4.4)$$

• Brake Power.

$$W_b = W_e = \frac{W_f}{\varepsilon_m} \quad (4.5)$$

• Temperatura Isentrópica:

$$s(T_{isen}, P_s, y_{s,i}) = s(T_e, P_e, y_{e,i})$$
(4.6)

• Perda de Potência:

$$W_p = W_b - W_f \quad (4.7)$$

• Eficiência Isentrópica:

$$\varepsilon_{isen} = \frac{h_s - h_e}{h(T_{isen}, P_s, y_{s,i}) - h_e}$$
(4.8)

• Relação Eficiência Isentrópica - Politrópica:

$$\frac{\varepsilon_{poli}}{H_{poli}} = \frac{\varepsilon_{isen}}{H_{isen}} \quad (4.9)$$

• Eficiência Politrópica:

$$\frac{\varepsilon_{poli}(k_{poli}-1)}{k_{poli}} = \frac{k_{isen}-1}{k_{isen}}$$
(4.10)

• Coeficiente Isentrópico:

$$H_{isen}MW_m = \frac{k_{isen}}{k_{isen} - 1} RT_e \left(\frac{Z_e + Z_s}{2}\right) \left[\left(\frac{P_s}{P_e}\right)^{\frac{k_{isen} - 1}{k_{isen}}} - 1 \right]$$
(4.11)

• Coeficiente Politrópico:

$$H_{poli}MW_m = \frac{k_{poli}}{k_{poli} - 1} RT_e \left(\frac{Z_e + Z_s}{2}\right) \left[\left(\frac{P_s}{P_e}\right)^{\frac{k_{poli} - 1}{k_{poli}}} - 1 \right]$$
(4.12)

• Potência de Fluido:

$$W_f = H.MW_mF_e \quad (4.13)$$

• Vazão Volumétrica de Sucção:

$$F_{vol} = F_e \frac{MW_m}{\rho_g} \quad (4.14)$$

• Eficiência se a Operação for Isentrópica:

$$\varepsilon = \varepsilon_{isen}$$
 (4.15*a*)

• Eficiência se a Operação for Politrópica:

$$\varepsilon = \varepsilon_{poli}$$
 (4.15*b*)

Na turbina:

• Velocidade Angular:

$$\tau \frac{dR}{dt} = RPM - R \quad (4.16)$$

Trabalho:

$$W_{st} = W_{reft} \left(\frac{R}{R_{ef}}\right)^2 \quad (4.17)$$

IV.3 Metodologia de Implementação do Sistema no EMSO

Na implementação no EMSO, além dos modelos dos equipamentos contidos no ciclo, foram necessários mais dois modelos para haver a conexão necessária: um *mixer* e um *splitter*.

O *mixer* e o *splitter* não são propriamente equipamentos, mas sim dispositivos necessários para o EMSO interpretar, respectivamente, como a união de duas correntes e a separação de uma corrente em duas. O diagrama abaixo descreve como o EMSO interpreta o ciclo.

Figura 6 - O sistema separador + ciclo de compressão resumidamente da maneira como o EMSO interpreta.

Cada bloco desse diagrama representa um modelo do EMSO. Todas as correntes, com a exceção da corrente que liga a turbina (T1) com o compressor (C1), são correntes materiais. T1 está conectada a C1 a partir de uma corrente de trabalho.

Os equipamentos foram considerados adiabáticos, ou seja, não há uma fonte de calor externa. Os modelos do EMSO referentes aos blocos acima são:

- feed modelo trisource: fonte de alimentação trifásica, ela é explicitada no apêndice;
- feed2 modelo source: fonte de alimentação tal qual se encontra no banco de dados da EML;
- SG1 modelo *triseparator_control*: o separador trifásico propriamente dito, o seu código também está no apêndice;
- M1 modelo *mixer*: modelo de mistura de correntes, ele se encontra disponível no banco de dados da EML;
- R1 modelo *cooler*, derivado do modelo *heater_basic*: ambos disponíveis no banco de dados da EML;
- F1 modelo *flash* adaptado: a única diferença deste para o modelo do banco de dados da EML é que ele contém uma corrente extra de entrada, que é adicionada nos seus balanços de massa e de energia;
- C1 modelo *Centrifugal_Compressor*. é o modelo do compressor, seu código está no apêndice;
- T1 modelo *Turbine*: é o modelo da turbina, cujo único objetivo neste sistema é fornecer trabalho para o compressor;

 S1 – modelo splitter: modelo de separação de correntes, ele está disponível no banco de dados da EML.

Outro detalhe importante desta integração é que o modelo do separador utilizado aqui é o *BlackOil*, pois o modelo Composicional, por conter cálculos de *flash* trifásico, possui problemas severos de convergência. Assim, foi estipulada uma composição do gás que sai do separador, para poder se conectar ao ciclo.

Mesmo assim, ainda há problemas de convergência em alguns casos. Para resolver isso, rodou-se o programa sob condições mais simples (por exemplo, em vez de utilizar algum balanço de energia, especificou-se a temperatura ou a pressão de certo equipamento constante) e gravou-se o resultado como *GuessFile* ("Arquivo de Inferência"). Dessa forma, os resultados foram obtidos mais facilmente.

CAPÍTULO V – RESULTADOS

V.1 Modelo BlackOil Original

Para fins de validação da simulação, reproduziu-se no EMSO o modelo de separador já feito anteriormente. O modelo escolhido para a comparação foi o do Silveira [2]. Os controladores utilizados, que se encontram no banco de dados da EML, no modelo *PIDIncr*, são do tipo *feedback*, proporcional-integral (PI), em ambos os casos.

Para todas as simulações neste capítulo, o *solver* utilizado para os sistemas de EADs foi a DASSL. Os dados são os seguintes:

Parâmetro	Valor
D	1.8m
C _{cs}	4.4m
C _{cl}	1.0m
h _{vert}	0.867 <i>m</i>
Т	360 <i>K</i>
P _l	$1.0 kgf/cm^2$
P_{g}	$8.5 kgf/cm^2$
P _w	$1.0 kgf/cm^2$
ρ_l	$855kg/m^3$
ρ_w	$965 kg/m^3$
g	$10m/s^{2}$
PM _{ar}	28.97kg/kmol
PM _a	21kg/kmol
TOG, BSW	0.3

Tabela 5 - Parâmetros para o Modelo de Silveira (2006).

T _e	303.15 <i>K</i>
Pe	$9.48 kgf/cm^2$
ef _{lw}	0.7
ef _{wl}	0.7
C_{vmax}^l	$1025 \frac{m^3}{s. bar^{0.5}}$
C_{vmax}^{w}	$410\frac{m^3}{s.bar^{0.5}}$
C_{vmax}^{g}	$120 \frac{m^3}{s. K^{0.5}}$

As condições iniciais e de controle para a simulação são:

Tabela 6 -	Variáveis de	Controle e Condi	cões Iniciais I	oara o Modelo	de Silveira i	(2006)
						(2000)

Variável	Valor
 k_{cl} - Constante de Proporcionalidade do Controlador de Nível de Óleo 	0.9750
<i>k_{cw}</i> - Constante de Proporcionalidade do Controlador de Nível de Água	0.2250
 k_{cp} - Constante de Proporcionalidade do Controlador de Pressão 	0.1138
$ au_{il}$ - Constante de Tempo do Controlador de Nível de Óleo	3 <i>s</i>
$ au_{iw}$ - Constante de Tempo do Controlador de Nível de Água	90 <i>s</i>
$ au_{ip}$ - Constante de Tempo do Controlador de Pressão	9.9 <i>s</i>
L _{sp} - Set Point do Nível de Óleo	0.5m
<i>W_{sp}</i> - <i>Set Point</i> do Nível de Água	0.45m
P_{sp} - Set Point da Pressão	$9.48 kgf/cm^2$
$h_{cs}(0)$	0.95m

$h_{cl}(0)$	0.5m
$h_{fwcs}(0)$	0.45m
$x_{wflcs}(0)$	0.3
$x_{lfwcs}(0)$	0.3
$x_{wcl}(0)$	0.3
P(0)	$9.48 kgf/cm^2$
$Q_{le}(0)$	$0.585m^{3}/min$
$Q_{we}(0)$ 1.365 m^3/min	
$Q_{ge}(0)$	7.8m ³ /min

Nos resultados da simulação de Silveira, como o separador não era o seu principal foco, considerou-se a altura da interface água/óleo como resultado nesse equipamento, em três situações distintas: perturbação degrau no *Set Point* do nível de água, perturbação degrau na alimentação líquida, e a presença de golfadas experimentais na alimentação líquida.

Todas as perturbações feitas foram calculadas no EMSO a partir de uma função de regularização ϑ :

$$\vartheta = \frac{1}{2} \left[1 + \frac{(t - t_p)_{/\tau}}{\sqrt{1 + \left[(t - t_p)_{/\tau} \right]^2}} \right] (5.1)$$

Em que *t* é o instante de tempo da simulação, t_p é o instante da perturbação e τ é uma constante que possui valor baixo (ordem de 10⁻⁶), cuja função é causar a grande inclinação do degrau. Ou seja, não possui significado físico. O valor dessa função é igual a 0, antes da perturbação, e igual a 1, após esta.

O tempo final para estas simulações é de 200min, e as perturbações degrau ocorreram em t_p = 170min.

• Primeiro Caso: Perturbação de 20% no Set Point:

Figura 7 - Perturbação no Set Point.

Figura 8 - Efeito da Perturbação no Set Point do Nível de Água, de Acordo com Silveira [2] e com o EMSO.

• Segundo caso: perturbação degrau na alimentação líquida (água + óleo):

Figura 9 - Perturbação na Alimentação Líquida (Água + Óleo).

Figura 10 - Efeito da Perturbação na Alimentação Líquida, de Acordo com Silveira [2] e com o EMSO.

• Terceiro caso: golfadas reais na alimentação:

Neste caso, justamente pelo fato das golfadas serem reais, foi feita uma aproximação delas no EMSO para uma função interpolada, que foi encontrada com a ajuda da ferramenta *Toolbox*, no *Matlab*.

Figura 11 – Efeito de golfadas utilizado no trabalho de Silveira [2].

Figura 12 - Função Interpolada das Golfadas no EMSO, em Relação aos Valores Experimentais.

Figura 13 - Efeito das Golfadas no Nível de Água, em comparação entre o resultado de Silveira [2] e o calculado pelo EMSO.

Pela comparação com a dissertação de Silveira, pode-se dizer que o modelo do separador feito no EMSO é viável.

As diferenças vistas nos resultados se devem a:

• Diferenças na sintonia do controlador;

 As golfadas são curvas extremamente instáveis, não é possível reproduzilas fielmente em funções matemáticas. Os ruídos brancos também causam efeitos nas variáveis de saída, mas, como eles não foram reproduzidos no EMSO, houve a diferença na intensidade da resposta.

V.2 Modelo BlackOil Adaptado

Aqui, já tendo comparado o modelo original com a bibliografia [1,2], seguem os resultados da modelagem do separador *BlackOil* adaptado, com os dados de planta de uma plataforma de petróleo, disponibilizados pela Petrobrás [16]. Além disso, considerou-se o gás como uma mistura entre metano e água, conforme será mostrado no resultado do modelo integrado. A partir dessa composição, calculou-se a densidade a partir do modelo termodinâmico de Peng-Robinson, e a massa molar do gás, pelo *VRTherm*. Seguem abaixo os parâmetros:

Parâmetro	Valor
D	3.82 <i>m</i>
C _{cs}	10.325m
C _{cl}	1.125m
h _{vert}	2.06m
Т	366.15 <i>K</i>
Pl	980 <i>kPa</i>
P_g	980kPa
P_w	980kPa
$ ho_l$	$923.9kg/m^3$
$ ho_w$	$965 kg/m^3$
g	$9.81m/s^2$
PM _l	416.94kg/kmol
PM_w	18kg/kmol
T _e	363.15 <i>K</i>
Pe	1240.526kPa

Tabela 7 - Parâmetros da Planta para o Modelo BlackOil Adaptado.

C_{vmax}^l	$2m^{3.5}/kg^{0.5}$
C_{vmax}^{w}	$0.02m^{3.5}/kg^{0.5}$
C_{vmax}^{g}	$0.0012m^4s/kg$
Ymetano	0.89

Não houve propriamente uma sintonia de controle, os valores das variáveis de controle foram escolhidos a partir de várias simulações, até que se obtiveram respostas de controle satisfatórias. Tais variáveis e as condições iniciais da simulação estão na tabela a seguir:

Tabela 8 - Variáveis de Controle e Condições Iniciais para o Modelo BlackOil Adaptado.

Variável	Valor
k_{cl} - Constante de Proporcionalidade do Controlador de	0.1
Nível de Óleo	
k_{cw} - Constante de Proporcionalidade do Controlador	10
de Nível de Água	
k_{cp} - Constante de Proporcionalidade do Controlador de	0.025
Pressão	
$ au_{il}$ - Constante de Tempo do Controlador de Nível de	100 <i>s</i>
Óleo	
$ au_{iw}$ - Constante de Tempo do Controlador de Nível de	100 <i>s</i>
Água	
$ au_{ip}$ - Constante de Tempo do Controlador de Pressão	100 <i>s</i>
L _{sp} - Set Point do Nível de Óleo	1.5 <i>m</i>
<i>W_{sp}</i> - Set Point do Nível de Água	1.0 <i>m</i>
P _{sp} - Set Point da Pressão	1240.526kPa
$h_{cs}(0)$	2.116m
$h_{cl}(0)$	1.5 <i>m</i>
$h_{fwcs}(0)$	1.0 <i>m</i>

P(0)	1240.526kPa
$L_e(0)$	739.23kmol/h
$W_e(0)$	196.37kmol/h
$G_e(0)$	1857.1 <i>kmol/h</i>

O tempo final de cada simulação nesta seção é de 600min, devido ao grande tempo de resposta do nível da interface água/óleo em relação ao degrau no seu *Set Point*. Os resultados aqui se resumem em efeitos de perturbações degrau na alimentação e nos *Set Points* para as principais variáveis do separador, a 100min do início de cada simulação (t_p = 100min).

As variáveis analisadas são: vazão de saída de gás, pressão do separador (e seu *Set Point*), densidade do gás de saída, a altura da interface água/óleo com seu *Set Point* (somente na perturbação na alimentação e neste *Set Point*) e a altura de óleo na câmara CL com seu *Set Point* (somente na perturbação de alimentação e neste *Set Point*).

• Perturbação de 10% na alimentação total:

Figura 14 - Degrau na Vazão de Alimentação.

Figura 15 - Vazão de Saída de Gás.

Figura 16 - Densidade do Gás.

Figura 17 - Altura de Água.

Figura 18 – Pressão no Separador.

Figura 19 - Altura de Óleo na Câmara CL.

• Perturbação de 10% no Set Point do Nível de Óleo:

Figura 20 - Nível de Óleo e seu Set Point.

• Perturbação de 1% no Set Point do Nível de Água:

Figura 21 - Interface Água/Óleo e seu Set Point.

• Perturbação de 10% no Set Point de Pressão:

Figura 22 - Efeito do Degrau para a Pressão.

Figura 23 - Vazão de Saída do Gás.

Figura 24 - Densidade do Gás na Saída.

Analisando estes resultados, pode-se ver que os controles agem rapidamente, evitando situações de alarme (por exemplo, pressão muito alta).

Pelas respostas aos degraus nos Set Points, nota-se que os controladores de nível possuem resposta oscilatória, sendo que o do nível de água possui uma resposta mais lenta, e o controlador de pressão possui uma resposta direta, não-oscilatória, de primeira ordem. Para o objetivo deste trabalho, que é analisar a saída gasosa do separador, isso é importante, pois a ausência de oscilações indica que uma perturbação no separador não vai afetar criticamente o ciclo a jusante.

Além disso, foi utilizado um degrau de somente 1% para o Set Point do nível da interface entre a água e o óleo porque, por algum motivo, o controlador não aguentava perturbações maiores, independentemente dos valores de ganho ou de constante de tempo utilizados. Como a saída aquosa não é o principal foco deste trabalho, utilizou-se o degrau de 1% apenas de forma ilustrativa.

V.3 Modelo Composicional

A alimentação deste modelo consiste em 16 componentes: água, gás carbônico, metano, etano, propano, isobutano, butano, isopentano, pentano, hexano, heptano, octano, nonano, decano, undecano e um pseudocomponente que foi chamado de C12+, que representa o restante dos componentes pesados do petróleo.

Entretanto, no banco de dados do *VRTherm*, não é possível criar um componente novo sem ter disponíveis propriedades físico-químicas, tais como equação da pressão de vapor, propriedades críticas etc. Assim, no lugar deste C12+, foi escolhido o componente mais pesado que tivesse todas as propriedades necessárias para os cálculos, que foi o tetracosano ($C_{24}H_{50}$). A composição de alimentação, então, é a seguinte:

H ₂ 0	11.611%
<i>CO</i> ₂	0.08%
<i>C</i> 1	56.757%

Tabela 9 - Composição da Carga de Alimentação.

С2	2.87%
СЗ	1.47%
iC4	0.39%
<i>C</i> 4	0.92%
iC5	0.37%
С5	0.52%
С6	0.75%
С7	1.35%
<i>C</i> 8	1.62%
С9	1.45%
<i>C</i> 10	1.33%
<i>C</i> 11	0.8%
C24	17.712%

Tabela 10 - Dados da Alimentação do Flash.

T (K)	363.15
P (kPa)	1240.53
F (kmol/h)	2792.7

Primeiramente, para validar a eficiência do cálculo do *flash*, rodou-se o programa contendo apenas a alimentação e um cálculo de *flash* estacionário, utilizando o modelo termodinâmico *Peng-Robinson* para a fase líquida e a fase gasosa. Os principais resultados são os seguintes:

Componente do Óleo	Composição de Acordo com a Planta (teórica)	Composição Calculada no EMSO
H ₂ O	1.273%	5.944%
<i>CO</i> ₂	0.008%	0.016%
<i>C</i> 1	3.177%	5.158%
C2	0.552%	0.767%
СЗ	0.662%	0.839%
iC4	0.306%	0.369%
<i>C</i> 4	0.885%	1.009%
iC5	0.563%	0.603%
С5	0.885%	0.925%
С6	1.863%	1.823%
С7	4.163%	3.919%
<i>C</i> 8	5.571%	5.156%
С9	5.253%	4.826%
<i>C</i> 10	4.928%	4.522%
<i>C</i> 11	2.995%	2.748%
<i>C</i> 24	66.916%	61.376%

Tabela 11 - Comparação da Composição do Óleo entre a Teórica e a Calculada.

Componente do Gás	Composição de Acordo com a Planta (Teórica)	Composição Calculada no EMSO
H ₂ 0	6.383%	5.833%
<i>CO</i> ₂	0.117%	0.116%
С1	84.082%	84.976%
С2	4.096%	4.073%
СЗ	1.947%	1.888%
iC4	0.465%	0.436%
<i>C</i> 4	1.031%	0.967%
iC5	0.332%	0.301%
С5	0.430%	0.389%
С6	0.386%	0.344%
С7	0.373%	0.337%
С8	0.219%	0.203%
С9	0.090%	0.088%
<i>C</i> 10	0.039%	0.039%
<i>C</i> 11	0.011%	0.011%
<i>C</i> 24	0.000%	0.000%

Tabela 12 - Comparação da Composição do Gás entre a Teórica e a Calculada.

O resultado para a composição da fase aquosa não foi necessário, pois a estimativa inicial desse *flash* foi que a fase aquosa era formada apenas por água, ou seja, os componentes do óleo seriam completamente imiscíveis com a água, o que acabou acontecendo.

Variável	Valor de Acordo com a Planta (Teórico)	Valor Calculado pelo EMSO
L _s (kmol/h)	739.21	805.92
PM _l (kg/kmol)	416.937	237.212
G _s (kmol/h)	1857.18	1816.36
PM _g (kg/kmol)	19.344	19.176
W _s (kmol/h)	196.31	170.42
PM _w (kg/kmol)	18.015	18.015

Tabela 13 - Comparação de Valores de Algumas Variáveis Importantes Entre os Teóricos e os Calculados no EMSO.

Neste caso, nota-se que o cálculo de flash ficou próximo aos dados da planta, exceto para alguns dados da fase oleosa. As diferenças são devidas, principalmente, ao pseudocomponente C12+, que não pôde ser utilizado como tal no EMSO. Em vez dele, como já foi explicado, optou-se por utilizar o tetracosano, apesar de suas características ainda diferirem do C12+, conforme é mostrado na tabela abaixo:

	Tetracosano	C12+
Massa Molar	338.66kg/kmol	573kg/kmol
Densidade	$532.8kg/m^{3}$	$953kg/m^{3}$

Tabela 14 - Comparação entre tetracosano e o C12+.

Analisando a tabela 14, pode-se notar o porquê de, na massa molar da fase oleosa, ter havido uma diferença muito grande entre o valor da planta e do calculado. Apesar disso, pode-se notar que, na fase gasosa, as semelhanças são muito grandes.

Assim, tendo validado o modelo Composicional em relação ao cálculo de flash, podem-se criar resultados para degraus na vazão de alimentação e nos Set Points, de forma análoga ao caso BlackOil.

Parâmetro	Valor
D	3.82 <i>m</i>
C _{cs}	10.325m
C _{cl}	1.125m
h _{vert}	2.06 <i>m</i>
 k_{cl} - Constante de Proporcionalidade do Controlador de Nível de Óleo 	1
 k_{cw} - Constante de Proporcionalidade do Controlador de Nível de Água 	50
<i>k_{cp}</i> - Constante de Proporcionalidade do Controlador de Pressão	0.1
$ au_{il}$ - Constante de Tempo do Controlador de Nível de Óleo	80 <i>s</i>
$ au_{iw}$ - Constante de Tempo do Controlador de Nível de Água	800 <i>s</i>
$ au_{ip}$ - Constante de Tempo do Controlador de Pressão	80 <i>s</i>
L _{sp} - Set Point do Nível de Óleo	1.5 <i>m</i>
<i>W_{sp} - Set Point</i> do Nível de Água	1.1 <i>m</i>
P _{sp} - Set Point da Pressão	1240.625 <i>kPa</i>
$h_{cs}(0)$	2.1065 <i>m</i>
$h_{cl}(0)$	1.5m
$h_{fwcs}(0)$	1.0m

Tabela 15 - Parâmetros e Valores Iniciais para o Modelo Composicional.

Além disso, foi necessário entrar com a composição de uma das saídas como condição inicial. Para isso, foi utilizada a saída líquida do *flash* estacionário feito anteriormente (tabela 11, terceira coluna).

Todas as simulações seguintes nesta seção foram feitas com tempo total de 300min e as perturbações em t_p = 50min

• Perturbação de 10% na Vazão de Alimentação:

Figura 25 - Perturbação na Alimentação.

Figura 26 - Pressão no Separador e seu Set Point.

Figura 27 - Interface àgua/Óleo na Câmara CS e seu Set Point.

Figura 28 - Nível de Óleo na Câmara CL e seu Set Point.

Figura 29 - Vazão de Saída de Gás.

Figura 30 - Densidade do Gás.

Figura 31 - Massa Molar do Gás.

Figura 32 - Fator de Compressibilidade do Gás.

Figura 33 - Cp/Cv para o Gás.

• Degrau de 10% no Set Point da Pressão do Separador:

Figura 34 - Pressão no Separador e seu Set Point.

Figura 35 - Vazão de Saída de Gás.

Figura 36 - Densidade do Gás.

Figura 38 - Fator de Compressibilidade do Gás.

Figura 39 - Cp/Cv para o Gás.

• Degrau de 10% no Set Point do Nível de Óleo na Câmara CL:

Figura 40 - Nível de Óleo na Câmara CL e seu Set Point.

 Degrau de 10% no Set Point do Nível da Interface Água/Óleo na Câmara CS:

Figura 41 - Nível da Interface Água/Óleo na Câmara CS e seu Set Point.

Em relação aos resultados anteriores, pode-se notar que eles são parecidos com os resultados do BlackOil, com as seguintes diferenças:

- A resposta do degrau no Set Point da pressão no modelo Composicional passou a ser oscilatória como dos demais controladores;
- No modelo Composicional, os valores das variáveis depende do cálculo de flash trifásico multicomponente, enquanto que, no BlackOil, as propriedades das fases (massa molar e densidade) já são dadas, o que causa uma intensidade maior das respostas no caso Composicional. Ou seja, as variações nos resultados eram maiores.

V.4 Modelo Integrado

Neste caso, usou-se o modelo *BlackOil* integrado ao ciclo de compressão, conforme já foi explicado antes. Considerou-se que o gás de saída do separador contivesse apenas metano e água, contendo 89% de metano.

Os dados do separador são idênticos aos das tabelas 7 e 8.

Um dos dados do compressor, a eficiência de operação, para fins de adequação, foi aproximada para uma função empírica, conforme se vê abaixo:

Se $0.643947m^3/s < F_{vol} < 1.19m^3/s$

$$\varepsilon_o = 0.65 \quad (5.2a)$$

Do contrário:

 $\varepsilon_{o} = -16.313 + F_{vol} \{ 74.679 + F_{vol} [-122.33 + F_{vol} (89.054 - 24.307F_{vol})] \}$ (5.2b)

Além disso, para calcular o volume de gás para o Anti-Surge, as seguintes equações foram utilizadas, em relação ao compressor:

$$\frac{H_{poli} = a.VS + b}{AS = VS.\rho_g}$$
(5.3)

Onde *VS* é o volume de gás do *Anti-Surge* e, *AS*, a sua massa, além de *a* e *b* serem constantes empíricas. O *Set Point* desse controlador é igual ao *AS*. Os demais dados do ciclo são:

Variável	Descrição	Valor
Tipo de Operação	Compressor Politrópico ou Isentrópico	Politrópica
ε_m	Eficiência Mecânica do Compressor	0.99
K _{cP2}	Ganho do Controlador de Pressão do Vaso de <i>Flash</i>	1.10223
K _{cL2}	Ganho do Controlador de Nível do Vaso de <i>Flash</i>	3.965
K _{cAS}	Ganho do Controlador do Anti-Surge	0.1
$ au_{iP2}$	Constante de Tempo do Controlador de Pressão do Vaso de <i>Flash</i>	16.6817 <i>s</i>
$ au_{iL2}$	Constante de Tempo do Controlador de Nível do Vaso de <i>Flash</i>	402.67 <i>s</i>
τ _{iAS}	Constante de Tempo do Controlador do Anti-Surge	100 <i>s</i>

Tahela	16 -	Dados	do	Ciclo	de	Com	nressão	`
rabela	10 -	Dauus	uu	CICIO	ue	COIII	piessau	<i>.</i>

P2 _{sp}	<i>Set Point</i> do Controlador de Pressão do Vaso de <i>Flash</i>	911.3kPa
L2 _{sp}	<i>Set Point</i> do Controlador de Nível do Vaso de <i>Flash</i>	0.5m
а	Parâmetro para Cálculo do Anti-Surge	297.619 $kJ.s/(m^3.kg)$
b	Parâmetro para Cálculo do Anti-Surge	1.42857 <i>kJ/kg</i>
V_f	Volume do Vaso de <i>Flash</i>	$4m^3$
D_f	Diâmetro do Vaso de Flash	1.143m
T _{sc}	Temperatura de Saída do Cooler	311.75 <i>K</i>
ΔP_c	Queda de Pressão do Cooler	20kPa
R _{reft}	Rotação de Referência da Turbina	1000 <i>rpm</i>
W _{reft}	Trabalho de Referência da Turbina	1600kW
$ au_t$	Constante de Tempo na Turbina	1min
$T_{sf}(0)$	Valor Inicial da Temperatura de Saída do Vaso de <i>Flash</i>	315.265 <i>K</i>
$h_f(0)$	Valor Inicial do Nível do Vaso de <i>Flash</i>	0.5m
<i>x</i> _{f1} (0)	Valor Inicial da Composição de Metano na Saída do Vaso de <i>Flash</i>	2.00E - 05
$R_t(0)$	Valor Inicial da Velocidade de Rotação da Turbina	10200 <i>rpm</i>

Primeiramente, rodou-se o programa para diversas concentrações diferentes, com a vazão de entrada original. Cada ponto do gráfico equivale a um resultado do programa.

Após isso, utilizando 89% de metano na saída gasosa do separador, foram feitas perturbações degrau na vazão de alimentação do separador, de forma análoga às análises anteriores. As variáveis analisadas, todas dentro do compressor, foram: *Head*; fator de compressibilidade médio; temperatura isentrópica; massa molar média; vazão volumétrica na sucção; densidade;

temperatura, pressão, entalpia e entropia de entrada; e temperatura, entalpia e entropia na saída.

O tempo final de cada simulação nesta seção é de 200min e as perturbações ocorreram em t_p = 100min.

• Análise da Variação da Composição do Gás de Saída do Separador:

Para esta análise, a variação de pressão no compressor foi considerada constante e igual a 14.288atm.

Utilizando uma faixa de composições entre 79% e 99% de metano, os seguintes gráficos foram gerados, com os valores no estado estacionário (i.e. depois de um longo intervalo de tempo):

Figura 42 - Fator de Compressibilidade Médio.

Figura 43 - Head do Compressor.

Figura 44 - Temperatura Isentrópica.

Figura 45 - Massa Molar Média.

Figura 46 - Vazão Volumétrica na Sucção.

Figura 47 - Massa Específica.

Figura 48 - Temperaturas de Entrada e de Saída.

Figura 49 - Pressões de Entrada e de Saída.

Figura 50 - Entalpia de Entrada e de Saída.

Figura 51 - Entropia de Entrada e de Saída.

Com isso, conclui-se que, quanto mais puro é o metano na entrada do ciclo:

- → Maior é a pressão de entrada e de saída.
- ➔ Menos ideal é o gás. Provavelmente o aumento de pressão tenha provocado esse resultado.
- ➔ Menor é a variação de temperatura e, consequentemente, menores são o *Head* e a variação da entalpia.
- → Maiores são a vazão volumétrica na sucção e a massa específica.
- → A variação de entropia continua constante, como deveria ser.
- → Menores são a temperatura isentrópica e a massa molar média.

De acordo com a modelagem do compressor, as consequencias são concordantes entre si.

 Perturbação degrau de 10% na vazão de entrada do separador, mantendo constantes as relações água/óleo/gás: Neste caso, foi utilizada a pressão de saída do compressor constante (igual a 27.777atm) e a pressão de entrada variou conforme a demanda dos equipamentos anteriores.

Figura 52 - Fator de Compressibilidade.

Figura 53 - Head do Compressor.

Figura 54 - Temperatura Isentrópica.

Figura 55 - Massa Molar Média.

Figura 56 - Vazão Volumétrica na Sucção.

Figura 57 - Massa Específica.

Figura 58 - Temperatura de Entrada e de Saída.

Figura 59 - Pressão de Entrada e de Saída.

Figura 60 - Entalpia de Entrada e de Saída.

Figura 61 - Entropia de Entrada e de Saída.

O primeiro ponto importante destes resultados é o início. Em todos eles, há uma variação brusca antes de encontrar o valor estacionário. Isto ilustra a dificuldade da inicialização do problema, apesar de que neste caso, a simulação ocorreu normalmente, já que o valor estacionário, em todos os casos, chegou rapidamente.

Quanto à resposta à perturbação, os resultados foram coerentes com a primeira parte desta seção. A vazão de alimentação aumentou, aumentou quantidade de metano na entrada do ciclo, o aumento de pressão no compressor caiu, e as demais variáveis responderam de forma esperada: o *Head*, a variação de entalpia, a temperatura isentrópica, a massa molar média, o fator de compressibilidade e a variação de temperatura caíram; a vazão volumétrica de sucção e a massa específica aumentaram; e a variação de entropia continuou constante.

Dessa forma, pode-se dizer que este modelo é válido, considerando suas hipóteses.

CAPÍTULO VI – CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Como os objetivos deste trabalho foram simular o separador trifásico com ênfase no gás produzido e conectá-lo ao ciclo de compressão para checar a afinidade desses modelos no EMSO, pode-se dizer que os objetivos foram alcançados com êxito. Os modelos funcionam e estão eficientemente conectados entre si; é possível conectar modelos-padrão do EMSO ao sistema sem criar modelos novos, desde que os dados sejam coerentes.

Os maiores desafios encontrados no decorrer deste trabalho foram:

- Elaborar estimativas iniciais que satisfizessem os sistemas de equações criados pelos modelos, principalmente no caso Composicional, onde há 16 componentes diferentes, aumentando muito a sensibilidade à estimativa;
- Definir também as condições iniciais, já que, dependendo de que variável se defina inicialmente, o programa pode funcionar ou não;
- "Sintonizar manualmente" os controladores (ou seja, rodar os programas utilizando vários valores de ganho e de constante de tempo até que a resposta ficasse satisfatória);
- Fazer a adaptação do *BlackOil* no EMSO sem causar eventuais singularidades;

Para trabalhos futuros, o que se pode fazer é aumentar a complexidade da simulação, da seguinte forma:

- Conectar um modelo de gas lift antes do separador, criando as flutuações que acontecem na prática;
- Conectar o modelo composicional ao ciclo de compressão, chegando a resultados mais confiáveis. Assim, não seria mais necessário aproximar a composição do gás formado, já que ele será calculado inteiramente por *flash* e se modificaria automaticamente, conforme a demanda da alimentação;
- Criar mais estágios de compressão, pelo menos três no total, para ficar de acordo com a planta em [16];

 Como a saída de fase oleosa ainda possui metano, pode-se conectá-la a um vaso de *flash* e aproveitar o gás que sai dele para o ciclo de compressão.

Em suma, simular toda a planta de extração de petróleo descrita em [16] no EMSO.

Em longo prazo, com estas simulações feitas, outro objetivo deste trabalho é a popularização e à utilização do simulador EMSO na maioria dos processos químicos não só no Brasil, mas no mundo todo.

REFERÊNCIAS BIBLIOGRÁFICAS

- PINTO, DIEGO DI DOMENICO. "Estratégias de Controle Contra Intermitência Severa Na Alimentação dos Separadores Offshore".
 Dissertação (Mestrado em Tecnologia de Processos Químicos e Bioquímicos) – Universidade Federal do Rio de Janeiro – UFRJ, TPQBq – EQ, 2009.
- 2 SILVEIRA, MAGNO ANTONIO CALIL RESENDE. "Controle de um processo de tratamento primário de petróleo". Dissertação de Mestrado – Universidade Federal do Rio de Janeiro, COPPE, 2006.
- 3 NUNES, GIOVANI CAVALCANTI. "Modelagem e Simulação Dinâmica de Separador Trifásico Água-Óleo-Gás". Dissertação de Mestrado – Universidade Federal do Rio de Janeiro, COPPE, 1994.
- 4 BRENAN, K.E., CAMPBELL, S.I., PETZOLD, L.R. "Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations". Elsevier Science Publishing Co., New York, 1989.
- 5 PERLINGEIRO, C. A. G. "Engenharia de Processos, Análise, Simulação, Otimização e Síntese de Processos Químicos". Editora Blucher, 2005.
- 6 SECCHI, A. R. "Simulador Dinâmico de Processos Orientado por Equação
 Aula 1". 2011.
- 7 MOHITPOUR, M.; BOTROS, K. K.; VAN HARDEVELD, T. "Pipeline Pumping and Compression Systems – A Practical Approach". ASME Press, 2008.
- 8 NUNES, D. G.; RAONI, R. L. B. "Utilização do Simulador de Processos EMSO para Aplicação de Análise Preliminar de Perigos em Processos

82

Dinâmicos". Projeto Final de Graduação – Universidade Federal do Rio de Janeiro, EQ, 2011.

- 9 NUNES, G. C.; MEDEIROS, J. L.; ARAÚJO, O. Q. F. "Modelagem e Controle na Produção de Petróleo – Aplicações em Matlab". Editora Blucher, 2010.
- 10 www.enq.ufrgs.br/trac/alsoc; acessado em 03/2011.
- 11 Manual EMSO.
- 12 EML EMSO Modeling Library.
- 13 VRTherm Banco de dados termodinâmico.
- 14 <u>http://www.flargent.com/ProductDetail-PT.php?ProdId=31</u>, acessado em 04/2011.
- 15 <u>http://www.documentation.emersonprocess.com/groups/publicreadonly/doc</u> <u>uments/webpage/ad128_gtp.hcsp</u>, acessado em 04/2011.
- 16 Process Flow Diagram Oil Collecting, Separation and Pumping (Maximum Oil/Gas). Brasoil / Petrobras, 1996.

APÊNDICE

A.1 Modelagem do Caso BlackOil Adaptado para o EMSO

A.1.1 Modelo tristreams e seus Derivados

```
Model tristream
```

```
VARIABLES
     F
          as flow_mol
                          (Brief = "Stream Molar Flow Rate");
          as flow_mol
                            (Brief = "Gas Molar Flow Rate");
     G
          as flow mol
                           (Brief = "Water Molar Flow Rate");
     W
                            (Brief = "Oil Molar Flow Rate");
     L
          as flow mol
     Т
          as temperature
                            (Brief = "Stream Temperature");
                          (Brief = "Stream
     Ρ
           as pressure
                                                  Pressure",
     DisplayUnit = 'kPa');
end
Model water_stream as tristream
     EQUATIONS
     "Water stream"
         = F;
     W
         = 0*'mol/s';
     L
     G
         = 0*'mol/s';
end
Model oil_stream as tristream
     EQUATIONS
     "Oil stream"
     L
         = F;
     G
          = 0*'mol/s';
          = 0*'mol/s';
     W
end
Model gas_stream as tristream
     EQUATIONS
     "Vapour stream"
```

```
G = F;
```

W = 0*'mol/s'; L = 0*'mol/s';

end

A.1.2 Modelo trisource

```
Model trisource
```

PARAMETERS

```
outer PP as Plugin (Brief = "External Physical
Properties", Type="PP");
outer NComp as Integer (Brief = "Number of chemical
components", Lower = 1);
```

VARIABLES

out Outlet	as	tristream;
Т	as	<pre>temperature;</pre>
P	as	pressure;
F	as	flow_mol;
beta	as	fraction;
phi	as	fraction;
omega	as	fraction;

```
EQUATIONS
"Equate Temperatures"
Outlet.T = T;
```

"Equate Pressures"
Outlet.P = P;

"Equate Flows" Outlet.F = F;

```
"Vapour Fraction"
beta * Outlet.F = Outlet.G;
```

```
"Oil Fraction"
phi * Outlet.F = Outlet.L;
```

```
"Water Fraction"
omega * Outlet.F = Outlet.W;
```

```
"Total Flow"
Outlet.F = Outlet.G + Outlet.L + Outlet.W;
end
```

A.1.3 Modelos trichanger

```
Model trichanger_vap
```

PARAMETERS outer PP as Plugin(Brief = "External Physical Properties", Type="PP"); outer NComp as Integer (Brief = "Number of chemical components", Lower = 1); Cvmax as Real; rhoref as dens_mass (DisplayUnit = 'kg/m^3', Default = 999.02);

```
VARIABLES
```

in Inlet	as	tristream;
out Outlet	as	stream;
x	as	fraction;
Pdrop	as	<pre>press_delta (DisplayUnit = 'kPa');</pre>
PM	as	molweight;
rho	as	dens_mass;

EQUATIONS

```
"Equate Flows"
Outlet.F = Inlet.F;
```

"Vapour Fraction"
Outlet.v * Outlet.F = Inlet.G;

```
"Enthalpy"
Outlet.h = Outlet.v*PP.VapourEnthalpy(Outlet.T,
Outlet.P, Outlet.z) + (1 - Outlet.v)*
PP.LiquidEnthalpy(Outlet.T, Outlet.P, Outlet.z);
```

```
"Equate Enthalpies"
Outlet.v*PP.VapourEnthalpy(Inlet.T,
Inlet.P, Outlet.z) + (1 - Outlet.v)*
PP.LiquidEnthalpy(Inlet.T, Inlet.P, Outlet.z) =
```

```
Outlet.v*PP.VapourEnthalpy(Outlet.T,
     Outlet.P, Outlet.z) + (1 - Outlet.v)*
     PP.LiquidEnthalpy(Outlet.T, Outlet.P, Outlet.z);
     if Pdrop > 0 then
     "Vapour Outlet"
           Outlet.F*PM = 2.4e-4*rho*x*Cvmax*'m^4*s/kg'*
           sqrt(Pdrop*(Inlet.P + Outlet.P)/(rho/rhoref));
     else
     "Valve Closed"
           Outlet.F = 0*'kmol/h';
     end
     "Pdrop"
     Outlet.P = Inlet.P - Pdrop;
end
Model trichanger_liq
     PARAMETERS
     outer PP as Plugin(Brief = "External Physical Properties",
     Type="PP");
     outer NComp as Integer (Brief = "Number of chemical
     components", Lower = 1);
     Cvmax as Real;
                as dens_mass (DisplayUnit = 'kg/m^3', Default =
     rhoref
     999.02);
     VARIABLES
     in Inlet as tristream;
     out Outlet as stream;
                as fraction;
     х
                as press_delta (DisplayUnit = 'kPa');
     Pdrop
     ΡМ
                 as molweight;
     rho
                as dens_mass;
     EQUATIONS
     "Equate Flows"
     Outlet.F = Inlet.F;
```

"Vapour Fraction"

```
Outlet.v * Outlet.F = Inlet.G;
"Enthalpy"
Outlet.h = 0 * 'kJ/kmol'; # Random, dummy value
"Equate Temperatures (Liquid Approximation)"
Outlet.T = Inlet.T;
if Pdrop > 0 then
"Liquid Outlet"
    Outlet.F*PM = 2.4e-4*rho*x*Cvmax*'m^3.5/kg^0.5'*
        sqrt(Pdrop/(rho/rhoref));
else
"Valve Closed"
    Outlet.F = 0*'kmol/h';
end
"Pdrop"
Outlet.P = Inlet.P - Pdrop;
```

A.1.4 Modelo triseparator

end

```
Model triseparator
     PARAMETERS
     outer PP as Plugin (Brief =
                                          "External
                                                      Physical
     Properties",Type="PP");
     outer NComp as Integer (Brief = "Number of
                                                      chemical
     components", Lower = 1);
                            (Brief = "Pi Value", Default =
     pi
           as positive
     3.141592);
           as acceleration (Brief = "Gravity Acceleration",
     q
     Default = 9.81);
           as Real
                            (\text{Unit} = 'J/mol/K')
                                                  Default
     R
                                                             =
     8.31447);
           as length (Brief = "Diameter of the Separator");
     D
     Ccs
           as length (Brief = "Length of CS");
           as length (Brief = "Length of CL");
     Ccl
     hvert as length (Brief = "Height of Spillway");
           as dens_mass (Brief = "Density of Oil");
     rol
           as dens_mass (Brief = "Density of Water");
     row
```

PMl as molweight (Brief = "Molecular Weight of Oil"); PMw as molweight (Brief = "Molecular Weight of Water");

VARIABLES

Inlet as tristream; in OutletW as water_stream; out out OutletL as oil_stream; OutletG as gas_stream; out as pressure (DisplayUnit = 'kPa'); Ρ (Brief = "Height of Oil in CL"); hcl as length hfwcs as length (Brief = "Height of Water in CS"); т as temperature; Ζ as positive (Brief = "Gas Compressibility Factor"); htcs as length (Brief = "Total Height of CS"); rofwcs as dens_mass (Brief = "Density of Water in CS"); roflcs as dens_mass (Brief = "Density of Oil in CS"); rocs as dens_mass (Brief = "Mean Density of CS"); rocl as dens_mass (Brief = "Mean Density of CL"); as dens_mass (Brief = "Density of Gas"); roq PMcs as molweight (Brief = "Mean Molar Weight of CS"); PMfwcs as molweight(Brief = "Molar Weight of Water in CS"); PMflcs as molweight (Brief = "Molar Weight of Oil in CS"); as molweight(Brief = "Mean Molecular Weight of CL"); PMcl as molweight (Brief = "MOlecular Weight of Gas"); PMq thetat as Real (Unit = 'rad'); thetaw as Real (Unit = 'rad'); thetal as Real (Unit = 'rad'); Nt as mol (Brief = "Total Molar Hold Up"); (Brief = "Mols of CL"); Ncl as mol Ncs as mol (Brief = "Mols of CS"); Nfwcs as mol (Brief = "Mols of Aqueous Phase of CL"); (Brief = "Mols of Vapour"); Ng as mol as flow mol (Brief = "Spillway Flow"); Lvas volume (Brief = "Volume of CS"); vcs as volume (Brief = "Volume of CL"); vcl as volume (Brief = "Volume of Vapour"); vq as volume (Brief = "Total Volume"); vt

EQUATIONS

"Molar Balance of Gas"
diff(Ng) = Inlet.G - OutletG.F;

```
if hcl < hvert then
"Molar Balance of CS"
     diff(Ncs) = Inlet.W + Inlet.L - OutletW.F - Lv;
"Molar Balance of CL"
     diff(Ncl) = Lv - OutletL.F;
else
"Molar Balance of CS"
     diff(Ncs) = Inlet.W + Inlet.L - OutletW.F -
     OutletL.F;
"Molar Balance of CL"
     diff(Ncl) = diff(Ncs);
end
"Molar Balance of Water in CS"
diff(Nfwcs) = Inlet.W - OutletW.F;
if htcs > hvert then
"Weir Flow"
     Lv = 0.415*sqrt(2*g)*(rol/PMl)*(2*sqrt(hvert*(D -
     hvert)) - 0.2*(htcs - hvert))*(htcs - hvert)^1.5;
else
"No Weir Flow"
    Lv = 0*'mol/s';
end
"Volume of Vapour"
vg = vt - vcs - vcl;
"Volume and Mols of Liquid in CS"
vcs = ((Ccs*D^2)/4)*(thetat/'rad' - sin(thetat) *
cos(thetat));
Ncs*PMcs = rocs*vcs;
"Mols of Water in CS"
Nfwcs*PMfwcs = (rofwcs)*((Ccs*D^2)/4)*(thetaw/'rad' -
sin(thetaw) * cos(thetaw));
"Auxiliary Functions"
```

```
\cos(\text{thetat}) = 1 - 2*\text{htcs/D};
cos(thetaw) = 1 - 2*hfwcs/D;
cos(thetal) = 1 - 2*hcl/D;
"Volume and Mols of Oil in CL"
vcl = ((Ccl*D^2)/4)*(thetal/'rad' - sin(thetal) *
cos(thetal));
Ncl = (rocl/PMcl)*vcl;
"Total Volume"
vt = (Ccs + Ccl)*((pi*D^2)/4);
"Total Mols"
Nt = Ncs + Ncl + Ng;
"Thermic Equilibrium"
OutletG.T = OutletL.T;
OutletG.T = OutletW.T;
OutletG.T = T_i
"Hydrostatic"
OutletG.P = P;
OutletL.P = P + rol*g*hcl;
OutletW.P = P + row*g*htcs;
"Gas Equation"
P*vg = Z * Ng * R * T;
"Densities"
rofwcs = row;
roflcs = rol;
rocs*((PMfwcs/rofwcs)*Nfwcs + (PMflcs/roflcs)*(Ncs -
Nfwcs)) = (Nfwcs*PMfwcs + (Ncs - Nfwcs)*PMflcs);
rocl = rol;
"Molar Weights"
PMfwcs = PMw;
PMflcs = PMl;
PMcs = (Nfwcs/Ncs)*PMfwcs + (1 - Nfwcs/Ncs)*PMflcs;
PMcl = PMl;
```

```
end
```

A.1.5 Modelo trisep_control

pidW

pidL eta

Controller");

```
Model trisep control
     PARAMETERS
     outer PP as Plugin(Brief = "External Physical Properties",
     Type="PP");
     outer NComp as Integer (Brief = "Number of chemical
     components", Lower = 1);
     csi
                       as time_sec
                                        (Brief
                                                              =
     "Regularization Function Parameter", Default = 1e-6);
     Pmax as pressure (Brief = "Max. Pressure");
     Pmin as pressure (Brief = "Min. Pressure");
     Lmax as length (Brief = "Max. Height of Oil");
     Lmin as length (Brief = "Min. Height of Oil");
     Wmax as length (Brief = "Max. Height of Water");
     Wmin as length (Brief = "Min. Height of Water");
     Kc_P as positive (Brief = "Pressure Gain Constant");
     tauI_P as time_sec (Brief = "Pressure Integral Time
     Constant");
     Kc_W as positive (Brief = "Water Gain Constant");
     tauI_W as
                  time_sec (Brief = "Water Integral
                                                           Time
     Constant");
     Kc_L as positive (Brief = "Oil Gain Constant");
     tauI_L as time_sec (Brief = "Oil Integral Time Constant");
     VARIABLES
                as pressure (Brief =
                                         "Pressure
                                                     Setpoint",
     P_sp
     DisplayUnit = 'kPa');
                 as length (Brief = "Water Level Setpoint");
     W_sp
     L_sp
                 as length (Brief = "Oil Level Setpoint");
                 as fraction (Brief = "Adimensional Pressure");
     P_ad
     hw_ad
                 as
                     fraction (Brief = "Water Adimensional
     Height");
     hl_ad
                     fraction
                                (Brief = "Oil
                                                   Adimensional
                 as
     Height");
     pidP
                 as PIDIncr (Brief = "Pressure Controller");
```

as PIDIncr (Brief

```
92
```

Outlet

"Water

=

as PIDIncr (Brief = "Oil Outlet Controller");

as fraction (Brief = "Regularization Function");

Trisep	as	triseparator;
CW	as	trichanger_liq;
cL	as	trichanger_liq;
cG	as	trichanger_vap;

CONNECTIONS

Trisep.OutletL	to cL.Inlet;
Trisep.OutletW	to cW.Inlet;
Trisep.OutletG	to cG.Inlet;

EQUATIONS

"PIC Parameters"	
pidP.Ports.setPoint	= (P_sp - Pmin) / (Pmax - Pmin);
pidP.Parameters.gain	= Kc_P;
pidP.Parameters.derivTi	me = 0 *'s';
pidP.Parameters.intTime	= tauI_P;
pidP.Parameters.tau	= 1*'s';
pidP.Parameters.tauSet	= 1*'s';
pidP.Parameters.alpha	= 0.1;
pidP.Parameters.beta	= 1;
pidP.Parameters.gamma	= 1;

"PIC Configuration"		
pidP.Options.clip	=	1;
pidP.Options.action	=	-1;

```
"LIC1 Parameters"
pidW.Ports.setPoint = (W_sp - Wmin) / (Wmax - Wmin);
pidW.Parameters.gain = Kc_W;
pidW.Parameters.derivTime = 0 *'s';
pidW.Parameters.intTime = tauI_W;
pidW.Parameters.tau = 1*'s';
pidW.Parameters.tauSet = 1*'s';
pidW.Parameters.alpha = 0.1;
pidW.Parameters.beta = 1;
pidW.Parameters.gamma = 1;
```

"LIC1 Configuration"
pidW.Options.clip = 1;
pidW.Options.action = -1;

```
"LIC2 Parameters"
pidL.Ports.setPoint
                     = (L_sp - Lmin) / (Lmax - Lmin);
pidL.Parameters.gain
                      = Kc_L;
pidL.Parameters.derivTime = 0 *'s';
pidL.Parameters.intTime = tauI_L;
pidL.Parameters.tau
                      = 1*'s';
pidL.Parameters.tauSet = 1*'s';
pidL.Parameters.alpha = 0.1;
pidL.Parameters.beta = 1;
pidL.Parameters.gamma = 1;
"LIC2 Configuration"
pidL.Options.clip
                      = 1;
pidL.Options.action
                     = -1;
"Adimensional Variables"
P_ad = (Trisep.P - Pmin)/(Pmax - Pmin);
hw_ad = (Trisep.hfwcs - Wmin)/(Wmax - Wmin);
hl_ad = (Trisep.hcl - Lmin)/(Lmax - Lmin);
"Controllers Input"
pidP.Ports.input = P_ad;
pidW.Ports.input = hw_ad;
pidL.Ports.input = hl_ad;
"Controllers Output"
cG.x = pidP.Ports.output;
cW.x = pidW.Ports.output;
cL.x = pidL.Ports.output;
"Regularization Function"
eta = 0.5 * (1 + ((time - 50 * 'min')/csi) /
     sqrt(1 + ((time - 50 * 'min')/csi)^2));
"Vapour Density"
Trisep.rog = PP.VapourDensity (Trisep.T, Trisep.P,
cG.Outlet.z);
"Vapour Compressibility Factor"
                  PP.VapourCompressibilityFactor(Trisep.T,
Trisep.Z
            =
Trisep.P, cG.Outlet.z);
```

```
SET
pidP.PID_Select = "Ideal";
pidW.PID_Select = "Ideal";
pidL.PID_Select = "Ideal";
```

A.1.6 Flow Sheet Trisep

```
FlowSheet Trisep
PARAMETERS
ΡP
     as Plugin(Brief="Physical Properties", Type="PP",
Components = ["methane", "water"],
LiquidModel = "PR", VapourModel = "PR");
NComp
           as Integer;
PM(NComp)
           as molweight;
SET
NComp
           = PP.NumberOfComponents;
ΡМ
           = PP.MolecularWeight();
DEVICES
           as trisource;
feed
SG1
           as trisep_control;
CONNECTIONS
feed.Outlet
                to SG1.Trisep.Inlet;
SPECIFY
feed.P = 1240.526*'kPa';
feed.T = 363.15 * 'K';
feed.beta = 0.665;
feed.phi = 0.265;
SG1.cG.Outlet.z = [89, 11]/100;
SG1.cL.Outlet.z = [0, 1]; # dummy value
SG1.cW.Outlet.z = [0, 1]; # dummy value
```

```
SG1.Trisep.D = 3.82*'m';
SG1.Trisep.Ccs = 10.325*'m';
```

SET

```
SG1.Trisep.Ccl = 1.125*'m';
SG1.Trisep.hvert = 2.06*'m';
SG1.cG.Cvmax = 1.195e-3;
SG1.cL.Cvmax = 2;
SG1.cW.Cvmax = 0.02;
SG1.Trisep.row = 965*'kg/m^3';
SG1.Trisep.PMw = 18*'g/mol';
SG1.Trisep.rol = 923.9*'kg/m^3';
SG1.Trisep.PMl = 416.937*'g/mol';
SG1.Kc_P = 0.05;
SG1.tauI_P = 100*'s';
SG1.Kc_W
          = 20;
SG1.tauI W = 100*'s';
SG1.Kc_L = 0.2;
SG1.tauI_L = 100*'s';
SG1.Pmax = 1540.526*'kPa';
SG1.Pmin = 940.526*'kPa';
SG1.Lmax = 3*'m';
SG1.Lmin = 0*'m';
SG1.Wmax = 2*'m';
SG1.Wmin = 0*'m';
```

SPECIFY

"Separator Conditions"
SG1.Trisep.T = (93+273.15) * 'K';
SG1.cW.Pdrop = 260.526*'kPa';
SG1.cL.Pdrop = 260.526*'kPa';
SG1.cG.Pdrop = 260.526*'kPa';

"Controllers on/off"

SG1.pidP.Options.autoMan	=	0;
SG1.pidW.Options.autoMan	=	0;
SG1.pidL.Options.autoMan	=	0;

EQUATIONS

"Properties"				
SG1.cW.rho	=	SG1.Trisep.row;		
SG1.cW.PM	=	SG1.Trisep.PMw;		
SG1.cL.rho	=	SG1.Trisep.rol;		
SG1.cL.PM	=	SG1.Trisep.PMl;		
SG1.cG.PM	=	SG1.Trisep.PMg;		

```
SG1.cG.rho = SG1.Trisep.rog;
SG1.Trisep.PMg = sum(SG1.cG.Outlet.z*PM);
"Bias"
SG1.pidW.Parameters.bias
                            = 0.408861;
SG1.pidP.Parameters.bias
                            = 0.467858;
SG1.pidL.Parameters.bias
                            = 0.363725;
"Total Feed w/ Regularization Function"
feed.F = 2792.7*(1 + 0*SG1.eta) * 'kmol/h';
"Set Point Equations w/ Regularization Function"
SG1.P sp = 1240.526*(1 + 0*SG1.eta)*'kPa';
SG1.L_sp = 1.5*(1 + 0*SG1.eta)*'m';
SG1.W_sp = 1*(1 + 0*SG1.eta)*'m';
INITIAL
SG1.Trisep.htcs = 2.11609*'m';
SG1.Trisep.hcl = 1.5*'m';
SG1.Trisep.hfwcs = 1*'m';
SG1.Trisep.P = 1240.526*'kPa';
OPTIONS
TimeStep = 0.1;
TimeEnd = 10;
TimeUnit = 'h';
NLASolver(File="sundials", MaxIterations=500);
DAESolver(File="dasslc", RelativeAccuracy = 1e-3,
     AbsoluteAccuracy=1e-6,EventAccuracy =1e-2);
```

end
A.2 Modelagem do Caso Composicional Adaptado para o EMSO

A.2.1 Modelo tristreams

Model tristream

PARAMETERS

```
outer PP as Plugin (Brief = "External Physical
Properties", Type="PP");
outer NComp as Integer (Brief = "Number of chemical
components", Lower = 1);
```

VARIABLES

```
F
           as flow_mol (Brief = "Stream Molar Flow Rate");
           as flow_mol (Brief = "Oil Molar Flow Rate");
L
           as flow_mol (Brief = "Vapour Molar Flow Rate");
V
           as flow_mol (Brief = "Water Molar Flow Rate");
W
Т
           as temperature (Brief = "Stream Temperature");
Ρ
           as pressure (Brief = "Stream Pressure");
z(NComp)
          as fraction (Brief = "Stream Molar Fraction");
           as enth_mol (Brief = "Stream Enthalpy");
h
```

A.2.2 Modelo trisource

end

Model trisource

PARAMETERS				
outer PP as Plugin	(Brief	=	"External	Physical
<pre>Properties", Type="PP");</pre>				
outer NComp as Integer	(Brief	=	"Number of	chemical
components", Lower = 1);				

VARIABLES

. .

out Outlet	as	tristream	n ;	
x(NComp)	as	fraction	(Brief =	"Oil Composition");
y(NComp)	as	fraction	(Brief =	"Vapour Composition")
w(NComp)	as	fraction	(Brief =	"Water Composition");
z(NComp)	as	fraction	(Brief =	"Feed Composition");
Т	as	temperatu	ire;	

```
Ρ
           as pressure;
F
           as flow_mol;
           as fraction (Brief = "Vapour Fraction");
beta
phi
           as fraction (Brief = "Oil Fraction");
           as fraction (Brief = "Water Fraction");
omega
           as positive (Brief = "Cp/Cv For Vapour");
gammaV
            as positive (Brief = "Compressibility Factor");
7
EQUATIONS
"Chemichal Equilibrium"
PP.LiquidFugacityCoefficient(Outlet.T, Outlet.P, x)*x =
PP.VapourFugacityCoefficient(Outlet.T, Outlet.P, y)*y;
PP.LiquidFugacityCoefficient(Outlet.T, Outlet.P, w)*w =
PP.VapourFugacityCoefficient(Outlet.T, Outlet.P, y)*y;
"Mol Fraction Normalisation"
sum(x) = sum(y);
sum(x) = sum(w);
sum(x) = 1;
"Component Mass Balance"
Outlet.F*Outlet.z = Outlet.L*x + Outlet.W*w + Outlet.V*y;
"Enthalpy"
Outlet.F*Outlet.h = Outlet.W*PP.LiquidEnthalpy(Outlet.T,
                     Outlet.L*PP.LiquidEnthalpy(Outlet.T,
Outlet.P,
           w)
                 +
Outlet.P,
                 + Outlet.V*PP.VapourEnthalpy(Outlet.T,
           x)
Outlet.P, y);
"Vapour Fraction"
beta*Outlet.F = Outlet.V;
"Water Fraction"
omega*Outlet.F = Outlet.W;
"Oil Fraction"
phi*Outlet.F = Outlet.L;
"Equate Flows"
Outlet.F = F;
```

```
"Equate Temperatures"
Outlet.T = T;
"Equate Pressures"
Outlet.P = P;
"Equate Compositions"
Outlet.z = z;
"Vapour Compressibility Factor"
Z = PP.VapourCompressibilityFactor(T, P, y);
"Cp/Cv == gammaV of Gas Outlet"
gammaV = PP.VapourCpCv(T, P, y);
end
```

A.2.3 Modelo triseparator

```
Model triseparator
     PARAMETERS
     outer PP as Plugin
                                 (Brief = "External Physical
     Properties", Type="PP");
                                  (Brief = "Number of chemical
     outer NComp as Integer
     components", Lower = 1);
     PM(NComp) as molweight;
     pi as positive (Default = 3.141592, Symbol = "\pi");
     g as acceleration
                           (Symbol = "\backslash g");
     R as Real
                     (\text{Unit} = 'J/\text{mol}/K');
     D as length
                     (Brief = "Diameter of Separator");
     Lcs as length (Brief = "Length of CS");
     Lcl as length (Brief = "Length of CL");
     Cvert as length (Brief = "Length of Weir");
     hvert as length (Brief = "Height of Weir");
     Vt
          as volume
                                  (Brief = "Total Volume");
     VARIABLES
     in Inlet as tristream
                                        (Brief = "Inlet");
```

```
in InletQ as energy_stream (Brief = "Energy Stream");
out OutletL as liquid_stream (Brief = "Oil Outlet");
out OutletW as liquid_stream (Brief = "Water Outlet");
out OutletG as vapour_stream (Brief = "Vapour Outlet");
P as pressure (DisplayUnit = 'kPa');
```

```
hfwcs as length (Brief = "Level Of Water Phase In CS");
hcl
     as length (Brief = "Level Of Oil Phase In CL");
     as length (Brief = "Total Level Of CS");
hcs
т
      as temperature;
                (Brief = "Total Enthalpy");
Н
      as energy
Pdrop as press_delta (Brief = "Pressure Drop", DisplayUnit
= 'kPa');
Pratio as positive (Brief = "Pressure Ratio");
N(NComp) as mol (Brief = "Number Of Mols Of Each
Component");
      as mol (Brief = "Mols Of Water");
Nw
      as mol (Brief = "Mols Of Oil");
Nl
Nq
     as mol (Brief = "Mols Of Vapour");
      as mol (Brief = "Total Mols of CS");
Ncs
Nflcs as mol (Brief = "Mols Of Oil Phase In CS");
Nfwcs as mol (Brief = "Mols Of Water Phase In CS");
Ncl
      as mol (Brief = "Mols Of Oil Phase In CL");
Zq
      as positive (Brief = "Gas Compressibility Factor");
gammaV as positive (Brief = "Cp/Cv for Vapour Phase");
      as flow_mol (Brief = "Weir Flow");
Lv
PMl
      as molweight (Brief = "Mol Weight of Oil");
      as molweight (Brief = "Mol Weight of Water");
PMw
      as molweight (Brief = "Mol Weight of Vapour");
PMg
      as dens_mass (Brief = "Density of Oil");
rol
      as dens_mass (Brief = "Density of Water");
row
rog
      as dens_mass (Brief = "Density of Vapour");
      as volume_mol(Brief = "Molar Volume of Gas");
vg
vl
      as volume mol(Brief = "Molar Volume of Oil");
      as volume_mol(Brief = "Molar Volume of Water");
vw
Vq
      as volume (Brief = "Volume of Gas");
      as volume (Brief = "Volume of CS");
Vcs
Vfwcs as volume (Brief = "Volume of Water in CS");
Vcl
      as volume (Brief = "Volume of CL");
theta as Real (Brief = "Auxiliary Function", Unit = 'rad');
      as Real (Brief = "Auxiliary Function", Unit = 'rad');
phi
alpha as Real (Brief = "Auxiliary Function", Unit = 'rad');
beta as fraction (Brief = "Vapour Ratio");
omega as fraction (Brief = "Water Ratio");
betaM as fraction (Brief = "Vapour Fraction");
omegaM as fraction (Brief = "Water Fraction");
```

```
SET
Vt = (Lcs + Lcl)*pi*(D^2)/4;
Cvert = 2*sqrt(hvert*(D - hvert));
PM = PP.MolecularWeight();
EQUATIONS
"Component Molar Balance"
diff(N) = Inlet.F*Inlet.z - OutletL.F*OutletL.z -
OutletW.F*OutletW.z - OutletG.F*OutletG.z;
"Energy Balance"
diff(H) = Inlet.F*Inlet.h - OutletG.F*
OutletG.h - OutletL.F*OutletL.h
- OutletW.F*OutletW.h + InletQ.Q;
"Molar Holdup"
N = Ng*OutletG.z + Nl*OutletL.z +
     Nw*OutletW.z;
"Energy Holdup"
H = Nl*OutletL.h + Nw*OutletW.h +
     Ng*OutletG.h - OutletG.P*Vt;
"Mols of Oil"
Nl = Nflcs + Ncl;
"Mols of Water"
Nw = Nfwcs;
"Mols of CS"
Ncs = Nfwcs + Nflcs;
if hcl < hvert then
"Molar Balance of Oil in CL"
     diff(Ncl) = Lv - OutletL.F;
else
"Height of Oil in CL"
     hcl = hcs;
end
"Mol Fraction Normalisation"
```

```
sum(OutletL.z) = sum(OutletG.z);
sum(OutletW.z) = sum(OutletG.z);
sum(OutletG.z) = 1;
"Chemical Equilibrium"
PP.LiquidFugacityCoefficient(T, OutletL.P, OutletL.z) *
OutletL.z = PP.VapourFugacityCoefficient(T, OutletG.P,
OutletG.z) * OutletG.z;
PP.LiquidFugacityCoefficient(T, OutletW.P, OutletW.z) *
OutletW.z = PP.VapourFugacityCoefficient(T, OutletG.P,
OutletG.z) * OutletG.z;
if Inlet.F > 0*'kmol/h' then
"Vapour Ratio"
     OutletG.F = Inlet.F*beta;
"Water Ratio"
     OutletW.F = Inlet.F*omega;
else
"Vapour Ratio"
     OutletG.F = (OutletG.F + OutletL.F + OutletW.F)*beta;
"Water Ratio"
     OutletW.F =
                       (OutletG.F + OutletL.F
                                                       +
     OutletW.F)*omega;
end
"Vapour Fraction"
Ng = (Nl + Nw + Ng)*betaM;
"Water Fraction"
Nw = (Nl + Nw + Ng) * omegaM;
"Thermal Equilibrium"
OutletG.T = OutletL.T;
OutletG.T = OutletW.T;
OutletG.T = T;
"Mechanical Equilibrium"
OutletG.P = OutletL.P - rol*g*hcl;
OutletG.P = OutletW.P - row*g*hfwcs;
```

```
OutletG.P = P;
"Pressure Drop"
OutletG.P = Inlet.P - Pdrop;
"Pressure Ratio"
OutletG.P = Inlet.P * Pratio;
"Volumes"
Vcs = Lcs*(D<sup>2</sup>)/4*(theta/'rad' - cos(theta)*sin(theta));
Vfwcs = Lcs*(D^2)/4*(alpha/'rad' - cos(alpha)*
sin(alpha));
Vcl = Lcl*(D^2/4)*(phi/'rad' - cos(phi)*sin(phi));
Vg = Vt - Vcs - Vcl;
"Auxiliary Functions"
cos(alpha) = 1 - 2*hfwcs/D;
\cos(\text{theta}) = 1 - 2 \cdot hcs/D;
\cos(\text{phi}) = 1 - 2 \cdot \text{hcl/D};
"Geometry Constraints"
Ng*vg + Nl*vl + Nw*vw = Vt;
Nflcs*vl + Nfwcs*vw = Vcs;
if Nfwcs > 0*'kmol' then
"Height of Water in CS"
      Nfwcs*vw = Vfwcs;
else
"No Water in CS"
      hfwcs = 0*'m';
end
if Ncl > 0*'kmol' then
"Height of CL"
      Ncl*vl = Vcl;
else
"No Liquid In CL"
     hcl = 0*'m';
end
```

```
if hcs > hvert then
"Weir Flow"
     Lv = 24.88*rol*sqrt(2*g)/PMl*(Cvert -
      0.2*(hcs - hvert))*(hcs - hvert)^1.5;
else
"No Weir Flow"
     Lv = 0*'kmol/h';
end
"Molar Volumes"
vg = PP.VapourVolume(OutletG.T, OutletG.P, OutletG.z);
vl = PP.LiquidVolume(OutletL.T, OutletL.P, OutletL.z);
vw = PP.LiquidVolume(OutletW.T, OutletW.P, OutletW.z);
"Densities"
rol*vl
           = PMl;
row*vw
           = PMw;
rog*vg
           = PMg;
"Molecular Weights"
PMl
     = sum(OutletL.z*PM);
PMw = sum(OutletW.z*PM);
     = sum(OutletG.z*PM);
PMg
"Cp/Cv for Vapour"
gammaV = PP.VapourCpCv(OutletG.T, OutletG.P, OutletG.z);
"Vapour Compressibility Factor"
Zg = PP.VapourCompressibilityFactor(OutletG.T, OutletG.P,
OutletG.z);
```

A.2.4 Modelo triseparator_control

Model triseparator_control

end

```
PARAMETERS
outer PP as Plugin (Brief = "External Physical Properties",
Type="PP");
outer NComp as Integer (Brief = "Number of chemical
components", Lower = 1);
```

```
csi as time_sec (Brief = "Regularization
                                                 Function
Parameter", Default = 1e-6);
Pmax as pressure (Brief = "Max. Pressure");
Pmin as pressure (Brief = "Min. Pressure");
Lmax as length (Brief = "Max. Height of Oil");
Lmin as length (Brief = "Min. Height of Oil");
Wmax as length (Brief = "Max. Height of Water");
Wmin as length (Brief = "Min. Height of Water");
Fgmax as flow_mol;
Fgmin as flow_mol;
Flmax as flow_mol;
Flmin as flow_mol;
Fwmax as flow mol;
Fwmin as flow_mol;
Kc_P as positive (Brief = "Pressure Gain Constant");
tauI_P as time_sec (Brief = "Pressure Integral Time
Constant");
Kc_W as positive
                     (Brief = "Water Gain Constant");
tauI_W as time_sec (Brief = "Water Integral Time
Constant");
Kc_L as positive (Brief = "Oil Gain Constant");
tauI_L as time_sec (Brief = "Oil Integral Time Constant");
VARIABLES
P_sp as pressure (Brief = "Pressure Setpoint", DisplayUnit
= 'kPa');
W_sp as length (Brief = "Water Level Setpoint");
L_sp as length (Brief = "Oil Level Setpoint");
P_ad as fraction (Brief = "Adimensional Pressure");
hw_ad as fraction (Brief = "Water Adimensional Height");
hl ad as fraction (Brief = "CL Adimensional Height");
Fg_ad as fraction;
Fw ad as fraction;
Fl ad as fraction;
                (Brief = "Pressure Controller");
pidP as PID
pidW as PID
                (Brief = "Water Outlet Controller");
                 (Brief = "Oil Outlet Controller");
pidL as PID
eta as fraction (Brief = "Regularization Function");
```

trisep as triseparator;

```
EQUATIONS
```

"PIC Parameters"	
pidP.Ports.setPoint	= (P_sp - Pmin) / (Pmax -
Pmin);	
pidP.Parameters.gain	= Kc_P;
pidP.Parameters.derivTime	= 0 *'s';
pidP.Parameters.intTime	= tauI_P;
pidP.Parameters.tau	= 1*'s';
pidP.Parameters.tauSet	= 1*'s';
pidP.Parameters.alpha	= 0.1;
pidP.Parameters.beta	= 1;
pidP.Parameters.gamma	= 1;
"PIC Configuration"	
pidP.Options.clip	= 1;
pidP.Options.action	= -1;
"LIC1 Parameters"	
pidW.Ports.setPoint	= (W_sp - Wmin) / (Wmax -
Wmin);	
pidW.Parameters.gain	= Kc_W;
pidW.Parameters.derivTime	= 0 *'s';
pidW.Parameters.intTime	= tauI_W;
pidW.Parameters.tau	= 1*'s';
pidW.Parameters.tauSet	= 1*'s';
pidW.Parameters.alpha	= 1;
pidW.Parameters.beta	= 1;
pidW.Parameters.gamma	= 1;
"LIC1 Configuration"	
pidW.Options.clip	= 1;
pidW.Options.action	= -1;
"LIC2 Parameters"	
pidL.Ports.setPoint	= (L_sp - Lmin) / (Lmax -
Lmin);	
pidL.Parameters.gain	= Kc_L;
pidL.Parameters.derivTime	= 0 *'s';
pidL.Parameters.intTime	= tauI_L;
pidL.Parameters.tau	= 1*'s';
pidL.Parameters.tauSet	= 1*'s';

```
pidL.Parameters.alpha = 1;
pidL.Parameters.beta = 1;
pidL.Parameters.gamma = 1;
```

```
"LIC2 Configuration"
pidL.Options.clip = 1;
pidL.Options.action = -1;
```

```
"Adimensional Variables"
P_ad = (trisep.P - Pmin)/(Pmax - Pmin);
hw_ad = (trisep.hfwcs - Wmin)/(Wmax - Wmin);
hl_ad = (trisep.hcl - Lmin)/(Lmax - Lmin);
Fg_ad = (trisep.OutletG.F - Fgmin)/(Fgmax - Fgmin);
Fl_ad = (trisep.OutletL.F - Flmin)/(Flmax - Flmin);
Fw_ad = (trisep.OutletW.F - Fwmin)/(Fwmax - Fwmin);
```

```
"Controllers Input"
pidP.Ports.input = P_ad;
pidW.Ports.input = hw_ad;
pidL.Ports.input = hl_ad;
```

```
"Controllers Output"
Fg_ad = pidP.Ports.output;
Fw_ad = pidW.Ports.output;
Fl_ad = pidL.Ports.output;
```

SET

```
pidP.PID_Select = "Ideal";
pidW.PID_Select = "Ideal";
pidL.PID_Select = "Ideal";
```

end

A.2.5 Flow Sheet Trisep_Comp

FlowSheet Trisep_Comp

```
PARAMETERS
```

PP as Plugin(Brief="Physical Properties", Type="PP", Components = ["water", "carbon dioxide", "methane", "ethane", "propane", "isobutane", "n-butane", "isopentane", "n-pentane", "n-hexane", "n-heptane", "noctane", "n-nonane", "n-decane", "n-undecane", "ntetracosane"], LiquidModel = "PR", VapourModel = "PR"); NComp as Integer;

DEVICES

SG1 as triseparator_control; feed as trisource_simplified; Q0 as energy_source;

CONNECTIONS feed.Outlet to SG1.trisep.Inlet; Q0.OutletQ to SG1.trisep.InletQ;

SET

```
SG1.trisep.hvert = 2.06*'m';
SG1.trisep.g = 9.80665*'m/s^2';
SG1.trisep.R = 8.31447*'J/mol/K';
SG1.trisep.Lcs = 10.325*'m';
SG1.trisep.Lcl = 1.125*'m';
SG1.trisep.D = 3.82*'m';
NComp = PP.NumberOfComponents;
SG1.Kc_P
          = 0.1;
SG1.tauI_P = 80*'s';
SG1.Kc_W = 50;
SG1.tauI_W = 80*'s';
SG1.Kc_L = 1;
SG1.tauI_L = 80*'s';
SG1.Pmax = 1740.625*'kPa';
SG1.Pmin = 740.625*'kPa';
SG1.Lmax = 3*'m';
SG1.Lmin = 0*'m';
SG1.Wmax = 2*'m';
```

```
SG1.Wmin = 0*'m';
SG1.Fgmax = 3600*'kmol/h';
SG1.Fgmin = 0*'kmol/h';
SG1.Flmax = 1600*'kmol/h';
SG1.Flmin = 0*'kmol/h';
SG1.Fwmax = 340*'kmol/h';
SG1.Fwmin = 0*'kmol/h';
```

SPECIFY

```
"Adiabatic Process"
Q0.OutletQ.Q = 0*'kJ/h';
```

"Controllers on/off"		
SG1.pidP.Options.autoMan	=	0;
SG1.pidL.Options.autoMan	=	0;
SG1.pidW.Options.autoMan	=	0;

"Bias"

SG1.pidP.Parameters.bias	=	0.516;
SG1.pidL.Parameters.bias	=	0.462;
SG1.pidW.Parameters.bias	=	0.577;

EQUATIONS

```
"Feed Flow w/ Regularization Function"
feed.Outlet.F = 2792.7*(1 + 0*SG1.eta)*'kmol/h';
```

"Set Point Equations w/ Regularization Function"
SG1.P_sp = 1240.625*(1 + 0*SG1.eta)*'kPa';
SG1.L_sp = 1.5*(1 + 0*SG1.eta)*'m';
SG1.W_sp = 1*(1 + 0*SG1.eta)*'m';

INITIAL

SG1.trisep.hfwcs = 1*'m'; SG1.trisep.hcs = 2.10653*'m';

```
SG1.trisep.hcl = 1.5*'m';
     SG1.trisep.OutletL.z(1:NComp-1) = [0.06,
                                                      0.00016,
     0.052, 0.0077, 0.0084, 0.0037, 0.01, 0.006, 0.0093, 0.0183,
     0.039, 0.05571, 0.05253, 0.04928, 0.02995];
     OPTIONS
     TimeStep
                = 3;
     TimeEnd
               = 300;
     TimeUnit
               = 'min';
     GuessFile = "Chute2.rlt";
     NLASolver (File = "sundials", MaxIterations=300);
     DAESolver (File = "dassl");
end
```

A.3 Integração com o Ciclo de Compressão no EMSO

A.3.1 Modelo Compression_cycle

```
Model Compression_cycle
       PARAMETERS
       outer PP
                        as Plugin
                                                (Brief
                                                                 =
       "External Physical Properties", Type="PP");
       outer NComp
                        as Integer
                                                (Brief = "Number
       of chemical components", Lower = 1);
       pi
           as positive (Brief="Pi value", Default=3.141593);
       aj
                  as Real;
       P1Min
                  as pressure;
       P1Max
                  as pressure;
                  as flow_mol;
       FV1Min
       FV1Max
                  as flow_mol;
       FL1Max
                  as flow mol;
       FL1Min
                  as flow_mol;
       L1Max
                  as length;
       L1Min
                  as length;
       WlMin
                  as power;
       W1Max
                  as power;
       AS1Max
                  as flow_mass;
       AS1Min
                  as flow_mass;
       aV1
                  as surge_coef;
       bV1
                  as energy_mass;
```

```
Kc_AS1
          as Real;
intT_AS1
          as Real;
           as Real;
folga
VARIABLES
M1
           as MixerV;
           as cooler;
R1
F1
           as flash3;
C1
           as Centrifugal_Compressor;
           as Splitter;
S1
pidP1
           as PIDIncr;
           as PID;
pidAS1
pidL1
           as PIDIncr;
P1_ad
           as Real (Brief="Dimensionless pressure");
L1 ad
           as Real (Brief="Dimensionless level");
AS1 ad
           as Real (Brief="Dimensionless mass flowrate");
AS1
           as
                flow_mass (Brief="Anti-surge
                                                      mass
flowrate");
VS1
           as flow_vol (Brief="Surge volumetric flowrate",
DisplayUnit='m^3/s');
P1_sp
           as pressure;
P1_spn
          as Real;
          as length;
L1_sp
L1_spn
          as Real;
          as Real;
AS1_sp
Kc_P1
          as Real;
Kc_Ll
          as Real;
intT_P1
          as Real;
intT_L1
           as Real;
CONNECTIONS
M1.Outlet to R1.Inlet;
R1.Outlet to F1.Inlet;
F1.OutletV to C1.Inlet;
C1.Outlet to S1.Inlet;
S1.Outlet(1) to M1.Inlet(2);
SET
M1.Ninlet = 2;
S1.NOutlet = 2;
pidP1.PID_Select = "Parallel_AWBT";
```

```
pidAS1.PID_Select = "Parallel_AWBT";
pidL1.PID_Select = "Parallel_AWBT";
```

EQUATIONS

```
"Control variables and Normalized control variables"
Pl_ad*(PlMax - PlMin) = Fl.OutletV.P - PlMin;
Ll_ad*(LlMax - LlMin) = Fl.Level - LlMin;
ASl_ad*(ASlMax - ASlMin) = Cl.Outlet.F*Cl.Mwm - ASlMin;
```

```
"Controllers input ports"
pidP1.Ports.input = P1_ad;
pidL1.Ports.input = L1_ad;
pidAS1.Ports.input=AS1_ad;
```

```
"Set-Point Equations"
P1_spn *(PlMax - P1Min) = (P1_sp - P1Min);
L1_spn *(L1Max - L1Min) = (L1_sp - L1Min);
```

```
"Pressure controller parameters"
```

pidP1.Ports.setPoint	= P1_spn;
pidP1.Parameters.gain	= Kc_P1;
pidP1.Parameters.derivTime	= 0*'s';
pidP1.Parameters.intTime	= intT_P1 *'s';
pidP1.Parameters.tau	= 1*'s';
pidP1.Parameters.tauSet	= 1*'s';
pidP1.Parameters.alpha	= 1;
pidP1.Parameters.beta	= 1;
pidP1.Parameters.gamma	= 1;

"Pressure controller configuration"
pidP1.Options.clip = 1;
pidP1.Options.action = -1;

```
"Level controller parameters"
pidLl.Ports.setPoint = Ll_spn;
pidLl.Parameters.gain = Kc_L1;
pidLl.Parameters.derivTime = 0*'s';
pidLl.Parameters.intTime = intT_L1*'s';
pidLl.Parameters.tau = 1*'s';
pidLl.Parameters.tauSet = 1*'s';
pidLl.Parameters.alpha = 1;
```

```
pidL1.Parameters.beta
                                   = 1;
     pidL1.Parameters.gamma
                                  = 1;
     "Level controller configuration"
     pidL1.Options.clip
                             = 1;
     pidL1.Options.action
                             = -1;
     "Anti-Surge controller parameters"
     pidAS1.Ports.setPoint
                                   = AS1_sp;
     pidAS1.Parameters.gain
                                   = Kc_AS1;
     pidAS1.Parameters.derivTime = 0*'s';
     pidAS1.Parameters.intTime
                                   = intT_AS1 *'s';
     pidAS1.Parameters.tau
                                   = 1*'s';
     pidAS1.Parameters.tauSet
                                   = 1*'s';
     pidAS1.Parameters.alpha
                                   = 1;
     pidAS1.Parameters.beta
                                   = 1;
     pidAS1.Parameters.gamma
                                   = 1;
     "Anti-Surge controller configuration"
                            = 1;
     pidAS1.Options.clip
     pidAS1.Options.action
                             = 1;
end
```

A.3.2 Flow Sheet Trem_Compressores

FlowSheet Trem_Compressores

```
PARAMETERS
ΡP
      as Plugin(Brief="Physical Properties", Type="PP",
Components = ["methane", "water"], LiquidModel
                                                = "PR",
VapourModel = "PR");
NComp
           as Integer;
PM(NComp)
          as molweight;
RMin
           as vel_angular;
RMax
           as vel_angular;
SET
NComp = PP.NumberOfComponents;
        = PP.MolecularWeight();
ΡМ
DEVICES
feed
           as trisource;
```

```
SG1 as trisep_control;
Q1 as energy_sink (Brief = "Heat removed");
Qzero as energy_source (Brief = "Adiabatic flashes");
ciclo as Compression_cycle;
feed2 as simple_source (Brief = "Oily Water
alimentation in flash");
T1 as Turbine;
```

CONNECTIONS

feed.Outlet	to SG1.Trisep.Inlet;
SG1.cG.Outlet	to ciclo.M1.Inlet(1);
ciclo.R1.OutletQ	to Q1.InletQ;
Qzero.OutletQ	to ciclo.F1.InletQ;
feed2.Outlet	to ciclo.F1.InletL;
T1.WorkOut	to ciclo.C1.WorkIn;

SPECIFY

```
feed.P = 1240.526*'kPa';
feed.T = 363.15 * 'K';
feed.Outlet.G = 1857.1*'kmol/h';
feed.Outlet.L = 739.23*'kmol/h';
feed2.F = 23.59695 *'kmol/h';
feed2.MolarComposition = [0, 100]/100;
feed2.P = 36.527* 'atm';#8.99383 * 'atm';
feed2.T = 317.78 * 'K';
SG1.cG.Outlet.z = [89, 11]/100;
SG1.cL.Outlet.z = [0, 1]; # dummy value
SG1.cW.Outlet.z = [0, 1]; # dummy value
```

SET

```
SG1.Trisep.D = 3.82*'m';
SG1.Trisep.Ccs = 10.325*'m';
SG1.Trisep.Ccl = 1.125*'m';
SG1.Trisep.hvert = 2.06*'m';
SG1.cG.Cvmax = 1.195e-3;
SG1.cL.Cvmax = 2;
SG1.cL.Cvmax = 0.02;
SG1.Trisep.row = 965*'kg/m^3';
SG1.Trisep.PMw = 18*'g/mol';
SG1.Trisep.rol = 923.9*'kg/m^3';
```

```
SG1.Trisep.PM1 = 416.937*'g/mol';
SG1.Kc_P = 5;
SG1.tauI_P = 100*'s';
SG1.Kc_W = 20;
SG1.tauI_W = 100*'s';
SG1.Kc_L = 5;
SG1.tauI_L = 100*'s';
SG1.Pmax = 1540.526*'kPa';
SG1.Pmin = 940.526*'kPa';
SG1.Lmax = 3*'m';
SG1.Lmin = 0*'m';
SG1.Wmax = 2*'m';
```

SPECIFY

"Separator Conditions"
SG1.Trisep.T = (93+273.15) * 'K';
SG1.cW.Pdrop = 260.526*'kPa';
SG1.cL.Pdrop = 260.526*'kPa';
SG1.cG.Pdrop = 260.526*'kPa';

"Controllers on/off"

SG1.pidP.Options.autoMan	=	0;
SG1.pidW.Options.autoMan	=	0;
SG1.pidL.Options.autoMan	=	0;

EQUATIONS

```
"Properties"
SG1.cW.rho = SG1.Trisep.row;
SG1.cW.PM = SG1.Trisep.PMw;
SG1.cL.rho = SG1.Trisep.rol;
SG1.cL.PM = SG1.Trisep.PMl;
SG1.cG.PM = SG1.Trisep.PMg;
SG1.cG.rho = SG1.Trisep.rog;
SG1.Trisep.PMg = sum(SG1.cG.Outlet.z*PM);
```

"Bias"

```
SG1.pidW.Parameters.bias = 0.5;
SG1.pidP.Parameters.bias = 0.5;
SG1.pidL.Parameters.bias = 0.5;
"Feed Flow w/ Regularization Function"
```

```
feed.F = 2792.7 * (1 + 0*SG1.eta) * 'kmol/h';
"Set Point Equations"
SG1.P sp = 1240.526*'kPa';
SG1.L_sp = 1.5*'m';
SG1.W_sp = 1*'m';
SET
ciclo.C1.CompressorType = "Polytropic Operation";
ciclo.Kc_AS1 = 0.1;
ciclo.intT_AS1 = 10000;
ciclo.folga = 1.01;
ciclo.P1Max = 2000
                           *'kPa';
                     *'kPa';
ciclo.P1Min = 800
ciclo.FV1Max = 1680.74 *'kmol/h';
ciclo.FV1Min = 0
                      *'kmol/h';
ciclo.FL1Max =1680.74 *'kmol/h';
ciclo.FL1Min = 0
                       *'kmol/h';
ciclo.L1Max = 1.686
                            *'m';
ciclo.L1Min = 0.1
                       *'m';
ciclo.W1Max = -10
                       *'MW';
                           *'MW';
ciclo.W1Min = 0
ciclo.AS1Max = 50000 *'kg/h';
ciclo.AS1Min = 10000 *'kg/h';
SPECIFY
ciclo.C1.MechanicalEff = 0.99;
ciclo.C1.Outlet.P = 2814.5 * 'kPa';
EQUATIONS
if ciclo.Cl.F_vol < (1.19) * 'm^3/s'or ciclo.Cl.F_vol >
(0.643947) * 'm^3/s' then
     ciclo.C1.EfficiencyOperation = 0.65;
else
     ciclo.Cl.EfficiencyOperation =
                                          -16.313 +
     (ciclo.C1.F_vol*'s/m^3')*(74.679+
     (ciclo.C1.F_vol*'s/m^3')*(-122.33+
     (ciclo.C1.F_vol*'s/m^3')*(89.054-
     (ciclo.C1.F_vol*'s/m^3')*24.307)));
end
```

```
"Controllers Gain and Integral Time (PI)"
ciclo.Kc_P1*(1 - ciclo.P1_spn) = 1;
ciclo.Kc_L1 *(ciclo.L1_spn)= 1;
ciclo.intT_L1 * 's'*(ciclo.Kc_L1*ciclo.F1.vL*ciclo.FL1Max)
= 4*ciclo.F1.V;
ciclo.intT_P1 * 's'*(ciclo.Kc_P1*ciclo.F1.vV*ciclo.FV1Max)
= 4*ciclo.F1.V;
```

```
"Bias"
ciclo.pidP1.Parameters.bias = 1;
ciclo.pidL1.Parameters.bias = 0.0738766;
```

```
"Action of Control"
T1.RPM = ciclo.pidP1.Ports.output*(RMax-RMin)+RMin;
ciclo.F1.OutletL.F = ciclo.pidL1.Ports.output *
(ciclo.FL1Max - ciclo.FL1Min) + ciclo.FL1Min;
ciclo.S1.frac(1) = ciclo.pidAS1.Ports.output;
```

```
"Set-Point Equations"
ciclo.P1_sp = 911.3 * 'kPa';
ciclo.L1_sp = 0.5* 'm';
ciclo.AS1_sp * (ciclo.AS1Max - ciclo.AS1Min)= (ciclo.AS1 *
ciclo.folga - ciclo.AS1Min);
```

```
"Controllers on /off"
ciclo.pidP1.Options.autoMan = 0;
ciclo.pidAS1.Options.autoMan = 0;
ciclo.pidL1.Options.autoMan = 0;
```

```
"Surge Control"
ciclo.Cl.HeadPolytropic= ciclo.aVl*ciclo.VSl+ ciclo.bVl;
ciclo.ASl = ciclo.VSl * PP.VapourDensity(ciclo.Cl.Inlet.T,
ciclo.Cl.Inlet.P, ciclo.Cl.Inlet.z);
```

SET

```
T1.Rref = 10000* 'rpm';
T1.Wref = 1600 * 'kW';
T1.tau = 1 * 'min';
RMax = 10200*'rpm';
RMin = 8900 *'rpm';
ciclo.F1.V = 4*'m^3';
```

```
ciclo.Fl.diameter = 1.143*'m';
ciclo.Fl.orientation = "vertical";
```

SPECIFY

"Adiabatic Flash"
Qzero.OutletQ.Q = 0*'kW';

```
"Cooler Data - Fixed Temperature OR Heat Rate"
ciclo.R1.Outlet.T = (38.6+273.15) * 'K';
ciclo.R1.Pdrop = 20 * 'kPa';
```

SET

```
ciclo.aj = 2.5;
ciclo.aV1 = ciclo.aj*(97-72)/(0.81-0.6) * 'kJ*s/(m^3*kg)';
ciclo.bV1= (ciclo.aj*72 * 'kJ/kg' - ciclo.aV1*0.6*'m^3/s');
```

GUESS

ciclo.F1.OutletV.z = [0.9926,0.0074];

INITIAL

SG1.Trisep.htcs	=	2.11609*'m';
SG1.Trisep.hcl	=	1.5*'m';
SG1.Trisep.hfwcs	=	1*'m';
SG1.Trisep.P	=	1240.526*'kPa';
SG1.Trisep.xwflcs	=	0;
SG1.Trisep.xlfwcs	=	0;
SG1.Trisep.xwcl	=	0;

```
ciclo.F1.OutletV.T = 315.265 *'K';
ciclo.F1.Level = 0.5* 'm';
ciclo.F1.OutletL.z(1) = [2e-5];
T1.R = 10200*'rpm';
```

OPTIONS

```
TimeStep = 2;
TimeEnd = 200;
TimeUnit = 'min';
NLASolver(File="sundials", MaxIterations=500);
DAESolver(File="pside",RelativeAccuracy=le-
3,AbsoluteAccuracy=le-6,EventAccuracy =le-2);
```