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necessários à obtenção do t́ıtulo de Mestre em

Engenharia Mecânica.

Orientador: Daniel Alves Castello

Rio de Janeiro

Março de 2019



OPERATIONAL MODAL ANALYSIS APPLIED TO CENTRIFUGAL

COMPRESSORS

Leandro de Oliveira Zague
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Assim, é inevitável que tenhamos em nosso ser, um pouco de cada pessoa que
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bomáquinas. Agradeço ainda aos professores da Petrobras Paulo Sérgio, Antônio
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ANÁLISE MODAL OPERACIONAL APLICADA A COMPRESSORES

CENTRÍFUGOS

Leandro de Oliveira Zague

Março/2019

Orientador: Daniel Alves Castello

Programa: Engenharia Mecânica

Dadas as incertezas associadas a análise de estabilidade através de modelagem

rotodinâmica, um número crescente de operadores tem especificado testes de ve-

rificação de estabilidade para validar o modelo rotodinâmico e reduzir os riscos de

instabilidade rotodinâmica durante operação, além de riscos de velocidades cŕıticas

com pouco amortecimento dentro da faixa de operação, em carga parcial ou plena.

O presente trabalho examina métodos de Análise Modal Operacional aplicados a

compressores centŕıfugos, como alternativa aos métodos utilizados em testes con-

vencionais de estabilidade. Cinco métodos de análise modal serão avaliados através

de sua aplicação a modelos de diferente complexidade, examinando a influência da

taxa de amostragem, duração da aquisição de sinais, relação sinal rúıdo, processa-

mento de sinais e parâmetros dos modelos de identificação utilizados para análise

modal.
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requirements for the degree of Master of Science (M.Sc.)

OPERATIONAL MODAL ANALYSIS APPLIED TO CENTRIFUGAL

COMPRESSORS

Leandro de Oliveira Zague

March/2019

Advisor: Daniel Alves Castello

Department: Mechanical Engineering

Given the predictive uncertainties associated with rotor stability, more and more

end-users are requiring stability verification tests to validate the rotordynamic mod-

els to reduce the risk of rotor instability issues during operation, as well as the risk

of critical speeds with low damping inside the operational speed range at full or

partial load conditions. The present work examines Operational Modal Analysis

methods applied to centrifugal compressors, as an alternative to the methods ap-

plied to conventional stability tests. Five OMA methods will be evaluated through

its application to models of different complexity, examining the influence of sampling

rate, acquisition time span, signal to noise ratio, signal processing and identification

model parameters in the modal analysis.
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Chapter 1

Introduction

This chapter presents the motivation of the present work, the dissertation goals and

the dissertation outline.

1.1 Motivation

Process centrifugal compressors are a class of fluid machinery aimed at transport

a certain amount of gas from a lower pressure to a higher pressure, being impor-

tant elements for industries as oil and gas (upstream, midstream and downstream),

chemical, petrochemical, fertilizer production, among others.

They are well known for their high reliability, being able to work in the range of

mid to high mass flows with a wide range of pressures, achieving the needs of many

applications of process industry.

These machines are tailor made, designed specifically to work with the process

parameters of the plant where they are inserted, as: gas composition, mass flow,

suction temperature and pressure and discharge pressure.

Usually a more agressive aero-thermodynamic design leads to a less robust ro-

tordynamic behavior while a robust rotordynamic behavior leads to a lower ther-

modynamic performance. Thus, the design of a centrifugal compressor must be a

compromise between aero-thermodynamic and rotordynamic goals.

Recently, applications such as reinjection of natural gas and carbon dioxide for

the oil and gas upstream market, urea production and carbon capture and sequestra-

tion, are pushing centrifugal compressors Original Equipment Manufacturer (OEM)

to the edge of their experience regarding the operation with working fluids of ultra-

high densities.

The offshore platforms of Brazilian Pre-Salt are examples of such applications,

requiring from reinjection compressors to work with discharge pressures up to 550

barA, and possibly higher pressure in the next projects.
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Moreover, the OEMs are adopting more aggressive rotordynamic designs, follow-

ing the downsizing philosophy, leading to thinner rotors and higher speeds. These

attributes demand accurate rotordynamic models, aiming to achieve the following

project goals:

• to guarantee adequate separation margin between operational speed range and

natural frequencies of system;

• to verify the compatibility between vibration levels and internal clearance, to

avoid rubbing and high tensions;

• to verify the rotordynamic sensitivity to unbalance;

• to verify the compressor stability in several operation conditions;

API 617 [4] requires three steps, as part of Lateral Rotordynamic Analysis, aim-

ing to show that the project rotordynamic goals were achieved, being: Undamped

Critical Speed Analysis, Unbalance Response Analysis and Stability Analysis. Ap-

pendix A shows a general description of Lateral Analysis, explaining each of these

steps to the interested reader.

Between the project goals and analysis steps, stability assessment has a special

place. This is due to the fact that rotor instability is an undesirable condition of

operation in which various elements in the rotor system induce self-excited vibration

that can cause severe failures, threatening personal and environment (CLOUD [5]).

Rotor stability is negatively affected by the increasing densities, speeds and

thiner rotors resulting from the recent applications and downsizing design philos-

ophy, and despite the fact that several advances are being reached in the rotordy-

namic modeling, there are still uncertainties on rotordynamic parameters of bearing,

labyrinth seals, damper seals, oil seals (when applied), besides impellers aerodynamic

cross coupling as shown by KOCUR et al. [6].

Therefore, performing stability tests to validate the models are being more and

more required by end-users as a way to reduce risk of stability issues during op-

eration, as well as the risk of critical speeds with low damping inside operational

speed range in full or partial load conditions. It is unpractical to test all the possible

operational scenarios, but a model validation/reconciliation increases the possibility

of success, once these scenarios were evaluated in the stability analysis performed

with the model.

Stability tests are mostly done just during shop acceptance tests in machines

that have failed to meet the Level-I stability criteria, established by API 617 [4] and

have presented low level of damping predicted by the detailed stability investigation

carried in accordance with API 617 [4] Level-II stability analysis.
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Nowadays, mostly stability testing in centrifugal compressors uses Experimental

Modal Analysis (EMA) techniques. These tests generally require the assembling

(temporarily) of an electromagnetic shaker on the non-drive end (NDE) of machine,

through bolted extensions or tapered sleeve, to apply nonsynchronous excitation to

the rotor, while the compressor is running at a pre-defined speed and operational

condition at the OEM’s test bench. Therefore, the project of the system should be

done taking into account the need for the specific position where the shaker will be

attached at. In this concern, the shaft and the end of the rotor needs to be modified

in order to have sufficient space for the magnetic exciter. An additional limitation

in the use of traditional stability test is the case of passing through machines, where

the exciter can not be easily installed (GUGLIELMO et al. [7]).

It is important to minimize the influence of the shaker device on the rotordy-

namics of compressor and also in balance state. Furthermore, the power of the

shaker and its operational frequency bandwidth should be able to excite the models

of interest during machine operations.

A common issue is the addition of unbalance due to machining perpendicularity

and misalignment, even inside tight tolerances, at interface between exciter rotating

part and shaft end.

Thus, experimental assessment of turbomachinery stability by traditional meth-

ods is also a challenge. An alternative to the traditional EMA tests, that is the

focus of the present work, is to adopt Operational Modal Analysis (OMA) methods.

OMA methods does not require the acknowledgment of excitation applied to a

structural system, in order to allow the modal parameters extraction nor application

of external excitation. Thus it eliminates the need of assembling an excitation device,

making stability test a simpler task and allowing the extraction of modal parameters

of an equipment during its field operation.

1.2 Dissertation Goals

The goals of this dissertation are to analyze OMA methods applied to centrifugal

compressors, highlighting aspects of OMA that are specific to rotating machines. In

particular, one is interested in signal processing, parameter setting, elimination of

computational and excitation modes and finally the modal parameters extraction in

each of analyzed methods.

This will be performed by applying OMA to models of different complexity,

starting with a simple mass-spring-damper model (with three elements) and evolving

to a complete rotordynamic Finite Element Model (FEM), allowing uncertainties

quantification analysis through Monte Carlo simulation, considering different levels

of damping, excitation and Signal to Noise Ratio (SNR) and its influence in the
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modal parameters extraction.

A real application of OMA to a centrifugal compressor during field operation will

be performed also, showing the necessary steps of signal processing needed prior to

OMA analysis.

1.3 Dissertation Outline

At Chapter 2, a brief overview of OMA will be given, aiming to familiarize some

readers from turbomachinery engineering community with the subject. The main

focus of this chapter is to present a State of Art Literature Review with focus in

traditional Modal Testing and OMA applied to centrifugal compressors, discussing

the advances achieved in the last years in this field.

Chapter 3 presents the theoretical fundamentals of time domain OMA methods

studied in this work. The interested reader will find basic concepts, necessary for

understanding this chapter at Appendix B. The main focus of Chapter 3 is not to

discuss in depth each of the methods, once the algorithms studied here are available

at the literature, but to present the concepts of Stochastic Vibration and the bridge

between traditional modal analysis and OMA methods.

At Chapter 4, the physical systems adopted to study time domain OMA methods

and its application to centrifugal compressors will be presented, including compu-

tational models of systems and a real installation of a hydrogen recycle compressor,

operating in a Brazilian refinery.

Results and Discussion of modal parameters identification through time domain

OMA methods applied to the physical systems presented at Chapter 4, will be

presented at Chapter 5, aiming to discuss about the challenges, advantages and dis-

advantages of OMA methods application to extract modal parameters of Centrifugal

Compressor.

By last, the conclusion of this work will be presented at Chapter 6.
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Chapter 2

State of the Art and Literature

Review

In this section, a Literature Review focused on traditional Modal Testing and OMA

applied to centrifugal compressors will be presented. Firstly, a brief overview of

OMA will be given, aiming to familiarize some readers from turbomachinery engi-

neering community with a subject not widely known by some of its members.

2.1 OMA Overview

The operational modal analysis methods are applied to identify the eigenvalues

and eigenvectors of the system through the measurements of vibration, without the

necessity of measuring the excitation forces (see diagram at figure 2.1). Thus, no

additional device is necessary, making stability tests a simpler task and also making

possible to assess compressors stability during its field operation, which can be a

powerful vibration troubleshooting tool.

MACHINE
ROTOR 
SYSTEM

AMBIENT, 
UNKNOWN

EXCITATION
FORCES

MODAL 
PARAMETERS

ωd
δ
ζ

VIBRATION 
SENSORSVIBRATIONS

DATA 
ACQUISITION

& 
SIGNAL

PROCESSING

SYSTEM 
IDENTIFICATION

TECHNIQUE

Figure 2.1: Diagram of OMA identification process

The basis of this theory is to consider that the excitation over the structure

is a combination of stochastic excitation generated by natural means (like wind,

5



Figure 2.2: OMA theoretical background BRINCKER and VENTURA [1].

sea wave, or turbulence due to process gas flowing through internal channels of

the compressor) and deterministic excitation (such as unbalance). This combined

excitation force is unknown, but can be described by a filtered stationary, zero

mean, Gaussian white noise excitation as described by BRINCKER and VENTURA

[1]. Figure 2.2 shows a scheme of the OMA framework. With this framework, it

will be shown in Chapter 3 that the poles of the excitation filter and the poles of

structural system, along with correspondent eigenvectors (not scalable in OMA),

will be estimated by the analyses of measured responses.

Thus the main challenge in OMA is to somehow distinguish the structural system,

the excitation filter and computational eigenvalues and eigenvectors. It is important

to highlight that the same sort of problems related with the process of modal param-

eters estimation is present in both OMA and EMA methods. Once the stochastic

excitation is of major importance, the acquisition duration and sampling rate are

parameters that can have a strong influence in results. Furthermore, stochastic ex-

citation must have enough bandwidth, to cover the interest range of frequencies and

be strong enough to provide a good signal to instrument noise ratio. The lack of

control over the stochastic excitation can be an issue in OMA applications, mainly

in low pressure machines.

2.2 Time Domain OMA methods

OMA has been applied in mechanics for on-the-road modal analysis of cars, in-flight

modal analysis of airplanes, modal testing of spacecraft during launch, modal testing

of engines during startup and shutdown and modal testing of wind turbines among

others. In civil engineering, OMA has become the primary tool for modal testing

and the number of reported case studies is abundant (REYNDERS [8]).

6



The origin of Time Domain OMA methods started in the 1970’s. The basis for

application of time domain methods to extract modal parameters from output only

data was defined in 1974, by AKAIKE [9] and later by BENDAT and PIERSOL

[10]. These works recognize that impulse responses and free decays of systems can

be obtained by correlation functions between outputs of system, when a white noise

excitation is applied.

After that, remarkable time domain techniques were developed and can be cited

herein. Examples are Ibrahim Time Domain method (IBRAHAM [11]), developed in

1977, followed, in 1982, by the Polyreference method (VOLD et al. [12]) and in 1985

by the Eigenrealization Algorithm (JUANG and PAPPA [13]). Natural Excitation

Technique (JAMES et al. [14]) was developed in 1995 and finally Stochastic Subspace

Identification methods (VAN OVERSCHEE and DE MOOR [3]) were developed in

1996.

In 2000’s, efforts were concentrated in uncertainty quantification in modal pa-

rameter estimation. A bayesian approach for time domain techniques was developed

by YUEN and KATAFYGIOTIS [15], but a recent review in YUEN and KUOK [16]

has indicated potential significant bias of this identifiation method. In REYNDERS

et al. [17] a method to estimate variance of the estimates from a single ambient

vibration test using using SSI estimation methods was provided.

Also in 2000’s, some efforts were concentrated in harmonic signals elimination,

once it is well known that harmonics coinciding with natural frequencies of sys-

tem can bring challenges to OMA identification. Works as MODAK et al. [18],

PEETERS et al. [19] and QI et al. [20] were focused on this subject.

Nowadays, efforts in harmonic signal elimination from the output response and

uncertainty quantification of modal parameters identification still ongoing. As ex-

emples, recently a new orthogonal projection-based method was proposed in GRES

et al. [21] for harmonic signal removal and in REYNDERS et al. [22], a validation

and application of the method to estimate variance of the estimates obtained from

a single ambient vibration test using SSI was performed (together with the valida-

tion of an uncertainty quantification method using maximum likelihood, proposed

in PINTELON et al. [23]).

Although many different OMA algorithms may be found in the literature, the

present work focus on Data Driven Stochastic Subspace Identification (SSI), Covari-

ance Driven SSI and Multiple Output Backward Autoregressive (MOBAR) methods.

According to ZHANG and BRINCKER [24], the data driven Stochastic Subspace

Identification procedures are the sequence of the state-space system identification

(4SID) developed in the nineties, and the advantages of SSI are that it makes direct

use of stochastic response data without estimation of covariance as first stage and it

can not only be employed for white noise excitation, but also for colored noise. The
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SSI algorithm can be employed with 3 methods, Unweighted Principal Components

(UPC), Principal Component (PC) and Canonical Variate Analysis (CVA) described

in detail in VAN OVERSCHEE and DE MOOR [3]. SSI Covariance Driven are based

on the Stochastic Realization algorithms and are defined as a Subspace System

Identification method once the eigenvalues of the system are calculated via Singular

Value Decomposition (SVD) of covariance matrix ZHANG and BRINCKER [24].

The Stochastic realization algorithm can also be employed in 3 methods, SSI-UPC,

PC and CVA.

MOBAR is a time domain technique proposed in 2002 by HUNG and KO [25],

aiming to reduce the problems related with spurious modes identified in forward

Autoregressive models. This is an extension of the single output backward au-

toregressive model proposed by KUMARESAN and TUFTS [26]. MOBAR using

Blocking Test excitation was successfully applied to extract modal parameters in a

lab scale rotor in CLOUD [5] and CLOUD et al. [27], in Cage Induction Motors in

HOLOPAINEN et al. [28] and than it was applied to multistage centrifugal com-

pressors during factory stability tests in PETTINATO et al. [2] and NORONHA

et al. [29]. Although the majority of the MOBAR applications in turbomachinery

uses Blocking Test excitations, this technique can be applied to ambient excitation

as in the present work.

Further details of each of these techniques will be presented in the Chapter 3.

2.3 Centrifugal Compressor Modal Testing using

EMA methods

A complete bibliographic review of Modal Testing of Rotor Systems is given at

CLOUD [5], thus the goal of the present review is to point out the current state of

this field and advances occurred since the publication of that work.

Since that publication, the most common practice adopted to carry Stability

Tests on Centrifugal Compressor is still to use magnetic exciter to apply nonsyn-

chronous excitation to the rotor.

Until 2009, many stability tests were performed using magnetic exciter. It is com-

mon to consider sine sweep excitation, while compressor is in operational speed.This

allows the computation of Frequency Response Functions (FRFs) and Single Degree

of Freedom (SDOF) techniques such as Amplification Factor (AF) and log decre-

ment were adopted to extract the damping ratio as performed in BAUMANN et al.

[30], MOORE et al. [31], SOROKES et al. [32] and BIDAUT et al. [33] .

Although each term of a transfer function matrix (also valid for a FRF matrix)

contains information of all the system’s poles (see Appendix B), SDOF techniques
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using simple methods as AF or log decrement to estimate damping ratio does not

take into account the contribution of each mode. Even though a single peak is

present within a sine sweep FRF, backward and forward modes can be participating

in this peak response simultaneously (see PETTINATO et al. [2]). Many times, these

closely space modes leads to meaningful errors in damping identification through

simple SDOF based on AF or log decrement, as demonstrated by CLOUD et al.

[34].

Nowadays, the SDOF methods using AF or log decrement techniques were widely

replaced by Single Input Multiple Outputs (SIMO) or Multiple Inputs Multiple

Outputs (MIMO) methods, that are both considered Multiple Degrees of Freedom

(MDOF) methods, using sine sweep excitations to find FRFs or blocking excitation

to find Impulse Response Functions (IRFs). Blocking excitations are performed by

using the magnetic exciter to excite a mode of interest applying forward, backward

or unidirectional excitation near the frequency of interest and then suddenly inter-

rupting the excitation and capturing the response of the rotor system. After that,

system identification techniques as Prediction Error Methods, Stochastic Subspace

Identification, Multiple Output Backwards Auto Regressive models, among others,

are applied to the obtained FRFs or IRFs in order to extract the modal parameters

of the system.

Both, the sine sweep and blocking excitation techniques were applied in Shop

Stability Verification Tests as reported in PETTINATO et al. [2] and NORONHA

et al. [29], using Prediction Error Method (PEM) with SIMO and MOBAR methods

to extract modal parameters, presenting high level of agreement among the methods.

Most recent publications in the field are related with increasing the accuracy

of the modal parameters identification. Two recent examples of that can be cited.

Firstly, the development a short-time Fourier transform filter proposed by LI et al.

[35], aiming to increase the signal-to-noise ratio and improve the accuracy of the

estimated stability parameters based on the time-varying characteristics of response

vibration during the sine-swept process. Secondly, the method combining the ratio-

nal polynomials method with the weighted instrumental variables estimator to fit

the directional frequency response function (backward and forward FRFs, see [36]),

presented at WANG et al. [37].

Once new design philosophies and challenging applications has been attracted

attention of the academic and industrial communities that work with centrifugal

compressors, one may expect new methodologies for the analyses of this type of

system in the next years. Furthermore, in the author’s vision, the incorporation

of Stability Verification Tests in API 617 standard (as optional, with guidelines

included) is really welcome and necessary to the industry as a whole, once today

each end-user needs to specify or accept the OEM proposition for techniques applied,

9



acceptance criteria, operational conditions and results extrapolation methodology

(to other operational conditions) of the stability test.

2.4 Time Domain OMA Applied to Centrifugal

Compressors

Detailed investigation of OMA applied to rotor systems was performed in 1997, when

output measurements only techniques as Random Decrement and Yule-Walker equa-

tion were modified by ZHONG [38]. Zhong applied these techniques to rotor-bearing

system synthetic data for modal parameters and physical properties extraction, but

since then it took a while for real applications to turbomachinery.

Recently, in QI et al. [20] a novel method were proposed for OMA applied to

linear rotor systems, combined with correction technique of spectrum analysis, har-

monic wavelet filtering, random decrement technique and Hilbert transform meth-

ods.

Application of OMA to centrifugal compressors are reported in GUGLIELMO

et al. [39], GUGLIELMO et al. [7] and CARDEN et al. [40]. In GUGLIELMO et al.

[39], OMA and EMA were applied to a low pressure LNG compressor in different

load conditions during a Full Load Stability test, comparing the obtained results. In

GUGLIELMO et al. [7], OMA and EMA were applied to a high pressure Reinjection

compressor and also to a rotordynamic model, highlighting some aspects of OMA

analysis that are specific to centrifugal compressors and comparing both techniques

through a large span of damping. In CARDEN et al. [40], OMA was used to confirm

that the first forward mode of an 500 kw compressor was actually stable and the

measurements were reconciled with the predicted behavior.

In opposition to centrifugal compressors, in the past few years several works

related with OMA application to wind turbines are found in the literature, as ex-

ample of OZBEK and RIXEN [41], ALLEN et al. [42], CHAUHAN et al. [43],

DEVRIENDT et al. [44] among others. In this sense, the present work analyses ap-

plication of OMA to centrifugal compressors, aiming to incentive the increasing of

its use for modal testing at shop, as alternative or complement of traditional EMA

tests, and during field operation, as a troubleshooting and conditioning monitoring

tool.
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Chapter 3

Time Domain OMA Methods:

Theoretical Basis

As stated before, the focus of the present work is the application of time domain

OMA methods to extract modal parameters of turbomachinery during its field op-

eration.

This chapter provides the theoretical basis of the data driven and covariance

driven Stochastic Subspace Identification methods and MOBAR method studied in

the present work.

Prior to read this chapter, the interested reader in encouraged to consult Ap-

pendix B, that contains the basic concepts necessary to understand OMA theoretical

fundamentals contained herein.

3.1 Stochastic Vibrations

This section presents the concepts of Stochastic Vibration. Some concepts and

details concerning this topic may be found in Appendix B. The reader may found

complete information concerning this topic in BRINCKER and VENTURA [1] and

VAN OVERSCHEE and DE MOOR [3].

3.1.1 OMA’s Fundamental Theorem

This subsection presents OMA’s Fundamental Theorem for Multiple Input Multiple

Output (MIMO) systems, as described by BRINCKER and VENTURA [1]. This

theorem is the basis of all existing OMA methods.

Let us consider that the set of measured data from a system in operation is

organized in a vector y˜ (vectors defined herein are all column vectors). The outputs

correlation matrixRy is given by equation 3.1. It is worth notice that all the response
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signals analyzed herein have its mean value subtracted from the raw signal, thus the

correlation and covariance functions are the same.

Ry(τ) = E[y˜(t)y˜T (t+ τ)] (3.1)

Replacing y˜T (t+ τ) in equation 3.1, by y˜ calculated according to equation B.11,

where H is the impulse response function matrix, using the convolution definition

and taking into account that the expected value E[y˜(t)u˜T (t + τ − α)] is the cross

correlation matrix Ryu(τ − α), the result is the equation 3.2.

Ry(τ) =

∫ +∞

−∞
E[y˜(t)u˜T (t+ τ − α)]HT (α)dα = Ryu(τ) ∗HT (τ) (3.2)

The cross correlation matrix Ryu(τ), between outputs and inputs, can be repre-

sented by equation 3.3.

Ryu(τ) =

∫ +∞

−∞
H(α)E[u˜(t− α)u˜T (t+ τ)]dα (3.3)

The expected value E[u˜(t − α)u˜T (t + τ)], that appears in equation 3.3 is the

correlation matrix Ru(τ + α) of the inputs. By changing the integration variable of

equation 3.3 to β = −α, equation 3.4 is obtained.

Ryu(τ) = H(−τ) ∗Ru(τ) (3.4)

Combining equations 3.2 and 3.4, the fundamental theorem arises, as per equa-

tion 3.5.

Ry(τ) = H(−τ) ∗Ru(τ) ∗HT (τ) (3.5)

The Fourier transform of equation 3.5, leads to fundamental theorem in frequency

domain, according to equation 3.6, where G is called spectral densities matrix and
˜H(iΩ) frequency response function matrix.

Gy(Ω) = H̃(−iΩ)Gu(Ω)H̃
T

(iΩ) (3.6)

Considering white noise input, inputs correlation matrix can be written according

to equation 3.7 and inputs spectral densities matrix can be written according to

equation 3.8, where B is the inputs spectral bandwidth and σ2
un is the variance of

input n.

Ru(τ) = 2π
δ(τ)

2B


σ2
u1

. . .

σ2
un

 (3.7)
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Gu(Ω) =
1

2B


σ2
u1

. . .

σ2
un

 (3.8)

Substituting equation 3.7 into equation 3.5, considering the convolution property

of Dirac’s δ, the output correlation matrix is given by equation 3.9. This equation

shows that the outputs correlation matrix contains all the information about the

system dynamics, since it is simply the convolution of impulse response functions

multiplied by constants.

A similar result is obtained for spectral density matrix, as per equation 3.10,

showing that the outputs spectral density matrix is a frequency response function

matrix operation, multiplied by constants.

Ry(τ) =
π

B


σ2
u1

. . .

σ2
un

H(−τ) ∗HT (τ) (3.9)

Gy(Ω) =
1

2B


σ2
u1

. . .

σ2
un

 H̃(−iΩ)H̃
T

(iΩ) (3.10)

3.1.2 Correlation Functions as Impulse Response or Free

Decays

Considering a system with n-degrees of freedom, represented at state space, the

system’s response can be written as a linear combination of 2n complex conjugate

modeshapes (given by the first n elements of state space eigenvector Xr, as per

equation 3.11), according to equation 3.12.

Φ˜r = X˜ r(1:n)
(3.11)

x˜(1:n)(t) = Φq˜(t) =
2n∑
r=1

Φr˜qr(t) (3.12)

Thus, the modal coordinates qr(t), represents the influence of each mode on the

system’s response. The modal coordinates can be calculated through the convolution

of modal impulse responses hr(t) and modal force UΦr(t), as shown in equation 3.13.

qr(t) = hr(t) ∗ UΦr(t) =

∫ t

−∞
hr(t− τ)UΦr(τ)dτ (3.13)
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The modal force is given by equation 3.14 and the modal impulse response hr(t)

is given by equation 3.15. The term ar represents the norm of modeshape r, as per

equation 3.16.

UΦr(t) = Φ˜Tr u˜(t) (3.14)

hr(t) =
1

ar
eλrt (3.15)

ar = Φ˜Tr Φ˜r (3.16)

Combining equations 3.12, 3.13, 3.14, leads to the expression 3.17.

x˜(1:n)(t) =
2n∑
r=1

Φ˜rΦ˜Tr
∫ t

−∞
hr(t− τ)u˜(τ)dτ (3.17)

Evaluating the response in position i, due to the application of an unitary impulse

at position j, the impulse response function hi,j is found in accordance with equation

3.18.

hi,j(t) =
n∑
r=1

ΦriΦrj

ar
eλrt +

Φ∗riΦ
∗
rj

ar
eλ

∗
rt (3.18)

Moreover, for white noise inputs it can be demonstrated that each element Ryiyj

of the output’s correlation function matrix is given according with equation 3.19.

This means that each correlation function is a sum of decaying sinusoids of the same

form as the corresponding impulse response function of the original system (JAMES

et al. [14]).

Ryiyj(τ) =
n∑
r=1

Φriγrje
λrt + Φ∗riγrje

λ∗rt (3.19)

This fact allows a close relation between EMA and OMA methods, where the

outputs Correlation Functions in OMA, are related with the Impulse Response Func-

tions (IRF) that are the basis of the identification performed in many time domain

EMA methods and the Fourier transform of outputs Correlation function, known as

Power Spectral Densities (PSD), are related with the Frequency Response Functions,

that are the basis of identification performed in frequency domain EMA methods.

This relations are represented in figure 3.1.

Free decays and impulse responses are closely related entities, once an impulse

is equivalent to a free decay with non null velocities as initial conditions.

Thus, another interpretation frequently given is that the outputs correlation

elements are proportional to free decays, with initial condition that can be found
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Figure 3.1: EMA vs OMA

through OMA methods (see BRINCKER and VENTURA [1]). In the author’s

vision, this is a better physical interpretation of correlation functions, once allows to

interpret the modal participation vector γr as a result of a non null initial condition,

to be determined through OMA process.

It also can be demonstrated, that for small damping, the modal participation vec-

tor is proportional to the modeshape vector. Moreover, special care must be taken in

relation with the correlation function definition. Using the definition adopted in the

present work (equation 3.1), only the rows of correlation function are proportional

to the modeshapes and considering a wrong form of correlation function, can lead

to modeshape bias (see BRINCKER and VENTURA [1]).

3.2 The Eigensystem Realization Algorithm

3.2.1 Impulse

Considering the discrete representation given by equations B.53 and B.56, for a

system at rest for t < 0, the application of an unitary impulse at time t=0 leads to

the representation of impulse response function matrix given by equations 3.20 and

3.21, where k is the k − th discrete time step.

h(0) = D (3.20)
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h(k) =


h1,1(k) h1,2(k) . . . h1,na(k)

h2,1(k) h2,2(k) . . . h2,na(k)
...

...
. . .

...

hns,1(k) hns,2(k) . . . hns,na(k)

 = CAk−1
d Bd = Ymk

(3.21)

The element hi,j(k) is the response at position i due to an unitary impulse at

position j, na is the number of inputs and ns is the number of measured outputs.

One of the main steps on Eigenystem Realization Algorithm (ERA), presented

by JUANG and PAPPA [13] is to assemble a Hankel matrix according to equation

3.22, where the number of block rows s is user defined, being related with the order

of problem, and np is the number of discrete time samples.

H1 =


h1 h2 . . . hnp−s+1

h2 h3 . . . hnp−s+2

...
...

. . .
...

hs+1 hs+2 . . . hnp+1

 (3.22)

Using equation 3.21, it is easy to see that the Hankel matrix can be decomposed

according to equation 3.23, where Γ is the observability matrix given by equation

3.24, and ∆ is the controllability matrix given by equation 3.25.

H1 = Γ∆ (3.23)

Γ =



C
CAd

CAd
2

...

CAd
s


(3.24)

∆ =
[
Bd AdBd . . . Ad

np−s−1Bd Ad
np−sBd

]
(3.25)

Performing a Singular Value Decomposition (SVD) of the Hankel matrix (equa-

tion 3.26), allows one to calculate the observability matrix, according to equation

3.27.

H1 = USV T (3.26)

Γ̂ = US1/2 (3.27)
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After estimating the observability matrix, the discrete state space matrixAd can

be estimated by equation 3.28, where † is the pseudo-inverse, Γ̂1:s is the estimator

of observability matrix removing the last block, while in Γ̂2:s+1 the first block is

removed.

Âd = Γ̂
†
1:s

Γ̂2:s+1 (3.28)

The estimator for the matrix C is given by the first block of observability matrix

as per equation 3.29.

Ĉ = Γ̂1:1 (3.29)

After finding the system matrix Âd, the discrete eigenvalues µ are identified

through a spectral decomposition, as shown in Equation 3.30 and then the contin-

uous eigenvalue λi can be calculated through 3.31, where ∆t is sampling interval.

Âd = ΨµΨ−1 (3.30)

λi =
lnµi
∆t

(3.31)

The mode shapes are found using the observation matrix C and the eigenvectors

matrix Ψ, through equation 3.32.

φ = Ĉψ (3.32)

3.2.2 Free Decays

Considering that, instead of an unitary impulse applied at time t=0, the system is

submitted to a set of non null initial conditions, the discrete state space formulation

leads to equation 3.33.

y˜(k) = CAd
kx˜0 (3.33)

Assembling a matrix of initial conditions X0, a free decay response matrix cor-

responding to the discrete time k can be built according to equation 3.34.

Y (k) = CAd
kX0 (3.34)

A Hankel matrix of free decays can be built, as per equation 3.35.
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H0 =


Y0 Y1 . . . Ynp−s

Y1 Y2 . . . Ynp−s+1

...
...

. . .
...

Ys Ys+1 . . . Ynp

 (3.35)

This Hankel matrix can be decomposed into an observability and an controlla-

bility matrix as per equations 3.36 and 3.37.

Γ =



C
CAd

CAd
2

...

CAd
s−1


(3.36)

∆ =
[
X0 AdX0 Ad

2X0 . . . Ad
np−s−2X0 Ad

np−s−1X0

]
(3.37)

Performing a SVD of the Hankel matrix, allows to calculate the observability

matrix and then extract the modal parameters, in the same manner shown for ERA

considering impulse.

For free decays, the controllability matrix estimated as per equation 3.38, allows

to estimate the non null initial conditions contained in matrix X0, according to

equation 3.39.

∆̂ = S1/2V T (3.38)

X̂0 = ∆̂1:1 (3.39)

3.3 Stochastic Subspace Identification Methods

The OMA Stochastic Subspace Identification (SSI) are time domain methods that

uses the discrete time state spaces to find the eigenvalues and eigenvectors of the

system.

There are two main kinds of SSI methods, the covariance driven and data driven.

The covariance driven methods rely on covariance of system’s outputs to build a

Hankel matrix as in equation 3.40.
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H =


R0 R1 . . . Rnp−s

R1 R2 . . . Rnp−s+1

...
...

. . .
...

Rs Rs+1 . . . Rnp

 (3.40)

Once correlation matrix represents free decays, this Hankel Matrix can be de-

composed into a stochastic observability matrix Γs and a stochastic controllability

matrix ∆s, and the modal parameters can be extracted in the same manner shown

for the ERA’s method. Such method is know as Covariance Driven Unweighted

Principal Component.

In data driven SSI methods, a Block Hankel Matrix Yh, defined by a set of

responses in past times Yhp and a set of responses in future times Yhf is the key

element, being defined through equation 3.41.

The discrete response data matrix y is defined according to equation 3.42 and

y1:np−k is defined as a data matrix where we have removed the last k lags and

similarly, yk:np is the data matrix where we have removed the first k lags.

Yh =


y1:np−2s

y2:np−2s+1
...

y2s:np

 =

[
Yhp

Yhf

]
(3.41)

y =
[
y˜1 y˜2 . . . ynp˜

]
(3.42)

The user-defined variable s, as well as the amount of measurement channels

defines the maximum order of model and must be adjusted by choosing a reasonable

level to incorporate the needed range of models BRINCKER and ANDERSEN [45].

The key element of data driven methods is the projection of Yhp rows space, into

the Yhf rows space (equation 3.43). According to BRINCKER and ANDERSEN

[45], when dealing with stochastic response, this projection is defined as the expected

values of future, once the past is known (conditional mean).

O = E(Yhf | Yhp) = YhfYhp
T (YhpYhp

T )−1Yhp (3.43)

It is worth notice that the first two terms in equation 3.43 are equivalent to the

Hankel matrix used in covariance driven methods (thus decomposed into observabil-

ity and controllability matrix), the next term is the inverse a block Toeplitz matrix

constructed from outputs correlation functions, named L. The product of control-

lability matrix, inverse of block Toeplitz matrix L and Yhp, defines the Kalman

filter states X0 (equation 3.44 ), thus this projection leads to a matrix that can be
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decomposed into the observability matrix and the Kalman states matrix (equation

3.45 ).

X0 = ∆L−1Yhp (3.44)

O = ΓX0 (3.45)

The columns of this matrix represents free decays, given by different initial con-

ditions specified by the Kalman states (BRINCKER and ANDERSEN [45]).

From the exposition made so far, it is clear that the main difference between

covariance driven and data driven method is in the matrices H and O. In the first,

the matrix H is decomposed in observability and controllability matrix and in the

last, matrix O is decomposed in observability and Kalman states matrix.

Moreover, the matrix O from data driven methods can be seen as a weighted

covariance driven Hankel matrix, with weight (YhpYhp
T )−1Yhp.

The next step of the Data Driven methods is to left multiply the matrix O by a

weight matrix W1 and right multiply the matrix O by a weight matrix W2.

Three different manners to define these weight matrices were adopted herein,

representing the different Data Driven SSI algorithms studied: UPC, PC and CVA.

Table 3.1 presents the definition of the weight matrices for each of these methods,

where Is is an identity matrix with size compatible with Γ rows and Inp is an

identity matrix with size compatible with X0 columns. Additional information can

be find in VAN OVERSCHEE and DE MOOR [3].

Table 3.1: Definition of weight matrices W1 and W2 according to different SSI
algorithms (see VAN OVERSCHEE and DE MOOR [3])

.

W1 W2

PC Is Yhp
TL−1/2Yhp

UPC Is Inp

CVA (YhfYhf
T )

−1/2
Inp

After that, the steps of OMA data driven methods are the same then the de-

scribed for covariance driven methods, thus the Kalman States and observability

matrix can be estimated through the SVD of the weighted matrix W1OW2, the

estimators Âd and Ĉ can be found from observability matrix (through linear regres-

sion) and the eigenvalues and eigenvectors can be calculated from the Âd.

The model order can be varied by varying the number of singular value taken

into account when performing the singular value decomposition of the weighted

matrix W1OW2. It is a common practice to vary the order and extract the modal

parameters, creating a stabilization diagram, allowing separation between physical
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and numerical (generated by noise) modes, once the physical modes are repeated

for multiple orders of the model.

More details of SSI methods are found VAN OVERSCHEE and DE MOOR [3]

and in BRINCKER and ANDERSEN [45].

3.4 MOBAR

The ARMA model presented in Appendix B have direct relation with the discrete

state space model given by equation B.53. By multiplying both sides of equation

B.53 by Ad
−1 and solving for x˜(k), equation 3.46 arises.

x˜(k) = Ad
−1x˜(k + 1)−Ad

−1Bdu˜(k) (3.46)

This is a backward time model that can be very useful for modal parameters

identification of a system model [46].

Regarding free decays, the state space model is closely related with the AR

model, once Bd is zero. In the same manner, for free decays a backward auto-

regressive model can be built as per equation 3.47, where bck are the backward

auto-regressive coefficients, being close related with the backward time model with

Bd zero.

y(1) =
s∑

k=1

bcky(k + 1) + ε (3.47)

An expansion of this model to consider multiple outputs can be performed by

replacing the coefficients bck by the backward auto-regressive matrices Bck , as per

equation 3.48.

y˜(1) =
s∑

k=1

Bcky˜(k + 1) + ε˜ (3.48)

Then, in the same manner that Poly Reference time domain method [12] pre-

sented in Appendix B, the Multiple Output Backward Auto-Regressive matrices can

be found by building a Hankel matrix with the free decays response, as per equation

3.49 and a block Hankel matrix with only a single block row as per equation 3.50,

and solving the overdetermined system of equation 3.51 by least squares or singular

value decomposition. In the same manner as for Covariance Driven SSI methods,

for Operational Modal Analysis through MOBAR, instead of free decays or impulse

response functions, the correlation function of the response are the inputs of the

method.

21



H1 =


y˜(2) y˜(3) · · · y˜(np− s+ 1)

y˜(3) y˜(4) · · · y˜(np− (s))
...

...
. . .

...

y˜(s+ 1) y˜(s+ 2) y˜(np)

 (3.49)

H2 =
[
y˜(1) y˜(2) · · · y˜(np− s)

]
(3.50)

BcH1 = H2 (3.51)

Bc is given by equation 3.52.

Bc =
[
Bc1 Bc2 · · · Bcs

]
(3.52)

Although the work of HUNG and KO [25] is related to one degree of freedom,

it makes statements about the ill conditioned solution of least square problem of

MOBAR, thus suggesting a solution by SVD with elimination of the less meaningful

singular values. This approach is adopted in the present work.

After finding the backward auto-regressive matrices, the backward companion

matrix must be build, in accordance with equation 3.53. This matrix is close related

with Ad
−1 of the backward time model.

Bcomp =


Bc1 Bc2 · · · Bcs

I 0 0 0
... 0

. . .
...

0
... I 0

 (3.53)

The main advantage of MOBAR over AR models is that computational modes

are automatically eliminated once stable modes are outside the unit circle of discrete

time as shown in KUMARESAN and TUFTS [26].
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Chapter 4

Physical Systems

The OMA algorithms analyzed in the present work will be applied to problems of

different complexity. This chapter describes these physical systems.

First a model with three masses, springs and dampers will be adopted.

Secondly, a finite element rotor model was chosen.

Finally, OMA will be applied to a real centrifugal compressor during its field

operation.

4.1 Mass Spring Damper Model

In this section a simple system composed of three masses, three springs and three

dampers, with configuration shown in figure 4.1, will be modeled.

Different load excitation will be applied to this model and the vibration response

will be the input of OMA methods, aiming to extract the modal parameters under

these different loads and compare the results with reference parameters of the model.

Figure 4.1: Mass Spring Damper Model.

The governing equation of this system is given as by equation 4.1.
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m1 0 0

0 m2 0

0 0 m3


ÿ1

ÿ2

ÿ3

+

c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3


ẏ1

ẏ2

ẏ3

+

k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3


y1

y2

y3

 =

u1

u2

u3


(4.1)

The configuration chosen for the system parameters is shown is table 4.1.

Table 4.1: System parameters.

Parameter Value Parameter Value Parameter Value

m1 1 kg c1 2 N/(m.s) k1 1600 N/m
m2 1 kg c2 2 N/(m.s) k2 1600 N/m
m3 1 kg c3 2 N/(m.s) k3 1600 N/m

The modal parameters of this system can be extracted by vanishing the force

term in the right side of equation 4.1, rewriting the resulting equation in state space

as per equation B.26 and solving the eigenproblem for state matrixA. The extracted

parameters are shown in Table 4.2.

The difference between the modal parameters that will be identified by OMA

and the modal parameters extracted in table 4.2, can give insights about the quality

of identification regarding the influence of the applied load (colored noise, white

noise, harmonics), Signal to Noise Ratio, sampling rate, sampling time, model orders

among others.

Table 4.2: System eigenvalues and eigenvectors.

Mode First Second Third

wn (Hz) 2.8332 7.9385 11.4715
wd (Hz) 2.8330 7.9347 11.4598

ξ 0.0111 0.0312 0.0450
Φ [0.445 0.802 1]T [1 0.445 -0.802]T [-0.802 1 -0.445]T

4.2 Finite Element Rotor Model

Rotating equipment present some dynamic aspects that differ from general struc-

tural system’s dynamics. Examples of characteristics that are intrinsic to these

equipments are:

• rotordynamic coefficients of components such as bearings, labyrinth seals,

damper seals and impellers (aerodynamic cross-coupling) are both speed and

process dependent;
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• these elements can present anisotropic stiffness and damping coefficients;

• gyroscopic and cross coupling stiffness matrices are skew symmetric, coupling

the movement in horizontal and vertical directions;

• cross coupling stiffness signs for horizontal and vertical direction produces

feedback forces which helps to destabilize the forward whirling mode (CLOUD

[5]);

Besides these characteristics, rotating equipment present backward and forward

precession modes that are closely spaced, increasing the challenges related with the

modal parameters identification of these systems.

Thus, to verify aspects of modal parameters identification through OMA meth-

ods that are specific for rotating equipment applications, a FEM rotordynamic model

was implemented.

This model consist of three key elements:

(i) shaft elements, implemented using Euler beam model, with its gyroscope influ-

ence added, contributing to the global stiffness, mass and gyroscope matrices;

(ii) built-on parts elements (impellers, gears, fans, disk, couplings) considered to

have just inertia contribution, thus affecting the global gyroscope and mass

matrices;

(iii) support system, labyrinth seals and damper seal elements, with its contribu-

tion in global stiffness and damping matrices. The coefficients of bearing are

calculated by thermo-elasto-hidrodynamic analysis using the finite element

method as performed by HE [47] and the seal coefficients are calculated by

bulk-flow models described in KLEYNHANS [48];

The methodology followed in the implemented model is described in details in

FRISWELL [49], SILVA [50] and its full description will be omitted here once it is

out of the scope of the present work.

The geometry of the analyzed rotor is shown in figure 4.2.

To validate the implemented model, the same rotor was modeled in a bench-

mark FEM software from Texas A&M University, named XLTRC2. The Undamped

Critical Speed Maps obtained from the implemented algorithm and from XLTRC2

are shown in figure 4.3. One may observe a high level of agreement between the

predictions provided the two models. This is an indication in favor of the model

implemented for this work.

Three variations of the implemented model will be used to generate synthetic

data for application of OMA methods, being: rotor-bearing system (with no cross-

coupling added), rotor at threshold of stability (obtained by increasing the cross
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Figure 4.2: Rotor Geometry.

coupling stiffness in the middle of rotor, until threshold was reached) and finally, by

a model with high damping (obtained by applying squeeze film damper element in

series with the bearing element).

As a basis of comparison to the OMA identification, the modal parameters of

the FEM were extracted by writing equation A.1 in state space and solving the

eigenproblem for state matrix A in the same manner performed for mass-spring-

damper model. The eigenvalues obtained from the model for the first and second

under damped modes with backward and forward precession for rotor-bearing model,

rotor-bearing with cross coupling stiffness added (stability threshold model) and

rotor-bearing-squeeze film damper model are summarized in tables 4.3, 4.4 and

4.5 respectively, where wn, wd and ξ are the natural frequency, damped natural

frequency and damping ratio respectively.

Table 4.3: Rotor-bearing model eigenvalues.

Mode First Backward First Forward Second Backward Second Forward

wn (Hz) 101.8 103.43 361.17 372.66
wd (Hz) 101.63 103.24 361.11 372.61

ξ 0.05816 0.06127 0.0176 0.0165

Figures 4.4 and 4.5 shows the backward and forward modeshapes for the first

and second underdamped modes of the rotor-bearing model, exemplifying modal

parameters extraction from the implemented FEM.

To generate synthetic data and apply OMA methods to this data, forced response

analysis of the FEM models will be performed, applying different loads excitations
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Figure 4.3: Comparison of Undamped Critical Speed Map obtained from the
implemented model and from XLTRC2

Table 4.4: Rotor-bearing stability threshold model eigenvalues.

Mode First Backward First Forward Second Backward Second Forward

wn (Hz) 102.88 103.146 361.15 372.68
wd (Hz) 102.178 103.146 361.09 372.625

ξ 0.117 0.0015 0.0189 0.0153

Table 4.5: Rotor-bearing-squeeze film damper model eigenvalues.

Mode First Backward First Forward Second Backward Second Forward

wn (Hz) 104.60812 106.4125 367.5315 378.789
wd (Hz) 102.4372 104.0722793 367.4147 378.6879

ξ 0.2027 0.2086 0.0252 0.023080463

to the models. The goal of the forced response analysis is to simulate the behavior

of a compressor in the field, running at its operational speed and subject to fluid

flow excitations.

Displacement vibration response at directions named X and Y, with and angle

of 90 degrees between them, near the bearing positions (at location where proximity

probes would be installed in a real machine) will be the input of OMA methods,

aiming to extract the modal parameters under these loads and compare the results

with the modal parameters of the FEM. Figure 4.2 shows the position and directions

of the displacement vibration responses X and Y for the Drive End (DE) and Non

Drive End (NDE) bearings of the compressor model.
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Figure 4.4: Rotor Bearing model. Top: First backward mode shape. Down: First
forward mode shape.

Figure 4.5: Rotor Bearing model. Top: Second backward mode shape. Down:
Second forward mode shape.

28



4.3 Centrifugal Compressor - Machine Overview

Data from four proximity probes located at the bearings of the centrifugal com-

pressor shown in figures 4.6 and 4.7, was collected during 25 minutes in field, with

sampling frequency of 128 kHz. This centrifugal compressor recycles a mixture of

predominantly hydrogen gas within a Brazilian refinery’s URC catalyst reformer

unit. This gas is pressurized from approximately 1200 to 2350 kPaG using nine

impeller stages with a maximum continuous speed (MCS) of 13,660 rpm, and re-

quiring a 1.6 MW (2,145 hp) electric motor driver. Tilting pad journal bearings

with offset pivots support the 300 kg (661 lbm) rotor assembly. Labyrinth seals are

located at the impeller eye, interstage and balance piston locations, while dry gas

seals are used for the casing end seals. Additional design information can be found

in PETTINATO et al. [2].

Figure 4.6: Compressor photo

 

Figure 4.7: Compressor sectional
rendering [2]

To avoid any potential shaft whip rotor instability problems in the field, the

compressor underwent stability verification testing (SVT) at the manufacturer’s

facility prior to shipment. This stability testing was required by the end-user’s

specifications due to the first forward (1F) mode’s log decrement being predicted to

be below a minimum level. Because the need for an SVT was identified early in the

procurement phase, the compressor’s outboard, non-drive shaft end was designed

with an extension to accommodate a temporarily mounted, electromagnetic shaker

for non-synchronous excitation. This shaft extension can be seen at the left of the

rotor assembly in Figure 4.7.

High confidence in the resulting stability measurements was obtained through

the close correlation between two different excitation/identification processes. One

process followed conventional experimental modal analysis methods using an identi-

fication technique based on measured frequency response functions. These frequency

response functions were acquired by applying stepped-sine excitation from the elec-
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tromagnetic shaker.

The second SVT excitation/identification process was performed using the tran-

sient free decay of the vibrations as a result of blocking excitation. Originally used

for stability testing on a machine by Kanki et al. [51], blocking excitation involved

tuning the shaker’s frequency to excite and isolate the 1F mode (or other), and

then suddenly turning the shaker off. Identification was accomplished using a time

domain, output-only technique that was originally developed for speech processing

applications [26], and later for operational modal analysis HUNG and KO [25]. This

technique, multiple output backward autoregression (MOBAR), when used in com-

bination with blocking excitation, had been found to be very reliable and accurate

for rotordynamic stability measurements [27].

Four operating conditions were selected for the shop SVTs. To examine the

compressor’s base stability, where no internal labyrinth seal or impeller aerody-

namic dynamic effects would be present, SVTs were conducted under vacuum at

7,900 rpm and MCS. 7,900 rpm was chosen because this was the same speed where

an ASME PTC-10 Type II performance test of the compressor was required, using

nitrogen (N2) gas. Stability was measured at two operating conditions during this

performance test, one at maximum power and the second near surge. Test stand and

project budgetary limitations precluded an ASME PTC-10 Type I test at maximum

continuous speed, maximum pressure and power.

Figure 4.8 presents the 1F mode’s measured parameters, obtained via blocking

and MOBAR, for the four shop SVT operating conditions. Vacuum conditions

show a clear decrease in the 1F mode’s log decrement going from the performance

test speed (7,900 rpm) to maximum continuous speed. The slight increase in the

1F mode’s stability going from vacuum to nitrogen gas was a somewhat unexpected

outcome for the 7,900 rpm tests. This increase was attributed to either an increase in

bearing oil inlet temperature during the course of the test and/or effective damping

from the labyrinth seals. However, it was not possible to confirm their relative

influence.

The shop SVT measurements and their resulting modeling corrections provided

confidence that the compressor would be stable once it reached the field. Under

design conditions at MCS, the machine’s δ1F was predicted to be 0.12–0.14 using

a particular, simplified model correction approach. Therefore, relative to the base

stability measured the shop, the 1F stability was expected to remain the same, or

slightly increase, when operating in the field. However, another simplified model

correction method predicted the δ1F to decrease, but remain stable. Details of

the entire shop SVT process, including modeling predictions and corrections, are

provided in [2].

Startup of the compressor in 2012 confirmed a stable compressor with no sign
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Figure 4.8: 1F mode’s measured parameters during shop SVT

of subsynchronous vibration in the proximity displacement probes spectra, except

for the electric motor harmonic frequency, an example of which is shown in Figures

4.9 and 4.10.

The absence of any significant subsynchronous vibration does not provide any

quantitative measure of the 1F mode’s log decrement. It could simply be the result of

low ambient gas excitations being present in this hydrogen service, where the average

gas density in the compressor is only 5.43 kg/m3 (0.339 lbm/ft3). This gas density is

understood to be significantly lower than many of the previous investigations when

ambient excitations were relied upon for OMA of centrifugal compressors in natural

gas services.

31



Figure 4.9: Compressor vibrations during field operation at MCS, Non Drive End
full spectrum

Figure 4.10: Compressor vibrations during field operation at MCS, Drive End full
spectrum
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Chapter 5

Results and Discussions

5.1 Identification Results

The modal identification was performed using SSI Data Driven (UPC, CVA and

PC), SSI Covariance Driven (UPC) and MOBAR methods.

5.1.1 Mass-Spring-Damper model: white noise excitation

White noise excitation was applied to the three masses and uncorrelated noise was

added to the obtained response signal. The input of OMA methods was the response

in the three masses positions.

The process was repeated several times, each time with a new white noise excita-

tion being applied and a new uncorrelated white noise being added to the obtained

system response, in order to allow a Monte Carlo analysis of the damping ratio

and natural frequencies identification using different OMA methods (Data Driven

SSI-UPC, SSI-CVA, SSI-PC, Covariance Driven SSI-UPC and MOBAR).

The sampling frequency adopted in this discrete model was 400 Hz and each

Monte Carlo run was performed with 2 minutes of response data obtained from

the Mass-Spring-Damper model. Two levels of SNR were adopted for the mass-

spring-damper model, being SNR 10 and SNR 2, aiming to verify the influence of

uncorrelated noise in modal parameters extraction with different methods.

Figure 5.1 shows an example of time domain response for node 1 with uncorre-

lated noise added resulting in a SNR of 10 and without uncorrelated noise added,

while figure 5.2 shows the same example for SNR 2.

As stated at Chapter 3, the spectral densities matrix of responses is closely

related with the system frequency response function matrix, containing the infor-

mation about the system dynamics.

Performing a singular value decomposition of the outputs spectral densities ma-

trix, can bring some useful information about the natural frequencies from the sys-
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Figure 5.1: Response at Node 1 with and without uncorrelated noise added, SNR
10.

Figure 5.2: Response at Node 1 with and without uncorrelated noise added, SNR 2.

tem, prior to perform modal parameters extraction through the analyzed methods.

It is a common practice to plot the resulting singular values and to compare the

frequencies where these singular values present peaks, with the natural frequencies

identified by OMA methods.

Figure 5.3 shows singular values (σ) of spectral densities plot, generated with

one realization of response data from the mass-spring-damper model, with SNR 10.

From this figure, the modulation of first singular value in the damped natural

frequencies of the three modes of the model can be clearly observed. This singular

value contain information about the mode with higher energy in each frequency.

The dashed lines shown in this figure, allows one to observe how each mode is

34



Figure 5.3: Singular values of spectral densities matrix, SNR 10.

distributed from the first to the last singular value, according to its participation in

the responses at each frequency.

First singular value present a modulation from 0 to 7 Hz, with a peak near to 3

Hz, containing the information about the first mode in this range.

It can be observed that the modulation of second singular value increases when

frequency is increased from 0 to 7 Hz. In this range the second singular value

contains the information of the second mode. After this frequency the second mode

has more energy than the first mode, thus the first singular value starts to reflect

the second mode while the first mode influence begins to be reflected by the second

singular value.

The third mode moves from the third singular value to the second near to 8 Hz

and moves from the second singular value to the first after the frequency of 10 Hz,

while the first mode moves from the second to the third singular value in 8 Hz.

This is a physical interpretation of singular values of spectral densities matrix

plot, that can be observed when damping is low or moderate. The dashed lines in

figure 5.3 were drawn to better illustrate this interpretation.

Figure 5.4 shows a stabilization diagram over the singular values plot shown in

figure 5.3. This stabilization diagram allows one to observe the damped natural

frequencies identified by applying the method SSI-CVA with model order varying

from 5 to 50. The input dataset used was the same adopted to calculate the singular

values plot already discussed. A match between the first singular values peaks and

the identified damped natural frequencies can be clearly noted.
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Figure 5.4: Singular Values of Spectral Densities and stabilization diagram.

It can be observed in this stabilization diagram, that even for white noise excita-

tion, computational modes can be identified and should be recognized. A common

practice to eliminate computational modes, adopted in the present work is to verify

if the identified mode has stable frequencies, damping ratio and modeshapes (by

using Modal Assurance Criteria MAC) between the different model orders. For the

mass-spring-damper identification, modes with a deviation of more than 0.5 percent

at the identified frequencies, a deviation of more than 5 percent at the identified

damping ratio or a MAC lower than 0.98 between the orders, were considered un-

stable. Figure 5.5 shows the stabilization diagram after applying these filters. It can

be observed that all the computational modes shown in Figure 5.4 were eliminated.

Further discussion on this subject will be presented at the Identification from the

FEM model.

Figures 5.6 and 5.7 presents box plots with damped natural frequencies and

damping ratio respectively, identified from the 100 Monte Carlo runnings for a SNR

of 10, using SSI-CVA, SSI-PC, SSI-UPC, MOBAR and SSI-UPC Cov.

On each box, the central mark indicates the median, and the bottom and top

edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers

extend to the most extreme data points not considered outliers, and the outliers are

plotted individually using the ’+’ symbol.These box plots allows a better comparison
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Figure 5.5: Singular Values of Spectral Densities and stabilization diagram
showing stable modes.

between the estimation provided by the methods analyzed in this work.

Tables 5.1, 5.2, 5.3, 5.4 and 5.5 summarizes the modal parameters extracted,

from the 100 Monte Carlo runnings for a SNR of 10, as the mean values (µ) and

also presents the standard deviation σ of the identified parameters as a percentage

of its mean values, without excluding the outliers. It is worth notice that the same

symbol σ is being used to represent singular values and standard deviation, but the

reader can easily identify which one is being referred to, along the text.

It is possible to observe a good agreement in the mean and median values of

damped natural frequency and damping ratio identified for the three modes, with

all the studied methods.

The standard deviation for the natural frequencies is very low, but is considerable

for damping ratio estimation.

This meaningful standard deviation for damping ratio allied to a mean value

that tend to the real value suggests that many realizations of damping estimation

or a higher time span are necessary in order to have good confidence. This can be

performed by acquiring data from a long period and splitting the data to perform

several identifications or using the long period data to perform one identification

run. Some applications can lead to computational limitations when choosing the
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last option, once the Hankel matrices will present considerable size, thus splitting

the data and performing several identifications is a good solution if computational

resources are limited.

Figures 5.8, 5.9, 5.10, 5.12 and 5.11, allows a visual inspection of the spread of

natural frequencies and damping ratio obtained from the Monte Carlo runnings for

SSI-UPC, CVA, PC, MOBAR and Cov-SSI with SNR 10 respectively. It is worth

notice that the outliers were not eliminated in these figures.

Figure 5.6: Box plot of identified damped natural frequencies for the
mass-spring-damper model with SNR 10.

Figure 5.7: Box plot of identified damping ratios for the mass-spring-damper
model with SNR 10.
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Table 5.1: System eigenvalues identified by SSI-UPC method, SNR 10.

Mode First Second Third

µ(wn) (Hz) 2.8337 7.9402 11.4677
σ(wn) (%) 0.1834 0.2742 0.3468

error(µ(wn)) (%) 0.02 0.02 -0.03
µ(wd) (Hz) 2.8335 7.9363 11.4565
σ(wd) (%) 0.1831 0.2748 0.3418

error(µ(wd)) (%) 0.02 0.02 -0.03
µ(ξ) 0.0113 0.0311 0.0439

σ(ξ) (%) 15.51 8.44 10.59
error(µ(ξ)) (%) 2.14 -0.3 -2.47

Table 5.2: System eigenvalues identified by SSI-PC method, SNR 10.

Mode First Second Third

µ(wn) (Hz) 2.8329 7.9381 11.4799
σ(wn) (%) 0.1690 0.3829 0.4960

error(µ(wn)) (%) -0.01 -0.01 0.07
µ(wd) (Hz) 2.8327 7.9340 11.4684
σ(wd) (%) 0.1687 0.3853 0.4939

error(µ(wd)) (%) -0.01 -0.01 0.07
µ(ξ) 0.0113 0.0317 0.0448

σ(ξ) (%) 13.01 11.82 12.28
error(µ(ξ)) (%) 1.55 1.58 -1.15

Table 5.3: System eigenvalues identified by SSI-CVA method, SNR 10.

Mode First Second Third

µ(wn) (Hz) 2.8333 7.9419 11.4717
σ(wn) (%) 0.1717 0.2176 0.2446

error(µ(wn)) (%) 0.00 0.04 0.00
µ(wd) (Hz) 2.8331 7.9379 11.46
σ(wd) (%) 0.1711 0.2159 0.2468

error(µ(wd)) (%) 0.00 0.04 0.00
µ(ξ) 0.0115 0.0314 0.0451

σ(ξ) (%) 15.53 6.89 5.66
error(µ(ξ)) (%) 3.38 0.76 0.27

Table 5.4: System eigenvalues identified by Covariance Driven SSI-UPC method,
SNR 10.

Mode First Second Third

µ(wn) (Hz) 2.8339 7.9374 11.4670
σ(wn) (%) 0.1842 0.2523 0.2769

error(µ(wn)) (%) 0.02 -0.01 0.04
µ(wd) (Hz) 2.8334 7.9336 11.4555
σ(wd) (%) 0.1845 0.2534 0.2786

error(µ(wd)) (%) 0.01 -0.01 0.04
µ(ξ) 0.0114 0.0310 0.0448

σ(ξ) (%) 14.09 7.07 5.97
error(µ(ξ)) (%) 2.70 -0.64 -0.44
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Table 5.5: System eigenvalues identified by MOBAR method, SNR 10.

Mode First Second Third

µ(wn) (Hz) 2.8335 7.9425 11.4715
σ(wn) (%) 0.2055 0.2712 0.3347

error(µ(wn)) (%) 0.01 0.05 -0.03
µ(wd) (Hz) 2.833 7.9347 11.4598
σ(wd) (%) 0.2056 0.2711 0.3363

error(µ(wd)) (%) 0.01 0.05 -0.02
µ(ξ) 0.01192 0.0306 0.0437

σ(ξ) (%) 14.08 7.6 6.69
error(µ(ξ)) (%) 7.42 -1.76 -2.88

Figure 5.8: Damped Natural Frequency and Damping Ratio identification through
SSI-UPC method in 100 Monte Carlo runnings with SNR 10.
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Figure 5.9: Damped Natural Frequency and Damping Ratio identification through
SSI-PC method in 100 Monte Carlo runnings with SNR 10.

Figure 5.10: Damped Natural Frequency and Damping Ratio identification
through SSI-CVA method in 100 Monte Carlo runnings with SNR 10.
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Figure 5.11: Damped Natural Frequency and Damping Ratio identification
through SSI-UPC cov method in 100 Monte Carlo runnings with SNR 10.

Figure 5.12: Damped Natural Frequency and Damping Ratio identification
through MOBAR method in 100 Monte Carlo runnings with SNR 10.

Regarding the Monte Carlo runs with SNR 2, figures 5.13 and 5.14 presents box

plots with damped natural frequencies and damping ratio respectively.

To allow a better comparison between the identification performed with synthetic

data generated with SNR 10 and SNR 2, the box plots already presented were
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Figure 5.13: Box plot of identified damped natural frequencies for the
mass-spring-damper model with SNR 2.

Figure 5.14: Box plot of identified damping ratios for the mass-spring-damper
model with SNR 2.

compiled side by side in figures 5.15, 5.16, 5.17 and 5.18.

From these figures, it can be clearly observed that reducing the SNR to 2, has not

affected meaningfully the median value and the spread of natural frequencies and

damping ratio identified by the analyzed methods. This fact shows the robustness

of studied methods to deal with noisy signals.

Moreover, from these comparisons it was not possible to identify a method that

is outstanding compared with the others. The structural modes were identified by

all of the studied methods, highlighting that performing OMA identification by more

than one method and finding similar modal parameters, can give further confidence

at the identification being performed.
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Figure 5.15: Box plot ωd, SNR 10. Figure 5.16: Box plot ξ, SNR 10.

Figure 5.17: Box plot ωd, SNR 2. Figure 5.18: Box plot ξ, SNR 2.

Additionally, tables 5.6, 5.7, 5.8, 5.9 and 5.10 summarizes the modal parameters

extracted as the mean values (µ) of 100 Monte Carlo runnings for a SNR of 2, and

also presents the standard deviation σ of the identified parameters as a percentage

of its mean values, without excluding the outliers. It is possible to see a good

agreement with the model table 4.2.

The fact that the median values from the box plots and the mean values from the

result tables agrees, suggests that the identification errors along the Monte Carlo

runnings do not have a skew distribution.

Figures 5.19, 5.20, 5.21, 5.22 and 5.23 allows a visual inspection of the spread of

natural frequencies and damping ratio obtained from the Monte Carlo runnings for

SSI-UPC, CVA, PC, SSI-UPC Cov and MOBAR with SNR 2 respectively.

The last verification performed with synthetic data generated by the application

of white noise excitations to the mass-spring-damper model, was to increase the

time span of each Monte Carlo run to 12 minutes, keeping a SNR of 2.

Table 5.11 and figure 5.24 shows the results obtained from SSI-CVA method. It

is worth notice that increasing the acquisition time span has meaningfully reduced

the spread of modal parameters identified, even with this low SNR. This fact was

expected, once for the analyzed time domain methods, increasing the time span al-

lows a more accurate estimate of correlation functions for covariance driven methods

and data projections that leads to a better estimate of observability matrix at data

driven methods (see Chapter 3).
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Table 5.6: System eigenvalues identified by SSI-UPC method, SNR 2.

Mode First Second Third

µ(wn) (Hz) 2.8336 7.9398 11.4684
σ(wn) (%) 0.1824 0.2237 0.4737

error(µ(wn)) (%) 0.01 0.02 -0.03
µ(wd) (Hz) 2.8334 7.9359 11.456
σ(wd) (%) 0.1804 0.2234 0.4782

error(µ(wd)) (%) 0.01 0.02 -0.03
µ(ξ) 0.0111 0.03125 0.0463

σ(ξ) (%) 13.22 8.075 11.06
error(µ(ξ)) (%) 0.07 0.15 2.88

Table 5.7: System eigenvalues identified by SSI-PC method, SNR 2.

Mode First Second Third

µ(wn) (Hz) 2.8337 7.9370 11.4691
σ(wn) (%) 0.1690 0.2508 0.5335

error(µ(wn)) (%) 0.02 -0.02 -0.02
µ(wd) (Hz) 2.8335 7.9331 11.4574
σ(wd) (%) 0.2467 0.2516 0.5316

error(µ(wd)) (%) 0.02 -0.02 -0.02
µ(ξ) 0.0112 0.0315 0.0451

σ(ξ) (%) 17.38 9.06 10.12
error(µ(xi)) (%) 1.22 0.9 0.15

Table 5.8: System eigenvalues identified by SSI-CVA method, SNR 2.

Mode First Second Third

µ(wn) (Hz) 2.8335 7.9419 11.4751
σ(wn) (%) 0.1909 0.2332 0.4346

error(µ(wn)) (%) 0.01 0.04 0.03
µ(wd) (Hz) 2.8333 7.938 11.463
σ(wd) (%) 0.1911 0.2335 0.4357

error(µ(wd)) (%) 0.01 0.04 0.03
µ(ξ) 0.0111 0.0313 0.0458

σ(ξ) (%) 15.62 7.33 10.38
error(µ(ξ)) (%) 0.68 0.19 1.87
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Table 5.9: System eigenvalues identified by Covariance Driven SSI-UPC method,
SNR 2.

Mode First Second Third

µ(wn) (Hz) 2.8330 7.9403 11.4802
σ(wn) (%) 0.1955 0.2227 0.5580

error(µ(wn)) (%) 0.01 0.02 0.08
µ(wd) (Hz) 2.8328 7.9363 11.4677
σ(wd) (%) 0.1955 0.2225 0.5595

error(µ(wn)) (%) 0.01 0.02 0.08
µ(ξ) 0.0115 0.0314 0.04612

σ(ξ) (%) 15.18 7.83 14.76
error(µ(wn)) (%) 3.6 0.64 0.27

Table 5.10: System eigenvalues identified by MOBAR method.

Mode First Second Third

µ(wn) (Hz) 2.8327 7.9405 11.4272
σ(wn) (%) 0.1751 0.2431 0.2938

error(µ(wn)) (%) 0.01 0.05 -0.01
µ(wd) (Hz) 2.8325 7.9365 11.4114
σ(wd) (%) 0.1749 0.243 0.2966

error(µ(wd)) (%) 0.01 0.06 -0.01
µ(ξ) 0.0117 0.0317 0.0524

σ(ξ) (%) 14.06 8.06 7.55
error(µ(wn)) (%) 2.74 0.79 -9.81

Figure 5.19: Damped Natural Frequency and Damping Ratio identification
through SSI-UPC method in 100 Monte Carlo runnings with SNR 10.
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Figure 5.20: Damped Natural Frequency and Damping Ratio identification
through SSI-PC method in 100 Monte Carlo runnings with SNR 2.

Figure 5.21: Damped Natural Frequency and Damping Ratio identification
through SSI-CVA method in 100 Monte Carlo runnings with SNR 2.
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Figure 5.22: Damped Natural Frequency and Damping Ratio identification
through SSI-UPC cov method in 100 Monte Carlo runnings with SNR 2.

Figure 5.23: Damped Natural Frequency and Damping Ratio identification
through MOBAR method in 100 Monte Carlo runnings with SNR 2.
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Table 5.11: System eigenvalues identified by SSI-CVA method, SNR 2, 12 minutes
of data acquired.

Mode First Second Third

µ(wn) (Hz) 2.8331 7.9382 11.4715
σ(wn) (%) 0.068 0.08 0.177

error(µ(wn)) (%) 0.00 0.00 0.01
µ(wd) (Hz) 2.8329 7.9343 11.4611
σ(wd) (%) 0.068 0.08 0.1786

error(µ(wd)) (%) 0.00 0.00 0.01
µ(ξ) 0.0113 0.0311 0.0439

σ(ξ) (%) 5.14 2.59 3.95
error(µ(ξ)) (%) -0.21 0.44 0.35

Figure 5.24: Damped Natural Frequency and Damping Ratio identification
through SSI-CVA method in 100 Monte Carlo runnings with SNR 2, 12 minutes of

data acquired.
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5.1.2 Mass-Spring-Damper model: colored noise excitation

To verify the influence of colored noise excitation on the identification of Mass-

Spring-Damper modal parameters through the OMA methods studied at the present

work, pink, red, blue and violet noise excitations were applied to the three masses.

Uncorrelated white noise was added to the obtained response signal and the input

to OMA methods was the displacement responses at the three masses positions as

described in the previous section.

Pink noise is defined as a signal with its power spectral density decreasing by

3 dB per octave (density proportional to 1/f). The PSD of pink noise excitation

applied to the mass-spring-damper model is shown in Figure 5.26.

Red noise is defined as a signal with its power density decreasing 6 dB per

octave with increasing frequency (density proportional to 1/f 2). The PSD of red

noise excitation applied to the mass-spring-damper model is shown in Figure 5.27.

Blue noise is defined as a signal with its power spectral density increasing 3 dB

per octave with increasing frequency (density proportional to f). The PSD of blue

noise excitation applied to the mass-spring-damper model is shown in Figure 5.28.

Violet noise is defined as a signal with its power spectral density increasing 6

dB per octave with increasing frequency (density proportional to f 2). The PSD of

violet noise excitation applied to the mass-spring-damper model is shown in Figure

5.29.

The stability diagram ploted over sigular values of Spectral Densities Matrix for

one realization with pink noise, red noise, blue noise and violet noise excitations

is shown in figures 5.30, 5.31, 5.32 and 5.33 respectively. Uncorrelated white noise

with SNR 2 was added to the response signals.

Figure 5.34, 5.35, 5.36 and 5.37 shows the results of 100 Monte Carlo simulations,

with identification performed through SSI-CVA method.

Once pink and red noise excitations have the characteristics of energy decreasing

with frequency, while blue and violet noise excitations have the opposite charac-

teristics, it is possible to notice a lower participation of second and third modes

at the Singular Value of Spectral Densities plots for pink and red noise excitation

compared with blue and violet noise excitations.

For red noise the energy exciting the third mode is so low, that response is

lower than the uncorrelated noise added, thus it was not possible to identify the

modal parameters of this mode. Also, the second mode identified have presented a

meaningful spread.

This fact illustrates well that OMA methods require enough bandwidth to excite

the mode of interest, allied to good SNR at this bandwidth in order to allow a good

identification.
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Figure 5.25: white noise. Figure 5.26: pink noise

Figure 5.27: red noise Figure 5.28: blue noise

Figure 5.29: violet noise
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Figure 5.30: Stabilization diagram over Singular Value of Spectral Densities for
pink noise excitation.

Figure 5.31: Stabilization diagram over Singular Value of Spectral Densities for red
noise excitation.
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Figure 5.32: Stabilization diagram over Singular Value of Spectral Densities for
blue noise excitation.

Figure 5.33: Stabilization diagram over Singular Value of Spectral Densities for
violet noise excitation.
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Figure 5.34: Damped Natural Frequency and Damping Ratio Identification
through SSI-CVA method in 100 Monte Carlo runnings for pink noise excitation.

Figure 5.35: Damped Natural Frequency and Damping Ratio Identification
through SSI-CVA method in 100 Monte Carlo runnings for red noise excitation.
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Figure 5.36: Damped Natural Frequency and Damping Ratio Identification
through SSI-CVA method in 100 Monte Carlo runnings for blue noise excitation.

Figure 5.37: Damped Natural Frequency and Damping Ratio Identification
through SSI-CVA method in 100 Monte Carlo runnings for violet noise excitation.
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5.1.3 Identification from the Finite Element model

The rotor model was also excited with white noise, applied to each of its impellers.

The inputs of OMA was the response in X and Y direction in the region of proximity

probes (near the bearings nodes, see Chapter 4). Uncorrelated noise was also added

to the response.

The process was repeated several times, each time with a new white noise excita-

tion being applied and a new uncorrelated white noise being added to the obtained

system response, in order to allow a Monte Carlo analysis of the damping ratio and

natural frequencies identification using different OMA methods.

The first model analyzed was the rotor-bearing system, without cross-coupling.

The sampling frequency adopted in this discrete model was 4000 Hz and each Monte

Carlo run was performed with 1 minute of response data.

Computational modes were eliminated adopting the criteria of stable frequen-

cies, damping ratio and modeshapes among different model orders. Modes with a

deviation of more than 3 percent at the identified frequencies, a deviation of more

than 7 percent at the identified damping ratio or a MAC lower than 0.95 between

the orders, were considered unstable. The higher margins of acceptance, comparing

with the mass-spring-damper model were defined due to the higher complexity of

the system as stated at the Chapter 4, section Finite Element Rotor Model. Figures

5.38 and 5.39 shows a stabilization diagram over the singular values of PSD matrices

plot for a SNR of 10, obtained with SSI-CVA method before and after applying the

stable modes criteria, respectively. It can be observed that all the computational

modes were eliminated.

It is worth notice that the stability criteria to eliminate computational modes

has nothing to do with the stability analysis of turbomachinery. The first is a

deviation criteria related with the modal parameters identified among different OMA

model orders, while the second is related with the real part of the structural system

eigenvalues.

It is possible to see that the first and second singular values modulates together,

presenting peaks near 101, 103, 361 and 372 Hz. Once they are closely spaced modes,

and the white noise excitation applied to each impeller excites both the forward and

backward modes, first and second singular values have presented the same order of

energy.

To verify if the identified mode corresponds to a forward or backward mode, the

identified modeshapes can be plotted and compared with the spinning direction.

The model was simulated with clockwise spinning direction. Figure 5.40 shows the

identified modeshapes corresponding to the stabilization diagram from figure 5.39.

At this plot, dot means the beginning of a revolution and the blank means the
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Figure 5.38: Stabilization diagram over Singular Value of Spectral Densities for
FEM rotor-bearing system with white noise excitation applied to each impeller,

SNR 10 wihtout computational modes elimination.

end, showing the direction of the modeshape precession. Figure 5.41 shows the

modeshapes from the model, at the same positions. Good agreement was found

between the identified and model modeshapes.

By looking to the MAC between the identified modes (Figure 5.42), it is possi-

ble to observe that they are independent between each other, what is an expected

outcome for this rotor-bearing system.

Modeshape plots can also be used to verify if an identified mode is a structural

or computational mode. Generally, computational modes presents shapes that are

unexpected for the frequency range where they are identified, allowing its elimi-

nation by simple visual inspection. Figure 5.43 shows examples of computational

modeshapes identified by the OMA methods applied to the FEM model.

Figures 5.44 and 5.45 presents box plots with damped natural frequencies and

damping ratio respectively, identified from the 100 Monte Carlo runnings for a SNR

of 10, using SSI-CVA, SSI-PC, SSI-UPC, MOBAR and SSI-UPC Cov.

Tables 5.12, 5.13, 5.14, 5.15 and 5.16 summarizes the modal parameters ex-

tracted, showing the mean values (µ), the standard deviation σ and the error of the

identified parameters of 100 Monte Carlo simulations for a SNR of 10.

It can be observed good agreement with the FEM model, even in the presence of
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Figure 5.39: Stabilization diagram over Singular Value of Spectral Densities for
FEM of rotor-bearing system with white noise excitation applied to each impeller,

SNR 10 after computational modes elimination.

closely space modes. Similarly to the mass spring, although the standard deviation

is considerable, the mean value obtained through many realizations presents an

acceptable level of error.

Figures 5.46, 5.47, 5.48, 5.49 and 5.50 allows a visual inspection of the spread of

natural frequencies and damping ratio obtained from the Monte Carlo runnings for

SSI-UPC, CVA, PC, SSI-UPC Cov and MOBAR with SNR 10 respectively.

Figures 5.51 and 5.52 presents box plots with damped natural frequencies and

damping ratio respectively, identified from the 100 Monte Carlo runnings for a SNR

of 2, using SSI-CVA, SSI-PC, SSI-UPC, MOBAR and SSI-UPC Cov.

As presented for the mass-spring-damper model, to allow a better comparison

between the identification performed with synthetic data generated with SNR 10 and

SNR 2, the box plots already presented for the rotor-bearing model were compiled

side by side in figures 5.15, 5.54, 5.55 and 5.56.

The results obtained for this SNR were also satisfactory, although outliers with

higher deviation were observed in comparison with the analysis performed with SNR

10.

Tables 5.17, 5.18, 5.19, 5.20 and 5.21 shows the results for a SNR of 2 and figures

5.57, 5.58, 5.59, 5.60 and 5.61 allows a visual inspection of the spread. The outlier
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Figure 5.40: Identified modeshapes, DE bearing in blue and NDE bearing in red.

Figure 5.41: Model modeshapes, DE blue and NDE red.
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Figure 5.42: MAC between the identified modes 1- First Backward, 2- First
Forward, 3- Second Backward and 4- Second Forward.

Figure 5.43: Examples of computational modeshapes identified, DE blue and NDE
red.

were not eliminated in these figures and tables.
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Figure 5.44: Box plot of identified damped natural frequencies for the
rotor-bearing system model with SNR 10.

Figure 5.45: Box plot of identified damping ratio for the rotor-bearing system
model with SNR 10.

Table 5.12: Rotor-bearing system eigenvalues identified by SSI-UPC method, SNR
10, 1 minutes of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.8043 103.3665 361.1403 372.6698
σ(wn) (%) 0.47 0.51 0.08 0.07

error(µ(wn)) (%) 0.00 -0.06 0.01 0.00
µ(wd) (Hz) 101.6329 103.1759 361.0845 372.6199
σ(wd) (%) 0.48 0.51 0.08 0.07

error(µ(wd)) (%) 0.00 -0.06 0.01 0.00
µ(ξ) 0.05783 0.060477 0.01755 0.016330654

σ(ξ) (%) 7.71 8.72 5.88 7.00
error(µ(ξ)) (%) -0.57 -1.29 -0.3 -1.03
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Table 5.13: Rotor-bearing system eigenvalues identified by SSI-PC method, SNR
10, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.8188 103.4243 361.1673 372.7148
σ(wn) (%) 0.39 0.43 0.08 0.06

error(µ(wn)) (%) 0.02 -0.01 0.0 0.01
µ(wd) (Hz) 101.6469 103.2309 361.1113 372.6633
σ(wd) (%) 0.38 0.44 0.08 0.06

error(µ(wd)) (%) 0.02 -0.01 0.0 0.01
µ(ξ) 0.05790 0.06093 0.01758 0.01659

σ(ξ) (%) 7.79 8.16 5.30 5.37
error(µ(ξ)) (%) -0.44 -0.55 -0.09 -0.57

Table 5.14: Rotor-bearing system eigenvalues identified by SSI-CVA method, SNR
10, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.868 103.429 361.5909 373.04139
σ(wn) (%) 0.27 0.31 0.12 0.07

error(µ(wn)) (%) 0.07 0.00 0.12 0.10
µ(wd) (Hz) 101.6795 103.2159 361.5326 372.9879
σ(wd) (%) 0.27 0.30 0.12 0.07

error(µ(wd)) (%) 0.05 -0.02 0.21 0.10
µ(ξ) 0.06074 0.06408 0.01786 0.01691

σ(ξ) (%) 8.39 4.67 9.70 5.12
error(µ(ξ)) (%) 4.43 4.59 1.5 2.49

Table 5.15: Rotor-bearing system eigenvalues identified by Cov SSI-UPC method,
SNR 10, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.869 103.392 361.087 372.617
σ(wn) (%) 0.37 0.043 0.08 0.08

error(µ(wn)) (%) 0.07 -0.04 -0.02 -0.01
µ(wd) (Hz) 101.691 103.196 360.913 372.511
σ(wd) (%) 0.37 0.42 0.24 0.16

error(µ(wd)) (%) 0.06 -0.04 -0.05 -0.03
µ(ξ) 0.05902 0.06142 0.01764 0.01667

σ(ξ) (%) 6.66 6.33 5.04 5.3
error(µ(ξ)) (%) 1.48 0.25 0.24 1.05

Table 5.16: Rotor-bearing system eigenvalues identified by MOBAR method, SNR
10, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.705 103.267 360.825 372.451
σ(wn) (%) 1.1 1.2 0.08 0.07

error(µ(wn)) (%) -0.09 -0.16 -0.1 -0.06
µ(wd) (Hz) 101.544 103.107 360.76 372.4
σ(wd) (%) 1.09 1.21 0.08 0.07

error(µ(wd)) (%) -0.08 -0.13 -0.1 -0.06
µ(ξ) 0.0554 0.05534 0.0184 0.0163

σ(ξ) (%) 16.53 13.02 8.49 5.49
error(µ(ξ)) (%) -4.67 -9.67 4.66 -1.04
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Figure 5.46: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-UPC method in 100 Monte Carlo runnings, SNR

10, 1 minute of data acquired.

Figure 5.47: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-PC method in 100 Monte Carlo runnings, SNR

10, 1 minute of data acquired.

Figure 5.48: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-CVA method in 100 Monte Carlo runnings, SNR

10, 1 minute of data acquired.

63



Figure 5.49: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through Cov SSI-UPC method in 100 Monte Carlo runnings,

SNR 10, 1 minute of data acquired.

Figure 5.50: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through MOBAR method in 100 Monte Carlo runnings, SNR

10, 1 minute of data acquired.

Figure 5.51: Box plot of identified damped natural frequencies for the
rotor-bearing system model with SNR 2.
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Figure 5.52: Box plot of identified damping ratio for the rotor-bearing system
model with SNR 2.

Figure 5.53: Box plot ωd, SNR 10. Figure 5.54: Box plot ξ, SNR 10.

Figure 5.55: Box plot ωd, SNR 2. Figure 5.56: Box plot ξ, SNR 2.

Table 5.17: Rotor-bearing system eigenvalues identified by SSI-UPC method, SNR
2, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.8341 103.4712 361.163 372.753
σ(wn) (%) 0.43 0.48 0.12 0.10

error(µ(wn)) (%) 0.03 0.04 0.00 0.02
µ(wd) (Hz) 101.658 103.278 361.081 372.70
σ(wd) (%) 0.43 0.48 0.15 0.10

error(µ(wd)) (%) 0.03 0.04 -0.01 0.02
µ(ξ) 0.0585 0.06078 0.01784 0.01657

σ(ξ) (%) 10.94 9.7 18.16 10.79
error(µ(ξ)) (%) 0.58 -0.8 1.38 0.46
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Table 5.18: Rotor-bearing system eigenvalues identified by SSI-PC method, SNR
2, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.8332 103.4023 361.1452 372.7414
σ(wn) (%) 0.43 0.57 0.13 0.11

error(µ(wn)) (%) 0.03 -0.03 -0.01 0.02
µ(wd) (Hz) 101.6581 103.2079 361.0884 372.6904
σ(wd) (%) 0.43 0.58 0.13 0.11

error(µ(wd)) (%) 0.03 -0.03 -0.01 0.02
µ(ξ) 0.0583 0.0610 0.0176 0.0164

σ(ξ) (%) 10.97 9.38 12.05 10.86
error(µ(ξ)) (%) 0.17 -0.39 0.04 -0.37

Table 5.19: Rotor-bearing system eigenvalues identified by SSI-CVA method, SNR
2, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.797 103.4587 361.1753 372.6986
σ(wn) (%) 0.24 0.37 0.09 0.07

error(µ(wn)) (%) 0.00 0.03 0.00 0.01
µ(wd) (Hz) 101.6212 103.2643 361.0687 372.647
σ(wd) (%) 0.24 0.36 0.16 0.07

error(µ(wd)) (%) -0.01 0.02 -0.01 0.01
µ(ξ) 0.05852 0.06122 0.0177 0.01653

σ(ξ) (%) 9.77 5.87 4.13 4.31
error(µ(ξ)) (%) 0.63 -0.08 0.54 0.17

Table 5.20: Rotor-bearing system eigenvalues identified by Cov SSI-UPC method,
SNR 2, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.8376 103.4101 361.0816 372.6130
σ(wn) (%) 0.29 0.34 0.08 0.07

error(µ(wn)) (%) 0.04 -0.02 -0.02 -0.01
µ(wd) (Hz) 101.6506 103.2109 361.0104 372.5617
σ(wd) (%) 0.29 0.34 0.09 0.07

error(µ(wd)) (%) 0.02 -0.03 -0.03 -0.01
µ(ξ) 0.0601 0.0618 0.0177 0.0166

σ(ξ) (%) 12.50 8.82 4.47 4.31
error(µ(ξ)) (%) 3.35 0.87 0.50 0.48

Table 5.21: Rotor-bearing system eigenvalues identified by MOBAR method, SNR
2, 1 minute of data acquired, 100 Monte Carlo runs.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 101.9783 103.0671 360.9262 372.2689
σ(wn) (%) 0.56 0.70 0.10 0.12

error(µ(wn)) (%) 0.18 -0.35 -0.07 -0.10
µ(wd) (Hz) 101.82 102.9398 360.8762 372.22173
σ(wd) (%) 0.59 0.72 0.10 0.12

error(µ(wd)) (%) 0.19 -0.29 -0.06 -0.10
µ(ξ) 0.0536 0.0477 0.0166 0.015880472

σ(ξ) (%) 28.63 29.41 7.57 7.30
error(µ(ξ)) (%) -7.88 -22.13 -5.67 -3.75
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Figure 5.57: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-UPC method in 100 Monte Carlo runnings, SNR

2, 1 minute of data acquired for run.

Figure 5.58: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-PC method in 100 Monte Carlo runnings, SNR 2,

1 minute of data acquired for run.

Figure 5.59: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through SSI-CVA method in 100 Monte Carlo runnings, SNR

2, 1 minute of data acquired for run.
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Figure 5.60: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through Cov SSI-UPC method in 100 Monte Carlo runnings,

SNR 2, 1 minute of data acquired for run.

Figure 5.61: Rotor-bearing system Damped Natural Frequency and Damping
Ratio identification through MOBAR method in 100 Monte Carlo runnings, 1

minute of data acquired for run.
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The second model analyzed was the rotor-bearing system, with cross-coupling

applied to the midspan until stability threshold was achieved (damping ratio of first

forward mode neat to zero). The sampling frequency adopted in this discrete model

was also 4000 Hz and each Monte Carlo run was performed with 1 minute of response

data.

Computational modes were eliminated adopting the same criteria adopted for the

first FEM model. The closely spaced backward and forward modes at this model

have a separation of just 0.27 Hz, what makes the distinction between them a good

test of the identification algorithms applied.

Figure 5.62 shows a stabilization diagram over the singular values of PSD ma-

trices plot for a SNR of 2, obtained with SSI-CVA method after applying the com-

putational modes elimination filters. It can be observed that a computational mode

appeared at higher orders at the frequency of 277 Hz and was not eliminated by the

criteria adopted. Figure 5.63 shows the modeshape of this mode, and once this is

unexpected for this frequency range, it could be eliminated by looking at modeshape.

Figure 5.62: Stabilization diagram over Singular Value of Spectral Densities for
FEM of rotor-bearing system with cross-coupling applied at midspan until

threshold of instability, SNR 2, computational modes eliminated.

The low damping of first forward mode is evidenced by looking to the sharp peak

at the first singular value, near 100 Hz. Once sharp peaks are also characteristics

of harmonics, it is important to make distinction between an excitation harmonic

69



Figure 5.63: Remaining computational modeshape at 277 Hz.

and a modeshape.Two basic features to help in harmonic recognition were adopted

at present work (see GUGLIELMO et al. [7]).

The first one is related with the second singular value. Although the peak at

first singular value is very sharp, the first backward mode usually present increased

damping with increasing in cross-coupling, thus the second singular value present a

smooth modulation, allowing recognition of a modal response.

The second one makes use of Kurtosis (γ), defined by equation 5.1. By band-

pass filtering the signal with a narrow band range, near the interest frequency and

calculating the Kurtosis of signal, an harmonic can be recognized. Kurtosis of Gaus-

sian distributed measurements present a value of 3 while sinusoidal measurements

presents Kurtosis of 1.5. Thus, a harmonic will present Kurtosis of 1.5 while a

mode will present a higher value of Kurtosis. Figure 5.64 shows the average Kur-

tosis of measurement signals (mean value of the measured channels)as a function

of the frequency, evidencing that the sharp peak near 100 Hz is related to a modal

response.

γ =
E[(y − µ)4]

σ4
(5.1)

Tables 5.22, 5.23, 5.24, 5.25 and 5.26 shows the results for the modal parameters

identification from the rotor-bearing system at threshold of stability with a SNR

of 2 using SSI-UPC, SSI-PC, SSI-CVA, SSI-UPC Cov and MOBAR respectively

and figures 5.65, 5.66, 5.67, 5.68 and 5.69 allows a visual inspection of the spread.

Additionally, figures 5.70 and 5.71 presents the box plots from the damped natural
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frequencies and damping ratio identification.

Covariance Driven methods have presented bias at first forward mode damping

identification, when comparing with the Data Driven methods, but although the

percent errors are high, both Covariance Driven methods applied have shown a

damping ratio close to instability, thus being an acceptable error from an engineering

perspective.

Figure 5.64: Average Kurtosis of measurement signals.

Table 5.22: Eigenvalues identified by SSI-UPC method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with cross-coupling

added to midspan until threshold of stability.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 103.3656 103.1468 361.1737 372.7231
σ(wn) (%) 0.63 0.02 0.16 0.13

error(µ(wn)) (%) 0.47 0.00 0.01 0.01
µ(wd) (Hz) 102.5752 103.14667 361.1069 372.6781
σ(wd) (%) 0.56 0.02 0.16 0.13

error(µ(wd)) (%) 0.39 0.00 0.00 0.01
µ(ξ) 0.12276 0.0015 0.01914 0.01548

σ(ξ) (%) 10.10 15.11 9.36 8.55
error(µ(ξ)) (%) 4.93 0.13 1.25 1.19
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Table 5.23: Eigenvalues identified by SSI-PC method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with cross-coupling

added to midspan until threshold of stability.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 103.4342 103.1470 361.2287 372.7745
σ(wn) (%) 0.69 0.02 0.15 0.14

error(µ(wn)) (%) 0.53 0.00 0.02 0.03
µ(wd) (Hz) 102.6257 103.1469 361.1623 372.7035
σ(wd) (%) 0.62 0.02 0.15 0.12

error(µ(wd)) (%) 0.44 0.00 0.02 0.02
µ(ξ) 0.1239 0.00150 1 0.01906 0.01629

σ(ξ) (%) 11.58 14.98 10.80 65.94
error(µ(ξ)) (%) 5.91 0.15 0.86 6.46

Table 5.24: Eigenvalues identified by SSI-CVA method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with cross-coupling

added to midspan until threshold of stability.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 102.7359 103.1463 361.2930 372.9134
σ(wn) (%) 0.13 0.02 0.18 0.13

error(µ(wn)) (%) -0.14 0.00 0.04 0.07
µ(wd) (Hz) 102.0274 103.1462 361.2239 372.8686
σ(wd) (%) 0.13 0.02 0.18 0.13

error(µ(wd)) (%) -0.15 0.00 0.04 0.07
µ(ξ) 0.1171 0.00151 0.01944 0.01544

σ(ξ) (%) 4.46 14.85 10.50 8.68
error(µ(ξ)) (%) 0.10 0.67 2.88 0.92

Table 5.25: Eigenvalues identified by Cov SSI-UPC method, SNR 2, 1 minute of
data acquired, 100 Monte Carlo runs for the rotor-bearing system with

cross-coupling added to midspan until threshold of stability.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 103.447 103.126 360.767 372.241
σ(wn) (%) 0.65 0.02 0.26 0.2

error(µ(wn)) (%) 0.55 -0.02 -0.11 -0.11
µ(wd) (Hz) 102.616 103.126 360.694 372.193
σ(wd) (%) 0.56 0.02 0.26 0.2

error(µ(wd)) (%) 0.43 -0.02 -0.11 -0.12
µ(ξ) 0.117 0.0015 0.0189 0.0153

σ(ξ) (%) 7.62 33.59 5.97 4.2
error(µ(ξ)) (%) 3.35 0.87 0.50 0.48
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Table 5.26: Eigenvalues identified by MOBAR method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with cross-coupling

added to midspan until threshold of stability.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 96.9681 103.1438 360.7911 372.4897766
σ(wn) (%) 9.70 0.02 0.19 0.19

error(µ(wn)) (%) -5.75 0.00 -0.10 -0.05
µ(wd) (Hz) 99.7167 103.1435 360.7361 372.4574
σ(wd) (%) 0.75 0.02 0.19 0.19

error(µ(wd)) (%) -2.41 0.00 -0.10 -0.04
µ(ξ) 0.11246 0.002359 0.017198 0.012985

σ(ξ) (%) 11.30 10.63 17.65 17.71
error(µ(ξ)) (%) -3.88 57.30 -9.01 -15.13

Figure 5.65: Damped Natural Frequency and Damping Ratio identification
through SSI-UPC method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system at threshold of stability.

73



Figure 5.66: Damped Natural Frequency and Damping Ratio identification
through SSI-PC method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system at threshold of stability.

Figure 5.67: Damped Natural Frequency and Damping Ratio identification
through SSI-CVA method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system at threshold of stability.
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Figure 5.68: Damped Natural Frequency and Damping Ratio identification
through Cov SSI-UPC method in 100 Monte Carlo runnings, SNR 2, 1 minute of

data acquired per run for the rotor-bearing system at threshold of stability..

Figure 5.69: Damped Natural Frequency and Damping Ratio identification
through MOBAR method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system at threshold of stability.
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Figure 5.70: Box plot of identified damped natural frequencies for the
rotor-bearing system at threshold of stability with SNR 2.

Figure 5.71: Box plot of identified damping ratio for the rotor-bearing system at
threshold of stability with SNR 2.

The third model analyzed was the rotor-bearing system, with addition of squeeze-

film dampers at both bearings, resulting in a model with an increased damping

compared to the previous. The sampling frequency adopted in this discrete model

was also 4000 Hz and each Monte Carlo run was performed with 1 minute of response

data.

Computational modes were eliminated adopting the same criteria adopted for

the previous FEM models analyzed.

Figure 5.72 shows a stabilization diagram over the singular values of PSD ma-

trices plot for a SNR of 2, obtained with SSI-CVA method after applying the com-

putational modes elimination filters.

76



The high damping of first forward mode is evidenced by looking to the wider

peak at the first singular value, near 100 Hz.

Tables 5.27, 5.28, 5.29, 5.30 and 5.31 shows the results for the modal parameters

identification from the rotor-bearing-squeeze-film system with a SNR of 2 using SSI-

UPC, SSI-PC, SSI-CVA, SSI-UPC Cov and MOBAR respectively. Additionally,

figures 5.78 and 5.79 presents the information of these tables in box plot form and

figures 5.73, 5.74, 5.75, 5.76 and 5.77 allows a visual inspection of the spread.

The identification of modal parameters with the increased damping has pre-

sented higher spread between the realizations, for both the natural frequencies and

damping ratio identification, for all the identification techniques applied. This re-

sult is attributed to the fast dissipation of transient responses caused by the high

damping, what increases the errors of impulse responses or free decays estimation

through OMA algorithms.

Figure 5.72: Stabilization diagram over Singular Value of Spectral Densities for
FEM of rotor-bearing system with addition of squeeze-film damper at both

bearings, SNR 2, computational modes eliminated.
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Table 5.27: Eigenvalues identified by SSI-UPC method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with addition of

squeeze-film damper at both bearings.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 104.2196 105.4275 367.4931 378.8229
σ(wn) (%) 1.86 2.10 0.18 0.15

error(µ(wn)) (%) -0.37 -0.93 -0.01 0.01
µ(wd) (Hz) 102.0342 103.4985 367.3775 378.7166
σ(wd) (%) 1.90 1.83 0.18 0.15

error(µ(wd)) (%) -0.39 -0.55 -0.01 0.01
µ(ξ) 0.2033 0.1818 0.02503 0.02355

σ(ξ) (%) 6.14 29.66 6.16 11.02
error(µ(ξ)) (%) 0.33 -12.83 -0.72 2.03

Table 5.28: Eigenvalues identified by SSI-PC method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with addition of

squeeze-film damper at both bearings.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 106.8943 105.6798 367.607 378.8526
σ(wn) (%) 3.99 2.16 0.21 0.19

error(µ(wn)) (%) 2.19 -0.69 0.02 0.02
µ(wd) (Hz) 104.7171 103.6203 367.492 378.7532591
σ(wd) (%) 4.03 1.84 0.21 0.19

error(µ(wd)) (%) 2.23 -0.43 0.02 0.02
µ(ξ) 0.20064 0.1829 0.0249 0.0227

σ(ξ) (%) 4.52 37.79 8.67 12.49
error(µ(ξ)) (%) -1.00 -12.31 -1.22 -1.55

Table 5.29: Eigenvalues identified by SSI-CVA method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with addition of

squeeze-film damper at both bearings.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 103.831 105.7146 367.694 378.823
σ(wn) (%) 1.75 1.59 0.16 0.12

error(µ(wn)) (%) -0.74 -0.66 0.04 0.01
µ(wd) (Hz) 101.6124 103.2657 367.5743 378.7176
σ(wd) (%) 1.78 1.58 0.16 0.12

error(µ(wd)) (%) -0.81 -0.78 0.04 0.01
µ(ξ) 0.20538 0.21297 0.02547 0.02355

σ(ξ) (%) 4.92 9.37 6.86 6.41
error(µ(ξ)) (%) 1.34 2.11 1.02 2.04
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Table 5.30: Eigenvalues identified by Cov SSI-UPC method, SNR 2, 1 minute of
data acquired, 100 Monte Carlo runs for the rotor-bearing system with addition of

squeeze-film damper at both bearings.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 104.755 106.301 367.483 378.657
σ(wn) (%) 2.71 2.51 0.18 0.16

error(µ(wn)) (%) 0.14 -0.10 -0.01 -0.03
µ(wd) (Hz) 102.5766 104.1846 367.363 378.556
σ(wd) (%) 2.52 2.47 0.18 0.16

error(µ(wd)) (%) 0.14 0.11 -0.01 -0.03
µ(ξ) 0.1983 0.1942 0.02546 0.02311

σ(ξ) (%) 20.33 20.39 7.68 6.83
error(µ(ξ)) (%) -2.16 -6.88 0.98 0.11

Table 5.31: Eigenvalues identified by MOBAR method, SNR 2, 1 minute of data
acquired, 100 Monte Carlo runs for the rotor-bearing system with addition of

squeeze-film damper at both bearings.

Mode 1st Backward 1st Forward 2nd Backward 2nd Forward
µ(wn) (Hz) 104.4528 105.1569 366.2431 377.7185
σ(wn) (%) 0.53 0.80 0.48 0.26

error(µ(wn)) (%) -0.15 -1.18 -0.35 -0.28
µ(wd) (Hz) 102.5439 103.2909 366.168 377.643
σ(wd) (%) 0.53 0.83 0.48 0.26

error(µ(wd)) (%) 0.10 -0.75 -0.34 -0.28
µ(ξ) 0.19011 0.1874 0.01982 0.01981

σ(ξ) (%) 4.42 4.23 20.67 11.90
error(µ(ξ)) (%) -6.19 -10.15 -21.37 -14.17

Figure 5.73: Damped Natural Frequency and Damping Ratio identification
through SSI-UPC method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing with addition of squeeze-film damper at
both bearings.
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Figure 5.74: Damped Natural Frequency and Damping Ratio identification
through SSI-PC method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system with addition of squeeze-film damper
at both bearings.

Figure 5.75: Damped Natural Frequency and Damping Ratio identification
through SSI-CVA method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system with addition of squeeze-film damper
at both bearings.

Figure 5.76: Damped Natural Frequency and Damping Ratio identification
through Cov SSI-UPC method in 100 Monte Carlo runnings, SNR 2, 1 minute of
data acquired per run for the rotor-bearing system with addition of squeeze-film

damper at both bearings.
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Figure 5.77: Damped Natural Frequency and Damping Ratio identification
through MOBAR method in 100 Monte Carlo runnings, SNR 2, 1 minute of data

acquired per run for the rotor-bearing system with addition of squeeze-film damper
at both bearings.

Figure 5.78: Box plot of identified damped natural frequencies for the rotor-bearing
system with addition of squeeze-film damper at both bearings, SNR 2.

Figure 5.79: Box plot of identified damping ratio for the rotor-bearing system with
addition of squeeze-film damper at both bearings, SNR 2.
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5.2 Field Measurements and Signal Processing

The evaluated compressor has two pairs of displacement sensors, assembled in di-

rections named X and Y, with an angle of 90 degrees between them. One pair is

located near the drive end (DE) journal bearing and the other near the non-drive

end (NDE) journal bearing. Figure 5.80 show a diagram representing the vibration

and bearings pad temperature sensors of the complete compressor train, helping to

visualize the 4 radial displacement sensors of the compressor.

Data from these four proximity sensors was collected during operation, by con-

necting a data collector to the Machinery Protection System buffered output chan-

nels. The sampling frequency was set to 128 kHz, and raw waveforms for each sensor

were collected simultaneously during 25 minutes. Channels 1 and 2 correspond to

X and Y direction at the NDE, respectively, while channels 3 and 4 correspond to

X and Y direction at the DE, respectively.

The operational conditions during the data acquisition are shown in table 5.32,

and compared with the Design and Shop Stability Test conditions.

Table 5.32: Design, Shop Test and Field Conditions

Design Shop Field
Aero Case Guarantee Vacuum H2+HC
Speed (rpm) 13660 13660 13860
Ps (bara) 9.032 - 9.74
Ts (◦C) 38 - 31.6
Pd (bara) 23.539 - 23.34
Td (◦C) 125 - 119.5
Oil Inlet (◦C) 43.3 - 54.4 46.6 42

Figure 5.81 shows the raw waveforms, that presents very low peak-to-peak am-

plitudes (3 microns). Highlighted by the red circles, scratches on the shaft, located

in the sensor’s tracks at both ends of the compressor, create large 10-15 microns

spikes in the signals.

Since harmonics of running speed lower the SNR of the modes of interest, it is

important to minimize those harmonics created by the shaft scratches. To do so,

all the signals were low pass filtered and than down-sampled. The final processed

waveform is shown in figure 5.81, where it can be observed the effect of scratches

have been effectively eliminated.

The low-pass filter followed by the down-sampling is known as decimation and

it can be helpful on making the number of block lines s used to build the Hankel

matrices suitable to avoid issues related with low eigenfrequencies compared with

the sampling ratio (see WAGNER et al. [52]). As proposed by REYNDERS and
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Figure 5.80: Diagram showing vibration and bearing temperature instruments of
the analyzed compressor

Figure 5.81: Raw waveforms showing the scratches and filtered waveforms.
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DE ROECK [53], s can be chosen by equation 5.2, where fs and f0 correspond to

sampling frequency and lowest frequency of interest, respectively.

s ≥ fs
2f0

(5.2)

Moreover, the acquisition duration should be large enough to allow a good esti-

mation of the covariance matrix.

The processed waveforms were applied directly in OMA SSI data driven methods.

For covariance driven methods it was applied Welch’s method to find the PSD, with

FFT blocks containing 4096 samples, applying Hanning window to each block and

averaging the FFTs with overlap of 75%. After this the covariances were calculated

through the Inverse Fast Fourier Transform of the obtained PSD. The resulting

PSDs Gij between channels i and j are shown in Figure 5.82, where the dominant

frequency component in each is the compressor’s running speed. One can also clearly

observe the drive motor’s 1× and 2× running speed components near 1800 cpm and

3600 cpm.

Figure 5.82: Measured PSD matrix G(ω)

Based on the shop SVT measurements and predictions, the 1F mode is expected

to be near 6000 cpm. All of the power spectrum indicate a peak near this frequency.

The singular values σ of the 4 × 4 PSD matrix G(ω), presented in Figure 5.83,

confirm the presence of the mode(s) in the data, even though its response is almost

four orders of magnitude smaller than the synchronous vibration.

The final step of signal processing effort was to calculate the covariances, by

taking the inverse Fourier transform of the averaged PSDs. Figure 5.84 shows the

auto-correlation functions obtained.
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Figure 5.83: Singular values of power spectral density matrix G(ω)

Figure 5.84: Autocorrelation Functions
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5.2.1 Identification from Centrifugal Compressor in Field

Operation

Figures 5.85(a) and 5.85(b) present the resulting modal parameters identified by

the covariance-based and data-driven identification techniques, respectively using

the first four minutes of data.

The upper part of these figures shows the stability spectrum for all the system

modes identified during these order variations. The lower part of each figure presents

a stabilization diagram to show the identified frequencies for each model order. For

information purposes, the singular value results from Figure 5.83 are also presented

within the stabilization diagrams.

All of the techniques accurately identify the compressor and motor 1× and 2×
harmonics of their rotor speeds as, effectively, undamped modes. The results also

show that the SSI techniques have identified relatively few modes below the com-

pressor’s running speed, but a large amount of modes in the frequency region above

compressor speed. Some of these high frequency modes are associated with compu-

tational or noise modes, not physical modes, as evidenced by the lack of any clearly

discernible peaks in the singular values at these frequencies.

By comparison, Figure 5.85(b) indicates that MOBAR does not identify these

spurious, noise modes. This is a direct result of MOBAR’s formulation that filters

out noise poles by placing them inside the discrete time unit circle [26]. Relative

to the other techniques, MOBAR has identified more modes in the subsynchronous

region, in particular, several with relatively high damping levels that are clearly

present in the σ1 and σ2 results.

Depending on the order, Figures 5.85 and 5.86 show that all of the techniques

identify two modes around the σ1 and σ3 peaks near 6000 cpm. These modes are

the primary ones of interest, the rotor’s first sister modes, 1F and 1B.

By looking to the Averaged Kurtosis of measurement signals at figure 5.87, it is

possible to see a kurtosis of 2.4 and 2.2 at 1800 and 3600 cpm and a kurtosis of 1.5

at running speed, evidencing the non gaussian nature of signal at these frequencies,

while near 6000 cpm, a kurtosis of 3 was found, evidencing the modal nature of the

poles identified in this region.

For the SSI methods, significant spread of 1F damping estimates occurs at low

model orders. Greater consistency in the 1F mode’s damping estimates is achieved

at higher orders, once the SSI methods are able to identify both the first forward

and first backward sister modes. This consistency is illustrated in Figure 5.88.

Once 25 minutes of data were acquired, it was possible to perform the analysis

several times, using samples of 4 minutes of data on each run, with an overlap of

75 % between the previous and next samples, allowing to see the spread of modal
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parameters identification through the different samples. Figures 5.89, 5.90, 5.91, 5.92

and 5.93 shows the obtained results for Covariance Driven SSI-UPC and MOBAR,

and Data Driven SSI-UPC, PC and CVA respectively.

The mean value of damping ratio ζ and damped natural frequencies wd identified

from the several runnings for the first forward and backward modes using OMA

during field operation and identified during vacuum running in the Factory Stability

Test with magnetic exciter are summarized in tables 5.33 and 5.34. All the presented

results are for MCS.

Estimates for the 1F mode agree very well between the different techniques

applied, as shown in Figure 5.94. The 1F log decrement estimates fall around

approximately 0.12. This value correlates well with that predicted by the first

simplified model correction approach from the shop SVT, where δ1F was predicted

to be 0.12–0.14. The agreement between different identification techniques, as well

as the shop SVT results, provides confidence in the 1F modal estimates.

From the different realizations performed, significant variation exists in the 1B

modal damping estimates obtained from the data-driven SSI-PC and UPC tech-

niques. On the contrary, little variation is present in MOBAR, Covariance Driven

SSI-UPC and Data Driven SSI-CVA’s 1B modal damping estimates.

The agreement between different output only estimation techniques gives con-

fidence in the obtained results, for a smooth running compressor, exposed to very

low density gas excitation, with considerable scratches in the sensors tracks.

Several other modes were identified that are of interest. Observed as a peak

in the σ2 results near 830 cpm, all of the techniques, with sufficient model order,

identify a mode here. However, the techniques are unable to confidently identify

this mode’s damping, although it appears to be moderate (ζ > 5%).

At approximately 5000 cpm, another mode was identified by most of the tech-

niques. The σ2 results near this frequency suggest a well-damped mode, which

correlates well with MOBAR’s estimate near 20% modal damping. However, the

DD-SSI techniques estimate its damping to be much lower, less than 5%.

The shop SVT identified a mode near 20,000 cpm that was suspected to be

associated with one of the rotor’s second sister modes. So, it was hoped that OMA

would be able to provide further evidence as to their location. Although several

cross spectrum (see G13 and G24 in Figure 5.82) show some modal-like response

near 20,000 cpm, another signal with undamped nature dominates at this frequency.

As a result, all of the techniques, unfortunately, identify a pole that is too lightly

damped to be the rotor’s second mode.
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Figure 5.85: Identified parameters vs. order variation for correlation-based ID
techniques
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Figure 5.86: Identified parameters vs. order variation for data-driven SSI
techniques
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Figure 5.87: Average Kurtosis of measurement signals.
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Figure 5.88: Damping of first forward mode, identified by SSI methods in orders
above the minimum able to identify the first forward and backward modes.
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Figure 5.89: Modal parameters of first backward and forward modes identified by
Covariance Driven SSI-UPC method.

Figure 5.90: Modal parameters of first backward and forward modes identified by
Covariance Driven MOBAR method.

Figure 5.91: Modal parameters of first backward and forward modes identified by
Data Driven SSI-UPC method.
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Figure 5.92: Modal parameters of first backward and forward modes identified by
Data Driven SSI-PC method.

Figure 5.93: Modal parameters of first backward and forward modes identified by
Data Driven SSI-CVA method.
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Figure 5.94: Stability spectrum of first rotor modes’ parameter estimates using
different ID techniques

Table 5.33: Modal Identification Results

SSI-PC SSI-UPC SSI-CVA MOBAR
Operational Condition Field Field Field Vacuum
1st Forward wd(cpm) 6349.45 6345.7 6358.65 6307
1st Forward ζ(%) 1.943 1.933 1.982 1.94
1st Backward wd(cpm) 6165.66 6159.29 6216.47 6155
1st Backward ζ(%) 6.01 5.883 6.777 4.02

Table 5.34: Modal Identification Results

SSI-Cov MOBAR MOBAR
Operational Condition Field Field Vacuum
1st Forward wd(cpm) 6345.70 6351.48 6307
1st Forward ζ(%) 1.93 1.68 1.94
1st Backward wd(cpm) 6159.29 6213.57 6155
1st Backward ζ(%) 5.88 5.08 4.02
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Chapter 6

Conclusions

The focus of the present work was to analyze OMA methods applied to centrifugal

compressors, highlighting aspects of OMA that are specific to rotating machines.

The investigation was related to aspects as signal processing, parameter setting,

elimination of computational and excitation modes and finally the modal parameters

extraction in each of analyzed methods. The main conclusions associated to this

investigation are described next.

Firstly, time domain OMA methods were applied to synthetic data from a simple

model with three mass-spring-damper elements subject to white noise excitation.

The spread observed over the different realizations has highlighted the advantages

of performing many realizations in order to have a better identification. Meaningful

reduction on the spread of identification parameters was obtained by increasing the

acquisition time span, highlighting the importance of choosing properly the time

span when performing a modal identification through OMA methods.

Secondly, the OMA methods were applied to synthetic data from a finite element

model with three different levels of damping subject to white noise excitation. A

time span of just 1 minute per realization was enough to provide good identification

results, with all the methods analyzed here. One could observe reliable identifi-

cations of the first and second forward rotor modes. This behavior was noticed

for different levels of damping. Means to recognize between a harmonic and a low

damped mode were discussed with help of the model at threshold of stability. The

SVD’s modulation shape with the closed spaced backward and forward modes helps

to identify the modal response, mainly because although at threshold of stability

the damping of first forward mode is low, the first backward mode usually present

higher damping, showing a smooth modulation at second SVD. Another useful tool

applied to the model was the calculation of Kurtosis of responses, after bandpass

filter them at the range of interest, allowing to verify the Gaussian or harmonic

nature of identified poles, that is related with structural modes and excitation filter

respectively.
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Finally, the identification of modal parameters from the hydrogen compressor

was performed. It was necessary to increase the time span to 4 minutes per real-

ization, in order to reduce the deviation of modal parameters identification between

realizations. The cause for that is attributed to the presence of superimposed loads,

non white noise characteristics of the stochastic excitation and small variations of

process parameters during the acquisition time, that are expected in any industrial

plant. The findings from this system can be summarized as the following:

1. Although four orders of magnitude lower than the predominant, synchronous

vibrations, the 1F mode’s presence was easily distinguished through the use of

various signal processing techniques, particularly averaging in the frequency

domain over a long time span. Very close correlation in the 1F mode’s fre-

quency and damping estimates was obtained from five different time domain,

output-only, identification techniques. Further confidence is provided by the

fact that the mode’s estimated frequency and damping are, as expected, very

close to those measured during the shop SVT.

2. Very good agreement between the different ID techniques’ studied was ob-

served at estimates for the 1F mode. Compared to the other ID techniques,

dramatically fewer computational, noise modes were identified by MOBAR, a

direct result of its backward formulation which acts to filter such modes.

3. Like the shop SVT, field OMA identified the rotor’s first backward mode to

be in close proximity to its sister forward mode with slightly higher damping.

Unfortunately, the compressor’s second rotor modes could not be identified

with any great confidence.

Application of OMA methods to the hydrogen compressor has reached a promis-

ing outcome, since it has shown that OMA can be successful for services or machine

applications with relatively low, ambient excitations. Furthermore, sophisticated

identification techniques are not always necessary to estimate modal locations. If

sufficient ambient excitation is present, useful information on the modal picture can

be obtained by simply studying the averaged PSDs and their singular values, just

as one might do with frequency response functions.

It must be acknowledged that significant uncertainties may exist in the modal

parameter estimates, particularly, their damping level. While signal processing and

identification techniques can provide high confidence in a mode’s estimated damped

natural frequency, estimation of a mode’s damping ratio will always have less cer-

tainty. Leakage, noise and modal proximity pose a continuous challenge to accurate

identification of modal damping. In the end, what modes are identified and the
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quality of their modal parameter estimates is highly dependent on the analyst’s ex-

pertise with the signal processing and identification techniques employed, just as

much as on the information contained within the raw measured data.
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Appendix A

Lateral Analysis: General

Description

At design phase, the modeling of lateral behavior of a rotor using Finite Element

Model (FEM) is the tool used by the OEM to verify if the rotordynamic project

goals were achieved, minimizing risk of unexpected behavior after the equipment is

produced.

The standard practice in oil and gas market nowadays, ruled by API 617 [4], is

to perform these verifications in three steps:

(i) Undamped Critical Speed Analysis;

(ii) Unbalance Response Analysis;

(iii) Stability Analysis;

The Undamped Critical Speed Analysis is performed by considering a FEM of

the rotor, consisting of the shaft, with addition of the inertial effect of elements

assembled in the shaft such as sleeves, disks, couplings, dry gas seals and balance

drum, known as built-in parts. This analysis considers the assembly of shaft and

built-in parts, supported by bearings without damping.

An eigenvalue and eigenvector analysis is done for many values of bearing stiff-

ness, covering a wide range in order to build a Critical Speed Map, as shown in

figure A.1. The eigenvalue and eigenvectors problems solved in Undamped Critical

Speed Analysis, arises from the undamped, free response equation A.1, in which M ,

K and G are the mass, stiffness and gyroscopic matrices of the system respectively

and z˜ is a vector with the displacement of each degree of freedom from the model.

M z̈˜+Gż˜+Kz˜ = 0 (A.1)
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Figure A.1: Undamped Critical Speed Map.

This analysis is used in conceptual design phase, to make a pre-matching between

rotor and bearing. After the rotor construction, free-free and rigid support natural

frequency can be measured and compared with the predicted soft bearing and rigid

bearing natural frequencies, and if necessary, corrections in the shaft FEM model

shall be made. Once this analysis relies in the FEM without estimation of bearings

and seals rotordynamic coefficients, there are minor uncertainties associated with

its results.

In the Unbalance Response Analysis, the FEM of the rotor assembly is consid-

ered, adding gyroscopic effect of the shaft and built-in parts. These gyroscopic effect

couples the motion equations in vertical and horizontal directions. The bearings

are added to the model through their predicted rotordynamics coefficients, includ-

ing damping and cross coupling stiffness, calculated through codes that performs

thermo-elasto-hidrodynamic analysis using the finite element method as proposed

by HE [47], or in some cases, through a complete Computational Fluid Dynamics

(CFD) analysis solving continuity, Navier-Stokes and Energy equations. Besides the

bearings, squeeze film dampers (when applied) and suport stiffness are considered.

Unbalance excitation is then applied in different positions, to excite the first

mode, then the second mode and so on, depending on the operational speed and with

positions defined by the undamped modeshapes (obtained during the Undamped

Critical Speed Analysis). Thus this analysis is done through the solution of the

forced response movement equation A.2, in which C is the damping matrix of the

system and u˜ corresponds to the force vector. Figure A.2 show the result of this

analysis to an unbalance placed in a position that aims to excite the first mode, with

prediction of displacement in the proximity sensor’s location, at Drive-End (DE)

and Non Drive End (NDE) bearings. The uncertainties in bearing rotordynamic
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coefficients, makes the uncertainties in this analysis higher than those of Undamped

Critical Speed Analysis.

Figure A.2: Unbalance Response Analysis.

To reduce these uncertainties, verifying and updating the model, usually the

compressor’s purchaser specifies an Unbalance Response Test, performed at the fa-

cility of the Original Equipment Manufacturer (OEM) and witnessed by purchaser’s

inspectors. In this test, an unbalance is added to the rotor (usually at the coupling)

and the results are compared to those of the Unbalance Response Analysis, that

must contain a case with the unbalance in the same position that in the test.

M z̈˜+ [C +G]ż˜+Kz˜ = u˜ (A.2)
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API 617 [4] standard does not require that the Unbalance Response Analysis

considers the rotordynamic effect of gas flowing through the compressor internal

components, therefore this analysis is equivalent to a no load operational condi-

tion and does not cover relevant changes that can happen in critical speed, due to

stiffening effect of high density gas flowing through damper seals.

The Stability analysis is done considering the complete FEM used to perform

the Unbalance Response Analysis, with addition of the rotordynamic parameters

of labyrinth seals, damper seals, oil seals (when applied) and disks (aerodynamic

cross-coupling), solving the free equations of movement (equation A.3), that leads

to a damped eigenvalues and eigenvectors problem (using state space formulation for

the general case of damping). Most of these parameters vary with gas composition,

pressure, temperature and flow and thus many scenarios must be evaluated.

M z̈˜+ [C +G]ż˜+Kz˜ = 0˜ (A.3)

Figure A.3: Stability Analysis: 1st forward and 1st backward modeshapes and
eigenvalues.
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Besides the stability level, this analysis reveals the changes in critical speed, re-

lated to different operational conditions, and can reveal previously the possibility of

issues with critical speeds inside the operational range. Figure A.3 shows an example

with the 1st forward and backward modeshapes and eigenvalues for an operational

condition of a centrifugal compressor. The addition of seals and aerodynamic cross

coupling coefficients makes the uncertainties in this analysis higher than those of

Unbalance Response Analysis.
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Appendix B

Basic Concepts

In this chapter, the basic concepts, necessary prior to understanding the model

parameters extraction through Operational Modal Analysis, will be presented.

B.1 Transfer Function

For linear, time invariant systems, the transfer function matrix H̃(s), defined in

Laplace Domain, describes the dynamic of system, allowing computing the outputs

of system (Ỹ˜ (s)) once the inputs (Ũ˜(s))are known, according to equation B.1.

Ỹ˜ (s) = H̃(s)Ũ˜(s) (B.1)

Each element Hij(s) of the transfer function matrix gives the relation between

an input at position j and an output at position i, and can be written as per equa-

tion B.2. The roots of the numerator N(s) are called ”zeros” and the roots of

denominator D(s) are called ”poles” of the system.

Hij(s) =
b0 + b1s+ b2s

2...+ bqs
q

a0 + a1s+ a2s2...+ ansn
=
N(s)

D(s)
(B.2)

Considering the representation given by equation B.3, the response can be writ-

ten by equation B.4, where the last term refers to the input poles contribution.

Hij(s) =
(s− zo)(s− z1)(s− z2)...(s− zq)
(s− po)(s− p1)(s− p2)...(s− pq)

K =
R1

s− p1

+
R2

s− p2

+...+
Rn

s− pn
(B.3)

Ỹi(s) =
A1

s− p1

+
A2

s− p2

+ ...+
An

s− pn
+

l∑
in=1

Ain
s− pin

(B.4)

Applying inverse Laplace transform, to equation B.4, the time domain response

is found as in equation B.5.
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yi(t) = A1e
p1t + A2e

p2t + ...+ Ane
pnt +

l∑
in=1

Aine
pint (B.5)

Equation B.5 shows that, for stable inputs, systems with at least one pole with

real part positive, the response will be instable, while for system with poles that

have negative real part, the response is stable. For the case of real part zero, the

system oscillates without decaying in response.

B.2 Impulse Response Function

Considering an input with the distribution following a Dirac’s δ(t), where the in-

ternal product of any function g(t) with a Dirac’s δ(t0) follows accordingly with

equation B.6, it can be seen from equation B.1 that the response yδ(t) to the Dirac’s

δ(t) in Laplace domain is equivalent to the transfer function H(s) (equation B.7),

once the Laplace transform of Dirac’s δ(t) is equal to one.

< g(t), δ(t− t0) >=
∫ +∞
−∞ g(t)δ(t− t0)dt = g(t0)

< g(t+ t0), δ(t) >=
∫ +∞
−∞ g(t+ t0)δ(t)dt = g(t0)

(B.6)

H(s) = Ỹδ(s) (B.7)

The time domain response yδ(t) is known as Impulse Response Function (IRF),

and is represented by h(t).

Considering the Dirac’s δ property, shown in equation B.6, the input u(t) can be

written according to equation B.8.

u(t) =

∫ +∞

−∞
u(τ)δ(t− τ)dτ ∼=

+∞∑
q=−∞

u(τq)δ(t− τq)∆τq (B.8)

In the same manner, the system response can be written as the equation B.9.

y(t) ∼=
+∞∑
q=−∞

u(τq)∆τqyδ(t−τq)(t) ∼=
+∞∑
q=−∞

u(τq)h(t− τq)∆τq (B.9)

Writing the equation B.9 in differential form, equation B.10 is found. This result

shows that in time domain, the output of linear, time-invariant systems due to

arbitrary excitations, can be found by the convolution between the input and the

IRF.

y(t) =

∫ +∞

−∞
u(τ)h(t− τ)dτ = u(t) ∗ h(t) (B.10)

Equation B.10 can be written in matrix form, resulting in equation B.11.
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y˜(t) = H(t) ∗ u˜(t) (B.11)

Thus, in Laplace domain the system’s dynamic is represented by the transfer

function matrix H̃(s) and in time domain, the system’s dynamic is represented by

the IRF matrix H(t).

B.3 Frequency Response Function

By considering an harmonic input as per equation B.12, the system response in

Laplace domain is given by B.13.

u(t) = uosin(Ωt) (B.12)

Ỹi(s) =
B1

s− p1

+
B2

s− p2

+ ...+
Bn

s− pn
+

Bn+1

s− Ωi
+

Bn+2

s+ Ωi
(B.13)

The terms Bn+1 and Bn+2 can be calculated through equations B.14 and B.15.

Bn+1 = lim
s→Ωi

Ỹi(s)(s− Ωi) = H(Ωi)
u0

2i
(B.14)

Bn+2 = lim
s→−Ωi

Ỹi(s)(s+ Ωi) = H(−Ωi)
u0

−2i
(B.15)

Considering a system with all poles possessing negative real part, for a time

t = T , high enough, the system will present a steady state response given by B.16.

yss(t) = Bn+1e
Ωit +Bn+2e

−Ωit = u0 ‖ H(Ωi) ‖ sin(Ωt+ φ(Ω) (B.16)

This leads to the definition of Frequency Response Function (FRF), given by

H(Ωi), that have the physical meaning of representing the steady state relation

between an output and an harmonic input.

The FRF H(Ωi) is closely related to the transfer function H(s) and also contains

the information about system’s dynamic, but in opposition to the transfer function,

the FRF can be experimentally observed.

B.4 Continuous State Space Model

The concept of the state of a dynamic system refers to a minimum set of variables,

xi(t), i = 1 : N known as state variables, that fully describe the system and its

response to any given set of inputs (ROWELL [54]).
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For state determined systems, the knowledgment of state variables at initial

time t0, together with the inputs progression from t0 to t, is enough to predict the

behavior of system in this time interval.

The state space representation, have the general formulation given by equation

B.17, where x˜ is the state vector and u˜ is the input vector.

ẋ˜ = f(x˜, u˜) (B.17)

Describing the state and input variables near an equilibrium point, called oper-

ational point, of the evaluated dynamical system, as per equations B.18 and B.19,

and expanding f(x˜, u˜) in Taylor series (neglecting the second order terms), leads to

the equation B.20. This procedure is a linearization of the dynamical system, near

the operational point.

x˜ = x˜op + ε˜ (B.18)

u˜ = u˜op + ∆u˜ (B.19)

f(x˜, u˜) ≈ f(x˜op, u˜op) +

[
∂f

∂x˜
∣∣∣∣
x˜op,u˜op

]
ε˜+

[
∂f

∂u˜
∣∣∣∣
x˜op,u˜op

]
∆u˜ (B.20)

Considering equation B.21, adopting a null value to f(x˜op, u˜op), and combining

equations B.17, B.20 and B.21 leads to equation B.22, that is the general represen-

tation of state space for linear models, where A is known as state matrix and B is

known as input matrix.

∂x˜
∂t

=
∂x˜op
∂t

+ ε̇ = ε̇ (B.21)

∂ε˜
∂t

=

[
∂f

∂x˜
∣∣∣∣
x˜op,u˜op

]
ε˜+

[
∂f

∂u˜
∣∣∣∣
x˜op,u˜op

]
∆u˜ = Aε˜+B∆u˜ (B.22)

It is important to highlight that, there is no unique set of state variables that

describe any given system; many different sets of variables may be selected to yield

a complete system description. However, for a given system the order (N) is unique

(ROWELL [54]).

Regarding a linear rotordynamic system, with general motion equation given by

A.2, a suitable definition of states x1 and x2 is given by equations B.23.
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x˜1 = z˜
x˜2 = ż˜ = ẋ˜1

(B.23)

Thus, from A.2 and B.23, the vector ẋ2 is given by equation B.24.

ẋ2˜ = M−1{u˜− [C +G]ż˜−Kz˜} (B.24)

Defining the state vector according to equation B.25 and combining B.23 and

B.24 to write the movement equation using the general representation for linear

models, leads to B.26.

x =

[
x˜1

x˜2

]
(B.25)

ẋ˜ =

[
ẋ˜1

ẋ˜2

]
= Ax˜+Bu˜ =

[
0 I

−M−1K −M−1[C +G]

][
x˜1

x˜2

]
+

[
0

M−1

]
u˜ (B.26)

For this system, the order N is equal to 2n, where n is the amount of degrees of

freedom.

It must be taken into account, that the behavior of a general system is seen

through observable variables. Thus, defining a vector y˜ of observable variables, it

takes the general form of equation B.27.

y˜ = g(ε˜) (B.27)

A rotordynamic system is observed through measurements of displacement, ve-

locity or acceleration. Thus, considering linearity and taking equation B.24 into

account, the observable variable vector for a rotordynamic system is given by equa-

tion B.28.

y˜ = Cdz˜+ Cvż˜+ CaM
−1{u˜− [C +G]ż˜−Kz˜} (B.28)

The matrices Cd, Cv and Ca, reflects the observation of displacement, velocity

and acceleration, respectively. These matrices are formed by zeros, except in the

elements of diagonal, at lines corresponding to the observed degrees of freedom.

Rewriting equation B.28 in matrix form leads to B.29.

y˜ =
[
Cd − CaM

−1K Cv − CaM
−1[C +G]

]
x˜+

[
CaM

−1

]
u˜ = Cx˜+Du˜

(B.29)

The equations B.26 and B.29 are the formulation of state space for linear rotor-
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dynamic systems.

B.5 Continuous State Space: Free and Forced Re-

sponse Analysis

Considering free vibration, the state space formulation for linear, time-invariant

systems take the form of equation B.30.

ẋ˜ = Ax˜
y˜ = Cx˜ (B.30)

Its solution has the exponential form given by equation B.31, leading to the

eigenvalues and eigenvectors problem shown in equation B.32.

x˜(t) = X˜ eλt (B.31)

AX˜ = λX˜ (B.32)

The eigenvalues contain information about the damping, damped natural fre-

quencies and natural frequency, that can be extracted using equations B.33, B.34

and B.35 respectively .

ξi =

√√√√√ 1(
imag(λi)
real(λi)

)2

+ 1

(B.33)

ωdi = imag(λi) (B.34)

ωni
=
−real(λi)

ξi
(B.35)

The free response can be written as a linear combination of the eigenvectors,

according to equation B.36, where qi is the modal coordinate responsible to define

the influence of mode ith, in the free response.

x˜(t) =
2n∑
i=1

X˜ ieλitqi (B.36)

The modal coordinates assume different values, depending on the initial condi-

tions applied.

Once A is a real, nonsymmetric matrix, the resulting eigenvectors does not have

the property of orthogonality in relation to A, but solving the eigenproblem for AT ,
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(equation B.37) the so called left eigenvectors arises and the right eigenvectors X

and left eigenvectors Y are orthogonal with respect to A, as shown in equation B.38.

ATY˜ = λY˜ (B.37)

Y˜Ti AX˜ j = 0, for λi 6= λj (B.38)

Considering the eigenvectors normalized according to equations B.39 and B.40,

after multiplying both sides of equation B.36 by Y˜Tj , we found the values of the

modal coordinates as per equation B.41.

Y˜Ti X˜ i = 1 (B.39)

Y˜Ti AX˜ i = λi (B.40)

qi = Y˜Ti x˜(0) (B.41)

Thus, the free response to non zero initial conditions is given by B.42, where Λ

is a diagonal matrix composed by the λi elements.

x˜(t) = XeΛtY Tx˜(0) = eAtx˜(0) (B.42)

Regarding forced response, the general solution of the linear, time-invariant,

state space model is given by equation B.43 (MEIROVITCH [55]).

x˜(t) = eAtx˜(0) +

∫ t

0

eA(t−τ)Bu˜(τ) dτ. (B.43)

A detailed demonstration of the equations of present section is given in

MEIROVITCH [55].

B.6 Matrix Transfer Function Based on State

Space Model

Considering null initial conditions (x˜(0) = 0), by applying Laplace transform to

equations B.26 and B.29, equations B.44 and B.45 are found.

sX̃˜ (s) = AX̃˜ (s) +BŨ˜(s) (B.44)
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Ỹ˜ (s) = CX̃˜ (s) +DŨ˜(s) (B.45)

Combining equations B.44 and B.45, equation B.46 is found.

Ỹ˜ (s) = C[sI −A]−1BŨ˜(s) +DŨ˜(s) (B.46)

From equations B.1 and B.46, the matrix transfer function can be found in terms

of the linear, time invariant, continuous state space matrices, as per B.47.

H(s) = C[sI −A]−1B +D (B.47)

Once, [sI −A]−1 is given by B.48 (where the numerator is given by B.49), the

term det(sI −A) is present in the denominator of all the matrix transfer function

elements. This means that each element of matrix transfer function contains the

information of the system’s poles.

[sI −A]−1 =
Coef [sI −A]

det(sI −A)
(B.48)

Coef(χ)ij = (−1)i+jdet(χ− excluding rowi and columnj) (B.49)

Moreover, by comparing the term det(sI −A) with the eigenproblem shown in

equation B.32, it is clear that the poles of the matrix transfer function are equal to

the eigenvalues found in the Continuous State Space Model.

Expanding [sI − A]−1 and performing a spectral decomposition of all powers

of A in this expansion, as shown in B.50, allows one to write the matrix transfer

function in terms of the eigenvectors and eigenvalues, as per equation B.51.

[sI−A]−1 =
1

s

{
I+

A

s
+
A2

s2
+...+

Ak

sk

}
= X

1

s

{
I+

Λ

s
+

Λ2

s2
+...+

Λk

sk

}
X−1 (B.50)

H(s) = CX


1

s−λ1
. . .

1
s−λn

X−1B +D (B.51)

B.7 Discrete State Space Modeling

Assuming sampling in discrete time (t = kT ), with sampling time T , the equation

B.43 can be rewritten as B.52.
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x˜(kT ) = eAkTx˜(0) +

∫ kT

0

eA(kT−τ)Bu˜(τ) dτ. (B.52)

Assuming that the time sampling T is small enough to consider that the in-

put u(t) is constant over the time interval from kT to kT + T , it can be shown

that the state variables at future time, can be described by the equation B.53 (see

MEIROVITCH [55] for a detailed description), where the discrete state and input

matrix are given by B.54 and B.55.

x˜(k + 1) = Adx˜(k) +Bdu˜(k) (B.53)

Ad = eAT ∼= I + TA+
T 2

2!
A2 +

T 3

3!
A3 +

T 4

4!
A4 + ...+

T n

n!
An (B.54)

Bd = A−1(eAT − I)B ∼= T

(
I +

T

2!
A+

T 2

3!
A2 + ...+

T n−1

n!
An−1

)
B (B.55)

Combining the discrete state space formulation (B.53), with the observable vari-

ables equation B.29, and substituting the discrete state variables and inputs of past

times into equation B.53, from the initial time until the present, results in equation

B.56, where Ymi
is known as Markov parameters.

y˜(k) =
k∑
i=1

CAd
i−1Bdu˜(k − 1) =

k∑
i=1

Ymi
u˜(k − 1) (B.56)

B.8 ARMA and AR models

A common representation model often applied in signal identification is the difference

equation known as ARMA model given by B.57, where u(n) is the system input and

y(n) is the system response at time nT .

y(n) =

s1∑
k=1

aky(n− k) +

s2∑
k=1

bku(n− k) + ε (B.57)

The coefficients ak are the auto-regressive (AR) part of model and the coefficients

bk are the moving average part of model (MA).

This equation can be expanded to take into account Multiple-Input and Multiple-

Outputs, by replacing the coefficients ak and bk by matrices Ak and Bk, as per

equation B.58.
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y˜(n) =

s1∑
k=1

Aky˜(n−k)+

s2∑
k=1

Bku˜(n−k)+ε⇐⇒ y˜(n)−
s1∑
k=1

Aky˜(n−k) =

s2∑
k=1

Bku˜(n−k)+ε

(B.58)

The MA part of this equation represents the statistics and the external forces act-

ing on the system, whereas the AR part represents the system’s physical properties

[1].

Regarding free decays, the MA part of this model can be settled to zero, leading

to the auto-regressive model.

By defining the vector y˜d as per equation B.59 and the companion matrix Ac by

equation B.60, the AR model can be rewriten by equation B.61, thus the eigenvalues

and eigenvectors of companion matrix are the discrete eigenvalues and eigenvectors

of the analyzed system (see [1]).

y˜d =


y˜(n− s+ 1)

...

y˜(n− 1)

y˜(n)

 (B.59)

Ac =


0 I 0 0
... 0

. . .
...

0
... I

As As−1 · · · A1

 (B.60)

Acyd˜ (n) = y˜d(n+ 1) (B.61)

To find the AR matrices, a procedure called Poly-Reference Time Domain pro-

posed by VOLD et al. [12] starts by forming a Hankel matrix with the free decays

response, as per equation B.62 and a block Hankel matrix with only a single block

row as per equation B.63, and solving the overdetermined system of equation B.64 by

least squares or singular value decomposition, where A is the last row of companion

matrix Ac.

H1 =


y˜(1) y˜(2) · · · y˜(N − s)
y˜(2) y˜(3) · · · y˜(N − (s− 1))

...
...

. . .
...

y˜(s) y˜(s+ 1) y˜(N − 1)

 (B.62)

H2 =
[
y˜(s+ 1) y˜(s+ 2) · · · y˜(N)

]
(B.63)
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AH1 = H2 (B.64)

This allows to build the companion matrix and the eigenproblem of this matrix

reveals the modal parameters of the system by the AR method.
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