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“The most beautiful thing we can experience is the mysterious. It is the source of all 

true art and science. He to whom this emotion is a stranger, who can no longer pause to 

wonder and stand rapt in awe, is as good as dead: his eyes are closed.” 

- Albert Einstein 
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 Sabe-se que o sistema de ancoragem de plataformas flutuantes responde de forma 

não-linear aos carregamentos ambientais. Embora o modelo de excitação das ondas seja 

um processo Gaussiano, a tração nas linhas geralmente não o é devido aos movimentos 

de segunda ordem de baixa frequência do flutuador e às não-linearidades inerentes ao 

próprio sistema. Neste trabalho, a tração de curto prazo na linha é tratada como um 

processo ergódigo não-Gaussiano. A tração extrema é estimada com base na amostra de 

picos de uma única série temporal simulada de tração. Um número de modelos 

probabilísticos conhecidos são ajustados aos picos da série e a estatística de ordem 

clássica é aplicada para se determinar a tração extrema mais provável na linha, 

correspondente a um período de curto-prazo especificado (3-h), para identificar aquele 

com melhor performance. Os efeitos dos principais parâmetros da análise dinâmica, como 

a duração da simulação e o nível de discretização do espectro de ondas, também são 

investigados através da simulação de várias séries de tração. Além disso, o efeito da 

correlação entre picos consecutivos de tração na estimativa de valores extremos é 

investigado através da cadeia de Markov de primeira ordem (usando um modelo baseado 

na transformação de Nataf da distribuição de probabilidades conjunta de dois picos 

consecutivos) e através do método ACER. Mostra-se que esta consideração leva a 

estimativas extremas invariavelmente menores do que as obtidas pela estatística de ordem 

clássica. Mostra-se também que estas são mais próximas das estimativas obtidas 

diretamente de uma amostra de máximos episódicos obtida a partir de várias simulações 

numéricas distintas. Os exemplos numéricos abrangem dois casos de estudo de linhas de 

ancoragem pertencentes a unidades FPSO a serem instaladas no Brasil. 
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 It is known that the mooring system of floating platforms responds non-linearly 

to environmental loads. Even though the wave-frequency excitation can be assumed as a 

Gaussian process, the line tension generally is not due to second-order slow-drift floater 

motions and nonlinearities of the system itself. This work assumes the short-term line 

tension as a non-Gaussian ergodic process. The extreme tension is estimated based on the 

peaks sample of a single simulated tension time-history. A number of known probability 

distributions are fitted to the peaks of the time series and classic order statistics theory is 

applied to determine the most probable extreme line tension corresponding to a specified 

short-time period (3-h) in order to identify the one with best performance. The effects of 

major parameters in the dynamic analysis, such as simulation length and discretization 

level of the wave spectrum, are also investigated using several simulated tension time-

histories. Furthermore, the effect of correlation between consecutive tension peaks in the 

extreme values estimation is investigated through the one-step Markov chain condition 

(using a Nataf transformation-based model for two consecutive peaks joint probability 

distribution) and through the ACER method. It is shown that this consideration leads to 

extreme value estimates that are invariably smaller than those obtained by standard order 

statistics. These estimates are also shown to be closer to the extreme estimates directly 

obtained from a sample of epochal maxima taken from several distinct numerical 

simulations. Numerical examples cover two study cases for mooring lines belonging to 

FPSO units to be installed offshore Brazil.  
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1 INTRODUCTION 

In the design of floating production units and their mooring and production lines, 

it is of general understanding that the response is nonlinearly related to the applied 

environmental loads. Even though the short-term wave-frequency excitation can be 

assumed as a normal (or Gaussian) process, the mooring line tensions generally are not 

mainly due to the second-order effects associated to the floater slowly varying motions. 

It is clear that if an irregular wave elevation is modeled as a superposition of components 

at different frequencies then motions proportional to the square of that elevation will 

contain terms at both the sums and differences of the elementary wave frequencies [1]. 

The presence of these low difference frequency components in the excitation results in a 

resonant response of the floater-lines system in their horizontal modes, which is 

characterized for very high natural periods (order of 200∼400s). In general, the frequency-

domain analysis is not applicable since it relies on the linearization of the mooring system 

structural behavior. A nonlinear fully coupled dynamic analysis comprising both the 

floater and its risers and mooring lines in the time domain should be therefore a more 

appropriate approach. 

 Because of the nonlinearities in the behavior of the floater-lines system, one very 

challenging aspect of the mooring lines design is their extreme loads estimation, more 

specifically the estimation of characteristic short-term extremes values based on the 

sampled time-series. Taking the maximum observed line tension in each of independent 

short-term time-domain simulations (realizations) results in a set of distinct extreme 

values. Consequently, the ideal practice for estimating extreme tension values should be 

to perform a sufficiently large number N of independent simulations and fit an extreme 

value probability distribution to the sample of N maxima extracted from each simulation 

[2][3]. The extreme response usually adopted in the design is the most probable extreme 

value (MPV), i.e., the point where the fitted probability density function reaches its 

maximum value. As the number N of simulations increases, a more accurate distribution 

is obtained and hence a more accurate MPV response is estimated. However, this 

procedure is not feasible for the great majority of marine structures as it can be very time-

consuming and cumbersome for everyday design applications.  

 On the other hand, by assuming the short-term line tension as a stationary and 

ergodic process, one can estimate extreme tensions from just a single response simulation. 
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This hypothesis is generally implicit in numerical simulations and methodologies used 

for marine structures design. Under this assumption, the short-term extreme response can 

be estimated using the peaks (maxima) probability distribution of a single tension time-

history [2][3]. As there is not a theoretical solution for this distribution in the case of a 

non-Gaussian process, the procedure is to fit a given probability model to the peaks 

sample and use standard order statistics to obtain the short-term extreme response. In this 

work, searching for the model with best performance, three choices for the peaks 

probability model are investigated: (i) three-parameter Weibull model, (ii) two-parameter 

Weibull model fitted to the high probability level data (Weibull-tail model) and (iii) four-

parameter Shifted Generalized Lognormal Distribution (SGLD) model, recently 

developed by Low [4]. A more recently developed extremes estimation method, the 

ACER (Average Conditional Exceedance Rate) method [5], is also investigated. The 

ACER method is not based on a procedure of probability model fitting to the peaks of a 

sample but rather on the estimation of rates of level crossing exceedances. 

 Moreover, this work also examines how some major parameters of a typical time-

domain numerical simulation can influence the estimation of the MPV from a single 

tension time-history, such as the simulation length and the level of wave spectrum 

discretization. All results are compared to the ‘true’ value, i.e., the one obtained from 

fitting an extreme probability distribution model to an extreme short-term values sample 

taken from several (and distinct) time-domain simulations.   

 Another important aspect of the study of extreme mooring line tension response 

is that its low-frequency component is narrow-banded. An essential characteristic of a 

narrow-band process is the higher dependency (correlation) between the successive 

response peaks. This effect on the short-term extreme MPV is considered by means of 

the one-step Markov chain condition using a Nataf transformation-based model for the 

joint probability distribution of two consecutive peaks. This correlation is also 

investigated through the ACER method, considering the behavior of two and three 

consecutive peaks. 

 The numerical examples presented in this study comprise a chain-polyester-chain 

mooring line connected to a spread-moored FPSO in deep water and a chain-wire rope-

chain mooring line connected to a turret-moored FPSO in shallow water. 
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 Following Introduction, Chapter 2 presents basic probability and statistics 

concepts for better understanding of the theoretical basis and terminology used 

throughout the study. Chapter 3 presents concepts of the statistical analysis of random 

processes. 

 The most important theoretical basis of this study is presented in Chapter 4, where 

extremes statistics is explained in details for Gaussian and non-Gaussian random 

processes. In Chapter 5, a summary of the main characteristics and assumptions of a 

typical mooring line extreme load analysis is presented.  

 The methods for extremes estimation presented in Chapter 4 are employed in two 

case studies in Chapter 6. In the latter, it is presented the details and results of the 

performed analyses. Main conclusions of the present study and recommendations for 

future works are given in Chapter 7. 

 The References section lists all previous studies and literature that was taken as 

foundation for the present work. 

 In the Annex, further information and data regarding the analyses performed in 

this study can be found. 
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2 BASIC PROBABILITY AND STATISTICS 

CONCEPTS  

2.1 Single Random Variables 

 In probability and statistics, a random or stochastic variable can be understood as 

a real function defined on a sample space. Given a random phenomenon Y, the random 

variable � describes its stochastic behavior. A realization � of the random variable � is 

any outcome of the random phenomenon Y. For every outcome � of the random variable 

there is a probability #(� < �) associated with it. In this work, random variables are 

denoted by capital letters and the corresponding small letters denote their realizations. 

 A random variable is characterized by its probability density function �1(�), or 

simply its PDF, which satisfies the following condition 

�1(�)2� = #(� ≤ � ≤ � + 2�) (2.1) 

where #(5) indicates the probability that the event 5 occurs. The probability that the 

variable � assumes values between known limits � and � is given by 

#(� ≤ � ≤ �) = 6 �1(�)2�7
8  (2.2) 

This probability corresponds to the area under the curve �1(�) contained in the interval [�, �]. It is possible to demonstrate that every PDF satisfies the following properties: 

i. The probability of occurrence of any event is always non-negative; 

�1(�) ≥ 0 (2.3) 

ii. The sum of all possible results probabilities is 1 (or 100%). 

6 �1(�)2� = 1;
<;  (2.4) 

 The integral of the PDF is known as the Cumulative Density Function, or CDF, 

and is defined as 

=>(�) = 6 �1(�)2�8
<; = #(� ≤ �) (2.5) 
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 For a continuous random variable � with PDF �1(�), the mean (or expected 

value) of the variable is 

?(�) = $1 = 6 ��1(�)2�;
<;  (2.6) 

and is also known as the first moment of the probability distribution �1(�).  

 The mode or the most probable value (MPV) of a continuous random variable 

is the point in which the probability density function reaches its maximum value, as 

shown in Figure 1. 

 

Figure 1 Mode or Most Probable Value of a generic random process 

Besides the mean, the next most important quantity of a random variable is its 

measure of dispersion or variability, i.e., the quantity that gives a measure of how close 

(or far) the values of the variate are. For a continuous random variable � with PDF �1(�) 

and mean $1, the variance of � is 

@�A(�) = 6 (� B $1)C�1(�)2�;
<;  (2.7) 

and is also known as the second moment of the probability distribution �1(�).   

A more convenient measure of dispersion is known as the standard deviation, 

given by 

%1 = D@�A (�) (2.8) 
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 High values of @�A (�) (and %1) indicate large dispersion of the variable outcomes 

relative to its mean, whereas low values of @�A (�) (and %1) indicate that the variable 

assumes values closer to its mean. 

 The coefficient of variation, identified as EF@1 or G1, is a dimensionless measure 

of � variability, defined as the ratio of the standard deviation to the mean (for $1 H 0): 

G1 = %1$1 (2.9) 

 The coefficient of asymmetry (or skewness), identified as I1, is defined as 

I1 = ?(� B $1)J%1J = K (� B $1)J�1(�)2�;<; %1J  (2.10) 

and it is also known as the third moment of the probability distribution �1(�). The 

coefficient of asymmetry, as the name indicates, is a parameter associated to the 

distribution asymmetry about its mean. A null skewness value indicates that �1(�) is 

symmetric. A positive skew indicates that the longest tail is on the right side of the 

probability distribution function and a negative skew indicates that the longest tail is on 

the left. This is illustrated in Figure 2. 

 

Figure 2 Skewness graphical interpretation  

 The coefficient of kurtosis, or simply kurtosis, identified as L1, is defined as 

L1 = ?(� B $1)M%1M = K (� B $1)M�1(�)2�;<; %1M  (2.11) 

and it is also known as the fourth moment of the probability distribution �1(�). Figure 3 

illustrates how kurtosis affects the probability distribution function curve. The kurtosis is 
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a measure of a distribution slenderness. The kurtosis of any univariate normal distribution 

is 3. It is common to compare the kurtosis of a distribution to this value.  

 

 

Figure 3 Kurtosis graphical interpretation 

2.2 Statistical equivalence 

 � and � are random variables with statistical equivalence at � = � and � = � if 

their CDFs are identically evaluated at these points. This can be mathematically 

represented by 

=1(�) = =N(�) (2.12) 

� = =1<OP=N(�)Q (2.13) 

� = =N<OP=1(�)Q (2.14) 

where =1<O(. ) and =N<O(. ) are the inverse of the cumulative probability functions of the 

variables � and �, respectively. This equivalence is illustrated in Figure 4. 
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Figure 4 Statistical equivalence of � and � at � = � and � = � 

2.3 Jointly Distributed Random Variables 

 The concept of a single random variable and its probability distribution can be 

extended to two or more random variables. In order to quantify events that are associated 

to two or more physical processes, the events in the sample space may be mapped into 

two (or more) dimensions of the real space, requiring two or more random variables. 

 If � and � represent physical phenomena, there are probabilities associated with 

any outcome, such as R� ≤ �, � ≥ �S. The probabilities for all possible outcomes may be 

described with the joint cumulative probability function of the random variables � and �, 

defined as 

=1,N(�, �) = #(� ≤ �, � ≤ �) (2.15) 

This function defines the probability of the joint occurrences of the events identified by � ≤ � and � ≤ �. It is possible to demonstrate that it satisfies the following properties 

[6]: 

i.  =1,N(B∞, B∞) = 0;  =1,N(∞, ∞) = 1.0 (2.16) 

ii.   =1,N(B∞, �) = 0;  =1,N(∞, �) = =N(�) 

   =1,N(�, B∞) = 0;  =1,N(�, ∞) = =>(�) 
(2.17) 
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iii. =1,N(�, �) is nonnegative and a nondecreasing function of � and �. (2.18)

 The joint probability density function, or PDF, is defined as  

�1,N(�, �)2�2� = #(� ≤ � ≤ � + 2�, � ≤ � ≤ � + 2�) (2.19) 

then 

=1,N(�, �) = 6 6 �1,N(U, V)2V2UW
<;

>
<;  (2.20) 

 The statistical behavior of the X variable may depend on the values of �, or vice 

versa. The conditional probability function is defined as 

�1|N(�|�) = �1,N(�, �)�N(�)  (2.21) 

Hence 

�1,N(�, �) =  �1|N(�|�)�N(�) (2.22) 

�1,N(�, �) =  �N|1(�|�)�1(�) (2.23) 

However, if X and Y are statically independent, i.e., �1|N(�|�) =  �1(�) and �N|1(�|�) =�N(�), then 

�1,N(�, �) =  �1(�)�N(�) (2.24) 

 The covariance of � and � is the joint second moment about the means $1 and $N 

i.e.,  

EFV(�, �) =  ?P(� B $1)(� B $N)Q = ?(��) B $1$N (2.25) 

 If � and � are statistically independent, then EFV(�, �) = 0.  

 The physical interpretation of the covariance can be inferred from Equation 2.25 

[6]. If the EFV(�, �) is large and positive, the values of � and � tend to be both large or 

both small relative to their respective means. On the other hand, if the EFV(�, �) is large 

and negative, the values of � tend to be large when the values of � are small, and vice 
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versa, relative to their respective means. If the EFV(�, �) is small or zero, there is no or 

little linear relationship between the values of � and �. 

 Therefore, the EFV(�, �) is a measure of the degree of linear relationship between 

the variables � and �. However, a more often used indicator for linear dependency is the 

Pearson correlation coefficient, or simply correlation coefficient. It can be interpreted as 

a normalized value of EFV(�, �): 

Y1,N =  EFV(�, �)%1%N  (2.26) 

 The range of Y1,N is between -1 and +1. When Y1,N = ∓1, or for intermediate 

values of Y1,N, � and � are linearly related, or present some linear relationship, as shown 

in Figure 5(b), whereas, when Y1,N = 0, values of � and � may appear as in Figure 5(a). 

In the latter case, the variables are said to be independent, whereas in the first case they 

are said to be correlated. It is important to notice that the correlation coefficient is not 

capable of describing eventual nonlinear relationship between variables. 

 

Figure 5 Illustrating correlation between two random variables x and y [7] 

 If the correlation coefficient between two random variables � and � is known, the 

joint probability density function �1,N(�, �) can be approximately determined through the 

Nataf transformation model [8]. According to the Nataf transformation model, the joint 

probability density function of correlated random variables � and � is given by 

(a) x and y values 

are uncorrelated 

(b) x and y values 

exhibit correlation 
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�1,N(�, �) = �1(�)�N(�)[(\)[( ) [C(\,  , Y) 
(2.27) 

where \ = Φ<OP=1(�)Q,  = Φ<OP=N(�)Q, Φ<O(. ) is the inverse of cumulative 

probability distribution of a standard normal variable, �1(�) and �N(�) are the marginal 

probability density functions of � and �, [(. ) is the probability density function of a 

standard normal variable and [C(. ) is the joint probability density function of two 

standard correlated normal variables with a correlation coefficient Y given by  

[C(\,  , Y) = 12^D1 B YC ��_ `B 12(1 B YC) (\C +  C B 2Y\ )a (2.28) 

The joint cumulative distribution =1,N(�, �) can be obtained by 

=1,N(�, �) = 6 6 �1,N(�, �)2�2�>
<;

W
<;  

(2.29) 

 The above double integral can be solved in a fast way by proper use of numerical 

transformations [9] as 

=1,N(�, �) = 1 B =1(�) B =N(�)+ 6 [CPBΦ<OP=1(�)Q, BΦ<OP=N(�)Q, bQ2bc
<;  

(2.30) 

with Φ(. ) standing for the cumulative probability distribution of a standard normal 

variable. A more detailed explanation on the Nataf transformation is given in Annex A. 

 

2.4 Probability Distribution Models 

 One of the greatest challenges of stochastic and probabilistic analysis is correctly 

interpreting the analyzed data. Primarily, the aim of any study that involves variability, 

or uncertainty, is to adequately predict the probability of occurrence of each possible 

outcome of the variate in question. In general, that means fitting an adequate probability 

distribution model to the set of data available, i.e., finding a real function that is able to 

predict outcomes probabilities that are sufficiently close to the real ones.  
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 This fitting process can be done through different methods such as the visual 

comparison of the theoretical and empirical PDFs and CDFs method, the method of 

moments or the linear regression method. The present work will focus on the method of 

moments and on the linear regression method. 

 Consider a sample of the random variable of interest �. In the method of 

moments, it is assumed that the moments (mean, variance, skewness and kurtosis) of the 

sample are the same as the probability distribution model chosen to represent it. In other 

words, the probability model parameters are straightforwardly determined by equaling its 

moments to the sample moments. 

 In the linear regression method, the parameters of the probability distribution 

model are estimated through adjusting its linearized CDF to the linearized empirical CDF 

of the sample. This adjustment is usually optimized by numerical techniques such as the 

least squares method. This method will become clearer in the following chapters of the 

present work.  

 In theory, any function that meets the requirements presented in Equations (2.3) 

and (2.4)  can be understood as a probability distribution model, however there are many 

consolidated models (or functions) previously defined in literature. In this chapter, a few 

of the most used probability distributions models in offshore engineering will be 

presented.  

 

2.4.1 Uniform Distribution 

 A variable � is uniformly distributed if its PDF is constant for any outcome of the 

variate. If the variable � is uniformly distributed in the interval [�, �], its PDF and CDF 

will be given, respectively, by 

�1(�) = 1� B �        � ≤ � ≤ � (2.31) 

 

=1(�) = � B �� B �        � ≤ � ≤ � (2.32) 

 There are many applications in which the uniform distribution is useful, such as 

running simulations experiments. Many programming languages come with 
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implementations (numerical routines) that are able to generate pseudo-random numbers 

that are distributed according to the standard uniform distribution, whose interval is [0,1]. 

If � is a value sampled from the standard uniform distribution, then the value � + (� B  �)� follows the uniform distribution parameterized by the interval of 

interest [�, �]. The uniform distribution is also useful for sampling from an arbitrary 

distribution, using the concept of statistical equivalence showed in section 2.2. 

 

2.4.2 Normal or Gaussian Probability Distribution 

 A variable � is normally distributed if its PDF is given by 

�1(�) = 1√2^%1 exp hB 12 i� B $1%1 jCk (2.33) 

 According to the above equation, this distribution depends only on the variable 

mean $1 and standard deviation %1. This distribution is commonly designated by �($1, %1C).  

 As one can mathematically check, there is not a closed formula for =1(�) since it 

relies on an integral that can only be numerically estimated. =1(�) is usually denoted by Φ(�) and can be calculated with the use of numerical methods or tables available in 

literature. The gaussian probability density function curve defined by Equation 2.33 has 

the important particular of being at all times symmetric about its mean, as Figure 6 shows. 

This characteristic results in a null asymmetry (skewness) coefficient. Another particular 

of the gaussian PDF is that its kurtosis coefficient is invariably equal to 3.  
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Figure 6 Family of normal or gaussian probability density functions 

 The simplest case of a normal distribution is known as the standard normal 

distribution. This is a special case when $1 = 0 and %1 = 1. The standard normal 

probability density function is given by 

�1(�) = 1√2^ exp iB 12 �Cj (2.34) 

 Every normal distribution is a version of the standard normal distribution whose 

domain has been stretched by a factor of %1 and then translated by $1. This means that if � is a standard normal variable, then � = %1� + $1 will have a normal distribution with 

parameters $1 and %1. Then � = (� B $1)/%1 will have a standard normal distribution. 

This variate is called the standardized form of �. 

 

2.4.3 Lognormal Probability Distribution 

 A random variable � is said to follow a lognormal distribution when its natural 

logarithm mn(�) is normally distributed. Its PDF is hence given by 

�1(�) = 1√2^�b exp hB 12 iln (�) B qb jCk (2.35) 
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 In this case, the distribution also depends on two parameters, q and b. This 

distribution is usually referred as r�(q, b). These parameters are related to the mean and 

standard deviation of � by 

$1 = ��_ iq + 12 bCj (2.36) 

%1 = $1D��_(bC) B 1 (2.37) 

 The cumulative probability distribution of this variable is related to the standard 

normal distribution by the following equation: 

=1(�) = Φ iln (�) B qb j 
(2.38) 

 

2.4.4 3-Parameter Weibull Probability Distribution 

 The Weibull probability distribution is one of the most widely used distribution 

model in engineering applications due to its versatility and flexibility offered by its 

parameters [2].  A variable � follows a Weibull probability distribution when its PDF and 

CDF are respectively given by 

�1(�) = (� B �)s<Ots λexp hB v� B �t wsk (2.39) 

=1(�) = 1 B exp hB v� B �t wsk (2.40) 

for t > 0 and q > 0. The parameters t, q and � are known as the scale, shape and location 

parameters, respectively. If the location parameter is set to zero then the above equations 

correspond to a 2-parameter Weibull distribution. The relationships between these 

parameters and the first four moments of the probability distribution $1, %1C, I1 and L1 are given by 

$> = � + tΓ i1 + 1qj (2.41) 
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%> = tzΓ i1 + 2qj B ΓC i1 + 1qj (2.42) 

I> = Γ v1 + 3qw B 3Γ v1 + 1qw Γ v1 + 2qw + 2ΓJ v1 + 1qw
{Γ v1 + 2qw B ΓC v1 + 1qw|JC  (2.43) 

L> = Γ v1 + 4qw B 4Γ v1 + 1qw Γ v1 + 3qw + 6ΓC v1 + 1qw Γ v1 + 2qw B 3ΓM v1 + 1qw
{Γ v1 + 2qw B ΓC v1 + 1qw|C  (2.44) 

where  Γ(. ) is the Gamma function. This model is identified in the present work as the 

W3P approach. 

 A particular case of the Weibull distribution is the Rayleigh distribution, when � = 0, q = 2 and t = √2t}. The PDF and CDF of the Rayleigh distribution are then 

given by  

�1(�) = 1t}C exp hB 12 i �t}jCk (2.45) 

=1(�) = 1 B exp hB 12 i �t}jCk (2.46) 

 The Rayleigh distribution depends on the single parameter t} > 0. 

 

2.4.4.1 Weibull Probability Distribution Fitted to the Tail of the Data (Weibull-Tail) 

 In an extreme analysis, the most important part of the data is that related to the 

upper tail of the probability distribution (see section 2.1). It is natural then to focus on the 

fitting of the probability distribution only to the upper part of the sample. This can be 

done using a linear regression analysis using empirical estimates for the cumulative 

probability distribution [10]. 
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 Particularly in this work, a 2-parameter Weibull is fitted to the tail of the data 

using various sub-sets located on the upper-tail of the sample. For the scope of this study, 

the sub-sets considered are those associated to the 60%, 65%, 70%, 75%, 80%, 85% and 90% percentiles of the empirical cumulative distribution. For each one of these levels, 

the data above them are used to get the parameters t and q of the distribution through a 

linear regression, as explained in the following equations. 

 Taking the natural log of both sides of the Equation 2.40 two times yields 

lnPBlnP1 B =1(�)QQ = q ln � B q ln t (2.47) 

This can be expressed as the linear equation 

� = q� , + � (2.48) 

where � = lnPBlnP1 B =1(�)QQ, � , = ln � and � = Bq ln t. Given a sample of � and its 

empirical CDF, one can directly compute y and � ,. The 2-P Weibull parameters can be 

then straightforwardly estimated via linear regression.  

 The final parameters of the Weibull-tail distribution are taken as the 

corresponding mean values of all sub-sets parameters. An example of the final fitting for 

the Weibull Tail procedure is given in Figure 7. This procedure is identified in this work 

as the WT approach. The Weibull-tail fitting procedure calculations are better explained 

in Annex B. More details about the WT approach can be found in Sagrilo et al [10].  
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Figure 7 Weibull-tail cumulative distribution in comparison to the empirical CDF of the 
random variable 

 

2.4.5 Shifted Generalized Lognormal Distribution 

 The Shifted Generalized Lognormal Distribution, or simply SGLD, was recently 

proposed by Low [4]. It is a four-parameter distribution whose PDF and CDF are 

respectively given by 

�1(�) = t� B � ��_ hB 1A%� �ln i� B �� j��k (2.49) 

=1(�) = 12 + 12 sgn `� B �� B 1a g �1A , �ln v� B �� w��
A � (2.50) 

for � >  �, A >  0 and % >  0. The parameters � and � are known as the location and 

scale parameters and A and % are the two shape parameters of the distribution. sgn(.) is 

the signal function. The parameter t is defined by 

t = 12AO/�%Γ v1 + 1Aw (2.51) 

and �(. ) is the incomplete gamma function, given by 
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�(�, �) = K ��<O�<�2�>� Γ(�)  (2.52) 

 In order to estimate the statistical moments of this distribution, a new auxiliary 

variable � is defined from � as the following equation [4]  

� = � B �θ  (2.53) 

 It can be demonstrated the following relationships between the first four moments 

of the variables � and �: 

$N = $1 B �θ  (2.54) 

%N = %1θ  (2.55) 

IN = I1 (2.56) 

LN = L1 (2.57) 

Additionally, Low [4] shows that the first four moments of � can be obtained by 

$N = $N(A, %) = ?[�O] (2.58) 

 %N =  %N(A, %) = D?[�C] B (?[�O])C (2.59) 

IN = IN(A, %) =  ?[�J] B 3$N ∙ %NC B $NJ%NJ  (2.60) 

LN = LN(A, %) =  ?[�M] B 4$N?[�J] + 6$NC%NC + 3$NM%NM  (2.61) 

where 

?[��] = 1Γ v1Aw � h(�%)C�(2n)! AC�/�Γ i2n + 1A jk;
���  � = 1,2,3,4 (2.62) 
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 The statistical parameters of the variable � can be obtained through the method 

of moments. Since the SGLD parameters A and % are directly related to the distribution 

skewness and kurtosis, the following two-variable nonlinear equation system can be 

defined: 

I1 = IN(A, %) (2.63) 

L1 = LN(A, %) 
(2.64) 

 This system can be solved with the help of numerical methods. In the present 

work, it was chosen the Newton-Raphson root-finding algorithm. Once A and % are 

determined, the remaining θ and � parameters can be directly calculated by 

θ = %1%N(A, %) (2.65) 

b = $1 B  θ$N(A, %) (2.66) 

 Low [4] highlights that the relations presented in Equations 2.49 and 2.50 are only 

valid for positive I1 skewnesses; however, that is not a limiting factor of the method. In 

the case of data sets with negative skewnesses (I1 < 0), the SGLD parameters are first 

determined considering the skewness absolute value. Hence a positive skewed SGLD 

distribution is determined. SGLD’s PDF is then rotated about its mean, as Figure 8 shows. 

Mathematically this means substituting � = 2$N B � and determining �N(2$N B �) 

instead of �N(�). 

 

Figure 8 Positive skewed SGLD and its equivalent negative skewed after rotation 
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 The inverse of the SGLD cumulative density function, for a probability _ H 1/2, 

is given by 

� = =><O(_) =  

� +  θexp ⎝⎛��n i_ B 12j % �A�<O �1A , 2_ B 1��n v_ B 12w��
O/�

⎠⎞ (2.67) 

where _ is accumulated probability, �<O is the Inverse of Incomplete Gamma Function.  �<O(. ) can be determined from Equation 2.52 as  \ = �<O(�,  ) corresponds to  =�(�, \). For _ H 1/2 the above equation becomes � = � + θ. 

 As mentioned before, the main contribution for A and % parameters is to control 

the distribution kurtosis and skewness, respectively. In practice, SGLD is capable of 

modeling a vast range of skewness and kurtosis combinations, which gives it a great 

flexibility of use. SGLD is also equivalent to a few of known distributions as its particular 

cases, as shown in Table 1. 

Table 1 Particular cases of SGLD 

Symmetrical PDFs (� = *) Asymmetrical PDFs (� H *) 

Normal Distribution (A = 2) Lognormal Distribution (A = 2, � = 0) 

Laplace Distribution (A = 1) Log-Laplace Distribution (A = 1, � = 0) 

Uniform Distribution (A → ∞) Log-Uniform Distribution (A → ∞, � = 0) 

 

2.5 Central Limit Theorem 

 The central limit theorem states that the limiting distribution of the sum of 

independent identically distributed random variables of arbitrary distributions is the 

normal distribution (see, for instance, [6]). Let �O, �C, ⋯ , �� be a sequence of independent 

random variables with means $O, $C, ⋯ , $� and variances %OC, %CC, ⋯ , %�C. Let �� be the 

sum of this sequence: 

�� = � ��
�

��O  (2.68) 
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Noting that the �� are independent, the mean and variance are given by 

$ � = � $�
�

��O  (2.69) 

% �C = � %�C�
��O  (2.70) 

Then the limit as n goes to infinity, the standardized variable of ��, �� = (�� B $ �)/% �, 

has the standard normal distribution: 

lim�→; �£¤(\) = [(\) (2.71) 

The conditions under which this occurs are [6]: 

1. The individual terms in the sum contribute a negligible amount to the variation 
in the sum; 

2. It is very unlikely that any single term will contribute a disproportionately large 
amount to the sum. 

 This means that no single variable (or very few variables) dominates either the 

total uncertainty or the total sum. All variables in the sum contribute comparably to the 

sum. 

 The central limit theorem is illustrated in Figure 9, for the case of the sum of 

uniformly distributed random variables. 

 

Figure 9 Convergence of the distribution of the sum of uniform random variables to the 
normal distribution (densities of the standardized sums) [6] 
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2.6 Distribution of the Sample Mean 

 Suppose that � is a random variable with mean $1, variance %1C and a known 

distribution �1(�). If we carefully conduct an experiment in which we sample this random 

variable n times, then the �th sample �� will be independent and identically distributed. 

The sample mean or sample average �¥ is a random variable given by the sum  

�¥ = 1n � ��
�

��O  (2.72) 

 If the observed variable � is normally distributed, then �¥ will be normally 

distributed. If � is not normally distributed, then according to the central limit theorem �¥ 

will be approximately normally distributed if the sample size n is large enough [6]. The 

mean and variance of �¥ are: 

$1¥ = 1n n$1 = $1 (2.73) 

%1¥ C = 1nC n%1C = %1Cn  (2.74) 

The standardized variable � 

� = �¥ B $1%1/√n  (2.75) 

has a standard normal distribution. An important remark can be made to the fact the 

variability %1¥  of the variable average value estimator �¥ is inversely proportional to √n, 

i.e., as the sample size n increases, the standard deviation of �¥ decreases by a factor of √n. Thus, naturally, the larger the sample of � is, the more accurate its estimators will 

be.  
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3 STATISTICAL ANALYSIS OF RANDOM 

PROCESSES 

3.1 Random Processes in Time Domain 

3.1.1 Random Processes Definitions 

 A random process can be simply defined as a sequence of random variables �O, �C, ⋯ , ��. In the case of a random process in the time domain, this sequence is defined 

in time thus it can be tracked by the index �. Then �(�) will refer to the random process 

itself and each random variable �O, �C, ⋯ , �� will be the outcome of �(�) for � = 1, � =2, ⋯ , � = n. Just as the random process �(�) can be discrete or continuous, the index � 

may also be discrete or continuous. Because �(�) is here defined in the time domain, an 

outcome sequence �O, �C, ⋯ , �� can be named as a time-series. A set of �(�) finite 

outcomes �O, �C, ⋯ , ��, or any sub-set of interest, is named a realization of the random 

process �(�). In Figure 10 different realizations of a generic random process �(�) with a 

given length � are shown.  

 

Figure 10 Generic random process �(�) realizations in time domain 
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 There are infinite examples of random processes in offshore engineering. Some 

of them are the sea water surface elevation at a given location, the wind velocity at a given 

height above the sea surface and the motions of a floating unit submitted to wave, wind 

and current environmental loads. 

 The statistics of the random process of interest �(�) can be calculated across 

different realizations at a specific given time � = �O. Taken that �(�) is here defined by 

the discrete index �, its mean and variance at a specific instant can be estimated by 

$O = ?[�(�O)] = lim�→; � ��(�O)n�
��O  (3.1) 

?[�(�O)C] = lim�→; � ��(�O)Cn�
��O  (3.2) 

@�A(�O) = %OC = ?[�(�O)C] B $OC (3.3) 

Higher order moments of �(�) can be similarly calculated. When not specified otherwise, 

this work will always refer to a random process with zero mean. 

 The joint distribution of �(�) at all times � is the ultimate product of the study of 

the random process. Any number of times may be considered for a joint distribution, for 

example, �(�O), �(�C), �(�J),…, �(��), but the most practical case is to consider �(�) 

at two times, �O and �C. As seen in Section 2.3, the correlation between two variables is 

one important parameter for characterizing their joint distribution. Likewise, a very 

important joint measure in a random process is the correlation of the process with itself 

at two different times, �(�O) and (�C) [6]. Denoted 	1(�O, �C), this measure of correlation 

is called the autocorrelation function and is given by  

	1(�O, �C) = ?[�(�O)�(�C)] = � �(�O)�(�C)�
�¦

 (3.4) 

Related to the autocorrelation function, the autocovariance function E§@(�O, �C) is 

defined as 

E§@(�O, �C) = ?[(�(�O) B $O)(�(�C) B $C)] = 	1(�O, �C) B $O$C (3.5) 
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 From the autocovariance function, the autocorrelation coefficient function Y11(�O, �C) can be defined as  

Y11(�O, �C)  = E§@(�O, �C)%O%C  (3.6) 

 If the statistical parameters of the random process �(�) are constant over time, 

i.e., if above presented statistical parameters are the same, independently of the time 

instant �O, �C, ⋯ , ��, then the random process is called a stationary process.  

 In other words, the random process will be stationary when the expected value 

and other higher order statistical parameters for � = �O is the same as any other time 

instant �C, �J,…, ��. In this case, the autocorrelation function will only depend on the time 

lag 
, or the difference between two given time instants, for example �C B �O = 
. Then 	1(�O, �C) will simply be 	1(
). Similarly, other statistical parameters can be expressed 

by 

?[�(�O)] = ?[�(�C)] = ⋯ = ?[�(�¨)] = $1 (3.7) 

%[�(�O)] = %[�(�C)] = ⋯ = %[�(�¨)] = %1 (3.8) 

I[�(�O)] = I[�(�C)] = ⋯ = I[�(�¨)] = I1 (3.9) 

L[�(�O)] = L[�(�C)] = ⋯ = L[�(�¨)] = L1 (3.10) 

 In practice, it is usual to consider environmental random processes as stationary 

processes for a short-term period. 

 A particular case of a stationary process is the process called ergodic. An ergodic 

random process is the process in which the statistical parameters calculated over time 

for a single realization are the same as the statistical parameters calculated across different 

realizations at a specific time instant. This process can hence be characterized from a 

single sample realization of the random process (see, for example, [7]). 

 Let �(�, �) be the �th sample realization of the stationary random process �(�). 

The temporal average of �(�, �) is defined as 
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〈�(�, �)〉  = lim«→; 1� 6 �(�, �)2�«
�  (3.11) 

The symbol 〈∙〉 indicates a temporal average. A process is ergodic in the mean if 

〈�(�, �)〉  = ?[�(�)] = $1 (3.12) 

Similarly, a process is ergodic in the variance if  

〈[�(�, �) B $1]C〉  = ?[[�(�) B $1]C] = %1C (3.13) 

And a process is ergodic in the autocorrelation function if  

〈�(�, �)�(� + 
, �)〉  = ?[�(�)�(� + 
)] = 	1(
) (3.14) 

 For a process to be ergodic, it must be stationary. However, the converse is not 

true; a stationary process is not necessarily ergodic. 

 In offshore engineering, in general, it is practically impossible to obtain the 

sufficient amount of data in order to study its statistical properties through different 

realizations. However, short-term data can be considered as approximately stationary and 

ergodic. One example of this is the usual statistical treatment of ocean waves: for a short 

period of 3-h, the sea surface elevation can be modelled as a stationary and ergodic 

random process. For this short-term period of �¬� = 3-h, this condition is usually referred 

as a sea state. Then, in this dissertation it is assumed that the random processes of interest 

are characterized as stationary and ergodic processes. 

 

3.1.2 Characteristics of Autocorrelation Function 

 With Figure 10 in mind, the autocorrelation function 	1(
) allows to statistically 

predict the random variable behavior in the time instant � + 
 if its value is known in the 

time instant �. This function is defined as the expected value of the product �(�)�(� +
), which is equivalent to writing 

	1(
)   = ?[�(�)�(� + 
)] = lim«→; 1� 6 �(�)�(� + 
)2�«
�  (3.15) 

 If the process mean is null, $1 = 0, when 
 = 0 the above equation becomes 

equivalent to Equation 3.3. Then the following equality is valid 
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	1(0)   = %1C (3.16) 

 If the process mean is not null, $1 H 0, its mean can be subtracted from the 

original process for the above calculations and later added back.  

 As 
 increases, it becomes harder to predict the process behavior and therefore the 

autocorrelation tends to become lower. Figure 11 shows a typical autocorrelation 

function. 

 

Figure 11 Typical autocorrelation function 	1(
)  [7] 
 

3.2 Random Processes in Frequency Domain 

3.2.1 Spectral Density Function 

 The spectral density function or simply the spectrum of a random process �(�) is 

defined as the Fourier transform of the autocorrelation function of the process: 

�1(­)   = 12^ 6 	1(
)�<�®¯2
;
<;  (3.17) 

where ­ denotes angular frequency, in rad/s. 

 The complementary function is given by 

	1(
)   = 6 �1(­)��®¯2­;
<;  (3.18) 

 Equations 3.17 and 3.18 are often called the Wiener-Khinchine relations. In order 

for the transform pair to exist, the autocorrelation function must be absolutely integrable 

and the mean of the random process must be equal to zero. The Fourier transform and the 

spectral density function of a random process is illustrated in Figure 12. 
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 From Equation 3.18 it is possible to deduce that, when 
 = 0 and $1 = 0, the 

process variance is equal to the area under the spectral density function curve, as shows 

Equation 3.19. 

%1C   = 6 �1(­)2­;
�  (3.19) 

 

Figure 12 Illustration of the Fourier transform and the spectral density function of a 
random process 
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3.2.2 Level Crossings 

 Given an arbitrary time interval � in a random process realization (time-series) �(�), one can compute the number of times there is a crossing of an arbitrary level � = � and call this number �8(�, � + �). This number of level � crossing is naturally also a 

random variable given that each realization of the same random process will present a 

different counting for �8. This is valid for any level � of interest, including the zero mark. 

Figure 13 illustrates levels crossings of interest in a generic random process realization. 

 

Figure 13 Generic random process �(�) realization of length �: (a,b) level � = 0 up-
crossing (positive velocity) and down-crossing (negative velocity), respectively; (c,d) 
level � = a up-crossing and down-crossing, respectively; (e,f) positive peaks above � 

level. Adapted from [6] 

 

 From Figure 13 one can observe that there are two obvious correlations between 

level crossings. First, the crossings usually occurs in pairs, one up crossing followed by 

one down crossing. Second, there is an apparent correlation between level crossings when 

the signal resembles a sine wave, or when the process is narrow banded, concept to be 

introduced in the next chapter. In other words, if �(�) up-crosses the level � = a in one 

cycle, it is highly likely that it will up-cross it again in the next cycle: level up crossings 

tend to occur in clusters or clumps. The latter observation will be of great relevance in 

the present study. 

 Since up and down-crossings may be correlated, and since the scope of this study 

is related to extreme values, it is natural then to focus only on the up crossings, with 

positive slope. The expected level up-crossing rate °8±  in a time-series can be defined as  
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°8±   = �8±�  (3.20) 

where �8± is the number of up-crossings of the level � = a in the time interval of interest �. 

 For any generic stationary random process, the expected level up-crossing rate of 

the level � = a can also be estimated by [6] 

°8±   = 6 ��11² (�, �)2�;
�  (3.21) 

where �11²  is the joint probability density function of �(�) and its first derivative �² (�). It 

is clear that Equation (3.20) is more straightforward since �11²  is difficult to be 

determined. However for some very specific scenarios, �11² (�, �² ) has a closed-form 

solution, as it will be presented later in this chapter. 

 When the level of crossing of interest is the null level, i.e., a = 0, the level up-

crossing rate °8±  is simply referred as the zero up-crossing rate °�± . 

 With the concepts presented above, the peaks in a given time-series can now be 

defined. Given a process �(�) realization, for each mean up-crossing followed by a mean 

down-crossing there is a maximum value, identified as a maximum peak. Likewise, for 

each mean down-crossing followed by a mean up-crossing there is a minimum value, 

identified as a minimum peak. This is illustrated in Figure 14. 

 

Figure 14 Maxima and minima peaks definition 

The present work will focus on the maxima peaks of random processes. 
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3.2.3  Bandwidth Factor 

 The bandwidth factor is a measure that allows to identify how the energy 

contained in the spectrum �1(­) is distributed among the frequencies ­. This factor is 

represented by � and is calculated by: 

�  = z1 B ³CC³�³M (3.22) 

where the spectral moment of order n, ³�, is given by 

³�  = 6 ­��1(­)2­;
�  (3.23) 

 Depending on the � value, a random process can be classified as a narrow band 

process or as a broad (or wide) band process.  

 In a narrow band process, most of the spectral density is concentrated in a 

narrow range of frequencies, hence � assumes values closer to zero (� → 0). In this 

situation, each positive up-crossing in the signal, or time-series, corresponds to only one 

maxima (or peak), as Figure 15 shows.                            

 

Figure 15 Generic narrow banded random process �(�) 

 On the other hand, in a broad band process the spectral density is distributed 

among a broad range of frequencies and � assumes values greater than zero (� > 0). A 

broad banded process is characterized by presenting more than one local maxima between 

one up-crossing and one down-crossing at the process mean level, as shows Figure 16. 
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Figure 16 Generic broad banded random process �(�) 

 Then, in a broad banded process, one can define two categories of maxima, or 

peaks, in a time-series: the local peaks and the global peaks, as shown in Figure 17 for a 

zero reference level. Local peaks are all maxima points in the random process. Global 

peaks is the set of the largest peaks between two mean level up-crossings of the random 

process. 

 

Figure 17 Definition of local and global peaks in a generic broad banded random 
process �(�) 

 

 Typical spectral density functions for narrow banded and broad banded processes 

are presented in Figure 18. 
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Figure 18 Typical spectral density function of a narrow banded process �(�) and two 
broad banded process �(�) and �(�) 

 

3.3 Probability Distributions of Random Processes  

3.3.1 Generic Random Processes 

 As mentioned before, in a stationary random process, statistical parameters are 

constant, i.e., they are independent of time. It is natural then to associate the process to a 

probability distribution, with the same statistical characteristics. 

 Using Equation (2.2), the probability of a process �(�) to be contained between 

two given values �8 and �7 is given by 

#(�8 ≤ �(�) ≤ �7)  = 6 �1(�(�))2�>´
>µ  (3.24) 

 For a continuous process �(�), the above integral can be understood as the ratio 

between the sum of all time intervals Δ�� in which the process assumes values in the 

interval [�8, �7] in the total observed time �, as illustrated in Figure 19 and presented in 

Equation (3.25). 
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Figure 19 Time intervals Δ�� in which the continuous process assumes values in the 
level interval [�8, �7] 

#(�8 ≤ �(�) ≤ �7)  = 6 �1(�(�))2� = 1� � ∆��
·

��O
>´

>µ
 

(3.25) 

 In practice, �(�) is usually a discrete process having � points spaced by a constant 

∆� with a total length of � = �∆�, as illustrated in Figure 20. 

 

Figure 20 Time intervals Δ�� in which the discrete process assumes values in the level 
interval [�8, �7] 

 

  Since �(�) has a finite number of defined points, the probability expressed in 

Equation (3.25) will simply be given by the ratio between the number of points that fall 

in the interval of interest ∆� = [�8, �7] and the total number of points � in the period of 

observation �, as  

#(�8 ≤ �(�) ≤ �7) = �1(��) ∙ ∆� = 1� � ∆��
·

��O
= n��  (3.26) 
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with �� = (�8 + �7)/2. The probability distribution of the process will hence be given 

by 

�1(��) = n��∆� (3.27) 

 Apart from the probability distribution of the process as a whole, another 

important distribution associated with the process is the distribution of its peaks (since 

the peaks of a random process can be considered as a random process itself). As shown 

in [6], the general formula for determining the distribution of peaks of a random process 

is: 

�1¸(�¹) = K − �11² 1º P�¹, 0,  Q2 �<; °¹  (3.28) 

where �¹ represent a peak of the random process �(�), �11² 1º (�, �² , �º ) is the joint 

probability density function of �(�), its first derivative �² (�) and its second derivative 

�º (�) and °¹ is the peak frequency, given by  

°¹ = 6 − �1² 1º (0,  )2 �
<;  (3.29) 

where �1² 1º (�, �² ) is the joint probability density function of the first derivative of the 

process �² (�) and its second derivative �º (�). Equation (3.29) is the result of the same 

level-crossing analysis made in Section 3.2.2, but this time applied on the ‘velocity’ 

process �² (�). A zero down-crossing in �² (�), i.e., a change in velocity from positive to 

negative, corresponds to the occurrence of a peak in �(�). 

 It is clear that �11² 1º (�, �² , �º )  theoretical estimation seems to be a non-easy work. 

However, Equation (3.29) has a closed-form solution for very specific cases, as it will be 

presented in the next chapter. 

 

3.3.2 Gaussian Processes 

 A process can be named as a Gaussian process when its probability density 

function is the normal (or Gaussian) distribution. In this case, the process probability 

distribution is defined as 
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�1(�) = 1%1√2^ ��_ h− 12 i �%1jCk = 1D³�√2^ ��_ »− 12 ¼ �D³�½C¾ 
(3.30) 

where ³� is the variance of the random process, or the area under the spectral density 

function of the process, as shown in Equation (3.23). 

 In a Gaussian process, Equation (3.29) has a closed-form and the distribution of 

peaks of the process is defined as [6] 

�1¸P�¹Q = �D³�√2^ ��_ h− 12 �¹C
³��Ck

+ _³� D1 − �C��_ h− 12 �¹C
³� k Φ h �¹D³�� D1 − �Ck 

(3.31) 

where � is the bandwidth factor defined in Equation (3.22), ³� is the spectral moment of 

order zero defined in Equation (3.23) and Φ(∙) is the cumulative density function of the 

standard normal distribution. Equation (3.31) is known as the Rice distribution [11]. 

 In the limiting case of a narrow band process (� → 0), the first term of Equation 

(3.31) vanishes and the expression becomes the distribution known as the Rayleigh 

distribution (see section 2.4.4).  

 The peak frequency °¹ for a gaussian process is given by 

°¹ = 12^ z³M³C 
(3.32) 

 It is important to notice that, in the case of Gaussian processes, the spectral density 

function is sufficient to statistically describe the whole process. 

 Processes that are not Gaussian are simply called non-Gaussian. For these 

processes, as mentioned before, there is no theoretical solution for the distribution of 

peaks. In Chapter 4 a few methodologies for representing the distribution of peaks of non-

Gaussian processes are presented. 
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3.4 Statistical Parameters Estimation Based on a Single Realization 

 As presented earlier in this chapter, if a random process is ergodic then its 

statistical parameters can be estimated based on just a single realization. However, one 

must be cautious: the accuracy of these estimates depends on the finite length of the time 

series. Naturally, the larger the sample of points is, the more accurate statistical 

parameters will be. 

 In a discrete random process realization, the number of points � is a finite amount 

given by � = � ∆�⁄ , where � is the total time of the realization and ∆� is the constant 

sampling space between points. Hence, given a random process sample � =
R�O, �C, �J, … , �·S, the estimators for the mean, variance, skewness and kurtosis of �(�) 

are: 

³1 = 1� � ��
·

��O
 (3.33) 

�>C = 1� �(�� − ³1)C·
��O

 
(3.34) 

�> = 1� � (�� − ³1)J
�>J

·
��O

 
(3.35) 

L> = 1� � (�� − ³1)M
�>M

·
��O

 
(3.36) 

 With the support of above equations, the notion of improved stability of statistical 

parameters estimators when �, and consequently �, is increased becomes clearer. Figure 

21  illustrates this for the case of the mean estimator. From this figure, it is evident that 

the mean estimator only begins to converge to a stable value when the duration � is 

sufficiently large. In other words, the time-series has to be sufficiently long in order to 

correctly estimate the statistical parameters of the random process being sampled.  
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Figure 21 Mean estimator for the random process �(�) based on discrete realizations of 
duration � 
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4 STATISTICS OF EXTREMES 

 It is of particular interest of everyday engineering design to estimate the maximum 

response possible that can exist in a given structure due to the set of load conditions. This 

applies to any structure being designed, since bridges to airplanes. Naturally, this is of 

extreme importance, the design has to ensure that the loading is being resisted, according 

to given standards, for the whole design life of the structure. At the same time, 

engineering design can also be interested in estimating the minimum possible resistance 

of the structure, given that manufacturing and construction introduce uncertainties that 

have to be accounted for. 

 In the case of offshore structures engineering, considering environmental 

conditions as random variables is a recurrent assumption. Therefore, structures responses 

can also be understood as random. Since maxima, or the time-series peaks, are different 

for each realization of a random process, extreme peaks themselves can be treated as 

random processes. In this chapter, Extreme Value Statistics, i.e., statistics aimed at 

estimating maximum or minimum values of a random variable, will be presented. As the 

scope of this study is in the maximum values estimation, a greater emphasis will be given 

for the latter. 

 

4.1 Classical Extreme Value Theory 

 As any random process, in order to one estimate its statistical parameters and 

probability distribution, one has to have a sample of the process being studied. In the case 

of the extremes random process this is no simple task. Imagine that the random process 

of interest is the maximum wind velocity @Á for a 10 years time span at a given location, 

i.e., the 10 years return-period wind velocity. In order to estimate the extreme wind 

velocity probability distribution at this location, one needs a sample of � extreme values 

of 10 years, i.e., a sample of extremes VÂ =  RVO, VC, VJ, … , V·S where VO is the maximum 

observed wind velocity in the first 10 years of observation, VC is the maximum observed 

wind velocity in the next 10 years of observation and so on. Considering a minimum of 

� = 30 extreme values in the sample, for minimum accuracy of the estimated statistical 

parameters, a 300 years observation period would be necessary. It is needless to say that 

this is, for the vast majority of cases, impossible to achieve, especially when the return-
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periods of interest are even larger, such as 100 or 1000 years. However, it is still the ideal 

procedure for determining a variable’s characteristic extreme value, especially because 

of its validity independent of the process stationarity or original distribution. In the 

context of environmental random processes, this method also enables taking account of 

possible climate changes in the long-term.  

 On the other hands, depending on the investigated random process, some 

simplifications can be made. In order to overcome the issue described above, a theory 

named Classical Extreme Value Theory (or Order Statistics) was developed [12]. In this 

theory, in order to estimate the extreme values probability distribution of a random 

process, it is only necessary to previously know the initial process probability distribution 

and establish a few assumptions, as it will be explained in this chapter.  

 Let � =  R�O, �C, �J, … , �·S be a sample of size � of a generic random variable 

�(�), where �� represents the statistical properties of the ith realization of �(�). Given 

that each �� represents a realization of the same process �(�), all probability distributions 

are the same as �(�) probability distribution: 

=1¦(�) = =1Ã(�) = =1Ä(�) = ⋯ = =1Å(�) = =1(�) (4.1) 

 Let now �· =  ³��R�O, �C, �J, … , �·S be the maximum extreme value of � in a 

sample of size �. Assuming that a specific value of � = � belongs to the population of 

extreme values of �, the following condition can be set: 

#(�· ≤ �) = #(�O ≤ � ∩ �C ≤ � ∩ �J ≤ � ∩ … ∩ �· ≤ �) (4.2) 

 Assuming that the observed values of �(�) are statistically independent, above 

equation can also be written as: 

#(�· ≤ �) = #(�O ≤ �) ∙ #(�C ≤ �) ∙ #(�J ≤ �) ⋯ #(�· ≤ �) (4.3) 

 Considering that #(� ≤ �) = =1(�) and that realizations are identically 

distributed, the maximum extreme value of �(�) cumulative density function is given by 

=NÅ(�) = [=1(�)]· (4.4) 
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and therefore, its probability density function is given by  

�NÅ(�) = 2=NÅ(�)2� = � ∙ [=1(�)]·<O ∙ �1(�) (4.5) 

where =1(. ) and �1(. ) are the CDF and PDF of the original variable �(�). The probability 

distribution of the original variable is frequently identified as the marginal distribution. 

 Thus it has been demonstrated that, if the probability distribution of � is known, 

one can determine its maximum extreme values probability distribution under the 

hypothesis of statistical independence between its realizations. Equation (4.5) is 

illustrated in Figure 22. 

 

Figure 22 Original probability density function of the variable �, �1(�), and the 
probability density function of maximum extreme values of �, �1Ç(�) 

 

 In the particular case of an ergodic process, a single realization is sufficient to 

determine the statistics of extremes [13][6][3][2]. If the sample analyzed corresponds to 

the process peaks, i.e., �¹ =  È�¹O, �¹C, �¹J, … , �¹·¹É, then =1Ç(�) denotes the extreme 

probability distribution of the peaks. Following the same methodology presented above, 

one can conclude that 

=1Ç(�) = {=1¹(�)|·¸
 (4.6) 
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where =1¹(�) is the CDF that represents the process peaks and �¹ is the expected number 

of peaks in the observation period �. 

 The characteristic extreme value of a random process is usually taken as the most 

probable value in the extreme probability distribution of the process, i.e., the value where 

the latter distribution reaches its maximum. This value will be referenced from now on as 

the MPV (Most Probable Value) and is illustrated in Figure 23. 

 

Figure 23 Most Probable Value in the extreme distribution of �, �1Ç(�) 

4.2 Correlated Random Variables 

 The usual procedure adopted in an extreme analysis is to assume that individual 

maxima in a random process are statistically independent. In a narrow-band time-series, 

these individual maxima tend to occur in groups, or ‘clumps’, thus they are characterized 

by a strong correlation between peaks of the same ‘clump’. It is known that correlation 

between neighboring peaks in a process will influence the prediction of the largest 

maximum of the random process for a given time interval [14]. In general, and especially 

for narrow banded random processes, accounting for these groupings of maxima leads to 

extreme values estimates that are lower than those predicted by the standard order 

statistics [14]. 

 If variables are assumed correlated, equations presented in the previous chapter 

are not valid. Let �¹ =  È�¹O, �¹C, �¹J, … , �¹·¹É  be a sample of size �¹ of the peaks of a 

generic random variable �(�) realization where �¹ is the expected number of peaks in 
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the observation period �. Assuming that only two subsequent peaks in the sample are 

correlated, i.e., assuming that peaks present a significant correlation two by two, Equation 

(4.6) now becomes 

=1Ç(�) =  v=1¸,1¸(�, �)w·¸<O

i=1¸(�)j·¸<C  (4.7) 

where =1¸,1¸(�, �) is the joint cumulative probability distribution for two consecutive 

peaks of �(�) and =1¸(�) is the peaks marginal CDF. Equation (4.7) is a consequence of 

applying the one-step Markov chain condition [14] on Equation (4.2). It is clear that the 

challenge here is to determine =1¸,1¸(�, �). This can be achieved through the use of the 

Nataf transformation [8], as shown in Section 2.3, which requires the peaks probability 

distribution =1¸(�) and the empirical correlation coefficient between two consecutive 

peaks. The latter requisite can be straightforwardly obtained from the peaks sample as 

Y = h∑ ��¹��ËO¹·¹<O��O�¹ − 1 − $1¹C k 1%1¹C  (4.8) 

where �¹ is the total number of peaks in the sampled time-series, $1¹ is the peaks sample 

average value and %1¹ is the peaks sample standard deviation. Equation (4.8) is the 

discrete form of Equation (2.26).  

 According to the Nataf transformation model previously shown, the joint 

probability density function of two consecutive peaks is given by 

�1¸,1¸(�, �) = �1¸(�)C
[(\)C [C(\, \, Y) 

(4.9) 

where \ = Φ<O i=1¸(�)j, Φ<O(. ) is the inverse of cumulative probability distribution of 

a standard normal variable, �1¸(�) is the peaks probability density function, [(. ) is the 

probability density function of a standard normal variable and [C(. ) is the joint 

probability function of two standard correlated normal variables with a correlation 

coefficient Y. The joint cumulative distribution =1¸,1¸(�, �) can be obtained by 
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=1¸,1¸(�, �) = 6 6 �1¸,1¸(�,  )2�2 >
<;

>
<;  (4.10) 

 As mentioned before, the above double integral can be solved in a fast way by 

proper use of numerical transformations [9] as 

=1¸,1¸(�, �) = 1 − 2Φ(\) + 6 [C(−\, −\, �)2�c
<;  

(4.11) 

with z as defined before and Φ(. ) standing for the cumulative probability distribution of 

a standard normal variable.  

 The methodology here presented considers only correlation between two 

consecutive peaks. However, the same procedure, using a higher level of the Markov 

chain and employing the Nataf transformation model, can be applied for considering a 

larger number of consecutive peaks correlated. Since the mathematics involved for 

considering more than two consecutive peaks correlated are significantly more complex, 

this procedure will not be presented nor investigated here.  Correlation between three 

consecutive peaks will, however, be investigated through a different methodology 

presented later.  

4.3 Asymptotic Distributions 

 In Equations (4.6) and (4.7), the parameter � represents the number of 

observations of �(�) or the number of peaks �¹ in a single realization of a time length of 

interest. It is well established in literature that the theoretical extremes distributions 

defined in the previous chapter converge to asymptotic functions for large values of �, 

i.e., when � → ∞. The asymptotic functions to which the extremes distributions converge 

are known as [6]: 

 - Type I distribution (or Gumbel distribution); 

 - Type II distribution (or Fréchet distribution); 

 - Type III distribution (or Weibull distribution) 

 This study will focus only on the Type I and Type II distributions, since Type III 

distribution is connected to truncated samples of data 
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4.3.1 Type I or Gumbel Distribution 

 Variables that present an exponential decay converge to the asymptotic Type I or 

Gumbel distribution. A random variable � presents exponential decay if 

�1(�)1 − =1(�) = − �1Ì(�)�1(�)  
(4.12) 

 Among the most known distributions, there are a few that meet the above 

requisite: the Normal and Weibull distributions and the Gumbel distribution itself when 

applied as a marginal probability distribution. These distributions will asymptotically 

converge, as � increases, to the Gumbel distribution of extremes given by 

�1(�) = t ∙ ��_Í−t(� − U) − ��_[−t(� − U)]Î (4.13) 

=1(�) = ��_Í−��_[−t(� − U)]Î (4.14) 

where U is the location parameter and t is the scale parameter. The mean and standard 

deviation are related to these parameters by 

$1 = U + 0.57722t  (4.15) 

%1 = ^t√6 (4.16) 

 The location parameter U is also the mode of the distribution, or the most probable 

extreme value of �. This parameter is related to � by [12] 

=1(U) = 1 − 1� (4.17) 

 

4.3.2 Type II or Fréchet Distribution 

 Variables that present a polynomial decay converge to the asymptotic Type II or 

Fréchet distribution. A random variable � presents polinomial decay if 

lim>→; ��[1 − =1(�)] = � = Ï�� (4.18) 
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 Among the most known distributions, the distribution that meets the above 

requisite is the Lognormal distribution. The Fréchet distribution is given by  

�1(�) = �° ∙ v°�w�ËO ��_ `− v°�w�a 
(4.19) 

=1(�) = ��_ `− v°�w�a (4.20) 

where ° is the scale parameter and � is the shape parameter. The mean and standard 

deviation are related to these parameters by 

$1 = °Γ `1 − 1�a (4.21) 

%1 = ° hΓ `1 − 2�a − ΓC `1 − 1�akO CÐ
 (4.22) 

where Γ(. ) is the Gamma function. 

 

4.4 Extremes Estimation for Gaussian Processes 

 In a Gaussian process, the peaks distribution is given by the Rice distribution, as 

shown in Section 3.3.2. If it is assumed that the peaks are non-correlated, i.e., 

independent, Equation (4.6). will return the distribution for the extreme value of the 

process peaks. It is possible to demonstrate that, for � → ∞, the latter probability 

distribution will converge to the Gumbel distribution [9], independently of the bandwidth 

of the process spectrum, with the following parameters 

U = D³�D2 ln(°��) (4.23) 

t = D2 ln(°��)D³�  
(4.24) 
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where °� is the zero crossing frequency of the process, ³� is the spectral moment of order 

zero (or the variance of the process) and � is the interval of time in seconds considered 

in the extreme value analysis.  

 According to the above equations, the extreme distribution of the peaks of a 

Gaussian process is independent of the bandwidth factor of the process. Additionally, it 

depends only on its spectral density function and the time interval considered for the 

extremes analysis. 

 As previously mentioned, in the case of a non-Gaussian process, there is not an 

analytical solution for the extreme value distribution. The usual procedure in this 

scenario, if one can assume that the process is ergodic, is to determine the extreme value 

probability distribution from the peaks distribution of a single realization. The latter is 

usually obtained through a fitting process to the sample of the peaks of the realization 

considered. As this is the case for the studied phenomena, i.e., the top tension in mooring 

lines, the topic will be explored in the following sections. 

 

4.5 Methods for Extremes Estimation of Non-Gaussian Processes 

 When a random process is not normally distributed, that is when it is non-

Gaussian, its most probable extreme value cannot be straightforwardly obtained, as it can 

be for Gaussian processes. In this case, there are a few methods available in the literature 

in order to obtain the corresponding extreme MPV.  

 The ideal method, presented in the beginning of Chapter 4, should be to perform 

a sampling of extremes values of the random process of interest and then fit an extreme 

distribution to the histogram of maxima obtained from these simulations. Since the 

accuracy of this method depends only on the number of simulations performed, not on 

the process stationarity, original process distribution or the possibility of correlation 

between maxima, it is applicable to any random process of interest, including non-

Gaussian processes. Although it is ideal, this method can be very time-consuming and 

cumbersome for everyday design applications. 

 To overcome this issue, there are a few other methods available in the literature 

that do not involve a great number of simulations sampling in order to obtain a process 

extreme MPV. These methods can be classified as (i) methods based on the process 
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transformation, (ii) methods based on process crossing frequencies and (iii) methods 

based on the process peaks distribution. 

 The methods based on the process transformation use the concept of statistical 

equivalence (Section 2.2) in order to transform a non-Gaussian process in a normally 

distributed process. The extreme values estimates are calculated for the equivalent 

Gaussian process and later transformed back to the original process. These methods will 

not be explored in the present study.  

 The methods based on crossing frequencies assume that, for the high levels, the 

crossings can be modeled as a Poisson process [15]. Recent researches also point out a 

method based on the average exceedance rates of high levels [16][5], named ACER 

(Average Conditional Exceedance Rate). This method can automatically account for 

correlation between peaks in a time series and will be better explored in the following 

chapters. 

 In the methods based on the peaks distribution of the process, a probability 

distribution is fitted to the peaks sample of a single realization and the extremes 

distribution is then estimated through classical extreme statistics. There are a few possible 

procedures for the fitting of a probability distribution to the peaks sample. This study will 

focus on the method of moments. For the peaks probability modelling, this study will 

cover the three-parameter Weibull distribution, the Weibull-tail distribution and the 

SGLD distribution. Correlation between subsequent peaks will also be explored through 

the theoretical assumptions described in Section 4.2. 

 

4.5.1 Extremes Sampling 

 As mentioned before, this method of extreme value estimation is applicable to any 

random process of interest, be it stationary or non-stationary, Gaussian or non-Gaussian. 

It is also independent of any possible correlation that can exist between successive peaks 

in a time-series of the process. Therefore, it is considered to be the ideal method for 

estimating a process extreme MPV [2]. 

 In this method, a sufficiently large number � of sample realizations of the random 

process of interest is generated (or there already exists a sufficiently large number of 

measured observation of the random process). From each of the realizations, the largest 
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value, or the maximum, is extracted, resulting in an extreme values sample of size �. A 

known asymptotic distribution (Type I, Type II or Type III distribution) is then fitted to 

this extreme values sample. The extreme MPV can hence be directly determined. Figure 

24 illustrates the procedure for estimating a random process extreme MPV through the 

sampling of maxima method. Thinking about structural analysis of marine structures, as 

they are the focus of the present work, this technique is very time-consuming and hence 

only indicated for benchmarking other more efficient procedures. 

  



 

51 
 

 

 

 

Figure 24 Extreme sampling method procedure for estimating a random process characteristic extreme value MPV  
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4.5.2 Peaks Probability Distribution Models 

 The methods based on the process peaks probability distribution model consist of 

fitting a probability distribution =1¸(�) to the observed peaks in a realization of the 

random process �(�) (Figure 25) and later determine the extremes distribution through 

extreme value statistics for the interval of time T, i.e., 

=1Ç(�) = {=1¸(�)|Ñ¸«
 (4.25) 

where °¹ is the peaks frequency in the observed realization. 

 

Figure 25 Peaks in a realization of �(�) 

 As previously mentioned, the value of interest in a usual extreme analysis is the 

most probable extreme value, or simply the MPV.  This value can be obtained by solving 

the following equation: 

=1¸(�ÒÓÔ) = 1 − 1°¹� (4.26) 

 The above equations are valid when the peaks are assumed to be statistically 

independent. As shown earlier in this dissertation, when considering correlation between 

two consecutive peaks, the extremes distribution is given by 

=1Ç(�) =  v=1¸,1¸(�, �)wÑ¸«<O

i=1¸(�)jÑ¸«<C  (4.27) 
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where the parameters were previously defined. The MPV, in this case, is obtained by its 

definition, i.e., the point where �1Ç(�) reaches its maximum value. The MPV will be the 

point where the first derivative of �1Ç(�), or the second derivative of =1Ç(�), is null. 

 In the present study, three probability models were investigated for the peaks 

probability =1¸(�) modelling: (i) the three-parameter Weibull distribution, (ii) the 

Weibull-tail distribution and (iii) the SGLD distribution. In each of them, the correlation 

between consecutive peaks was also considered. The fitting process of the probability 

distribution to the peaks sample was done by the method of moments. 

 There is not a general rule for the definition of the peaks sample since a generic 

random process can present local and global peaks, as shown in Figure 26. A global peak 

in a process time-series is the largest one between two mean up-crossings. Based on 

practical experience and previous works [17][10], in the present study the peaks sample 

is represented by all global peaks belonging to the sampled time-series. 

 

Figure 26 Definition of global and local peaks in a realization of �(�) 

 A summary for the peaks distribution model method for estimating extremes in a 

non-Gaussian and ergodic process using a single realization is illustrated in Figure 27. 

Since this study focus only on the maxima of the studied phenomena, top tension loads 

in mooring lines, the sample of peaks is only referred to the peaks above the mean level. 
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Figure 27 Peaks distribution model method for estimating extreme values in a non-gaussian and ergodic process using a single realization: 
the peaks sample includes only global peaks above the mean level 
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4.5.3 Average Conditional Exceedance Rate Method (ACER) 

 Another methodology that enables the consideration of dependency between the 

peaks in a time-series when estimating extreme values was developed by researchers from 

the Norwegian University of Science and Technology NTNU [16][5] and is known as the 

Average Conditional Exceedance Rate, or ACER. This methodology uses a chain of 

statistical dependency between successive peaks in order to create an extrapolated 

function of the extremes distribution tail. With this function, one can estimate the most 

probable extreme value taking into account the dependency between the peaks. The 

consideration of independent peaks is a particular case of the methodology. 

 The method consists in identifying the peaks sample in a realization of size � of 

the random process �(�) and calculating the ACER function for a specific observed peak 

�¹Õ and a exceedance level �, represented by ��Õ(�): 

��Õ(�) = #AF�P�¹Õ > �Ö�¹Õ<O ≤ �, … , �¹Õ<�ËO ≤ �Q, 1 ≤ � ≤ × ≤ � (4.28) 

��Õ(�) denotes the probability of the ×th peak �¹Õ exceeding the value � given that all × −
1 previous peaks did not exceeded. The positive integer index � denotes the number of 

conditional exceedances to be considered in the peaks sample. Thus the indexes � 

represent each of the �th ACER function. For example, the first three ACER functions 

are given by 

�OÕ(�) = #AF�P�¹Õ > �Q, � = 1 (4.29) 

�CÕ(�) = #AF�P�¹Õ > �Ö�¹Õ<O ≤ �Q, � = 2 (4.30) 

�JÕ(�) = #AF�P�¹Õ > �Ö�¹Õ<O ≤ � ∩ �¹Õ<C ≤ �Q, � = 3 (4.31) 

 In practice, the ACER functions are determined empirically by counting the 

number of conditional exceedance occurrences in the peaks sample and dividing it by the 

total number of peaks. It is important to remark that the peaks sample used by the ACER 

method comprises both local and global peaks.  
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 Figure 28 presents the behavior of the first three ACER functions (� = 1, 2, 3) in 

a logarithmic vertical scale. The functions decrease as the index � increases or as the level 

of exceedance � increases: naturally, the probability of existing a peak that satisfies the 

condition for high values of � or � is lower. 

 

Figure 28 Plot of exceedance levels � versus ACER functions ��(�) for � = 1, 2, 3 on 
the logarithmic scale [16] 

 

 The next step of the ACER method is to obtain continuous functions ��Õ(�) that 

allow to extrapolate its behavior for larger values of the level �. The behavior of the 

ACER function tail is exponential thus the following model can be used to represent it 

[5] 

��(�) = Ø���_(−��(� − ��)ÙÚ) (4.32) 

where � is the level of exceedances and the constants ��, ��, Ï� and Ø� are those that 

better fit the behavior of the empirical ACER function tail. These parameters can be 

determined with the help of optimization methods, such as the Levenberg-Marquardt 

algorithm [5]. 

 Finally, the extreme cumulative density function of the peaks is given by: 
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=�(�) = ��_ {− v�¹P��(�)Qw| (4.33) 

where �¹ is the total number of peaks for the period of time considered in the extreme 

value estimation.  

 In practice, the initial level � to be considered is the one that stabilizes the function 

��Õ(�). In this study, the ACER method was investigated through the use of the software 

developed by Karpa [18]. In addition, the first three dependencies (� = 1, 2, 3) between 

peaks were considered, i.e., the case where consecutive peaks are independent of each 

other (� = 1), the case where two consecutive peaks are correlated (� = 2) and the case 

where three consecutive peaks are considered correlated (� = 3). 
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5 MOORING LINES EXTREME TOP TENSION 

ANALYSIS  

5.1 Environmental Loads: Ocean Waves, Wind and Current 

 One of the main random loads that acts on an offshore moored floating unit is 

associated to the ocean wave elevations. The standard approach to the statistical modeling 

of ocean waves is to assume that the ocean surface constitutes a stochastic process that 

can be assumed stationary in time [15]. In engineering practice, stationarity is assumed 

only for limited periods of time, e.g. three hours, which is then referred to as the short-

term description of the process, or simply the sea state. Thus, the sea elevation can be 

simplified as a sequence of these stationary processes, or sea states.  

 Of particular importance of this simplification is the possibility to represent the 

random process by its spectral density. In practice, each sea state is represented by a 

significant wave height Û¬ and a characteristic period �¹ or �Ü, both associated to an 

appropriate spectral density function �Ý(­) for the location of interest. The significant 

wave height Û¬ of a sea state is defined as the mean wave height of the highest third of 

the waves heights Û� and the characteristic period �Ü is defined by the average of the mean 

level crossing periods ��, as illustrated in Figure 29. 

 

 

Figure 29 Random wave observation [20] 

 

Mean 

Level 
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 Having known the spectral density �Ý(­) of the location of interest, as previously 

commented in section 3.2.1, one can, through the Fourier Transform (see, for instance, 

[6]), represent this random process in the time-domain. Thus, the wave elevation can be 

approximately represented by a superposition of � harmonic components, as follows 

�(�) = � ��cos (­�� + [�)·
��O

 
(5.1) 

where [� are random phases uniformly distributed in the interval [0, 2^] and the 

magnitudes of �� are related to the spectral density function of the waves �Ý(­) by 

�� = à2�Ý(­�)Δ­ (5.2) 

where ­� is the representative frequency of the �th harmonic component and Δ­ is the 

frequency interval of the spectrum �Ý(­) discretization. 

 Due to the central limit theorem (Section 2.5), it can be expected that �(�) is 

approximately Gaussian when the number of harmonic components used to represent it 

is large enough, i.e., when � → ∞. 

 It is important to notice that one must be careful when using above expressions. 

If the representative frequency of the �th harmonic component ­� is taken, for example, 

as the mean frequency in the frequency interval of the spectrum �Ý(­) discretization Δ­, 

it is expected that the simulated wave elevation repeats itself within a period 2^/∆­, i.e., 

becomes a periodic function. To avoid such inconvenient, in the present study ­� is taken 

randomly in the interval of the spectrum discretization.  

 From Equations (5.1) and (5.2), one can naturally assume that the number of 

harmonic components used to represent the spectral density function �Ý(­) will directly 

influence in how accurately the generated signal in time �(�) represents the energy 

contained in the original wave spectrum. There are several references in the literature, as 

for instance, [15] and [19], on the recommended wave spectrum discretization level one 

must employ for a given type of structure and analysis. This study tries to investigate the 
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influence of using lower and higher levels of discretization of the wave spectrum in the 

extreme analysis of top tension loads in mooring lines. 

 There a few well established spectral density functions �Ý(­) in the literature, 

such as the JONSWAP (Joint North Sea Wave Project) spectrum, specially developed for 

the North Sea in joint studies with offshore industries, or the Pierson-Moskowitz 

spectrum, initially developed from measurements in the North Atlantic [21][22]. The 

spectrum that best represents the Brazilian offshore locations here investigated is the 

JONSWAP spectrum. Further explanations about other types of wave spectra can be 

found in [15].  

 The parameters that characterize the adjusted JONSWAP spectrum are classified 

as a function of Û¬ and  �¹. The peak angular frequency ­¹ (or the period �¹) corresponds 

to the frequency at the maximum value of �Ý(­). JONSWAP spectrum can be defined as 

�á (­) = t �C
2^M­â ��_ »−1.25 ¼ ­­¹½<M¾ IÂ>¹»P®<®¸QÃ

CãÃ®Ã̧ ¾
 

(5.3) 

where t and I are the spectrum shape parameters. They are related to Û¬ and �¹, by 

expressions previously defined for a location of interest. For instance, for the Campos 

Basin, located offshore Brazil, parameters  t and I are related to Û¬ and  �¹ by the 

following equations: 

I = ��_ ¼1.0394 − 0.01966 �¹DÛ¬½ (5.4) 

t = 5.0609 Û¬C
�¹M (1 − 0.287 ln I) (5.5) 

The third shape parameter % is fixed and only dependent on ­¹: 

% = ä%8 = 0.07, ­ ≤ ­¹%7 = 0.09, ­ > ­¹  (5.6) 

The usual shape of the JONSWAP spectrum is shown in Figure 30. 
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Figure 30 JONSWAP spectra [15] 

 

 Alongside with the ocean waves, wind velocities can also be interpreted as random 

processes. Therefore, the wind velocity may be statistically treated in a similar manner of 

that presented for the ocean waves. However, in the present study, wind was considered 

as a deterministic variable associated to the sea state in question. More information on 

wind statistical treatment can be found, for example, in [15]. 

 The current was also considered as a deterministic variable, for each of the loading 

directions investigated. The current considered was associated with a triangle profile 

defined by the current velocity at the surface level °�, at a single direction plane, as shows 

Figure 31. The current velocity at the bottom level was considered zero.  
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Figure 31 Current velocity triangle profile 

 

5.2 Forces Induced by Ocean Waves, Wind and Current  

 The interaction between the ocean waves and the floating unit to which the 

mooring lines are connected to, here considered as a rigid body, induces hydrodynamic 

forces that will generate dynamic motions in the floating unit, and therefore in the 

mooring lines system, in the six degrees of freedom. Due to the complexity of this 

interaction, the hydrodynamic forces acting on the mooring lines are nonlinearly related 

to the sea surface elevation.  

 Even though the short-term wave-frequency excitation can be assumed to be a 

Gaussian process, the mooring line tensions generally are not mainly due to the second-

order effects associated to the floater motions. These motions are nonlinearly related to 

the sea surface elevation, more specifically, they are associated with the square of the sea 

surface elevation, as it will be shown in this chapter.  

 In practice, one can represent the acting forces in the floater unit as a bi-

dimensional Fourier series [23]. Thus, the hydrodynamic force generated by the ocean 

waves in a given degree of freedom of the floating unit can be represented by 
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=(�) = =� + � E(­�)5� cosP­�� + [� + å(­�)Q·
��O

+ � � æ<P­� − ­ÕQ5�5Õ cos vP­� − ­ÕQ� + P[� − [ÕQ + ç<P­� − ­ÕQw·
Õ�O

·
��O

+ � � æËP­� + ­ÕQ5�5Õ cos vP­� + ­ÕQ� + P[� + [ÕQ + ç<P­� + ­ÕQw·
Õ�O

·
��O

 

(5.7) 

where  

=�   Mean drift force =� = ∑ E(0)5�C·��O ; 

E(­�)   First order (linear) coefficient of hydrodynamic force; 

æ<(­) and æË(­) Second order quadratic coefficients of hydrodynamic force 

correspondent to the wave frequencies differences and the wave 

frequencies sum, respectively; 

å(­�) Phase angle of the components of the hydrodynamic force linear 

portion; 

ç<(­) and çË(­) Phase angles of the components of the hydrodynamic force 

nonlinear portion. 

 All of the above parameters basically depend on the floater geometry and must be 

estimated by specific computational routines, such as the software WAMIT [24]. 

 It is clear that if an irregular wave elevation is modeled as a superposition of 

components at different frequencies then forces proportional to the square of that 

elevation will contain terms at both the sums and differences of the elementary wave 

frequencies [1], as it can be observed in Equation (5.7). 

 Apart from the ocean waves, the interaction between the wind and current and the 

floater-line system will also induce hydrodynamic forces that will generate response of 

the system.  

 The wind forces act on the exposed portion of the floating unit. The wind velocity 

can be considered as a deterministic variable, i.e., having a constant value independent of 



 

64 
 

time, or, along with the ocean waves, as random variables characterized by a specific 

spectral density function. As mentioned above, this study only contemplates the 

consideration of constant velocity wind. 

 A constant wind velocity VÁ will generate only a static load, proportional to the 

wind exposed area of the floating unit, given by 

�Á = Y82 EÁ5Á��è°ÁC (5.8) 

where Y8 is the air density, 5Á��è is the total exposed area of the floating unit subjected 

to the wind action, EÁ is the area shape coefficient (dependent on how perpendicular the 

wind area is to the wind acting direction) and °Á is the mean wind velocity. 

 On the other hand, the current induces not only forces on the submerged portion 

of the floating unit but it also induces  hydrodynamic forces on the hanging portion of 

risers and mooring lines connected to the floating unit. Estimation of forces induced by 

fluids flow on slender bodies, such as the forces induced by the current on the risers and 

lines system, can be done through the Morison’s formulation [25]. The Morison’s 

formulation assumes that, for a sufficiently slender body, the forces induced by a flowing 

fluid can be estimated as an approximation in which important parameters of the fluid 

flow, such as pressure, velocity and acceleration, are approximated as the correspondent 

value in the cross section axis of the slender body. Morison’s formulation is given, as a 

force per unit length, by  

�Ù = 12 YÁéEè|U² − �² |(U² − �²) + YÁ ^éC
4 EêUº − YÁ ^éC

4 E8�º  (5.9) 

where YÁ is the fluid density (in this case, the seawater density), é is the characteristic 

dimension of the cross section of the body (usually taken as the external diameter of a 

cylindrical body), U² , �² , Uº  and �º  are the fluid and slender body velocities and accelerations, 

respectively, and Eè, Eê and E8 are the dimensionless coefficients of drag, inertia and 

additional mass. The first portion of Morison’s formulation is usually referred as the drag 

portion, associated with the viscous effects of the fluid and body interaction. The other 

portion of the formulation is usually referred as the inertia portion, proportional to the 

fluid and body accelerations. 
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 Morison’s formulation is usually a sufficiently accurate approach for the analysis 

of risers and mooring lines. These type of structures do not interfere in the waves profile 

and are hence considered as sufficiently slender bodies. 

 Since the current velocities are considered constant in the present work, they will 

only generate static loads in the hull, proportional to the submerged area of the floating 

unit. Likewise, in the risers and mooring lines system, since there is no variation of the 

current velocities, there are no inertia forces caused by the current flow. On the other 

hand, there will be inertia forces induced by the portion of the random ocean waves acting 

directly on the mooring lines and risers system.  

          

5.3 Time-Domain Dynamic Response Analysis 

 The dynamic model for determining the motions �(�) of a floating unit can be 

expressed by the dynamic equilibrium equation: 

³�º(�) + Ï�²(�) + ��(�) = =(�) + =� (5.10) 

where ³, Ï and � denote the mass (structural + inertial mass) of the floater-lines system, 

the damping (hydrodynamic damping + viscous damping due to the mooring lines) of the 

system and the stiffness (hydrostatic + mooring lines) of the system, respectively. =(�) 

denotes the sum of all time-defined loads that act on the floating unit and =� denotes the 

sum of all constant loads that act on the floating unit. In the present study, only the loads 

generated by the ocean waves are treated as dependent of time. 

 Usually, the second order hydrodynamic force components are small when 

compared to the first order ones. However, the presence of the low difference frequency 

components in the excitation results in a resonant response of the floater-lines system in 

their horizontal degrees of freedom (surge, sway and yaw), which are characterized for 

very high natural periods (order of 200∼400s). This resonance is characterized by motions 

of large amplitudes, known as slow-drift motions, or simply low frequency motions 

enabled by lower damping in the low frequencies range. This way, the floater unit motions 

can be represented by  
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�(�) = �� + �ëì(�) + �íì(�) (5.11) 

where 

��  static motion or offset due to the mean drift force; 

�ëì(�)  dynamic motion component proportional to the low (difference) frequency 

components; 

�íì(�) dynamic motion component in the wave frequencies range. 

 

Likewise, a typical mooring line tension response will present three main contributions, 

given by 

�(�) = �� + �ëì(�) + �íì(�) (5.12) 

where 

��  steady offset component due to the static offset of the floater + line pre-

tension; 

�ëì(�) tension dynamic component proportional to the low (difference) frequency 

components; 

�íì(�) tension dynamic component associated to the first order motions of the 

floater, in the wave frequencies range. 

 Due to the nonlinear contributions in the floater-lines system behavior, a 

frequency-domain analysis is not applicable since it relies on the linearization of the 

mooring system structural behavior. A nonlinear fully coupled dynamic analysis 

comprising both the floater and its risers and mooring lines in the time domain should be 

therefore a more appropriate approach. 

 As mentioned above, the floater-line system response cannot be treated as a 

Gaussian process, since it is nonlinearly related to the sea surface elevation. Analytical 

solutions for the response process probability distribution, or for the probability 

distribution of response peaks, are not available. In this case, the procedure for estimating 
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extreme tensions in the mooring lines has to follow one of the methods for extreme 

estimation for non-Gaussian processes described in Section 4.5. 

 On the other hand, although the floater-line system response cannot be considered 

as a Gaussian process, it can be considered ergodic and consequently stationary. Since 

the sea surface elevation model described in Equation (5.1) is stationary and ergodic, the 

response of the system can be considered stationary and ergodic as well due to the system 

stability. Dynamic equilibrium equation (Equation (5.6)) ensures that there is no 

instability point in the response, i.e., there is no instant of time where the response 

becomes unpredictable. Thus the extremes MPV’s can be estimated by the single 

realization approach presented in Section 4.5. 

 In the present work, ocean waves, wind velocity and current velocity were 

considered to be acting in the same direction. Since the loads from both wind and current 

were treated as constant ones, they will only contribute to the static offset of the floater-

line system and therefore to the steady offset component of the line tension. 

 

5.4 Extremes Analysis: Long-Term and Short-Term Design Approaches 

 Since a wave spectrum can be completely defined by the pair of parameters Û¬ 

and �Ü, a long-term model of the ocean waves can be based on the occurrence frequency 

of these parameters for the location were the floating unit is installed [15]. From a scatter 

diagram that provides the probability of occurrence of a specific pair of Û¬ and �Ü, one 

can predict the joint distribution function of these environmental parameters. The long-

term sea states representation will then be considered as a series of short-term sea states. 

The complete long-term environmental process will be given by the joint distribution 

function of the ocean waves significant heights, periods and directions, the wind 

velocities and directions and the current velocities and directions. 

 At first, the most accurate design approach to determine extreme load effects for 

design checks is based on the long-term statistics of response, but it may clearly not be 

the most economic method from the computational point of view since it also involves 

the response calculations for sea states that contribute little or nothing to the structural 

response [15]. Nowadays, the short-term design approach, using nonlinear time domain 
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simulations, is a procedure accepted by various modern design standards for the extreme 

response analysis of risers and mooring lines connected to floating production units [26]. 

The most recommended procedure to select the short-term environmental conditions for 

the wave design approach is based on the environmental contour method [3].  

 In the environmental contour method, an arbitrary number of environmental 

conditions is selected from the environmental contour relative to a return-period of 

interest, usually 100 years or 1000 years. For each environmental condition a short-term 

extreme response analysis is performed. The extreme characteristic response value for 

design verification is taken as the largest one among all short-term extreme MPVs 

associated with the environmental conditions on the contour. According to [27], in this 

method, the variability of this short-term extreme response value in the long-term needs 

to be artificially accounted for. This is usually achieved by multiplying the obtained 

extreme response with a predetermined factor. In this work, the factor was considered 

equal to 1. 

 In this study, the short-term design approach denotes a short-term period �¬� of 3 

hours. For research purposes, the short-term environmental conditions are defined by the 

waves in the 100-yr environmental contour directionally aligned with the associated wind 

and current conditions.  
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6 CASE STUDIES 

 Previous chapters evidenced that when studying a non-Gaussian random process 

such as the top tension response in mooring lines connected to floating units, one cannot 

obtain analytical results for the description of the statistics of such process. An 

appropriate statistical treatment is essential and, for an extreme response analysis, a 

specific methodology is required. 

 In Chapter 4 it was presented that if the studied random process can be treated as 

an ergodic process, its most probable extreme value can be estimated from a single 

realization of the process. However, this extreme MPV will depend on the probability 

model used for representing the peaks of the process, on the time-series length and on the 

discretization level employed in the wave spectrum. It will also depend on whether 

correlation between the peaks of the time-series is important or not.  

 It was previously shown that the top tension load in mooring lines connected to 

floating platforms cannot be treated as a Gaussian process, even though some 

environmental load-generator processes are. This results from the nonlinear behavior of 

the floater-lines system itself, the second-order random wave loading applied to the 

system, etc. However, floater-lines system response can be treated as a stationary and 

ergodic stochastic process [2], naturally including the top tension response of the mooring 

lines. 

 This study hence investigates the influence of the probability distribution model 

choice for the line tension peaks, the influence of the numerical simulation (time-series) 

length, the influence of the wave spectrum discretization level and the effect of 

considering correlation between consecutive peaks on the top tension extreme response 

analysis. The study investigates these effects for two distinct mooring lines connected to 

FPSOs located in different water depths offshore Brazil.  

 The first case study is a chain-polyester-chain mooring line connected to a spread-

moored FPSO in 1980m water depth (Case Study A). The second is a chain-wire rope-

chain mooring line connected to a turret-moored FPSO in 180m water depth (Case Study 

B). The investigated top tension time-series are generated from the weakly coupled 

models of the floaters and its systems of risers and mooring lines using the DYNASIM 
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computer code [28]. In this weakly coupled model, the lines are represented by their 

corresponding geometric catenary equations and hydrodynamic loads on the lines are 

modeled by a simplified approach [28].  

 For the present studies, wave, current and wind environmental loads are 

considered to be directionally aligned. Wave parameters (and corresponding ones for 

wind and current) are taken from the short-term condition on 100-yr environmental 

contour of the location of interest, producing the largest extreme response on the most 

loaded line. For each case study, the investigated mooring line will be the one that 

presented the largest peak for all environmental conditions belonging to the 

environmental contour for the corresponding unit location. The environmental condition 

that generated this largest response will be the condition used for the statistical 

investigations. 

 In order to investigate the statistical influence of the finite length of the sampled 

time-series on the extreme response simulation lengths �¬ of 3, 6, 9, 12 and 15 hours are 

considered. These simulation lengths are obtained after neglecting the first 5000s of 

simulated time-series, in order to properly disregard any dynamic transient effect on the 

response, e.g. a simulation length of 3-h (10800s) implies that the time-series was 

generated with a 15800s duration in DYNASIM (10800s + 5000s). Different levels of 

wave spectrum discretization �Á of 300, 1000 and 2000 harmonic waves are also 

considered. For each pair of simulation length and spectrum discretization level {�¬, �Á} 

200 distinct top tension realizations are generated by changing the seed number for 

random wave phase generation. In total, 200 realizations x 3 discretization levels for the 

wave spectrum x 5 time-series lengths = 3000 distinct simulations are performed for each 

case study.   

 For each sampled realization, the 3-h extreme MPV is estimated for each peaks 

probability model investigated, including or not the effect of correlation between peaks. 

The extreme MPV is also estimated through the ACER method, for � = 1, 2, 3. From the 

set of 200 MPV results for each specific case, the average and coefficient of variation of 

the MPV sample mean estimator are obtained. The latter value is compared with the ‘true’ 

extreme MPV, estimated through a sampling of extremes, in order to establish the biases 
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associated to each set of ‘simulation length - spectrum discretization - peaks probability 

model’ condition. This will be better explained in the next sections. 

 Assuming that the process is ergodic, just a single realization is enough to 

statistically evaluate it. However, since numerical simulations of random processes are 

associated to initial seed numbers, usually provided by the user, and of finite time length, 

it is natural to deduce that each simulated time-series has a different outcome and 

therefore distinct statistical characteristics. When the values of interest of the process are 

its extremes values, the latter observation is even more important since extremes 

methodologies relies on a sub-group of the realization outcomes: its peaks. The bias of a 

method, or the measure of how accurate the method is if compared to benchmark values, 

therefore relies not only on the method itself but also on these simulations details. Thus, 

in order to assess the effect of the parameters on the performance of each method, a large 

enough number of 200 distinct realizations are simulated. An accurate model is expected 

to converge on average (the mean value of the estimated MPVs) to the ‘true’ one and to 

have a low standard deviation of its MPV estimates. 

 The statistical analyses performed considered only the environmental loading 

portion of the mooring line top tension response, i.e., the mooring line pre-tension is 

previously subtracted from the top tension time-series. Estimated MPV’s are then 

associated only with the top tension loads generated by the effects of the random ocean 

waves and deterministic wind and current loads.   

 

6.1 Short-Term Extreme Top Tension MPV Benchmark Values 

 In order to establish a reliable benchmark to which the results can be compared 

to, i.e., the one considered ‘ideal’ in section 4.5.1, a sampling of extremes is generated in 

order to estimate the ‘true’ extreme top tension MPV. The general procedure is illustrated 

in Figure 24. 

 For the extremes sampling, 1000 independent 3-h long (�¬ = 3h) time-domain 

simulations are generated with the largest level of the discretization for the wave spectrum 

employed in the study, i.e., �Á = 2000. The maximum value encountered in each 

simulated most loaded line top tension time-series is extracted, resulting in a sample of 
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1000 extreme short-term values �Â = R�ÂO, �ÂC, �ÂJ, … , �ÂO���S. Then, a Gumbel distribution 

is fitted to this extreme sample through the method of moments. The Gumbel distribution 

(or extreme Type I distribution) choice is supported by the fact that in extreme statistics 

theory the vast majority of marginal distributions asymptotically converge to this extreme 

distribution [12], as mentioned before.  

 Using the method of moments for the model fitting, the parameters Uî  and tî  of 

the Gumbel distribution are given by 

tî = ^%1Ç√6 
(6.1) 

Uî = $1Ç − 0.57722√6^ %1Ç (6.2) 

where %1Ç and $1Ç are the standard deviation and the mean of the extremes sample, 

respectively. Gumbel’s parameter Uî  is also the most probable extreme value. The 

benchmark or reference value for the extreme top tension MPV of each case study will 

be referred from this point as ï#@}ðì. 

 

6.2 Associated Biases 

 For each group of � realizations of each set of ‘simulation length �¬ - spectrum 

discretization �Á - peaks probability model’ conditions, the estimator of the average 

value of the extreme MPVs is calculated, as well as the estimator of the standard 

deviation, as described in the following equations for a given peaks probability model: 

$R«ñ, ·òS = ∑ ï#@�·��O� − 1  (6.3) 

%R«ñ, ·òS = z∑ (ï#@� − $R«ñ, ·òS)C·��O � − 1  (6.4) 

 In the present work, as previously mentioned,  � = 200.  In addition, the 

coefficient of variation of the MPVs sample of size � is taken:              
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EF@R«ñ, ·òS = %R«ñ, ·òS$R«ñ, ·òS (6.5) 

 In order to measure how close to the benchmark value the estimator $R«ñ, ·òS is, 

for each peaks probability model, the bias tool is used. In statistics, 

the bias (or bias function) of an estimator is the difference between this estimator's 

expected value and the true value of the parameter being estimated. An estimator or 

zero bias is called unbiased. Otherwise, the estimator is said to be biased. The ‘true’ value 

of the extreme MPV for each case study is taken as the benchmark value, explained in 

the previous section. The bias for each peaks probability model in this study is defined as 

the ratio between the expected value of the extreme MPV for each set of (�¬,  �Á) and the 

benchmark value, as Equation (6.6) shows. 

ó���R«ñ, ·òS = $R«ñ, ·òSï#@}ðì (6.6) 

Figure 32 illustrates the estimators investigated and the calculation of the bias for each 

set of conditions. 
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Figure 32 Procedure for characterizing a chosen pair of R�¬, �ÁS for each peaks probability model: example for the 3-parameter Weibull 
probability model for �¬ = 3ℎ and �Á = 300 
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6.3 Study Case A – FPSO in Deep Water 

 In this case study, a chain-polyester-chain mooring line connected to a spread-

moored FPSO in 1980m water depth under a 100-yr environmental condition offshore 

Brazil is investigated. The line configuration and description is given in Figure 33. The 

selected environmental condition and mooring line orientations are presented in Figure 

34. Study case A corresponds to a short-term condition in the environmental 100-yr 

contour with Û¬ = 6.62m and �¹ = 10.80s (modelled with JONSWAP wave spectrum), 

and associated surface current velocity = 0.34m/s and wind velocity = 22.10m/s acting as 

indicated in Figure 34. 

 

 

Figure 33 Mooring line configuration for case study A 
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Figure 34 Environmental condition and selected mooring line orientations for case 
study A 

 

 The typical spectral density of the selected mooring line top tension response is 

shown in Figure 35. In this figure, the spectrum is obtained by Fast Fourier Transform 

(FFT) applied to a generated random time-series. For better visualization, the result of the 

FFT is smoothed by the Hanning window procedure [29]. 
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Figure 35 Typical spectrum of the mooring line top tension response for model A 

 

 From Figure 35 it is clear that the response main component is associated to the 

low-frequency region, due to the second-order effects mentioned before. There is also a 

significant portion of the response energy in the wave-frequency region, characterizing a 

broadband response spectrum. 

 

6.3.1 Extreme Top Tension MPV Benchmark Value 

 Figure 36 presents the Gumbel distribution fitting for the 1000 maxima sample 

obtained from the same number of independent 3-h realizations. The good adjustment 

observed in Figure 36 indicates that the Gumbel distribution is an adequate choice for 

estimating the benchmark MPV. 
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Figure 36 Benchmark value estimation through fitting the Gumbel distribution to the 
empirical CDF of the extremes sample  

 

 For case study A, the reference value encountered for the top tension most 

probable extreme value is ï#@}ðì = 3644��. Again, it is worth mentioning that for this 

estimation the mooring line pre-tension was subtracted from each extreme value observed 

in the simulated time-series ( �� = 1562��). 

 For comparison purposes, the Fréchet distribution was also investigated for 

modelling the maxima sample. Figure 37 presents the Fréchet distribution fitting for the 

1000 maxima sample. Although the fitting of Fréchet seems as accurate as the Gumbel 

one, the Gumbel distribution was chosen since the vast majority of probability 

distributions asymptotically converge to this model, as was mentioned before. 
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Figure 37 Benchmark value estimation through fitting the Fréchet distribution to the 
empirical CDF of the extremes sample  

  

6.3.2 Statistical Analysis of the Top Tension Response 

 For each of the 200 simulations for each pair of R�¬, �ÁS, the main statistical 

parameters (mean, standard deviation, skewness and kurtosis) of the time-series are 

calculated, as illustrated in Figure 32. These results are shown in more details in Annex 

C. In order to summarize these results, Table 2 shows the mean, standard deviation and 

coefficient of variation of the 200 obtained values for the main statistical parameters of 

the time-series for the pair R�¬ = 54000� (15ℎ), �Á = 2000S. 

Table 2 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á = 2000 

  

Mean ôõ 

Standard 

Deviation öõ 

Skewness �õ 

Kurtosis ÷õ 

Mean 1959.71 487.11 0.37 3.15 

Standard 

Deviation 
14.49 12.15 0.07 0.15 

CoV 0.01 0.02 0.19 0.05 
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 From Table 2 it is clear that the process distribution is non-Gaussian, as it was 

expected. This is evident because the expected value of the process skewness is greater 

than zero and the expected value of the process kurtosis is greater than 3, which are the 

values for a normal distribution. This is more clear when the empirical PDF of a random 

time-series from the 200 realizations set is plotted. Figure 38 presents the comparison 

between the empirical PDF of four time-series generated with �¬ = 54000�  and �Á �

2000 and the normal distribution fitted to the signals through the method of moments. 

 

Figure 38 Comparison between the sampled process empirical PDFs #��� (solid line) 
and the adjusted normal distributions ��$>, %>

C� (dashed lines) for case study A 

 
 Figures 39, 40 and 41 present three random realizations from the set of 200 

samples for the pair R�¬ � 10800� �3ℎ�, �Á � 2000S.  The line pre-tension is subtracted 

from these time-series. 
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Figure 39 Model A: Top tension time-series #1 ��¬ � 10800� and �Á � 2000) 

 

Figure 40 Model A: Top tension time-series #50 ��¬ � 10800� and �Á � 2000) 

 

Figure 41 Model A: Top tension time-series #150 ��¬ � 10800� and �Á � 2000) 

 

6.3.3 Statistical Analysis of the Top Tension Response Peaks 

 In this study, three probability models are investigated for the peaks of the line 

top tension time-series (W3P, WT and SGLD), following the procedure explained in 

Section 4.5.2.  

 As in the previous section, for each of the 200 simulations and for each pair 

of R�¬, �ÁS, the main statistical parameters (mean, standard deviation, skewness and 

kurtosis) are calculated but this time for the global peaks sample of the time-series. These 

results are shown in more details in Annex C. In order to summarize these results, Table 

3 shows the mean, standard deviation and coefficient of variation of the 200 obtained 

values for the main statistical parameters of the time-series global peaks for the pair 
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R�¬ � 54000� �15ℎ�, �Á � 2000S. It is also shown the mean, standard deviation and 

coefficient of variation of the 200 obtained values for the peaks frequency and the 

empirical correlation between two consecutive peaks. 

Table 3 Statistical parameters of the global peaks of the global 200 realizations for �¬ �
54000�  and �Á � 2000 

  

Mean ôø 

Standard 

Deviation öø 

Skewness �ø 

Kurtosis ÷ø 

Peaks 

Frequency ùø 

Correlation ú  

Mean 2269.04 297.48 2.04 8.35 0.03 0.25 

Standard 

Deviation 
16.51 9.55 0.13 0.90 0.00 0.03 

CoV 0.01 0.03 0.06 0.11 0.04 0.13 

  

 For a random sample of the set  R�¬ � 54000� �15ℎ�, �Á � 2000S, the 

comparison between the empirical CDF of the global peaks sample and the fitted 

probability distributions are given in the Figures 42, 43 and 44. 

 

 

Figure 42 Comparison between empirical CDF of the peaks and fitted 3-parameter 
Weibull probability model for a random time-series of model A 
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Figure 43 Comparison between empirical CDF of the peaks and fitted Weibull-tail 
probability model for a random time-series of model A 

 

 

Figure 44 Comparison between empirical CDF of the peaks and fitted SGLD 
probability model for a random time-series of model A 

 

 The probability models W3P, WT and SGLD are also analyzed when two 

consecutive peaks are considered correlated (see Section 4.2). Besides these, the ACER 

method is also investigated, for � � 1, 2, 3. Results obtained from the ACER method will 

be presented in the next section. 
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6.3.4 General Results 

 Each one of the methods described in Section 4.5 were investigated in order to 

determine the extreme most probable value of the line top tension response. As these 

methods are based on a single realization of the process, the bias and coefficient of 

variation for each method and pair of R�¬, �ÁS were estimated in order to seek the method 

with the best performance. 

 Figure 45 to Figure 47 show, as function of the simulation length, the biases 

estimates for the top tension 3-h MPV, i.e., the ratio between the average MPV from the 

200 realizations sample and the benchmark value for each peaks probability model,  pair 

of {�¬,�Á} and the consideration or not of the correlation between consecutive peaks. 

Figure 48 to Figure 50 show the corresponding EF@s of the MPVs.  
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Figure 45 Bias estimates for the top tension 3-h MPV – Case study A ('( �  )**). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 46 Bias estimates for the top tension 3-h MPV – Case study A ('( �  +***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 47 Bias estimates for the top tension 3-h MPV – Case study A ('( �  ,***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 48 CoVs estimates for the top tension 3-h MPV - Case study A ('( �  )**). 

(‘corr’ indicates the consideration of peaks correlation) 
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Figure 49 CoVs estimates for the top tension 3-h MPV - Case study A ('( �  +***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 50 CoVs estimates for the top tension 3-h MPV - Case study A ('( �  ,***). 
(‘corr’ indicates the consideration of peaks correlation) 
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From Figure 45 to Figure 50 it is possible to notice that:  

 i. The level of discretization of the wave spectrum seems to be of low importance 

for the extreme response estimation since it has little impact on the biases and coefficient 

of variation of the extreme MPVs. However, higher levels of discretization seems to result 

in more stabilized values for the ACER method;  

 ii. The expected value of the extreme MPV is not highly dependent on the 

simulation length, for all methods considered; 

  iii. However, shorter numerical simulations are associated to higher EF@s of the 

short-term extreme MPV. As the simulation length increases, the number of peaks 

extracted from the series increases as well, leading to less variability in the statistical 

estimates. The EF@s are very similar among the probability distribution methods 

investigated and they seem to be smaller than those obtained through the ACER method. 

6-h or longer simulations lead to EF@s lower than 4% for the probability distribution 

model methods;  

 iv. MPV estimates are often overestimated. In other words, the short-term extreme 

MPVs calculated through fitting a probability model to the peaks sample extracted from 

a single time-series seem to be often greater than the extreme response reference value. 

This overestimation is higher for the WT model, reaching a 5% bias; 

 v. Short-term extreme MPV estimates taking into consideration two subsequent 

peaks correlation tend to be practically the same as MPV estimates that do not consider 

it. This indicates that for this case the correlation between subsequent global peaks does 

not take an important role in the extremes statistics. In accordance with this, the expected 

value of the correlation coefficient between two consecutive peaks is Y � 0.3, as shown 

in Table 3;  

 vi. The SGLD-based procedure and the W3P approach seem to predict practically 

unbiased estimators; 

 vii. Comparatively to others, the ACER method seems to predict highly 

overestimated extreme MPVs when � �  1 (or when the peaks are considered 

independent of each other). The overestimation drastically decreases when correlation 
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between two local peaks is considered, � �  2. However, for � �  3 the extremes MPVs 

are no longer altered. This shows that the correlation between three consecutive peaks is 

low and do not influence the extremes estimation. It is important to notice that, for the 

ACER method, the consideration of correlation between two-consecutive peaks (� �  2) 

has a larger role on the extremes estimation as a result of the fact that the peaks sample 

in this case comprises both local and global peaks. For this case, the empirical correlation 

coefficient between two consecutive local peaks is in the Y � 0.8 level. 

 

6.4 Study Case B – FPSO in Shallow Water 

 In this case study, a chain-wire rope-chain mooring line connected to a turret-

moored FPSO in 180m water depth offshore Brazil under a 100-yr environmental 

condition is investigated. The environmental loading condition and mooring line 

orientations are presented in Figure 51. The mooring line response corresponds to a short-

term condition in the environmental 100-yr contour with Û¬ = 6.53m and �¹ = 11.63s 

(JONSWAP Spectrum), with associated surface current velocity = 0.80m/s and wind 

velocity = 18.96m/s acting as indicated in Figure 52. 

 

 

Figure 51 Mooring line catenary configuration for case study B 
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Figure 52 Environmental condition and selected mooring line orientations for case 
study B 

 

 The typical spectral density of the selected mooring line top tension response is 

shown in Figure 53. This figure shows that the role of first-order effects in this scenario 

seems to be negligible since almost the total response energy is in the low-frequency 

region, associated with the second-order effects. This characterizes a narrow band 

spectrum. 
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Figure 53 Typical spectrum of the mooring line top tension response for model B 

 

6.4.1 Extreme Top Tension MPV Benchmark Value 

 Figure 54 presents the Gumbel distribution fitting for the 1000 maxima sample 

obtained from the same number of independent 3-h realizations. The good fitting 

observed in Figure 54 indicates that the Gumbel distribution is an adequate choice for 

estimating the benchmark MPV. 

 

Figure 54 Benchmark value estimation through fitting the Gumbel distribution to the 
empirical CDF of the extremes sample  
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 For case study B, the reference value encountered for the top tension most 

probable extreme value is ï#@}ðì � 1862��. The line pre-tension ( �� = 1563��) 

was subtracted of the top tension time-series. 

 As in the other case study previously described, the Fréchet distribution was also 

investigated for the modelling of the maxima sample for sake of comparison. Figure 55 

presents the Fréchet distribution fitting for the 1000 maxima sample. Differently from 

case study A, here it is clear that the Gumbel distribution fitting to the maxima sample is 

more accurate than the Fréchet one. Hence the reference value for the MPV is the one 

estimated through Gumbel model. 

 

Figure 55 Benchmark value estimation through fitting the Fréchet distribution to the 
empirical CDF of the extremes sample  

 

6.4.2 Statistical Analysis of the Top Tension Response 

 In a similar manner as showed in Section 6.3.2, for each of the 200 simulations 

for each pair of R�¬, �ÁS, the main statistical parameters (mean, standard deviation, 

skewness and kurtosis) of the time-series were calculated. These results are also shown 

in more details in Annex C. In order to summarize these results, Table 4 shows the mean, 

standard deviation and coefficient of variation of the 200 obtained values for the main 

statistical parameters of the time-series for the pair R�¬ = 54000� �15ℎ�, �Á = 2000S. 
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Table 4 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á = 2000 

  

Mean ôõ 

Standard 

Deviation öõ 

Skewness �õ 

Kurtosis ÷õ 

Mean 377.03 445.59 0.64 3.52 

Standard 

Deviation 
6.27 29.45 0.09 0.48 

CoV 0.02 0.07 0.14 0.13 

  

 From Table 4 it is clear that once more the process distribution is non-Gaussian, 

as it was expected. This is more evident in this case study than in the previous because 

the skewness and kurtosis values are even greater than the values for the normal 

distribution. Figure 56 presents the comparison between the empirical PDFs of four time-

series generated with �¬ = 54000�  and �Á = 2000 and the normal distribution fitted to 

the signals through the method of moments. 

 

Figure 56 Comparison between the sampled process empirical PDFs #��� (solid line) 
and the adjusted normal distributions ��$>, %>

C� (dashed line) for case study B 

 



 

97 
 

 Figures 57, 58 and 59 present three random realizations from the set of 200 

samples for the pair R�¬ = 10800� �3ℎ�, �Á � 2000S. The line pre-tension is subtracted 

from the time-series shown in the figures. 

 

 

Figure 57 Model B: Top tension time-series #1 ��¬ � 10800� and �Á � 2000) 

 

Figure 58 Model B: Top tension time-series #50 ��¬ � 10800� and �Á � 2000) 

 

Figure 59 Model B: Top tension time-series #150 ��¬ � 10800� and �Á � 2000) 

 

6.4.3 Statistical Analysis of the Top Tension Response Peaks 

 As in the previous section, for each of the 200 simulations for each pair 

of R�¬, �ÁS, the main statistical parameters (mean, standard deviation, skewness and 

kurtosis) are calculated but this time for the global peaks sample of the top tension  time-

series. These results are shown in more details in Annex C. In order to summarize these 

results, Table 5 shows the mean, standard deviation and coefficient of variation of the 200 

obtained values for the main statistical parameters of the time-series peaks for the pair 
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R�¬ � 54000� �15ℎ�, �Á � 2000S. It is also shown the mean, standard deviation and 

coefficient of variation of the 200 obtained values for the global peaks frequency and the 

empirical correlation between two consecutive peaks. 

Table 5 Statistical parameters of the global peaks of the 200 realizations for �¬ �
54000�  and �Á � 2000 

  

Mean ôø 

Standard 

Deviation öø 

Skewness �ø 

Kurtosis ÷ø 

Peaks 

Frequency ùø 

Correlation ú  

Mean 863.20 428.69 0.88 3.43 0.01 0.73 

Standard 

Deviation 
56.16 36.04 0.24 0.92 0.00 0.05 

CoV 0.07 0.08 0.27 0.27 0.05 0.06 

 

 The higher average correlation between global peaks found in the table above, in 

comparison to the value encountered in case study A, evidences the narrow characteristic 

of the process band. As mentioned before, narrow band processes are associated to higher 

correlations between the process maxima. 

 The comparison between the empirical CDFs of the peaks sample and the fitted 

probability distributions investigated in this work are shown in the Figures 60 , 61 and 

62. 

 

Figure 60 Comparison between empirical CDF of the peaks and fitted 3-parameter 
Weibull probability model for a random time-series of model B 
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Figure 61 Comparison between empirical CDF of the peaks and fitted Weibull-tail 
probability model for a random time-series of model B 

 

 

Figure 62 Comparison between empirical CDF of the peaks and fitted SGLD 
probability model for a random time-series of model B 

 

6.4.4 General Results 

 Figure 63 to Figure 65 show, as function of the simulation length, the biases 

estimates for the top tension 3-h MPV, i.e., the ratio between the average MPV from the 

200 realizations sample and the benchmark value for each peaks probability model,  pair 

of {�¬,�Á} and the consideration or not of the correlation between consecutive peaks. 

Figure 66 to Figure 68 show the corresponding EF@s of the MPVs.  
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Figure 63 Bias estimates for the top tension 3-h MPV – Case study B ('( =  )**). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 64 Bias estimates for the top tension 3-h MPV – Case study B ('( =  +***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 65 Bias estimates for the top tension 3-h MPV – Case study B ('( =  ,***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 66 CoVs estimates for the top tension 3-h MPV - Case study A ('( =  )**). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 67 CoVs estimates for the top tension 3-h MPV - Case study A ('( =  +***). 
(‘corr’ indicates the consideration of peaks correlation) 
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Figure 68 CoVs estimates for the top tension 3-h MPV - Case study A ('( =  ,***). 
(‘corr’ indicates the consideration of peaks correlation) 
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 Likewise case study A, the following observations can be drawn from Figure 63 

to Figure 68: 

 i. The level of spectrum discretization is again not crucial for the extremes 

estimation;  

 ii. On average, the short-term 3-h MPV estimates converge to a stable value for 

simulations longer than 3-h;  

 iii. For a given simulation length, the CoVs for the MPVs are higher than those 

obtained in the previous case study; only 15-h long simulations lead to EF@s near the 5% 

level;  

 iv. MPV estimates are here invariably overestimated, reaching a level of 22% bias 

for Weibull-Tail model;  

 v. Short-term extreme MPV estimates taking into consideration two subsequent 

peaks correlation tend to be circa 3% ~ 4% less than the MPV estimates that do not 

consider it, hence closer to the benchmark value. This indicates that the correlation takes 

a significant role in the extremes statistics. In model B, the expected value of the 

correlation coefficient between two consecutive peaks is Y = 0.7, as shown in Table 5. 

The correlation effect helps in lowering the overestimation level; however, even for the 

probability models that show the best performances; i.e., W3P and SGLD models, the 

overestimation remains significant,  at a 5 ~ 6% level. This larger variability can be due 

to the dynamic behavior of the floater-lines system: low-frequency second-order effects 

have a greater impact on model B top tension series mainly due to its 10 times smaller 

water depth. 

 vii. In model B, the ACER method also seems to predict highly overestimated 

extreme MPVs when � =  1. The overestimation drastically decreases when correlation 

between two peaks is considered, � =  2, evidencing the important role correlation takes 

in the prediction of the extreme values in model B. However, for � =  3 the extremes 

MPVs are equal to values obtained for � =  2. This shows that the correlation between 

three consecutive peaks is low in model B as well and hence do not affect the extremes 

estimation. 
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7 CONCLUSION AND FUTURE WORK 

RECOMMENDATION 

 This study investigated the influence of several aspects in the extremes top tension 

estimation in mooring lines, such as the probability distribution model choice for the 

tension global peaks, the numerical simulation length, the level of wave spectrum 

discretization, as well as the effect of considering correlation between two and three 

consecutive peaks. Three choices for the peaks probability model were investigated: (i) 

three-parameter Weibull model; (ii) two-parameter Weibull model fitted to the high 

probability level data (Weibull-tail model) and (iii) four-parameter Shifted Generalized 

Lognormal Distribution (SGLD) model. The ACER method was also investigated 

for � =  1, 2, 3.  

 For each simulation length and wave spectrum discretization level investigated, 

200 realizations were generated in order to obtain an average MPV for each probability 

model chosen, including or not the peaks correlation consideration. The bias for each 

‘simulation length - wave spectrum discretization level - probability model’ condition 

was determined through the comparison between the average MPV (from the 200 

realizations) and the benchmark MPV estimate. This ‘true’ MPV is determined by fitting 

the Gumbel distribution to a set of 1000 epochal maxima taken from 1000 3-h realizations 

with the largest level of wave spectrum discretization (�Á = 2000). The parameters of the 

Gumbel distribution are determined through the method of moments. 

 By analyzing two distinct mooring lines, connected to two FPSOs, located in 

different water depths offshore Brazil, and under different extreme environmental 

conditions, some remarks could be made: 

• The level of discretization of the wave spectrum seems to have low effect in the 

extremes response estimation. Bias estimates did not greatly differ for �Á = 300, 

�Á = 1000 or �Á = 2000; 

• As expected, higher simulation lengths are associated to lower EF@s of the 

extreme MPV estimate. For the situation where second-order effects are more 
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expressive, an acceptable variability of 5% is only achieved when 15-h long 

simulations are generated; 

• The correlation between successive peaks can influence extremes statistics: when 

it is significant, MPV estimates are lowered and can better approach benchmark 

values; 

• The MPV values are often overestimated, i.e. for the great majority of obtained 

results, MPV estimates are conservative, especially in the situation when low-

frequency second-order effects are more expressive. When this is not the case, 

MPV estimates are practically the same as the benchmark values. The three-

parameter Weibull and the SGLD models presented the best performances when 

‘corrected’ by the consideration of peaks correlation, predicting low biased MPV 

estimators or even practically unbiased estimators. Among the three probability 

models investigated, the Weibull-tail is the one that presented the largest level of 

over prediction in all cases investigated; 

• The ACER method, for � =  1, returned the most overestimated extremes MPVs 

for both case studies investigated. MPVs calculated for � = 2 were closer to the 

reference values, showing lower biases. The consideration of three consecutive 

peaks being correlated, i.e., � = 3, resulted in values practically equal to those 

obtained for the consideration of two consecutive peaks correlated; 

• Finally, from all simulated tension time-series it was possible to reassure the non-

Gaussian characteristic of the top tension response in mooring lines connected to 

floating units. This fact prevents the possibility of determining extreme values of 

tension through the use of closed formulas since the process probability 

distribution is not known. Methods such as the ones presented in this dissertation 

are therefore imperative in determining values for an extremes design.  

 

 Based exclusively in the two case studies presented in this work, some general 

practical recommendations for the extreme statistics analysis of top tension of mooring 

lines connected to FPSOs can be made: 
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• Minimum use of wave spectrum discretization level of �Á = 1000 or higher; 

• Weibull-3P or SGLD models choice for modelling global peaks distribution:  

(with the reservation that Weibull-3P is easier to be numerically implemented); 

• Minimum simulation length (after cutting-off transient effects) of 15-h; 

• Consideration of correlation between two consecutive global peaks in the 

extremes statistics calculations. 

 

 For future research is this area, the following topics are suggested: 

• Extend the global peaks modelling by Weibull-3P and SGLD models to perform 

long-term response statistics of mooring lines;  

• Taking in account the results of the present work, by choosing dynamic analysis 

parameters and an extreme value estimation method that will result in more 

accurate estimates of extreme top tension values, in order to develop a complete 

reliability analysis and define more efficient design safety factors. 
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ANNEX A – NATAF TRANSFORMATION 

PROCEDURE 

 If the marginal distributions and correlation coefficient between any random 

variables is known, the joint probability density function of these variables can be 

approximately determined through the Nataf transformation model [8]. The Nataf 

transformation is performed in two steps. In the first step, variables of any arbitrary 

distributions are transformed to correlated standard normal variables by means of 

statistical equivalence concepts (see Section 2.2). In the second step, the latter are 

transformed into uncorrelated standard normal variables. The model can be applied to any 

desired number of original variables. However, this annex will focus only on the two-

dimensional case. 

Transformation of arbitrary variables into correlated standard normal variables 

 Let ��, � = 1,2, … , n be a set of n correlated random variables whose marginal 

cumulative distribution functions =1û(��) and correlation matrix ú are known. Each term 

Y�,Õ in the matrix ú denotes the correlation coefficient between the random variables �� 
and �Õ.The first step of the Nataf transformation generates correlated standard normal 

variables ü��, with correlation matrix ú� , obtained as follows: 

Φ(UO�) = =1¦(�O) 

Φ(UC�) = =1Ã(�C) 

⋮ 
Φ(U��) = =1¤(��) 

(A.1) 

where Φ(. ) denotes the cumulative standard normal distribution. 

 For the two-dimensional case, the joint density function of the variables ü�� and 

üÕ� is given by the joint normal probability density function: 
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�þû�,þ��(U��, UÕ�) = [C(U��, UÕ�, Y�,Õ� ) (A.2) 

where [C(U��, UÕ�, Y�,Õ� ) is the bivariate standard normal probability density function. The 

expression of [C(. ) is: 

[C(U��, UÕ�, Y�,Õ� ) = 1
2^à1 − PY�,Õ� QC ��_ �− (U��)C − 2Y�,Õ�U��UÕ� + PUÕ�QC

2 v1 − PY�,Õ� QCw � (A.3) 

 Naturally, since the original variables �� and �Õ are correlated with the correlation 

coefficient Y�,Õ, the transformed standard normal variables ü�� and üÕ� will also be 

correlated, but with the correlation coefficient Y�,Õ� . The relation between the two 

coefficients is later presented.   

The Joint Probability Distribution of Random Variables through the Nataf 

Transformation 

 Through classical formulation of variables transformation, for the two-

dimensional case, the joint distribution of the original variables �1û1�(��, �Õ) and the joint 

distribution of the correlated standard normal variables �þû�,þ��(U��, UÕ�) is given by: 

�1û,1�(��, �Õ) = �þû�,þ��(Φ<O(=1û(��)), Φ<O(=1�P�ÕQ), Y�,Õ� )�(��, �Õ) (A.4) 

where �(�� , �Õ) is the Jacobian matrix of the transformation which is defined by its general 

term as �UÕ/��� . For the two-dimensional case, the Jacobian matrix is given by 

�(�� , �Õ) = ��
�U����

�U���Õ�UÕ���
�UÕ��Õ

�� (A.5) 

where ‖ ‖ denotes the determinant. According to Eq. (A.1), the crossed derivative terms 

are null, then 
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�(��, �Õ) = ��
�U���� 0

0 �UÕ��Õ
�� (A.6) 

The Jacobian can also be written as  

�(��, �Õ) = ��
�Φ<O(=1û(��))��� 0

0 �Φ<O(=1�P�ÕQ)��Õ
�� (A.7) 

It can be shown that [12]: 

�Φ<O(=1û(��))��� = �1û(��)[(Φ<O(=1û(��))) (A.8) 

where [(. ) corresponds to the density probability function of a standard normal variable: 

[(�) = 1√2^ ��_ i− 12 �Cj (A.9) 

Then, since probability density functions are nonnegative, one gets: 

�(��, �Õ) = �1û(��)�1�P�ÕQ
[(Φ<O(=1û(��)))[(Φ<O(=1�P�ÕQ)) (A.10) 

From Eq. (A.4), finally it follows that: 

�1û,1�(��, �Õ)
= [C(Φ<O(=1û(��)), Φ<O(=1�P�ÕQ)), Y�,Õ� ) �1û(��)�1�P�ÕQ

[ iΦ<O v=1û(��)wj [ ¼Φ<O i=1�P�ÕQj½
(A.11) 



 

116 
 

The relation between the terms of ú and ú� is derived as follows: 

Y�,Õ = EFVP��, �ÕQ%1û , %1�  

= ?P��, �ÕQ − ?(��)?P�ÕQ%1û , %1�  

= 1%1û , %1� ¼6 6 ���Õ
;

<;
;

<; �1û,1�P��, �ÕQ2��2�Õ
− 6 ��

;
<; �1�(��)2�� 6 �Õ

;
<; �1Õ(�Õ)2�Õ½ 

(A.12) 

where �1û,1�P��, �ÕQ is given by Eq. (A.11). The above double integral needs to be solved 

in order to determine Y�,Õ�  for a given Y�,Õ. It is important to notice that the above 

calculations need to be performed for every element in the ú� matrix. For engineering 

applications, Y�,Õ�  is usually numerically approximated by polynomials. However, for 

many cases, Y�,Õ� ≈ Y�,Õ [8]. 

 It is then demonstrated that for the determination of the joint probability density 

function of two arbitrary correlated random variables, one only needs the original random 

variables distributions and the correlation between them. 

Rosenblatt transformation – Determination of uncorrelated standard normal 

variables  

 Many times in engineering applications, as in the case of structural reliability 

analysis, the use of standard normal variables that are statistically independent is 

necessary. In other words, it is frequently necessary to transform a set of correlated 

random variables to uncorrelated standard normal ones.  

 Initially considering the case of normal correlated variables, once all the elements 

of the ú� correlation matrix are determined, the variables ü�� can be manipulated in order 

to obtain the uncorrelated standard normal variables ü�. Let the following linear 

transformation be considered: 
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� = �
 + � (A.13) 

where 
� and 
 are vectors containing the correlated and uncorrelated standard normal 

variables, respectively. A and B are constant matrices. Taking the expected value of both 

sides of Eq. (A.13) yields: 

?(
�) = ?(�
+ �) = �?(
) + � = 0 (A.14) 

Because both variables are standard normal variables, � = *. Considering that 

?(


) = EFV(
,
) = � and ? v
*
*
w = EFV(
*,
*) = ú� (this relation can be 

proven by the fact that Y�,Õ� = ?(U��UÕ�)), it can be shown that: 

��« = ú� (A.15) 

Therefore, � can be obtained by the Cholesky decomposition of ú�, which is a positive 

definite matrix. For a two-dimensional problem, � is given by: 

� = » 1 0
Y�,Õ� à1 − PY�,Õ� QC¾ (A.16) 

The variables ü� and üÕ are hence related to ü�� and üÕ� by the following equations: 

ü� = ü�� 

üÕ = üÕ� − Y�,Õ� ∙ ü��
à1 − PY�,Õ� QC  

(A.17) 

Hence, in the general case, a set of n independent standard normal variables U are related 

to a set of X correlated random variables by the following relationship: 
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»ü�⋮ü�
¾ = � �Φ<O v=1¦(�O)w⋮Φ<O v=1¤(��)w� (A.18) 

with � = �<+.  
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ANNEX B – WEIBULL-TAIL FITTING 

PROCEDURE 

 In a Weibull-tail fitting, a 2-parameter Weibull is fitted to the tail of the data of 

interest. The tail is defined by  sub-sets of the data associated to percentiles of the 

empirical cumulative distribution. For each one of these levels, the data above them are 

used to estimate the parameters t and q of the distribution through a linear regression 

fitting procedure, as explained in the following equations. 

The CDF of the 2-parameter Weibull distribution is given by 

=1(�) = 1 − exp h− v�twsk (B.1) 

Taking the natural log of both sides of the above equation two times yields 

lnP−lnP1 − =1(�)QQ = q ln � − q ln t (B.2) 

The above equation can be expressed as the linear equation 

� = q� , + � (B.3) 

where � = lnP−lnP1 − =1(�)QQ, � , = ln � and � = −q ln t. Given a sample of � and its 

empirical CDF, one can directly compute y and � ,. Weibull parameters can be then 

straightforwardly estimated via linear regression. In the present work, the linear 

regression is performed through the Least Mean Squares (LMS) method. 

 In the linear LMS regression method, the objective consists of adjusting the 

parameters of a linear function to best fit a data set. The model function has the form 

�(�,�), where ³ adjustable parameters are held in the vector �.The goal is finding 

estimates for the parameters that best fits the data. The fit of a model to a data is measured 

by the difference between the actual value of the dependent variable and the value 

predicted by the model, or simply its residual: 
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A� = �� − �(�,�) (B.4) 

 In the LMS method the parameters estimates are those that minimize the sum, �, 

of squared residuals: 

� = � A�C�
��O

 (B.5) 

where n is the number of points in the data set. 

In this case, the function �(�,�) is the linear function corresponding to Equation A.3. 

 In this work, the sub-sets of data considered are associated to the 

60%, 65%, 70%, 75%, 80%, 85% and 90% percentiles of the empirical  cumulative 

distribution. Hence for each of these data sub-sets the linear LMS regression method is 

performed and the parameters for the Weibull distribution are estimated. The result is a 

group of � pairs of adjusted Weibull parameters 

R(q��%,  t��%), (q�â%,  t�â%), … , (q��%,  t��%)S. The final parameters of the Weibull-tail 

distribution are taken as the corresponding mean values of all sub-sets parameters: 

qí« = 1� � q�
·

��O
 (B.6) 

tí« = 1� � t�
·

��O
 (B.7) 
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ANNEX C – STATISTICAL PARAMETERS OF 

SIMULATED TIME HISTORIES 

 Mean, standard deviation and coefficient of variation of the 200 obtained values 

for the main statistical parameters of the time-series, as well as the mean, standard 

deviation and coefficient of variation of the 200 obtained values for the main statistical 

parameters of the time-series peaks, peaks frequency and correlation between two 

consecutive peaks for each pair R�¬, �ÁS.  

Study Case A 

Table 6 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1967.13 486.27 0.37 3.06 2276.28 296.75 2.05 8.54 0.03 0.25 

ö  36.94 26.43 0.16 0.38 42.28 21.91 0.31 2.17 0.00 0.07 

CoV 0.02 0.05 0.43 0.12 0.02 0.07 0.15 0.25 0.09 0.27 

 

Table 7 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  
1971.74 490.42 0.37 3.02 2281.59 298.98 2.06 8.44 0.03 0.25 

ö  
23.17 16.06 0.11 0.24 27.06 13.17 0.20 1.35 0.00 0.05 

CoV 0.01 0.03 0.29 0.08 0.01 0.04 0.10 0.16 0.06 0.20 
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Table 8 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1968.04 488.76 0.37 3.06 2277.02 297.40 2.07 8.62 0.03 0.25 

ö  16.24 10.56 0.09 0.22 21.06 10.22 0.18 1.32 0.00 0.04 

CoV 0.01 0.02 0.25 0.07 0.01 0.03 0.09 0.15 0.04 0.14 

 

Table 9 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1969.28 
489.29 0.38 3.06 2278.15 298.46 2.08 8.59 0.03 0.25 

ö  
9.27 7.04 0.08 0.19 12.59 7.83 0.14 1.07 0.00 0.03 

CoV 
0.00 0.01 0.22 0.06 0.01 0.03 0.07 0.12 0.04 0.11 

 

Table 10 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1969.25 
490.01 0.37 3.07 2278.02 298.24 2.08 8.66 0.03 0.25 

ö  
6.85 5.95 0.08 0.21 10.68 6.93 0.15 1.11 0.00 0.02 

CoV 
0.00 0.01 0.23 0.07 0.00 0.02 0.07 0.13 0.03 0.10 
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Table 11 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1956.04 
487.50 0.38 3.03 2264.14 298.88 2.05 8.40 0.03 0.25 

ö  
42.13 27.58 0.15 0.35 48.10 20.56 0.29 2.10 0.00 0.07 

CoV 
0.02 0.06 0.40 0.12 0.02 0.07 0.14 0.25 0.09 0.28 

 

Table 12 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1963.93 
489.45 0.37 3.02 2274.47 300.09 2.04 8.31 0.03 0.25 

ö  
27.08 20.52 0.11 0.23 32.63 15.08 0.21 1.40 0.00 0.05 

CoV 
0.01 0.04 0.29 0.08 0.01 0.05 0.10 0.17 0.07 0.21 

 

Table 13 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1964.31 
488.62 0.37 3.04 2273.20 298.24 2.06 8.47 0.03 0.25 

ö  
21.78 14.18 0.10 0.23 25.51 11.52 0.17 1.23 0.00 0.04 

CoV 
0.01 0.03 0.26 0.07 0.01 0.04 0.08 0.15 0.05 0.15 
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Table 14 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1961.62 
487.72 0.36 3.02 2269.95 297.56 2.06 8.41 0.03 0.25 

ö  
16.13 12.63 0.09 0.20 19.97 10.22 0.16 1.15 0.00 0.03 

CoV 
0.01 0.03 0.24 0.07 0.01 0.03 0.08 0.14 0.05 0.12 

 

Table 15 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1964.14 
489.89 0.37 3.05 2273.80 298.54 2.07 8.53 0.03 0.25 

ö  
14.14 9.97 0.07 0.18 16.26 8.12 0.13 0.99 0.00 0.03 

CoV 
0.01 0.02 0.19 0.06 0.01 0.03 0.06 0.12 0.04 0.12 

 

Table 16 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1955.92 
485.78 0.38 3.04 2265.57 298.17 2.02 8.27 0.03 0.25 

ö  
41.33 27.31 0.16 0.42 48.63 21.38 0.28 1.91 0.00 0.07 

CoV 
0.02 0.06 0.42 0.14 0.02 0.07 0.14 0.23 0.09 0.27 
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Table 17 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á =2000 

 Time-series Peaks 

 ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1963.61 
485.96 0.37 3.04 2272.11 297.11 2.05 8.37 0.03 0.26 

ö  
29.88 20.24 0.10 0.26 35.15 14.88 0.22 1.51 0.00 0.05 

CoV 
0.02 0.04 0.28 0.08 0.02 0.05 0.11 0.18 0.07 0.21 

 

Table 18 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á =2000 

 Time-series Peaks 

 ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1961.28 
486.02 0.37 3.03 2269.50 297.38 2.05 8.39 0.03 0.26 

ö  
24.10 13.74 0.10 0.23 26.69 11.05 0.17 1.23 0.00 0.04 

CoV 
0.01 0.03 0.26 0.08 0.01 0.04 0.08 0.15 0.05 0.15 

 

Table 19 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á =2000 

 Time-series Peaks 

 ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1961.39 
488.59 0.37 3.04 2271.71 298.67 2.05 8.42 0.03 0.25 

ö  
19.80 13.86 0.08 0.22 23.90 10.53 0.15 1.11 0.00 0.04 

CoV 
0.01 0.03 0.22 0.07 0.01 0.04 0.08 0.13 0.04 0.14 

 

 



 

126 
 

Table 20 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  1959.71 487.11 0.37 3.15 
2269.04 297.48 2.04 8.35 0.03 0.25 

ö  14.49 12.15 0.07 0.15 
16.51 9.55 0.13 0.90 0.00 0.03 

CoV 0.01 0.02 0.19 0.05 
0.01 0.03 0.06 0.11 0.04 0.13 

 

Study Case B 

Table 21 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  380.91 
450.60 0.58 3.22 892.99 420.77 0.67 2.82 0.01 0.69 

ö  
13.43 60.95 0.14 0.63 122.27 68.26 0.35 0.84 0.00 0.10 

CoV 
0.04 0.14 0.25 0.19 0.14 0.16 0.53 0.30 0.11 0.15 

 

Table 22 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  380.55 
449.75 0.63 3.45 874.15 429.81 0.83 3.22 0.01 0.73 

ö  
8.62 42.45 0.12 0.60 88.49 50.06 0.33 0.94 0.00 0.07 

CoV 
0.02 0.09 0.20 0.17 0.10 0.12 0.40 0.29 0.09 0.09 
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Table 23 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  380.03 
449.68 0.64 3.53 873.83 431.55 0.86 3.43 0.01 0.73 

ö  
6.17 29.55 0.12 0.65 62.11 37.28 0.32 1.12 0.00 0.05 

CoV 
0.02 0.07 0.18 0.18 0.07 0.09 0.37 0.33 0.07 0.07 

 

Table 24 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  380.35 
451.59 0.65 3.56 876.57 435.09 0.88 3.47 0.01 0.74 

ö  
3.47 16.72 0.10 0.58 38.27 26.00 0.27 1.04 0.00 0.04 

CoV 
0.01 0.04 0.16 0.16 0.04 0.06 0.31 0.30 0.05 0.06 

 

Table 25 Statistical parameters of the 200 realizations for �¬ = 54000�  and �Á = 300 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  380.08 
450.61 0.65 3.59 872.67 434.98 0.91 3.56 0.01 0.74 

ö  
1.30 6.85 0.09 0.54 26.24 16.71 0.25 1.05 0.00 0.03 

CoV 
0.00 0.02 0.14 0.15 0.03 0.04 0.27 0.30 0.04 0.04 
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Table 26 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  377.97 
438.40 0.57 3.22 870.82 405.69 0.70 2.95 0.01 0.67 

ö  
15.50 70.96 0.16 0.74 147.24 75.23 0.40 1.06 0.00 0.11 

CoV 
0.04 0.16 0.28 0.23 0.17 0.19 0.57 0.36 0.13 0.17 

 

Table 27 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  378.01 
445.95 0.61 3.39 870.70 424.64 0.80 3.14 0.01 0.72 

ö  
10.27 49.52 0.12 0.56 94.17 56.46 0.29 0.91 0.00 0.07 

CoV 
0.03 0.11 0.19 0.17 0.11 0.13 0.37 0.29 0.08 0.10 

 

Table 28 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  377.95 
445.58 0.62 3.43 868.66 426.12 0.82 3.21 0.01 0.72 

ö  
8.10 39.61 0.10 0.50 75.08 45.96 0.27 0.82 0.00 0.06 

CoV 
0.02 0.09 0.17 0.15 0.09 0.11 0.33 0.26 0.06 0.09 
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Table 29 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á =1000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  378.95 
450.12 0.64 3.48 874.35 431.98 0.85 3.32 0.01 0.74 

ö  
6.24 29.80 0.08 0.42 62.31 34.77 0.23 0.76 0.00 0.04 

CoV 
0.02 0.07 0.13 0.12 0.07 0.08 0.27 0.23 0.06 0.06 

 

Table 30 Statistical parameters of the 200 realizations for �¬ = 10800�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  375.29 
432.43 0.57 3.22 855.73 401.08 0.71 2.93 0.01 0.68 

ö  
13.81 66.25 0.15 0.64 136.95 69.85 0.40 0.95 0.00 0.11 

CoV 
0.04 0.15 0.26 0.20 0.16 0.17 0.57 0.32 0.12 0.16 

 

Table 31 Statistical parameters of the 200 realizations for �¬ = 21600�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  376.88 
443.77 0.60 3.32 868.79 419.91 0.76 3.02 0.01 0.71 

ö  
9.72 47.46 0.12 0.56 91.61 55.00 0.30 0.88 0.00 0.07 

CoV 
0.03 0.11 0.20 0.17 0.11 0.13 0.40 0.29 0.09 0.10 
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Table 32 Statistical parameters of the 200 realizations for �¬ = 32400�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  377.84 
448.62 0.63 3.43 874.87 428.69 0.81 3.20 0.01 0.73 

ö  
9.58 44.59 0.12 0.60 86.65 53.79 0.30 0.96 0.00 0.06 

CoV 
0.03 0.10 0.19 0.17 0.10 0.13 0.37 0.30 0.08 0.09 

 

Table 33 Statistical parameters of the 200 realizations for �¬ = 43200�  and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  377.64 
447.97 0.62 3.39 873.21 426.86 0.80 3.15 0.01 0.73 

ö  
8.75 41.61 0.10 0.49 80.88 49.01 0.26 0.79 0.00 0.06 

CoV 
0.02 0.09 0.17 0.14 0.09 0.11 0.32 0.25 0.07 0.08 

 

Table 34 Statistical parameters of the 200 realizations for �¬ = 54000� and �Á =2000 

 Time-series Peaks 

  ôõ öõ �õ ÷õ ôø öø �ø ÷ø ùø ú  

ô  377.03 
445.59 0.64 3.52 863.20 428.69 0.88 3.43 0.01 0.73 

ö  
6.27 29.45 0.09 0.48 56.16 36.04 0.24 0.92 0.00 0.05 

CoV 
0.02 0.07 0.14 0.13 0.07 0.08 0.27 0.27 0.05 0.06 

 


