

Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo Departamento de Astronomia

Análise Detalhada de Abundâncias de Estrelas Gigantes de Bário

Rodolfo Henrique Silva Smiljanic

Orientador: Dr. Gustavo Frederico Porto de Mello (UFRJ/CCMN/OV/Departamento de Astronomia)

Projeto Final de Curso para obtenção do título de Astrônomo

Rio de Janeiro - Fevereiro de 2003

"No single thing abides; but all things flow: Fragment to fragment clings – the things thus grow Until we know and name them. By degrees They melt, and are no more the things we know.

Globed from the atoms falling slow or swift I see the suns, I see the systems lift Their forms; and even the systems and the suns Shall go back slowly to the eternal drift."

William Hurrel Mallock, Lucretius on Life and Death, 1900;

"Coisa alguma perdura, mas todas as coisas fluem. Fragmento se agarra a fragmento; as coisas crescem assim, Até que ficamos conhecendo-as e lhes damos nomes. Aos poucos Elas se dissolvem e já não são mais as coisas que conhecemos.

> Englobados por átomos, caindo devagar ou depressa, Vejo os sóis, vejo os sistemas erguerem Suas formas; e até os sistemas e seus sóis Irão voltar lentamente à eterna deriva."

Tradução para o português em: *A História da Filosofia*, de Will Durant; p. 114. Editora Nova Cultural Ltda. 2000 Dedico este trabalho,

À minha querida Mãe, por sua grande força, coragem e amor, sem os quais meus sonhos jamais teriam se tornado realidade.

Ao meu Pai, que já não caminha mais na Terra, mas estará para sempre vivo em meu coração.

AGRADECIMENTOS

Meus agradecimentos vão para todas as pessoas que ajudaram a tornar minha vida no Rio mais alegre e prazerosa e que, portanto, são responsáveis, de uma forma ou de outra, pela conclusão deste projeto.

Minha Mãe, Maria José, sem o esforço da qual nada seria possível, minha irmã Bruna Beatriz e meu irmão Adriano.

Aos amigos Gerusa, Gladson e Luyo, sem a ajuda de vocês o início desta jornada no Rio teria sido muito mais difícil.

Aos grandes amigos que, junto comigo, formaram a banda Hertzprung-Russel: Daniel - Epitácio Pereira, Leandro Guedes e Rodolfo Braga ("É Tiradentes ...").

Aos também grandes amigos(as): Paulo Penteado, Ana Beatriz de Mello, Regina Kosmalsk, Luiz Antônio Coelho, Ana Paula Penteado, Ana Mónica Rodrigues e Flávio Rodrigues.

Aos irmãos da República Caetê: Luiz Felipe Almeida, Heber Rabelo e Júlio Nogueira.

Ao meu orientador Gustavo Porto de Mello, por sua dedicação ao meu amadurecimento, por sua confiança e pelo conhecimento que dividiu comigo.

Agradeço a bolsa de iniciação científica concedida pela FAPERJ entre novembro de 2000 e julho de 2002.

Por fim, agradeço a todos os professores do Instituto de Física, Instituto de Matemática e Observatório do Valongo que tenham contribuído para minha formação.

RESUMO

Estrelas de bário são gigantes vermelhas de tipo espectral G e K que apresentam em suas atmosferas excessos de abundância dos elementos do processo-s de captura de nêutrons. Tais excessos são esperados se a estrela está atravessando a fase de pulsos térmicos do AGB (TP-AGB). As estrelas de bário são, no entanto, menos massivas e menos luminosas que as estrelas do AGB e não se espera, portanto, que elas tenham se auto-enriquecido. A hipótese mais aceita para explicar tais anomalias químicas invoca a participação de uma estrela companheira inicialmente mais massiva. Esta companheira evoluiria pela fase TP-AGB e se auto-enriqueceria com os elementos do processo-s e então, por processos de perda de massa, perderia material contaminado para a atmosfera da atual estrela de bário. A companheira evolui então para anã branca. As estrelas de bário são, portanto, úteis como testes observacionais para teorias de nucleossíntese pelo processo-s, convecção e perda de massa. Análises detalhadas de abundância com dados de alta qualidade na literatura são ainda escassas para estes objetos. Neste trabalho construímos modelos de atmosferas e, por meio de uma análise diferencial, determinamos parâmetros atmosféricos de uma amostra de dez gigantes de bário e quatro gigantes normais. Caracterizamos em detalhe seus padrões de abundância para os elementos Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu e Gd e determinamos em detalhe as fontes de erro nestes resultados para sua melhor caracterização. Concluímos assim que alguns objetos classificados na literatura como estrelas de bário são na verdade gigantes normais. Posicionamos as estrelas no diagrama HR obtendo suas massas e idades. Construímos dois padrões médios de abundâncias, para estrelas com excessos de abundância moderados e com grandes excessos. Comparamos esses resultados com previsões teóricas e determinamos os melhores parâmetros de exposição de nêutrons que os ajustam. Concluímos que os mesmos valores de exposição de nêutrons podem reproduzir os excessos observados nos dois grupos de estrelas. Discutimos ainda efeitos nucleossintéticos, ligados ao processos, sugeridos na literatura para elementos como Cu, Mn, V e Sc.

PALAVRAS CHAVES: Estrelas: abundâncias — Estrelas: atmosferas — Estrelas: quimicamente peculiares — Estrelas: tipo tardio.

ABSTRACT

Barium giants are late-type G-K red giants which present overabundances of the heavy elements produced by the neutron capture s-process in their atmospheres. Such are expected while the star is passing through the thermal pulses of the AGB (TP-AGB). However barium stars are less massive and less luminous than the AGB stars, therefore they cannot be self-enriched. The most accepted hypothesis to explain such anomalies invoke the participation of an initially more massive companion. The companion evolves through the TP-AGB, becomes self-enriched with the s-process heavy elements and then, by mass loss mechanisms, the enriched material is transferred onto the atmosphere of the current barium star. The companion then evolves to a white dwarf. Barium stars are therefore useful as observational tests of s-process nucleosynthesis, convection and mass loss theoretical models. Detailed abundance analyses of these objects with high quality data in the literature are yet scarce. In this work we determine atmospherical parameters of a sample of ten barium stars and four normal giants, through a model atmospheres differential analysis. We determine in detail the abundance patterns for the elements Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu e Gd and discuss in detail the error sources, leading to a better characterization of the abundances. So we concluded that some of the quoted barium stars are actually normal giants. We have placed the stars at the HR diagram and obtained masses and ages. We have constructed two mean abundance patterns, one for the stars with mild overabundances and other for the stars with the strongest overabundances. They are compared with theoretical predictions of s-process enhancements to determine the best neutron exposure parameters that can reproduce the observed enhancements. We conclude that the same neutron exposure may be responsible for the enhancements of the two groups of stars. Finally we discuss possible nucleosynthetic effects related to the s-process, that have been suggested in the literature, for elements like Cu, Mn, V and Sc.

KEY WORDS: Stars: abundances — Stars: atmospheres — Stars: — chemically peculiar — Stars: late-type

ÍNDICE

INTRODUÇÃO	1
------------	---

CAPÍTULO 1

OBSERVAÇÕES E REDUÇÕES

1.1 – Seleção da amostra e observações	5
1.2 – Correção de velocidade radial	7
1.3 – Normalização do contínuo	8
1.4 – Medidas de larguras equivalentes	11

CAPÍTULO 2

ANÁLISE ESPECTROSCÓPICA

2.1 – Modelos de atmosferas estelares	31								
$2.2 - \epsilon$ Vir como estrela padrão	31								
$2.2.1 - Os$ parâmetros atmosféricos de ε Vir \ldots	32								
2.2.2 – Cálculo dos gfs	34								
2.3 – Os parâmetros atmosféricos das estrelas do programa									
2.4 – Temperaturas fotométricas	40								
2.5 – Incertezas nos parâmetros atmosféricos	41								

CAPÍTULO 3

ABUNDÂNCIAS E PARÂMETROS EVOLUTIVOS

3.1 – Determinação das abunc	lâncias	 	 	 45
3.2 – Parâmetros evolutivos		 	 	 74

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

4.1 – O processo-s nas estrelas	80
4.2 – Aplicação de modelos teóricos do processo- s	82
4.3 – O indicador [hs/ls]	89
4.4 – Efeitos nucleossintéticos	92

CAPÍTULO 5

CONCLUSÕES	ΕP	ER	SP	ΈC	CT	IV	A	S	5		• •	•		•						•	• •	• •		94
APÊNDICE I							•			•													 	96
APÊNDICE II	•••												•		•			• •	•				 •	120
REFERÊNCIAS																	•				ļ			124

INTRODUÇÃO

Estrelas de bário são gigantes vermelhas, quimicamente peculiares, de tipo espectral G e K, que apresentam em suas atmosferas excessos de abundância de C e dos elementos pesados do processo-s de captura de nêutrons. As estrelas de bário foram identificadas como uma classe única de objetos peculiares por Bidelman e Keenan (1951) com base na análise de espectros de baixa resolução. Tais estrelas se destacavam das demais principalmente por apresentarem um pronunciado alargamento da linha de ressonância do Ba II λ4554. Outras estruturas pronunciadas em seus espectros são a banda G, devida ao CH, e as linhas do Sr II \u03c4077 e \u03c4215. Trabalhos posteriores (Burbidge & Burbidge 1957, Warner 1965) mostraram que estas características das estrelas de bário se devem a excessos atmosféricos reais de carbono e dos elementos do processo-s, não apenas de Ba e Sr. Tampouco eram efeitos de luminosidade, ou seja, não se tratavam de estrelas supergigantes onde as linhas do Ba estariam naturalmente mais fortes. Seus excessos atmosféricos representam um desafio fundamental para as teorias de evolução estelar pós seqüência principal e para as teorias de nucleossíntese estelar. Isso porque a produção de elementos pelo processo-s é prevista teoricamente apenas em estrelas gigantes do ramo assintótico que estejam sofrendo, ou que já tenham sofrido, pulsos térmicos.

Nesta fase da evolução da estrela podem ocorrer reações nucleares que resultam em liberação de nêutrons para o interior estelar. Existem duas reações citadas na literatura como fontes de nêutrons neste ambiente astrofísico, $^{22}Ne(\alpha,n)^{25}Mg e {}^{13}C(\alpha,n)^{16}O$. No entanto, as condições em que elas se tornam importantes são diferentes. A reação do ^{22}Ne seria ativada em estrelas de massa intermediária (entre 3 e 9 M_{\odot}) enquanto a reação do ^{13}C atuaria apenas em estrelas de baixa massa (entre 1 e 3 M_{\odot}) com baixa metalicidade. Diversos trabalhos (Tomkin & Lambert 1979, Tomkin & Lambert 1983, Malaney 1987a) mostraram que a reação do ^{22}Ne produz resultados incompatíveis com as observações e que a provável fonte de nêutrons é a reação do ^{13}C em todos os casos. Os nêutrons assim liberados são capturados por núcleos-semente do grupo do ferro (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu e Zn) e pelos elementos resultantes de capturas anteriores, formando novos núcleos e, após o decaimento, novos elementos. No chamado processo-s, s do inglês *slow*, as sucessivas capturas de nêutrons ocorrem em uma escala de tempo

1

lenta comparada com a escala de tempo de decaimento beta dos núcleos formados. Fenômenos de dragagem profunda, após o pico do pulso, levam parte do material recém processado para atmosfera da estrela, onde este se torna acessível à observação. O próprio processo-s foi descoberto graças a identificação do Tc na atmosfera de estrelas S (Merril 1952). O isótopo mais estável do Tc tem meia-vida de 4,2·10⁶ anos e sua observação em estrelas foi um forte indício de que sua produção deveria ter origem local recente. As estrelas de bário são, no entanto, menos massivas e menos luminosas que as estrelas do AGB, assim, não é esperado que elas tenham passado por estes estágios e, portanto, não poderiam ter se auto-enriquecido.

Apesar disso acreditava-se que os excessos observados eram, de alguma maneira não prevista nos modelos, produzidos no interior da própria estrela de bário, e que, durante a ascensão ao ramo das gigantes, eventos de dragagem transportassem o material enriquecido para a atmosfera estelar. Um importante passo para a resolução do problema foi dado no início da década de oitenta. Nessa época descobriu-se que todas as gigantes de bário são prováveis membros de sistemas binários (McClure, Fletcher and Nemec 1980, McClure 1983, 1984) graças ao acompanhamento da variação da velocidade radial de um grupo de estrelas de bário e de gigantes normais. Uma anã branca companheira foi, em alguns casos, detectada no ultravioleta com observações do satélite International Ultraviolet Explorer (IUE) (Böhm-Vitense 1980, Domini & Lambert 1983, Böhm-Vitense & Johnson 1985). Trabalhos mais recentes de monitoramento de velocidade radial (Udry et al. 1998a, 1998b) e observações no ultravioleta com o Hubble (Böhm-Vitense et al. 2000) reforçam esta idéia. No entanto, é importante salientar que a detecção da binaricidade parece ser indiscutível apenas nas estrelas de bário clássicas, aquelas que apresentam excessos atmosféricos marcantes. Para as chamadas mild barium stars, estrelas de bário onde o excesso de bário não é tão pronunciado, ainda não se pode concluir que todas sejam binárias. Tal fato é de extrema importância pois a explicação que hoje é aceita invoca a participação da binária, como será explicado mais adiante, mas se for comprovado que existem estrelas de bário que não são binárias uma outra explicação deve ser encontrada. Já foi sugerido que algumas gigantes normais podem ter sido, erroneamente, classificadas como estrelas de bário, pois a classificação era feita de forma um tanto subjetiva por comparação de espectros de baixa resolução. No entanto não parece ter ocorrido nenhum esforço observacional para confirmar a natureza peculiar destas estrelas. Neste trabalho chegamos a algumas conclusões interessantes sobre a natureza de algumas destas supostas estrelas de bário.

2

A explicação para as anomalias observadas surge facilmente no cenário de um sistema binário e é, hoje em dia, a hipótese aceita para explicar as estrelas de bário. A companheira da estrela de bário é inicialmente mais massiva, evolui para o ramo assintótico, atravessa a fase de pulsos térmicos e se auto enriquece com elementos do processo-s e então, por mecanismos de perda de massa, transfere parte do material enriquecido para a atmosfera da atual estrela de bário. A estrela mais massiva evolui para o estágio de anã branca e deixa de ser observada diretamente. Assim os excessos observados não são intrínsecos à estrela de bário mas podem ser usados como testes observacionais para as teorias de nucleossíntese estelar, convecção e perda de massa em estrelas frias, além da sua importância para o estudo da evolução química da Galáxia. Tal hipótese não foi a única a ser cogitada e portanto não deixou de ser criticada. Luck & Bond (1991) argumentam que se um cenário tão simples realmente ocorre deveríamos observar análogos às estrelas de bário na seqüência principal e no ramo das subgigantes. Em uma extensa análise, de diversas estrelas anãs do disco da Galáxia, Edvardsson et al.(1993) identificaram um pequeno número de anãs com excessos dos elementos do processo-s. Em um esforço para esclarecer a natureza de um grupo de estrelas classificadas antes como "F str $\lambda 4077^{1}$ ", North et al. (1994) também identificaram algumas estrelas anãs de bário. Apesar de algumas identificações positivas a quantidade de anãs de bário conhecidas ainda é pequena em relação ao número de gigantes conhecidas, e isto ainda representa um problema, mas não é o que se pretende abordar neste trabalho.

Com relação aos detalhes da nucleossíntese pelo processo-s, existem evidências recentes de que este operaria com depleção preferencial de certos elementos do grupo do Fe. Estrelas do Grupo cinemático Ursa Maior, enriquecidas em elementos do processo-s, mostram forte depleção de Mn e Cu em relação ao Fe (Castro et al. 1999). Outros trabalhos com objetos enriquecidos em bário também mostram este comportamento (Pereira e Porto de Mello 1997, Pereira et al. 1998). Em especial, o padrão de abundâncias da estrela HR6094, pertencente ao Grupo Ursa Maior, obtido por Porto de Mello (1996), com uma precisão elevada, sugere a depleção preferencial de Mn e Cu e ainda que núcleos mais leves, como V e Sc, poderiam ser preservados em relação ao Fe. Tais resultados podem representar importantes vínculos para os modelos de captura de nêutrons no ambiente astrofísico das gigantes do ramo assintótico, dados

 $^{^{1}}$ F str λ 4077 são estrelas que se assemelham às estrelas Am, mas mostram a linha λ 4077 do estrôncio anormalmente forte.

bastante escassos na literatura. É particularmente notável a ausência de análises espectroscópicas detalhadas para estrelas gigantes de bário com dados de alta qualidade, que se tornaram possíveis com o instrumental moderno. A alta qualidade é imprescindível pois os excessos e deficiências que podem estar sendo observados nos elementos do grupo de Fe são de pequena magnitude e poderiam estar mascarados pelo nível de erro encontrado nas análises disponíveis na literatura.

Muitas análises espectroscópicas de estrelas de bário estão disponíveis na literatura, a maior parte delas, no entanto, é baseada em espectros obtidos com placas fotográficas (Pilachowski 1977 e Zacs 1994), discutem menos elementos e usam técnicas de análise menos robustas que as usadas neste trabalho. Foram feitas também tentativas de se vincular as abundâncias observadas a resultados teóricos de captura de nêutrons (Cowley & Downs 1980, Tomkin & Lambert 1983, Smith 1984, Malaney 1987a). Os resultados nem sempre são animadores. As análises de Tomkin & Lambert (1983) e Smith (1984), por exemplo, encontram diferentes ajustes para a mesma estrela, HR774.

Neste trabalho, realizamos a análise detalhada de composição química e obtemos parâmetros atmosféricos e estado evolutivo de uma amostra composta por dez estrelas, classificadas na literatura como gigantes de bário, e quatro gigantes normais para comparação. O padrão de abundâncias foi caracterizado em detalhe para os elementos, Na, Mg, Al, Si, Ca, que são elementos leves; Sc, Ti, V, Cr, Mn, Fe, Co, Ni, que são elementos do grupo do ferro; Cu, Zn, que são elementos de transição por mostrarem comportamento misto de elementos do grupo do ferro e de elementos do processo-s; Sr, Y, Zr, Ba, La, Ce, Nd, que são elementos do processo-s; e Sm, Eu e Gd, elementos do processo-r de captura de nêutrons. Discutimos em detalhe as possíveis fontes de erro associadas aos nossos resultados para a sua melhor caracterização. Com essas abundâncias utilizamos modelos teóricos de captura de nêutrons (Malaney 1987a, 1987b), obtendo resultados sobre os parâmetros de exposição de nêutrons que melhor ajustam os excessos observados. Discutimos então os efeitos nucleossintéticos sugeridos nos trabalhos citados acima. Encontramos ainda que alguns objetos citados como estrelas de bário com baixos excessos atmosféricos são na realidade gigantes normais, o que reforca a necessidade de análises baseadas em dados de alta qualidade para estes objetos.

CAPÍTULO 1

OBSERVAÇÕES E REDUÇÕES

1.1 - Seleção da amostra e observações

As estrelas de bário observadas para este trabalho foram selecionadas por Gustavo Porto de Mello com base em resultados colhidos da literatura. A amostra foi selecionada para ser observada a partir do hemisfério sul, sendo composta de estrelas não muito frias, para possibilitar uma análise de abundâncias mais confiável, e brilhantes, para permitir a obtenção de espectros com alta relação sinal-ruído (S/R). Foi construída, também, de modo a conter estrelas com diferentes intensidades de excessos dos elementos de captura de nêutrons, desde as chamadas mild barium stars, estrelas com fracos excessos, até estrelas de bário clássicas com excessos superiores a 1,0 dex. A seleção foi feita a partir de análises anteriores disponíveis na literatura. Cobrir esta variedade de gigantes de bário é importante para verificar prováveis correlações dos excessos observados com os parâmetros atmosféricos e evolutivos. É importante também para verificar se diferentes parâmetros de exposição de nêutrons podem ser responsáveis pelo fenômeno das estrelas de bário com diferentes intensidades, ou se a explicação deve ser encontrada em outro lugar. A tabela 1.1 apresenta os dados encontrados na literatura para os objetos selecionados. Todas as estrelas, com exceção de HR 1016 (Pilachowski 1977) e HR5058 (Luck & Bond 1991), foram usadas por Zacs (1994), que realizou uma análise detalhada de uma grande amostra de estrelas de bário mas com dados e métodos de qualidade inferior aos nossos.

Das estrelas normais HR440 e HR1326 foram escolhidas no *Bright Star Catalogue* (Hoffleit 1982), por não apresentarem peculiaridades químicas, a julgar por seus tipos espectrais, e temperaturas semelhantes as das estrelas de bário, por terem índices de cor semelhantes a estas. HR4932 é Epsilon Virginis (ε Vir), a mesma estrela padrão usada por Zacs (1994) e uma das gigantes mais bem estudadas da literatura (Cayrel de Strobel

5

et al 1985). Neste trabalho ela também será usada como estrela padrão para uma análise diferencial.

Tabela 1.1 – Identificação HR e HD, magnitude V, tipo espectral, classe de luminosidade; parâmetros atmosféricos e abundância de bário para os objetos selecionados. Todos os dados foram obtidos na literatura.

HD	V	Tipo espec.	Classe Lumin.	T _{ef}	log g	[Fe/H] ²	[Ba/Fe]
9362	4,0	K0	III-IV	4850	2,7		-
13611	4,4	G6	11-111	5050	2,3	-0,3	+0,44
20894	5,5	G6.5	llb	5100	3,6	-0,2	-0,20
26967	3,9	K1	Ш	4600	2,6	monday ass	1000
46407	6,2	K0	Ш	5000	2,1	+0,1	+1,34
104979	4,1	G8	Ш	5000	2,2	-0,1	+0,93
113226	2,8	G8	Illab	4970	2,8	0,0	0,0
116713	5,1	K0.5		5000	3,0	+0.2	lasi-
139195	5,3	K0	111	5140	2,7	+0.3	+0,52
181053	6,4	K0	Illa	4885	2.1	-0.2	+0.34
202109	3,2	G8.5	- 111	5050	2,8	+0,1	+0,41
204075	3,7	G4	11	5230	1,5	+0,2	+1,31
205011	6,4	G9	Illa	4950	2,4	+0,1	+0,88
220009	5,1	K2	III	4575	2,6	-0,1	+0,42
	HD 9362 13611 20894 26967 46407 104979 113226 116713 139195 181053 202109 204075 205011 220009	HDV93624,0136114,4208945,5269673,9464076,21049794,11132262,81167135,11391955,31810536,42021093,22040753,72050116,42200095,1	HDVTipo espec.93624,0K0136114,4G6208945,5G6.5269673,9K1464076,2K01049794,1G81132262,8G81167135,1K0.51391955,3K01810536,4K02021093,2G8.52040753,7G42050116,4G92200095,1K2	HDVTipoClasse93624,0K0III-IV93624,0K0III-IV136114,4G6II-III208945,5G6.5IIb269673,9K1III464076,2K0III1049794,1G8III1132262,8G8IIIab1167135,1K0.5III1391955,3K0III1391953,2G8.5III2021093,2G8.5III2040753,7G4II2050116,4G9IIIa2200095,1K2III	HD V Tipo Classe Tef 9362 4,0 K0 III-IV 4850 13611 4,4 G6 II-III 5050 20894 5,5 G6.5 IIb 5100 26967 3,9 K1 III 4600 46407 6,2 K0 III 5000 104979 4,1 G8 III 5000 113226 2,8 G8 IIIab 4970 116713 5,1 K0.5 III 5000 139195 5,3 K0 III 5140 181053 6,4 K0 IIIa 4885 202109 3,2 G8.5 III 5050 204075 3,7 G4 II 5230 205011 6,4 G9 IIIa 4950 205011 5,1 K2 III 4575	HD V Tipo Classe Tef log g 9362 4,0 K0 III-IV 4850 2,7 13611 4,4 G6 II-III 5050 2,3 20894 5,5 G6.5 IIb 5100 3,6 26967 3,9 K1 III 4600 2,1 104979 3,9 K1 III 5000 2,1 104979 4,1 G8 III 5000 2,2 113226 2,8 G8 IIIab 4970 2,8 116713 5,1 K0.5 III 5000 3,0 139195 5,3 K0 III 5000 3,0 139195 5,3 K0 III 5050 2,8 202109 3,2 G8.5 III 5050 2,8 204075 3,7 G4 II 5230 1,5 205011 6,4 G9 IIIa 4950	HDVTipoClasse T_{ef} log g $[Fe/H]^2$ 93624,0K0III-IV48502,7-136114,4G6III-III50502,3-0,3208945,5G6.5IIb51003,6-0,2269673,9K1III46002,6-464076,2K0III50002,1+0,11049794,1G8III50002,2-0,11132262,8G8IIIab49702,80,01167135,1K0.5III50003,0+0.21391955,3K0III51402,7+0.31810536,4K0IIIa48852.1-0.22021093,2G8.5III50502,8+0,12050116,4G9IIIa49502,4+0,12200095,1K2III45752,6-0,1

Nossos espectros foram obtidos com o espectrógrafo FEROS (*Fiber-fed Extended Range Optical Spectrograph*) acoplado ao telescópio de 1,52m do ESO (*European Southern Observatory*), em 1999 e 2000, por Licio da Silva (MCT/Observatório Nacional). O FEROS é um espectrógrafo *echelle* alimentado por fibra ótica que distribui a cobertura espectral $\lambda\lambda$ 3560-9200 Å em 39 ordens mantendo um poder resolutor aproximadamente constante de R = 48000. O CCD disponível para uso com o FEROS

² A notação [elemento/H] é definida da maneira usual: [elemento/H] = $\log(N_{elem}/N_{H})_{\star} - \log(N_{elem}/N_{H})_{\odot}$. Onde $(N_{elem}/N_{H})_{\star}$ representa a razão entre o número populacional do elemento em questão e o hidrogênio na estrela e $(N_{elem}/N_{H})_{\odot}$ é o mesmo no Sol. Já a notação [elemento/Fe] tem o mesmo significado apenas substituindo o H pelo Fe.

possui 2048x4096 *pixels* de 15 μm. Os espectros FEROS são processados automaticamente *on-line* de modo a serem disponibilizados calibrados em comprimento de onda e com as diversas ordens compostas em um único espectro linearizado de grande cobertura. Este mesmo processamento on-line executa as correções de *bias* e *flat-field* automaticamente. O *software* de redução *on-line* é baseado no pacote MIDAS (*Munich Image Data Analysis System*). Nossos espectros tem relação sinal ruído típica de S/R ~ 500-600, valores estes estimados por nós em janelas de contínuo com uso do IRAF (*Image Reduction and Analysis Facility*).

1.2 - Correção de velocidade radial

Neste trabalho escolhemos por usar a pré redução *on-line* do FEROS. Com isso só resta realizar a correção do deslocamento em comprimento de onda causado no espectro pela velocidade radial da estrela e efetuar o processo de normalização para, então, iniciar a medida de larguras equivalentes. Além dos espectros das estrelas do projeto temos um espectro integrado do Sol (do satélite galileano Ganimedes). Este espectro foi posto em escala de comprimento de onda de repouso através da comparação de comprimentos de onda com os valores tabelados em Moore et al. (1966).

Os espectros das estrelas foram então comparados ao espectro do Sol para que fosse determinado o deslocamento aparente das linhas e, a partir deste deslocamento, foi determinada a velocidade radial dos objetos. Este processo e os demais descritos neste trabalho foram realizados utilizando rotinas do pacote IRAF. Para cada espectro foram escolhidas três regiões diferentes, com linhas espectrais não muito intensas, relativamente isoladas e com os perfis bem definidos, onde o processo de determinação de velocidade foi aplicado. Com a rotina *specplot* podemos visualizar os espectros em uma mesma tela. Procedemos então o deslocamento, em coordenada de comprimento de onda, do espectro da estrela cuja velocidade se quer determinar até que a região escolhida esteja, visualmente, superposta à mesma região no espectro em repouso de maneira satisfatória. Com este deslocamento a rotina fornece o valor de velocidade radial associado. Repetimos o processo em cada região escolhida obtendo assim três determinações. Tomou-se então a média aritmética das três determinado os espectros

7

foram corrigidos para garantir que todos estivessem em uma escala de comprimento de onda de repouso. Este método, apesar de simples, garante ótima precisão interna, mais do que suficiente para uma análise de abundâncias de alta qualidade. Os resultados são apresentados na tabela 1.2.

Imagem	Velocidade (Km/s)	σ	Imagem	Velocidade (Km/s)	σ
EpsVir_a	-13,25	0,06	HR5802_a	+2,78	0,01
EpsVir_b	-13,23	0,07	HR5802_b	+2,79	0,04
EpsVir_c	-14,04	0,03	HR649	+1,93	0,07
HR1016	+4,00	0,05	HR7321_a	-23,06	0,07
HR1326	+21,84	0,12	HR7321_b	-23,05	0,10
HR2392	-7,65	0,26	HR7321_c	-23,31	0,03
HR440	-5,54	0,16	HR8115	+15,93	0,17
HR4608_a	-	-	HR8204	+5,71	0,24
HR4608_b	-29,27	0,25	HR8878	+40,84	0,09
HR5058	-65,91	0,32	HD205011	+11,86	0,03

Tabela 1.2 – Média dos valores de velocidade radial obtidos com o método descrito no texto para cada espectro com o respectivo desvio padrão.

Algumas estrelas foram observadas mais de uma vez e, portanto, apresentam mais de um espectro. Estes espectros receberam o nome *identificação (HR ou HD)_a, _b* ou _c. Para essas estrelas a velocidade radial foi calculada separadamente em cada imagem. Após a correção foi feita uma média dos espectros com a qual se trabalhou daí por diante. O espectro HR4608_a apresentou defeitos e não foi mais utilizado.

1.3 - Normalização do contínuo

Feita a correção de velocidade radial o próximo passo é a determinação do contínuo aparente para que o espectro seja colocado em uma escala de fluxo normalizada. A grande cobertura espectral, $\lambda\lambda$ 3560-9200, apresentada pelos espectros do FEROS

impossibilita numericamente uma única normalização e se fez necessário, então, a subdivisão dos espectros em partes menores que permitissem normalização individual.

As divisões no espectro foram feitas seguindo critérios como localização de linhas espectrais de grande importância para os objetivos do projeto, contaminação com linhas de origem atmosférica e a existência de linhas de grande intensidade que rebaixam naturalmente o contínuo, impossibilitando sua normalização satisfatória. Os cortes têm cerca de 300 Å, a tabela 1.3 mostra os limites de cada seção dos espectros e inclui também exemplos de elementos de interesse presentes na respectiva seção.

Seção n°	λ inicial	λ final	Elementos
1	4500	4820	Mn, Y
2	4880	5165	Mn, Y
. 3	5190	5364	Y
4	5374	5614	Mn, Y
5	5610	5885	Ba, Cu
6	5880	6213	Mn, Ba
7	6193	6510	La, Ba
8	6600	6870	Al, Y

Tabela 1.3 – Limites de cada seção normalizada individualmente e . exemplos de elementos de interesse presentes nas mesmas.

Para a normalização são escolhidas, em cada seção, regiões livres de linhas e que, por comparação com um atlas solar de alta resolução (Kurucz et al. 1984), são regiões por onde parece passar o contínuo aparente. Em cada uma destas regiões é marcado um ponto. Pelos pontos escolhidos tenta-se ajustar um polinômio, com o menor grau possível para evitar curvaturas acentuadas. Obviamente nem todos os pontos escolhidos inicialmente são ajustáveis, desta maneira a escolha de pontos é revista até produzir um ajuste satisfatório. O polinômio representa o contínuo aparente. O espectro é então dividido por este polinômio resultando em um espectro com escala de fluxo normalizada no contínuo. É importante que todo o processo de normalização seja realizado por uma única pessoa para que possíveis erros sistemáticos na definição do contínuo possam ser relevados em uma análise comparativa.

Figura 1.1 – O espectro da estrela HR 1016 na região mais azul aproveitada para este trabalho. É fácil notar a grande quantidade de linhas rebaixando o contínuo.

Figura 1.2 – Espectro da estrela HR 1016 em uma região mais vermelha que a anterior. Notamos que a quantidade de linhas diminui e o contínuo pode ser determinado mais facilmente.

Nas regiões de comprimento de onda menor o espectro é formado por uma grande quantidade de linhas resultando em poucos pontos de contínuo disponíveis. Para estas regiões foram usados em geral cerca de quatro a cinco pontos para traçar o contínuo aparente, ou mais quando era possível. Em direção ao vermelho a situação melhora e gradualmente mais pontos podem ser usados para definir o contínuo aparente. Possíveis erros no posicionamento do contínuo podem subestimar ou superestimar as subsequentes medidas de larguras equivalentes. Tal efeito será discutido posteriormente em uma seção dedicada à análise das incertezas de nossos resultados. As figuras 1.1 e 1.2 são exemplos de regiões normalizadas. A primeira delas é um exemplo da seção do espectro mais azul, onde fica clara a dificuldade na escolha dos pontos. A segunda é um exemplo de uma seção de comprimento de onda maior, onde podemos perceber uma melhora significativa quanto à escolha do posicionamento do contínuo.

1.4 - Medidas de larguras equivalentes³

A radiação que emerge do interior estelar em direção à sua fotosfera é contínua, muito semelhante à emissão de um corpo negro, com diferenças devidas a efeitos de opacidade no interior estelar que levam a uma certa redistribuição da radiação em comprimento de onda. Ao atravessar a fotosfera os fótons interagem com a matéria e nesta interação alguns fótons são retirados do feixe de radiação. Uma das possibilidades de interação acontece quando os fótons têm energia exata para provocar a excitação de um elétron ligado. Eles são então absorvidos fazendo com que o elétron se transfira de um nível de energia para outro com energia maior dentro do mesmo átomo. Eventualmente o elétron irá se desexcitar para um nível de menor energia, emitindo um fóton com energia igual a diferença entre os níveis. O fóton emitido não irá viajar necessariamente na mesma direção daquele que foi inicialmente absorvido. Desta maneira temos a remoção de fótons do feixe de radiação inicial. Os níveis de energia dos elétrons de um átomo dependem do seu número atômico e da quantidade de elétrons que ele possui. Desta maneira, em geral, as diferenças entre os níveis e

³ A discussão qualitativa sobre formação de linhas espectrais nesta seção é baseada nas discussões encontradas em Novotny (1973) e Gray (1992). Para maiores detalhes, qualitativos e quantitativos, o leitor deve procurar tais trabalhos ou outros textos especializados.

consequentemente os fótons que podem ser retirados do feixe, serão de diferentes energias para diferentes átomos e para diferentes estados de ionização de um mesmo átomo. Assim, analisando a radiação que recebemos de uma estrela identificamos falhas no contínuo, devidas aos fótons retirados do feixe, tais falhas são as chamadas linhas espectrais. Como elas são características da espécie química responsável por sua formação podemos, a partir de sua observação na radiação oriunda de uma estrela, inferir quais elementos estão presentes em sua fotosfera. O perfil de uma linha espectral formada com o cenário descrito acima, chamado de perfil natural, será extremamente fino, cerca de 0,000118 Å de largura a meia altura (Novotny 1973). As linhas observadas nos espectros estelares são, no entanto, bem mais largas. Existem alguns efeitos importantes que levam ao alargamento das linhas que devem ser considerados.

Um destes efeitos é o alargamento Doppler. Este alargamento acontece devido ao conhecido efeito Doppler, causado aqui pelo movimento térmico dos átomos. Este movimento faz com que os átomos percebam os fótons do campo de radiação com freqüências ligeiramente diferentes, superiores ou inferiores se o átomo estiver se aproximando ou se afastando, respectivamente. Dessa maneira tais fótons também poderão causar a excitação dos elétrons. Este efeito faz com que a linha assuma um perfil gaussiano. Por exemplo para a linha Hβ no Sol a largura a meia altura é de cerca de 0,264 Å (Novotny 1973), cerca de 2000 vezes maior que o alargamento natural.

Outro efeito de alargamento importante é o chamado alargamento colisional ou alargamento por pressão. Este efeito é causado pela presença de outros átomos e íons na região ao redor do átomo. Por meio de interações eletromagnéticas os níveis de energia do átomo sofrem perturbações. As perturbações combinadas das partículas próximas, em um dado instante, fazem com que fótons de outras energias, próximas à energia que causa o perfil natural, também possam causar a excitação de elétrons ligados ao átomo. Desta maneira outros fótons poderão ser retirados do feixe de radiação. De acordo com a natureza da espécie perturbadora e da espécie perturbada a dependência da perturbação na energia é diferente e os efeitos recebem nomes diferentes. Por exemplo, quando a espécie perturbada e a perturbadora são átomos neutros da mesma espécie o efeito recebe o nome de efeito de ressonância; este efeito tem magnitude importante apenas para o hidrogênio, que é a espécie mais abundante. Quando são átomos neutros de espécies diferentes o efeito recebe o nome de efeito van der Waals; novamente só é importante quando a espécie perturbadora é o hidrogênio. Estes, e outros, efeitos de alargamento colisional produzem uma linha com perfil lorentziano.

O perfil real da linha espectral será dado por uma convolução⁴ entre o perfil natural, o gaussiano e o lorentziano. Como o perfil natural é praticamente uma função delta de Dirac, o perfil real é, na verdade, uma convolução entre a gaussiana e a lorentziana. O resultado desta convolução é chamado perfil de Voigt. Quando observamos um espectro estamos introduzindo ainda um perfil instrumental. O perfil instrumental pode em geral ser aproximado por uma gaussiana. Então, por fim, o perfil realmente observado será a convolução entre o perfil real e a gaussiana instrumental. Como, em geral e também no nosso caso, o perfil instrumental é mais largo que o real temos que, para linhas de intensidade fraca a moderada o perfil observado será gaussiano. No entanto, para linhas de maior intensidade, o perfil observado terá contribuições da asa lorentziana, que não são desprezíveis, e observaremos então um perfil de Voigt.

Podemos usar a informação da área da linha espectral, ou seja, da quantidade de radiação retirada do feixe inicial, para derivarmos características da fotosfera estelar como a abundância dos elementos, a temperatura efetiva, a gravidade superficial e a velocidade de microturbulência. A área da linha é chamada de largura equivalente. Isso porque, se consideramos que o contínuo do espectro é unitário e se representamos a linha por um retângulo com base em zero, o valor numérico de sua área pode ser identificado com o valor de sua largura. Já os parâmetros atmosféricos citados acima podem ser entendidos da seguinte maneira; a temperatura efetiva é a temperatura que teria um corpo negro capaz de produzir o mesmo fluxo integrado em freqüência que é recebido da estrela. A gravidade superficial é comumente dada em logaritmo, e representa a aceleração da gravidade na superfície da estrela. Por fim a velocidade de microturbulência é um campo de velocidade, cuja origem é um tanto incerta, que deve ser usado em conjunto com a velocidade Doppler térmica para que o formalismo matemático seja capaz de reproduzir o perfil observado da linha.

Nossos resultados sobre os parâmetros atmosféricos e abundâncias, apresentados nas próximas seções, são baseados em medidas de larguras equivalentes de linhas espectrais. A lista de linhas usadas neste trabalho pode ser encontrada no apêndice I. Tal lista é baseada nas linhas usadas por Porto de Mello (1996) e foi estendida pelo mesmo, para este projeto, por meio da identificação de linhas no nosso espectro de Ganimedes,

⁴ Para aqueles que não estão familiarizados com a operação matemática da convolução recomendamos que consultem Gray (1992) ou textos matemáticos especializados.

também obtido com o FEROS, baseando-se nos comprimentos de onda tabelados em Moore et al. (1966).

Para medir as larguras equivalentes utilizamos a tarefa *splot* do IRAF. Com esta tarefa podemos ajustar numericamente um perfil gaussiano ao perfil observado escolhendo os limites em comprimento de onda do perfil. Obtemos assim o valor da largura equivalente. A escolha destes limites, e consequente determinação das larguras equivalentes, é uma das fontes que podem introduzir incertezas nos nossos resultados e ela também será discutida mais adiante em uma seção dedicada às fontes de incertezas. Mas, como foi discutido acima, a linha só apresenta um perfil gaussiano se tiver intensidade fraca ou moderada, sendo que a gaussiana deixa de representar bem o perfil da linha quando ela tem grande intensidade. Precisamos então determinar qual o limite entre linhas de intensidade moderada e forte.

Sabemos que, mantendo as outras características que influenciam na formação das linhas, como temperatura etc., constantes e, aumentando gradativamente a abundância da espécie química em questão, mas de maneira que sua quantidade permaneça pequena em relação ao número de fótons que podem ser absorvidos, a largura equivalente irá aumentar de maneira linear. Durante esta fase o perfil da linha é ditado pelo alargamento Doppler. Uma segunda fase começa quando a quantidade de absorvedores aumenta o suficiente para estar usando todos os fótons que podem ser absorvidos devido ao alargamento Doppler. Neste momento ocorre a saturação da linha. Nesta fase a largura responde de maneira fraca ao aumento da quantidade de absorvedores e é também agora que o perfil da linha começa a se afastar de um perfil puramente gaussiano e as asas lorentzianas começam a ficar importantes. Continuando o aumento do número de absorvedores entramos na fase de amortecimento onde as asas lorentzianas se desenvolvem com maior intensidade devido ao aumento do número de partículas perturbadas. Um gráfico onde estes comportamentos de uma linha são mostrados é chamado de curva de crescimento. Para determinar o limite até onde o ajuste puramente gaussiano é satisfatório precisamos construir um gráfico deste tipo.

Podemos produzir um gráfico semelhante a uma curva de crescimento, de maneira empírica, usando linhas diferentes de uma mesma espécie química. Para isso construímos um gráfico da profundidade da linha contra sua largura equivalente. Quando a linha atinge o estágio de saturação sua profundidade deixa de aumentar. Por este motivo um gráfico como sugerido pode nos fornecer informação sobre a largura equivalente onde o efeito de saturação começa a ficar importante e, portanto, onde o

Figura 1.3 – Gráfico da profundidade contra largura equivalente para as linhas do Fe I em E Vir. Com este gráfico determinamos onde se inicia o processo de saturação, e portanto até onde podemos aproximar o perfil da linha por uma gaussiana. O limite foi estabelecido em 150 mÅ.

ajuste gaussiano deve ser abandonado pois a linha passa a ser observada com o perfil de Voigt. Criamos este gráfico, figura 1.3, com base na medida de larguras equivalentes de linhas do Fe I na estrela ε Vir em todas as seções do espectro citadas na tabela 1.3. Com base neste gráfico adotamos o limite de 150 mÅ como o limite superior de largura equivalente onde o ajuste puramente gaussiano seria usado. Qualquer linha que apresentasse largura maior que este limite, na tentativa de se ajustar um perfil gaussiano, recebeu um tratamento diferenciado. Para estas linhas, em alguns casos, procedemos à medida de largura equivalente por meio do ajuste de um perfil de Voigt. Este recurso também é disponibilizado pela rotina *splot* do IRAF. Os detalhes deste ajuste serão discutidos mais adiante nesta mesma seção. Faremos antes uma discussão sobre o método que usamos para fazer as medidas das linhas ajustavéis por gaussianas.

Como pode ser facilmente notado a quantidade de linhas espectrais que nos propomos a analisar para a realização deste trabalho é extensa (ver Apêndice I). Proceder à medida da largura equivalente de cada linha individualmente demandaria um tempo excessivo. Buscando otimizar o tempo gasto nessas medidas decidimos por testar a possibilidade de implementar um procedimento de medida automático e adotá-lo caso o resultado obtido fosse satisfatório.

Tal procedimento está disponível no IRAF através da rotina *bplot*. A rotina *bplot* usa um *script* e implementa os comandos descritos neste. O IRAF atribui a tal *script* o nome de "cursor". Esta mesma rotina (*bplot*) pode ser usada para outros fins além da medida de larguras equivalentes, bastando para tanto montar o cursor da maneira adequada.

Para o nosso caso, a medida de larguras equivalentes por ajuste de perfis teóricos gaussianos ou de Voigt, o cursor deve apresentar os limites do ajuste em comprimento de onda para cada linha e os comandos que criam o ajuste na rotina *splot*. Para ilustrar segue um exemplo real, uma parte do cursor construído para a seção 1 de comprimento de onda dos espectros normalizados.

4523.28 1.000 1 k 4523.49 1.000 1 k 4524.55 1.000 1 d 4524.97 1.000 1 d 4524.69 1.000 1 g 4524.93 1.000 1 g 0 0 1 q 0 0 1 a 0 0 1 a 0 0 1 n 0 0 1 q 0 0 1 q

Neste exemplo, as duas primeiras linhas marcam os limites da linha espectral, com coordenadas x, o comprimento de onda, e y, o fluxo normalizado, exatamente na posição onde estaria o marcador gráfico se estivéssemos usando a rotina *splot*. Para um ajuste gaussiano usamos os comandos "k k" nos limites. Poderíamos usar "k v" para ajustar um perfil de Voigt, por exemplo. Podemos ter um caso onde duas linhas se interceptem parcialmente e seja necessário um ajuste que separe a contribuição de cada uma (o que se chama em inglês de *deblending*). As linhas terminadas por "d" marcam os limites do ajuste para *deblending*, as linhas terminadas por "g" marcam os centros das duas gaussianas que serão ajustadas, e os outros comandos se referem a opções sobre o ajuste, exatamente como seria necessário usando a rotina *splot*. A rotina *bplot* procede à leitura do arquivo cursor e executa os comados nele descritos em uma lista de

imagens especificada, medindo as larguras equivalentes automaticamente. O arquivo de saída desta rotina (mostrado abaixo) contém informações como: lambda central da linha, largura equivalente em ângstrons, profundidade da linha e largura a meia altura da gaussiana, entre outros.

Oct 26 15:08 [EpsVir_norm_1.fits]: hd113225Ba

4502.208	1.	-0.104734	0.1047	-0.56986	0.1727	0.
4518.018	1.	-0.125567	0.1256	-0.6806	0.1733	0.
4523.394	0.9999999	-0.083393	0.08339	-0.485775	0.1613	0.
center	cont	flux	eqw	core	gfwhm	lfwhm
4524.683	1.	-0.071527	0.07153	-0.413963	0.1623	0.
4524.942	1.	-0.118695	0.1187	-0.490129	0.2275	0.

Os limites do ajuste de cada linha precisam ser determinados em um espectro de referência. Como nos propomos a fazer uma análise diferencial onde a estrela padrão é ε Vir, a escolha mais óbvia é usar esta estrela para determinar os limites do ajuste. Com isso foi feita a medida manual de ε Vir em todas as seções do espectro usadas e os arquivos cursores foram baseados nas suas linhas.

Com este procedimento adotamos os mesmos limites para as mesmas linhas em estrelas diferentes. Tal procedimento parece ser questionável já que as linhas podem ter intensidades diferentes em estrelas diferentes. No entanto a literatura mostra que nossas estrelas têm metalicidades e parâmetros atmosféricos semelhantes entre si, o que nos leva a esperar que a intensidade das linhas não sofra grande variação. Exceção a isso são as linhas relativas aos elementos pesados do processo-s, as quais são esperadas mais intensas nas estrelas de bário do que em nossa estrela padrão ε Vir. Por necessitarem de uma atenção especial as linhas dos elementos Sr, Y, Zr, Ba, La, Ce e Nd não foram incluídas na rotina automática e sim medidas manualmente em todas as estrelas. Para evitar que possíveis erros na medida automática eliminassem as poucas linhas disponíveis de elementos como Na, Mg, Al, Cu e Zn, eles também foram deixados de fora da rotina automática, o mesmo acontecendo com os elementos do processo-r: Sm, Eu e Gd. Desta maneira apenas os elementos, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co e Ni foram medidos pela rotina automática.

Obviamente precisávamos testar se os valores fornecidos pela rotina automática eram realmente consistentes. Para isto fizemos alguns testes. Primeiro procuramos por erros sistemáticos da rotina automática comparando o resultado de suas medidas de largura equivalente com medidas manuais. ε Vir foi medida manualmente em todas as regiões; as demais estrelas tiveram as larguras equivalentes da seção 1 medidas manualmente para a comparação. A seção 1 foi escolhida por ser a região mais azul do espectro, onde se concentra um maior número de linhas, portanto onde a determinação do contínuo e as medidas de larguras equivalentes estão sujeitas a maior dificuldade. Apresentamos a seguir alguns gráficos que ilustram a comparação para algumas estrelas. O primeiro gráfico mostrado na figura 1.4 diz respeito a ε Vir. Como os limites foram baseados nesta mesma estrela esperávamos que, se a rotina funcionasse perfeitamente, não haveria diferença entre as medidas feitas pela rotina automática e feitas manualmente. Realmente observamos que o acordo é perfeito.

Figura 1.4 – Comparação entre as medidas de largura equivalente feitas pela rotina automática e feitas manualmente em ε Vir. Como era esperado não há diferença entre os dois conjuntos de medidas.

Figura 1.5 – Comparação entre larguras equivalentes medidas pela rotina automática e medidas manualmente para HD 205011.

Na figura 1.5 temos o mesmo gráfico para HD205011, uma de nossas estrelas de bário. Nesta figura a linha sólida representa a bissetriz e a linha pontilhada representa um ajuste linear aos pontos. O ajuste é dado pela seguinte equação:

LE auto. =
$$(-0,09106 \pm 1,07476) + (1,01401 \pm 0,01106)$$
LE manual (1.1)

Analisando este ajuste podemos verificar que o coeficiente linear não tem significado estatístico e que, dentro de um critério 2σ , o coeficiente angular é igual à unidade. Assim consideramos o ajuste satisfatório. Mostramos a seguir mais alguns exemplos, incluindo os piores casos. Todas foram consideradas aceitáveis dentro de critérios estatísticos.

Figura 1.6 - O mesmo para HR 1326, uma gigante normal.

Figura 1.7 - O mesmo para a estrela HR 2392, uma gigante de bário clássica.

Figura 1.8 - O mesmo para HR 5058, também uma estrela de bário clássica.

Figura 1.9 - O mesmo para HR 8204, também uma estrela de bário clássica.

Apesar dos resultados sugerirem, para algumas estrelas, um erro em largura equivalente maior do que o que será adotado adiante, é preciso lembrar que estes gráficos dizem respeito à seção mais azul do espectro, que não foi encontrado nenhum erro sistemático e que, em nenhum caso, os coeficientes angulares têm significado estatístico. Veremos ainda, nas próximas seções, que o erro em largura equivalente tem pouca influência nos erros finais, frente a isso e à agilidade do procedimento optamos por usar o método automático.

Usamos também, como teste, gráficos de largura equivalente contra largura a meia altura do ajuste gaussiano (FWHM), e de largura equivalente contra a profundidade do perfil. Estes gráficos foram construídos para todas as estrelas e todas as seções. Para os gráficos de largura equivalente contra profundidade, esperamos uma relação linear bem comportada até o limite onde se inicia a saturação; para os gráficos de largura equivalente contra FWHM, esperamos que as linhas se distribuam entre valores próximos do esperado para o poder resolutor do espectro. Esperamos também que os valores de FWHM aumentem lentamente com as larguras equivalentes, pois a linha começa a se afastar de um perfil puramente gaussiano, ao se tornar mais intensa, tendendo a um perfil de Voigt. As linhas com valores muito baixos de FWHM provavelmente tem o perfil destruído ou com algum defeito, tais como raios cósmicos; linhas com valores muito altos podem estar contaminadas ou sofrendo de erros de ajuste do contínuo.

Qualquer ponto que se apresentasse fora dos limites considerados normais foi eliminado sem segunda análise, pois, como as linhas incluídas na rotina automática são de espécies químicas que apresentam um grande número de linhas, a análise não seria prejudicada do ponto de vista quantitativo. A combinação de todos estes testes tornou o procedimento automático totalmente satisfatório e ele foi, portanto, aprovado. Na verdade a rotina automática foi testada antes que o limite de 150 mÅ fosse estabelecido. Quando chegamos a este limite as linhas mais intensas que por ventura haviam sido medidas pela rotina automática foram também desconsideradas. Este procedimento é adotado por não prejudicar a análise do ponto de vista quantitativo e por que linhas que se encontram no regime saturado da curva de crescimento prejudicam a qualidade da análise, pois para estas as incertezas na determinação da largura equivalente provocam uma grande incerteza no valor de abundância, sendo desse modo vantajoso desprezá-las.

Figura 1.10 – Gráfico de FWHM, largura a meia altura, contra a largura equivalente para a estrela \mathcal{E} Vir na seção 1 do espectro. Ambos resultados foram obtidos com a rotina automática. Este tipo de gráfico foi utilizado como critério para eliminação de linhas. Para maiores detalhes ver o texto.

Figura 1.11 – Gráfico de FWHM contra LE para HR 5058 na seção 2. Neste gráfico temos o exemplo da linha λ 4935 do Ni I cujo comportamento se afasta daquilo que seria considerado normal. Tal linha é um exemplo das linhas que foram eliminadas da análise com base neste tipo de teste gráfico.

Figura 1.12 – Gráfico de FWHM contra LE para HR8204 na seção 3. As linhas λ 5212 e λ 5359 do Co I foram excluídas da análise.

Figura 1.14 – Gráfico de profundidade contra LE para HR 2392 na seção 2. A linha λ 4935 Ni I é um exemplo de linha que foi eliminada com base neste critério gráfico.

Figura 1.15 – Gráfico de profundidade contra LE para HR 7321 na seção 4. As linhas λ 5381 Ti II e λ 5537 Mn I foram eliminadas por este critério gráfico.

Para os elementos com poucas linhas e os elementos pesados, que, como já foi dito; foram medidos de maneira exclusivamente manual, usamos o mesmo limite, mas neste caso, quando a largura equivalente do ajuste gaussiano era maior que 150 mÅ a linha passava a ser ajustada por um perfil de Voigt.

Figura 1.16 – Comparação entre medidas de largura equivalente para linhas acima do limite de 150 mÅ, feitas com ajustes puramente gaussiano e com perfil de Voigt. A linha sólida representa a bissetriz e a linha pontilhada é um ajuste linear aos pontos.

O perfil de Voigt surge quando ocorre a saturação do núcleo Doppler, que domina o centro da linha, e se inicia o desenvolvimento de asas características da lorentziana. Através de um processo numérico a rotina usada para o ajuste escolhe uma gaussiana e uma lorentziana, onde a convolução das duas é capaz de reproduzir o perfil observado. Nos dados de saída temos o valor do GFWHM, a largura a meia altura da gaussiana, e o valor da largura gama da lorentziana, que a rotina chama de LFWHM, que são valores que caracterizam as duas curvas respectivamente. Fisicamente esperamos que o núcleo Doppler, e portanto a gaussiana, não sofra grande alteração durante o regime saturado mas sim que a contribuição da lorentziana aumente com o aumento da largura equivalente. Com isso em mente fizemos estimativas do valor esperado de FWHM para

à gaussiana que seria esperado em cada seção para cada estrela, através das medidas de linhas um pouco abaixo do limite de 150 mÅ. Procedemos então aos ajustes dos perfis de Voigt procurando manter a realidade física, i.e, mantendo o GFWHM próximo do limite preestabelecido. Tal preocupação é de grande importância pois observamos que o procedimento numérico usado pela rotina do IRAF pode levar a ajustes sem realidade física, onde, em alguns casos, a rotina ajusta o perfil observado com uma lorentziana larga e uma gaussiana muito menos larga em relação ao que seria esperado. Quando isso acontece observamos também que o valor de largura equivalente era sistematicamente superestimado. Em geral foi possível manter o GFWHM próximo do limite, sendo que em poucos casos o melhor valor obtido foi um pouco abaixo do limite esperado. A título de comparação, e também para testar o comportamento do ajuste com perfil de Voigt, procedemos também à medida destas linhas ajustando um perfil puramente gaussiano. Na figura 1.16 mostramos a comparação entre as larguras equivalentes medidas.

Figura 1.17 – Gráfico da largura a meia altura contra largura equivalente para o ajuste puramente gaussiano das linhas maiores que o limite de 150 mÅ.

Podemos notar que a largura equivalente medida com o ajuste Voigt é maior que a medida com o ajuste puramente gaussiano. Isso acontece porque o ajuste Voigt consegue representar melhor as asas características da lorentziana que se desenvolvem

nestas linhas, ajustando com melhor qualidade a largura equivalente da linha. Notamos ainda, com o auxílio do ajuste linear mostrado na figura 1.16, que com o aumento da largura equivalente o ajuste gaussiano puro se afasta cada vez mais do perfil real da linha. Além disso, quando ajustamos um perfil puramente gaussiano a rotina tenta numericamente alargar a gaussiana para conseguir reproduzir o perfil da linha. Com isso temos um aumento da sua largura a meia altura com o aumento da largura equivalente. Mostramos tal comportamento na figura 1.17.

Na figura 1.17 notamos que o FWHM cresce significativamente com a largura equivalente. Tal comportamento se afasta do que seria esperado. Para estas linhas, que se encontram no regime saturado e algumas talvez no regime amortecido da curva de crescimento, é esperado que o núcleo Doppler gaussiano não cresça com a largura equivalente, pois o aumento desta deve estar refletido no aumento da contribuição das asas lorentzianas. O aumento do FWHM se deve à tentativa da rotina de numericamente alargar a gaussiana para ajustar o perfil observado da linha. Este gráfico reforça que um ajuste gaussiano puro não representa bem o comportamento destas linhas. A seguir mostramos gráficos resultantes dos ajustes Voigt.

Figura 1.18 – Gráfico da largura a meia altura da gaussiana componente do ajuste Voigt contra a largura equivalente medida com este ajuste. Claramente a tendência com largura equivalente presente na figura 1.17 foi eliminada.

Figura 1.19 – Gráfico da largura a meia altura da lorentziana componente do ajuste Voigt contra a largura equivalente medida com este ajuste. A tendência de crescimento com largura equivalente é bem mais acentuada do que a tendência do GFWHM.

Na figura 1.18 temos o gráfico do GFWHM contra a largura equivalente do ajuste Voigt. Comparando com o anterior, figura 1.17, onde mostramos o comportamento equivalente para o ajuste puramente gaussiano, podemos notar que a tendência de crescimento com largura equivalente, presente na figura 1.17, é eliminada na figura 1.18. Tal comportamento era esperado pois o núcleo gaussiano da linha deve permanecer praticamente inalterado. Podemos ainda notar que o comportamento de crescimento com largura equivalente é transferido para a componente lorentziana, conforme esperado. A largura a meia altura da lorentziana aumenta de praticamente desprezível para valores consideráveis muito mais rapidamente que o pequeno aumento notado no GFWHM. Tal comportamento se deve ao crescimento da contribuição das asas lorentzianas na formação do perfil observado das linhas.

Figura 1.20 – Este gráfico mostra o comportamento de uma medida percentual do aumento da largura equivalente do ajuste Voigt em relação a medida puramente gaussiana, (LEGauss – LE Voigt) / LE Voigt, contra o LFWHM que, por sua vez, retrata o aumento da contribuição da lorentziana na formação da linha. O ajuste aos pontos é dado por um polinômio de segundo grau com todos coeficientes significativos à exceção do termo independente.

Por fim na figura 1.20 mostramos o comportamento de um índice percentual da diferença entre a largura equivalente medida com o ajuste puramente gaussiano e a medida com o ajuste Voigt contra LFWHM. Podemos facilmente notar que com o aumento do LFWHM, e consequentemente o aumento da importância da lorentziana na formação da linha, aumenta também a diferença entre as duas larguras equivalentes, sendo a largura da gaussiana sempre menor, conforme o esperado. O aumento segue uma curva de segundo grau sem termo independente. Apesar de terem sido mostrados como exemplos apenas gráficos da estrela HR2392, gráficos semelhantes foram criados para todas as estrelas. Todos gráficos mostram comportamento semelhante. Com todas estas verificações fica claro que o ajuste do perfil observado da linha com um perfil Voigt se comporta fisicamente bem, como seria esperado teoricamente. Desta maneira as medidas feitas com perfil de Voigt foram usadas para determinações de abundâncias. Estas determinações serão discutidas no capítulo 3.

CAPÍTULO 2

ANÁLISE ESPECTROSCÓPICA

2.1 - Modelos de atmosferas estelares

Os modelos de atmosferas estelares utilizados nesta análise são os de Gustafsson et al. (1975). Tais modelos são válidos para estrelas com temperatura efetiva entre 3750K e 6000K, logaritmo da gravidade superficial entre 0,75 e 3,00 e metalicidade entre -3,0 dex e 0,0 dex. Os modelos consistem em tabelas T(τ) baseadas na aproximação planoparalela com equilíbrio termodinâmico local (ETL) e equilíbrio radiativo.

Os modelos de atmosferas são calculados por um programa fornecido pela Dra. Monique Spite (Observatório de Meudon, Paris). Este programa interpola a lei $T(\tau)$ tabelada por Gustafsson et al. (1975) gerando um modelo de atmosfera para uma estrela se seus parâmetros atmosféricos são conhecidos. Para gerar estes modelos a abundância adotada por número do He é a solar, (N_{He}/N_H) =0,10. Os detalhes de como obter os valores dos parâmetros atmosféricos são dados a seguir.

2.2 – ε Vir como estrela padrão

Como estrela padrão para uma análise deste tipo a escolha mais óbvia seria o Sol, já que esta é a estrela que conhecemos em maior detalhe. Porém as estrelas de nossa amostra são gigantes vermelhas enquanto o Sol é uma estrela anã. Suas atmosferas possuem diferenças intrínsecas que, em uma análise diferencial, levariam a erros e prejudicariam sua qualidade. É necessário usar como padrão uma estrela semelhante àquelas que se pretende analisar para, desta maneira, determinar os parâmetros das estrelas com maior precisão. A estrela Epsilon Virginis (HR4932) é uma das gigantes mais bem estudadas da literatura (Cayrel de Strobel 1985) e é a mesma estrela padrão

utilizada por Zacs (1994). Ela foi escolhida para servir de padrão na nossa análise: Quando dizemos que a estrela servirá como padrão queremos dizer que os dados das outras estrelas serão referenciados a ela e que usaremos a estrela padrão para gerar os dados necessários referentes às linhas atômicas (ver adiante).

2.2.1 - Os parâmetros atmosféricos de ε Vir

Para determinar os parâmetros atmosféricos de ε Vir procedemos da seguinte maneira. O primeiro passo foi gerar a temperatura efetiva a partir de cores fotométricas encontradas na literatura. Utilizamos as cores do infravermelho (R-I) (Hoffleit et al. 1982) e (V-K) (Johnson et al. 1966) cuja calibração é independente de metalicidade. Usamos a calibração de McWilliam (1990) para as cores (R-I) e (V-K) e usamos uma segunda calibração para (V-K) de Blackwell et al. (1998). Calculamos o valor médio entre as duas temperaturas (V-K) e fizemos uma nova média aritmética com este valor e a temperatura (R-I). A temperatura assim obtida é T = 5082 K. Esta é a temperatura efetiva adotada para ε Vir. Lembramos que o valor exato desta temperatura não tem conseqüência importante para o método diferencial de obtenção de abundâncias, uma vez que esse se baseia apenas nas *diferenças* dos parâmetros atmosféricos entre a estrela estudada e a estrela padrão.

Com o valor de magnitude aparente Tycho dado pelo Hipparcos (ESA 1997) e correção bolométrica de Landolt & Bornstein (1982), calculamos a luminosidade de ε Vir, log (L/L_{\odot}) = 1,83. Neste sistema a magnitude bolométrica do Sol é M_{bol $\odot} = 4,81$. Com os valores de temperatura e luminosidade construímos diagramas HR com os diagramas evolutivos teóricos de Schaerer et al. (1993) para metalicidade aproximadamente solar ([Fe/H] = +0,03) e para estrelas de baixa metalicidade ([Fe/H] = -0,37). Nestes diagramas interpolamos o valor de massa adotando para ε Vir metalicidade solar ([Fe/H] = 0,0 por definição). Com isso encontramos uma primeira estimativa para a massa, M = 2,81 M_{\odot}. Usando então a conhecida equação (2.1) temos uma primeira estimativa para o log g de ε Vir, log g = 2,83.</sub>

$$\log g = \log g_{\odot} + \log(M/M_{\odot}) + 4\log(\text{Tef/Tef}_{\odot}) - \log(L/L_{\odot})$$
(2.1)

Mantendo os valores de temperatura e log g fixos procuramos o melhor valor de microturbulência (ξ) de maneira espectroscópica. Para isso precisamos gerar valores de abundância para o ferro pois a microturbulência é obtida fazendo com que as abundâncias fornecidas pelas linhas do Fe I sejam independentes de largura equivalente. Ou seja, em um gráfico de [Fe/H] contra LE o valor ótimo de ξ é encontrado quando um ajuste linear aos pontos têm coeficiente angular sem significado estatístico.

Tabela 2.1 – A tabela abaixo apresenta as linhas do Fe I e Fe II cujo log gf medido em laboratório foi usado para derivar a metalicidade e microturbulência para ε Vir.

$\lambda(\text{\AA})$	elemento	χ(eV)	log gf	λ(Å)	elemento	χ(eV)	log gf
5247,049	FE1	0,09	-4,946	6240,645	FE1	2,22	-3,230
5412,791	FE1	4,43	-1,716	6271,283	FE1	3,33	-2,703
5491,845	FE1	4,19	-2,188	6297,792	FE1	2,22	-2,727
5661,348	FE1	4,28	-1,756	4993,358	FE2	2,81	-3,545
5701,551	FE1	2,56	-2,173	5197,576	FE2	3,23	-2,233
5705,473	FE1	4,30	-1,355	5234,630	FE2	3,22	-2,250
5778,463	FE1	2,59	-3,440	5264,812	FE2	3,33	-3,260
5784,666	FE1	3,40	-2,530	5325,560	FE2	3,22	-3,282
5849,681	FE1	3,69	-2,935	5414,075	FE2	3,22	-3,540
5855,086	FE1	4,61	-1,478	5425,257	FE2	3,20	-3,432
6012,212	FE1	2,22	-4,038	6149,249	FE2	3,89	-2,784
6137,002	FE1	2,20	-2,950	6247,562	FE2	3,89	-2,389
6151,616	FE1	2,18	-3,282	6369,463	FE2	2,89	-4,313
6173,340	FE1	2,22	-2,880	6416,928	FE2	3,89	-2,800
6200,321	FE1	2,61	-2,437				

Para gerar nossas primeiras abundâncias para ε Vir utilizamos listas de gfs de laboratório (Blackwell et al 1995 e Holweger et al. 1995) para linhas de Fe I e Fe II, tabela 2.1. Os gfs são parâmetros intrínsecos ao átomo que estão relacionados à

formação das linhas na fotosfera estelar; g é o peso estatístico e f a probabilidade de transição entre os níveis de energia que formam a linha em questão.

Desta maneira obtemos o seguinte valor para microturbulência: $\xi = 1,86$ Km/s. Fixar os valores de temperatura, log g e microturbulência determina de maneira unívoca a metalicidade da estrela. Neste caso obtemos para ε Vir [Fe/H] = 0,120±0,076. O valor de metalicidade obtido difere do valor solar que foi usado para o cálculo da massa de ε Vir. Assim calculamos um novo valor de massa para a estrela, desta vez usando o valor de metalicidade que obtemos acima. Recalculamos as massas em cada um dos diagrama teóricos citados acima e extrapolamos uma relação linear para o valor de metalicidade de ε Vir. A nova massa de ε Vir passa a ser M = 2,89 M_{\odot}. Com essa nova massa o novo valor para a gravidade usando a equação (2.1) passa a ser log g = 2,85. Este novo valor para a gravidade não altera o valor ótimo para microturbulência encontrado anteriormente. Também não há mudança significativa na abundância do ferro, assim o valor adotado para ε Vir é [Fe/H] = 0,12 ± 0,08. A tabela 2.2 relaciona os valores adotados para ε Vir. As incertezas associadas a estes valores serão discutidas adiante.

Tabela 2.2 - Parâmetros finais adotados para & Vir.

HR	T _{ef} (K)	log g	ξ(Km/s)	[Fe/H]	$\log(L/L_{\odot})$	Massa(M _o)
4932	5082	2,85	1,86	+0,12	1,83	2,89

2.2.2 - Cálculo dos gfs

Para determinar os parâmetros atmosféricos de ε Vir usamos uma pequena quantidade de linhas do ferro. A cobertura espectral do FEROS nos oferece acesso a uma quantidade muito maior de linhas. Infelizmente a grande maioria não possui medidas de laboratório de seu gf. Apesar disso podemos gerar valores de gf para estas linhas se soubermos qual o valor de abundância que suas larguras equivalentes devem fornecer, e se sabemos os parâmetros atmosféricos da estrela em questão. Para ε Vir estes valores já foram estabelecidos (tabela 2.2). Os valores de gfs são gerados utilizando um pacote (RAIIT) adaptado de um programa de síntese espectral de autoria da Dra. Monique Spite. Neste procedimento o fator de correção das constantes clássicas do alargamento van der Waals foi adotado igual a 2,00. Na seção 3.1 procuramos determinar a influência que desvios neste valor teriam em nossas abundâncias. Os gfs assim gerados foram adotados para calcular os parâmetros das outras estrelas da amostra. As linhas do ferro utilizadas, suas larguras equivalentes e os gfs gerados se encontram no apêndice I.

2.3 - Os parâmetros atmosféricos das estrelas do programa

Para as outras estrelas da amostra os parâmetros atmosféricos foram encontrados utilizando um método diferente em relação ao usado em ε Vir. Já obtemos os valores de gfs para as linhas do ferro e podemos então utilizá-los para obter as temperaturas efetivas e log g, além de microturbulência e metalicidade, de maneira espectroscópica. Para isso precisamos adotar valores iniciais para os parâmetros atmosféricos e, com eles, gerar valores de abundâncias para as linhas do ferro medidas em uma determinada estrela.

Podemos julgar a realidade da estimativa de temperatura efetiva testando o equilíbrio de excitação do Fe I. Isso é feito por meio de um gráfico do valor de abundância [Fe/H] contra o potencial de excitação (χ) de cada linha. Caso a estimativa de temperatura usada seja maior que o valor correto estaremos favorecendo a formação das linhas com maior χ . Desta maneira uma população menor de átomos nestes estados mais excitados será necessária para fornecer o valor medido de largura equivalente. Assim o valor da abundância de ferro fornecida por estas linhas será sistematicamente menor que o fornecido pelas outras linhas. No gráfico em questão um ajuste linear aos pontos fornecerá um coeficiente angular negativo. Se a estimativa de temperatura é menor que o valor correto ocorre a situação oposta; a abundância fornecida pelas linhas de maior χ será sistematicamente maior que a fornecida pelas outras linhas e o coeficiente angular do gráfico será positivo. Encontraremos a temperatura efetiva correta quando o equilíbrio de excitação for satisfeito, ou seja, quando não houver tendência no gráfico [Fe/H] contra χ . A figura 2.1 exemplifica uma situação onde o equilíbrio de excitação foi satisfeito.

Figura 2.1 – O equilíbrio de excitação para as linhas do Fe I na estrela HR 5058. A linha sólida é o ajuste linear aos pontos indicando a correta escolha para o valor de temperatura.

O valor da gravidade superficial, log g, pode ser determinado de maneira similar. Sua escolha é feita por meio do equilíbrio de ionização do ferro, ou seja, obtemos o valor correto de log g fazendo com que as linhas da espécie neutra, Fe I, forneçam a mesma abundância média que as linhas da espécie ionizada, Fe II. A gravidade superficial se relaciona ao gradiente de pressão do gás pelo equilíbrio hidrostático na estrela. Por sua vez a pressão do gás se relaciona à pressão eletrônica. Um valor alto para a gravidade aumenta a pressão eletrônica do meio, desfavorecendo a ionização e logo será necessário um valor alto para a abundância da espécie ionizada, Fe II, de modo a ajustar as larguras equivalentes medidas. Um valor baixo de gravidade superficial favorece a ionização permitindo que uma abundância menor de Fe II explique as larguras equivalentes. O valor ótimo para a gravidade é obtido ao atingirmos o equilíbrio de ionização, quando nenhuma população é favorecida. Isto ocorre quando Fe I e Fe II fornecem o mesmo valor de abundância. A figura 2.2 ilustra o equilíbrio de ionização.

Figura 2.2 – Equilíbrio de ionização para as linhas do Fe I, círculos fechados, e Fe II, círculos abertos, para a estrela HR 5058. É fácil notar que os valores médios para a abundância entre Fe I e Fe II estão em ótimo acordo.

Por fim é preciso determinar o valor da microturbulência. O valor de ξ é obtido fazendo com que a abundância fornecida pelas linhas do ferro sejam independentes do valor de largura equivalente, exatamente como foi feito para ε Vir. Como foi dito anteriormente a microturbulência é um parâmetro introduzido para ajustar o alargamento térmico pois o alargamento Doppler, sozinho, é incapaz de ajustar a largura da linha. Um valor alto de microturbulência causa um alargamento significativo em linhas com alta largura equivalente, fazendo com que uma menor abundância de ferro seja necessária para explicar a largura equivalente da linha. Tal fato se reflete em um gráfico [Fe/H] contra LE fazendo com que o coeficiente angular seja negativo. Quando a estimativa de ξ é menor que o valor real acontece a situação contrária, uma maior abundância será necessária para explicar as linhas com maior largura equivalente. Teremos assim um coeficiente angular positivo. Quando o coeficiente é estatisticamente nulo o valor ótimo de ξ é encontrado. A figura 2.3 ilustra tal fato.

Figura 2.3 – Gráfico de [Fe/H] conta LE para HR 5058. Este tipo de gráfico é usado para determinar o valor correto de microturbulência onde procuramos o valor de ξ que faz com que a abundância seja independente de LE.

Tendo encontrado os melhores valores para cs três parâmetros, T_{ef} , log g e ξ , determinamos um único valor de abundância para o ferro [Fe/H]. Usamos o ferro para este tipo de análise por ser este o elemento com o maior número de linhas disponíveis no espectro.

Estes três valores são calculados por um programa (GETSTAR) desenvolvido por Porto de Mello e da Silva (da Silva 2000). Este programa gerencia o funcionamento do programa ECTOR, que gera um modelo de atmosfera para a estrela, e RAIIT, que calcula as abundâncias de cada linha. A partir de dados de entrada iniciais o próprio programa realiza os testes julgando se os valores para T_{ef}, log g e ξ obedecem às condições expostas acima e, caso contrário, os altera usando passos pré-estabelecidos. Por fim ele fornece os parâmetros atmosféricos, a abundância dada pelas linhas de Fe I, pelas linhas de Fe II e o respectivo desvio padrão destas abundâncias. Os passos usados são dados a seguir e, como será visto adiante, são menores que as estimativas de incerteza de nossos resultados. Por fim a tabela 2.3 lista os valores para os parâmetros atmosféricos obtidos para as outras estrelas da amostra. Os valores são acompanhados de suas respectivas incertezas. Apresentamos na seção 2.5 o método de determinação destas incertezas. Incluímos também a média dada pelas linhas do Fe II, e sua incerteza, para ilustrar o acordo do equilíbrio de ionização. Abaixo listamos os passos do programa.

Tef: 10 K [Fe/H]: 0,01 dex log g: 0,02 dex
$$\xi$$
: 0,02 Km/s (2.3)

Tabela 2.3 – Parâmetros atmosféricos finais para as estrelas da amostra e suas respectivas incertezas. A incerteza na metalicidade é o próprio desvio padrão das abundâncias do ferro. Para os outros três parâmetros o método de obtenção das incertezas é discutido na seção 2.5.

HR	Tef (K) log g ξ (Km/s) \pm 50 K \pm 0,35 dex \pm 0,06 Km/s		[Fe/H]	[Fe II/H]		
440	4780	2,43	1,71	$-0,34 \pm 0,07$	$-0,33 \pm 0,07$	
649	5120	2,49	1,96	$-0,14 \pm 0,06$	$-0,15 \pm 0,07$	
1016	5080	2,60	1,80	$-0,11 \pm 0,06$	-0,11 ±0,09	
1326	4650	2,51	1,52	$0,00 \pm 0,07$	$0,01 \pm 0,16$	
2392	4940	2,65	1,87	$-0,09 \pm 0,12$	$-0,08 \pm 0,15$	
4608	4608 4920		1,71	$-0,35 \pm 0,05$	$-0,34 \pm 0,06$	
4932 (ε Vir)	5082	2,85	1,86	+0,12	0,12	
5058	4790	2,67	1,97	$-0,12 \pm 0,13$	$-0,13 \pm 0,22$	
5802	5010	2,89	1,67	$-0,02 \pm 0,06$	$-0,03 \pm 0,06$	
7321	4810	2,48	1,70	$-0,19 \pm 0,06$	$-0,17 \pm 0,07$	
8115	4910	2,41	1,85	-0.04 ± 0.07	$-0,03 \pm 0,09$	
8204	5250	1,53	2,49	$-0,09 \pm 0,12$	$-0,13 \pm 0,11$	
HD 205011	4780	2,41	1,70	$-0,14 \pm 0,09$	$-0,13 \pm 0,10$	
8878	4370	1,91	1,61	$-0,67 \pm 0,07$	$-0,63 \pm 0,10$	
				and the other water	and the second s	

2.4 – Temperaturas fotométricas

Nesta seção iremos derivar temperaturas para as estrelas da amostra, usando cores fotométricas disponíveis na literatura, e compará-las com as temperaturas de excitação obtidas na seção anterior. Análises detalhadas, cómo a nossa, onde temperaturas de excitação podem ser obtidas com um grande número de linhas não estão disponíveis para muitas estrelas. Cores fotométricas, no entanto, podem ser obtidas mais facilmente e estão disponíveis para uma gama maior de estrelas. Logo se torna importante fazer a comparação entre estas duas formas de se derivar temperaturas para verificar a eficácia dos métodos.

Para derivar a temperatura iremos usar índices de cor no infravermelho, (R-I) de Hoffleit (1982) e (V-K) de Johnson (1966), cujas calibrações são independentes de metalicidade. Usamos a calibração de McWilliam (1990) para as cores (R-I) e (V-K) e usamos uma segunda calibração para (V-K) de Blackwell et al. (1998). Usamos apenas cores no infravermelho por terem calibrações independentes de metalicidade e pelo fato das estrelas de bário mostrarem forte absorção de linhas, que influencia as magnitudes B e U de Johnson (Bond & Neff 1969). Por esse motivo a cor (B-V) das estrelas de bário é mais vermelha que a de estrelas normais de mesma temperatura.

Adotamos como temperatura o valor médio entre as três derivações, podendo obter assim um σ devido a dispersão entre os valores. A tabela 2.4 lista os valores obtidos com cada calibração, o valor médio e a respectiva incerteza. Nem todas as estrelas possuem determinações de suas cores no infravermelho. Por isso para as estrelas HR440, HR1016, HR5058, HR7321, HD205011 e HR8878 não foi possível derivar qualquer estimativa de temperatura fotométrica.

Uma estimativa média para o desvio padrão devido à dispersão entre os valores de temperatura fotométrica é de σ = 33K. Pela análise da tabela 2.4 notamos que existe um acordo excelente entre a determinação espectroscópica e fotométrica, considerando os respectivos erros. Tal resultado sugere fortemente a ausência de erros sistemáticos nas duas escalas de temperatura e que existe um alto grau de confiabilidade nos parâmetros atmosféricos por nós calculados.

Estrela	T _{EF} (R-I) McWilliam	T _{EF} (V-K) McWilliam	T _{EF} (V-K) Blackwell	T _{EF} Média	σ	T _{EF} Excitação
110 (10	Nie winnann		Diackwein	TVICUIA	100 100	LACItação
HR649	5048	5039	5044	5044	5	5120
HR1326	4481	4622	4649	4584	90	4650
HR2392	4948	4885	4909	4914	32	4940
HR4608	4901	4875	4901	4892	15	4920
HR5802	5098	-	-	5098	-	5010
HR8115	4948	4993	4993	4978	26	4910
HR8204	5202	5260	5228	5230	29	5250

Tabela 2.4 – Temperaturas fotométricas para as estrelas que possuem cores no infravermelho e a temperatura de excitação para comparação. Todas temperaturas são dadas em Kelvin.

2.5 – Incertezas nos parâmetros atmosféricos

Para estimar a incerteza de nossos resultados escolhemos uma estrela com parâmetros atmosféricos próximos à média da amostra, e que portanto possa ser considerada representativa. A estrela selecionada foi HR2392. Iremos derivar as incertezas para esta estrela e assumir que os valores encontrados podem ser estendidos para todas as estrelas. A influência destas incertezas, e de outras, nos resultados de abundâncias serão discutidos em uma seção pertinente no próximo capítulo.

Tratemos primeiramente da temperatura efetiva espectroscópica. Como foi explicado acima seu melhor valor é aquele que torna os valores das abundâncias do Fe I independentes do potencial de excitação. Tal independência é encontrada respeitando critérios estatísticos. Ou seja, procuramos um ajuste linear onde o coeficiente angular é estatisticamente nulo. Obviamente este coeficiente tem uma incerteza associada. Para encontrar qual o erro em 1 σ de temperatura fazemos o coeficiente angular ser numericamente igual ao valor de sua incerteza. Assim encontraremos um intervalo de temperatura onde o coeficiente permanece nulo, pelo critério estatístico, e portanto determinamos o intervalo de 1 σ de temperatura. Procedendo desta maneira para a estrela HR2392 encontramos uma incerteza para a temperatura de ± 50 K.

Para encontrar a incerteza em microturbulência o procedimento é semelhante. Neste caso fazemos o coeficiente angular de um ajuste linear das abundâncias contra largura equivalente ser numericamente igual a sua incerteza. Desta maneira encontramos uma incerteza de \pm 0,06 Km/s.

Para encontrar a incerteza a 1 σ da determinação de log g devemos proceder de maneira um pouco diferente. A abundância dada pelas linhas de Fe I têm incerteza diferente da abundância fornecida pelas linhas de Fe II. A incerteza a 1 σ de log g será dada quando tivermos um acordo marginal de 1 σ entre as duas determinações. Ou seja quando a diferença entre os valores fornecidos por Fe I e Fe II for igual ao maior erro. Procedendo desta maneira para HR2392 encontramos o valor de ± 0,35 dex. No entanto com uma olhada rápida na tabela 2.3 percebemos que a incerteza no Fe II para HR2392 é uma das maiores da amostra e portanto não é representativa. Mas apesar de ser uma incerteza superestimada ela foi adotada como o valor correto para toda a amostra.

Figura 2.4 – Comparação entre as larguras equivalentes de Fe I e Fe II medidas nas estrelas HR649 e HR1016. A linha sólida representa a bissetriz e a linha pontilhada um ajuste linear aos pontos.

Vamos ainda nesta seção discutir como podemos estimar a incerteza nas nossas medidas de largura equivalente. Tal discussão foi postergada para esta seção porque era necessário o conhecimento dos valores dos parâmetros atmosféricos. Para esta determinação escolhemos duas estrelas com parâmetros atmosféricos próximos. As selecionadas foram HR1016 e HR649. Faremos a hipótese que as duas deveriam ter parâmetros iguais e qualquer diferença entre os valores de larguras equivalentes encontrados para suas linhas se devem, apenas, a erros nas medidas de largura equivalente. Obviamente tal hipótese nos levará a superestimar, ainda que ligeiramente, os erros cometidos, pelo fato de, provavelmente, existirem diferenças reais, ainda que pequenas, em suas larguras equivalentes. A figura 2.4 mostra a relação entre as larguras equivalentes de Fe I e Fe II medidas nas duas estrelas linha a linha.

O ajuste linear aos pontos fornece um valor de desvio padrão, SD = 3,81 mÅ. Tal valor considera que existe incerteza em apenas uma das variáveis. Para encontrar a incerteza real faremos a hipótese que este valor é uma combinação quadrática entre incertezas nos valores das duas estrelas, ou seja que os dois se combinam de maneira independente.

$$SD2 = \boldsymbol{\sigma}_{TOT}^{2} = \boldsymbol{\sigma}_{i}^{2} + \boldsymbol{\sigma}_{i}^{2}$$
(2.4)

Supondo que os dois sigmas são iguais $\sigma_i = \sigma_j = \sigma_{LE}$ teremos:

$$\sigma_{\text{LE}} = (\sigma_{\text{TOT}}^2 / 2)^{1/2} \cong 3 \text{ mÅ}$$
 (2.5)

A provável superestimativa do erro em largura equivalente pode compensar, ao menos em parte, o possível erro nas medidas feitas com o procedimento automático descrito na seção 1.4. O que torna nossa estimativa da incerteza em largura equivalente provavelmente bastante realista. Este valor de incerteza é válido apenas para as medidas de largura equivalente feitas com ajuste puramente gaussiano. Para as linhas medidas com perfil Voigt adotamos um outro procedimento. Como foi dito anteriormente procuramos fazer o ajuste mantendo o valor do GFWHM próximo a um limite. Com este limite em mente foram feitas várias tentativas de medida de largura equivalente, mantendo o critério, mas mudando ligeiramente os limites do ajuste, e anotando assim as variações nos resultados obtidos. Estas variações encontradas nos valores de largura equivalente foram adotados como as incertezas das larguras equivalentes, sob a hipótese

de que elas são representativas da incerteza intrínseca deste método de medida. As variações se dividem em dois intervalos:

$$\sigma_{LE} = 10 \text{ mÅ para } 150 < LE < 400$$

 $\sigma_{LE} = 20 \text{ mÅ para } LE > 400$ (2.6)

A tabela 2.5 resume os resultados obtidos nesta seção. No capítulo 3 iremos investigar a influência destas incertezas nos valores de abundância dos vários elementos utilizados neste trabalho.

Tabela 2.5 – Incertezas estimadas para os parâmetros atmosféricos e para larguras equivalentes seguindo os métodos explicitados no texto.

Tef (K)	log g (dex)	ξ (Km/s)	LE<150mÅ	150mÅ <le<400må< th=""><th>LE >400 mÅ</th></le<400må<>	LE >400 mÅ
± 50	± 0,35	± 0,06	±3 mÅ	±10 mÅ	±20 mÅ

CAPÍTULO 3

ABUNDÂNCIAS E PARÂMETROS EVOLUTIVOS

3.1 - Determinação das abundâncias

Para os outros elementos que nos propomos a analisar neste trabalho o procedimento adotado é semelhante ao usado para calcular as abundâncias de Fe. Para estes elementos não usamos valores tabelados de gf. Nestes casos simplesmente forçamos que abundância dos elementos em ε Vir seguisse um padrão solar, i.e. que [elemento/Fe] = 0.00 em relação ao Sol. Os gfs são gerados da mesma maneira que os gfs para o ferro. Com este conjunto de gfs podemos gerar valores de abundâncias para as outras estrelas, depois que seus parâmetros atmosféricos já tenham sido encontrados. É possível que o padrão de abundâncias de ε Vir não siga o padrão solar, o que não alteraria nossos resultados para as outras estrelas. Isso porque nossa análise é diferencial em relação a ε Vir. Qualquer mudança na abundância de um certo elemento em ε Vir geraria apenas uma mudança de ponto zero. O valor que obtemos para as outras estrelas em relação a ε Vir permaneceria inalterado. No entanto, sabemos da literatura que ε Vir é uma gigante de primeira ascensão com padrão de abundância próximo ao solar, com a possível exceção das abundâncias e das razões isotópicas de C, N e O que não interessam a este trabalho.

Para os elementos Mg, Sc, V, Mn, Co e Cu consideramos o desdobramento hiperfino de suas linhas. Nestes elementos o momento magnético de spin do núcleo é não nulo, devido à presença de um número ímpar de nucleôns. Este momento de spin interage com o momento magnético orbital do elétron causando ligeiras mudanças no nível de energia que ele ocupa no átomo. Diferentes acoplamentos entre os momentos causam diferentes mudanças na energia. Esse efeito leva a um alargamento extra na linha. Temos que cada nível hiperfino gera, na verdade, sua própria linha. Colhemos valores de gfs para cada nível hiperfino na literatura e os ajustamos para que ε Vir apresentasse abundâncias solares. O procedimento foi feito com o pacote RAIITH. Os valores de gf para estas linhas se encontram no apêndice II. Os dados de estrutura hiperfina são os mesmos usados por Porto de Mello (1996) com a inclusão de algumas novas linhas. Os dados destas linhas são de Steffen (1985). A estrutura hiperfina (EHF) pode ser importante em alguns outros elementos pesados, mas, devido à escassez de dados na literatura, não usamos dados de EHF para estes elementos. A provável influência deste fato nos nossos resultados pode ser estimada, o que será feito adiante.

Para encontrar a incerteza teórica da determinação das abundâncias [Elemento/Fe], que é determinada pela influência dos parâmetros atmosféricos e da largura equivalente nas abundâncias, basta mudar o valor de um destes parâmetros, mantendo os outros constantes, e recalcular as abundâncias, medindo então as variações. Novamente estas estimativas foram feitas apenas para a estrela HR2392. A tabela 3.1 relaciona os valores destas estimativas e as figuras 3.1, 3.2, 3.3, 3.4 e 3.5 mostram de maneira mais clara a influência de cada incerteza em cada elemento. Nestas figuras a linha sólida em zero representa a abundância obtida com todos os parâmetros sem alteração.

Figura 3.1 – Efeito da incerteza em temperatura nos valores de abundância [Elemento/Fe]. Círculos abertos indicam acréscimo na temperatura, e fechados, decréscimo. A linha sólida representa a abundância com todos os parâmetros inalterados. Os valores podem ser encontrados na tabela 3.1.

Elem.	+ σ_{Tef}	$-\sigma_{\text{Tef}}$	+ $\sigma_{\log g}$	$-\sigma_{\log g}$	+σξ	$-\sigma_{\xi}$	+ σ _{LE}	+σ _[Fe/H]	$-\sigma_{[Fe/H]}$
Na	+0,03	-0,04	-0,02	+0,01	-0,02	+0,01	+0,04	+0,00	+0,00
Mg	+0,04	-0,05	-0,05	+0,03	-0,02	+0,02	+0,04	+0,00	-0,01
Al	+0,03	-0,04	-0,01	+0,00	-0,01	+0,00	+0,08	-0,01	-0,01
Si	+0,00	+0,01	+0,06	-0,05	-0,01	+0,01	+0,05	+0,01	-0,01
Ca	+0,04	-0,06	-0,03	+0,02	-0,03	+0,02	+0,05	-0,01	+0,00
Sc	-0,01	+0,00	+0,15	-0,15	-0,01	+0,00	+0,04	+0,03	-0,03
Ti	+0,05	-0,06	+0,02	-0,03	-0,03	+0,02	+0,05	+0,00	-0,01
V1	+0,07	-0,08	-0,01	+0,01	-0,01	+0,01	+0,04	+0,00	+0,00
Cr	+0,04	-0,03	+0,03	-0,03	-0,02	+0,03	+0,06	+0,07	+0,06
Mn	+0,05	-0,06	+0,00	+0,00	-0,02	+0,02	+0,04	+0,00	+0,00
Fe	+0,03	-0,04	+0,02	-0,02	-0,02	+0,02	+0,05	+0,00	-0,01
Fe	-0,04	+0,04	+0,17	-0,17	-0,03	+0,02	+0,06	+0,03	-0,03
Co	+0,03	-0,03	+0,04	-0,03	+0,00	+0,00	+0,04	+0,01	-0,01
Ni	+0,05	+0,00	+0,07	-0,02	+0,00	+0,04	+0,07	+0,03	+0,01
Cu	+0,04	-0,04	+0,05	-0,04	-0,03	+0,03	+0,11	+0,01	+0,00
Zn	-0,01	+0,02	+0,11	-0,10	-0,03	+0,04	+0,07	+0,03	-0,01
Sr	+0,08	-0,07	-0,08	+0,08	-0,04	+0,05	+0,14	+0,02	+0,00
Y	+0,01	-0,01	+0,09	-0,10	-0,03	+0,03	+0,07	+0,04	-0,03
Zr	+0,03	-0,04	+0,08	-0,09	-0,06	+0,05	+0,06	+0,01	-0,02
Ba	+0,01	-0,02	+0,01	-0,04	-0,01	+0,00	+0,03	+0,05	-0,05
La	+0,02	-0,03	+0,12	-0,13	-0,06	+0,06	+0,12	+0,03	-0,02
Ce	+0,01	-0,02	+0,09	-0,11	-0,04	+0,03	+0,07	+0,03	-0,04
Nd	+0,02	-0,02	+0,15	-0,14	-0,04	+0,05	+0,07	+0,03	-0,02
Sm	+0,02	-0,01	+0,15	-0,14	-0,04	+0,05	+0,08	+0,03	-0,02
Eu	+0,00	+0,00	+0,15	-0,15	-0,02	+0,02	+0,05	+0,03	-0,03
Gđ	+0,00	+0,00	+0,15	-0,16	-0,01	+0,00	+0,09	+0,02	-0,03

Tabela 3.1 – As alterações causadas nos valores de abundância [Elemento/Fe] devidas às incertezas nosparâmetros atmosféricos e na largura equivalente.

47

Figura 3.2 – Efeito da incerteza em gravidade superficial nos valores de abundância [Elemento/Fe]. Quadrados abertos indicam acréscimo em log g, e fechados, decréscimo. A linha sólida representa a abundância com todos os parâmetros inalterados. Os valores podem ser encontrados na tabela 3.1.

Figura 3.3 – Efeito da incerteza em microturbulência nos valores de abundância [Elemento/Fe]. Triângulos abertos indicam acréscimo em ξ e, fechados, decréscimo. A linha sólida representa a abundância com todos os parâmetros inalterados. Os valores podem ser encontrados na tabela 3.1.

Figura 3.4 – Efeito da incerteza em largura equivalente nos valores de abundância [Elemento/Fe]. Lembramos que para LE < 150 mÅ o valor adotado de incerteza é de 3mÅ, para 150<LE<400 é de 10mÅ e para LE > 400 é de 20 mÅ. A linha sólida representa a abundância com todos os parâmetros inalterados. Os valores podem ser encontrados na tabela 3.1.

Figura 3.5 – Efeito da incerteza em metalicidade nos valores de abundância [Elemento/Fe]. Diamantes abertos indicam acréscimo em [Fe/H], e fechados, decréscimo. O valor usado de incerteza foi o da estrela HR2392. A linha sólida representa a abundância com todos os parâmetros inalterados. Os valores podem ser encontrados na tabela 3.1.

Como podemos notar, pelos gráficos, as fontes de erro, em geral, influenciam os valores de abundâncias em magnitudes menores que 0,1 dex. Exceção a isso é a incerteza em gravidade superficial que, principalmente para os elementos pesados do processo-s cujas poucas linhas são de espécies ionizadas, provoca valores maiores de incerteza, mas, como foi comentado, sua incerteza pode estar um pouco superestimada.

Para encontrar a incerteza teórica à qual está sujeito cada elemento partiremos da hipótese de que as incertezas produzidas pelos parâmetros atmosféricos são independentes entre si. Podemos assim fazer a composição quadrática dos erros. Obviamente os parâmetros se relacionam e uma mudança em um deles se refletirá nos outros. Apesar disso a hipótese de independência é uma boa aproximação ao valor da incerteza teórica.

$$\sigma_{\text{teórico}} = [(+\sigma_{\text{Tef}})^2 + (+\sigma_{\log g})^2 + (+\sigma_{\xi})^2 + (+\sigma_{\text{LE}})^2 + (+\sigma_{\text{[Fe/H]}})^2]^{1/2}$$
(3.1)

Tabela 3.2 -	Incerteza	teórica	em ca	ıda	elemento.	Esta	incerteza	é	calculada	através	da	composição
quadrática do	s erros, poi	r meio da	a equa	ção	3.1, introd	uzido	s pelos pa	râr	netros atm	osféricos	s.	

$\sigma_{\text{teórico}}$	Elemento	$\sigma_{\text{teórico}}$	Elemento	$\sigma_{\text{teórico}}$	Elemento	$\sigma_{\text{teórico}}$
0,06	V	0,08	Cu	0,13	Ce	0,12
0,08	Cr	0,11	Zn	0,14	Nd	0,17
0,09	Mn	0,07	Sr	0,19	Sm	0,18
Si 0,08		0,06	Y	0,12	Eu	0,16
0,08	Fe II	0,19	Zr	0,12	Gd	0,18
0,16	Co	0,06	Ba	0,06	_	-
0,08	Ni	0,11	La	0,18		_
	σ _{teórico} 0,06 0,08 0,09 0,08 0,08 0,08 0,08 0,08 0,08 0,08	Stream Elemento 0,06 V 0,08 Cr 0,09 Mn 0,08 Fe I 0,08 Fe II 0,08 Fe II 0,08 Ni	σteórico Elemento σteórico 0,06 V 0,08 0,08 Cr 0,11 0,09 Mn 0,07 0,08 Fe I 0,06 0,08 Fe II 0,19 0,16 Co 0,06 0,08 Ni 0,11		$\sigma_{teórico}$ Elemento $\sigma_{teórico}$ Elemento $\sigma_{teórico}$ 0,06V0,08Cu0,130,08Cr0,11Zn0,140,09Mn0,07Sr0,190,08Fe I0,06Y0,120,08Fe II0,19Zr0,120,16Co0,06Ba0,060,08Ni0,11La0,18	

Podemos notar que a incerteza média está em torno de 0,12 dex. Confirmando que a incerteza em gravidade é dominante podemos notar que os elementos mais leves, cujas linhas são da espécie neutra, têm incerteza menor e que os elementos pesados e o Fe II, cujas linhas são apenas de espécies ionizadas, têm os maiores valores de incerteza.

Além dos parâmetros atmosféricos testamos a provável influência de outras fontes de erro em nossas abundâncias. Prováveis falhas no posicionamento do contínuo podem levar a erros sistemáticos nas medidas de larguras equivalentes. Estes erros se refletiriam nas abundâncias fazendo com que seções diferentes do espectro apresentassem valores diferentes de abundância, para um mesmo elemento. Valores estes sistematicamente maiores ou menores, estando o posicionamento do contínuo superestimando ou subestimando as larguras equivalentes, respectivamente. Para testar este efeito em nossos resultados construímos gráficos, para linhas do Fe I, de abundância contra comprimento de onda, para todas as estrelas. O Fe I foi novamente escolhido por ser a espécie química com o maior número de linhas disponíveis. Em geral, para a maioria das estrelas, não encontramos qualquer tendência significativa. O caso mais significativo é o de HR440, onde encontramos uma tendência, estatisticamente significativa, do valor de abundância com o comprimento de onda. Se consideramos apenas a seção mais azul do espectro o valor médio de abundância é de [Fe/H] = -0,41 dex. Se consideramos apenas a seção mais vermelha o valor médio passa a ser [Fe/H] = -0,48 dex. Estes valores fornecem uma incerteza de σ = 0,04 dex, cerca da metade da dispersão média encontrada para o Fe I nas estrelas.. Como este fator é pequeno e praticamente não influenciaria o cálculo do erro teórico resolvemos desprezálo.

Figura 3.6 – A abundância fornecida por cada linha de Fe I contra comprimento de onda na estrela HR440. A tendência é significativa, mas o efeito sobre a abundância é mínimo.

Podemos julgar ainda se o valor adotado para a correção das constantes clássicas do alargamento do van der Waals tem alguma influência significativa em nossos resultados. Como foi dito anteriormente, no cálculo dos gfs, o valor adotado foi de 2,00. Para testar a influência desta constante procedemos da seguinte maneira. Por consistência escolhemos usar a estrela HR2392 já que a mesma que foi usada nos outros testes. Geramos novos conjuntos de gfs usando a correção à constante clássica de van der Waals com valores de 1,00 e de 3,00, mas apenas para as linhas intensas que têm largura equivalente maior que 150mÅ. Isso por que o efeito do alargamento colisional passa a ser importante apenas nessas linhas. Com estes novos gfs, e o modelo de atmosfera gerado anteriormente, recalculamos os valores de abundância para cada uma das linhas para, assim, verificarmos qual o seu efeito. Podemos conferir os resultados obtidos na tabela 3.3.

Tabela 3.3 – O efeito de diferentes valores da correção à clássica constante de van der Waals na abundância fornecida por linhas com grande largura equivalente. A tabela mostra o comprimento de onda, o elemento, a largura equivalente, a abundância fornecida com a correção igual a 2,00, igual a 1,00 e igual a 3,00. O valor normal, adotado, é o calculado com 2,00.

λ(Å)	elemento	LE(mÅ)	[elem./Fe] 2,00	[elem./Fe] 1,00	[elem./Fe] 3,00
4883,690	Y II	242,6	1,51	1,57	1,49
4900,124	ΥΠ	Y II 222,2 I		1,62	1,53
5087,426	087,426 Y II		1,27	1,32	1,25
5853,688	5853,688 Ba II		1,54	1,59	1,50
6141,727 Ba II		631,0	1,03	1,05	1,03
6496,908	Ba II	453,5	0,66	0,66	0,65

Como pode ser verificado o efeito médio é mínimo, com máximo de 0,06 dex para uma grande variação da constante. Novamente consideramos que esta não é uma fonte de erro importante, já que não é esperado tamanho erro no valor da correção. Desta maneira sua influência foi desprezada no cálculo da incerteza teórica.

Uma terceira possível fonte de erro que pode ser importante para os elementos pesados é a falta de dados sobre estrutura hiperfina (EHF). Como foi dito anteriormente o desdobramento hiperfino causa um alargamento extra nas linhas espectrais. Tal alargamento atua no núcleo Doppler atrasando a saturação, ou seja, com um novo mecanismo capaz de alargar a linha a saturação ocorrerá em um valor maior de largura equivalente. Desconsiderar este efeito de alargamento nos leva a superestimar a abundância fornecida pela linha. Neste sentido o efeito da EHF é semelhante ao efeito da microturbulência. Não temos uma maneira confiável de estimar a intensidade do efeito causado pela falta de EHF mas, considerando sua semelhança com a microturbulência, podemos estimar em qual intervalo de larguras equivalentes devemos esperar algum efeito. Para fazer esta estimativa adotamos o seguinte procedimento. Como o objetivo era testar o efeito nos elementos pesados escolhemos testar os efeitos na linha λ 6141,727 de Ba II, por esta ter potencial de excitação próximo à média dos elementos pesados. Novamente a estrela usada foi HR2392. Usamos esta linha com várias larguras equivalentes fictícias, no intervalo de 20 a 600 mÅ, variando a largura equivalente em passos de 20 mÅ. Para cada uma destas larguras investigamos qual o efeito na abundância de uma variação de 0,2 Km/s na microturbulência. O resultado pode ser visto na figura 3.7.

Figura 3.7 – Efeito na abundância causado em linhas de diferentes larguras equivalentes por mudanças no valor da microturbulência.

Na figura 3.7 podemos observar que um erro de 0,2 Km/s na microturbulência, mais de três vezes maior que a nossa incerteza em ξ , causa os maiores efeitos em larguras equivalentes entre 80 e 220 mÅ. Considerando que o efeito da EHF seja semelhante podemos concluir que ele atuará com maior intensidade neste mesmo intervalo de larguras equivalentes. Podemos concluir então que, se este efeito for importante, as linhas neste intervalo serão as que fornecerão os resultados mais incertos, porém sempre no sentido de uma superestimativa das abundâncias. Infelizmente não temos como testar a intensidade do efeito, muito menos como corrigi-lo, devido a falta de dados sobre EHF para estes elementos na literatura.

Finalmente, tendo testado diversas fontes de erro e caracterizado em detalhe qual a incerteza que elas impõem em nossos resultados, passaremos às abundâncias propriamente ditas. Apresentamos, na tabela 3.4, os valores de abundância para cada elemento em cada estrela, a incerteza observacional, σ_{obs} , que é a dispersão do valor médio fornecido pelas linhas e, também, a quantidade de linhas em que a estimativa é baseada. Os valores apresentados são as médias da abundância fornecida por cada linha. Apenas linhas que forneciam valor de abundância dentro de um critério 2σ do valor médio foram efetivamente usadas. Apenas estas linhas tiveram suas larguras equivalentes listadas no apêndice I. Após a tabela 3.4 apresentamos figuras com os padrões de abundância onde é mais direta a visualização das possíveis anomalias químicas, quando existentes. Para não subestimarmos o erro em nossas determinações a barra de erro nas figuras se refere sempre ao maior valor entre o erro teórico (dado na tabela 3.2) e o observado (dado na tabela 3.4), para cada elemento em cada estrela.

	HR 440		HR 649	4. 40	HR 1016
Na	-0,28	2	-0,09	2	-0,17 2
Mg	+0,02±0,07	3	-0,05±0,08	4	-0,07±0,05 4
Al	+0,04	2	-0,09	2	-0,12 2
Si	+0,01±0,07	15	-0,10±0,08	15	-0,12±0,07 14
Ca	-0,09±0,08	12	-0,06±0,08	11	-0,07±0,03 9
Sc	-0,03±0,09	7	-0,08±0,09	7	-0,13±0,08 7
Ti	+0,00±0,06	30	-0,02±0,07	34	-0,08±0,07 35
v	-0,08±0,06	11	-0,06±0,09	11	-0,16±0,05 11
Cr	0,10±0,05	25	-0,07±0,08	27	-0,09±0,07 24
Mn	-0,18±0,05	6	-0,20±0,07	6	-0,20±0,06 6
[Fe/H]	-0,34±0,07 12	29/13	-0,14 ±0,06	117/13	-0,11±0,06 119/13
Со	+0,02±0,06	9	-0,02±0,06	9	-0,09±0,10 10
Ni	-0,09±0,06	26	-0,16±0,06	28	-0,16±0,07 27
Cu	-0,06±0,17	3	-0,17±0,26	3	-0,09 2
Zn	+0,09	1	+0,05	1	+0,05 1
Sr	-0,16	1	+0,16	1	+0,12 1
Y	-0,23±0,09	5	+0,01±0,09	6	-0,11±0,04 6
Zr	-0,21±0,06	3	-0,04±0,25	3	-0,08±0,09 3
Ba	-0,28±0,13	3	+0,08±0,17	3	+0,00±0,12 3
La	-0,14±0,16	4	+0,05±0,20	3	-0,06±0,14 4
Ce	-0,10±0,06	5	+0,09±0,10	5	+0,05±0,10 5
Nd	-0,08	2	+0,06	2	+0,02 2
Sm	-0,19	1	-0,13	1	-0,12 1
Eu	and the spectral state of the second	0		0	-0,01 1
Gd	-0,32	1	-	0	-0,29 1

Tabela 3.4 – Abundância dos elementos, na notação [elemento/Fe], acompanhada de sua incerteza, σ_{obs} , e do número de linhas usadas. No caso do ferro temos o número de linhas de FeI/FeII.

· . . .

Tabela 3.4 - Continuação.

	HR 132	26	HR 239	92	HR 4608
Na	-0,31	2	-0,15	2	-0,26 2
Mg	-0,07±0,01	3	+0,15±0,19	4	-0,04±0,05 4
Al	+0,02	2	+0,03	2	+0,01 2
Si	-0,09±0,09	10	0,00±0,12	8	-0,07±0,04 10
Ca	-0,15±0,08	11	-0,07±0,08	10	-0,03±0,06 11
Sc	-0,18±0,08	7	-0,03±0,08	7	-0,02±0,04 7
Ti	-0,02±0,08	34	-0,02±0,14	30	+0,01±0,08 36
v	-0,05±0,18	10	-0,03±0,07	10	-0,11±0,05 9
Cr	-0,11±0,08	22	-0,09±0,17	16	-0,10±0,06 22
Mn	-0,12±0,09	4	-0,09±0,12	5	-0,24±0,13 6
[Fe/H]	0,00±0,07	119/13	-0,09±0,12	115/12	-0,35±0,05 117/13
Co	-0,12±0,07	10	-0,01±0,09	8	+0,00±0,06 9
Ni	-0,06±0,10	25	-0,13±0,13	24	-0,11±0,05 24
Cu	-0,03±0,10	3	-0,04	2	-0,01±0,42 3
Zn	-0,10	1	-0,07	1	+0,04 1
Sr	+0,03	1	+1,24	1	+0,60 1
Y	-0,06±0,09	6	+1,23±0,36	6	+0,44±0,10 6
Zr	$-0,07\pm0,11$	3	+1,04±0,46	3	+0,60 2
Ba	-0,27±0,16	3	+1,17±0,44	3	+0,54±0,31 3
La	-0,09±0,20	4	$+1,52\pm0,34$	4	+0,57±0,08 4
Ce	+0,06±0,15	5	+1,48±0,55	5	+0,68±0,25 5
Nd	+0,06	2	+0,91	2	+0,58 2
Sm	-0,06	1	+0,78	1	+0,20 1
Eu	+0,04	1	+0,53	1	+0,24 1
Gd	-0,17	1	+0,06	1	- 0

818	HR 5058		HR 5802	8115	HR 7321
Na	-0,10	2	-0,17	2	-0,28 2
Mg	-0,01±0,16	4	-0,03±0,07	4	-0,05±0,06 4
Al	+0,05	2	-0,03	2	-0,07 2
Si	+0,03±0,13	10	-0,07±0,05	11	-0,02±0,08 15
Ca	-0,10±0,14	8	-0,09±0,03	10	-0,10±0,06 12
Sc	-0,02±0,08	7	-0,07±0,05	7	-0,13±0,07 7
Ti	-0,02±0,13	32	-0,06±0,07	35	-0,06±0,06 34
v	+0,08±0,11	10	-0,06±0,04	10	-0,15±0,02 11
Cr	+0,04±0,28	21	-0,03±0,09	25	-0,06±0,11 26
Mn	-0,13±0,09	4	-0,17±0,08	6	-0,18±0,04 5
[Fe/H]	-0,12±0,13 10	9/11	-0,02±0,06 12	9/13	-0,19±0,06 125/13
Co	0,00±0,05	8	-0,08±0,06	10	-0,07±0,04 9
Ni	-0,08±0,14	23	-0,13±0,03	21	-0,12±0,05 26
Cu	+0,55	2	-0,03±0,05	3	+0,06±0,09 3
Zn	-0,21	1	-0,04	1	0,00 1
Sr	+1,38	1	+0,70	1	+0,51 1
Y	+0,99±0,33	6	+0,50±0,11	6	+0,29±0,12 6
Zr	+0,83±0,36	3	+0,48±0,04	3	+0,27±0,04 3
Ba	+0,93±0,36	3	+0,16±0,17	3	+0,31±0,39 3
La	+1,28±0,43	4	+0,27±0,10	4	+0,23±0,14 4
Ce	+1,05±0,53	5	+0,20±0,10	4	+0,32±0,17 5
Nd	+0,78	2	+0,12	2	+0,15 2
Sm	+0,56	1	0,00	1	+0,01 1
Eu	+0,49	1	0,00	1	- 0
Gd	-0.09	1	- 1	0	-0.24 1

Tabela 3.4 - Continuação.

Tabela 3.4 - Continuação.

Ċ.

100	HR 811	5	HR 82	04	HR 887	8
Na	-0,05	2	-0,21	2	-0,21	2
Mg	-0,10±0,04	4	+0,04±0,21	4	+0,19±0,09	3
Al	-0,07	2	+0,33	1	+0,29	1
Si	-0,05±0,09	14	-0,02±0,15	11	+0,16±0,04	12
Ca	-0,08±0,06	11	-0,05±0,11	7	+0,10±0,05	11
Sc	-0,18±0,09	7	-0,33±0,08	5	+0,05±0,06	7
Ti	-0,12±0,07	36	0,00±0,18	29	+0,34±0,13	30
v	-0,21±0,05	11	-0,13±0,12	9	+0,23±0,17	11
Cr	+0,17±0,12	27	-0,11±0,18	18	-0,05±0,08	23
Mn	-0,23±0,08	6	-0,16±0,32	7	-0,24±0,05	6
[Fe/H]	· -0,04±0,09	125/13	-0,09±0,12	105 / 10	-0,67±0,07	117/13
Со	-0,12±0,08	10	-0,03±0,22	8	+0,07±0,07	10
Ni	-0,16±0,05	22	-0,20±0,10	22	-0,06±0,07	24
Cu	+0,12±0,13	3	-0,03	2	+0,19	2
Zn	-0,03	1	+0,18	1	+0,14	1
Sr	+0,49	1	+2,21	1	+0,08	1
Y	+0,37±0,10	6	+1,66±0,45	5	-0,02±0,13	5
Zr	+0,22±0,04	3	+1,00±0,60	3	-0,07±0,15	3
Ba	+0,31±0,26	3	+1,08±0,39	3	-0,38±0,14	3
La	+0,19±0,18	4	+1,32±0,57	4	-0,12±0,07	4
Ce	+0,23±0,16	5	+1,48±0,71	5	-0,08±0,20	5
Nd	+0,11	2	+1,01	2	+0,10	2
Sm	-0,11	1	+0,16	1	-0,07	1
Eu	-0,03	1	+0,02	1	+0,24	1
Gd	-0,23	1	-	0	-0,29	1

Tabela 3.4 - Continuação.

	HD 205011		
Na	-0,21	2	
Mg	-0,08±0,04	3	
Al	+0,01	2	
Si	+0,05±0,09	11	
Ca	-0,12±0,06	11	
Sc	-0,15±0,10	7	
Ti	-0,12±0,09	33	
v	-0,18±0,04	11	
Cr	-0,03±0,20	25	
Mn	-0,21±0,09	7	
[Fe/H]	-0,14±0,09	131/13	
Co	-0,12±0,09	10	
Ni	-0,15±0,05	25	
Cu	+0,12±0,14	3	
Zn	-0,02	1	
Sr	+0,89	1	
Y	+0,90±0,32	5	
Zr	$+0,57\pm0,16$	3	
Ba	$+0,66\pm0,34$	3	
La	$+0,62\pm0,20$	4	
Ce	+0,63±0,33	5	
Nd	+0,34	2	
Sm	+0,09	1	
Eu	+0,13	1	
Gd	-0,13	1	

118, 440 [115 9362 oo 5 [2]c

Figura 3.8 – O padrão de abundâncias da estrela HR440.

HR 440 é uma das gigantes normais incluídas em nossa amostra. É uma estrela relativamente pobre em metais, [Fe/H] = -0,34. Podemos notar em seu padrão de abundâncias que os elementos seguem um padrão aproximadamente solar. Entre os elementos leves temos a exceção do sódio, e entre os elementos do grupo do ferro a exceção é o manganês. Os dois elementos são deficientes em uma margem de 2σ o que significa uma certeza estatística de 95%. Entre os elementos pesados, Y, Zr, Ba e Gd são deficientes dentro de 1 σ . Mas se consideramos uma margem de 2σ temos que considerar suas abundâncias normais.

60

HR 649 (HD 13611 ou ξ Cet)

HR 649 é classificada na literatura como *mild barium star*. Esta estrela é um sistema binário. Sua companheira anã branca foi identificada com o *IUE* (Böhm-Vitense & Johnson 1985). É portanto uma das estrelas que dariam suporte ao cenário hoje aceito para explicar as anomalias nas estrelas de bário e nas *mild barium star*. As abundâncias de alguns elementos foram previamente determinada por Zacs (1994), com dados e métodos de pior qualidade que os nossos. Ele reporta Y, Ba e La enriquecidos, mas com base em uma ou duas linhas de cada elemento. Ele também encontra Zr normal baseado em quatro linhas. Em nosso trabalho encontramos estes e outros elementos pesados seguindo um padrão normal. Com exceção do Zr nossos resultados são baseados em uma quantidade maior de linhas. Além disso nossos espectros são de alta sinal ruído e usamos métodos de medida de largura equivalente muito mais sofisticados. Baseado nestes fatos somos levados a concluir que a estrela HR649 não é uma estrela de bário, mas sim uma gigante normal. Sendo suas peculiaridades uma deficiência a 2σ de manganês e a 1σ de sódio e níquel.

HR 649

Figura 3.9 - O padrão de abundâncias de HR 649.

HR 1016 (HD 20894)

Figura 3.10 - O padrão de abundâncias de HR1016.

A estrela HR1016 foi analisada por Pilachowski (1977). Não encontramos registros na literatura de detecção de anã branca ou de variação de velocidade radial. Quimicamente podemos notar que esta estrela é um caso semelhante a HR649. Anteriormente classificada como *mild barium star, s*eu padrão de abundância revela que se trata de uma gigante normal. Nesta estrela apenas sódio, vanádio e manganês parecem ser deficientes dentro de um critério 2σ .

HR 1326 (HD 26967 ou α Hor)

A terceira gigante normal incluída em nossa amostra além de HR440 e ε Vir. O padrão de abundâncias mostra um comportamento solar. A exceção é novamente o sódio, cuja deficiência é significativa em 2 σ . Em 1 σ apenas o cálcio e o bário mostramse deficientes. Dentre as estrelas de nossa amostra é a que têm metalicidade mais próxima da solar.

Tabela 3.11 - O padrão de abundâncias de HR1326.

HR2392 (HD 46407)

HR 2392 é um caso clássico de estrela de bário. Faz parte do primeiro grupo identificado por Bidelman e Keenan (1951). Foi classificada por Warner (1965) quanto à intensidade de suas anomalias químicas como Ba3 em uma escala de 1 a 5, onde 1 indica fraca intensidade e 5 a maior intensidade. De acordo com McClure (1983) a estrela possui velocidade radial variável e período orbital de 457,7 \pm 2,7 dias. No entanto a busca de uma companheira anã branca, por meio da detecção de excesso de fluxo no ultravioleta, levou a resultados negativos com o *IUE* (Dominy & Lambert 1983) e inconclusivos com o *Hubble* (Böhm-Vitense et al. 2000). Os elementos leves têm comportamento solar com exceção do sódio. Zacs (1994) também analisou esta estrela e encontrou excessos dos elementos do processo-s. No nosso caso encontramos para esta estrela excessos em torno de +1,2 dex para elementos do processo-s. Para os elementos do processo-r samário e európio parecem estar enriquecidos enquanto o gadolínio apresenta abundância normal. Lembramos no entanto que a abundância dos dois elementos se baseia em apenas uma linha cada, sendo portanto muito incerta.

Figura 3.12 - O padrão de abundâncias da estrela HR2392.

HR 4608 (HD 104979 ou o Vir)

Figura 3.13 - O padrão de abundâncias de HR4608.
HR 4608 é classificada como *mild barium star*. McClure (1983) não encontrou indícios de velocidade radial variável, mas Böhm-Vitense et al. (2000) encontraram excesso de fluxo no UV, que pode ser atribuído a uma anã branca. Notamos que, novamente, o padrão dos elementos mais leves segue o padrão solar com exceção de sódio e manganês. Os elementos do processo-s se encontram enriquecidos em torno de +0,7 dex.

HR5058 (HD116713)

Figura 3.14 - O padrão de abundâncias de HR5058.

HR5058 é outro caso clássico de estrela de bário. Esta estrela também faz parte do grupo identificado por Bidelman & Keenan (1951). Foi classificada por Warner (1965) como Ba3. Böhm-Vitense et al. (2000) afirmam terem encontrado excesso de fluxo no UV, o que pode ser atribuído a uma anã branca. Esta estrela foi analisada por Luck & Bond (1991), que encontraram excessos semelhantes aos nossos para Y, Zr, Ce e Nd. O que mais se destaca nesta estrela é o excesso de cobre encontrado.

Figura 3.15 - Padrão de abundâncias da estrela HR5802

HR5802 é citada na literatura como outra *mild barium star*. Warner (1965) classifica esta estrela como Ba1. McClure (1983) encontra que a estrela possui velocidade radial variável. Os elementos leves seguem o padrão solar, com exceção do sódio e do manganês, que estão um pouco deficientes. Nesta estrela os elementos mais leves do processo-s (Sr, Y, Zr) são apreciavelmente mais abundantes que os mais pesados (Ba, La, Ce, Nd). Zacs (1994) analisou esta estrela e seus resultados para os elementos do processo-s concordam com os nossos, dentro dos erros, com duas exceções. Ele encontra o zircônio com abundância solar e uma abundância muito maior que a nossa para o bário.

HR7321 (HD 181053 ou 24 Aql)

Figura 3.16 - Padrão de abundâncias da estrela HR7321.

A estrela HR7321 é um outro exemplo de *mild barium star*. A abundância dos elementos leves segue um padrão solar com exceção do sódio, do vanádio e do manganês. O acordo entre nossos resultados e os de Zacs (1994) é bom, dentro dos erros, com exceção do zircônio, para o qual Zacs encontra deficiência.

HR 8115 (HD202109 ou ζ Cyg)

HR8115 é uma outra *mild barium star*. Dominy & Lambert (1983) encontraram excesso de fluxo no UV, o que pode ser atribuído a uma anã branca. Os elementos vanádio e manganês estão deficientes em 2σ . Sr, Y e Zr têm um pequeno excesso e Ba, La e Ce estão marginalmente próximos de uma abundância solar.

Figura 3.17 - Padrão de abundâncias da estrela HR8115.

HR8204 (HD204075 ou ζ Cap)

HR8204 é uma estrela de bário clássica. Também faz parte do primeiro grupo de estrelas de bário identificado por Bidelman e Keenan (1951) e foi o primeiro sistema identificado com excesso de fluxo no UV (Böhm-Vitense 1980). É classificado por Warner (1965) como Ba2. Os elementos leves seguem o padrão solar com exceção do sódio e do escândio, em deficiência, e do alumínio, em excesso. Encontramos excesso de estrôncio que ultrapassa 2,0 dex, e todos elementos do processo-s com excessos em torno de 1,0 dex. Os elementos do processo-r estão normais. Notar que a escala para o padrão desta estrela é diferente da escala para as demais.

Figura 3.18 - Padrão de abundâncias da estrela HR8204.

HD205011

A estrela HD205011 é mais uma das estrelas de bário que foram analisadas por Zacs (1994). Sua natureza binária é proposta por McClure (1983), que encontra velocidade radial variável para esta estrela. Zacs encontra excessos para os elementos do processo-s mas com exceção, novamente, do zircônio. Encontramos Na, V e Mn deficientes em 2σ . Encontramos ainda alguns elementos, como Ca, Co e Ni, ligeiramente deficientes em 1σ . Os elementos do processo-s estão em excesso e os elementos do processo-r estão normais.

Figura 3.19 - O padrão de abundâncias da estrela HD205011.

HR8878 (HD220009 ou 7 Psc)

Figura 3.20 - O padrão de abundâncias da estrela HR8878.

70

A estrela HR8878 merece uma atenção especial. É a estrela mais deficiente em metais de nossa amostra, com [Fe/H] = -0,67±0,07. Mostra um padrão de abundâncias enriquecido em elementos como titânio e deficiente em elementos como manganês e bário. É um padrão esperado para estrelas de baixa metalicidade, devido à própria evolução química da galáxia. Quanto aos elementos do processo-s não encontramos excessos. Na verdade, em grande desacordo com Zacs (1994), que encontra excesso de bário, nossos resultados mostram deficiência deste elemento. Com estas determinações HR 8878 é mais uma estrela que deve ser considerada uma gigante normal.

Por fim devemos fazer ainda alguns comentários sobre as abundâncias. A deficiência de sódio encontrada na maioria das estrelas é um efeito conhecido na literatura. Mesmo em estrelas de aglomerados globulares encontra-se dispersão entre os resultados para o sódio de estrela para estrela (Sneden et al. 2000). Este efeito pode refletir efeitos nucleossintéticos da própria estrela. O manganês por sua vez é um elemento que esperase ligeiramente deficiente em estrelas de baixa metalicidade, como são algumas estrelas de nossa amostra. Portanto a deficiência destes dois elementos, encontradas de maneira quase sistemática em nossa amostra, provavelmente se devem a efeitos conhecidos. Lembramos ainda que nossos resultados usam a aproximação de que o equilíbrio termodinâmico local (ETL) representa o ambiente onde as linhas foram formadas. Sabese que nas atmosferas estendidas de gigantes podem ocorrer desvios do ETL, que afetariam principalmente linhas de espécies neutras com baixo potencial de ionização. Porém, Tomkin & Lambert (1983) mostram que este efeito se cancela quando é feita uma análise diferencial em relação a outra gigante semelhante.

Uma característica marcante dos nossos resultados são as grandes barras de erro encontradas para alguns elementos, em especial o cério (Ce), ítrio (Y) e lantânio (La), principalmente nas estrelas HR8204, HR2392 e HR5058, aquelas que parecem apresentar os maiores excessos de elementos do processo-s. Barras de erro estas que podem chegar a, desconfortantes, $\pm 0,71$ dex (Ce em HR8204). Claramente parece haver algum problema com estes elementos. Como pode ser percebido foi uma preocupação constante, neste trabalho, manter as possíveis fontes de erro controladas e bem determinadas, o que torna este resultado ainda mais intrigante. Para os elementos em questão encontramos incertezas teóricas próximas de 0,2 dex. Fazendo a hipótese de que esta incerteza reflete as principais fontes de erro temos que uma incerteza em 2 σ de 0,4 dex deve ser considerada minimamente razoável e explicável. Sendo assim a barra de

erro em alguns casos deixa de ser uma grande preocupação. Mesmo assim ainda nos restam casos de erros de 0,5, 0,6 e 0,7 dex.

Como estes elementos são representados por linhas muito intensas, onde a largura equivalente cresce devido ao desenvolvimento de asas lorentzianas, a primeira hipótese que surge seria de inconsistência no valor da constante de amortecimento. No entanto, como vimos anteriormente, a mudança no valor da constante de van der Waals causa efeitos de pequena intensidade, incapazes de explicar as barras de erro observadas.

Uma segunda hipótese seria de problemas devido à falta de EHF. Como vimos a falta de EHF deve fazer com que linhas no intervalo de 80 a 220 mÅ fornecam valores de abundância maiores que o correto. Com o objetivo de averiguar esta possibilidade construímos gráficos de abundância contra largura equivalente para os elementos em questão. O resultado é deveras intrigante e, a princípio, nada esclarecedor. Como podemos verificar na figura 3.21, para o Ce na estrela HR8204, existe uma clara tendência de abundância com largura equivalente. Esta tendência se repete, em vários casos, também para o lantânio e o ítrio. Este efeito não ocorre para todas as estrelas, mas também acontece em estrelas onde a barra de erro parece estar sobre controle, como mostra a figura 3.22, para o Y na estrela HR8115. Curiosamente este efeito nunca ocorre para o bário, que é o elemento com as linhas de maiores larguras equivalentes. Na verdade o bário mostra sistematicamente o mesmo comportamento para a todas estrelas. A figura 3.23 mostra o comportamento do bário nas estrelas HR5058 e HR2392. O efeito esperado por problemas na EHF deveria, em alguns casos, produzir resultados inversos à tendência observada. Por este motivo, e pelo fato de linhas fora do intervalo de 80 a 220 mÅ mostrarem o mesmo comportamento, somos levados a acreditar que o efeito observado não se deve à falta de inclusão da EHF na análise. Verificamos ainda que adotar o padrão de abundâncias apenas a partir de linhas fora do intervalo de 80 a 220 mÅ, não diminui o σ observado, nem altera, de maneira significativa, as abundâncias finais adotadas.

Tendo descartado estas possíveis fontes nos resta pouco a especular. Talvez estejamos observando algum efeito sistemático do nosso método de medida de largura equivalente, que afete larguras medidas com perfil puramente gaussiano e com perfil de Voigt. Ou talvez algum mecanismo de alargamento que não consideramos em nossas análise. Em todo caso não nos é possível determinar qual a fonte dos erros, e, até o presente momento, o que podemos fazer é aceitar as barras de erro como representações corretas.

72

Figura 3.21 – Gráfico da abundância de cério contra largura equivalente para a estrela HR8204. Podemos notar claramente a existência de tendência com largura equivalente.

Figura 3.22 – Gráfico da abundância de ítrio contra largura equivalente para a estrela HR8115. Podemos notar claramente a existência de tendência com largura equivalente.

Figura 3.23 – Abundância contra largura equivalente para o bário nas estrelas HR2392, círculos fechados, e HR5058, círculo aberto. Podemos notar que o comportamento contra largura equivalente é idêntico. Este mesmo comportamento se repete para todas as estrelas.

3.2 - Parâmetros evolutivos

Nesta seção iremos determinar dois parâmetros estelares de extrema importância. Um deles é a massa da estrela. A massa é um dos parâmetros básicos que, em conjunto com a composição química inicial, determinam a evolução de uma estrela, se desconsideramos complicações como rotação e campos magnéticos. A massa é um parâmetro que só pode ser determinado de maneira fundamental em poucos casos. O segundo parâmetro que iremos derivar nesta seção é a idade da estrela. É um parâmetro que só pode ser determinado de maneira independente para o Sol. Isso porque podemos fazer datações em rochas da Terra e em meteoritos e supor que sua idade não é muito diferente da idade do Sol e do Sistema Solar.

Iremos determinar massas e idades para nossa amostra de maneira indireta, fazendo uso da temperatura efetiva derivada anteriormente e da luminosidade da estrela, que será determinada adiante. Com essas duas informações iremos posicionar os objetos no diagrama HR. Com a superposição de isócronas e trajetórias evolutivas teóricas (Schaerer et al. 1993), nestes diagramas, podemos inferir as idades e massas, respectivamente. Mas, como foi dito acima, a composição química é um fator importante na evolução de uma estrela. As isócronas e trajetórias evolutivas são, portanto, sensíveis à composição química. Iremos utilizar diagramas teóricos com dois valores de metalicidade, um valor próximo ao solar ([Fe/H] = +0,03) e um valor de baixa metalicidade ([Fe/H] = -0,37). Iremos depois interpolar linearmente o valor para a metalicidade da estrela com ajuda dos valores encontrados em cada diagrama teórico. Para HR8878 que, é a estrela mais pobre em metais da amostra, usamos ainda diagramas de [Fe/H] = -0,67.

A luminosidade da estrela, na verdade, a razão entre sua luminosidade e a solar, pode ser obtida com o seguinte procedimento. Com a paralaxe π e a magnitude aparente Tycho V_T, ambas do *Hipparcos* (ESA 1997), podemos calcular a magnitude absoluta M_{VT}, no sistema Tycho, pela relação (3.2).

$$M_{\rm VT} = V_{\rm T} + 5 + 5\log\pi$$
(3.2)

Com os valores de correção bolométrica de Landolt-Börnstein (1982) podemos transformar a magnitude absoluta em magnitude bolométrica.

$$M_{BOL} = M_{VT} + CB \tag{3.3}$$

Finalmente sabendo que neste sistema a magnitude bolométrica do Sol é $M_{BOL} = 4,81$, podemos encontrar as razões entre as luminosidades da estrela e do Sol com a equação (3.4).

$$\log (L_{\star}/L_{\odot}) = -0.4 (M_{BOL_{\star}} - M_{BOL_{\odot}})$$
(3.4)

Na tabela 3.5 listamos os valores da paralaxe π , em milissegundos de arco, da correção bolométrica CB, da magnitude aparente V_T, a magnitude absoluta M_{VT}, as magnitudes bolométricas e as razões de luminosidade de cada estrela. Sabendo que a incerteza média associada aos valores de V_T é de cerca de $\sigma_{VT} = 0,005$, que a incerteza

associada aos valores de correção bolométrica é da ordem de $\sigma_{CB} = 0,01$ e com as incertezas nas paralaxes, dadas pelo Hipparcos (ESA 1997), podemos estimar a incerteza na magnitude bolométrica e na luminosidade fazendo a composição destes erros. Os valores destas incertezas também estão listados na tabela 3.5.

Tabela 3.5 - Magnitude	aparente	V _T ,]	paralaxe	π,	em	milissegundos	de	arco,	magnitude	absoluta	M _{VT} ,
correção bolométrica CB	, as magni	tude	bolomét	ric	aea	razão de lumir	iosi	dade d	de cada estre	ela.	

Estrela	VT	π (mas)	M _{VT}	CB	M _{BOL}	σ_{Mbol}	$\log(L_{\star}/L_{\odot})$	$\sigma_{(\log L_{\star}/L_{\odot})}$
HR 440	4,05	22,15	0,78	-0,34	0,44	0,04	1,75	0,02
HR 649	4,47	9,01	-0,76	-0,22	-0,98	0,21	2,32	0,09
HR 1016	5,60	7,75	0,04	-0,23	-0,19	0,14	2,00	0,05
HR 1326	3,98	27,85	1,21	-0,39	-0,81	0,03	1,60	0,01
HR 2392	6,39	8,25	0,97	-0,28	0,68	0,16	1,65	0,07
HR 4608	4,22	19,08	0,63	-0,29	0,34	0,06	1,79	0,03
ε Vir	2,95	31,90	0,47	-0,23	0,24	0,04	1,83	0,02
HR 5058	5,24	15,73	1,23	-0,34	0,89	0,08	1,57	0,03
HR 5802	5,36	13,89	1,07	-0,26	0,82	0,09	1,60	0,04
HR 7321	6,52	6,68	0,64	-0,33	0,31	0,21	1,80	0,08
HR 8115	3,31	21,62	-0,01	-0,29	-0,31	0,03	2,05	0,01
HR 8204	3,86	8,19	-1,57	-0,18	-1,76	0,18	2,63	0,07
HD 205011	6,54	6,31	0,54	-0,34	0,20	0,15	1,85	0,06
HR 8878	5,21	9,56	0,11	-0,52	-0,41	0,13	2,09	0,05

Com o valor do logaritmo da luminosidade, tabela 3.5, e do logaritmo da temperatura efetiva, calculado a partir dos valores da tabela 2.3, podemos posicionar nossas estrelas no diagrama HR As figuras 3.24 e 3.25 mostram os digramas com a superposição dé isócronas e de trajetórias evolutivas respectivamente. Para ilustrar mostramos aqui apenas figuras com os diagramas teóricos de metalicidade próxima à solar. HR8878 não foi incluída em nenhum dos gráficos por ter metalicidade muito baixa.

Figura 3.24 – Diagrama HR com isócronas (Schaerer et al. 1993) para metalicidade solar. As estrelas da amostra estão identificadas na figura.

Figura 3.25 – Diagrama HR com trajetórias evolutivas (Schaerer et al. 1993) para metalicidade solar. As estrelas da amostra estão identificadas na figura.

Estrela	Massa(M _o)	Idade(10 ⁸ anos)	log g _{astr}	$\sigma \log g_{astr}$
HR440	1,91	8,32	2,64	0,03
HR649	3,59	1,38	2,47	0,10
HR1016	3,04	2,40	2,70	0,07
HR1326	1,53	13,49	2,65	0,03
HR2392	2,26	4,90 - 5,25	2,87	0,08
HR4608	2,25	4,17 - 6,46	2,72	0,04
εVir	2,89	2,82	2,85	0,03
HR5058	1,88	9,12	2,82	0,05
HR5802	2,35	5,01	2,97	0,05
HR7321	2,17	4,27 - 6,61	2,66	0,10
HR8115	2,98	2,40 - 2,57	2,58	0,03
HR8204	4,19	0,98 - 1,12	2,27	0,09
HD205011	2,23	4,57 - 6,61	2,61	0,08
HR8878	1,00	61,66	1,87	0,07

Tabela 3.6 – Massas e idades derivadas com os diagramas teóricos. Também listamos a gravidade superficial astrométrica derivada pela relação 3.5.

A tabela 3.6 lista os valores interpolados de massa e idade para cada estrela. Algumas estrelas têm duas estimativas de idade, uma inferior e outra superior. Isto ocorre pelo fato destas estrelas se posicionarem no diagrama HR em pontos que admitem mais de uma solução, devido aos laços das isócronas. Na mesma tabela incluímos ainda uma estimativa da gravidade superficial obtida com as massas calculadas pelos diagramas, o que pode ser feito da seguinte maneira. Por meio de relações astronômicas básicas podemos chegar a seguinte equação.

$$\log(g_{\star}/g_{\odot}) = \log(M_{\star}/M_{\odot}) + 4\log(T_{ef_{\star}}/T_{ef_{\odot}}) - 0,4(M_{bol_{\odot}} - M_{bol_{\star}})$$
(3.5)

Onde g é a gravidade superficial, M é a massa, T_{ef} é a temperatura efetiva e M_{bol} é a magnitude bolométrica. Adotando os parâmetros do modelo canônico para o Sol, $T_{ef_{\odot}}$ =

5777K, log $g_{\odot} = 4,44$ e a magnitude no sistema Tycho, $M_{bol_{\odot}} = 4,81$, podemos estimar a gravidade para a estrela. Os resultados estão listados na tabela 3.6. A incerteza em 1 σ neste valor de gravidade superficial foi estimada fazendo a temperatura e a magnitude bolométrica variarem de 1 σ e entrando com estes valores na relação 3.5 e, então, recalculando a gravidade. Podemos notar que o acordo entre as duas determinações de gravidade é bom, dentro dos respectivos erros, a exceção de HR8204, que, pela análise espectroscópica, têm gravidade menor que a estimada astrometricamente.

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

4.1 – O processo-s nas estrelas

A descoberta de Tc na atmosfera de estrelas S (Merril 1952) levou à proposta do processo-s. Hoje é bem estabelecido na literatura que a região mais provável de ocorrência do processo-s é a região entre a camada de queima de H e a de queima de He nas estrelas do AGB. Além das estrelas S outras classes de estrelas foram identificadas com excessos dos elementos do processo-s. Alguns destes objetos exibem a presença de Tc, como as estrelas S e MS, evidência de que se tratam de estrelas que estejam no AGB. Outras classes de objetos não exibem o Tc, como algumas estrelas S, as gigantes e anãs de bário e as gigantes e subgigantes CH. As gigantes e subgigantes CH são objetos de população II equivalentes às gigantes e anãs de bário. Como estes objetos são marcados pela ausência de Tc a hipótese de transferência de material enriquecido por uma estrela companheira é favorecida.

Também é bem estabelecido na literatura que, na região entre as camadas de queima de H e He, devido aos sucessivos fenômenos de dragagem entre os pulsos térmicos, o material do interior estelar sofre ação de uma distribuição de exposição exponencial de nêutrons. A exposição de nêutrons τ é definida como

$$\tau = \int \mathbf{N}(\mathbf{n}) \, \mathbf{v} \, \mathrm{dt} \tag{4.1}$$

Onde N(n) é a densidade numérica de nêutrons e v é a velocidade média relativa dos nêutrons. A integral é feita no tempo em que o material permanece exposto ao fluxo de nêutrons. A unidade comum de τ é o milibarn⁻¹. Devido aos sucessivos fenômenos de dragagens a fração do material $\rho(\tau)$ que terá atravessado uma exposição de nêutrons τ é dada por:

$$\rho(\tau) = \exp\left(\tau/\tau_0\right)$$

Onde τ_0 é a exposição média de nêutrons. Além do cenário das AGBs já foi proposto que o processo-s poderia ocorrer em outra situação. Foi sugerido que após o flash do hélio poderia haver mistura de material processado no interior com a camada de queima de H. Este cenário daria origem a material enriquecido por meio de uma exposição única de nêutrons.

Para que ocorra exposição do material a nêutrons é preciso que haja uma fonte potente de nêutrons, capaz de, em última instância, produzir os excessos de abundâncias observados. Esforços teóricos foram levados a cabo no decorrer dos anos para vincular modelos de enriquecimento pelo processo-s com as observações. É bem conhecido que a reação $^{22}Ne(\alpha,n)^{25}Mg$ se torna ativa em algumas AGBs, por isso, foi sugerida como a provável fonte de nêutrons para os excessos das estrelas de bário. Esta reação precisa de temperaturas elevadas para se tornar potente, desta forma ela só é prevista como significativa em estrelas de massa intermediária. Existem diversas evidências, as mais fortes de natureza isotópica, de que a reação do ²²Ne não é capaz de explicar algumas características observadas em estrelas enriquecidas em elementos do processo-s. (Tomkin & Lambert 1979, Tomkin & Lambert 1983, Malaney 1987a). Hoje acredita-se que a reação ${}^{13}C(\alpha,n){}^{16}O$ seja a grande responsável pelo processo-s. No entanto tal reação é prevista como potente apenas em estrelas AGBs de baixa massa com baixa metalicidade. Ainda não se sabe como ela pode se tornar importante para estrelas de massa e metalicidade maiores. Devido a esta falta de sustentação teórica trabalhos recentes, sobre a produção de elementos pelo processo-s, parametrizam a quantidade de ¹³C usada na reação (Busso et al. 1995).

Estes dois problemas, da natureza da exposição (única ou exponencial) e da natureza da fonte podem ser testados. A informação sobre a natureza da fonte é melhor determinada por razões isotópicas de elementos como o Mg. Infelizmente não temos neste trabalho tal informação. Podemos, no entanto, testar a natureza da exposição. Até o momento as observações disponíveis na literatura não são suficientemente acuradas para determinar a natureza da exposição de nêutrons, se única ou exponencial.

(4.2)

81

4.2 - Aplicação dos modelos teóricos do processo-s

Cowley & Downs (1980) disponibilizaram uma série de previsões teóricas para alguns parâmetros de exposições únicas e exponenciais. Neste mesmo trabalho eles chegam a conclusão de que não eram capazes de decidir qual o melhor cenário. Isto foi devido às incertezas das determinações de abundância que estavam disponíveis. As previsões analíticas de Cowley & Downs eram baseadas em uma única possibilidade de caminho a ser seguida pelos elementos que estavam sendo construídos pelo processo-s. Malaney (1987a e 1987b) apresenta novos cálculos, considerando diferentes ramificações do processo-s, seções de choque atualizadas e a dependência temporal da fonte de nêutrons. Seus resultados são, portanto, mais robustos que os anteriores. Malaney (1987a) ainda encontra problemas com as incertezas das observações. Ajustando suas previsões teóricas a observações disponíveis na literatura ele encontra ajustes diferentes para a mesma estrela, HR774, quando usa resultados de autores diferentes (Smith 1984 e Tomkin & Lambert 1983).

Usando as previsões disponibilizadas por Malaney, para exposição única (1987a) e exposição exponencial (1987b), iremos determinar quais os parâmetros de exposição de nêutrons que melhor ajustam nossos resultados. Iremos também verificar se nossas barras de erro nas abundâncias permitem decidir sobre qual cenário ajusta melhor os excessos de abundância das estrelas de bário.

Os dados de Malaney dizem respeito apenas ao enriquecimento interno da AGB. Caso a própria estrela de bário tenha produzido os elementos eles devem ser levados para a fotosfera e consequentemente diluídos. Se o cenário binário for correto, além de uma primeira diluição, na fotosfera da AGB, o material ainda sofrerá diluição ao ser acretado pela estrela de bário. Em todo caso as abundâncias observadas são composições do material produzido pelo processo-s com o material das atmosferas das estrelas. Para refletirem apenas o enriquecimento original da AGB devem sofrer algum tratamento e, assim, permitir comparação com os modelos disponíveis na literatura. Usaremos aqui o mesmo tratamento adotado por Tomkin & Lambert (1983). Faremos a hipótese de que o material enriquecido é misturado com material de composição solar. Para transformar as abundâncias observadas no enriquecimento real usamos a equação 4.3, seguindo Tomkin & Lambert (1983):

$N_{EL}^{S} = C (y-1) N_{EL}^{\odot}$

Onde N_{EL}^{S} é o enriquecimento devido ao processo-s na AGB, portanto o valor que, em logaritmo, deve ser comparado com as previsões; y é obtida das abundâncias observadas, onde log y = [elemento/H] – [Fe/H], ou seja é a notação comumente adotada para listar as abundâncias; N_{EL}° é a abundância solar do elemento em questão. C é uma constante que engloba o fator de diluição. Tomkin & Lambert (1983) mostram que é razoável que C seja o mesmo para todos os elementos. Usamos a constante C como um fator de escala, pois as previsões são dadas normalizadas numa escala onde log N(Sr) = 20,00. Evitamos assim especular sobre os fatores de diluição. Vale notar que não encontraremos o enriquecimento absoluto de elementos do processo-s, mas sim um enriquecimento relativo ao estrôncio. Determinamos o valor de C ajustando o Sr e usamos este mesmo valor para transformar os outros elementos. As abundâncias solares usadas aqui são de Anders & Grevesse (1989).

Neste trabalho não iremos comparar os padrões de cada estrela individualmente com as previsões teóricas. Com respeito à magnitude dos excessos observados dividimos as estrelas da amostra em três grupos. Um grupo de estrelas normais, HR440, HR649, HR1016, HR1326 e HR8878, que não apresentam excessos dos elementos do processo-s. Um grupo de estrelas que apresentam excessos moderados, HR4608, HR5802, HR7321, HR8115 e HD205011. E, por fim, um grupo com as estrelas que apresentam grandes excessos de abundância, HR2392, HR5058 e HR8204. Iremos usar padrões de abundância médios, dos dois grupos que apresentam excessos, para fazer a comparação com os modelos teóricos. Na tabela 4.1 apresentamos os valores médios de abundância dos elementos pesados (log y), um σ observacional devido à dispersão dos valores entre as estrelas e um σ teórico devido à composição das incertezas associadas aos valores individuais, para as estrelas do grupo com grandes excessos. Listamos também o valor de N_{EL}^S calculado de acordo com (4.3) e o valor solar de Anders & Grevesse (1989), numa escala onde para o hidrogênio, log H = 12,00. Na tabela 4.2 listamos o mesmo para o padrão médio para o grupo das estrelas com excessos moderados.

Tabela 4.1 – Resultados médios para o grupo de estrelas com os maiores excessos de abundâncias. Listamos a abundância média, incertezas observacional e teórica, a abundância solar e a abundância transformada para o enriquecimento real das estrelas já na escala onde log N(Sr) = 20,00.

Elemento	log y	$\sigma_{obs.}$	σ _{teórico}	log N _{EL} [®]	log N _{EL} ^S
Sr	1,61	0,52	0,11	2,90	20,00
Y	1,29	0,34	0,22	2,24	19,01
Zr	0,96	0,11	0,28	2,60	19,01
Ba	1,06	0,12	0,23	2,13	18,65
La	1,37	0,13	0,28	1,22	18,07
Ce	1,34	0,25	0,35	1,55	18,37
Nd	0,87	0,08	0,10	1,50	17,81
Sm	0,50	0,31	0,10	1,00	16,84
Eu	0,35	0,28	0,10	0,51	16,10

Tabela 4.2 – Resultados médios para o grupo de estrelas com os excessos moderados. Listamos a abundância média, incertezas observacional e teórica, a abundância solar e a abundância transformada para o enriquecimento real das estrelas já na escala onde log N(Sr) = 20,00.

Elemento	log y	$\sigma_{obs.}$	σ _{teórico}	log N _{EL} [⊙]	log N _{EL} ^S
Sr	0,64	0,16	0,08	2,90	20,00
Y	0,50	0,24	0,08	2,24	19,15
Zr	0,43	0,17	0,06	2,60	19,40
Ba	0,40	0,20	0,14	2,13	18,88
La	0,39	0,23	0,08	1,22	17,96
Ce	0,41	0,23	0,10	1,55	18,32
Nd	0,26	0,20	0,08	1,50	17,99
Sm	0,04	0,12	0,08	1,00	16,56
Eu	0,09	0,12	0,07	0,51	16,45

Os valores da última coluna das tabelas 4.1 e 4.2 é que devem ser comparados com as previsões. Para julgar a qualidade com que as previsões ajustam os dados observados seguiremos o procedimento de Cowley & Downs (1980). Eles adotam o parâmetro estatístico D, definido a seguir:

$$D = \Sigma \left(O_i + \delta - T_i\right)^2 \tag{4.4}$$

Onde O_i é a abundância observada e T_i a prevista para o elemento i. O parâmetro δ é definido abaixo e é usado para minimizar a quantidade D.

$$\delta = (1/N) \Sigma (T_i - O_i)$$
(4.5)

Onde N é o número de elementos que se está ajustando. Estatisticamente qualquer resultado menor que o valor esperado de D deve ser considerado satisfatório para o ajuste. O valor esperado de D, <D>, é definido abaixo.

$$\langle D \rangle = (N-1) \sigma^2 \tag{4.6}$$

Onde σ é uma incerteza representativa das abundâncias. Rigorosamente cada elemento tem seu próprio σ . Para efeito de nossos cálculos escolhemos um único σ representativo. Para cada elemento adotamos o maior valor de σ , observado ou teórico, da tabela 4.1. Fizemos, então, a média destes valores. Este valor médio foi adotado como σ representativo. Isso significa $\sigma = 0,30$ dex para o primeiro grupo e $\sigma = 0,19$ dex para o segundo. Sendo N = 9, temos, para as estrelas com grandes excessos $\langle D \rangle = 0,72$ e para o outro grupo $\langle D \rangle = 0,29$.

Malaney (1987a) lista modelos teóricos para diversos valores de τ , exposição única, e Malaney (1987b) modelos de exposição exponencial para diversos valores de τ_0 , sob duas densidades de nêutrons, 10^8 cm⁻³ e 10^{12} cm⁻³. Para todos estes modelos calculamos o valor da quantidade D e comparamos com seu valor esperado. Para o grupo com grandes excessos o valor do σ não permite decidir entre os dois cenários, exposição única ou exponencial. Nas figuras 4.1 e 4.2 mostramos os melhores ajustes para exposição única, com D = 0,39, e para exposição exponencial, com D = 0,54, respectivamente, para o primeiro grupo de estrelas.

Figura 4.1 – O melhor ajuste de exposição única ao padrão médio de abundâncias do grupo de estrelas com grandes excessos. As barras de erro da figura se referem ao maior σ entre o observado e o teórico, listados na tabela 4.1.

Figura 4.2 – O melhor ajuste de exposição exponencial ao padrão médio de abundâncias do grupo de estrelas com grandes excessos. As barras de erro da figura se referem ao maior σ entre o observado e o teórico, listados na tabela 4.1.

As figuras 4.1 e 4.2 mostram os melhores ajustes para exposição única, $\tau = 0,1 \text{ mb}^{-1}$, e para exposição exponencial, $\tau_0 = 0,2 \text{ mb}^{-1}$ com N = 10^8 cm^{-3} . Além destes dois casos apenas mais um passa pelo critério estatístico, o de exposição exponencial com $\tau_0 = 0,05 \text{ mb}^{-1}$ e N = 10^8 cm^{-3} , com D = 0,60. Um dado de interesse é que, apesar da exposição exponencial ser o cenário favorecido na literatura, o melhor ajuste conseguido neste caso, o ajuste de menor D, é o de exposição única.

Tratemos agora do segundo grupo de estrelas. Para este grupo o σ adotado é de 0,19 dex e o valor esperado de D é 0,29. Neste caso temos um acontecimento curioso. A incerteza adotada é suficientemente baixa para permitir a exclusão de todos os modelos tabelados. No caso de exposição única o menor valor de D obtido é D = 0,67, e no caso de exposição exponencial o menor valor obtido é D = 0,58. Os dois casos são maiores que o valor esperado de D, 0,29, e portanto devem ser estatisticamente excluídos. Curiosamente estes dois modelos, com menor D, são os mesmos dos ajustes para o grupo de estrelas com grandes excessos, $\tau = 0,1$ mb⁻¹ para exposição única e $\tau_0 = 0,2$ mb⁻¹ com N = 10⁸ cm⁻³ para exposição exponencial. As figuras 4.3 e 4.4 mostram os ajustes.

Figura 4.3 – O melhor ajuste de exposição única ao padrão médio de abundâncias do grupo de estrelas com excessos moderados. As barras de erro da figura se referem ao maior σ entre o observado e o teórico, listados na tabela 4.2.

Figura 4.4 – O melhor ajuste de exposição exponencial ao padrão médio de abundâncias do grupo de estrelas com excessos moderados. As barras de erro da figura se referem ao maior σ entre o observado e o teórico, listados na tabela 4.2.

O resultado que obtemos pode ser evidência de que o mesmo cenário é responsável pelos dois grupos de estrelas, indicando que a diferença na intensidade das abundâncias deve se relacionar a algum outro fator que não a diferentes parâmetros de exposição de nêutrons. A grande diferença com relação ao primeiro grupo de estrelas é que o melhor ajuste neste caso é o de distribuição exponencial. Podemos concluir que, rigorosamente, ainda não é possível descartar nenhum dos cenários. O descarte de todos os modelos disponíveis levanta a necessidade da construção e publicação de modelos com parâmetros mais específicos. Nossos resultados mostram ainda que, ao menos considerando as médias das abundâncias, uma análise com dados e métodos de qualidade superior, em relação às análises clássicas disponíveis na literatura, alcança o objetivo de reduzir as incertezas das abundâncias. É provável que tais resultados, quando comparados a modelos teóricos mais específicos, ajudem a derivar novos e importantes vínculos às teorias de nucleossíntese e evolução de estrelas AGBs e de bário. Vale ainda notar que, no padrão médio das estrelas com excessos moderados, os

ajustes são razoáveis para os elementos Sr, Y, Zr, Ba. La, Ce e Nd, que são principalmente construídos pelo processo-s (Cameron 1982). Já para os elementos Sm e Eu, cuja principal fonte é o processo-r (Cameron 1982), os ajustes teóricos se afastam dos valores observados. No entanto estas abundâncias se baseiam em apenas uma linha de cada elemento, não sendo, portanto, estatisticamente confiáveis.

4.3 – O indicador [hs/ls]

Luck & Bond (1981) propõem um método alternativo de estimar o parâmetro de exposição de nêutrons, τ De acordo com eles podemos usar a razão [hs/ls] = [hs/Fe] – [ls/Fe], onde [hs/Fe] é a média das abundâncias dos elementos pesados do processo-s, Ba, La, Ce e Nd, e [ls/Fe] é a média dos elementos leves do processo-s, Sr, Y e Zr. A correlação entre este índice e a exposição de nêutrons existe pois, quanto maior for a exposição, mais o pico da produção de elementos tende a se deslocar para os elementos mais pesados. A figura 4.5 mostra a relação entre [ls/Fe] e a razão [Fe/H], a figura 4.6 a relação entre [hs/Fe] e [Fe/H] e a figura 4.7 a relação entre [hs/ls] e [Fe/H]. Nestas figuras dividimos novamente as estrelas em dois grupos de acordo com os excessos. Círculos abertos se referem às estrelas com grandes excessos de abundância e círculos fechados se referem às estrelas com excessos moderados.

Pelas figuras 4.5 e 4.6 podemos claramente notar que as estrelas com grandes excessos se destacam tanto nos elementos leves quanto nos pesados. Se a hipótese levantada anteriormente, de que os dois grupos se caracterizam pela mesma exposição de nêutrons, for correta, a diferença nas abundâncias se deve a eficiências diferentes dos processos de diluição e transferência de massa.

89

Figura 4.5 – Gráfico do índice [ls/Fe], a média dos elementos leves do processo-s Sr, Y e Zr, contra metalicidade. Círculos abertos são as estrelas do grupo com grandes excessos, círculos fechados são as estrelas com excessos moderados.

Figura 4.6 – Gráfico do índice [hs/Fe], a média dos elementos pesados do processo-s Ba, La, Ce e Nd, contra metalicidade. Círculos abertos são as estrelas do grupo com grandes excessos, círculos fechados são as estrelas com excessos moderados.

Figura 4.7 – Gráfico do índice [hs/ls], definido como [hs/Fe] – [ls/Fe], contra metalicidade. Círculos abertos são as estrelas do grupo com grandes excessos, círculos fechados são as estrelas com excessos moderados.

Tabela 4.3 – Os valores de [ls/Fe], [hs/Fe] e [hs/ls], de cada estrela, usados para construir as figuras 4.5, 4.6 e 4.7.

Estrela	[Fe/H]	[ls/Fe]	[hs/Fe]	[hs/ls]
HR2392	-0,09	1,17	1,27	0,10
HR4608	-0,35	0,55	0,59	0,04
HR5058	-0,12	1,07	1,01	-0,06
HR5802	-0,02	0,56	0,19	-0,37
HR7321	-0,19	0,37	0,25	-0,12
HR8115	-0,04	0,36	0,21	-0,15
HR8204	-0,09	1,62	1,22	-0,40
HD205011	-0,14	0,79	0,56	-0,23

91

Pela figura 4.7 notamos que a razão [hs/ls] como indicador de exposição de nêutrons também indica que os dois grupos de estrelas compartilham de parâmetros semelhantes. A figura 4.7 sugere claramente uma queda de [hs/ls] com o aumento da metalicidade, conforme encontrado por North et al. (1994) e Pereira e Porto de Mello (1997). Tal tendência é esperada se a fonte de nêutrons é a reação do C^{13} . Isso acontece porque o C^{13} é produzido pela própria estrela, desta maneira a exposição de nêutrons por núcleo semente é maior para baixas metalicidades. Por fim listamos na tabela 4.3 os dados usados para construir os três gráficos acima.

4.4 – Efeitos nucleossintéticos

Como comentado na introdução, um dos objetivos deste trabalho era verificar possíveis efeitos nucleossintéticos que estariam relacionados ao processo-s. Um dos efeitos sugeridos é uma depleção preferencial de Cu em relação ao Fe, encontrada em estrelas do grupo cinemático Ursa Maior, enriquecidas em elementos do processo-s (Castro et al. 1999) e em outros objetos enriquecidos em elementos do processo-s (Pereira e Porto de Mello 1997, Pereira et al. 1998). O cobre é um elemento que mostra duplo comportamento frente ao processo-s, pode ser usado como semente para a construção de núcleos mais pesados, ou pode ser construído pela adição de nêutrons em elementos mais leves do grupo do Fe. Sua sugerida depleção seria indicio de que ele estaria sendo destruído de maneira preferencial. Como pode ser conferido na tabela 3.4 e nos padrões de abundância, mostrados nas figuras de 3.8 a 3.20, nenhuma das estrelas analisadas neste trabalho mostra comportamento anômalo do cobre. A exceção da estrela HR5058 que parece ter excesso de cobre. Os mesmos trabalhos sugerem possível depleção de Mn. Como comentado anteriormente a maior parte dos nossos objetos mostra deficiência de Mn. No entanto nossas estrelas são relativamente pobres em metais e a deficiência de Mn é um efeito esperado nestes objetos devido a própria evolução química da galáxia. Uma análise mais cuidadosa deve ser feita para determinar até onde a deficiência observada pode ser atribuída a este efeito.

A análise da estrela HR6094 feita por Porto de Mello (1996) sugere ainda que núcleos como V e Sc poderiam estar sendo preservados. Encontramos para alguns

objetos, como HR8115 e HD205011 uma ligeira deficiência de vanádio, mas em geral tanto o vanádio como o escândio mostram comportamento solar.

Podemos concluir que os efeitos citados não parecem ser comuns a todos os objetos enriquecidos em elementos do processo-s. Mas tais efeitos ainda precisam ser explicados, merecem portanto ainda maior atenção e devem ser procurados em outros objetos enriquecidos em elementos do processo-s para comparação.

canta aptreta, individualitación, au electronomico el controlo de la sussidira de la contenta de susidirar o faire da binarizzione el contenta el contenta de la contena

CAPÍTULO 5

CONCLUSÕES E PERSPECTIVAS

Com dados e métodos de alta qualidade construímos modelos de atmosferas e realizamos uma análise diferencial de uma amostra de dez gigantes de bário e quatro gigantes normais. Obtemos parâmetros atmosféricos de maneira espectroscópica e comparamos com resultados de temperatura efetiva calculada com índices fotométricos e de gravidade calculada de maneira astrométrica. O acordo é excelente.

Detalhamos o padrão de abundância para os elementos Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu e Gd, caracterizando em detalhe as incertezas associadas. Concluímos que, em alguns casos, as altas barras de erro persistem mesmo a uma análise de alta qualidade. Com nossos resultados chegamos à conclusão de que algumas estrelas classificadas na literatura como gigantes de bário são na verdade gigantes normais. Com isso enfatizamos a necessidade de análises de alta qualidade para confirmação do status peculiar destas estrelas, em especial das *mild barium stars* A tabela 5.1 resume os resultados deste trabalho e da literatura sobre as peculiaridades químicas dos objetos estudados. Comentários sobre cada estrela, individualmente, são encontrados no capítulo 3.

A existência de estrelas normais contaminando a amostra de supostas *mild barium stars* pode explicar o fato da binaricidade não ter sido confirmada para estes objetos. É de extrema importância a confirmação da natureza das *mild barium stars* para que se saiba definitivamente se o fenômeno das estrelas de bário é sempre acompanhado de binaricidade. Se tal fato for finalmente confirmado é certo que a explicação das anomalias deve estar relacionada. No entanto ressaltamos que existem casos de sistemas binários, de estrela e provável anã branca, onde o fenômeno de bário não é observado. A estrela HR 649, analisada neste trabalho, é um exemplo. Existe observação de excesso de fluxo no UV (Böhm-Vitense & Johnson 1985), mas sua suposta natureza peculiar não foi confirmada. Desta maneira, a binaricidade pode ser condição necessária, mas não suficiente, para a formação de uma estrela de bário.

Tabela 5.1 – Resumo dos resultados, da literatura e deste trabalho, sobre as peculiaridades químicas dos objetos estudados. Listamos também se há evidência de binaricidade por velocidade radial variável (VR) ou por excesso de fluxo no ultravioleta (UV).

Estrela	Literatura	Binaricidade	Este trabalho
HR 440	Normal	?	Normal
HR 649	Mild Barium	UV	Normal
HR 1016	Mild Barium	?	Normal
HR 1326	Normal	?	Normal
HR 2392	Ba	VR	Ba
HR 4608	Mild Barium	UV	Mild Barium
HR 5058	Ba	UV	Ba
HR 5802	Mild Barium	VR	Mild Barium
HR 7321	Mild Barium	?	Mild Barium
HR 8115	Mild Barium	UV	Mild Barium
HR 8204	Ba	UV	Ba
HD 205011	Ba	VR	Ba
HR 8878	Normal	?	Normal

Comparando nossos resultados com modelos teóricos de captura de nêutrons concluímos que as abundâncias podem ter chegado ao nível de incerteza necessário para derivar novos e importantes vínculos às teorias de nucleossíntese. No entanto, os modelos disponíveis na literatura têm parâmetros de exposição de nêutrons muito restritos e são incapazes de ajustar as abundâncias perfeitamente. É urgente a necessidade da construção e divulgação de modelos com parâmetros mais específicos. Com os modelos disponíveis, os melhores ajustes ao padrão médio das estrelas com grandes excesso de abundância e ao padrão médio das estrelas com excessos moderados são os mesmos. Tal resultado sugere que os excessos dos dois grupos de estrelas tenham origem com as mesmas exposições de nêutrons, e que a diferença entre suas abundâncias se devem a eficiências diferentes da diluição. No entanto, lembramos que nossa amostra ainda é pequena para uma conclusão definitiva. Procuramos também neste trabalho a observação de possíveis efeitos nucleossintéticos, relacionados ao processo-s. Tais efeitos, que já haviam sido sugeridos na literatura, seriam possíveis

depleções preferenciais de Cu e Mn e possíveis preservações de V e Sc. No entanto tais efeitos não foram identificados nesta amostra de estrelas.

Futuramente será realizada nova análise, para linhas selecionadas, fazendo uso de síntese espectral, com o objetivo de reduzir ainda mais as barras de erro das abundâncias. A abundância de elementos de grande importância que não foram analisados neste trabalho também serão determinadas como, por exemplo, Rb que é indicador da densidade de nêutrons a que o material foi exposto e C, N e O que ajudarão a caracterizar o estado evolutivo das estrelas. Dados recentes de EHF serão pesquisados na literatura e incluídos caso estejam disponíveis. Será feita também análise da cinemática destas estrelas.

A publicação futura de novos modelos teóricos de nucleossíntese pelo processo-s podem ajudar a confirmar, ou refutar, a sugestão de que estrelas de bário clássicas e *mild barium stars* compartilhariam dos mesmos parâmetros de exposição de nêutrons. Novas observações de outras estrelas de bário, aumentando a amostra destes objetos com análises detalhadas baseadas em dados de alta qualidade, são de extrema importância para a procura dos efeitos nucleossintéticos e para melhor vincular os parâmetros de exposição de nêutrons característicos destas estrelas.

APÊNDICE I

Este apêndice se constitui em uma tabela onde listamos o comprimento de onda das linhas utilizadas neste trabalho bem como a espécie química correspondente, o potencial de excitação, o log gf, criado pelos meios descritos no texto, que foi adotado para a linha e as larguras equivalentes medidas em cada estrela. Para as linhas de elementos onde a estrutura hiperfina deve ser considerada não apresentamos os valores de gf, apenas os valores de suas larguras equivalentes em cada estrela. As linhas que não possuem valor de largura equivalente ou não foram medidas por algum problema no contínuo, como raios cósmicos, ou foram eliminadas da análise por estarem fora de um limite de dois σ da média das abundâncias.

Tabela A – Linhas espectrais com a identificação do elemento, o respectivo potencial de excitação, e o log gf adotado. Acompanham as larguras equivalentes das linhas nas estrelas HR440, HR649, HR1016, HR1326, HR2392 e HR4608.

λ(Å)	Elem. χ (eV)		log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608	
6154.230) Nal	2.10	-1.179	60.4	75.5	73.5	89.1	81.9	55.5	
6160.753	Nal	2.10	-0.905	83.8	98.2	92.7	107.1	105.4	76.6	
4571.102	2 Mg1	0.00		194.5		193.6		259.6	186.8	
4730.038	8 Mg1	4.34		107.5	104.8	108.5	126.2	141.3	105.2	
5711.095	5 Mg1	4.34		135.1	133.7	127.6	148.2	142.8	125.0	
5785.285	5 Mg1	5.11	-1.615	76.9	78.4	76.5	91.6	87.0	62.9	
6696.032	2 Al1	3.14	-1.370	66.7	58.4	58.4	91.5	67.1	56.3	
6698.669) Al1	3.14	-1.659	43.9	38.3	40.0	69.1	65.2	38.4	
5517.533	3 Sil	5.08	-2.240	30.3	33.8		79.7	27.8	20.4	
5665.563	3 Sil	4.92	-1.590	75.9	79.3	72.1	73.2			
5684.484	1 Sil	4.95	-1.420	81.8	89.9	84.7	59.9	88.3	75.8	
5690.433	3 Sil	4.93	-1.576	76.9	85.9	76.2	122	96.2	67.3	
5701.108	B Sil	4.93	-1.817	61.5	65.8	61.7		68.3	54.9	
5708.405	5 Sil	4.95	-1.098	104.0	117.5	108.2	122	25 <u></u> 28		
5753.622	2 Sil	5.61	-0.883	63.3	71.1	68.1	112 8			

Tabela A - Cont.

λ(Å)	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
5772.149	Si1	5.08	-1.299	72.9	81.9	81.0			
5793.080	Si1	4.93	-1.778	61.3	66.5	61.7	65.2	81.5	51.9
6131.577	Si1	5.61	-1.505	35.1	38.8	40.8	40.3	42.2	27.0
6131.858	Si1	5.61	-1.521	35.8	41.3	41.9	40.8		
6142.494	Si1	5.62	-1.304	44.3	50.1	51.7	45.5		43.2
6145.020	Si1	5.61	-1.272	45.7	51.0	53.5	49.3	55.1	43.2
6243.823	Si1	5.61	-1.067	52.0	57.8	74.5	72.1		54.3
6721.844	Si1	5.86	-0.827	55.5	62.1	61.8	65.6	83.2	51.1
5261.708	Ca1	2.52	-0.383	134.4	139.0	135.1		138.2	122.3
5581.979	Ca1	2.52	-0.539	129.4	126.6	123.4	145.0		120.6
5590.126	Ca1	2.52	-0.724	120.9	122.7	115.9	131.6	118.1	110.4
5867.572	Ca1	2.93	-1.503	44.2	42.9	45.8	68.2	53.9	37.0
6161.295	Ca1	2.52	-1.027	99.4	99.0	100.4	123.7		100.8
6163.754	Ca1	2.52	-1.290	79.8	87.0		96.9	92.7	75.6
6166.440	Ca1	2.52	-1.097	98.7	97.9	98.1	115.6	115.1	95.5
6169.044	Cal	2.52	-0.618	118.6	119.3	122.4	141.5	136.6	117.1
6449.820	Ca1	2.52	-0.565	128.8	136.0	130.3	138.7	137.2	124.5
6455.605	Ca1	2.52	-1.168	87.8	87.3		112.5	109.9	91.1
6499.654	Ca1	2.52	-0.706	120.6	122.1	119.2	138.6	135.1	112.3
6798.467	Ca1	2.71	-2.087	20.5			49.5	38.8	
5318.346	Sc2	1.36		41.2	48.6	45.3	43.0	47.6	38.2
5357.190	Sc2	1.51		22.4	22.8	18.1	19.9	21.4	17.0
5526.815	Sc2	1.77		119.2	132.6	125.0	118.9	132.0	115.2
5657.874	Sc2	1.51		122.7	138.2	119.2	113.3	130.6	114.9
5684.189	Sc2	1.51		87.8	97.0	83.1	85.3	97.0	81.0
6245.660	Sc2	1.51		76.9	85.4	87.6	88.9	87.1	79.9
6320.867	Sc2	1.50		36.3	42.7	37.2	38.8	43.5	38.2
4518.023	Til	0.83	-0.401	125.3	121.7	114.6	141.5	137.7	115.9
4548.765	Ti1	0.83	-0.396	122.5	119.6	115.7	144.4	143.4	117.2
4555.485	Ti1	0.35	-1.067		114.7	111.5	137.8		

Tabela A - Cont.

. . .

	$\lambda(\text{\AA})$	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
	4562.625	5 Ti1	0.02	-2.638	65.2	45.9	48.3	90.5	70.1	52.0
	4617.254	4 Til	1.75	0.146	101.4	98.8		118.4	108.3	94.2
	4758.120) Til	2.25	0.253	80.7	75.9	75.9	98.2	102.4	77.1
	4759.272	2 Til	2.25	0.273	84.7	79.6	78.1	100.3	so s	80.6
-1,33	4778.259	9 Til	2.24	-0.359	51.9	39.4	44.3	78.9	53.1	41.7
	4926.14	7 Til	0.82	-2.157	41.4	26.4	26.3	69.4	45.7	30.1
	5022.87	l Til	0.83	-0.427	133.3	127.9	123.9		134.6	119.0
	5024.842	2 Til	0.82	-0.580	123.7	118.6	115.8	144.4	116.3	111.7
	5071.472	2 Til	1.46	-0.598			70.7	112.6	84.5	69.8
	5113.448	3 Til	1.44	-0.826	74.6	61.8	64.8	103.8	65.1	66.6
	5145.464	4 Til	1.46	-0.634	87.5	74.6	75.4	109.0	89.4	77.7
	5147.479	9 Til	0.00	-1.927	108.9	97.5	95.4	135.4	81 HHL	
	5152.185	5 Til	0.02	-2.185	97.1	86.8	84.1	118.1	102.4	90.4
	5211.206	5 Til	0.84	-2.146		22.7	27.0	8	28.6	25.2
	5219.700) Til	0.02	-2.174	95.6	79.5	79.6	121.5	106.4	86.1
	5295.780) Til	1.07	-1.622	55.1	42.4	43.2	81.4	53.8	44.5
	5426.236	5 Til	0.02	-2.912	51.7	31.2	32.4	85.2	63.9	41.9
	5471.19	7 Til	1.44	-1.347		29.4	43.9	80.3	44.0	35.3
	5490.150) Til	1.46	-0.834	72.5	62.3	66.9	99.6	73.8	63.6
	5648.56	7 Til	2.49	-0.210	42.8	38.3	28.4	61.2	56.5	32.2
	5739.464	4 Til	2.25	-0.703		() ()	21.3	53.7	35.3	22.0
	5866.452	2 Til	1.07	-0.693	109.1	95.8	94.9	137.7	118.3	96.4
	6064.629	9 Til	1.05	-1.709		38.0	35.2	79.0	66.9	38.7
	6126.224	4 Til	1.07	-1.322	80.5	68.0	68.4	105.6	18	74.2
	6258.104	4 Til	1.44	-0.326		1 Q		126.1	107.8	96.6
	6861.50) Til	2.27	-0.667	30.8	29.1	25.1	55.1	45.3	23.4
	4524.693	1 Ti2	1.23	-2.892	69.7	75.9	70.5	72.5		70.8
	4568.34	5 Ti2	1.22	-2.710	78.0	83.8	82.3		82.0	73.7
	4583.41	5 Ti2	1.16	-2.769	78.6	87.7	83.7	78.1	86.4	73.1
	4657.20	9 Ti2	1.24	-2.144		110.4	105.3	104.7	116.6	95.5

Tabela A - Cont.

•

	λ(Å)	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
	4798.539	Ti2	1.08	-2.785	88.6	95.1	86.7	88.0	87.0	84.2
	5211.544	Ti2	2.59	-1.481	61.9		67.8	58.7	61.8	62.6
	5336.783	Ti2	1.58	-1.697	115.0	129.5		110.1	125.4	110.8
	5381.020	Ti2	1.57	-1.598	121.3	132.2	115.0			116.9
	5418.756	Ti2	1.58	-2.183	87.4	97.7	88.2	83.4	92.8	85.9
	5657.436	V1	1.06		50.2	39.4	30.6	75.1	59.1	31.9
	5668.362	Vl	1.08		46.6	35.7	28.5	74.6	48.2	31.3
	5670.851	Vl	1.08		87.3	67.3	62.4	122.7	89.3	68.5
	5727.661	Vl	1.05		57.6	40.9	34.3	95.2	53.2	35.9
ļ	6090.216	V1	1.08		90.0	79.3	74.6	113.3	100.6	
	6135.370	V1	1.05		56.1	40.0	42.2	92.7	67.8	40.6
1	6150.154	Vl	0.30		66.3	46.1	48.5	115.9	73.7	50.3
1	6199.186	V1	0.29		77.7	48.9	54.5	130.9	81.6	58.8
1	6216.358	V1	0.28		103.6	82.5	85.2	144 3	00 00	79.1
1	6274.658	V1	0.27		54.3	35.9	35.8	97.0	71.0	40.0
(6285.165	Vl	0.28		62.0	43.7	44.0	99.8	64.4	
	4616.120	Cr1	0.98	-1.344	135.2	134.8		1 1		129.5
4	4626.174	Cr1	0.97	-1.534	124.9	130.1		144.6	140.5	116.1
4	4708.019	Cr1	3.17	0.191	89.5	97.3	96.9	112.0	(
	4737.355	Cr1	3.09	0.270	94.1	105.7	102.0	114.3	38	
	4756.137	Cr1	3.10	0.159	92.2	94.8	94.8	108.4		91.3
4	4801.047	Cr1	3.12	-0.124	81.4	87.8	84.6	99.8	81 -38	
4	4936.335	Cr1	3.11	-0.172	78.2	74.9	74.9	98.1	00	73.3
4	4964.916	Cr1	0.94	-2.615	82.7	76.7	76.2	102.1	76.2	72.9
1	5200.207	Cr1	3.38	-0.346	51.0	57.3	53.4	74.4		
	5214.144	Cr1	3.37	-0.623	33.6	32.0	34.0	50.7	31.5	26.4
1	5238.964	Cr1	2.71	-1.183	44.1	40.7	39.0		40.5	39.2
1	5247.566	Cr1	0.96	-1.605	135.0	131.9	125.6		132.3	123.0
1	5272.007	Crl	3.45	-0.301	47.1	46.7	49.2	71.5	66.1	41.5
-	5287.183	Cr1	3.44	-0.751	25.9	27.5	27.1	44.7		
Tabela A - Cont.

-

$\lambda(\text{Å})$ I	Elem. ;	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
5300.751	Cr1	0.98	-2.044	107.7	101.9	100.2	126.4	113.7	99.0
5304.183	Cr1	3.46	-0.613	28.1	28.5	29.9	48.4	37.0	23.4
5318.810	Crl	3.44	-0.590	30.1	30.3	33.8	51.8	10 - Hel	23.9
5628.621	Cr1	3.42	-0.534		34.2		1.77	37.6	33.4
5784.976	Cr1	3.32	-0.326	60.0	58.3	57.2	79.5	69.2	44.4
5787.965	Cr1	3.32	-0.105	75.4	77.7	72.2	91.7	86.5	63.1
6330.097	Cr1	0.94	-2.784		69.4	68.6	102.9	91.9	69.7
4588.203	Cr2	4.07	-0.639	90.3	111.0	108.6	91.7		89.6
4592.049	Cr2	4.07	-1.135	66.5	79.7	79.7	70.6	86.9	64.8
5305.855	Cr2	3.83	-1.882	39.4	57.1	51.6	40.0	56.5	40.8
5308.377	Cr2	4.07	-1.706	39.1	50.5	49.2	47.7	51.3	38.4
5313.526	Cr2	4.07	-1.433	48.2	68.7	62.8	48.0	00-ES	55.5
5502.025	Cr2	4.17	-1.653	33.8	47.1	54.1		62.9	30.7
4739.113	Mn1	2.94		94.8	91.7	93.9	112.0	116.2	92.1
5413.684	Mn1	3.86	00	43.9	37.6	42.1	77.3	58.8	33.5
5420.350	Mn1	2.14		175.9	148.4	156.3	220.5	12-50	147.1
5432.548	Mn1	0.00					192.7		129.8
5537.765	Mn1	2.19		100.9	79.9	90.8		121.7	
6013.497	Mn1	3.07		125.4	122.5	122.9		138.0	115.2
6021.803	Mn1	3.07		129.7	132.7	127.9		140.8	118.4
4523.400	Fel	3.65	-1.860	71.6	74.6	74.5	84.3		67.8
4537.676	Fe1	3.27	-2.862	40.6	36.3	41.6	63.6		33.2
4556.925	Fe1	3.25	-2.585	56.8	53.9	56.9	72.5		55.4
4585.343	Fel	4.61	-1.438	34.2	38.0	45.7	54.5	46.3	27.7
4593.555	Fel	3.94	-1.821	60.8			75.8	(()-+).	a
4598.125	Fel	3.28	-1.422	110.3	113.2	113.4	120.6	115.4	101.8
4602.000	Fe1	1.61	-3.148	120.0	120.9	120.4	133.5	01773	113.2
4741.535	Fe1	2.83	-2.084	109.6		109.8	118.5		
4749.961	Fe1	4.56	-1.177	56.6	57.7	58.0	69.0	63- - 28	
4793.961	Fe1	3.05	-3.467	31.5	25.2	25.4	46.5	39.9	T

Tabela A - Cont.

λ(Å)	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
4794.355	5 Fel	2.42	-3.906	44.4	35.0	37.1	62.5	44.1	35.7
4798.273	B Fel	4.19	-1.442	70.0	69.9	70.8	76.8	70.9	61.3
4798.743	Fel	1.61	-4.163	83.4	77.7	77.0	94.2	84.0	74.3
4808.147	Fel	3.25	-2.614	61.8	60.1	60.0	73.2	57.6	49.2
4907.733	Fel	3.43	-1.640	97.0	99.1	96.3	109.9	99.0	86.4
4908.032	2 Fel	3.93	-1.552	69.1	69.6	70.2	89.2	74.1	5
4911.788	B Fel	3.93	-1.712	67.6	67.1	67.3	77.9	61.5	58.9
4961.915	Fel	3.63	-2.135	59.1	59.9	59.2	74.6		0
4962.565	Fel	4.18	-1.191	75.7	80.5	77.7	87.9	81.7	71.5
4969.916	Fel	4.22	-0.675	98.7	101.8	101.7	115.2	114.7	94.7
5023.189	Fel	4.28	-1.324	66.6	65.9	70.7		66.8	55.0
5025.091	. Fel	4.26	-1.836	38.9	40.6	40.9	53.6	52.1	32.3
5025.313	Fel	4.28	-1.849	38.3	36.4	39.7	49.4	54.5	32.8
5054.647	Fel	3.64	-1.931	69.0	66.9	68.1	89.2	88.5	66.9
5067.162	e Fel	4.22	-0.668	100.8	100.6	99.0	116.1	116.2	96.8
5072.677	Fel	4.22	-0.892	92.8	91.3	90.4		101.6	85.2
5109.649	Fel	4.30	-0.582	100.3	104.1			105.5	93.9
5127.680) Fel	0.05	-5.908	94.2	75.7	77.7		99.3	79.7
5196.065	Fel	4.26	-0.809	96.6	99.5	97.5		102.1	90.0
5197.929	Fel	4.30	-1.417	57.9	60.7	61.8	71.4	69.5	52.1
5213.818	Fel	3.94	-2.508	21.2	19.9	21.1	35.4	22.7	18.5
5223.188	Fel	3.63	-2.215	53.5	53.9	59.9	71.4	54.7	51.4
5242.491	. Fel	3.63	-0.983	118.0	122.7	114.7		118.5	118.1
5243.773	Fel	4.26	-0.915	88.3	93.2	87.8	96.2	90.2	85.1
5247.049	Fel	0.09	-4.743	146.7	136.1	127.8		142.6	130.3
5320.040) Fel	3.64	-2.496	45.2	44.8	44.2	58.9	46.8	33.5
5321.109	Fel	4.43	-1.237	65.4	66.6	68.6	75.1	10-20	57.9
5379.574	Fel	3.69	-1.549	96.0	97.0	90.0	98.8	109.5	82.0
5389.486	Fel	4.41	-0.567	103.6	124	103.9	110.5	110.7	97.0
5395.222	E Fel	4.44	-1.656	36.7	-12	36.8	52.1	48.2	29.1

Tabela A - Cont.

$\lambda(\text{Å})$ I	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
5412.791	Fe1	4.43	-1.618	38.7	38.4	37.9	53.6	45.9	30.2
5432.946	Fe1	4.44	-0.639	87.1	95.6	98.0	99.2	93.7	84.7
5436.297	Fe1	4.39	-1.185	59.3		65.3		62.5	
5473.168	Fe1	4.19	-1.846	35.9	43.0	. т р .)	59.8	00758	
5483.108	Fe1	4.15	-1.366	69.1	73.1		86.0	83.0	68.5
5491.845	Fe1	4.19	-1.938	31.9	31.7	40.1	53.2	42.9	30.1
5494.474	Fe1	4.07	-1.645	54.7	59.3	63.9	76.9	60.0	51.4
5508.419	Fe1	4.96	-1.233	32.5	34.0		45.4	100 -1 00	
5522.454	Fe1	4.21	-1.428	68.3	69.9		82.0	74.5	58.3
5560.207	Fe1	4.43	-1.020	73.8	74.6	74.3		76.9	64.5
5577.013	Fe1	5.03	-1.285	24.0	21.7	22.5	29.5	27.6	17.2
5587.573	Fe1	4.14	-1.538	65.1	64.3	62.0	73.9	68.6	53.3
5635.824	Fel	4.26	-1.364	63.8	65.9		73.0	64.1	59.9
5636.705	Fe1	3.64	-2.260	53.4	53.7	- 77 -	63.6	60.6	46.9
5638.262	Fe1	4.22	-0.606	112.9		105.8	116.6	130.6	101.1
5641.436	Fe1	4.26	-0.619	107.8	110.5		114.8	112.9	93.0
5646.697	Fel	4.26	-2.047			22.7		45.0	22.1
5650.019	Fe1	5.10	-0.520	62.1	65.9	58.6	68.6	81.6	50.7
5652.319	Fe1	4.26	-1.541	58.1	59.3	51.4	64.3	65.4	47.2
5661.348	Fe1	4.28	-1.526	57.8	58.1	51.1	66.5	027721	46.1
5680.240	Fel	4.19	-1.958	37.7	37.9	33.8	48.2	1000	35.8
5701.557	Fel	2.56	-1.943		136.5	127.7	149.5	145.6	124.4
5705.473	Fe1	4.30	-1.322	64.9	66.8	65.1	75.9	68.7	57.4
5731.761	Fel	4.26	-1.063	88.9		86.4	93.6	103.3	77.2
5738.240	Fe1	4.22	-2.048			27.0	44.9	34.7	
5775.069	Fel	4.22	-1.047	85.2	88.8	86.7	94.8	85.3	82.0
5778.463	Fe1	2.59	-3.331	63.1	57.5	57.2	78.2	64.3	60.5
5784.666	Fe1	3.40	-2.544	63.4		58.3	75.3	0.753	46.7
5811.916	Fel	4.14	-2.262	27.1	26.9	26.5	38.5	31.0	19.5
5814.805	Fe1	4.28	-1.730	46.0	46.3	44.8	59.0	58.1	37.2

Tabela A - Cont.

$\lambda(\text{\AA})$ 1	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
5835.098	Fe1	4.26	-1.911	32.1	32.3	33.5	47.4	47.7	29.1
5849.681	Fe1	3.69	-2.776	21.5	19.2	20.1	36.0	32.5	21.5
5852.222	Fe1	4.55	-0.968	63.8		66.0		70.2	60.2
5855.086	Fel	4.61	-1.381	35.8	36.9	40.0	52.2	55.7	33.8
5856.096	Fel	4.29	-1.410	54.1	56.5	57.8	70.1	79.9	52.8
5859.596	Fel	4.55	-0.536	92.1	97.8	97.4	103.3	112.2	88.0
6005.551	Fe1	2.59	-3.271		60.3	12.1	80.3	78.5	55.1
6007.968	Fel	4.65	-0.602	76.8	88.6	82.3	90.8	94.8	74.9
6012.212	Fe1	2.22	-3.692		58.8		82.8	71.0	
6078.499	Fe1	4.79	-0.150	91.0	100.4			101.0	2 1
6079.014	Fel	4.65	-0.847	64.2	70.2			69.9	
6093.666	Fe1	4.61	-1.185	52.5	56.6	53.0	61.0	56.6	
6098.250	Fe1	4.56	-1.515	38.8	121	39.4	47.3	(1 2.) 2.)	36.0
6120.249	Fe1	0.92	-5.730	42.6		31.9	62.2	49.9	29.9
6137.002	Fe1	2.20	-2.857	114.8	113.8	112.3	129.4	123.9	106.3
6151.616	Fe1	2.18	-3.259	96.2	95.1	92.8	109.2	103.0	91.5
6159.382	Fe1	4.61	-1.666	26.5	25.8	28.6	41.1		26.6
6173.340	Fe1	2.22	-2.739	116.6	115.8	113.3	129.7	137.1	112.1
6187.987	Fe1	3.94	-1.620	72.7	75.3	72.8	85.8	89.1	69.6
6199.508	Fe1	2.56	-4.134	20.4	17.6	18.8	36.4	34.5	16.8
6200.321	Fe1	2.61	-2.290	119.0	119.3	115.7	133.7	125.4	108.3
6213.428	Fe1	2.22	-2.479	136.0	135.7	133.2		143.7	122.3
6226.730	Fel	3.88	-1.940	53.3	54.7		78.8	56.5	49.4
6240.645	Fe1	2.22	-3.189	94.1	91.8		116.5	101.9	90.0
6271.283	Fe1	3.33	-2.544	59.5	58.3	56.1	76.2	61.2	· ·
6297.792	Fe1	2.22	-2.646	123.6	122.6	117.6	137.5	130.5	
6315.813	Fel	4.07	-1.319						1 ···
6322.691	Fel	2.59	-2.227	123.3	124.2	119.9	138.0	125.8	113.6
6380.750	Fe1	4.19	-1.129	86.5	90.9	89.7		103.1	74.2
6385.726	Fe1	4.73	-1.672				44.4	28.9	20.0

Tabela A - Cont.

	λ(Å)	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
(6392.538	B Fel	2.28	-3.804	66.4		61.5	81.7	56.3	50.3
6	5498.945	Fel	0.96	-4.507	113.4	104.6	103.7			a î
e	5608.044	Fel	2.28	-3.878	56.1	49.6			54.3	46.6
(6627.560) Fel	4.55	-1.319	48.7	49.9	49.7	65.6	51.4	47.6
6	6633.427	Fel	4.83	-1.034	46.6	51.8	51.8	66.0	71.3	37.7
6	6634.123	Fel	4.79	-0.645	66.1	71.9	74.2	85.5	2001	
6	6646.966	Fel	2.61	-3.743			39.0	64.0	60.4	32.1
6	6653.911	. Fel	4.15	-2.228			29.7	45.0		20.2
6	6696.322	E Fel	4.83	-1.350	30.2	29.4	32.7	44.5	33.4	24.3
e	6699.136	5 Fel	4.59	-1.892	20.9	20.8	22.8	32.8	32.3	16.9
(6703.576	5 Fel	2.76	-2.991	79.1	77.9	75.0	93.3	85.4	69.1
(6704.500) Fel	4.22	-2.426	17.7	18.6	17.4	26.3		
(6705.105	Fel	4.61	-0.908	68.7	70.9	72.4	83.6	86.1	61.8
(6710.323	Fel	1.48	-4.650	64.9	54.3	56.7	89.0	89.9	53.4
6	6713.745	Fel	4.79	-1.300	33.0	35.2	40.5	51.6	50.0	31.5
(6725.364	Fel	4.10	-2.055	35.7	38.2	37.1	51.8	49.3	33.1
(6726.673	Fel	4.61	-1.004	64.6	66.6	68.3	78.6	68.1	61.3
(6732.068	8 Fel	4.58	-2.015				30.3		
(6733.153	B Fel	4.64	-1.302	43.9	43.8	46.3	59.3	60.8	40.9
(6739.524	l Fel	1.56	-4.819	54.3	42.5	44.1	77.3	54.8	43.0
(6745.113	Fel	4.58	-1.888	23.0	21.8	24.9	39.6		16.4
(6746.975	5 Fel	2.61	-4.157	24.3		24.0	42.1	23.2	16.5
(6750.164	l Fel	2.42	-2.493	126.5	124.4	121.9	142.5	131.0	113.8
(6752.716	5 Fel	4.64	-1.011	63.4	64.3	66.8		75.5	
(6786.860) Fel	4.19	-1.710	46.3	46.1	58.8	69.3	58.9	44.8
(6806.856	5 Fel	2.73	-2.923	77.0		83.1	105.0	92.0	75.1
(6810.267	7 Fel	4.61	-0.826	68.8	72.2	85.7	94.0	75.4	69.4
(6820.374	1 Fel	4.64	-1.024	64.0	66.6	66.4	81.7	67.9	61.0
	6828.596	5 Fel	4.64	-0.648	75.0				89.7	75.5
(6837.013	B Fel	4.59	-1.555	31.1	35.1	35.2	44.7	37.1	29.8

Tabela A - Cont.

$\lambda(\text{\AA})$	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
6839.835	Fel	2.56	-3.185	75.6	71.0	72.7	92.8	94.6	67.4
6842.689	Fel	4.64	-1.018	59.2	63.9	61.2	72.4	71.6	56.2
6843.655	Fel	4.55	-0.705	80.8	86.2	84.5	91.4	95.2	76.9
6855.166	Fel	4.56	-0.568	91.3	98.8	96.3	106.2	104.1	86.8
6855.723	Fel	4.61	-1.393	44.5	49.7	47.3	58.7	101-141	37.2
6857.251	. Fel	4.07	-1.985	43.4	48.3	44.1	58.6	50.4	37.9
6858.155	Fel	4.61	-0.878	70.0	78.7	77.2	82.9	95.0	68.1
6861.945	Fel	2.42	-3.613	60.4	58.7	59.3	82.9	80.3	51.4
6862.496	Fel	4.56	-1.294	48.2	51.8	55.3	65.2	68.4	41.8
4656.981	. Fe2	2.89	-3.544	56.9	75.0	74.5	56.1	78.2	60.1 [·]
4993.358	Fe2	2.81	-3.694	61.0	74.8	74.4	69.3	63.9	59.1
5197.576	Fe2	3.23	-2.219	106.2	133.1	119.9	103.5	126.2	106.7
5234.630	Fe2	3.22	-2.034	108.4	133.8	119.4	97.2	114.3	110.7
5264.812	Fe2	3.33	-2.917	67.9	88.6	78.0	59.2	68.2	64.2
5325.560	Fe2	3.22	-3.099	65.9	84.6	77.7	60.1	75.6	60.3
5414.075	Fe2	3.22	-3.478	45.9	58.5	55.1	42.6	56.3	45.6
5425.257	Fe2	3.20	-3.228	54.2	75.4	68.4	54.1	71.9	58.0
6149.249	Fe2	3.89	-2.612	49.3	67.6	64.8	46.9	65.6	49.9
6247.562	Fe2	3.89	-2.193	64.9	88.5	79.3	54.7	66.9	68.8
6369.463	Fe2	2.89	-3.963	38.9	56.1	49.4	37.6		33.4
6416.928	Fe2	3.89	-2.456	51.9	70.6	78.7	64.7	65.3	62.4
6456.391	Fe2	3.90	-1.991	74.6	101.7	92.1	71.9	92.8	81.5
4792.862	Col	3.25		69.2	61.4	61.0	81.5	75.6	62.0
4813.479	Col	3.21		87.2	80.4	80.7	103.2		75.3
5212.691	Col	3.51		52.7	43.2	45.3	73.7	53.3	47.2
5280.629	Col	3.63		45.4	39.3	39.2	60.6	44.3	36.4
5342.708	Col	4.02		55.6	51.9	58.2	67.8	61.5	46.2
5359.192	Col	4.15		26.5	20.9	20.8	30.8	26.6	17.4
5454.572	Col	4.07		32.2	29.8	35.3	50.7	41.2	26.9
5647.234	Col	2.28		63.6	54.1	41.5	75.7	71.8	49.4

Tabela A - Cont.

-

λ(Å)	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
6455.001	. Col	3.63				33.3	59.9		3
6632.472	Col	2.28		44.3	37.5	34.1	62.9	62.8	32.2
4935.831	Ni1	3.94	-0.335	82.4	86.5	84.1	91.5	Ú real	
4946.029	Ni1	3.80	-1.143	45.5	41.6	44.1	59.0	62.3	40.9
4953.200) Nil	3.74	-0.494	88.1	85.1	81.7	104.1		
5010.934	Ni1	3.63	-0.833	76.8	81.0	80.4	86.0	80.5	72.8
5032.723	Ni1	3.90	-1.045	48.3	48.3	48.7	71.0	65.4	44.0
5094.406	Ni1	3.83	-0.974	54.4	52.7	57.4	73.6	58.6	50.9
5197.157	Ni1	3.90	-0.957	49.4	47.5	48.7	73.4	51.0	40.3
5220:300) Nil	3.74	-1.149	51.1	49.6	51.7	63.5	55.9	45.8
5392.330	Ni1	4.15	-1.182	28.2	26.0	25.6	35.0	23.4	19.6
5435.866	5 Nil	1.99	-2.379	95.4	91.9	93.4	106.8	102.6	89.9
5452.860) Nil	3.84	-1.250		34.3	38.7	52.9	39.9	29.4
5494.876	5 Nil	4.10	-0.839	42.2	43.4	52.8	64.3	38.0	39.0
5587.853	Ni1	1.93	-2.342	107.2	104.0	97.2	112.7	000	
5625.312	Ni1	4.09	-0.468	61.0	68.6	59.9		86.4	65.6
5628.354	Ni1	4.09	-0.939		35.6			62.2	37.9
5637.128	8 Nil	4.09	-0.630	61.4	62.9	54.9	67.0	61.6	53.6
5748.346	Nil	1.68	-3.122	78.7	73.2	69.0	94.3) == < (72.0
5846.986	5 Nil	1.68	-3.215	70.9	61.4	60.9	87.7	86.6	64.1
6086.276	5 Nil	4.26	-0.291	64.2	68.1	62.2	69.5	77.5	
6176.807	Ni1	4.09	-0.096	84.8	88.8	90.1	95.6	97.7	83.3
6177.236	5 Nil	1.83	-3.381	50.0	43.4	45.0	65.7	58.5	46.9
6186.709	Ni1	4.10	-0.799	48.7	48.5	51.3	63.9	47.6	43.1
6191.187	Ni1	1.68	-2.249	127.4	122.3	119.3	138.9	128.9	118.5
6327.604	Ni1	1.68	-2.802	93.9	87.6	85.7	111.7	111.8	88.5
6635.137	Ni1	4.42	-0.581	44.9	47.4	46.3	56.5	59.1	33.7
6767.784	Ni1	1.83	-2.000	136.0	132.1	130.4		136.9	121.6
6772.321	Ni1	3.66	-0.804	81.9	81.9	84.1	95.6	79.4	70.1
6842.043	8 Nil	3.66	-1.209	50.9	50.8	51.0	62.3	61.1	44.7

Tabela A - Cont.

$\dot{\lambda}(\text{\AA})$ 1	Elem.	χ (eV)	log gf	HR440	HR649	HR1016	HR1326	HR2392	HR4608
5218.209	Cu1	3.82		80.0	77.2	76.4	92.6	84.2	73.8
5220.086	Cu1	3.82		43.9	46.7	42.0	50.1		58.4
5782.136	Cu1	1.64		168.6	145.4		200.4	195.3	143.0
4810.537	Zn1	4.08	-0.433	87.5	101.6	96.3	81.0	91.8	84.3
4607.338	Sr1	0.00	0.069	85.5	94.4	91.8	108.1	157.9	106.9
4883.690	Y2	1.08	0.103	96.8	114.7	108.9	107.5	242.6	124.3
4900.124	Y2	1.03	-0.131	93.7	118.1	96.7	100.8	222.2	119.2
5087.426	¥2	1.08	-0.197	85.7	107.6	95.8	91.6	178.3	111.2
5200.415	¥2	0.99	-0.570	77.2	97.5	84.2	89.4	138.9	98.9
5289.820	¥2	1.03	-1.698	17.7	30.0	25.5	25.5	80.4	39.7
5402.780	¥2	1.84	-0.434	23.9	50.1	43.8	45.4	91.4	55.6
4739.454	Zrl	0.65	0.120	38.3	44.8	39.3	66.7	124.4	72.8
4613.921	Zr2	0.97	-0.528	67.7	75.8	77.6	84.3	113.4	76.3
5112.279	Zr2	1.66	-0.585	32.0	47.4	40.2	41.4	94.0	62.6
5853.688	Ba2	0.60	-0.635	114.7	146.4	131.7	119.4	331.4	173.5
6141.727	Ba2	0.70	0.623	196.2	246.6	230.1	209.4	631.0	310.3
6496.908	Ba2	0.60	0.558	179.0	220.7	211.1	184.3	453.5	260.9
4662.512	La2	0.00	-0.968	52.3	62.3	57.7	61.0	130.7	79.3
4748.737	La2	0.93	-0.369	23.9		31.1	31.2	87.0	55.1
6320.429	La2	0.17	-0.984	32.9	46.2	37.9	43.9	147.5	69.4
6390.493	La2	0.32	-1.115	35.9	52.1	39.1	50.9	122.2	62.2
4523.080	Ce2	0.52	0.470	72.4	88.3	80.0	86.8	186.0	103.7
4562.367	Ce2	0.48	0.420	65.7	84.5	75.8	74.4	137.3	93.1
4628.160	Ce2	0.52	0.410	67.3	87.3	81.9	75.1	189.8	105.0
4773.959	Ce2	0.92	0.214	34.6	42.7	40.1	53.6	90.0	54.8
5274.236	Ce2	1.04	0.413	40.0	51.6	46.6	48.1	98.0	65.6
5089.831	Nd2	0.20	-1.023	25.0	31.7	31.3	46.5	80.9	54.1
5319.820	Nd2	0.55	-0.129	58.6	72.8	63.9	64.7	108.7	82.6
4566.233	Sm2	0.33	-0.170	40.7	47.5	45.3	54.9	91.1	55.3
6645.127	Eu2	1.38	0.444			31.5	35.0	60.0	35.2
5419.880	Gd2	1.31	0.088	7.0		8.5	13.2	17.0	6

$\lambda(\text{\AA})$	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6154.230	Na1	94.4	87.1	81.0	70.7	95.1	67.7	80.7	63.5
6160.753	Na1	113.1	122.6	102.3	92.7	114.7	93.4	101.8	87.1
4571.102	Mg1	204.6	244.0	201.8	213.8	208.9	214.8	225.0	
4730.038	Mg1	122.9	143.3	125.9	119:2	120.5	133.0		112.4
5711.095	Mg1	145.0	140.4	139.9	134.2	140.9	132.2	136.4	145.0
5785.285	Mg1	88.2	92.8	81.9	81.3	86.9	75.3	84.0	71.4
6696.032	Al1	74.7	77.0	71.7	47.3	72.1		74.3	80.9
6698.669	Al1	54.5	70.6	54.0	66.5	55.6	69.0	59.4	55.2
5517.533	Si1	36.9	36.7	29.3	37.2		41.3		22.4
5665.563	Si1	88.5			75.9	85.0		84.5	64.5
5684.484	Si1	97.3	85.0	85.6	82.2	89.1	98.3		69.7
5690.433	Si1	88.8	84.2	78.2	75.5	79.8	89.1		64.0
5701.108	Si1	73.5	60.5	66.2	59.0	65.6	64.0		52.7
5708.405	Si1	117.9			115.4	120.5		120.4	
5753.622	Si1	88.5			77.1	88.4		83.6	57.3
5772.149	Si1	96.5	101.5		77.0	91.5		86.3	
5793.080	Si1	76.0	90.1	66.4	65.7	77.0	82.3	70.1	52.2
6131.577	Si1	47.9	42.2	41.7	38.4	48.5	44.6	40.1	27.6
6131.858	Si1	46.8		43.1	41.9	50.0	65.5	47.5	
6142.494	Si1	59.8	61.9	53.7	49.1	58.7	78.2	52.4	32.7
6145.020	Si1	62.5	53.2	55.1	50.2	60.7	61.4	50.6	37.5
6243.823	Si1	75.7	69.6	73.8	66.2	82.3	101.1	77.6	50.5
6721.844	Si1	75.0		70.8	63.7	80.2	74.5	77.0	45.1
5261.708	Ca1	146.5	146.5	136.7	141.3	150.7		141.0	139.9
5581.979	Cal	138.9		135.1	138.0	142.7			138.5
5590.126	Ca1	128.3	124.9	119.6	121.3	126.0	133.7	120.3	128.0
5867.572	Ca1	56.4	60.1	50.1	49.9	53.3	37.1	50.8	55.9
6161.295	Ca1	114.3	100.9	108.1	108.3	117.5		116.5	116.6
6163.754	Ca1	99.2			88.6	98.5	1.7.7	90.2	96.0
6166.440	Ca1	110.3	124.5	105.7	104.3	110.4	115.8	105.9	

Tabela B – Linhas espectrais com identificação do elemento e as larguras equivalentes nas estrelas ε Vir, -HR5058, HR5802, HR7321, HR8115, HR8204, HD205011 e HR8878.

•

Tabela B'- Cont.

$\lambda(A)$	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6169.044	Ca1	138.0		130.0	127.4	138.0	133.3	136.1	136.0
6449.820	Cal	143.1	142.7	134.4	133.5	137.4	144.8	134.7	138.0
6455.605	Ca1	107.6	126.5	100.7	95.3	106.1	91.0	101.2	110.5
6499.654	Ca1	134.9		124.6	128.4	137.7	133.9	132.4	134.1
6798.467	Ca1	37.6	47.0		29.2			34.9	33.8
5318.346	Sc2	48.9	41.8	43.3	39.2	48.8	74.9	40.7	44.2
5357.190	Sc2	21.4	21.6	19.5	17.6	21.3	28.4	19.2	23.7
5526.815	Sc2	123.5	130.8	111.8	121.8	134.7		128.9	114.3
5657.874	Sc2	129.0	122.8	116.6	118.2	123.5	CLL 4	116.2	118.6
5684.189	Sc2	91.3	87.3	82.7	82.8	87.8	119.7	83.6	89.3
6245.660	Sc2	91.4	98.4	88.0	83.3	94.4	129.5	92.2	91.0
6320.867	Sc2	51.6	47.6	39.3	36.8	42.0	65.0	39.9	47.5
4518.023	Til	125.6	148.4	120.9	127.2	127.8	145.9	131.5	·
4548.765	Ti1	126.5		122.3	124.7	130.9	147.7	131.4	at
4555.485	Ti1	120.9		118.1	123.8	128.9			
4562.625	Ti1	61.7	91.7	60.6	65.7	65.8	42.1	70.4	108.8
4617.254	Ti1	105.9	113.9		106.0	108.6	106.9	107.2	126.7
4758.120	Ti1	85.1	101.1	82.9	85.1	85.4	98.8	87.7	104.1
4759.272	Ti1	86.2	111.2	84.1	87.6	87.4	96.2	90.3	107.2
4778.259	Ti1	49.8	60.6	45.8	54.2	53.8	43.4	57.7	77.5
4926.147	Ti1	37.5	58.6	45.2	42.3	36.8		43.7	80.3
5022.871	Ti1	131.5	148.4	128.5	135.4	138.2	141.3	137.2	
5024.842	Ti1	125.0	132.2	122.3	125.7	129.7	122.2	126.0	
5071.472	Ti1	89.2	105.5	86.1		85.1	68.6	83.6	123.4
5113.448	Ti1	78.1	86.4	75.5	76.6	75.1	46.0	75.2	118.7
5145.464	Ti1	87.7	108.3	86.4	88.2	88.0	81.2	92.0	125.0
5147.479	Ti1	107.3		109.0	116.7	117.0			
5152.185	Ti1	93.1	121.8		96.8	95.6	92.2	99.5	145.2
5211.206	Ti1	38.2	44.1	30.7		40.2	622	36.4	
5219.700	Ti1	94.2	129.0	86.8	101.2	102.2	79.7	101.8	146.1
5295.780	Ti1	55.4	69.9	56.7	56.5	54.9	30.5	59.0	93.1

Tabela B – Cont.

* . m.*

`λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
5406 006	m ' 1	10.0		45 1	FF 0	47 0	20.0		110 7
5426.236	Til	49.9	85.6	45.1	55.0	47.2	22.0	55.5	112.7
5471.197	Ti1	47.0	63.4	38.2	50.7	57.7	40.4	57.3	76.5
5490.150	Ti1	78.5	93.6	72.8	79.1	84.7	70.0	83.6	105.8
5648.567	Ti1	45.3	64.3	42.6	42.3	39.3	22.8	42.6	66.0
5739.464	Ti1	32.4	41.4	28.0	34.9	32.0	18.5	33.4	54.7
5866.452	Ti1	113.3	141.5	104.2	110.3	113.3	87.4	114.4	148.6
6064.629	Ti1	54.9	87.5	58.1	59.7	52.4	38.5	57.7	96.5
6126.224	Ti1	79.2		81.0	87.8	88.1		1201	119.2
6258.104	Ti1	112.7	125.3	110.4			89.0	106.5	147.4
6861.500	Ti1	36.5	43.0	29.7	34.0	35.7		40.4	53.3
4524.691	Ti2	71.5			74.5		118.0	188 - 1 88	78.1
4568.345	Ti2	81.9	86.0	78.7	78.6	87.6	116.3	83.3	91.2
4583.415	Ti2	82.4	78.0	76.7	78.6	88.5	130.1	81.0	82.2
4657.209	Ti2	108.7	109.8	101.3	102.1	109.8		107.1	112.9
4798.539	Ti2	87.1	86.5	80.1	87.3	90.9	118.3	86.4	96.1
5211.544	Ti2	69.9	59.0	58.8	63.7	74.5	108.8	62.2	63.8
5336.783	Ti2	116.9	113.5	106.2	114.5	123.3		118.0	115.2
5381.020	Ti2	122.8		112.4		128.0			
5418.756	Ti2	92.7	94.3	81.1	88.5	95.8	145.2	88.3	90.4
5657.436	V1	46.1	73.8	46.8	46.8	41.7		50.8	79.4
5668.362	V1	43.5	63.0	46.5	42.8	39.3	18.8	45.8	80.0
5670.851	V1	86.8	107.5	84.8	86.2	80.6	42.2	89.8	129.9
5727.661	V1	55.1			53.8	51.4		54.2	100.6
6090.216	V1	100.2	116.4	99.5	96.9	92.9	66.9	97.1	121.6
6135.370	Vl	58.7	90.3	55.5	59.1	61.0	38.8	63.6	97.7
6150.154	Vl	66.8	106.7	64.0	71.5	70.2	47.0	76.9	126.7
6199.186	Vl	76.5	120.8	71.5	81.7	78.7	38.5	89.2	144.5
6216.358	V1	104.9	129.5	101.9	108.8	106.4	72.9	114.6	158.3
6274.658	V1	58.4	98.7	59.2	60.7	57.8	33.3	67.6	114.5
6285.165	V1	63.8	90.7	61.3	69.2	68.9	33.0	75.7	116.7
4616.120	Cr1	141.8		147.8	144.0	149.6			

Tabela B - Cont.

$\lambda(A)$	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
4626.174	Cr1	133.5	142.9	134.2	133.7	139.2		138.7	144.7
4708.019	Cr1	103.7			105.9	108.9		120.2	94.7
4737.355	Cr1	112.2	143.8	117.6	115.6	119.3		124.7	98.2
4756.137	Cr1	106.0	123.3	97.5	98.5	101.8		104.1	101.1
4801.047	Cr1	90.7		87.5	94.7	99.4		106.0	87.0
4936.335	Cr1	89.5	114.3	92.2	85.2	86.6	96.5	89.7	86.5
4964.916	Cr1	88.8	88.1		85.3	85.6	65.6	82.4	105.0
5200.207	Cr1	64.2	101.5	62.1	67.3	71.2		75.9	56.3
5214.144	Cr1	47.8	39.1	36.3	40.2	45.0	28.1	38.7	38.1
5238.964	Cr1	58.1	49.4	52.8	49.6	51.8	36.3	47.3	48.4
5247.566	Cr1	138.7	144.6	130.3	139.0	141.0	135.1	135.6	1
5272.007	Cr1	62.5	78.0	56.4	56.8	60.2	61.4	59.8	50.1
5287.183	Cr1.	36.1	59.9	37.0	32.8	36.3		37.4	26.1
5300.751	Cr1	117.5	123.6	110.0	110.9	113.7	98.6	110.5	128.4
5304.183	Cr1	42.9	38.9	40.8	34.2	38.1	33.6	35.2	33.3
5318.810	Cr1	45.5		43.6	33.8	43.0	39.2	44.1	35.7
5628.621	Cr1	51.0	46.1	44.8		38.6	23.6		35.0
5784.976	Cr1	71.2	82.3	63.2	65.7	71.2	45.5	68.0	61.5
5787.965	Cr1	84.1	96.5	76.0	80.0	83.7	81.1	81.8	77.0
6330.097	Cr1	88.0	114.1	81.3	83.2	86.9	69.0	89.5	106.5
4588.203	Cr2	106.1	125.3	101.2	100.1	115.9		111.4	67.6
4592.049	Cr2	82.7	92.0	79.6	74.5	85.5	122.1	80.5	49.6
5305.855	Cr2	57.9		51.3	43.6	56.3	86.5	47.9	25.0
5308.377	Cr2	53.9	49.3	49.7	43.5	53.5	70.0	45.9	
5313.526	Cr2	67.9		59.7	53.8	67.5	126.5	61.9	36.2
5502.025	Cr2	51.0	66.3	42.7	48.6	61.6	89.4	60.9	6
4739.113	Mn1	107.9	117.3	106.1	102.2	106.6	117.9	106.3	95.5
5413.684	Mn1	66.7	70.2	53.1	53.5	60.3	55.4	61.1	35.3
5420.350	Mn1	192.6	199.9	172.5	182.7	184.4	121.0	181.7	189.4
5432.548	Mn1	164.5	179.9			160.4	107.8	167.1	192.9
5537.765	Mn1	117.6		104.2			113.3	128.4	

Tabela B - Cont.

λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6013.497	Mn1	147.7		132.2	135.2	141.5	125.9	138.9	136.2
6021.803	Mn1	149.1		133.0	138.9	143.3	128.3	140.3	128.6
4523.400	Fe1	83.3		77.1	78.4	84.6		87.3	75.1
4537.676	Fel	50.9	50.7	44.3	43.9	48.5		47.9	49.2
4556.925	Fe1	68.5		64.3	64.1	70.3		76.0	56.8
4585.343	Fe1	49.9	44.8	48.1	43.4	51.2	45.3	50.0	28.0
4593.555	Fe1	69.1							3 5
4598.125	Fe1	123.5		114.4	117.7	120.3		114.7	110.4
4602.000	Fel	127.9	144.8		129.1	134.9		134.1	131.9
4741.535	Fel	117.0				122.1			
4749.961	Fe1	68.7		66.3	64.3	67.0		68.3	53.2
4793.961	Fe1	31.3	44.0	33.7	33.9	33.1	27.3	36.8	
4794.355	Fe1	45.8	51.8	46.6	47.1	47.1	32.7	48.4	
4798.273	Fe1	76.2	71.1	69.3	73.5	77.0	74.1	71.8	60.4
4798.743	Fel	84.0	91.5	77.3	86.2	88.4	78.6	86.6	2 5
4808.147	Fel	68.4	59.6	60.7	64.9	67.3	48.9	63.2	60.5
4907.733	Fe1	108.8	104.9	102.6	102.4	106.0	100.3	102.2	92.9
4908.032	Fe1	85.7	81.7	80.9	75.2	81.1	68.6	78.5	5
4911.788	Fel	77.3	66.1		71.0	75.4	65.4	69.1	62.8
4961.915	Fe1	72.4	88.6	67.7	64.4	70.0		69.2	62.8
4962.565	Fel	90.8	81.1	83.4	79.8	84.7	90.1	78.4	75.7
4969.916	Fel	115.3	115.6	104.8	104.6	110.2		104.7	101.2
5023.189	Fel	78.2	74.5	71.8	71.3	79.0	70.1	75.5	
5025.091	Fe1	49.7		45.3	44.2	48.3	42.5	46.8	34.7
5025.313	Fe1	47.6	63.5	45.1	44.9	51.2		48.6	28.4
5054.647	Fel	83.5		80.3	76.1	81.5	88.6	79.3	
5067.162	Fe1	116.3	122.4	107.4	104.0	109.4	123.8	105.4	
5072.677	Fel	104.9	113.4	99.9	98.2	102.0	113.4	97.7	
5109.649	Fe1	116.8	118.1	108.7	108.8	120.8			
5127.680	Fel	89.6		84.9	96.4	97.0		102.7	
5196.065	Fel	107.5	110.9	100.7	101.2	105.0	116.2	103.6	id

Tabela B - Cont.

λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
5197.929	Fe1	72.4	74.8	62.9	64.2	70.8	73.9	65.9	50.3
5213.818	Fe1	31.9	30.3	22.8	26.6	32.7	19.0	26.3	26.0
5223.188	Fe1	68.9	63.1	57.9	63.1	74.1	61.4	64.4	56.1
5242.491	Fe1	133.7		121.5	120.6	127.9	139.4	119.4	111.6
5243.773	Fe1	102.2	97.2	88.5	93.3	100.3	100.6	90.6	83.1
5247.049	Fe1	142.3		132.1	145.4	149.5	146.6	146.3	
5320.040	Fel	51.8	52.4	48.8	48.2	55.2	40.8	50.3	45.1
5321.109	Fe1	75.0		72.0	71.4	78.0		77.2	60.9
5379.574	Fe1	102.2	117.8	93.0	95.3	104.1	107.1	100.3	85.6
5389.486	Fe1	113.0	111.4	106.0	105.7	112.1	125.4	105.9	
5395.222	Fe1	49.7	53.6	43.5	39.6	48.6		47.0	35.1
5412.791	Fel	52.7	48.4	42.1	43.1	47.7	45.2	43.4	37.9
5432.946	Fe1	107.6		92.7	93.9	105.3		95.9	80.0
5436.297	Fe1	80.7	67.8	65.6	66.4	73.5	63.3	65.8	51.6
5473.168	Fe1	54.9		47.2	53.8	63.0	96.6	62.2	34.1
5483.108	Fe1	85.5	84.9	74.9	81.4			84.5	64.9
5491.845	Fe1	49.3	57.7	43.4	44.1	54.6		11-21	26.8
5494.474	Fe1	74.7	67.1	66.3	67.7	76.7	78.1	72.6	53.2
5508.419	Fe1	41.9		35.5		44.5			21.8
5522.454	Fel	78.3	81.7	69.6	75.9			82.0	61.4
5560.207	Fel	87.9	76.6	75.7	76.6	80.8	79.7	74.8	63.4
5577.013	Fe1	35.1	31.3	24.8	24.0	30.8		26.5	14.1
5587.573	Fel	76.7	76.8	67.8	69.2	74.2	57.7	70.1	55.1
5635.824	Fe1	79.2	68.1	70.0	65.5		53.0	64.5	57.5
5636.705	Fe1	67.1	67.3	54.6	54.3		42.9	55.4	49.2
5638.262	Fe1	122.9	128.8	111.6	114.2	116.1	126.5	112.0	102.7
5641.436	Fel	120.0	116.4	109.5	107.7	110.1		107.3	97.7
5646.697	Fe1	39.0	46.8	31.3	30.5			31.3	
5650.019	Fe1	75.6	87.0	67.5	64.9	67.5	55.7	68.0	54.6
5652.319	Fe1	69.2	61.5	61.5	58.0	60.1	43.3	58.6	50.1
5661.348	Fe1	68.8		63.1	59.0	64.7	53.7	64.6	50.0

λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
5680.240	Fe1	48.5		44.7	40.8	43.5		46.7	35.7
5701.557	Fe1	148.1		135.6	135.3	143.6	144.3	140.5	141.5
5705.473	Fe1	79.5	67.7	72.6	65.9	73.9	60.5	68.4	61.4
5731.761	Fe1	96.5	105.5	85.9		96.9	101.2	90.8	78.4
5738.240	Fel	41.6	36.1	32.0	36.3	36.4	24.0	33.5	21.7
5775.069	Fe1	99.8	93.8	96.5	87.0	96.6	92.3	90.9	79.8
5778.463	Fe1	74.4	76.2	72.6	65.2	70.2	50.5	69.5	64.9
5784.666	Fe1	66.7	73.3	60.7	65.2	67.2	50.8	65.3	60.1
5811.916	Fe1	34.7	35.7	29.2	30.0	33.1		30.9	24.8
5814.805	Fel	56.8	60.0	48.1	51.0	53.1	48.0	51.8	42.4
5835.098	Fe1	47.1		37.6	37.1	42.9	33.1	41.0	29.7
5849.681	Fel	33.7	37.7	27.9	25.2	27.3	14.1	25.9	25.3
5852.222	Fel,	84.3	83.0	72.1	69.7	75.4		72.1	
5855.086	Fe1	56.1	55.5	44.9	42.1	46.7	35.6	44.1	35.1
5856.096	Fel	75.5	83.9	62.7	62.0	69.8	60.4	63.7	53.1
5859.596	Fel	108.6	115.8	97.1	96.7	107.4	112.9	101.0	82.8
5005.551	Fe1	79.1	94.7	66.4		73.9	50.0	74.9	67.9
6007.968	Fe1	99.5	104.5	84.9	85.6	94.5	94.5	90.9	70.9
6012.212	Fe1	79.0	75.1				45.5		
6078.499	Fe1	117.1	106.7	113.3	100.9	105.4	104.7	99.1	86.9
6079.014	Fe1	85.7	76.6	81.3	70.6		62.4	67.5	61.2
6093.666	Fe1	68.6		59.3	58.4	63.4	49.7	60.3	41.9
6098.250	Fe1	51.9	77.2	46.7	47.4	50.4		54.7	31.3
6120.249	Fe1	44.1	63.7	41.2	46.8	46.5	36.9	48.8	59.9
6137.002	Fel	125.9	132.4	115.9	120.0	125.8	123.8	122.2	125.7
6151.616	Fe1	106.7	111.4	96.4	100.3	106.2	94.8	100.8	107.2
6159.382	Fel	40.0		35.7	33.7	41.0	36.4	38.3	
6173.340	Fe1	130.9	149.1	116.4	122.3	132.2	127.8	126.2	126.0
6187.987	Fe1	87.0	99.0	80.5		89.8	84.8	82.6	68.8
6199.508	Fel	29.4		23.5	26.6	32.5	21.9	34.9	25.0
6200.321	Fel	131.4	134.3	116.8	123.4	130.9	128.6	128.3	125.0

Fabela B – Co	ont.
---------------	------

λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6213.428	Fe1	144.4		134.4	139.7		67.2	148.6	144.5
6226.730	Fe1	72.3	63.2	67.6	64.3	73.6	110.5	61.8	56.6
6240.645	Fe1	108.5	110.5	104.2	104.9	116.3	122	113.1	107.8
6271.283	Fe1	73.4	69.4	63.0	64.7	67.7	56.2	65.8	64.3
6297.792	Fe1	136.6						139.2	143.7
6315.813	Fe1	96.4	86.2				75.3		74.7
6322.691	Fe1	136.8	145.6	125.	127.4	135.2	130.5	129.6	133.6
6380.750	Fe1	100.0		86.3			97.9	102.4	74.1
6385.726	Fe1	33.0	33.8	31.3	31.8	39.6		36.0	19.0
6392.538	Fe1	69.8	74.6	63.2	69.4	75.6		70.9	69.4
6498.945	Fe1	117.5		109.4	120.5	126.5	111.6	130.8	137.0
6608.044	Fe1	65.7	64.4	54.3	63.5	74.9	49.8	71.5	66.6
6627.560	Fe1	66.0	69.1	59.1	53.1	64.9	48.1	62.5	38.3
6633.427	Fe1	64.4	75.3	52.9	54.5	62.8	48.0	65.8	37.1
6634.123	Fe1	90.4		76.0	77.4	96.5	83.9	91.7	
6646.966	Fe1	50.3	71.4	43.7		57.6	42.5	61.0	47.7
6653.911	Fe1	37.9	35.4	30.0		39.3	29.8	40.2	24.6
6696.322	Fel	45.4	33.9	39.6	35.5	40.8	30.0	38.2	25.2
6699.136	Fel	30.2	38.1	29.9	26.1	31.2	24.0	34.0	17.4
6703.576	Fel	87.3	90.0	81.3	82.0	89.6	78.8	87.8	84.0
6704.500	Fel	24.2	31.0		20.4	22.6		27.7	17.3
6705.105	Fe1	86.8	93.0	79.4	76.2	86.1	76.6	84.7	56.9
6710.323	Fel	75.7		71.5	71.8	79.7	49.6	86.4	82.1
6713.745	Fe1	51.0	50.7	46.9	41.5	48.3	42.3	46.2	30.3
6725.364	Fel	51.5	47.2	43.6	41.0	46.1	36.3	45.4	35.4
6726.673	Fel	81.2	73.1	73.8	69.5	77.8	68.7	74.4	57.5
6732.068	Fe1	25.1	30.6				23.3		
6733.153	Fel	61.0	66.6	54.3	49.7	60.2	50.2	56.5	35.3
6739.524	Fel	58.6	69.7	53.9	56.9	60.6	35.3	61.0	68.0
6745.113	Fe1	31.0	35.1	28.2	24.8	34.3	24.1	32.7	17.9
6746.975	Fe1	26.9	29.0	25.1	27.3	32.0	21.5	31.8	24.6

Tabela B – Co	nt.						14	J. 12130	1.1.1
λ(Å)	Elem.	ε Vir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6750.164	Fe1	136.0	146.6	123.1	128.5	145.7	138.7	138.3	128.0
6752.716	Fel	78.8	89.6	69.1	70.9	84.7	67.2	80.4	
6786.860	Fel	66.9	58.3	62.4	55.4	67.5	69.5	62.3	45.7
6806.856	Fe1	93.8	111.1	90.5	87.2	104.0	83.4	97.7	83.2
6810.267	Fe1	92.0	79.4	86.5	79.4	95.2	89.7	85.7	64.6
6820.374	Fe1	78.3			69.7	81.9	70.3	76.3	
6828.596	Fe1	100.6	97.8	92.9		91.3	86.7	84.4	68.5
6837.013	Fel	49.2	37.8	39.0	36.7	44.8	31.7	40.0	28.9
6839.835	Fe1	90.1	109.9	76.2	80.4	91.8	72.2	87.0	83.3
6842.689	Fel	78.7	72.1	68.5	64.2	72.4	70.0	65.8	52.4
6843.655	Fe1	103.1	101.5	92.4	86.3	99.3	90.4	92.9	72.3
6855.166	Fe1	110.3	105.7	99.9	98.3	112.9	108.6	105.2	84.6
6855.723	Fe1	57.7		49.1	50.8	60.5		58.2	37.3
6857.251	Fel	58.3	45.6	48.1	48.8	53.2	42.6	52.3	39.4
6858.155	Fel	89.0	90.7	83.2	81.3	90.5		89.9	62.0
5861.945	Fel	73.8	91.3	63.1	68.9	79.3	58.9	78.0	63.5
5862.496	Fe1	67.5	61.6	55.4	57.2	68.6	54.9	62.9	40.6
4656.981	Fe2	74.4	69.3	70.7	66.7	75.6	118.1	68.7	43.7
4993.358	Fe2	71.6	65.3	58.9	63.6	79.0	115.4	69.7	52.8
5197.576	Fe2	122.4		106.4	109.1	121.9		112.9	
5234.630	Fe2	132.7		117.0	111.1	127.3	135.1	110.6	88.7
5264.812	Fe2	82.8	59.5	70.1	70.0	79.8		67.8	50.1
5325.560	Fe2	79.7		67.4	67.3	80.3	130.1	69.8	43.2
5414.075	Fe2	60.1	57.6	46.2	49.6	59.6	92.2	51.6	27.6
5425.257	Fe2	74.1	69.8	60.7	61.3	71.8	118.7	62.8	42.6
6149.249	Fe2	67.2	64.7	55.3	53.9	71.0	113.5	57.4	
6247.562	Fe2	89.5	59.0	79.2	67.2	76.5	140.1	67.5	51.3
6369.463	Fe2	53.3	32.9	36.3	40.5	54.5	82.8	38.7	25.1
6416.928	Fe2	75.5	56.4	67.1	63.0	78.9	116.5	65.7	43.2
6456.391	Fe2	100.0	84.3	83.9	77.7	94.79		82.2	55.8
4792.862	Co1	69.9	77.6	70.7	70.4	72.1	78.7	72.4	73.5

•

Tabela B – Co	nt.							a substation	•
λ(Å)	Elem	. ε Vir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	I HR8878
4813.479	Col	95.3		86.2	89.2	92.7	69.9	87.5	86.9
5212.691	Co1	63.8	63.6	53.2	58.3	62.5		58.4	66.0
5280.629	Col	51.9	55.6	50.1	47 0	49.5	28.8	48.0	48.9
5342.708	Col	59.7	65.0	54.3	58.2	69.6	68.4	65.5	59.2
5359,192	Col	26.3	27.3	26.6	23 3	26.2		26 1	21 1
5454.572	Co1	42.6	47.8	34.6	40.0	45.1	43.1	42.5	34.0
5647.234	Co1	64.6	81.9	60.1	60.8	56.4	30.7	60.8	75.7
6455.001	Co1	59 1		49 8		50.2	32.8	46.3	53.1
6632.472	Col	43.5	66.3	37.1	45.4	51.5	36.2	55.4	55.9
4935.831	Ni1	95.1			87.8	92.9			80.1
4946.029	Ni1	59.7	66.5		49.3	53.8		53.2	45.1
4953.200	Ni1	98.0			92.5	93.2	96.2	91.2	
5010.934	Ni1	87.2	82.3	79.1	79.8	87.0	91.6	81.6	67.7
5032.723	Ni1	59.5	72.9		54.3	60.4		58.7	
5094.406	Ni1	68.1	72.1	57.1	58.9	66.0	62.6	61.6	
5197.157	Ni1	65.1	59.5	54.8	53.6	59.4	42.7	56.7	
5220.300	Ni1	64.3	59.5	53.0	56.8	63.6	52.6	56.5	48.7
5392.330	Ni1	37.0	23.6	28.8	28.1	31.8	22.0	28.4	21.9
5435.866	Ni1	104.1	112.4	94.9	100.1	107.9	104.0	103.5	102.7
5452.860	Ni1	52.2	41.3		42.1	49.3	42.3	44.0	28.9
5494.876	Ni1	59.9	43.2	50.3	51.0	58.0	48.5	54.1	38.6
5587.853	Ni1	110.3		100.7	107.8	113.8		112.0	109.6
5625.312	Ni1	82.2	88.5	73.9	66.2		68.7	67.8	58.5
5628.354	Ni1	55.0		49.7	43.5			10-4-03	31.4
5637.128	Ni1	72.9	68.7	63.4	61.7	63.9	50.2	61.5	54.8
5748.346	Ni1	85.6			85.1	88.3		86.7	84.6
5846.986	Ni1	80.9	94.3	69.6	73.4	76.0	58.0	77.0	85.9
6086.276	Ni1	83.0	79.9		69.4	75.5	71.6	71.3	56.3
6176.807	Ni1	104.7	104.4	93.1	90.0	101.4	97.5	93.4	74.5
6177.236	Nil	61.5	75.0	51.9	54.8	61.0	43.9	58.9	59.7
6186 709	Ni1	63 9	55 0	56 4		61 0	15 2	53 7	12 3

Tabela B – Co	nt.				*				
λ(Å)	Elem.	ε Vir	HR5058	HR5802	HR7321	HR8115	HR8204	HD20501	1 HR8878
6101 107	Ni 1	122 /	115 1	101 7		125 2	122 /	130 3	134 5
6327 604	NII	106 3	120 0	05 5	00.0	105.0	01 0	104 4	112 0
CC2E 127	NII NII	100.5	120.0	50.0	59.0	105.0	91.0	104.4	24.0
6635.137	NII	50.7	67.4	50.4	50.5		47.1		34.0
6767.784	NII	141.6	146.0	131.9	136.1		149.0	141.1	140.6
6772.321	Nil	94.1	85.9	86.6	84.8		90.6	88.6	71.0
6842.043	Nıl	70.7	64.2	60.0	56.3	64.0	48.6	59.7	50.4
5218.209	Cul	89.2	90.2	80.3	83.8	92.3	93.2	86.8	81.3
5220.086	Cu1	48.7	87.1	47.1	55.9	61.8		65.7	43.4
5782.136	Cu1	187.4	241.1	183.9	194.5	216.8	187.6	204.4	183.0
4810.537	Zn1	95.4	83.3	87.4	87.4	97.5	137.3	88.6	75.0
4607.338	Sr1	94.4	191.8	119.0	116.5	121.4	214.8	137.9	105.3
4883.690	Y2	112.1	226.7	130.9	130.4	143.2	334.5	182.6	110.0
1900.124	Y2	104.5	192.1	126.8	106.2	132.7		178.8	98.5
5087.426	Y2	100.5	147.1	112.8	109.6	125.9	310.9	136.0	88.7
5200.415	Y2	88.4	134.0	102.9	101.9	111.9	282.7	122.4	
5289.820	¥2	26.9	77.4	48.7	43.6	50.4	120.5	60.9	20.3
402.780	Y2	46.5	84.2	61.9	62.2	70.8	192.7		42.1
739.454	Zr1	44.3	120.1	73.7	70.2	69.5	124.0	94.3	72.3
613.921	Zr2	83.2	108.4	96.1	91.9	100.1	145.1	103.0	69.4
112.279	Zr2	43.2	95.8	64.6	59.0	65.4	149.5	72.5	34.2
853.688	Ba2	128.9	270.1	136.6	174.4	176.1	359.4	212.9	117.6
141.727	Ba2	218.6	497.8	258.4	271.8	287.3	613.6	386.5	187.8
5496.908	Ba2	229.0	408.7	225.7	228.7	268.4	535.0	326.3	179.3
662.512	La2	54.1	118.8	68.9	75.5	77.3	193.5	92.3	57.4
748.737	La2	32.3	74.3	43.7	43.3	44.9	110.5	55.9	28.8
5320.429	La2	48.6	147.6	54.2	57.6	64.8	194.1	89.3	44.7
390.493	La2	32.3	126.1	48.9	54.7	69.6	140.8	83.4	34.7
1523.080	Ce2	74.4	147.1	83.2	95.4	100.9	287.8	113.2	85.6
562.367	Ce2	74.4	116.3	78.2	84.2	90.0	191.1	100.0	70.4
628.160	Ce2	72.3	171.0	90.3	93.8	98.6	229.9	117.4	69.5
1773 959	Cel	39.7	75 3	41 0	51 0	55 0	110 1	61 0	37 0

Tabela B – Co	nt.								1
λ(Å)	Elem.	εVir	HR5058	HR5802	HR7321	HR8115	HR8204	HD205011	HR8878
5274.236	Ce2	44.8	89.2	51.6	59.1	63.1	138.3	68.9	31.9
5089.831	Nd2	29.1	83.7	30.4	38.9	45.2	102.6	53.3	45.5
5319.820	Nd2	57.3	103.0	65.2	73.3	77.3	180.9	83.1	66.3
4566.233	Sm2	49.3	85.7	47.4	54.5	55.5	98.4	61.4	52.1
6645.127	Eu2	29.7	57.0	27.8		36.4	69.8	39.2	36.6
5419.880	Gd2	14.1	12.1		9.4	12.6		13.5	7.4

APÊNDICE II

Neste segundo apêndice apresentamos um tabela com os valores de gf para as linhas dos elementos onde consideramos estrutura hiperfina.

4571.10	2 Mg1	4730.03	8 Mg1	5711.09	5 Mg1
λ(Å)	log gf	$\lambda(Å)$	log gf	λ(Å)	log gf
4571.078	-6.094	4730.031	-2.824	5711.074	-2.556
4571.087	-6.134	4730.038	-2.864	5711.083	-2.596
4571.096	-5.234	4730.046	-1.964	5711.091	-1.696
	*				
5318.34	6 Sc2	5357.19	0 Sc2	5526.81	5 Sc2
λ(Å)	log gf	λ (Å)	log gf	λ(Å)	log gf
5318.317	-2.790	5357.124	-2.735	5526.749	-1.085
5318.317 5318.350	-2.790 -2.250	5357.124 5357.157	-2.735 -2.642	5526.749 5526.782	-1.085 -0.992
5318.317 5318.350 5318.383	-2.790 -2.250 -2.458	5357.124 5357.157 5357.190	-2.735 -2.642 -2.850	5526.749 5526.782 5526.815	-1.085 -0.992 -1.200
5318.317 5318.350 5318.383 5318.402	-2.790 -2.250 -2.458 -2.347	5357.124 5357.157 5357.190 5357.209	-2.735 -2.642 -2.850 -2.739	5526.749 5526.782 5526.815 5526.834	-1.085 -0.992 -1.200 -1.089
5318.317 5318.350 5318.383 5318.402	-2.790 -2.250 -2.458 -2.347	5357.124 5357.157 5357.190 5357.209	-2.735 -2.642 -2.850 -2.739	5526.749 5526.782 5526.815 5526.834	-1.085 -0.992 -1.200 -1.089
5318.317 5318.350 5318.383 5318.402	-2.790 -2.250 -2.458 -2.347	5357.124 5357.157 5357.190 5357.209	-2.735 -2.642 -2.850 -2.739	5526.749 5526.782 5526.815 5526.834	-1.085 -0.992 -1.200 -1.089

Tabela A – Gfs adotados para as linhas dos elementos com estrutura hiperfina. As respectivas larguras equivalents estão listadas no apêndice I.

5657.87	4 Sc2	5684.18	9 Sc2	6245.66	0 Sc2
$\lambda(Å)$	log gf	$\lambda(Å)$	log gf	$\lambda(Å)$	log gf
5657.808	-1.305	5684.123	-1.775	6245.661	-1.776
5657.841	-1.212	5684.156	-1.682	6245.642	-1.887
5657.874	-1.420	5684.189	-1.890	6245.609	-1.679
5657.893	-1.309	5684.208	-1.779	6245.576	-1.772

Tabela A	- Cont.
----------	---------

6320.86	7 Sc2	5657.43	6 V1	5668.36	2 V1
λ (Å)	log gf	λ(Å)	log gf	λ(Å)	log gf
6320.884	-2.260	5657.418	-1.290	5668.344	-1.300
6320.865	-2.371	5657.436	-1.290	5668.362	-1.300
6320.832	-2.163	5657.454	-1.290	5668.380	-1.300
6320.799	-2.256				

5670.851V15727.661V16090.216V1 $\lambda(\text{Å})$ log gf $\lambda(\text{Å})$ log gf $\lambda(\text{Å})$ log gf5670.833-0.7005727.0751.3846090.234-0.5295670.851-0.7005727.0571.3846090.216-0.5295670.869-0.7005727.0381.3846090.198-0.529

6135.37	0 V1	6150.15	4 V1	6199.18	86 V1
$\lambda(Å)$	log gf	$\lambda(Å)$	log gf	λ(Å)	log gf
6135.352	-1.150	6150.136	-1.900	6199.168	-1.780
6135.370	-1.150	6150.154	-1.900	6199.186	-1.780
6135.388	-1.150	6150.172	-1.900	6199.204	-1.780

6216.35	58 V1	6274.65	8 V1	6285.16	5 V1
$\lambda(\text{\AA})$	log gf	λ (Å)	log gf	$\lambda(Å)$	log gf
6216.340	-1.380	6274.640	-2.050	6285.147	-1.970
6216.358	-1.380	6274.658	-2.050	6285.165	-1.970
6216.376	-1.380	6274.676	-2.050	6285.183	-1.970

rabela A - Com	Ta	bel	a	A	-	Cont
----------------	----	-----	---	---	---	------

4739.11	3 Mn1	5413.684 Mn1		5420.350 Mn1	
$\lambda(Å)$	log gf	λ(Å)	log gf	$\lambda(Å)$	log gf
4739.099	-1.269	5413.613	-1.716	5420.277	-2.121
4739.113	-1.410	5413.653	-0.921	5420.301	-2.043
4739.126	-1.565	5413.679	-1.169	5420.334	-2.903
4739.145	-1.122	5413.714	-0.805	5420.376	-1.796
4739.167	-2.472	5413.722	-1.265	5420.429	-1.708
5432.54	8 Mn1	5537.76	5 Mn1	6013.49	7 Mn1
λ(Å)	log gf	λ(Å)	log gf	$\lambda(Å)$	log gf
5432.512	-3.928	5537.691	-2.689	6013.474	-0.484
5432.540	-4.034	5537.710	-2.574	6013.486	-0.694
5432.565	-4.144	5537.798	-2.538	6013.501	-0.835
5432.584	-4.289	5537.764	-2.574	6013.519	-0.504
5432.598	-4.383	5537.802	-2.210	6013.537	-1.082
6021.80	3 Mn1	4792.86	2 Co1	4813.47	9 Col
6021.80 λ(Å)	3 Mn1 log gf	4792.86 λ(Å)	2 Col log gf	4813.47 λ(Å)	9 Col log gf
6021.80 λ(Å) 6021.764	3 Mn1 log gf -1.166	4792.86 λ(Å) 4792.811	2 Col log gf -2.165	4813.47 λ(Å) 4813.428	9 Col log gf -1.406
6021.80 λ(Å) 6021.764 6021.780	3 Mn1 log gf -1.166 -1.017	4792.86 λ(Å) 4792.811 4792.827	2 Col log gf -2.165 -1.512	4813.47 λ(Å) 4813.428 4813.451	9 Col log gf -1.406 -0.929
6021.80 λ(Å) 6021.764 6021.780 6021.797	3 Mn1 log gf -1.166 -1.017 -0.186	4792.86 λ(Å) 4792.811 4792.827 4792.840	2 Col log gf -2.165 -1.512 -1.004	4813.47 λ(Å) 4813.428 4813.451 4813.469	9 Col log gf -1.406 -0.929 -0.385
6021.80 λ(Å) 6021.764 6021.780 6021.797 6021.806	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403	4792.86 λ(Å) 4792.811 4792.827 4792.840 4792.855	2 Col log gf -2.165 -1.512 -1.004 -0.582	4813.47 $\lambda(Å)$ 4813.428 4813.451 4813.469 4813.481	9 Col log gf -1.406 -0.929 -0.385 -0.319
6021.80 λ(Å) 6021.764 6021.780 6021.797 6021.806 6021.814	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268	4792.86 λ(Å) 4792.811 4792.827 4792.840 4792.855 4792.864	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545	4813.47 λ (Å) 4813.428 4813.451 4813.469 4813.481 4813.492	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448
6021.80 λ (Å) 6021.764 6021.780 6021.797 6021.806 6021.814	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268	4792.86 λ (Å) 4792.811 4792.827 4792.840 4792.855 4792.864	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545	$\begin{array}{c} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448
6021.80 λ(Å) 6021.764 6021.780 6021.797 6021.806 6021.814 5212.69	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1	4792.86 λ(Å) 4792.811 4792.827 4792.840 4792.855 4792.864 5280.62	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Col	$\begin{array}{c} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ 5342.70\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col
$\begin{array}{c} 6021.80\\ \lambda(\text{\AA})\\ 6021.764\\ 6021.780\\ 6021.797\\ 6021.806\\ 6021.814\\ 5212.69\\ \lambda(\text{\AA})\end{array}$	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1 log gf	4792.86 λ(Å) 4792.811 4792.827 4792.840 4792.855 4792.864 5280.62 λ(Å)	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Col log gf	$\begin{array}{c} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ 5342.70\\\lambda(\text{\AA})\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col log gf
$\begin{array}{c} 6021.80\\ \lambda(\mbox{\AA})\\ 6021.764\\ 6021.780\\ 6021.797\\ 6021.806\\ 6021.814\\ \\ 5212.69\\ \lambda(\mbox{\AA})\\ 5212.614 \end{array}$	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1 log gf -1.573	4792.86 λ (Å) 4792.811 4792.827 4792.840 4792.855 4792.864 5280.62 λ (Å) 5280.581	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Col log gf -1.507	$\begin{array}{c} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ 5342.70\\\lambda(\text{\AA})\\ 5342.647\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col log gf -0.247
$\begin{array}{c} 6021.80\\ \lambda(\text{\AA})\\ 6021.764\\ 6021.780\\ 6021.797\\ 6021.806\\ 6021.814\\ \\5212.69\\ \lambda(\text{\AA})\\ 5212.614\\ 5212.856\\ \end{array}$	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1 log gf -1.573 -0.866	4792.86 λ (Å) 4792.811 4792.827 4792.840 4792.855 4792.864 5280.62 λ (Å) 5280.581 5280.607	<pre>2 Co1 log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Co1 log gf -1.507 -0.718</pre>	$\begin{array}{c} 4813.47\\ \lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ \\5342.70\\ \lambda(\text{\AA})\\ \\5342.647\\ \\5342.690\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col log gf -0.247 -0.322
$\begin{array}{c} 6021.80\\ \lambda(\text{\AA})\\ 6021.764\\ 6021.780\\ 6021.797\\ 6021.806\\ 6021.814\\ \\ 5212.69\\ \lambda(\text{\AA})\\ 5212.614\\ 5212.856\\ 5212.685\\ \end{array}$	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1 log gf -1.573 -0.866 -0.735	4792.86 λ (Å) 4792.811 4792.827 4792.827 4792.840 4792.855 4792.864 5280.62 λ (Å) 5280.581 5280.607 5280.629	2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Col log gf -1.507 -0.718 -0.851	$\begin{array}{r} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ 5342.70\\\lambda(\text{\AA})\\ 5342.647\\ 5342.690\\ 5342.724\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col log gf -0.247 -0.322 -0.408
$\begin{array}{c} 6021.80\\ \lambda(\text{\AA})\\ 6021.764\\ 6021.780\\ 6021.797\\ 6021.806\\ 6021.814\\ \\ 5212.69\\ \lambda(\text{\AA})\\ 5212.614\\ 5212.856\\ 5212.685\\ 5212.724\\ \end{array}$	3 Mn1 log gf -1.166 -1.017 -0.186 -0.403 -0.268 1 Co1 log gf -1.573 -0.866 -0.735 -0.914	4792.86 λ (Å) 4792.811 4792.827 4792.827 4792.840 4792.855 4792.855 4792.864 5280.62 λ (Å) 5280.581 5280.607 5280.629 5280.650	<pre>2 Col log gf -2.165 -1.512 -1.004 -0.582 -0.545 9 Col log gf -1.507 -0.718 -0.851 -0.694</pre>	$\begin{array}{r} 4813.47\\\lambda(\text{\AA})\\ 4813.428\\ 4813.451\\ 4813.469\\ 4813.481\\ 4813.492\\ \\ 5342.70\\\lambda(\text{\AA})\\ 5342.647\\ 5342.690\\ 5342.724\\ 5342.751\end{array}$	9 Col log gf -1.406 -0.929 -0.385 -0.319 -0.448 8 Col log gf -0.247 -0.322 -0.408 -0.513

Tabe	la A	- 1	Cont.
		-	

5359.19	2 Co1	5454.572 Col		5647.23	4 Co1
λ (Å)	log gf	λ(Å)	log gf	λ(Å)	log gf
5359.115	-0.542	5454.529	-0.397	5647.191	-2.098
5359.158	-0.617	5454.572	-0.472	5647.200	-2.173
5359.192	-0.703	5454.606	-0.558	5647.234	-2.259
5359.219	-0.808	5454.633	-0.663	5647.261	-2.364
5359.244	-0.755	5454.658	-0.610	5647.291	-2.311

6455.001 Col 6632.472 Col 5218.209 Cul

$\lambda(Å)$	log gf	$\lambda(Å)$	log gf	$\lambda(Å)$	log gf
6454.931	-1.447	6632.395	-2.398	5218.059	-1.356
6454.979	-0.658	6632.438	-2.473	5218.061	-0.880
6455.001	-0.791	6632.472	-2.559	5218.063	-1.010
6455.022	-0.634	6632.499	-2.664	5218.065	-0.290
6455.044	-0.699	6632.524	-2.611	5218.069	-0.512
				5218.071	-0.512

5218.074 -0.166

5220.086 Cul 5782.136 Cul

$\lambda(Å)$	log gf	$\lambda(Å)$	log gf
5220.080	-2.086	5782.032	-3.154
5220.082	-1.610	5782.042	-3.457
5220.084	-1.740	5782.054	-2.756
5220.086	-1.031	5782.064	-2.807
5220.090	-1.242	5782.073	-3.111
5220.092	-1.242	5782.084	-2.410
5220.095	-0.916	5782.086	-2.756
		5782.098	-2.756
		5782.113	-2.410
		5782.124	-2.410
		5782.153	-2.309
		5782.173	-1.963

REFERÊNCIAS

- Anders, E. & Grevesse N., 1989, Geochim. et Cosmochim. Acta, 53, 197.
- Bidelman, W.P. & Keenan, P.C. 1951, Ap.J., 114, 473.
- Blackwell & Lynas-Gray 1998, A&A Supp, 129, 505.
- Blackwell, D.E., Lynas-Gray, A.E. & Smith, G., 1995, A&A, 296, 217.
- Böhm-Vitense, E., 1980, Ap.J. Letter, 239, L79.
- Böhm-Vitense, E., Carpenter, K., Robinson, R., Ake, T. & Brown, J., 2000, *Ap.J.*, 533, 969.
- Böhm-Vitense, E. & Johnson, H.R., 1985, Ap.J., 293, 288.
- Bond H.E.& Neff J.S., 1969, Ap.J, 158, 1235.
- Burbidge, E.M. & Burbidge, G.R., 1957, Ap.J., 126, 357.
- Busso, M., Lambert, D.L., Beglio, L., Gallino, R., Raiteri, C.M. & Smith, V.V., 1995, *Ap.J.*, 446, 775.
- Cameron, A.G.W., 1982, Ap &SS, 92, 123.
- Castro, S., Porto de Mello, G.F. & da Silva, L., 1999, M.N.R.A.S., 305, 693.
- Cayrel de Strobel, G., Bentolila, C., Hauck, B. & Duquennoy, A., 1985, A&Asupp., 59, 145.
- da Silva, R.O., 2000, Busca Fotométrica e Espectroscópica de Estrelas Gêmeas Solares, Projeto Final de Curso para Obtenção do Título de Astrônomo, OV-UFRJ.

Cowley, C.R. & Downs, P.L., 1980, Ap.J., 236, 648.

Dominy, J.F. & Lambert D.L., 1983, Ap.J., 270, 180.

- Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D.L., Nissen, P.E & Tomkin, J., 1993, A&A, 275, 101.
- ESA, The Hipparcos Catalogue, 1997, ESA SP-1200.
- Hoffleit, D. & Jaschek, C., 1982, *The Bright Star Catalogue*, Yale University Observatory, New Haven.
- Gray, D.F., 1992, *The Observation and Analysis of Stellar Photospheres*, Cambridge University Press.
- Gustaffson, B., Bell, K. A., Eriksson, K. E. & Nordlund, A., 1975, A&A, 42,407.
- Holweger, H., Kock, M. & Bard, A., 1995, A&A, 296, 233.
- Johnson, H.L., Mitchell, R.I., Iriarte, B. & Wisniewski, W.Z., 1966, Comm. of the Lunar Planet. Lab., 4, 99.

Landolt-Börnstein, New Series, Gp. VI, Vol 2, Astronomy and Astrophysics, Subvolume

B, 1982, Springer, Berlon, Heidelberg, New York.

Luck, R.E. & Bond, H.E., 1991, Ap.J.S., 77, 515.

Malaney, R.A., 1987a, Ap.J., 321, 832.

Malaney, R.A., 1987b, Ap&SS, 137, 251.

McClure, R.D., 1983, Ap.J., 268, 264.

McClure, R.D., 1984, P.A.S.P., 96, 117.

McClure, R.D., Fletcher, J.M. & Nemec, J.M., 1980, Ap.J. Letters, 238, L35.

McWilliam ,1990, ApJS, 74, 1075.

Merril, P.W., 1952, Science, 115, 484.

Moore C.E., Minnaert M. & Houtgast J., 1966, The Solar Espectrum 2935 Å to 8770 Å, Nat. Bur. Std., US Monograph 61.

North P., Berthet, S. & Lanz, T., A&A, 281, 775.

Novotny, E., 1973, Introduction to Stellar Atmospheres and Interiors, Oxford University Press.

Pereira, C.B. & Porto de Mello, G.F., 1997, A.J., 114, 2128.

Pereira, C.B., Smith, V. & Cunha, K.M.L, 1998, A.J., 116, 1977.

Pilachowski, C.A., 1977, A&A, 54, 465.

Porto de Mello, G.F., 1996, Tese de Doutorado, CNPq/Observatório Nacional.

Schaerer, D., Meynet, G., Maeder, A. & Schaller, G., 1993, A&AS, 98, 253.

Smith, V.V., 1984, A&A, 132, 326.

Sneden, C., Pilachowski, C.A. & Kraft, R.P, 2000, A.J., 120, 1351.

Steffen M., 1985, A&A Supp., 59, 403.

Tomkin, J. & Lambert, D.L., 1979, Ap.J., 227, 209.

Tomkin, J. & Lambert, D.L., 1983, Ap.J., 273, 722.

Udry, S., Jorissen, A., Mayor, M. & Van Eck, S., 1998a, A&AS, 131, 25.

Udry, S., Mayor, M., Van Eck, S., Jorissen, A., Prevot, L., Grenier, S. & Lindgren, H., 1998b, A&AS, 131, 43.

Warner, B., 1965, M.N.R.A.S., 129, 263.

Zacs, L., 1994, A&A, 283, 93.