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Em aplicações industriais, grande parte dos escoamentos acontece no regime tur-

bulento. Soluções numéricas de alta acurácia, como Direct Numerical Simulation

(DNS), tem custos computacionais proibitivos, portanto, grande parte dos problemas

numéricos são resolvidos a partir do uso de modelos Reynolds Average Navier-Stokes

(RANS), que têm como característica baixo custo computacional e acurácia muitas

vezes não satisfatória. A utilização de técnicas de Machine Learning (ML) para mo-

delos de turbulência, já vem sendo empregada na literatura, utilizando dados DNS

como alvo nos modelos de ML, a partir de dados do campo de velocidade, ou do

tensor de Reynolds, R. Em estudos recentes foi observado, entretanto, que os dados

DNS de R não apresentam convergência satisfatória, quando comparados aos dados

dos campos de velocidade e pressão. Para contornar este problema, foi desenvol-

vida a metodologia para correção do divergente modi�cado de R, a partir apenas,

do campo de velocidade, denominada de t, apresentando resultados promissores,

quando comparados à R. Neste trabalho, o uso de base de dados com invariância

Euclideana e a in�uência da qualidade da base de dados DNS, utilizada em Redes

Neurais (NN) e Florestas Randômicas (RF), para a previsão das propriedades tur-

bulentas R e t, são investigados em um escoamento turbulento em duto quadrado.

Um tratamento da base de dados DNS é realizado de modo a emular maiores tempos

médios de simulação DNS e, consequentemente, melhor convergência dos mesmos.

Os resultados obtidos por todos os modelos construídos mostram que há uma rela-

ção direta entre a convergência dos dados DNS, a simetria presente neste padrão de

escoamento e o desempenho de modelos de turbulência guiados por dados.
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In industrial applications, great part of the �ows occurs in the turbulent regime.

Highly accurate numerical solutions, such as Direct Numerical Simulation (DNS),

have prohibitive computational costs so most numerical problems are solved using

Reynolds Average Navier-Stokes (RANS) models, which feature low computational

cost and not often satisfactory accuracy. The use of Machine Learning (ML) tech-

niques for turbulence models has already been used in the literature, setting DNS

data as a target in ML models, based on data from the mean velocity �eld, or the

Reynolds stress tensor, R. In recent studies, however, it was observed that the DNS

data for R does not show satisfactory convergence, when compared to data for the

mean velocity and pressure �elds. In order to get around this problem, a methodol-

ogy was developed to correct the modi�ed divergent of R, using only data related to

the mean velocity �eld, called t, which presented promising results when compared

to R corrections. In this work, the use of a database with Euclidean invariance and

the in�uence of the quality of the DNS database, used in Neural Networks (NN) and

Random Forests (RF), to predict the turbulent properties R and t, are investigated

in a turbulent �ow in a square duct. A treatment of the DNS database is carried

out in order to emulate longer DNS averaging simulation times and, consequently,

better convergence of related �elds. The results obtained by all models built, show

that there is a direct relation between the convergence of DNS data, the symmetry

present in this �ow pattern and the performance of data-driven turbulence models.
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Chapter 1

Introduction

With the exponential power increase of computer hardware, computational �uid

dynamics (CFD) has become an even more prevalent tool on �uid �ow analysis.

Although over recent years Large Eddy Simulations (LES) or Direct Numerical Sim-

ulations (DNS) have become more accessible, these methods still remain out of the

scope for complex geometries and high Reynolds numbers, Re. Therefore, the use

of Reynolds Average Navier Stokes (RANS) models, related to low computational

costs and fast results, are needed. Modern machine learning (ML) techniques have

opened up a new area of turbulence models, allowing for the tuning of RANS simu-

lations to increase their predictive accuracy. Thus, improving the accuracy of RANS

simulations and providing measures of their predictive capability, remains essential

for CFD engineering applications.

While several data-driven turbulence models have been proposed, the analysis

of high �delity simulations data, such as LES and DNS, have been neglected. The

database treatment of high �delity simulations is vital, as ML models predictive

capability is highly linked with the database utilized and rapidly declines as they

are submitted to �ow conditions that di�er from the training data. Therefore, the

treatment of high �delity databases, used as training target on ML models, is crucial

in order to develop a model able to predict a wide range of di�erent conditions of a

turbulent �ow.

Nowadays, CFD applications on industrial turbulent cases and real world engi-

neering problems rely heavily on RANS simulations. Most of these RANS simula-

tions are two-equation models, which assumes the Boussinesq hypothesis stated by

BOUSSINESQ (1877). This hypothesis relate a linear relation between the Reynolds

stress tensor (R) and the mean strain rate tensor (D), determined by a turbulent

quantity called eddy viscosity.

But as the complexity of the problem increases, with complex geometries or

high Reynolds numbers, the capability of RANS simulations to capture the physics

of important �ows diminishes, imposing a limit associated with these simulations,

1



as studied by MUCK et al. (1985), which states the incapability of two-equation

models to provide adequate results on complex curvature �ows e.g, secondary �ows

in ducts. CRAFT et al. (1996) declared that these linear relation is unable to

deliver acceptable results over a range of engineering relevant �ows, involving strong

streamline curvature, swirls and pressure gradients.

The application of ML techniques on turbulent �ows has been deeply explored

over the past few years, in order to obtain better results for the Reynolds stress

closure problem. MILANO and KOUMOUTSAKOS (2002) proposed a Neural Net-

work (NN) methodology, developed in order to reconstruct the near wall �eld in

a turbulent �ow by exploiting �ow �elds provided by direct numerical simulations.

YARLANKI et al. (2012) used ML algorithms to optimize the constants of the

κ − ε turbulence model for a data center by comparing simulated data with ex-

perimentally measured temperature values. SNOEK et al. (2012) considered the

automatic tuning problem of a NN within the framework of Bayesian optimization,

where a learning algorithm's generalization performance is modeled as a sample of

a Gaussian process. TRACEY et al. (2013) used a kernel regression to correct the

eigenvalues of the anisotropic Reynolds stress tensor of a periodic hill �ow pattern,

from κ − ωSST RANS simulation model, using a related DNS data as target. It

was shown a notable correction performed by the kernel regression, correcting the

anisotropic �eld closer to the DNS database, demonstrating the potential of ML

techniques in turbulence modeling.

In a latter work, TRACEY et al. (2015) suggested a NN with one single hidden

layer to model the source terms from the classic Spalart Allmaras RANS simulation

model, aiming to correct a speci�c term of the Reynolds stress tensor. In that work

the friction coe�cient was corrected by a prediction of the source term of the eddy

viscosity of the transport equation of the Spalart Almaras model. In that case, the

data were created by the turbulent model, therefore, the result was that a NN could

replace the source term with a learned correlation.

LING et al. (2016c) used Random Forests (RF) to predict improvements in the

Reynolds stress anisotropy in the injection hole, along the wall, and on the lee side

of a jet using as target LES results. In Latter work, LING et al. (2016a), proposed

the use of a set of Galilean invariant data as inputs of a NN in order to predict

the Reynolds stress tensor anisotropy. It was shown that embedding the invariance

property into the input features yields higher performance at signi�cantly reduced

computational training costs. Also, LING et al. (2016b) developed a NN architec-

ture with an invariant tensor basis to embed Galilean invariance into the predicted

Reynolds stress tensor anisotropy. The results obtained in these work show that deep

learning and the proposed architecture are able to provide a substantial performance

improvement. XIAO et al. (2016), developed a Bayesian framework which quanti�es
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and reduces uncertainties through the Kalman method, taking into account informa-

tion of the physics involved, limitations and plausibility of the injected disturbances

in RANS data. LING et al. (2016b), used the Bayesian optimization process devel-

oped by SNOEK et al. (2012), to determine the three main hyper-parameters for

the NN architecture, where the optimal hyper-parameters were chosen to be those

values that yielded the lowest error on the validation data. WU et al. (2018) also

utilized an invariant database and decomposed the Reynolds stress tensor into an

implicit linear and explicit nonlinear parts and predicted them separately. GENEVA

and ZABARAS (2019) proposed an invariant Bayesian deep NN, used to predict the

anisotropic tensor component of the Reynolds stress tensor. Based on the results

obtained by LING et al. (2016b), KAANDORP and DWIGHT (2020) proposed the

use of a tensor based RF, trained on a database of DNS and LES simulations for

varied �ows, to predict the Reynolds stress anisotropy tensor and use this tensor as

a turbulence model within a custom RANS solver, for multiple �ow patterns.

Aiming on the accuracy of available DNS data on the literature, THOMP-

SON et al. (2016) demonstrated the impact of statistical error associated with the

Reynolds stress tensor provided by DNS data on RANS modeling that uses this

quantity as target. ANDRADE et al. (2018) extended the work done by THOMP-

SON et al. (2016) and investigated the convergence rate of the Reynolds stress tensor

and mean velocity �elds of turbulent plane channel and pipe �ow, applying a sta-

tistical uncertainty analysis to quantify the associated errors. Motivated by these

results, CRUZ et al. (2019) proposed the use of a modi�ed Reynolds stress tensor

divergent, nominated Reynolds force vector, which can be calculated from �rst order

statistic quantities, usually more converged in DNS simulations than second order

statistic quantities as the Reynolds stress tensor.

The motivation of this work is grounded on the promising results using invariant

databases for machine learning applications on turbulence obtained by LING et al.

(2016a), LING et al. (2016b), WU et al. (2018), GENEVA and ZABARAS (2019)

and KAANDORP and DWIGHT (2020), the analysis of statistical error of DNS

data studied by THOMPSON et al. (2016) and the results obtained by CRUZ et al.

(2019) using a modi�ed divergent of the Reynolds stress tensor.

This work aims to investigate the in�uence of the convergence on DNS data on

ML based turbulence models, employing the Reynolds stress tensor and the Reynolds

force vector as set of outputs for ML models composed of invariant tensors and

vectors database, applied on RANS simulations to correct the mean velocity �elds,

by pre-processing the square duct DNS data made available by PINELLI et al.

(2010), dividing the data in quadrants, merging and imposing symmetry to them,

in order to emulate longer simulation times and hence, obtain better convergence of

related quantities.
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Chapter 2

Literature Review

2.1 Turbulence Modeling

The governing equations in �uid mechanics are the mass conservation law and

the Navier-Stokes equation. For the sake of simplicity, in this work only �ows of

incompressible Newtonian �uids with constant properties and without body forces

will be analyzed.

For an incompressible �ow, the conservation of mass is reduced to the called

continuity equation

∇ · u = 0. (2.1)

The Navier-Stokes equation for incompressible Newtonian �ows can be written

as

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (2.2)

This equation is particularly interesting and complex as it contains a nonlinear

quadratic term in the velocity ui, present in the last term on the left hand side,

which is the advective acceleration term.

This term leads to most of the complex and rich phenomena of �uid mechanics,

in which turbulence is a part of, and as stated by POPE (2000), in turbulent �ows

this term ampli�es the perturbations present in the �ow. There are no prospects

of a simple analytic theory for turbulent �ows, the ultimate objective is to obtain

a model that can be used to calculate quantities of interest and practical relevance.

For that, the use of the constant developing power of digital computers is a hope to

achieve the objective of calculating the relevant properties of turbulent �ows. With

the advent of modern computers, numerical solution of complex �uid phenomena

has become viable.
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It is important to highlight the particular properties present in turbulent �ows

that make it di�cult to develop an accurate theory or model. The velocity �eld

is three-dimensional, time-dependent and random. The largest turbulent motions

are as large as the characteristic width of the �ow and therefore, are a�ected by

the boundary geometry. As turbulent �ows have multiple length and time scales,

present simultaneously, where higher resolutions means solving for smaller scales, the

problem lies in having su�cient spatial and temporal resolution to obtain accurate

results.

2.1.1 Reynolds Average Navier-Stokes

The most disseminated way to simulate turbulent �ows is using the Reynolds

Average Navier Stokes (RANS) equations. This framework is the least accurate,

when compared with LES and DNS, but is the most computationally viable. RANS

simulations can be steady or unsteady, depending on the problem.

Although computer technology has evolved greatly in the last years, it is still

impractical to use DNS and a large extent of LES for large scale �ows so, despite

being more inaccurate, RANS is still the most used simulation in engineering appli-

cations. Due to this fact, a large amount of e�ort is dedicated to increase accuracy

of the models based on the RANS equations.

RANS equations are derived by applying the average operator to the Navier

Stokes equations (2.2). To the extent of understanding this operation, several rules

must be explained. In this approach, a sample �eld φ will be decomposed in a time

average, as a mean 〈φ〉 and a �uctuating part φ′, so that

φ = 〈φ〉+ φ′ (2.3)

WILCOX (2006) asserted that by applying a time average to the sample �eld,

the mean of a time average is the average itself,

〈〈φ〉〉 = 〈φ〉. (2.4)

Then, it is important to observe that this operator is linear. Considering the

linearity of the mean operator and Eq. (2.4), it is observed that the mean of a

�uctuation is null

〈φ′〉 = 0. (2.5)

Continuing to explore the linearity of the average operator, it is necessary to

apply it to di�erentiation. As a result it is possible to a�rm that the derivative of

the average is the average of the derivative,
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∂〈φ〉
∂xi

=

〈
∂φ

∂xi

〉
. (2.6)

The last important property concerns the product average of two sample �elds,

〈φψ〉 = 〈φ〉〈ψ〉+ 〈φ′ψ′〉 . (2.7)

REYNOLDS (1895) applied this decomposition to the velocity and pressure

�elds. Applying the Reynolds decomposition, referred in Eq. (2.3), using the re-

lations expressed in Eqs. 2.4, 2.5 and 2.7, into the continuity equation Eq. (2.1)

and the Navier-Stokes equation (2.2), the following equations obtained are called

the Reynolds Average Navier Stokes (RANS) equations

∇ · 〈u〉 = 0 and ∇ · u′ = 0, (2.8)

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

−
∂〈u′iu′j〉
∂xj

. (2.9)

This operation results in the appearance of an extra term −〈u′iu′j〉. This extra

term is often referred to as the Reynolds tensor (R). As observed by WILCOX

(2006), this tensor is a symmetric tensor, and thus has six independent components.

The Reynolds stresses results in more unknown parameters than equations, which

is known as the closure problem. Thus, the Reynolds tensor has to be modeled. The

main idea of RANS equations is to solve for the average �eld, which theoretically

would be the average of DNS, without having access to the time dependent data.

There are many di�erent models to estimate the Reynolds stresses, which will be

discussed hereafter.

2.1.2 Closure Problem

As mentioned previously, with the appearance of the Reynolds tensor, the system

of equations becomes indeterminate, as there are more parameters than equations.

Thus 6 more equations are needed in order to close the problem. The initial ap-

proach would be to develop a transport equation for the Reynolds stress tensor.

However, by applying the average operator on the nonlinear terms, a third-order

statistical moment emerges. This means a new third order tensor, representing 27

new variables.

A new transport equation could be deduced for this term, however, there would

be a larger order parameter with even more variables to be de�ned. This suggests

that is impossible to infer a closure for the system of equations, as stated by TEN-
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NEKES and LUMLEY (1972) that in the customary description of turbulence, there

are always more unknowns quantities than equations, which con�gure the closure

problem.

In order to bypass the closure problem, the turbulence stresses must be modeled.

2.1.3 RANS Modeling

There is a extensive amount of RANS turbulence models. This fact shows the

nonexistence of an universal model that can solve the closure problem mentioned

above.

The most common are based on the Boussinesq hypothesis, BOUSSINESQ

(1877), which are also called linear eddy viscosity models. They have this name

because the Reynolds tensor, is represented through a linear relation between the

anisotropic part of 〈R〉 and the mean strain rate, 〈D〉, of the �ow with an eddy

viscosity, νT ,

R = 2νT 〈D〉 −
2

3
κI (2.10)

where κ is the turbulent kinetic energy, de�ned as κ ≡ 1/2 Tr(R).

With this hypothesis, the closure problem has not been solved yet, but has been

reduced from six extra variables to only one, being the eddy viscosity. Although

being called �viscosity�, the eddy viscosity di�ers from the molecular viscosity, as

it is not a property of the �uid, but a characteristic of the �ow pattern. In a �rst

analysis, the Boussinesq hypothesis seems reasonable, for it suggests an increase in

the e�ective viscosity of the mean �ow. This is in agreement with the characteristics

of turbulence of high di�usivity and dissipation.

But the Boussinesq hypothesis has some limitations. As stated by POPE (1975),

the explicit description of turbulent stresses as a function of the mean strain rate

alone is not correct. Also, POPE (1975) states that even if an explicit relation

between R and 〈D〉 could be de�ned, it would not be a linear one. Even for simple

shear �ows, it is noticed that the Boussinesq hypothesis is not accurate enough in

representation of the Reynolds stress tensor. The linear relation between R and 〈D〉
is concluded to be not enough to capture all the anisotropy of R.

Despite this limitation, according to SCHMITT (2007), RANS simulations using

the Boussinesq hypothesis are satisfactory enough, and computationally cheap, for

a wide sample of applications.

The hurdle in predicting the Reynolds stress tensor on RANS simulation is mod-

eling eddy viscosity. The mathematical approach to achieve this modeling can be

done by a dimensional analysis,
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[νT ] =

[
L2

T

]
= [L]×

[
L

T

]
= [L]× [U ] (2.11)

Thus, the eddy viscosity is written as a function of a characteristic length [L] and

a characteristic velocity [U]. Models that are based on the Boussinesq hypothesis

can be classi�ed depending on the number of transport equations used to model

turbulent quantities used to calculate the eddy viscosity.

Algebric or zero-equation models: These models employ an algebraic equa-

tion, based on turbulent features, to determine the turbulent viscosity, νT ;

One-equation models: In these models, one partial di�erential transport equa-

tion is solved for a particular turbulent property. In general, the turbulent

property of reference is the turbulent kinetic energy, κ. A second property,

commonly a length scale, is then provided using an algebraic expression;

Two-Equation models: These models use two partial di�erential transport equa-

tions of turbulent properties, being de�ned then, as complete closure models,

as stated by POPE (2000). The common turbulent properties solved in this

model are the turbulent kinetic energy, κ, the rate of dissipation, ε, and the

speci�c rate of dissipation, ω.

The most widely used models in engineering applications are two-equation mod-

els, which involve 2 transport equations. Next, the turbulence model used in this

work will be described.

κ− ε Model

POPE (2000) describes the κ − ε model as the most widely used complete tur-

bulence model. The development of the standard κ− ε model is credited to JONES

and LAUNDER (1972) and the model was improved by LAUNDER and SHARMA

(1974). In addition to the turbulent viscosity hypothesis, the κ − ε model consists
of a model transport equation for the turbulent kinetic energy, κ, a model transport

equation for the rate of dissipation, ε and the speci�cation of the turbulent viscosity

a function of only κ and ε

[U ] = κ1/2 and [L] =
1

ε
κ3/2. (2.12)

Applying these relations to Eq. (2.11), the turbulent viscosity for this model is

de�ned as

νt = Cµ
κ2

ε
, (2.13)
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where Cµ is a constant coe�cient, chosen to conform to the observed relationship

between shear stress and velocity gradient in a simple boundary layer, (DAVIDSON,

2004).

In order to obtain the transport equation for κ, it is necessary to manipulate the

RANS equation, Eq. (2.9), by subtracting it from the Navier-Stokes equation, Eq.

(2.2), then multiplying it by u′ and applying the time average to all terms of the

result equation

∂κ

∂t
+ 〈uj〉

∂κ

∂xj
=

∂

∂xj

[(
ν +

νt
σκ

)
∂κ

∂xj

]
+

[
νt

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]
∂〈ui〉
∂xj

− ε.
(2.14)

The transport equation for ε, is written in a analogous manner to the transport

equation for κ yielding

∂ε

∂t
+ 〈uj〉

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ Cε1

ε

κ

[
νt

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]
∂〈ui〉
∂xj

− Cε2
ε2

κ
.

(2.15)

The coe�cients present in Eqs. 2.13, 2.14 and 2.15 are obtained from the cor-

relation of experimental data for multiple turbulent �ows and are shown in Table.

(2.1).

Table 2.1: κ− ε coe�cients, (WILCOX, 2006)

Cµ Cε1 Cε2 σκ σε
0.09 1.44 1.92 1.0 1.3

When evaluating near-walls regions, intensi�ed gradients of the �ow properties

are observed. An adequate description of the �ow properties in these regions requires

a re�ned discretization of the wall-region, whose in�uence in relation to the required

computational e�ort is obvious. For high Reynolds numbers, it is possible to avoid

solving the governing equations in the regions close to the wall by assuming the fully

developed turbulent boundary layer hypothesis. In this case, the velocity �eld in

the logarithmic region can be described directly by the classic wall law.

9



2.2 Neural Networks

Machine learning (ML) is a method of data analysis that automates the con-

struction of analytical models. It is a branch of arti�cial intelligence based on the

idea that systems can learn from data, identify patterns and make decisions with

the least human intervention. ML algorithms �nd natural patterns in data that

generate insight and help making better predictions.

There are several ML techniques, as stated by MARSLAND (2014), e.g.: Support

Vector Machine (SVM), decision trees, random forests, genetic algorithm, k-nearest

neighbor, discriminant analysis, logistic regression, and Neural Networks (NN).

In this work NN was chosen for the �exibility of the architecture and promising

results obtained by LING et al. (2016a) and CRUZ et al. (2019).

2.2.1 Arti�cial Neuron

The idea behind NN is to mimic how the human brain operates and recreate it,

because the human brain seems to be one of the most powerful tools on the planet

for learning, adapting skills and applying them. If computers could copy that, than

it would be possible to construct a powerful predicting mechanism.

Comparing with computer science, the brain could be interpreted as a massive

parallel processing performed by approximately 100 billions of processors. These

processor are called neurons and its structure is shown in Fig. 2.1.

Figure 2.1: Biological neuron structure, (SUPERDATASCIENCE).

The �rst step to mimic the human brain is to recreate a neuron. The brain

neuron is composed of a neuron body, an axon, a dendrite and the synapses

Neuron Body: The most important part of the neuron, where the signals origi-

nated on other neurons is processed. As it contains the nucleus, most protein
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synthesis occur here. It is also called �Sum� as it sums all the input signals

that comes from other neurons.

Axon: Transmits electrical signals generated in the neuron body to other neurons.

Dendrite: Are cellular extensions with many branches that leave the neuron body.

This is where the majority of input to the neuron occurs.

Synapse: Is the connection between the neuron axon and other neuron's dendrites.

The interaction between axon and dendrite occurs in all of the 100 billions neu-

rons simultaneously. This massive amount of synaptic connections describe the

powerful parallel process capacity of the human brain. This provides the brain with

ability to recognize patterns, solve complex problems, learn and make predictions.

Based on the biological neuron structure described above, MCCULLOCH and

PITTS (1943) proposed the �rst mathematical description of an arti�cial neuron.

The purpose of a mathematical model is that it extracts only the essentials required

to accurately represent the neuron, removing all of the unnecessary details. The

proposed mathematical description has the following structure:

Inputs (in): A simulation of the signals that come from other neurons by the

dendrites, receiving the data that come from other neurons connected to it.

Weights (w): Any data received by the arti�cial neuron is weighted. It correspond

to the synapses, where the highest weights are more relevant.

Bias (b): Is an additional set of weights that require no input and correspond to

the �nal output when the neural network has a null input. Without the bias

node no layer would be able to reproduce an output that di�ers from zero,

when the feature values are null.

Activation function (ϕ): Represents the metabolic process that occurs in the

neuron body, where a signal is created from the sum of all weighted inputs that

arrived at the neuron. It was �rst formulated by MCCULLOCH and PITTS

(1943) as a binary function, but later other mathematical interpretations were

suggested, as the bias term. Bias term is a number added to the sum operation

of all weighted inputs. These updates improve the performance of the method.

Output (out): Represents the signal transmitted by the neuron axon. It results of

the application of activation functions on weighted sums of all inputs of the

neuron plus the bias.
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The arti�cial neurons are placed in layers, where neurons can only connect with

other neurons from previous or further layers.

Thus, the jth neuron's output, of the mth layer, (out(m)
j ) is the application of the

activation function ϕ in the weighted sum of signals that outputs from each one of

the back neuron's layer n,

out
(m)
j = ϕ

(
in

(m)
j

)
= ϕ

(
N∑
i=1

w
(m)
i out

(n)
i +b

(m)
j

)
(2.16)

In order to exemplify Eq. (2.16), a graphic model is shown in Fig. 2.2.

Figure 2.2: jth neuron of the mth layer

The most popular activation functions are:

the binary step function

ϕ
(
in

(m)
j

)
=

{
1, in

(m)
j ≥ 0

0, in
(m)
j < 0

}
, (2.17)

the linear function

ϕ
(
in

(m)
j

)
= k · in(m)

j , (2.18)

the sigmoid function

ϕ
(
in

(m)
j

)
=

1

1 + e

(
−in(m)

j

) , (2.19)

and the hyperbolic tangent function
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(a) Binary step (b) Linear

(c) Sigmoid (d) Hyperbolic tangent

Figure 2.3: Activation function plots.

ϕ
(
in

(m)
j

)
=

(
ein

(m)
j − e−in

(m)
j

ein
(m)
j + e−in

(m)
j

)
(2.20)

Fig. 2.3 shows the plot for the activation functions mentioned above. The non-

linear activation functions as the sigmoid and hyperbolic tangent gives the neural

network capability to perform non-linear mapping between the inputs In and the

target Out, as shown in Eq. (2.21).

Out = NN(w,b; In) (2.21)

CYBENKO (1989) proved the Universal Approximation Theorem, ensuring the

existence of a NN capable of mapping In in Out. In addition, the application

of non-linear activation functions helps the NN training process, because they are

di�erentiable and their derivatives are simple to be calculated.

2.2.2 Architecture

With the mathematical model of the neuron established, it is clear that using

only one neuron isn't interesting. It can't do very much and given the same set of

inputs, the output of the neuron never varies, so it isn't able to learn. So to make

the arti�cial neuron useful, it must be able to learn, and then, a set of neurons can

be put together to do something useful.

The �rst question is how neurons can learn. Looking at the proposed arti�cial
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neuron, the only variables are the weights, bias and activation function. So the

learning process do not happen in the neurons at all, but in between the neurons,

in the way that they are connected. A collection of neurons together with a set of

inputs and weights to fasten the inputs is called a perceptron. In a perceptron, the

�rst layer is called the input layer, the last layer is called the output layer and all

the layers in between the input and output layers are called hidden layers. Neural

networks whose outputs from each layer are not connected with previous layers,

i.e. are only connected to forward layers, are called feed-forward networks. A feed-

forward NN that contains non-linear neurons in their hidden layers is also called a

multi layer perceptron (MLP). An example of a MLP is shown in Fig. 2.4.

Figure 2.4: Multi layer perceptron example

Therefore, what composes the MLP architecture is the number of neurons per

layer, the number of hidden layers and the activation functions of each layer. The

amount of neurons in a MLP is critical. An excess of neurons can cause over-

�tting, which is the loss of generalization capacity of the NN and a small number of

neurons can cause a loss of abstraction capacity, where the NN cannot capture all

the patterns present in the data used in the training stage.

2.2.3 Back-Propagation

By default, when initializing a NN, the values for weights and bias are random

numbers. Therefore, associated to theses weights and bias there is and error be-

tween the regression results obtained by the NN (Õut) and the target values (Out)

available in the database. So this error, called Cost Function (C), is a function that

depends only on the values of weight and bias,
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C = C(w,b). (2.22)

The training process in a NN algorithm is the search for the set of weights and

bias that minimizes this function. This algorithm is usually called back-propagation,

in ML applications.

The back-propagation algorithm became important in neural network appli-

cations when RUMELHART et al. (1986) described several NN where back-

propagation showed a faster training process than other earlier approaches to learn-

ing, making it possible to use NN to solve problems previously considered unfeasible.

The heart of back-propagation is an expression for the partial derivative of the cost

function with respect to any weight ∂C/∂w or bias in the NN. This tells how quickly

the cost changes when the weights and bias are modi�ed. The main cost functions

used in regression ML applications are:

the mean absolute error

MAE =
1

n

n∑
i=1

∣∣∣Õut(i) −Out(i)∣∣∣ , (2.23)

and the mean square error

MSE =
1

2n

n∑
i=1

(
Õut

(i) −Out(i)
)2
, (2.24)

where n in Eqs. (2.23) and (2.24) is the number of samples in the database.

So, once each one of the cost derivatives associated with all weights and bias

are calculated, techniques called optimization functions are employed in order to

minimize the cost function.

2.2.4 Optimization Function

In NN application, optimization functions are algorithms used to update at-

tributes such as weights and bias in order to reduce the error associated with the

training process. In regression NN the most used methods are the batch gradient

descent, the stochastic gradient descent, RMSprop and Adam.

Batch gradient descent

Gradient descent functions are an iterative optimization algorithms which employ

the use of gradients in order to reduce the cost function. The gradient indicates the

direction which minimizes the loss. Batch gradient descent, also knows as vanilla

gradient descent, is a way to minimize an objective function, J(θ), parametrized by
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a model's parameters, θ, by updating the parameters in the opposite direction of the

gradient of the objective function ∇θJ(θ), as asserted by RUDER (2016). In other

words, the objective is to follow the direction of the slope of the surface created by

the objective function downhill, until a valley is reached, as can be seen in Fig. 2.5.

Figure 2.5: Gradient descent updates the weights and bias so that the error goes
downhill until it reaches a valley, (MARSLAND, 2014).

This method computes the gradient of the objective function to the model pa-

rameter, θ, for the whole training data

gt = ∇θJ(θ) (2.25)

θ = θ − ηgt (2.26)

where η is the learning rate, a hyper-parameter that controls how much to change

the model in response to the estimated cost function, each time the parameters

are updated during training and is usually a number between 0 and 1. As it is

necessary to calculate the gradients for the whole dataset every update, this method

is considered to be slow, requires large memory and may trap at local minima, as

shown in Fig. 2.5. The advantages of this method is the ease of computation,

implementation and understanding.

Stochastic gradient descent

Unlike the batch gradient descent, the stochastic gradient descent (SGD), per-

forms a parameter update for each training example, x(i) and label, y(i),

θ = θ − η · ∇θJ
(
θ;x(i); y(i)

)
. (2.27)
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Figure 2.6: Momentum added to SGD, (MARSLAND, 2014).

By performing one update at a time SGD avoids the redundant computations for

large databases, present in batch gradient descent, which recomputes gradients for

similar examples before each parameter update. As the parameters are frequently

updated, it results in a high variance and �uctuations in cost functions at di�erent

intensities. SGD also may continue the iterative process even after achieving the

global minimal point. RUDER (2016) asserted that to obtain the same convergence

as batch gradient descent, SGD needs to slowly reduce the value of learning rate. In

order to improve the convergence of SGD, a momentum method is applied, which

accelerate SGD in the relevant direction and dampens oscillations, by adding a

fraction, γ, of the update vector of the past time step, to the current update vector

vt = γvt−1 + ηgt

θt+1 = θt − vt,
(2.28)

where the decay term, γ is usually set near to the unit, with values of 0.9 or similar.

RMSprop

RMSprop, is the root mean square propagation, devised by HINTON (2012). It

tries to adjust the learning rates by using a moving average of the squared gradient.

The values updates are performed as

vt = γvt−1 + (1− γ) g2t

θt+1 = θt −
η√
vt + ε

gt,
(2.29)

where γ is the decay term, which ranges from 0 to 1 and ε is a small constant for

numerical stability. In RMSprop, the learning rate gets adjusted automatically and

it chooses a di�erent value for each parameter.
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Adam

Adam, the adaptive moment estimation, was developed by KINGMA and BA

(2015) and is one of the best and most used optimizer for NN applications. It is

another algorithm that computes adaptive learning rates for each parameter. In ad-

dition to storing an exponentially decaying average of past squared gradients, vt,like

RMSprop, Adam also keeps an exponentially decaying average of past gradient, mt

mt = β1mt−1 + (1− β1) gt
vt = β2vt−1 + (1− β2) g2t ,

(2.30)

where β1 and β2 are decay factors. mt can be interpreted as the �rst moment, or

mean, of the gradient and vt, the second moment, or uncentered variance, of the

gradient. As these moments are initialized as null vectors, they are biased towards

zero, speci�cally in the initial time steps and when the decay factor is close to 1, as

stated by KINGMA and BA (2015). A bias-corrected �rst and second moment was

computed to overcome these biases

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

.
(2.31)

Then Eq. (2.31) is used to update the parameters, just like RMSprop,

θt+1 = θt −
η√
v̂t + ε

m̂t. (2.32)

KINGMA and BA (2015) proposed default values for the coe�cients. 0.9 for β1,

0.999 for β2 and 10−8 for ε. Adam algorithm has a higher computational cost, when

compared to other methods, but has fast convergence and recti�es the vanishing

learning rate and high variance present in other algorithms.

2.2.5 Validation and Test Groups

While the iterative process of updating the weights and bias is active, the data

is analyzed through back-propagation methods in order to minimize the associated

error. An epoch is the number that represents each iterative time the data is evalu-

ated. During the training process, while the error is minimized, the neural network

is applied in a set of data called validation data. So, the NN is applied on training

and validation inputs. Both iterations generates an error. The minimizing process

acts on the training error, whereas the validation error is used as a training stop

criterion. The importance of the validation data is in the fact that NN loses power

18



of generalization for data that was not part of the training process, which is the

so-called over-�tting of the NN.

When the NN converges, after the training process, it is evaluated. The data

group used for the evaluation is called test group. Basically, the NN reads an input

and predicts an output. This output is compared to the test output, generating an

error metric associated with this NN. The test group is a speci�c group, di�ering

from both training and validation groups.

2.2.6 Cross-Validation

The result of the error metric associated with the NN has a certain randomness.

As the initial weights and bias are set stochastically, a second training process with

the same training and validation data, could correspond to a di�erent minimization,

therefore, impacting the test error. In order to have a statistically signi�cant re-

sponse, several training processes with random training validation and test groups

are performed. In the end, an average error is calculated with a given standard de-

viation. This average error will validate the NN. An usual division of the database

for NN applications consists of allocating 60% of the data for training, 20% for val-

idation and 20% for testing, performing this division through a completely random

algorithm.

2.2.7 Over-�tting

The main objective of a ML model is to have the capability to generalize well,

which is the model's ability to give sensitive and accurate outputs to set of inputs it

has never seen. Over-�tting happens when the overall error of the training process

is small, but the generalization of the model is unreliable. It happens when a model

learns too much from the training data, by allowing the training algorithm run for

long periods, minimizing the training error but also, catching secondary patterns,

such as noises, that may not be needed for the generalization of the model. This

results in a NN with high variance.

There are some techniques used in NN applications that reduce the probabil-

ity of building over-�tted models and consequently, improve the NN model predic-

tive performance. However, implementing these techniques results in more hyper-

parameters that are needed to be tuned in the model.

Dropout

Dropout is a regularization method that works by randomly setting the outgoing

edges of neurons in hidden layers to zero at each update of the training phase. This
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method emulates a NN architecture with di�erent con�guration at each iteration

during the training process, making the layer where the neuron has been dropped

out to look-like and be treated-like a layer with a di�erent number of neurons and

connectivity to the prior layer, as stated by SRIVASTAVA et al. (2014). An illus-

tration of the dropout technique being applied to a NN can be seen in Fig. 2.7. A

common way to apply dropout to a NN is to set a dropout ratio, a percentage of

neurons in hidden layers which will be dropped out.

(a) Full network (b) Partial network

Figure 2.7: Illustration of dropout regularization.

Weight Constraints

On complex NN models, weights with large values can be employed which brings

instability to the model and can result in over-�tting. Smaller weights and bias

on a NN model can result in a more stable an less likely to over-�t model. Weight

constraint is a trigger that checks the size or magnitude of the weights and scale them

so that the values are bellow a prede�ned threshold. This constraints are enforced

on each neuron within a hidden layer, making all the neurons on the hidden layer,

subjects to the same constraint. As stated by SRIVASTAVA et al. (2014), the

use of weight constraints is associated with improvement in the back-propagation

algorithm. There are several methods to implement a weight constraint in a NN

model, such as

Maximum norm: forces the weights to have a magnitude at or below a given limit.

Non-negative norm: forces the weights to have a positive value.

Unit norm: forces the weights to have a magnitude of 1.0.

Min-Max norm: forces the weights to have a value between a given range.

Early-Stopping

One of the challenges of building a NN model is to set how long the training

process will run. Too little time will result in models that did not learn enough from
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the database to acquire the capability of generalize. Too much time can result in a

over-�t model which means no capability of generalization and a poor performance

on the test data. There is a technique called Early Stopping which stops the training

process when the chosen performance measure stops improving. Usually this is set

on the validation data, where the training process is stopped when the validation

error ceases to decrease. Early stopping monitors the performance of the model

at each epoch and interrupt the training process after a de�ned number of epochs

where the validation error did not decrease.

Learning Rate Reduction

The learning rate, as explained in Subsection. 2.2.3, controls how much to change

the model's weights and bias in response to the estimated error at each epoch. In

order to avoid a possible over-�t on long training periods, there is a technique

called learning rate reduction which, as the name implies, reduces the value of the

learning rate by a given factor, once the learning stagnates. This technique monitors

a quantity and if, after a de�ned number of epochs, there is no improvement, the

learning rate is reduced. The quantity often monitored in the learning rate reduction

is the validation error.

2.3 Decision Trees

As asserted by MARSLAND (2014), the idea behind decision trees is that a

classi�cation process can be broken down into a set of choices about each feature

involved in turns, starting at the root, or base, of the tree and progressing down to

the leaves, where the output of the classi�cation decision is received. The concept

of decision trees is easy to understand and can even be de�ned as a set of if-then

rules.

To better understand the concept of a decision tree, an example is described.

Suppose a database composed of ones and zeros as shown in Fig. 2.8. In this case

there are three 1's and six 0's, which are the classes of the data, and a separation

of the classes using their features is desired. In this case, the features are the color,

red or blue, and whether the observation is underlined, striked or not. Therefore,

through a set of if-then rules, or questions, it is possible to separate the data. Each

if-then rule is called a node and the �rst node in the example is based on the feature

color. After the node, the tree is split in two branches, the Yes branch and the No

branch. The �rst No branch consist only of non underlined blue zeros, so it is not

necessary to split the branch further. However, the Yes branch can still be split

further. So, another feature can be used to split this branch, splitting the data into
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underlined or not. This yields in another two Yes and No branches and to end this

classi�cation process one last if-then rule must be made. Then the decision tree is

done, being necessary three features in order to split up the database.

This simple example shows the logic of a decision tree. At each node it infers

what feature will allow the tree to split the observations in a way that the resulting

groups are as distinct from each other as possible.

Figure 2.8: Decision tree schematic

In order to build a decision tree for regression, only a simple modi�cation in the

model is necessary. In regression models, the inputs and outputs are continuous,

therefore, to evaluate the choice of which feature to use next, is also necessary to

�nd the value at which to split the database according to that feature. For this

procedure, the MSE from Eq. (2.24), is used. The output is a value at each leaf

that, in general, is just a constant value computed as the mean average of all the

data-point that are situated in that leaf. This value is the optimal choice in order

to minimize the MSE, but also means that the split point can be chosen quickly for

a given feature, by minimizing the MSE. This is how a decision tree for regression

di�ers from one for classi�cation.

As stated by BREIMAN (2017), the computational cost of making a decision

tree is fairly low and the cost of using it for predicting values is even lower. The

computational cost is directly related to the number of nodes in the decision tree.
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Also, implementing a decision tree algorithm is considerably easy, when compared

to NN and other ML models. However, decision tree algorithms tend to �nd local

optima in the training due to the fact that once the split has been done, there is

no going back. Also, decision trees are sensitive to the data they are trained and

if the data is changed the prediction results can be quite di�erent, implying a high

variance to this model. These reasons make decision trees prone to over-�tting. To

avoid these weakness, the random forest algorithm was developed.

2.4 Random Forests

Random forest (RF) is a ML method of supervised learning. The `forest', refers

to an ensemble of decision trees. RF operates by building a multitude of decision

trees at the training process and having as the output, the mode of the classes in a

classi�cation RF or the mean prediction in regression RF, of each individual decision

tree. RF are based on the simplest method of combining classi�ers, called bagging,

which stands for bootstrap aggregating. A bootstrap sample is a sample taken from

the original database with replacement, so that some data can be selected several

times and other none at all. The idea behind bagging is that combining models yields

a better prediction result. Applying this method implies in a reduced variance for

the model and since decision trees have high variance, this is advantageous. Bagging

makes each model run independently and after the training, aggregates the outputs,

without giving preference to any model. So a RF can be considered a meta-estimator,

as it combines the result of multiple predictions from many decision trees, as can be

seen in Fig. 2.9. As each tree inside the forest runs independently, they can be ran

in parallel, decreasing the computational cost.

Figure 2.9: Random forest structure.
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RF is considered an easier ML model to implement then NN and having a low

variance implies that even without the best set of hyper-parameters, a RF can

produce great results. However, there are some important hyper-parameters to tune

when building a RF, namely:

Number of estimators: Is the number of decision trees inside the forest. In

general, a higher number of trees increases the performance of the model and

makes the predictions more stable, less prone to variance, but it also increases

the computational time

Max features: Is the maximum number of features the RF considers when split-

ting a node into two branches.

Max depth: Is the maximum depth of each tree, de�ning the number of nodes at

each tree.

Min sample split: Is the minimum number of samples required to split a node.

Min sample leaf: Is the minimum number of leafs required to split a tree node.

Understanding the hyper-parameters on a RF is pretty straightforward and there

are not as many when compared to NN. Over-�tting, a recurrent problem in ML

model can be easily avoided if there are enough trees in the forest.

2.5 Euclidean Invariance

As stated by LING et al. (2016a), the Navier-Stokes equations obey invariance,

meaning that the laws of motion do not change for inertial transformations of the

frame of reference. Therefore, applying invariant quantities to ML models for tur-

bulence is desired and has shown improvements in previous works where invariance

was applied.

As presented by GURTIN (2010), in continuum mechanics, the basic property

of a body is that it may occupy regions of the Euclidean point space E , where
it is possible to identify the body within region B of E as it occupies some �xed

con�guration, called reference con�guration, whose choice is arbitrary. A motion of

B is a smooth function χ that assigns to each material point X and time t, a point

x = χ(X, t), (2.33)

where x is referred to as the spatial point occupied by X at time t.
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On a frame of reference F , a change of frame is, at each time, a rotation and

translation of the observed space. Therefore, a change of frame F → F ∗ can be

de�ned, at each time t by a rotation Q(t) and a spatial point y(t) and transforms

the spatial points x to spatial points

x∗ = y(t) + Q(t)(x− o), (2.34)

where o is a �xed spatial origin. The tensor Q is usually referred to as the frame-

rotation. The frame-rotation tensor is an orthogonal tensor, where the transpose is

equal to the inverse, as

QT = Q−1. (2.35)

While a change of frame a�ects the observed space, it does not a�ect the reference

space, thus, scalar �elds such as the density ρ and the viscosity µ are Euclidean

invariant.

ρ∗ = ρ, µ∗ = µ. (2.36)

For a vector �eld g, it is said to be invariant if it simply rotates with the frame

rotation

g∗ = Qg. (2.37)

For a tensor �eld G, it is said to be invariant if, given invariant vector �elds g

and h, at any change in frame

h = Gg implies that h∗ = G∗g∗. (2.38)

applying Eq. (2.37) and (2.38):

h∗ = Qh

= QGg

= QGQ>g∗.

(2.39)

As de�ned in Eq. (2.38), h∗ = G∗g∗ must be satis�ed, therefore,

G∗g∗ = QGQ>g∗

G∗ = QGQ>.
(2.40)

Applying the Euclidean invariance to turbulence, it is possible to evaluate quan-

tities of interest such as the velocity �eld. Considering the spatial description of the
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velocity �eld u(x, t), to express the velocity �eld in an invariant frame, it transforms

to

u∗ (x∗, t) = Q(t)u(x, t) + ẏ(t) + Q̇(t)(x− o). (2.41)

It is also possible to evaluate whether quantities such as the velocity gradient,

L(x, t) = ∇u(x, t) have Euclidean invariance.

L∗(x∗, t) = ∇∗u∗(x∗, t). (2.42)

Using the chain-rule to di�erentiate Eq. (2.41) in respect to x, while using the

relation between x and x∗ stated in Eq. (2.34), it yields

(∇∗u∗) Q = Q(∇u) + Q̇

=
(
Q(∇u)Q> + Ω

)
Q,

(2.43)

where Ω = Q̇Q> is the frame-spin tensor, which is an skew-symmetric tensor.

So, the velocity gradient transforms according to

L∗ (x∗, t) = Q(t)L(x, t)Q>(t) + Q̇(t)Q>(t). (2.44)

The velocity gradient tensor can be split in two parts, one symmetric and one

skew-symmetric, the mean strain rate D and the vorticity tensor W, as

L = D + W. (2.45)

Therefore, since the frame-spin Ω is skew-symmetric, the transformed velocity

gradient yields in

D∗ = sym L∗ and W∗ = asym L∗ (2.46)

and the two tensors can be written as

D∗ (x∗, t) = Q(t)D(x, t)Q>(t)

W∗ (x∗, t) = Q(t)W(x, t)Q>(t) + Q̇(t)Q>(t).
(2.47)

It is possible to observe that only the symmetric part of the velocity gradient,

the mean strain rate D, has Euclidean invariance.
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Chapter 3

Machine Learning and Turbulence

3.1 Recent Work

In recent years, machine learning applications on computational �uid dynamics

simulations of turbulent �ows such as RANS closure problem, suggests a new per-

spective on modeling. The main objective is to correct shortcomings of turbulence

models on describing phenomena such as secondary �ows and �ow separation at

boundary layers. It is interesting to use non-linear regression process for describing

some characteristics of turbulence modeling, such as the Reynolds stress tensor. For

these applications, non-linear regression is created from data coming from high �-

delity sources, such as DNS and LES, that provide data targets for machine learning

techniques used in the literature. In short, the goal is to extract some inputs from

RANS simulations, perform a non-linear regression, and predict some turbulence

aspect, such as a new Reynolds stress �eld, close to a DNS or LES established as

target.

Due to limitations in RANS models, especially when applied to situations that

di�er from those in which the models were calibrated, TRACEY et al. (2013) pro-

posed a methodology aimed at improving low-�delity models of turbulence and com-

bustion, through a ML method named kernel regression. The ML algorithm aims

to predict the anisotropy in the Reynolds tensor, using a DNS database as target.

This starts with the computation of the eigenvalues λi of the normalized Reynolds

stress anisotropy tensor

b =
1

2κ
R− 1

3
δ. (3.1)

To visualize the anisotropy of the turbulence �eld, TRACEY et al. (2013) pro-

posed the use of the Barycentric map proposed by BANERJEE et al. (2008). This

mapping represents the Reynolds stress tensor as a point within an equilateral tri-

angle, where the corners correspond to limiting states of anisotropy and the interior
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represents a realizable Reynolds stress. These eigenvalues can be used to construct

the quantities

C1c = λ1 − λ2
C2c = 2 (λ2 − λ3)
C3c = 3λ3 + 1,

(3.2)

where the subscripts represent the one, two and three component limits of the tur-

bulence. Once these quantities are determined, this map can be plotted via the

relation

xbary = C1cx1c + C2cx2c + C3cx3c

ybary = C1cy1c + C2cy2c + C3cy3c
(3.3)

where the x1c, y1c and others are the locations of the corners of the Barycentric

triangle, as shown in Fig. 3.1.

Figure 3.1: Colored map representing the location in the barycentric map,
(TRACEY et al., 2013).

The authors applied this methodology to predict a corrected Reynolds stress

anisotropy tensor for a periodic hill turbulent �ow, a classic pattern �ow that

presents detachment and reattachment of the boundary layer, modeled using a κ−ω
SST turbulence model. The results, shown in Fig. 3.2, revealed the capability of

the ML algorithm to correct the eigenvalues of the anisotropic part of R.

Using another ML technique, RF, LING et al. (2016c) proposed an improvement

of RANS κ − ε capability of accurately represent the Reynolds stress anisotropy,

shown in Eq. (3.1), based on LES data for a jet-in-cross�ow. Results, shown in

Fig. 3.3, revealed signi�cantly improved anisotropy when compared to the default

RANS.

LING et al. (2016a) also propose a comparison between two approaches to insert

invariant properties on the training of a machine learning algorithm. In the �rst,

a basis of invariant inputs is constructed and the ML is trained based on these

inputs. In the second, the ML is trained on multiple transformation of the raw
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(a) DNS (b) RANS

(c) Correction

Figure 3.2: Anisotropy in periodic hill �ows, (TRACEY et al., 2013).

input data, until the model learns invariance to that transformation. The authors

used two di�erent regression ML algorithm, NN and RF, to validate the approach.

The appeal of this method is to give the capability to a ML model to predict �elds for

similar �ows regardless of their physical orientation. The results obtained revealed

that models trained on an invariant database showed better prediction capability,

as shown in Fig. 3.4, and used less computational e�ort to achieve these results,

which exalts the importance of using invariant inputs in ML models.

In latter work, LING et al. (2016b) presented a method of using deep NN to

learn a model for the Reynolds stress anisotropy tensor, which uses a multiplicative

layer with invariant tensor basis to embed Galilean invariance into the prediction.

The authors compared the results obtained with a non invariant MLP and two

RANS models. The model with embedded invariance was called tensor basis neural

network (TBNN). The authors used nine di�erent �ow databases to train validate

and test the ML models. Six were used in training, a duct �ow, a channel �ow, a

perpendicular jet-in-cross-�ow, an inclined jet-in-cross-�ow around a square cylinder

and �ow through a converging-diverging channel. One case was used for validation,

which was a wall-mounted cube in cross-�ow. To test the performance of the ML

models, two cases were used, a duct �ow and a �ow over a wavy wall, which are

�ows where the Reynolds stress anisotropy plays a key role. The results obtained

were compared with two RANS models, one linear eddy viscosity model (LEVM)

and one quadratic eddy viscosity model (QEVM), a MLP and the DNS data and can

be seen in Fig. 3.5, which revealed that the TBNN was shown to have signi�cantly

more accurate predictions than a generic MLP. This corroborates the importance of

using an invariant database when applying ML techniques to turbulence modeling.

Inspired by these results, KAANDORP and DWIGHT (2020) proposed a similar

approach using, instead of TBNN, a tensor basis random forest (TBRF), which,

when compared to the TBNN, is relatively easier to implement and train, due to the

fact that it is not necessary to use an optimization algorithm to tune the ML model.

This tensor based model was also trained with several �ow databases and it was

tested with di�erent �ow patterns. The results for di�erent �ow patterns revealed
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(a) LES (b) RANS

(c) Correction

Figure 3.3: Contours of the second anisotropy invariant in a plane, (LING et al.,
2016c).

that the TBRF performed in a similar way to the TBNN, which is satisfactory, due

to the fact that it is easier to implement. Fig. 3.6, shows one of the �ows studied

with di�erent ML training data groups, named C3 and C4.

In�uenced by the analysis of statistical error of DNS data studied by THOMP-

SON et al. (2016), where it was shown an intrinsic uncertainty associated with

second order statistics such as R, which is not well converged as the mean velocity

and pressure �elds in DNS, CRUZ et al. (2019) proposed a NN that, instead of aim-

ing at quantities derived from R, aimed at the correction of a modi�ed divergent of

R, called by the authors, Reynolds force vector, t.

The divergent of R can be obtained by applying the operator directly to R,

but it would propagate and amplify the associated uncertainties. To bypass this

problem, the modi�ed divergent of R was implemented, which computes the quantity

indirectly, associating it with the well converged DNS �elds in the mean linear

momentum equation,

∇ ·R = −(〈u〉 ·∇)〈u〉 − 1

ρ
∇〈p〉+ ν∇2〈u〉. (3.4)
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Figure 3.4: ML model errors as a function of number of training rotations, (LING
et al., 2016a).

(a) Duct
(b) Wavy wall

Figure 3.5: Predictions of Reynolds stress anisotropy, here stated as bij, (LING
et al., 2016b).

The square duct DNS database used by the authors did not provide a mean

pressure �eld. Therefore, t was de�ned as,

t ≡∇ ·R +
1

ρ
∇〈p〉, (3.5)

and can be calculated only as function of the velocity �eld, a �rst order statistics,

as,

t = −(〈u〉 ·∇)〈u〉+ ν∇2〈u〉. (3.6)

The results obtained by injecting t in a RANS solver showed to be a considerable

improvement over the injection of R, especially in the principal direction of the mean

velocity �eld Ux, as can be seen in Fig. 3.7.
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Figure 3.6: Components of the Reynolds stress anisotropy tensor, here stated as bij,
for a square duct �ow, (KAANDORP and DWIGHT, 2020).

3.2 DNS Convergence

The e�ects of imbalance in the momentum equation in DNS simulations, where

the residuals of the velocity pro�le a�ects turbulence modeling, especially in a RANS

approach, where the Reynolds stress tensor is a target, was stated by THOMPSON

et al. (2016). The authors revealed that some DNS database have an inherent un-

certainty associated to second order statistics, such as the Reynolds stress tensor,

which is less converged when compared to �rst order statistics, such as the mean

velocity and pressure �elds. In order to improve DNS data, the authors proposed a

new methodology for statistical error evaluation, which would provide a more accu-

rate second order statistics and, by consequence, more reliable targets for modeling

purposes.

As stated by THOMPSON et al. (2016), the two most obvious statistics provided

in a channel �ow DNS database are the mean velocity �eld and the Reynolds stress

tensor associated with the fully developed steady-state �ow. Both theses quantities

are determined by a hybrid averaging process, where averaging is performed spa-

tially in wall-parallel slabs and in time, using many �ows instantaneous snapshots as

available, being both subject to discretization and sampling errors. For this analysis,

variables with a superscript + are expressed in wall units, the (̂) symbol was em-
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Figure 3.7: Mean velocity �eld of a square duct �ow for RANS, DNS and propagated
Reynolds force vector and Reynolds stress tensor, (CRUZ et al., 2019).

ployed to label any variable that is provided by the DNS hybrid space-time average

and the (̃) symbol was used to label a variable that is computed from a conservative

equation. Numerical experience in DNS shows that the shear component xy of the

Reynolds stress tensor is the most di�cult component to converge. Based on that,

the authors wrote the following two equations

R̃+
yx

(
y+
)

= 1− y+

Reτ
− dÛ+

dy+
, (3.7)

Ũ+
(
y+
)

= y+ − y+2

2Reτ
−
∫ y+

0

R̂+
yx (y′) dy′, (3.8)

where Reτ ≡ uτh/v is the usual friction Reynolds number. Eq. (3.7) expresses the

yx-component of the Reynolds stress tensor that balances the momentum equation in

the x-direction using the mean velocity gradient provided by DNS data as input. Eq.

(3.8) expresses the mean velocity pro�le that would balance the moment equation

using a component of the Reynolds stress tensor from DNS data as input. Eq. (3.7)

and (3.8) can be used to de�ne two residuals

ER
(
y+
)

= R̃+
yx

(
y+
)
− R̂+

yx

(
y+
)
, (3.9)

EU
(
y+
)

= Ũ+
(
y+
)
− Û+

(
y+
)
. (3.10)
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From Eqs. (3.7) and (3.9),

ER
(
y+
)

= 1− y+

Reτ
− dÛ+

dy+
− R̂+

yx

(
y+
)
, (3.11)

which can be interpreted as the residual of the momentum balance with respect to

steady state fully developed channel �ow. To ensure a steady state fully developed

�ow, ER (y+) computed with DNS data, ought to be as small as possible across the

channel width.

From Eqs. (3.8) and (3.11), Eq. (3.10) can be written as

EU
(
y+
)

=

∫ y+

0

ER (y′) dy′, (3.12)

which means that EU (y+) is originated from the cumulative error, associated with

the residuals from the momentum equation. The impact of the residual of the

momentum equation on the velocity pro�le is cumulative on y+ and can be signi�cant

far from the wall in high Reynolds number simulations, which a�ects turbulence

modeling, such as a RANS approach that uses the Reynolds stress tensor as a target.

This proved that the convergence criteria can be formulated based on the velocity

residual EU (y+) instead of stress residual ER (y+). This methodology provided a

new path for statistical error evaluation for future DNS of plane channel yielding

more reliable targets for modeling purposes.

Based on this methodology, ANDRADE et al. (2018) proposed an uncertainty

analysis for DNS turbulent �ow on plane channel and pipe. Fig. 3.8 shows the

comparison of residual values, obtained from Eqs. (3.11) and (3.12), ER (y+) (left

column) and EU (y+) (right column), for several Reτ numbers, divided in four re-

gions: (I) the viscous sub-layer, (II) bu�er layer, (III) log-law region and (IV) outer

layer.

Fig. 3.9 shows the comparison of the same residual errors for various DNS

simulation averaging times, for two Reτ numbers. From this �gure, it is easy to

notice a direct improvement in accuracy on DNS as the averaging simulation time

is increased, as expected. For both residuals, the residual error has a tendency to

decrease as the averaging times increases. The results obtained correlates the intrin-

sic uncertainties present in some DNS database to the insu�cient DNS simulation

averaging time.

Inspired by the results obtained by CRUZ et al. (2019) and the uncertainties

associated with the Reynolds stress tensor, RANGEL (2019) proposed splitting the

DNS data from a turbulent square duct into four quadrants. These four quadrants

were combined resulting in an increased emulated averaging DNS simulation time.
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Figure 3.8: Comparison of residual values between several DNS database across a
plane channel half-width or radius for pipe �ow, (ANDRADE et al., 2018).

The constructed DNS database for di�erent emulated times was used as a ML out-

put, using the same parameters and architecture as CRUZ et al. (2019). Figs. 3.10

and 3.11 show the results obtained by the proposed methodology, which con�rms

the in�uence of the convergence of DNS database in the correction of the velocity

�eld using a RANS approach, as the lowest errors are associated with the highest

emulated averaging times.

The previous works shown in this chapter served as a template for the method-

ology used in this work, with application of ML techniques in turbulence modeling,

use invariant quantities and analysis of the convergence of the DNS database used.
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Figure 3.9: Temporal development of residual pro�les at several dimensionless av-
eraging times, (ANDRADE et al., 2018).

Figure 3.10: Global error of the prediction of R for Re = 3200, (RANGEL, 2019).
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Figure 3.11: Global error of the prediction of t for Re = 3200, (RANGEL, 2019).
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Chapter 4

Methodology

4.1 Square Duct Flow

The square duct �ow is one of the most studied �ow patterns in turbulence

modeling. The reason for this choice is due to the existence of a secondary �ow

located in the cross-plane. For this �ow pattern, two equation RANS models are

known to have di�culty capturing this recirculation due to be based on the linear

eddy viscosity hypothesis, as stated by MUCK et al. (1985). In the square duct, the

Reynolds number is calculated by the hydraulic diameter D and the bulk velocity.

Fig. 4.1, shows the schematic of the square duct �ow. It is possible to observe a

symmetry pattern on each quarter of the geometry, as shown in Fig. 4.1(b). Due

to this pattern, it is only necessary to model one quarter of the duct by applying

symmetry boundary conditions. The boundary conditions applied to the model are

the non-slip condition on solid faces, symmetry in the cut-o� regions of the quarter

duct, cyclic conditions in the inlet and outlet and constant average velocity in the

direction of the main �ow. The chosen RANS model was the κ − ε, implemented
in the open source program OpenFOAM-v7 (OF). A �nite volume OF solver, based

on the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm

for pressure and velocity decoupling and used in incompressible and steady �ows

for Newtonian �uids, called simpleFoam was used. The discretization of divergent

operator from the transport equations chosen for the κ−ε simulations was the Gauss
upwind. The gradient operators were discretized using the Gauss linear algorithm.

For the Laplacian operators, a corrected Gauss linear was implemented. The point-

to-point interpolation scheme used in the simulations was linear. For the discrete

pressure equation, the Preconditioned Conjugate Gradient (PCG) solver was used,

coupled with the Geometric agglomerated Algebraic MultiGrid (GAMG) precondi-

tioner and Diagonal-based Incomplete Cholesky (DIC) smoother. In the equations

for the velocity, κ and ε, the Preconditioned bi-conjugate gradient (PBiCGStab),
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coupled with the Diagonal-based Incomplete LU (DILU) smoother. The tolerances

used for these four variables were 1e−07, with relaxation factor of 0.3 for the velocity

equation and 0.4 for the pressure and turbulent �elds.

Figure 4.1: Illustration of the �ow in a square duct, showing (a) the geometry
con�guration, (b) the region modeled in the CFD solver and (c) the illustration of
the in-plane secondary �ow, (MUCK et al., 1985).

For all simulations, the used bulk velocity was 0.4819 m s−1.The mesh used in

simulations has a 125 × 125 nodes, being more re�ned near the walls, as shown in

Fig. 4.2, to ensure y+ < 0.6. In the main direction of the �ow, the mesh has only

one node, resulting in a total of 15.625 centroids.

Figure 4.2: Square duct mesh.

4.2 Machine Learning Database

In order to build a ML model a high �delity simulation database of square

duct simulations is necessary. In this work, DNS data made available by PINELLI
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et al. (2010) were used. For a square duct �ow the authors provided DNS data for

6 di�erent Reynolds numbers: 2200, 2400, 2600, 2900, 3200 and 3500. In order to

build the input database for the ML model, for each simulation in the DNS database,

a correspondent RANS simulation is implemented. In this case, as the bulk velocity

and duct diameter are constants, the Reynolds numbers are di�erentiated by their

kinematic viscosity. Table 4.1, shows the kinematic viscosity used to estimate the

Reynolds number in each DNS and RANS simulation.

Table 4.1: Square duct simulations viscosity, (PINELLI et al., 2010).

Re ν [m2s−1]× 10−4

2200 2.18580
2400 2.00816
2600 1.85368
2900 1.66190
3200 1.50611
3500 1.37700

The correspondent RANS simulations will provide quantities associated with

mean kinematics and turbulence and will be used as inputs for the selected ML

model. A list of symmetrical tensors and vectors that correspond to the divergence

operator applied to these tensors were used as input data. This set of inputs was

proposed by CRUZ et al. (2019) and showed promising results in ML applications.

As shown in Table 4.2, in total, there are eight symmetrical tensors and eight vectors

that are related to the mean strain rate, D, the non-persistence-of-straining tensor,

P, and the Reynolds stress tensor, R, which represent a number of 72 input features

that will be applied to the NN model.

The tensor P, idealized by THOMPSON and MENDES (2005), is the non-

persistence-of-straining tensor

P = D ·W −W ·D, (4.1)

where W is the relative-rate-of-rotation tensor, de�ned as the di�erence between

the vorticity tensor, W, and the tensor that gives the rotation of the eigenvectors

of D, ΩD,

W = W −ΩD. (4.2)

Both D and W are objective tensors, hence, P is also objective. The non-

persistence-of-straining tensor is a deformation local measurement. If P = 0, the

�ow is considered extensional and has total persistence of straining, being in a
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con�guration of maximum deformation. This can be observed if P is written in the

basis of the eigenvectors of D

[P][D] =


0

(
λ
(D)
2 − λ(D)

1

)
w3

(
λ
(D)
1 − λ(D)

3

)
w2(

λ
(D)
2 − λ(D)

1

)
w3 0

(
λ
(D)
3 − λ(D)

2

)
w1(

λ
(D)
1 − λ(D)

3

)
w2

(
λ
(D)
3 − λ(D)

2

)
w1 0

 ,

where P can only be null if all eigenvalues of D are equal, which means that any

direction is a direction of maximum stretching, or if the relative vorticity, wi, is null,

indicating that the �lament rotates along with the eigenvectors of D and it always

stays at maximum stretching direction.

Table 4.2: ML model inputs.

Tensors (Ti) Vectors (∇ ·Ti)
D ∇ ·D
P ∇ ·P
D2 ∇ ·D2

P2 ∇ ·P2

D ·P + P ·D ∇ · (D ·P + P ·D)
D2 ·P + P ·D2 ∇ · (D2 ·P + P ·D2)
P2 ·D + D ·P2 ∇ · (P2 ·D + D ·P2)
R ∇ ·R

The ML model inputs, then, are the 72 components of tensors and vectors of

Table 4.2, produced from the RANS simulations for the Reynolds numbers from

Table 4.1. In order to build the outputs of the ML models, two di�erent set of

parameters will be used. In the �rst ML model, the components of R, from the

DNS database will be used. In the second model, the components of t, the modi�ed

Reynolds force vector will be used, calculated from the velocity �elds made available

from de DNS database, using Eq. (3.6).

Each RANS simulation was performed in a mesh with 15.625 centroids. So for

the entire set of six simulations a total of 93.750 points will be used in the ML

models. In this work, the NN model simulations were divided into: four simulations

for training the NN, one simulation to validate the NN training and one simulation

to test and evaluate the model. For the RF models, �ve simulations were used in

training and one simulation to test and evaluate the RF model.

Therefore, for the NN models, the input matrix for training, Xtrain, has a di-

mension of 62.500 × 72. The output matrix Ytrain has the dimension of 62.500 × 6

in the NN model built to predict R and of 62.500 × 3 in the NN built to predict

t. The input matrix for validation and test, Xval and Xtest, respectively, have the
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same dimension of 15.625 × 72. The output matrices for validation and test, Yval
and Ytest, respectively, have the same dimension of 15.625×6 in the NN model built

to predict R and the dimension of 15.625× 3 in the NN built to predict t.

For the RF models, the validation data is not necessary, hence, the input matrix

for training, Xtrain, has the dimension of 78.125 × 72. The output matrix Ytrain

has the dimension of 78.125× 6 in the model built to predict R and the dimension

of 78.125 × 3 in the built to predict t. The input matrix for test, Xtest, has the

dimension of 15.625× 72. The output matrix for test, Ytest, has the same dimension

of 15.625× 6 in the model built to predict R and the dimension of 15.625× 3 in the

model built to predict t.

4.2.1 Invariant Database

As recent work presented advantages when using an invariant database in ML

applications in turbulence modeling, the database used in this work also aims to

be Euclidean invariant. As stated by GURTIN (2010), in order to a �eld to be

invariant, it must obey the relations shown in Eqs. (2.37) and (2.40). Applying

these relations to all components in Table 4.2, it is observed that not all �elds have

Euclidean invariance.

In order to build an Euclidean invariant database, all tensor and vector �elds

are written in the basis of the eigenvectors of the mean strain tensor, D, which was

shown in Eq. (2.47), to have Euclidean invariance. To perform this operation, the

matrix of frame-rotation, Q must be written as a function of the components of the

eigenvectors of D

QD =
[
v1 v2 v3

]
,

where QD columns, v1, v2 and v3 are the three linearly independent eigenvectors

of D. The frame-rotation matrix, QD, can also be written as

QD =

v(1,1) v(2,1) v(3,1)

v(1,2) v(2,2) v(3,2)

v(1,3) v(2,3) v(3,3)

 and Q>D =

v(1,1) v(1,2) v(1,3)

v(2,1) v(2,2) v(2,3)

v(3,1) v(3,2) v(3,3)

 (4.3)

Applying Eq. (4.3) to Eqs. (2.37) and (2.40), The invariant input database

becomes the �elds shown in Table 4.3. The outputs of the NN models should also

have Euclidean invariance. Therefore, R and t can be written as

RD = QD (R) Q>D and tD = QD (t) . (4.4)
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(a) Rxx (b) Rxy (c) Rxz

(d) Ryy (e) Ryz (f) Rzz

Figure 4.3: DNS Reynolds stress tensor components for Re = 2900, (PINELLI et al.,
2010).

Table 4.3: ML model invariant inputs.

Tensors
(
QDTiQ

>
D

)
Vectors (QD∇ ·Ti)

QD (D) Q>D QD (∇ ·D)
QD (P) Q>D QD (∇ ·P)
QD (D2) Q>D QD (∇ ·D2)
QD (P2) Q>D QD (∇ ·P2)
QD (D ·P + P ·D) Q>D QD (∇ · (D ·P + P ·D))
QD (D2 ·P + P ·D2) Q>D QD (∇ · (D2 ·P + P ·D2))
QD (P2 ·D + D ·P2) Q>D QD (∇ · (P2 ·D + D ·P2))
QD (R) Q>D QD (∇ ·R)

4.3 Database Treatment

The output �elds are provided by DNS simulations performed by PINELLI et al.

(2010). For each Reynolds number, nine components are made available by the

authors, the six components of the symmetrical R, Rxx, Rxy, Rxz, Ryy, Ryz and

Rzz and the three components of the mean velocity �eld, Ux, Uy and Uz. The data

contain information for the whole square duct. Fig. 4.3 and 4.4 shows these DNS

�elds.

To show that the DNS simulation does not present the symmetry relations ex-

pected in a square duct pattern, Fig. 4.5, shows the shear components of R, Rxy,

Rxz, for Re = 2900. These �elds should present symmetry along the vertical and

horizontal midsections and also present symmetry between themselves as the shear
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(a) Ux (b) Uy (c) Uz

Figure 4.4: DNS mean velocity components for Re = 2900, (PINELLI et al., 2010).

(a) Rxy (b) Rxz

Figure 4.5: DNS Reynolds shear stress tensor components for Re = 2900, (PINELLI
et al., 2010).

components are di�erentiated only by a simple rotation.

As stated by MUCK et al. (1985), the domain of the square duct presents, when

converged, a mean velocity �eld with symmetric aspects in relation with the vertical

and horizontal midsections as well as in relation with the diagonals of the domain.

Then, the square duct domain can be divided in four quadrants, as shown in Fig.

4.6, and RANS simulations can be performed only in one quadrant, in this case, the

quadrant 3q.

Another example showing that DNS does not present the expected symmetry,

Fig. 4.7, reveals the di�erence in the main direction of the mean velocity, Ux, for

Re = 2900, calculated by subtracting, from the quadrant 3q, the three quadrants,

1q, 2q and 4q. This shows that the results obtained by the DNS simulation does

not present the symmetry in relation to the vertical and horizontal axis, which goes

against the logic of �ow pattern.

Assuming that the DNS database does not represent the whole symmetry pattern

expected in a square duct �ow, the use of di�erent quadrants in the NN model, would

yield di�erent predictions, in�uencing the results obtained and the model evaluation.

Based on the work done by RANGEL (2019), each quadrant and combinations

between quadrants will be analyzed by using them as the outputs of the NN in this
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Figure 4.6: Square duct quadrants.

(a) 3q − 1q (b) 3q − 2q (c) 3q − 4q

Figure 4.7: Discrepancy in DNS mean velocity in the main direction, Ux, for Re =
2900.
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work.

4.3.1 Improving DNS Convergence

The DNS database used in this work was converged in a simulation time τ . As

stated by ANDRADE et al. (2018), longer simulation times yields better converged

�elds. However, the available DNS already presents prohibitive simulation times

and extending this times is infeasible.

Based on the methodology applied by RANGEL (2019), when splitting the square

duct domain in four quadrants, as shown in Fig. 4.1, the �elds of each quadrant

were combined, aiming to emulate DNS results for longer simulation times. So, when

combining n �elds converged for a simulation time τ , it yields an emulated time of

nτ . This operation is done by adding n �elds and dividing the resultant �eld by n.

This means that combining the quadrants in groups of two, generate a combina-

tion of six new DNS �eld sets with an emulated simulation time of 2τ . Combining

the quadrants in groups of three, generates a combination of four new DNS �eld

sets with an emulated simulation time of 3τ . Similarly, combining all quadrant in a

group, yields in a new DNS �eld set with emulated simulation time of 4τ and sym-

metry along the vertical and horizontal midsections. In order to obtain symmetry

in relation with the diagonals of the domain and between �elds that are similar but

rotated, as shown in Fig. 4.5, in the set of �elds where all quadrants are combined

the diagonal symmetry was applied as well as similar rotated �elds, resulting in a

full symmetrical domain, with a combined of eight times the emulated simulation

time, 8τ . All this quadrant combination sets were divided in �ve groups: Q1 for

sets of only one quadrant, Q2 for combinations with two-by-two quadrants, Q3 for

combinations with three-by-three quadrants, Q4 for combinations with four-by-four

quadrants and Q8 for the full symmetrical domain of the square duct �elds. These

groups are listed in Table 4.4.

The DNS �elds ofQ8 represents the maximum symmetry of the domain, resulting

in the most accurate DNS data available for the square duct. Fig. 4.8, represent the

evolution of the Ryz component for Re = 2900, which is as component that presents

symmetry along the diagonal line of the domain.

So, to build the full developed database used in this work, data from R and t

were extracted from each quadrant set, resulting in a set of 32 NN models and 32

RF models evaluated in this work.
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Table 4.4: Quadrant combination sets.

Combination Groups Quadrant Sets

Q1
(Combinations 1 by 1)

1q
2q
3q
4q

Q2
(Combinations 2 by 2)

12q
13q
14q
23q
24q
34q

Q3
(Combinations 3 by 3)

123q
124q
134q
234q

Q4
(Combinations 4 by 4)

1234q

Q8
(Full symmetry set)

8q

Figure 4.8: Evolution of DNS component Ryz for di�erent quadrant sets
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4.4 Global Error

In order to evaluate the propagation of the DNS quantities into the velocity �eld,

the mean momentum balance equations, coupled with the continuity equation for

mean pressure and velocity �elds, are solved, injecting the respective quantity of

interest, R or t, from the DNS database associated with each case. In this work

the RANS equation with a source term, ∇ ·Rθ, is numerically solved in OF, where,

when solving for R, the divergence operator is applied and when solving for t, the

equation is written as

(〈u〉 · ∇)〈u〉+ tθ = ν∇2〈u〉 (4.5)

After running OF for all sets of R and t, the local metric of error implemented

by CRUZ et al. (2019) is used, consisting in a relative L2 − norm of the error

corresponding to the propagation error of the velocity �eld and can be calculated

by

Ei =

√
(〈u〉θi − 〈u〉Rθi)

2

Ubulk
, i = x, y, z, (4.6)

where i represents each component of the velocity �eld, Ubulk is constant for all cases

and 〈u〉θi and 〈u〉Rθi are the DNS mean velocity �eld and the reconstructed DNS

mean velocity �eld, respectively. In order to calculate a global error to attribute a

singular value for the error in the cross section area domain in each �eld, the local

error in Eq. (4.6) is integrated across the area of the domain

Ēi =
1

A

∫
A

EidA i = x, y, z. (4.7)

The global error is then calculated for all DNS data obtained for each quadrant

set, for both R and t. In Figs. 4.9 and 4.10, the global error value for each

combination group is the arithmetic mean for the global error for each quadrant

set, for example for the global error of the combination group Q3

Ēi (UQ3) =
Ēi (U123q) + Ēi (U124q) + Ēi (U134q) + Ēi (U234q)

4
i = x, y, z. (4.8)

Figs. 4.9 and 4.10 show that, as expected, as the emulated simulation time

increases, the global error associated with the propagation of the DNS quantities

decreases, with the global error associated with t, being smaller than the error

associated with R, which is in agreement with the results obtained by CRUZ et al.

(2019). This shows an advantage of using data from emulated DNS simulation time
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(a) UX (b) UY

(c) UZ

Figure 4.9: Global error of the velocity �eld for DNS R injected in OF.

(a) UX (b) UY

(c) UZ

Figure 4.10: Global error of the velocity �eld for DNS t injected in OF.

49



as outputs of as ML model, where is expected that better converged data yields

better predictions.

4.5 Post-Processing

Based on the evolution of the global error when applying symmetry to the square

duct, as shown in Figs. 4.9 and 4.10, it seems to be an advantage to impose symmetry

in every �eld from the ML models, R or t. For the predictions of the ML models,

the same conditions of Q8 were imposed: for �elds that have symmetry along the

diagonal of the domain, as shown in Fig. 4.11, such as Rxx, Ryz and tx, it was

imposed symmetry in relation to the axis of symmetry, from the vertex of the walls

to the center of the �ow. For other �elds, a rotation has been applied and an average

has been taken between the components such as,

Ryy =
Ryy +Rrotated

zz

2
, (4.9)

which can be visualized in Fig. 4.12.

Figure 4.11: Diagonal symmetry in Rxx.

(a) Ryy (b) Rzz

Figure 4.12: Rotation associated with Ryy and Rzz components
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4.6 Training

All codes were developed in the Python programming language. After de�ning

the inputs, Table 4.3, and outputs, Eq. (4.4), used for all 64 ML models, a common

pre-processing method in ML application is applied. As di�erent components in the

inputs and output matrices has di�erent orders of magnitude, this can induce the

NN to set higher values of weights and bias to components with higher magnitude

lowering the learning capability of the NN and yielding an inaccurate ML model.

In order to work around this issue, a normalization is applied to each column of the

input and output matrix. A standard normalization is applied, scaling the columns

in relation to their standard deviation, σcolumn and their mean, µcolumn , as

normalized column =
column−µcolumn

σcolumn

. (4.10)

This normalization is applied to each column of the input matrices, Xtrain Xval

andXtest, and output matrices, Ytrain Yval and Ytest. The resulting matrix, here called

Ypred, the output result of the NN, is also normalized and needs to be re-scaled using

the inverse process

column = σcolumn (normalized column) + µcolumn . (4.11)

For this matter, the open source python library, SCIKIT-LEARN, was used

through a function called Standard Scale, which makes the standard normalization

for all matrices.

The same NN architecture, based on the results obtained by CRUZ et al. (2019)

, was implemented for all 32 NN models built, with the objective to evaluate the

impact of improving DNS convergence under the same conditions for every NN

model. To build the NN model, the open source library KERAS, based on Google

TensorFlow with an easier implementation, was used. The chosen architecture is

composed of two hidden layers with 100 neuron in each. The activation function

for the �rst two layers was the hyperbolic tangent, and for the last layer a linear

one, as usual in regression ML applications. The employed optimization function

was the ADAM algorithm with the mean squared error, MSE, for cost function,

with a starting learning rate of 1× 10−3, with a reduction rate of 0.6 after 5 epochs.

Weights and bias were constrained using a maximum norm of 2.0. No dropout was

used in this architecture as it showed no improvement for this number of neurons.

To stop the training process, the early-stopping method was used, set to interrupt

the training if the validation error does not decrease for 20 consecutive epochs. Table

4.5, summarizes the hyper-parameter used in the NN models.

As wells as for NN models, the RF developed in this work has the same architec-
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Table 4.5: Summary of the NN hyper-parameters

Number of layers 2
Neurons per layer 100
Activation function tanh
Batch-size 32
Weight and Bias constraint 2.0
Optimization function ADAM
Starting learning rate, η 10− 3
η decay rate 0.6
Number of epochs to reduce η 5
Number of epochs to stop the training 20

ture for all 32 models. To build the RF, the SCIKIT-LEARN library was used. The

chosen architecture is composed of two hundred decision trees, with a max feature

of 24 features, a max depth of 50 and the default values for minimum samples split

and minimum samples leaf, of two and one, respectively. Table 4.6, summarizes the

hyper-parameter used in the RF models.

Table 4.6: Summary of the RF hyper-parameters

Number of trees 200
Max features 24
Max depth 50
Min samples split 2
Min samples leaf 1

After training the ML models, they are able to predict new sets of R or t,

called Ypred, using the input matrices, Xtest. To evaluate the performance of each

ML model, a metric called coe�cient of determination, R2 score, was used. R2

score indicates the percentage of the variance in the dependent variable that the

independent variables can explain collectively. It measures the strength between

the predicted values, Ypred, and the target values, Ytest,on a convenient percentage

scale. Expressing the mean of the predicted data, Ypred, as

Ypred =
1

n

n∑
i=1

Y pred
i , (4.12)

where Y pred
i is the predicted value of the i-th sample of Ypred. Expressing Y test

i as

the target value of the i-th sample of Ytest, the R2 score can be calculated as

R2 (Ytest, Ypred) = 1−

∑n
i=1

(
Y test
i − Y pred

i

)2
∑n

i=1

(
Y test
i − Ypred

)2 . (4.13)

The six simulations available, corresponding to the Reynolds number in Table
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4.1, will be divided in four for training, one for validation and one for testing the NN

models. In order to choose which will be used as training, validation and testing,

a cross-validation process was done and the division of groups can be seen on Tab,

4.7. Therefore, as Re = 2900 is used as testing group, all the results will be based

on simulations for this Reynolds number. As NN have a random starting point for

weights and bias, even with the same set of hyper-parameters, the accuracy of a NN

can vary. A set of 20 NN's was built for each model and the one with highest R2

score was used to predict the desired �elds. Each of these 20 NN is called a fold,

so for each model 20 folds will be made and the evaluation of the model will be

expressed as the mean of the R2 score for each fold. As well as for NN models, a set

of 20 RF were built for each model and the one with the highest R2 score was used

to predict the desired �elds.

Table 4.7: Division of NN groups.

NN Groups Reynolds number

Training
Group

2200
2600
3200
3500

Validation
Group

2400

Test
Group

2900

The ML training process and the correction of velocity �elds using R or t pre-

dicted by the ML model can be described in a step-by-step as

1. ML model training:

� Select the respective DNS database;

� Run RANS simulations for the same set of conditions;

� Extract the inputs from Table 4.2 from all RANS simulations;

� Apply Eqs. (2.37) and (2.40), for the respective vectors and tensors from

Table 4.2, creating the input matrices;

� Extract R and calculate t from DNS database;

� Apply Eq. (4.4), to create the output matrices;

� Split the available data into training and test groups, for RF and training,

validation and test groups, for NN;

� Run the Python code in order to build the desired ML model on training

and validation groups, over 20 folds.
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2. Correcting the velocity �elds:

� Use the input test group on the ML model created;

� Compare the predicted output with the output test group to evaluate the

ML model;

� Post-process the predicted �elds imposing symmetry;

� Replace the predicted �elds on OF;

� With the predicted �elds, rerun the used solver in order to obtain the

mean corrected velocity;

� Evaluate the global error, given by Eq. (4.7), associated with the propa-

gation of the predicted �elds.

This procedure was applied to all 32 NN and 32 RF models developed in this

work and the results are exhibited in the next chapter.

54



Chapter 5

Results

5.1 Machine Learning Predicted Results

In Tables 5.1 and 5.2, it is possible to observe the R2 score for all NN and RF

models developed respectively, sixteen predicting the Reynolds stress tensor, R, and

sixteen predicting the modi�ed Reynolds force vector, t. All OF simulations were

ran for Re = 2900. In order to compare the results, one set of each group will be

used. These sets will be 1q from Q1, 12q from Q2, 123q from Q3, 1234q from Q4

and 8q from Q8. As the combination groups Q4 and Q8 have only one set, they will

be designated in the subsequent �gures as Q4 and Q8, respectively. All predicted

values are compared to the base κ − ε RANS �elds and the most accurate DNS

�elds, with full symmetry applied, referred to as Target.

Table 5.1: R2 Score of NN quadrant sets.

R2 Score (mean± std)
Combination Group Quadrant set R t

Q1

1q 0.9817± 0.0015 0.9576± 0.0003
2q 0.9846± 0.0008 0.9333± 0.0021
3q 0.9713± 0.0012 0.8893± 0.0024
4q 0.9708± 0.0007 0.9125± 0.0005

Q2

12q 0.9937± 0.0003 0.9669± 0.0004
13q 0.9928± 0.0004 0.9604± 0.0006
14q 0.9852± 0.0005 0.9427± 0.0003
23q 0.9879± 0.0004 0.9159± 0.0022
24q 0.9896± 0.0004 0.9557± 0.0006
34q 0.9897± 0.0003 0.9595± 0.0006

Q3

123q 0.9951± 0.0002 0.9553± 0.0010
124q 0.9923± 0.0002 0.9621± 0.0002
134q 0.9938± 0.0004 0.9669± 0.0003
234q 0.9935± 0.0002 0.9557± 0.0009

Q4 1234q 0.9956± 0.0002 0.9656± 0.0005
Q8 8q 0.9969± 0.0002 0.9949± 0.0001
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Table 5.2: R2 Score of RF quadrant sets.

R2 Score (mean± std)
Combination Group Quadrant set R t

Q1

1q 0.98300± 0.00009 0.93554± 0.00049
2q 0.98966± 0.00005 0.89779± 0.00104
3q 0.96645± 0.00009 0.84966± 0.00126
4q 0.96734± 0.00013 0.89541± 0.00058

Q2

12q 0.99391± 0.00004 0.94055± 0.00062
13q 0.99229± 0.00003 0.93459± 0.00068
14q 0.98325± 0.00012 0.92393± 0.00047
23q 0.98715± 0.00005 0.87999± 0.00087
24q 0.98845± 0.00006 0.93275± 0.00058
34q 0.98779± 0.00005 0.93301± 0.00066

Q3

123q 0.99503± 0.00004 0.92691± 0.00082
124q 0.99125± 0.00005 0.93943± 0.00057
134q 0.99272± 0.00004 0.94473± 0.00064
234q 0.99247± 0.00005 0.92773± 0.00072

Q4 1234q 0.99489± 0.00004 0.93995± 0.00056
Q8 8q 0.99665± 0.00003 0.99399± 0.00007

5.1.1 Reynolds Stress Tensor Prediction

It is possible to observe from Figs. 5.1 to 5.6, that all NN and RF models

are capable of generalizing the Rxx, Rxy and Ryycomponents of R with satisfying

accuracy, the prediction of NN being smoother than the RF, and how RANS results

di�er from them. As mentioned in section 4.5, symmetry along the diagonal and

between components were applied in the predicted �elds, therefore, components Rxz

and Rzz are equivalent to Rxy and Ryy, respectively, and are not shown.

Figure 5.1: Prediction of component Rxx of R by the NN model.
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Figure 5.2: Prediction of component Rxx of R by the RF model.

Figure 5.3: Prediction of component Rxy of R by the NN model.

Ryz is the most di�cult component of R to predict. Figs. 5.7 and 5.8 show the

evolution of the predictions for di�erent quadrant sets. It is possible to observe that

adding quadrant sets improve the prediction of both the NN and RF, and imposing

symmetry along the diagonal for the Q8 group yields the best predictions for this

component. It can be observed that RF predictions for this component show better

results for all quadrant groups along the symmetry line, when compared to the NN

predictions which are, again, smoother.

Overall, the 32 MLmodels were able to learn from the data available and replicate

satisfactory �elds for R.

5.1.2 Reynolds Force Vector Prediction

The prediction of t showed that all ML models were able to generalize the avail-

able data and predict satisfactory �elds. Because the post-processing symmetry was

applied, the �eld tz is equivalent to tx and it is not shown.
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Figure 5.4: Prediction of component Rxy of R by the RF model.

Figure 5.5: Prediction of component Ryy of R by the NN model.

It is possible to observe in Figs. 5.9 and 5.10, that the evolution of the quadrant

�elds yields better predictions along the symmetry diagonal of the domain for the tx
component. For all components of t, the NN and RF predictions are accurate and

present more similarity with the target �eld as the quadrant group is increased.

5.2 Corrected Velocity Field

Due to the imposition of symmetry in the predicted �elds, the corrected mean

velocity �elds also present symmetry in the secondary components, Uy and Uz,

making them equivalent. Therefore, only Uy is shown.

5.2.1 Reynolds Stress Tensor Correction

As shown by CRUZ et al. (2019), it is expected that injecting in OF the predicted

�eld of R, does not yield satisfactory results for the main direction of the velocity
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Figure 5.6: Prediction of component Ryy of R by the RF model.

Figure 5.7: Prediction of component Ryz of R by the NN model.

�eld, Ux. It is possible to observe in Figs. 5.13 and 5.14, that imposing symmetry

and improving the convergence of the DNS data, resulted in better predicted �elds

for Ux. Comparing the results obtained by the NN and the RF models, it can be

observed that, overall, the NN models presented a better result near the center of

the square duct, which is the upper right corner of the domain, when compared to

the RF models, in a region where the maximum values are observed.

Fig. 5.15 shows the resultant corrected velocity component, Uy, obtained from

predicted R �elds from the NN. It can be observed that all NN models are capable of

reproducing the recirculation expected in this �ow, but with slightly di�erent values

in the center of the square duct, which in this case is the upper right corner of the

domain, presenting negative values. But with the evolution of the convergence of

the quadrant groups, this di�erence is minimized. Fig. 5.16 shows the same results

for the Uy, obtained from predicted R �elds from the RF. For all quadrants shown,

the resultant �elds from the RF present better recirculation when compared to the
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Figure 5.8: Prediction of component Ryz of R by the RF model.

Figure 5.9: Prediction of component tx of t by the NN model.

NN models, but present values higher than the target in the upper region of the

domain.

5.2.2 Reynolds Force Vector Correction

As expected from the results obtained by CRUZ et al. (2019), the velocity �elds

obtained from the predicted t are more accurate when compared with R, especially

in the main direction. Figs. 5.17 and 5.18 show that for all models, the resulting

velocity �eld component, Ux, is accurate and very similar with the DNS target data.

It is possible to observe that in the center of the square duct, the more converged

quadrant groups shows better results, being more similar to the target.

In the secondary direction, y, it can be observed that all models can accurately

reproduce the recirculation expected in the �ow pattern and it is not possible to

distinguish the �elds, proving the accuracy expected from the injection of t in OF.

The corrected velocity �eld obtained with the predicted t were shown to be very
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Figure 5.10: Prediction of component tx of t by the RF model.

Figure 5.11: Prediction of component ty of t by the NN model.

accurate, highlighting advantages of imposing the expected symmetry and the use

of the Reynolds force vector high �delity quantity from the DNS database.

5.3 Global Errors

In order to obtain one single value for the error of each corrected velocity �eld,

the global error metric was calculated for all 64 models corrected from the predicted

R and t, for both NN and RF models. All the results presented were calculated

for Re = 2900. The baseline RANS global error and the optimal Q8 results were

inserted in all graphs to serve as comparative reference. As the imposed symmetry

was applied, the global error in y and z directions are equal and therefore, only the

result for y is shown. Results are analyzed for quadrant groups as follows.
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Figure 5.12: Prediction of component ty of t by the RF model.

Figure 5.13: Corrected velocity �eld component Ux, by injecting in OF values of R
predicted with the NN model.

5.3.1 Q1

Figs. 5.21 to 5.24 show the global error of the four quadrants in the DNS database

for the predicted values based on NN and RF, R and t, respectively. It is possible to

observe that compared to the baseline RANS global error, applying the ML based

R in OF, yields an accuracy improvement to all quadrants, yet the quadrants does

not present similar results, showing that choosing di�erent quadrants from the high

�delity database is important when constructing a ML based model.

In the main direction of the �ow, Ux, where the baseline RANS can provide part

of the physics involved in the problem, it is possible to observe, in Figs. 5.21a and

5.22a, that all R based velocity �elds shows an improvement when compared to the

baseline RANS, with the �eld corrected from the quadrant 3q presenting the worst

result for the NN models and the �eld corrected from the quadrant 1q the worst for

the RF models. Even with the intrinsic incapability of R based models to provide
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Figure 5.14: Corrected velocity �eld component Ux, by injecting in OF values of R
predicted with the RF model.

Figure 5.15: Corrected velocity �eld component Uy, by injecting in OF values of R
predicted with the NN model.

good results in the main direction of the �ow, an improvement from baseline RANS

is evident.

In the secondary components, represented by Uy in Figs. 5.21b and 5.22b, where

the baseline RANS model is incapable of capturing the physics involved, it is pos-

sible to observe a considerable improvement by implementing ML based turbulence

models, with the RF based models yielding in better results.

It is also possible to observe that the DNS data from the quadrant 3q resulted

in the worst errors for both main and secondary directions for the models based on

R predicted by the NN while 1q resulted in the worst errors for the RF.

When comparing the results obtained by injecting t in OF, it is easy to observe a

substantial improvement when compared with the baseline RANS model, as can be

seen in Figs. 5.23 and 5.24. Also there is a signi�cant improvement when compared

to the results obtained by the same set of quadrants using the predicted R in Figs.
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Figure 5.16: Corrected velocity �eld component Uy, by injecting in OF values of R
predicted with the RF model.

Figure 5.17: Corrected velocity �eld component Ux, by injecting in OF values of t
predicted with the NN model.

5.21 and 5.22, as expected when using t-based models.

It can be observed in Figs. 5.23a and 5.24a that the RF based models presented

better results in the main direction of the �ow, but in the secondary direction, Figs.

5.23b and 5.24b show that the NN based models presented better results.

5.3.2 Q2

The results for the quadrant group Q2 aims to show how the ML model would

perform if the DNS data used as output had an emulated simulation time two

times greater than Q1. Figs. 5.25 and 5.26 show the global error of the corrected

mean velocity �eld obtained by injecting R in OF, for the NN and RF, respectively.

Comparing the results, it is possible to observe that the results of the RF based

models are, in general, better than the NN based models.
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Figure 5.18: Corrected velocity �eld component Ux, by injecting in OF values of t
predicted with the RF model.

Figure 5.19: Corrected velocity �eld component Uy, by injecting in OF values of t
predicted with the NN model.

It can be observed in Fig. 5.25a that, overall, for the NN based models, the

global error has increased in the main direction of the �ow, but the variance be-

tween di�erent sets has decreased, when compared with Q1 results shown in Fig.

5.21a. This shows the inconsistency in the main direction of the mean velocity �eld

obtained from ML models using second order statistic quantities as R. In the sec-

ondary components represented by Fig. 5.25b and 5.26b, it is possible to observe

an improvement when compared with the global error of Q1, shown in Figs. 5.21b

and 5.22b.

Figs. 5.27 and 5.28 show that for both components of the �ow, Ux and Uy, when

injecting predicted values of t with greater emulated simulation time than the one of

Q1, better results are obtained. As well as in Q1 results, RF based models present

better results in the main direction while NN based models perform better in the

secondary direction.
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Figure 5.20: Corrected velocity �eld component Uy, by injecting in OF values of t
predicted with the RF model.

(a) UX (b) UY

Figure 5.21: Global error of the velocity �eld for Q1 group injecting R predicted by
the NN model.

5.3.3 Q3

Following the same methodology, Q3 shows how the ML model would perform if

the DNS data used as output had an emulated simulation time three times greater

than than the one of Q1. Figs. 5.29 and 5.30 show the global errors for models

based on R predicted by NN and RF, respectively.

It can be observed that, overall, a decrease of the global error can be observed in

Figs. 5.29a and 5.30a, for the main direction Ux in Q3, when compared to Q1 and

Q2, for both NN and RF. Figs. 5.29b and 5.30b shows, as well, an overall decrease of

the global error for the secondary component, Uy, which corroborates the capability

of the ML model to learn from better converged DNS data.

For models based on t, the global errors for Q3 can be observed in Figs. 5.31 and

5.32. Its is possible to ascertain that, overall, the global error for both directions

decreases when compared to Q1 and Q2. Again, it can be observed, in general,
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(a) UX (b) UY

Figure 5.22: Global error of the velocity �eld for Q1 group injecting R predicted by
the RF model.

(a) UX (b) UY

Figure 5.23: Global error of the velocity �eld for Q1 group injecting t predicted by
the NN model.

a better result of the RF based models in the main direction while the NN based

models perform better in the secondary direction.

5.3.4 Q4 & Q8

In order to present the results for all quadrant groups, the global error value for

each combination group is the arithmetic mean for the global error for each quadrant

set, as stated in Eq. (4.8). The overall global error for all groups based on R can

be seen in Figs. 5.33 and 5.34.

It is possible to observe that in the main direction, Ux for NN based models,

shown in Fig. 5.33a, increasing the emulated simulation time by adding quadrants

did not result in a better corrected velocity �eld, as the global error did not decrease

as expected. However, imposing symmetry, represented in Q8, yield the best global

error in the main direction for all combination groups. This corroborates the di�-
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(a) UX (b) UY

Figure 5.24: Global error of the velocity �eld for Q1 group injecting t predicted by
the RF model.

(a) UX (b) UY

Figure 5.25: Global error of the velocity �eld for Q2 group injecting R predicted by
the NN model.

culty to replicate the main �ow with ML models based on second order statistics,

such as R.

However, Fig. 5.34a shows the global errors in the main direction, for RF based

models for all quadrant groups, where it is possible to observe that increasing the

emulated simulation time by adding quadrants yields better corrected velocity �elds

in the main direction of the �ow.

In the secondary direction, shown in Figs. 5.33b and 5.34b, it is possible to

observe that emulating higher DNS simulation times results in better corrected

velocity �elds, with the best result being based on the most accurate DNS data,

with full symmetry, Q8, with overall better results for the RF based models.

It can be stated that the RF predictions of R yielded better results when injected

in OF, when compared with NN predictions.

Results based on t can be seen in Figs. 5.35 and 5.36. It can be observed, in

Figs. 5.35a and 5.36a, that for the main direction of the �ow, the evolution of the

emulated simulation time results in does not necessary re�ect in improvement in
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(a) UX (b) UY

Figure 5.26: Global error of the velocity �eld for Q2 group injecting R predicted by
the RF model.

(a) UX (b) UY

Figure 5.27: Global error of the velocity �eld for Q2 group injecting t predicted by
the NN model.

the global error. This can be observed since Q4 results have a higher error than

Q3 and Q2 in NN based models and Q2 has a lower error than Q3 and Q4 for RF

based models. However, when imposing full symmetry, on Q8, the best results are

observed for both models.

In the secondary components, represented by Uy in Figs. 5.35b and 5.36b, it

can be established a direct relation between emulating DNS simulation times and

improving the corrected velocity �eld, with the best result associated with the fully

symmetric case, Q8, for both NN and RF as well.

It is possible to observe that, in general, for predicted t injected in OF, RF based

models performed better in the main direction of the �ow, while NN based model

performed better in the secondary direction.

5.4 Imposed symmetry on ML models

In order to investigate the capability of ML models when trained with symmetric

�elds as outputs, the same symmetry conditions of Section 4.5 and the quadrant
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(a) UX (b) UY

Figure 5.28: Global error of the velocity �eld for Q2 group injecting t predicted by
the RF model.

(a) UX (b) UY

Figure 5.29: Global error of the velocity �eld for Q3 group injecting R predicted by
the NN model.

group Q8 were applied to the set of R and t of the quadrant group Q3, which

involves the quadrant sets 123q, 124q, 134q, 234q. For this new set of four R and

four t, eight NN and eight RF were built in order to predict the desired quantities.

When comparing the results shown in Fig. 5.37 to the original Q3 results shown

in Fig. 5.29, for NN based predicted R, it is possible to observe that for the main

direction, imposing symmetry to the DNS data resulted in better results, overall,

for the Q3 quadrant group. In the secondary direction, a slight improvement can be

observed when imposing the symmetry.

Fig 5.38 shows the results for imposing symmetry to the DNS data on the RF

model. By comparing with the results shown in Fig. 5.30, it can be observe that,

in general, for the RF predicted R no signi�cant improvement was observed in the

main direction of the �ow, and a subtle improvement was observed in most of the

quadrant sets for the secondary direction.

For the t predicted by the NN, Fig. 5.39 shows, when compared to Fig. 5.31,

that for the main direction of the �ow, it is not possible to ascertain that impos-
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(a) UX (b) UY

Figure 5.30: Global error of the velocity �eld for Q3 group injecting R predicted by
the RF model.

(a) UX (b) UY

Figure 5.31: Global error of the velocity �eld for Q3 group injecting t predicted by
the NN model.

ing symmetry resulted in better results. However, when analyzing the secondary

direction, it is possible to observe that imposing symmetry culminated in better

results.

At last, Fig. 5.40 shows the results obtained when symmetry is imposed in t DNS

data for the RF model. When comparing with previous results, shown in Fig. 5.32,

it can be observed that, in general, imposing symmetry resulted in better accuracy

for both the main and secondary directions.

These results show that, overall, ML models perform better when symmetry is

imposed to the desired �elds in ML applications on turbulence models.
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(a) UX (b) UY

Figure 5.32: Global error of the velocity �eld for Q3 group injecting t predicted by
the RF model.

(a) UX (b) UY

Figure 5.33: Global error of the velocity �eld for all quadrant groups injecting R
predicted by the NN model.

(a) UX (b) UY

Figure 5.34: Global error of the velocity �eld for all quadrant groups injecting R
predicted by the RF model.
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(a) UX (b) UY

Figure 5.35: Global error of the velocity �eld for all quadrant groups injecting t
predicted by the NN model.

(a) UX (b) UY

Figure 5.36: Global error of the velocity �eld for all quadrant groups injecting t
predicted by the RF model.

(a) UX (b) UY

Figure 5.37: Global error of the velocity �eld for Q3 group injecting a symmetric R
predicted by the NN model.
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(a) UX (b) UY

Figure 5.38: Global error of the velocity �eld for Q3 group injecting a symmetric R
predicted by the RF model.

(a) UX (b) UY

Figure 5.39: Global error of the velocity �eld for Q3 group injecting a symmetric t
predicted by the NN model.

(a) UX (b) UY

Figure 5.40: Global error of the velocity �eld for Q3 group injecting a symmetric t
predicted by the RF model.
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Chapter 6

Conclusion

In this work, NN and RF models were built using the KERAS and SCIKIT-

LEARN libraries, respectively, in order to predict turbulent properties expressed by

R and t. These predictions were injected in OF to obtain corrected mean veloc-

ity �elds with more accurate results for a turbulent square duct �ow. The DNS

database, made available by PINELLI et al. (2010), was manipulated by analyzing

the available data in quadrants, in order to emulate longer DNS averaging simu-

lation times and hence, obtain better convergence of the respective results. These

data were used as output of ML models, with data from RANS simulations used as

input.

As expected, the global error associated with the predicted values of R was

higher than the error associated with the predicted values of t, which corroborate

the results obtained by CRUZ et al. (2019) and the expected results for the injection

of these quantities in OF, shown in Figs. 4.9 and 4.10.

Results presented in this work showed that, as expected, the convergence of the

DNS database, frequently used in ML applications for turbulence modeling, has a

direct in�uence in the capability of a ML model to learn from the available data

and predict quantities with better accuracy, which implies in better results for the

corrected mean velocity �elds. As expected, the error associated to the corrected

mean velocity �eld, in comparison to the respective DNS mean velocity �eld, tend to

decrease when emulating longer DNS averaging simulation times, which corroborate

the results obtained by RANGEL (2019). The use of Euclidean invariant databases

resulted in satisfactory predictions and corrected velocity �elds for all cases studied,

which is possible to assert comparing results for R and t obtained by RANGEL

(2019) in Figs. 3.10 and 3.11 and the results presented in Figs. 5.33 to 5.36.

Analyzing all ML models and turbulent quantities predicted, R or t, the best

results were obtained for the target that presented the full symmetrical domain,

represented by the quadrant group Q8. The use of the full symmetrical domain for

ML applications is recommended as the computational cost to obtain this data is
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signi�cantly low, when compared to the costs to train ML models and run the OF

simulations, and the predictions result in better corrected velocity �elds.

Results showed that for velocity �elds based on R predictions, the RF models

presented, when compared to NN, an overall lower global error for both main and

secondary directions of the �ow. For velocity �elds based on t predictions, RF mod-

els had lower global error in the main direction of the �ow, but NN models captured

the physics of the secondary �ow with more accuracy. Therefore, analyzing the

results obtained, the use of RF on ML models for turbulence application is recom-

mended, as it yields satisfactory results for all cases studied and, when compared to

NN, have a lower computational cost and are easier to understand and implement.

So, for ML applications where the DNS database presents some kind of symmetry

in their geometry, as in the square duct pattern, the usage of symmetry �lters

that emulate longer DNS simulation averaging times and the usage of invariant

ML databases are essential steps in order to obtain better ML predictions and,

consequently, better corrected velocity �elds.

6.1 Future Work

In order to expand the use of the methodology applied, di�erent and more robust

ML models, when compared to NN and RF, such as gradient boosting regression,

could be implemented, although a higher computational cost is associated with them.

Another line of improvement is the use of optimization algorithms, such as a

Bayesian optimization, to tune all hyper-parameters involved in each ML model

developed, instead of using the same hyper-parameters for all models involved. Al-

though involving a higher computational cost, this would yield the best ML archi-

tecture for each model and best set of outputs from the high-�delity database.

This methodology can also be applied to another ML based turbulence models,

such as the methodology proposed by WU et al. (2018), decomposing the quantity

of interest into an implicit linear and explicit nonlinear terms.
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