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NOVAS METODOLOGIAS PARA TURBULÊNCIA ASSISTIDA POR
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TRANSPORTE PARA O TENSOR E PARA O VETOR DE REYNOLDS
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Julho/2020

Orientador: Roney Leon Thompson

Programa: Engenharia Mecânica

A antiga demanda por melhores modelos de turbulência e o custo computa-

cional ainda proibitivo de simulações de alta-�delidade em dinâmica dos �uidos,

como DNS e LES, levaram ao crescente interesse em acoplar dados de simulações

de alta-�delidade com as populares, porém de�cientes, simulações RANS, através

de técnicas de Aprendizado de Máquina. Estas técnicas usam dados nobres como

alvos para previsões de grandezas a serem propagadas pelas equações RANS. Muitos

dos avanços recentes utilizaram o tensor de Reynolds como alvo destas correções.

Mais recentemente, uma metodologia alternativa utilizou o divergente do tensor de

Reynolds, denominado Vetor de Força de Reynolds, como alvo do Aprendizado de

Máquina.

Uma nova estratégia é o uso de equações de transporte de grandezas turbulentas

contendo termos fonte previstos por Aprendizado de Máquina. Neste contexto, duas

novas metodologias foram propostas, uma delas utilizando a equação de transporte

do tensor de Reynolds e outra utilizando uma equação para o Vetor de Força de

Reynolds. A combinação destas equações com o balanço de momento e um acopla-

mento com a pressão formou dois modelos de turbulência com base em dados.

Redes Neurais foram treinadas utilizando dados DNS para prever os termos fonte

de cada equação. Em seguida, os modelos foram usados para corrigir o escoamento

turbulento em um duto de seção quadrada. Resultados razoáveis foram obtidos

pelos dois modelos de turbulência, consistentemente recuperando o escoamento se-

cundário no duto, que não existia nas simulações iniciais que utilizaram o modelo

κ - ε. As duas metodologias foram também comparados com abordagens alternati-

vas previamente apresentadas na literatura.
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The long lasting demand for better turbulence models and the still prohibitively

computational cost of high-�delity �uid dynamics simulations, like DNS and LES,

have led to a rising interest in coupling available high-�delity datasets and pop-

ular, yet poor, RANS simulations through Machine Learning techniques. These

techniques use noble sources as training targets for predicting quantities to be prop-

agated by RANS equations. Many of the recent advances used the Reynolds stress

tensor as the target for these corrections. More recently, an alternate methodology

used the divergence of the Reynolds stress, denominated the Reynolds Force Vector,

computed indirectly by manipulating mean momentum balance, as the target for

the Machine Learning techniques.

An unexplored strategy in this e�ort is to use transport equations for turbulent

quantities fueled by Machine Learning predicted source terms. In this context, two

new methodologies were proposed, one using a transport equation for the Reynolds

Stress and another one using a transport equation for the Reynolds Force Vector.

The combination of these transport equations along with the momentum balance

and a pressure coupling formed two data-driven turbulence models.

Neural Networks were trained using DNS data to predict the source terms of

each equation. Subsequently, both proposed models were employed to correct the

turbulent �ow on a square-duct. Reasonable results were obtained by both data-

driven turbulence models, consistently recovering the secondary �ow on the duct,

which was not present in the baseline simulations that used the κ - ε model. Results

from both methods were compared with alternate strategies previously presented in

literature.
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Chapter 1

Introduction

The simulation of turbulent �ows in computational �uid dynamics (CFD) has

been a major issue for decades. Solving these problems via physically stringent

simulations demand computational resources unavailable for most of the industry

and researchers. They are also so time consuming that solving a single problem may

take long enough to make them unviable for most applications.

On this family of high-�delity methods of �uid �ow simulations the Direct Nu-

merical Simulations (DNS) stand out as the most accurate available. Other less

accurate but still physically rigorous alternative are the Large Eddy Simulations

(LES). Since most industrial applications of CFD require numerous repetitions of

simulations, and extensive variations in �ow characteristics in the research and de-

sign processes, using DNS and even LES is not feasible.

A number of methods have been proposed to bypass this long lasting di�culty.

Most popular ones are the Reynolds Averaged Navier-Stokes (RANS) models. These

methods simplify the physics of �uid �ows by �ltering them through a time averaging

procedure. Consequently, solving these �ows numerically is much faster. Their

stability and the possibility of simulating and re-simulating numerous cases in short

periods of time are the reason behind their popularity, specially in industry.

However, due to their oversimpli�cation of �ow's phenomena, these models

present a number of limitations that handicaps their results and that make them un-

reliable for many applications. DURAISAMY et al. (2019) lists four central sources

of uncertainty in RANS models.

1. Uncertainties due to mathematical simpli�cation of momentum equations

2. Uncertainties introduced by the choice of modelization of turbulent stresses

3. Uncertainties associated to the functional forms within a chosen model

4. Uncertainties in the calibrated coe�cients inside the model's functions

1



Figure 1.1 illustrates the uncertainties associated with a number of di�erent

RANS models, and associated with di�erent coe�cients inside the same model.

Panel (a) of �gure 1.1 shows the pressure coe�cients Cp pro�les in a wing section of

an aircraft, highlighted by the red line. Every distribution is provided by a di�erent

model. On panel (b) of �gure 1.1 several Cp distributons on a same transonic �ow

over an NACA0012 airfoil are shown. The di�erent curves are the result of varying

a single parameter in an algebraic RANS model that has seven coe�cients in total.

(a) (b)

Figure 1.1: (a) Comparison between multiple RANS models (b) Comparison between

multiple coe�cient values in a same model

Taken from XIAO e CINNELLA (2019) apud TINOCO et al. (2018) and

CINNELLA (2016), respectively.

The necessity of making a compromise between immense time consumption asso-

ciated to huge computational resources versus low accuracy predictions permeated

with uncertainties, that most of the time are not quanti�able, has caused a growing

interest in methods of improving RANS simulations. These methods rely on Ma-

chine Learning (ML) techniques to combine the predictions of high-�delity sources

like DNS, LES and experimental, with the popular yet poor RANS predictions.

TRACEY et al. (2015) developed one of the earliest works in this �eld. There,

Neural Networks (NN) are used to predict the source term in the Spallart-Allmaras

(SA) one-equation turbulence model. Although it does not use higher-�delity sources

of data, the authors demonstrate that NN are capable of satisfactorily predicting

the desired quantities when aiming at the previously known SA analytical results.

Following, LING et al. (2016) uses NN combined with DNS and LES results to

predict the anisotropic part B of the Reynolds Stress Tensor R. Later, the predicted

B was propagated through RANS momentum equations in order to improve the

velocity �elds. Reasonable results were achieved, indicating that approaches using

2



NN are indeed e�ective as a mean of correcting lower-�delity simulations. LING

et al. (2016) also demonstrates that B can be considered a suitable target for the

ML method.

Other works have used the discrepancy between RANS and high-�delity R as the

target for the ML procedure. The predicted discrepancies are then used to correct

the baseline Reynolds stress. WANG et al. (2017a) successfully used Random Forest

models to correct the Reynolds stress via predicted discrepancies in a square-duct

�ow. WANG et al. (2017b) also applies Random Forests to predict the discrepan-

cies, the adressed problems were once again the square-duct and also the �ow over

periodic-hills.

After THOMPSON et al. (2016) demonstrated that although DNS data is canon-

ically considered the highest quality data available, some of their provided quantities

cannot be as highly regarded as others. Namingly, the provided second statistical

moments, that is, the components of R, in many DNS databases are not as well

converged numerically as the mean velocities. Therefore, as pointed by the authors,

injecting these imprecise quantities into RANS environments may lead to propaga-

tion of these defects, resulting in di�erent �ow �elds than those provided by the

database. As a consequence, using the R from DNS simulations in any type o

modelization, including ML, will surely impair the quality of results.

In order to avoid the uncertainties evidentiated in THOMPSON et al. (2016)

a novel methodology is proposed by CRUZ et al. (2019). Because targeting the

Reynolds stress with ML strategies might be inadequate, the author indirectly cal-

culates the divergence of R through the mean velocity �eld and the mean momentum

equations (MME).

CRUZ et al. (2019) denominates this quantity the Reynolds Force Vector, ∇·R ≡
r. By using r as the ML targeted value, the posteriori �ow �eld resulting from the

propagation of this quantity by the RANS simulations shows much better agreement

with the DNS data than those provided by the use of R as a target for the ML

technique.

Until the current moment, all e�orts to correct RANS simulations via machine

learning techniques have focused on predicting turbulent quantities to be directly

injected into the momentum equations. The present work proposes two alternate

methodologies to correct RANS �ows, through the use of data-driven turbulence

models that corrects both velocity �eld and the turbulent quantity.

The �rst model was constructed using an adapted Reynolds Stress Transport

Equation (RSTE) along with the MME and a pressure coupling algorithm, forming

a system of ten coupled partial di�erential equations (PDEs). For this purpose the

canonical form of the RSTE was adapted into a data-driven equation, with a source

term Γ responsible for fueling the proposed procedure. This source symmetric tensor
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Γ is composed by all of the terms in the RSTE which require modeling.

The second turbulence model is a direct extension of the methodology utilized by

CRUZ et al. (2019), employing a transport equation for the Reynolds Force Vector

derived from the canonical RSTE. The deduced Reynolds Force Vector Transport

Equation (RFVTE) also contains a source term, the vector γ, which comprises all

of the terms that require modeling or that are not direct functions of r itself. The

set of seven PDEs formed by the RFVTE, the MME and a pressure equation also

constitute a data-driven turbulence model.

Both proposed turbulence models were employed to correct RANS �ows via the

ML predicted quantities tensor Γ and vector γ. To predict both source terms two

groups of NN were trained for each methodology, using DNS results of a square-duct

�ow provided by PINELLI et al. (2010). The RFVTE methodology also requires the

training of a third set of neural networks, used to predict the boundary conditions

(BC) of r. With the predicted Γ, γ and the BC to be used in the RFVTE, RANS

results were used as initial conditions (IC) and were thus corrected separately by

the two set of partial di�erential equations.

What both proposed methodologies have in common is that the terms to be

predicted by ML techniques are injected into a transport equation for the turbulent

quantity that is subsequently injected in the momentum balance. This remained an

unexplored approach to improve RANS velocity �elds while also improving turbulent

quantities.

Results of both methodologies were compared with the ones obtained by the

prediction and subsequent injection of R and r into the same RANS simulations.
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Chapter 2

Turbulence

The study of turbulent �ows is of primary importance to engineering and most

segments of industry, its applications impacts society as a whole. An in-depth

knowledge of �uid mechanics is not necessary to realize that laminar �ows are the

exception and not the rule and very few observations are required to quickly con�rm

that turbulence is ubiquitous in nature and in human applications.

Laminar �ow is characterized by the organized motion of parallel layers of �uid

sliding over one another. In these, the dimensionless Reynolds Number (Re), de-

scribed in equation 2.1 is below a certain threshold, which varies depending on

circumstances such as experimental arrangement.

Re =
UL

ν
(2.1)

For example, according to KUNDU et al. (2016), when Osborne Reynolds did

his experiments with dye in water �ows through tubes in 1883, he noticed that the

threshold across which the �ow regime went from organized to chaotic was of around

3000. Still according to KUNDU et al. (2016) the critical Re for the change of �ow

regime on the boundary layer on a �at plate is around 106. Figure 2.1 illustrates

the regime transition over a �at plate, in this case the plate is inclined of 1◦ and

Reynolds number is of 106.
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Figure 2.1: Transition on �ow regime on inclined plate

Taken from VAN DYKE (1982)

As Re increases and the laminar threshold is crossed, perturbations experienced

by the �ow are no longer completely dissipated by the viscous e�ects. These pertur-

bations propagate themselves throughout the �ow, as this happens they grow and

modify the �ow behaviour.

A main aspect of turbulence is that it's inherently three-dimensional. Accord-

ing to WILCOX (2006) the velocities �uctuations in the �ow are maintained by

the intense stretching of its non-parallel vortex lines. This vortex stretching mech-

anism is nonexistent in two-dimensional problems. Although three-dimensionality

always occurs, the �ow perturbations that give rise to the turbulent regime may be

two-dimensional (TENNEKES e LUMLEY, 1972). Depending on slightly di�erent

initial or boundary conditions, these perturbations may give rise to completely dif-

ferent �ow aspects, in dynamical system's this characterizes chaos, which is another

challenging aspect of turbulent �ows.

Another extremely complex aspect of turbulence is its wide range of scales. In

turbulent regime, mechanical energy is passed from the largest scales continuously

to intermediate scales until the smallest ones are reached. The largest eddies in

the turbulent �ow are as big as the �ow's characteristic length L (TENNEKES e

LUMLEY, 1972), but it's in the smallest ones that the transferred kinetic energy

is dissipated by molecular viscosity. Figure 2.2 illustrates the scales di�erence in a

turbulent boundary layer, note how the length of the large eddies are of the same

order of magnitude as the boundary layer thickness Lt.
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Figure 2.2: Large and small eddies in a turbulent boundary layer over a �at plate

Taken from TENNEKES e LUMLEY (1972)

This process of intense energy transfer throughout di�erent sized structures is

commonly denoted as energy cascade, it was �rst exposed by RICHARDSON (1922)

in his book on numerical weather prediction. In the book the author states:

We realize thus that: big whirls have little whirls that feed on their

velocity, and little whirls have lesser whirls and so on to viscosity - in

the molecular sense.

Even though inferring the length of the largest eddies in the �ow is quite obvi-

ous, estimating the length of the lesser scales is not as simple. After RICHARDSON

(1922) introduced the cascade process, the characteristic length of energy dissipa-

tion was the object of study of KOLMOGOROV (1941). In this seminal work the

microscales of dissipation in turbulent �ows were estimated through dimensional

analysis. On the smallest scale, where dissipation occurs, inertial and viscous e�ects

are equivalent, that is, Reynolds number is unitary. On equation 2.2 the subscript

k indicates that the quantities refer to the Kolmogorov microscale.

Rek =
vklk
ν

= 1 (2.2)

Since turbulent dissipation (ε) is equivalent to the rate of supplied kinetic energy

(k) its dimension must be as described by equation 2.3a.

ε = −dk
dt

=

[
m2

s3

]
(2.3a)

ε ∼ v3k
lk

(2.3b)

Taking into account that Re is unity, the characteristic velocity becomes vk =

ν/lk, substituting this in equation 2.3b results that the Kolmogorov microscale

length is as described by equation 2.4.
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lk ∼
(
ν3

ε

) 1
4

(2.4)

From the result obtained in equation 2.4 and from 2.2 the Kolmogorov microscale

characteristic velocity (vk) and time (tk) can be estimated.

vk ∼ (νε)
1
4 (2.5a)

tk ∼
(
ν

ε

) 1
2

(2.5b)

Equation 2.6a brings the turbulent dissipation in terms of the �ow's largest

scales. Combining it with equation 2.3b leads to the conclusion that the ratio

between largest and smallest scales is a function of the Reynolds number.

ε ∼ U3

L
(2.6a)

L

lk
∼ L

(
ε

ν3

) 1
4

∼
(
L3U3

ν3

) 1
4

(2.6b)

L

lk
∼ Re

3
4 (2.6c)

To illustrate the huge range of scales present in a same turbulent �ow the the ratio

of scales for the �ow over the inclined �at plate on �gure 2.1 can be calculated. On

this case the Reynolds number is of 106, therefore the ratio L/lk is of approximately

3.2× 104. In a situation where a �at plate measures 1m, with the same Re the scale

of the smallest eddy on the �ow is of around 0.03mm.

On a Direct Numerical Simulation of the Navier-Stokes (NS) equations the mesh

size needs to be of at least the same length as the Kolmogorov scale, since all the

physics of the �ow must be captured by the simulations. The example of �ow over

the �at plate demonstrates how di�cult simulating even reasonably simple �ow

geometries can be.

Along with all the listed complexities of turbulent �ows, the requirement of

extremely re�ned meshes for solving the NS equations numerically, with the com-

putational strength currently available, makes DNS simulations impracticable, with

few exceptions. Taking into account that engineering applications require rapidly re-

peating simulations while varying conditions and geometry, additional mathematical

modelling is required to simplify and make turbulence simulations feasible.
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2.1 Mathematical Modelling of Turbulence

Further mathematical modelling of turbulence departs from the fact that it can

be treated statistically. Knowing that turbulence is chaotic, as mentioned before,

and that small variations in initial conditions can produce a completely di�erent

velocity �eld, DAVIDSON (2015) proposes an experiment with the �ow around a

cylinder. In this experiment the streamwise velocity u(x, t) is measured at a location

x0 downstream of the cylinder. Independently of how many times this measurement

is made along time, the results are always di�erent.

However random u(x0, t) seems to be, its mean over a long enough period of time

is always the same. This indicates that the velocity �eld can be decomposed on a

time average plus a �uctuation, as described by equation 2.7. The time averaging

over a period T of a given �ow quantity q(x, t) is described by equation 2.8, some

useful properties of the time averaging procedure are described by equations 2.9.

ui(x, t) = ūi(x) + u′i(x, t) (2.7)

q̄(x) = lim
T→∞

1

T

∫ T

0

q(x, t)dt (2.8)

q1 + q2 = q̄1 + q̄2, q̄1q2 = q̄1q̄2,
∂q1
∂s

=
∂q̄1
∂s

, q′ = 0 (2.9)

Figure 2.3 depicts the �ow past a cylinder as proposed by DAVIDSON (2015)

and two measurement realizations for the streamwise velocity as well as the time

averaged velocity.

Figure 2.3: Flow past cylinder, two realizations of u(x0, t) and time average ū(x0)

Adapted from DAVIDSON (2015)
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Considering a �ow with an incompressible �uid, the Navier-Stokes equation may

be modi�ed into its conservation form 2.10a. Mass conservation is described on

equation 2.10b.

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.10a)

∂ui
∂xi

= 0 (2.10b)

Expressing the velocity �eld and pressure as the sum of a mean and its �uctu-

ating counterpart such as described by equation 2.7 and substituting them on NS

equations, results

∂

∂t

(
ui+u

′
i

)
+

∂

∂xj

[
(ui+u

′
i)(uj+u

′
j)

]
= −1

ρ

∂

∂xi

(
p̄+p′

)
+ν

∂2

∂xj∂xj

(
ui+u

′
i

)
(2.11)

Expanding all the terms on equation 2.11 and taking a time average of the whole

equation yields

∂

∂t

(
ui + u′i

)
+

∂

∂xj

(
uju′i + uiu′j + uiuj + u′iu

′
j

)
= −1

ρ

∂

∂xi

(
p̄+ p′

)
+ν

∂2

∂xj∂xj

(
ui + u′i

)
(2.12a)

∂

∂xj

(
ūiūj + u′iu

′
j

)
= −1

ρ

∂p̄

∂xi
+ ν

∂2ui
∂xj∂xj

(2.12b)

This process is known as Reynolds averaging. Rearranging the terms on the

mean momentum equation 2.12b and carrying out the same operations analogously

on the continuity equation 2.10b results in equations 2.13a and 2.13b, respectively.

These are known as the Reynolds-averaged Navier-Stokes equations.

∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− u′iu′j

)
(2.13a)

∂ūi
∂xi

= 0 (2.13b)

Comparing the mean momentum equation 2.13a with its usual instantaneous

form 2.10a two main di�erences are noted. First, the time derivative disappears on

the RANS form, this makes sense since time averages covering a long period should

not vary with time. In case it happened this would mean that the period T was not

long enough. Second, an extra term shows up on the right side of the equation, this

new term −u′iu′j has the dimension of [length2/time2] therefore it is interpreted as an

additional stress. These new stresses are normally called speci�c Reynolds turbulent
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stress tensor R. According to DAVIDSON (2015) the Reynolds stress tensor is not

a conventional stress in the word's usual sense, in reality these velocity �uctuations

represent the momentum �uxes induced by the mean �ow.

When dealing with the usual forms of Navier-Stokes and mass conservation, there

are 4 equations and 4 unknowns, in cartesian coordinates u, v, w and p, therefore a

determined system. In these new mean equations there are still 4 equations and the

4 mean �ow properties but there are also the 6 additional Reynolds tensor compo-

nents, which turns the system of di�erential equations in an undetermined system.

This inability to solve the RANS equations is widely known as the closure problem

of turbulence. Solving any problem through RANS equations requires additional

di�erential equations.

2.1.1 The Boussinesq Hypothesis and The κ − ε Model

One of the simplest intuitions one can have regarding the turbulent stress tensor

R is that, like the deviatoric part of the speci�c stress tensor τ , it may be propor-

tional to the strain rate tensor S. The proportionality parameter between τ and S

is the molecular kinematic viscosity ν, in the turbulent stress correlation an eddy

viscosity νt is proposed. Equation 2.14a and 2.14b expose the correlation between

both stress tensors and the strain rate tensor.

τij = 2νSij = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.14a)

Rij = 2νtSij = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.14b)

The turbulent stress tensor proposed in equation 2.14b has an intrinsic problem,

its trace will be −u′iu′i = 2νt
∂ui
∂xi

. Since the right hand side coincides with the

continuity equation this would mean that u′iu
′
i = 0 which is not reasonable. The

most common correction to this problem is shown in equation 2.15, where κ = 1
2
u′iu
′
i

is the turbulent kinetic energy.

Rij = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
κδij (2.15)

The �rst to propose this correlation between turbulent stresses and mean strain

rate was BOUSSINESQ (1877), therefore the reason why it's commonly called

Boussinesq's hypothesis. Due to the fact that νt has the dimension [length2/time]

the most simple solution to calculate νt involves de multiplication of a characteristic

length and a velocity, this is commonly referred as Prandtl's mixing-length theory

(DAVIDSON, 2015). This solution was also proposed by BOUSSINESQ (1877) after

obtaining the expression for the turbulent stress tensor.
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There are numerous ways of calculating the turbulent viscosity, known as tur-

bulence models. Namely, the models generally are categorized in algebraic formula-

tions like Prandtl's mixing-length, formulations that involve solving one di�erential

equation, while others require solving two di�erential equations. There are also

models that directly model the Reynolds stress tensor and therefore do not follow

the Boussinesq's hypothesis.

The κ − ε Model

Two-equation models are probably the most employed with engineering purposes.

According to WILCOX (2006) κ − ε model is as well known as Prandtl's mixing-

length theory, and was the most used model by the end of the twentieth century.

Although many other models have been popularized and new ones formulated, as

of today it probably remains one of the most used ones. Although other previous

works proposed similar ones, it was JONES e LAUNDER (1972) that established

the fundamental basis to this portion of turbulence modeling. Later LAUNDER e

SHARMA (1974) applied it to a �ow around a spinning disc and settled the widely

renowned and used Standard κ − ε.

Transport equations for the turbulent kinetic energy κ and the turbulent dis-

sipation rate ε are proposed, the eddy viscosity is then calculated using these two

obtained quantities. Although the model has many limitations, MOHAMMADI e

PIRONNEAU (1993) a�rms it provides reasonable results due to its good range of

generalization and cheap computational cost.

There are multiple available derivations in literature for turbulent kinetic en-

ergy's transport equation. MOHAMMADI e PIRONNEAU (1993) follows the same

steps as JONES e LAUNDER (1972), through the manipulations of NS equation

2.10a and RANS equation 2.13a with further time averaging steps, the κ transport

equation is obtained. On the other hand WILCOX (2006) derives it by �rst �nding a

di�erential equation that directly models R and then taking the tensorial equation's

trace. In this work, for simplicity and conciseness, the κ equation 2.16 will not be

derived and will be used directly as given by WILCOX (2006).

∂κ

∂t
+ uj

∂κ

∂xj
= νt

∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+

∂

∂xj

[(
ν +

νt
σκ

)
∂κ

∂xj

]
− ε (2.16)

The dissipation rate equation 2.17, for the same reason as the κ, will not be

derived in this work. The procedure carried out to obtain it can be checked at

numerous sources like MOHAMMADI e PIRONNEAU (1993) and WILCOX (2006).
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∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

κ
νt
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
− Cε2

ε2

κ
(2.17)

Once it's possible to calculate the scalars κ and ε, eddy viscosity can be written

as a function of both, shown in equation 2.18.

νt = Cµ
κ2

ε
(2.18)

The constants σκ, used in equation 2.16, σε, Cε1 Cε2, used in 2.17, and Cµ used

in the eddy viscosity formula 2.18 are calibrated using experimental data. Table

2.1 shows their values as proposed by LAUNDER e SPALDING (1974), di�erent

values for these constants may be encountered across literature. An example of such

variations is that these on table 2.1 are di�erent from those �rst proposed by JONES

e LAUNDER (1972).

Table 2.1: κ − ε model's constants values
Cµ Cε1 Cε2 σκ σε

0.09 1.44 1.92 1.0 1.3
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Chapter 3

Neural Networks

Machine learning is a generic term to describe a series of mathematical manipu-

lation of data by algorithms, in order to either group or map the input data into a

desired output, or simply �nding patterns across the inputs.

When mapping or grouping into targeted outputs the process is referred to as

supervised learning, when no speci�c output is desired rather than better under-

standing the data through pattern recognition, the procedure is named unsupervised

learning (DURAISAMY et al., 2019). Other two categories of algorithms are cited

by MARSLAND (2011), reinforcement learning, a hybrid between unsupervised and

supervised, and evolutionary learning, alike biological evolution it uses the concept

of output's �tness.

Naming these numerical operations as a learning process comes from the fact

that, similarly to humans and animals in general, the algorithms enhance them-

selves through experience and repetition. Some popular machine learning tech-

niques reviewed by KOTSIANTIS et al. (2006) include: Decision Trees, Neural

Networks, Random Forests (RF), Bayesian Newtorks (BN) and Support Vector Ma-

chines (SVM).

Arti�cial Neural Networks were conceived loosely based on the nature of the hu-

man brain, an attempt to computationally model the brain architecture. According

to BISHOP (2006), this ML category now comprises many di�erent models. The

plausibility of the biological analogy and how well these models capture it have been

considerably exaggerated over time. This is not necessarily a downside of their func-

tioning, on the contrary, the method has proven its wide utility and its popularity

is on the rise.

The fundamental structure in the NN is the neuron, its �rst mathematical model

was proposed by MCCULLOCH e PITTS (1943) and stablished the basis for the

modern Arti�cial Neural Networks (ANN). Figure 3.1 depicts the typical modern

modeled neuron.

This structure works by receiving vectorized m inputs x = [x1, x2, ..., xm], each
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input is multiplied by a corresponding weight, also organized in a vector wk =

[wk1, wk2, ..., wkm]. Following, the product of all the multiplications are summed

with a bias bk, the result of the summation is passed through a function ϕ(υk). This

function is called the activation function and its choice depends on the application

of the NN.

Figure 3.1: Model of neuron used in Arti�cial Neural Networks, labeled as k

Taken from HAYKIN (2009)

Equations 3.1 summarize the operations carried out on a single neuron. Note

that the weights wk and the bias bk are functions of the neuron, in a NN with

multiple neurons each one has its own set of wk and bk.

υk = wT
k · x + bk (3.1a)

yk = ϕ(υk) (3.1b)

The model presented by MCCULLOCH e PITTS (1943) has a main di�erence

to the modern one depicted in �gure 3.1, its activation function is a step function.

If the inputed summation does not exceed a certain threshold this neuron's model

output is zero, if the threshold is exceeded the output is one.

Further development to this type of modeling was presented by ROSENBLATT

(1958), where what now is categorized as supervised learning was �rst presented

(HAYKIN, 2009). In ROSENBLATT (1958) learning is �rst discussed as way to

adjust the neuron's weights and bias in classi�cation problems, this employment of a

neuronal structure is named perceptron. Later ROSENBLATT (1961) demonstrated

the Principal Convergence Theorem, proving that the perceptron is able to correctly

classify linearly separable patterns through the proposed error correction algorithm.

According to HAYKIN (2009), following up ROSENBLATT (1961), a number
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of works identi�ed a series of limitations of the perceptron and disencouraged the

further development and exploration of neural networks in general for nearly two

decades. The most compromising shortcoming of the perceptron was the proven

inability to correctly generalize its results based on the inputed learning data.

More recently it has been widely demonstrated that the use of many com-

bined perceptrons, arranged into multiple layers can achieve results previously un-

obtainable thorugh the use of single or few combined perceptrons (HAYKIN (2009),

BISHOP (2006), MARSLAND (2011)). This new structure of multiple perceptrons

joined together in multiple connected layers is called the Multi-Layer Perceptron

(MLP).

3.1 The Multi-Layer Perceptron and Forward Prop-

agation

As mentioned before, the MLP is divided into layers, each of these composed by

a number of neurons N . Layers are subdivided into three categories: input, hidden

and output layers. The input layer does not perform any calculations nor has any

neurons, it's a layer composed only by the inputs. The output layer has neurons

and performs calculations, it is in fact the last layer and its results are the outputs

of the NN.

Hidden layers are the intermediate ones, they can be multiple, ranging from

a single hidden layer to hundreds of them, depending on the application and the

programmer's choice. The number of layers on a NN is commonly denoted L. There

are also networks with no hidden layers, that is, all the calculations are performed

only in the output layer.

A network with multiple layers functions as follows, subscripts k denote the k-th

neuron and superscripts (l) denote the l-th layer.

1. The �rst hidden layer l = 1 receives the inputs x from the input layer

(a) Every neuron in this hidden layer receives all of the inputs and they're

multiplied by the neuron's weights w
(1)
k .

(b) The results of these multiplications are then summed along with the bias

b
(1)
k , forming the scalar υ(1)k as described by equation 3.1a.

(c) The scalar υ(1)k is passed through the neuron's activation function ϕ(υ
(1)
k ),

resulting in the neuron's output ȳ(1)k as described by equation 3.1b.

(d) The outputs of every neuron in the �rst hidden layer form the layer's

output vector ȳ(1) = [ȳ
(1)
1 , ȳ

(1)
2 , ..., ȳ

(1)
k ].
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2. The previous layer's outputs ȳ(1) become the input for the following hidden

layer l = 2. The same procedures are repeated in this layer until output ȳ(2)

is calculated.

3. For all subsequent hidden layers the procedure described in item 1 is repeated

analogously until the output layer is reached

4. In the output layer the procedure is equally repeated, this time the layer's

outputs con�gure the �nal MLP's output ŷ = [ŷ1, ŷ2, ..., ŷk]

This process is known as forward propagation (FP), note that each neuron pro-

cesses all the inputs its layer receives from the previous one, this con�gures what

is commonly called a fully connected neural network. Figure 3.2 shows an example

of a NN with four inputs, one hidden layer with three neurons and three neurons

in the output layer. For clarity and better understanding, �gure 3.2 does not show

a fully connected NN, since including all the connections depicted by the arrows

would make it polluted.

Figure 3.2: Neural Network with 6 neurons and a single hidden layer

Taken from KOTSIANTIS et al. (2006)

3.2 Network Training and Back-Propagation

The error correction algorithms proposed in ROSENBLATT (1961) require direct

error measurements between outputs ŷ and target values y, this is feasible when

using single perceptrons or few ones organized into a single layer, since their outputs

are the network's outputs.
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This is not possible when dealing with a Multi-Layer Perceptron because one

can only measure the error of the output layer. There are no targeted values for the

hidden layers' outputs. According to MARSLAND (2011) this is the reason why

intermediate layers are called hidden, because their oututs are not usually seen and

there are no metrics to measure their error, there is in fact no associated error.

The solution to circumvent the impossibility of adjusting the NN parameters

through direct error corrections is called Back-Propagation (BP), or Back Prop-

agation of Error (MARSLAND, 2011). This procedure uses an error function to

be minimized throughout subsequent updates of the weights and biases of the net-

work. These adjusts utilize the function's gradient with respect to the network's

parameters.

This error measurement is usually called loss function, and will be denoted by

J(ŷ,y). Since the gradient is computed with respect to the the network's parame-

ters, this implies that the derivatives of the chosen activation functions are known

and continuous.

A widely used loss function is the sum of the squares error, as shown in equation

3.2, where n is the number of samples.

J(ŷ,y) =
1

2

n∑
k=1

(ŷ − y)2 (3.2)

The back-propagation scheme known as gradient descent, or stochastic gradient

descent (SGD), as described by BISHOP (2006) is summarized below. Subscripts

k and j denote respectively the k-th neuron and the j-th input received by this

neuron. Superscript (l) denotes the l-th layer.

For conciseness the involved quatities, e.g. the gradient's components and others,

will be given in formulas, their deductions are explained in detail in multiple sources

like BISHOP (2006), HAYKIN (2009) and MARSLAND (2011).

1. The gradient of the loss function ∇J with respect to all weights w
(l)
k and biases

b
(l)
k , as shown in equation 3.3, is computed.

∇J =

[
∂J

∂w
(1)
11

,
∂J

∂w
(1)
12

, ...,
∂J

∂w
(1)
1j

,
∂J

∂b
(1)
1

, ...,
∂J

∂w
(l)
kj

,
∂J

∂b
(l)
k

]
(3.3)

(a) A delta function δ(l)k , presented in equation 3.4, is de�ned to simplify the

calculation of the derivatives.

δ
(l)
k =

ϕ′(υ
(l)
k )(ŷk − yk), if l = L

ϕ′(υ
(l)
k )
∑N

b=1(δ
(l+1)
b w

(l+1)
bk ), if 1 ≤ l < L

(3.4)
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(b) The derivatives with respect to the weights are calculated following the

formula in equation 3.5. The quantity ϕ′(υ
(l)
k ) is the derivative of the

activation function with respect to υ(l)k .

∂J

∂w
(l)
kj

= ȳ
(l−1)
j δ

(l)
k (3.5)

(c) The derivatives of J with respect to the biases are calculated via equation

3.6.

∂J

∂b
(l)
k

= δ
(l)
k (3.6)

2. After all derivatives have been computed, the weights w(l)
kj and biases b(l)k can

be updated via the following equations 3.7a and 3.7b, respectively.

w
(l)
kj = w

(l)
kj − α

∂J

∂w
(l)
kj

(3.7a)

b
(l)
k = b

(l)
k − α

∂J

∂b
(l)
k

(3.7b)

It can be noted in equation 3.4 that the delta function is recursive. In order to

calculate δ(l)k in a layer l the function's value in the following layer δ(l+1)
k is required.

Therefore, the algorithm must begin in the output layer and advance towards the

�rst hidden layer. This characteristic is the reason why the scheme is designated

back-propagation of error.

The negative signs in the update rules in equations 3.7 indicate that the pa-

rameters will be updated in the direction of the greatest decrease in the function,

therefore minimizing it.

The parameter α is a learning rate and works the same way as under-relaxation

does in the numeric solution of di�erential equations. Ranging from zero to unity,

this parameter de�nes if the network's learning speed will be increased, in case

of higher values, or decreased. The way it a�ects the training depends on the

application, in some a higher α may take w and b values to local minimum of J

that would not be reached by a lower value. In other cases higher α may simply

impossibilitate the network to settle in any minimum at all.

There are alternate optimization techniques based on gradient descent, an ex-

ample is the Adam algorithm introduced in KINGMA e BA (2014). Adam uses

moving averages of the gradient and the gradient squared to adapt the learning rate

throughout the training. These averages are known as moments, and their use have

been proved bene�cial for the training stage.
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3.3 Hyper-Parameters

During this entire chapter many of the aspects of the Neural Network are listed

as an application dependent choice. So far these parameters were the number of

layers L, the number of neurons per layer N , the activation function ϕ(υ) and the

learning rate α. They are de�ned as the hyper-parameters of a network, in order to

avoid confusion with the parameters w and b.

The appropriate choice of hyper-parameters is fundamental to the network in a

way that small di�erences might lead to completely di�erent results. KOTSIANTIS

et al. (2006) highlights that the appropriate choice of L and N can be troubling,

excessive number of neurons can impair results by over�tting them, that is, the

network works exceptionally well in the training steps but performs poorly on other

applications. While picking less neurons than necessary will lead to poor general-

ization capability and bad results also.

Other common hyper-parameters are the number of epochs and batch sizes.

According to MARSLAND (2011) an Epoch is de�ned as a complete FP and BP

performed over all the training dataset. The duration of an epoch, depends on how

many data points will be inputed in the NN before their associated errors are back-

propagated. This amount of data points passed in forward propagation before the

backward propagation is computed is de�ned as a batch size, or mini-batch size.

The batch size de�nes the duration of an epoch. A batch size can vary from a

single data point to an entire dataset. Smaller batch-sizes make training slower since

a lot more updates will be necessary in the same epoch. Consequently, many more

epochs will occur. For example, if a given dataset's batches are composed by a tenth

of its data points, a single epoch would be composed of ten parameters updates.

Dividing training into epochs is important since one of the simplest ways to

determine when to interrupt training is to set a maximum number of epochs.

As mentioned before, the activation functions must meet two requirements, they

must be continuous as well as their derivatives. Popular activation functions are

the sigmoid function σ(x), which ranges from [0, 1], the hyperbolic tangent function

tanh(x), which ranges from [−1, 1], and the ReLU function, ranging from [0,∞].

These three functions are presented in equations 3.8 and their behaviour is displayed

at �gure 3.3.

σ(υk) =
1

1 + e−υk
(3.8a)

tanh(υk) =
eυk − e−υk
eυk + e−υk

(3.8b)
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ReLU(υk) = max(0, υk) (3.8c)
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Figure 3.3: (a) σ(υk) (b) tanh(υk) (c) ReLU(υk)

Choosing the best hyper-parameters can take considerable time, turning into

a heuristic choice that is dependent on the programmer's experience, size of the

available training dataset, desired speed of network training and complexity of the

problem. The nature of this search can be so intricate that this procedure often

described as hyper-parameter tuning.

3.4 Train, Validation and Test Stages

One of the most common issues in the use of NN occurs when the network

memorizes the training dataset instead of correctly assimilating the data in order to

generalize its aspects. When this happens the network makes poor predictions to

any other unknown data inputed into it. This con�gures over�tting of the network

(BISHOP, 2006).

To avoid this major problem it is usual to split the available dataset into three

di�erent groups, the train, validation and test datasets. The training stage uses the

correlated dataset to perform back-propagation and adjust all of the parameters.

While training is in progress, the validation dataset is used by the network not to

update any of the parameters, but to check what is the value of the loss function

when using this new data.

With this new measurement it is possible to verify how both training and valida-

tion losses are evolving throughout learning. Usually both values decrease alogside,

with the training loss ideally being a little lower than the validation one. After

some time in the learning process the validation loss will either stop decreasing and

reach a plateau or even start increasing, while the training loss will remain decreas-

ing continuously. This behavior indicates that the network is over�tting and that

training should be interrupted. Therefore, using a validation set is a useful manner

to e�ciently know when to stop training.
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The test dataset, in opposition to te validation and train datasets, is never seen

by the network. It is interesting to keep a part of the available data to evaluate the

�tness of the trained network. Since the results associated to this dataset are known

it is possible to evaluate how well this network may perform on never before seen

data.

Keeping a separate unevaluated dataset is also useful from the perspective that it

allows the evaluation of multiple trained networks. Knowing how well the network

performs on this testing data makes it possible to pick the best one among the

multiple networks. This is important since every network has some randomness

within it, due to the fact that before training their parameters are initialized with

random values.

There is no rule to splitting the available dataset between train, validation and

test, it depends on how much data one possesses. It is a good practice to split in

reasonable percentages that give the network enough data to correctly learn while

also e�ciently validate and test it.

22



Chapter 4

Machine Learning Assisted

Turbulence

Although RANS simulations have been proved very useful, their results are still

limited. The Boussinesq hypothesis is not suitable for a number of scenarios, nam-

ingly �ows with mean streamline curvature, secondary �ows, sudden changes in mean

strain-rate (WILCOX, 2006), adverse pressure gradients and �ows with separation

and reattachment (THOMPSON et al., 2019).

In THOMPSON et al. (2010) other constitutive relations for the deviatoric part

B of the Reynolds stress are evaluated. A metric for measuring the importance

of a second order tensor with respect to another is used to evaluate the linear

eddy-viscosity assumption and other more complex constitutive relations. This is

measured by an index φ proposed by THOMPSON (2008). The index φ is shown

in equation 4.1, it varies from zero to unity, with zero indicating that both tensors

are totally non-proportional and one indicating that they keep proportionality.

In equation 4.1 Rmod is a modeled Reynolds stress and RHF is a high-�delity

one.

φ = 1− 2

π
cos−1

(
‖Rmod‖
‖RHF‖

)
(4.1)

Figure 4.1 shows two scenarios of φ in a �ow on a square-duct, there DNS is used

as the high-�delity data. In panel (a) of �gure 4.1 the usual linear eddy-viscosity

assumption is evaluated, panel (b) depicts the performance index φ for the model

B = α0I + α1S + α2S
2 + βP proposed by THOMPSON et al. (2010), where α

and β are scalar coe�cients. The tensor P is the nonpersistence-of-straining tensor

(THOMPSON, 2008), which indicates how persistent is the local strain in the �ow.

As the tensor's intensity grows the less persistent is the straining.
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(a) B = α1S (b) B = α0I + α1S + α2S
2 + βP

Figure 4.1: Boussinesq hypothesis' performance versus a more complex constitutive

relationship performance

Adapted from THOMPSON et al. (2010)

Other consitutive relations between mean kinematic quantities and the turbulent

stress tensor were studied by NIECKELE et al. (2016). There, DNS and experi-

mental data were employed to evaluate the proposed models' performances. The

tensorial basis used to constitute R was based on the mean strain-rate tensor S

and the nonpersistence-of-straining tensor P (THOMPSON, 2008). A total of six

models are evaluated by NIECKELE et al. (2016) and their performances were also

measured by the index φ, in equation 4.1.

Figure 4.2 depicts φ for the six models in a plane channel �ow and a boundary

layer �ow. The index φ demonstrated in �gure 4.2 used DNS data as the high-�delity

source, while in the boundary layer �ow experimental data was used.

(a) DNS plane channel �ow (b) Experimental boundary layer �ow

Figure 4.2: Boussinesq hypothesis' perfomance versus other six more complex models

Adapted from NIECKELE et al. (2016)

In �gure 4.2 the Boussinesq linear eddy-viscosity hypothesis is categorized as
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model I, while the model B = α0I + α1S + α2S
2 + βP proposed by THOMPSON

et al. (2010) is categorized as model III. The other depicted models are di�erent

combinations of tensors S, S2, P, P2 and I.

The limitations exposed by THOMPSON et al. (2010) and NIECKELE et al.

(2016), illustrated by �gures 4.1 and 4.2, combined with the di�culty in formulat-

ing new models that are both stable and computationally cheap, have encouraged

the development of alternative strategies to simulate turbulent �ows. A promising

alternative has been the application of Machine Learning to improve the results of

RANS simulations, based on corresponding results from high-�delity sources, like

DNS and LES. The ML strategies, in general, build a functional relationship be-

tween mean �ow quantities from low-�delity simulations and a desired quantity

from a high-�delity simulation.

In this novel context, TRACEY et al. (2015) was one of the �rst works to explore

the capabilities of predicting turbulent �ows' quantities through ML. The authors

constructed a two hidden-layer neural network, with 50 neurons per layer, to predict

the source term of the Spallart-Allmaras one-equation turbulence model. The SA

model consists of a transport equation for the turbulent viscosity νt. The source term

s included in the model equation, according to TRACEY et al. (2015), was built

based on modelers experience and calibrated over simple �ows. High-�delity data

was not used to train the NN, it instead aimed at a known analytic SA source terms

to investigate the NN capacity of correctly predicting a known quantity with a given

set of inputs. Promising results were obtained using a reasonable range of di�erent

�ows. The predicted source terms were, in many cases, capable of successfully

being injected into CFD solvers and further propagated to velocity �elds and other

quantities of interest (QoI), e.g. skin-friction coe�cient Cf . The use of multiple

targeted outputs, input features, loss functions and training datasets in TRACEY

et al. (2015) evidentiated that the achieved results are highly dependent on the

adequate choice of these con�gurations. It is also highlighted by the authors that

predicting reasonably accurate quantities does not guarantee that reasonable results

will be achieved when these are injected into the CFD environment and propagated

by the PDEs. The inverse is also true, sometimes poor predictions do lead to good

posteriori �ow results. This obviously is highly dependent on the CFD environment

in question.

Figure 4.3 compares predicted versus analytical results of two di�erent source

terms. According to TRACEY et al. (2015), the almost identical results in panel

(a) lead to bad �ow solutions, while the deviating result in panel (b) has almost

no consequences when propagated. This outlines the importance of coupling ML

results with the CFD environment. The quality of results can not solely be judged

by direct comparison to true values of yet to be propagated quantities.
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(a) (b)

Figure 4.3: (a) Predicted versus true s value, associated to poor propagation, (b)

Predicted versus true s values, associated to good propagation

Taken from TRACEY et al. (2015)

In an attempt to identify regions where the linear eddy-viscosity assumption does

not perform well LING e TEMPLETON (2015) also employed ML techniques. Three

metrics were selected to identify these problematic regions in a set of di�erent �ows,

and were �rst evaluated by direct comparison between RANS and DNS or LES.

Following, three di�erent ML algorithms were used to predict these regions, each

technique predicted the RANS performance on the three uncertainty metrics. The

ML techniques used were the Support Vector Machines, Decision Trees and Random

Forests (RF). Predicted regions where Boussinesq hypothesis fails are compared with

the previously known results. Results demonstrate that better predictions were

made by the RF technique. Since very di�erent class of �ows were used to train and

test the algorithm, a promising aspect of LING e TEMPLETON (2015) is that it

indicates that ML is able to generalize the learned data to �ows with considerable

di�erent characteristics. It also expands the possibilities of using ML to quantify

uncertainties in RANS simulations.

More recently, LING et al. (2016) applied deep Neural Networks with embedded

Galilean invariance to correct RANS simulations. Being Galilean invariant guar-

antees that if the coordinates axes are rotated, inputed and outputed quantities

will also be, assuring that same �ows with di�erent axes orientations will provide

the same predictions by the NN. Deep Neural Networks di�erentiate themselves

from usual NN by their large number of hidden layers, in LING et al. (2016) 8

hidden-layers with thirty neurons each are used. There, the inputs were an invari-

ant normalized tensor basis, based on the mean strain-rate tensor S and the mean

rotation rate tensor W. The NN is trained to output the normalized deviatoric part
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of the Reynolds stress, which is then propagated to a new velocity �eld, through the

mean momentum equations. LING et al. (2016) also used a Bayesian optimization

technique to tune the hyperparameters α, L and N , this procedue ensured that the

built networks achieved more accurate results. Another interesting aspect is that

data from DNS and LES simulations from 9 entirely di�erent �ows are used to train

the network, while it is tested on a square-duct and wavy wall �ows. This imple-

mentation by LING et al. (2016) provided reasonable results when compared to

other procedures, a comparison is made with a NN that did not have any embedded

invariance, with a linear eddy-viscosity model and a quadratic eddy-viscosity model

results. It successfully predicted the secondary motion on a square duct and some

recirculation on a wavy-wall channel �ow. The quadratic model and non-invariant

NN although capable of predicting these phenomena to some extent, have very lim-

ited results. This demonstrates that the invariant NN is capable of providing better

results than usual models, although they are still not quantitatively comparable to

DNS.

Another strategy is employed by WANG et al. (2017b) to reconsruct the tur-

bulent stresses. Using RF trained with DNS data the authors predicted the dis-

crepancies between DNS and RANS Reynolds stresses ∆R. The discrepancies are

computed after the tensors have been projected to six quantities. These quantities

are Galilean invariant, and represent the magnitude, shape and orientation of the

tensor. This new procedure is tested on the square-duct �ow and on the �ow over

periodic hills. The �ow over periodic hills is specially interesting to this purpose

because it presents large separation regions. These two �ows datasets are not mixed

together, that is, separate random forest regressors are trained for the di�erent �ow

geometries. Chosen input features are a set of nine non-dimensional, physically

representative quantities. The square-duct RF is trained using di�erent Reynolds

numbers, while two separate RF are trained to predict the periodic hills ∆R, one

trained on the same geometry with di�erents Re and other trained on slightly dif-

ferent hills geometries with di�erent Re as well. Obtained results are good for both

cases where training is conducted only on multiple Re cases, the predicted Reynolds

stresses in these scenarios are much closer to the high-�delity test data than the

baseline RANS simulations were.

Figure 4.4 shows the comparison between baseline RANS, DNS and predicted

components of R for the di�erent Re training scenario.
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(a)

(b)

Figure 4.4: (a) Square-duct predicted component Rzz pro�les, (b) Periodic hills

predicted component Rxy pro�les

Adapted from WANG et al. (2017b)

Figure 4.5 illustrates that the RF predictions for slightly di�erent hills geometries

in the periodic hills �ow is not as good as the results in �gure 4.4, obtained via

training only on alternate Re.
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Figure 4.5: Predicted turbulent kinetic energy k pro�les with trained using modi�ed

geometries

Taken from WANG et al. (2017b)

According to WANG et al. (2017b) although the results in �gure 4.5 are not

very good on the whole domain, the methodology is proven e�cient since the main

interest was predicting the recirculating region. In �gure 4.5 the recirculating zone

ranges from the pro�les in coordinates 2 to 6. The author suggests that the inad-

equacy on other coordinates of �gure 4.5 are due to the lack of data quality in the

upper channel region. Moreover, the employed approach suggests that training ML

on sets of data from similar geometries might be a better strategy than using wide

datasets from �ows that are too di�erent from each other. A shortcoming of WANG

et al. (2017b) is that the predicted stresses are not propagated to the mean �ow by

the momentum equations. According to the authors it is due to the discrepancies

in predicted quantities, especially the ones shown in some regions of �gure 4.5.

In this context of employing representations of the discrepancy of R in the ML

framework, WU et al. (2017) explored the suitability in representing ∆R eigen-

vectors through Euler angles, relative Euler angles and the unit quaternion. Euler

angles describe the current orientation of a given coordinate set with respect to a

global coordinate set. If the coordinate axes are respectively the low and high-�delity

Reynolds stress eigenvectors, the Euler angles are said relative, and are invariant. If

the Euler angles of both low and high-�delity R are correlated to a global coordinate

system, this is said an absolute Euler angle and it is not invariant. Unit quaternions

are a four component vector that compactly representate a rotation of an angle θ

about an axis n, independently of a global coordinate system, therefore invariant.

According to WU et al. (2017) a suitable representation for ML predictions must

be smooth in space and invariant. According to the authors, absolute Euler an-

gles are coordinate dependent and discrepancy-based Euler angles are not spatially

smooth. Therefore the most suitable representation of eigenvectors discrepancy to

be predicted by ML is provided by the unit quaternion, which is corroborated by
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the ML predictions obtained for both unit quaternion and relative Euler angles. As

in WANG et al. (2017b) predictions are not propagated to mean velocity �elds.

WU et al. (2018) also used RF on the square-duct and periodic-hills �ows. By

predicting an optimal eddy-viscosity νt and the part of R that is nonlinear with S.

An optimal R is reconstructed and subsequently propagated to the mean �ow �eld.

The baseline RANS simulations were provided by direct Reynolds Stress Tensor

Modeling (RSTM). Contrarily to the linear eddy-viscosity models like the κ-ε, the

RSTM models do predict an exaggerated secondary �ow in the square-duct. The

applied methodology did succeed on improving the baseline RSTM results. In the

periodic hills simulation, ML predictions also led to better mean-�ow than the one

provided by the baseline RANS simulations, but were not as good as the square-duct

results.

Figure 4.6 demonstrates the corrections in the secondary �ow performed in WU

et al. (2018). Although the baseline RSTM does predict recirculation, the ML

predictions led the velocity pro�les much closer to the DNS data.

(a) (b)

Figure 4.6: (a) uy velocity component, (b) uz velocity component

Taken from WU et al. (2018)

The problem involving the full reconstruction of the turbulent stresses by the ML

algorithms is adressed by CRUZ et al. (2019). Since the stresses provenient from

the DNS results might not be fully converged like the mean �ow ū, as evidentiated

by THOMPSON et al. (2016), an alternative path to train ML techniques based on

high-�delity datasets was proposed. Since the mean velocity �eld of DNS sources

do not contain the convergence problems highlighted in THOMPSON et al. (2016),

an indirect calculation of the Reynolds Force Vector through the manipulation of

the mean momentum equations is used to avoid the unconverged DNS R. This

procedure is demonstrated in equations 4.2.

r = ∇ ·R (4.2a)
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r = ū · ∇ū +
1

ρ
∇p− ν∇2ū (4.2b)

Since the DNS square-duct dataset provided by PINELLI et al. (2010) does not

provide pressure �elds, a modi�ed RFV used by CRUZ et al. (2019) is demonstrated

in equation 4.3.

t = r− 1

ρ
∇p (4.3)

The chosen ML method was a two hidden layers NN, with 100 neurons each,

which was trained using four di�erent Re square-duct �ows, and used to predict the

vector t. An extended tensor basis was inputed into the network, based on the RANS

S, R and P. A vector basis consisting on the divergence of each tensor in the tensor

basis was also used as input. In CRUZ et al. (2019) only Euclidean invariance was

ensured, this means that the rotation and translation of test dataset's coordinate

axes would require the training of an alternate network with the same alteration

in training dataset coordinates. After completing training, test predictions were

injected into the RANS MME in order to correct the mean �ow �eld. Reasonably

accurate results were demonstrated, most notably the null secondary �ow of RANS

simulations is succesfully corrected and showed great agreement with the DNS data,

as can be seen in �gure 4.7.

Figure 4.7: Comparison between RANS, DNS, and correction by NN predicted t

Adapted from CRUZ et al. (2019)

For comparison, an alternate NN using R as the target is built to evaluate

both methodologies. Figure 4.8 demonstrates that the global error measured by

equations 4.4 for the three velocity components are much smaller when using the
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RFV methdology. The RDNS and tDNS errors correspond to the direct injection of

both DNS quantities into the MME, therefore they served as an upper perfomance

boundary estimate.

Ei =

√
(ūi,DNS − ūi,θ)2

Ubulk

, i = x, y, z; θ = t, R (4.4a)

Ei =
1

A

∫
A

EidA, i = x, y, z (4.4b)

Figure 4.8: Global errors for RANS, RDNS, tDNS, predicted R and predicted t

Taken from CRUZ et al. (2019)
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Chapter 5

The Square-Duct Flow

The square-duct �ow is of main interest due to the recirculation present in the

near wall region. This phenomena occurs mainly because of the imbalance between

the normal stresses in the cross sectional plane (XIAO et al. (2016), WANG et al.

(2017b), WU et al. (2018)). Figure 5.1 depicts the �ow and its secondary motion,

in it the x direction is the direction of the main �ow. The normal stresses whose

imbalance drives the secondary motion are Ryy and Rzz.

Figure 5.1: Square-duct �ow geometry and secondary �ow

Adapted from WANG et al. (2017b)

Linear-eddy viscosity models fail to capture this imbalance, making this a con-

cern in the development of data-driven e�orts of correcting mean �ows and correlated

quantities of interest.
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5.1 Baseline RANS Simulation of the Square-Duct

Flow

The baseline simulations of a square-duct were performed to serve both as inputs

and to be corrected by neural network predictions. For this purpose, the selected

RANS model was the Standard κ - ε with coe�cients from LAUNDER e SPALDING

(1974), shown in table 2.1. In order to reduce computational costs, only one quadrant

of the duct was simulated, taking advantage of the �ow's symmetry with respect to

the center lines in the cross section.

For comparison between methodologies, the setup was based on CRUZ et al.

(2019). The sole di�erence is that in CRUZ et al. (2019) ten sections of the square-

duct were simulated, each section with 1600 cells, resulting in a total of 16000. In this

work, the ten sections centroids were clustered in a single section with 125×125 cell

centers, resulting in 15625 cells, covering a computational domain of 1m×1m×1m.

This mesh con�guration ensures that the number of cells used to train and test the

neural networks are close to the utilized in CRUZ et al. (2019), and also guarantees

that y+ is smaller than 0.6 on the duct's walls. The employed mesh is depicted in

�gure 5.2, it gets coarser as it gets farther away from the duct's wall. Elements

length growth ratio in the wall-normal directions is of 2. That means that following

on the same wall, the last cell's length will be the double of the �rst cell located in

the duct's corner. This expansion ratio is imposed on both wall-normal directions,

y and z in this context.

Figure 5.2: Baseline simulations' mesh

Simulations were conducted on the open source software OpenFOAM-4.x (OF).
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OF is an extended framework on C++ programming language, consisting of libraries,

solvers and executables for pre and post-processing in �uid mechanics applications.

It also enables user developed environments and solvers for personalized simulations.

The simpleFoam application was used, a �nite volume solver for incompressible,

steady-state �ows, using the SIMPLE method of coupling the pressure �eld and the

continuity equation (PATANKAR e SPALDING, 1972). The boundary �elds of the

simulated domain are shown in �gure 5.3. The boundary conditions on the �xed

walls were: (a) no-slip condition, (b) zero pressure gradient, (c) null turbulent kinetic

energy κ, (d) epsilonWallFunction for turbulent dissipation ε, implemented on OF

and derived from the canonical law of the wall. Symmetry boundary conditions are

imposed on the symmetry planes and periodic boundary conditions are imposed on

the inlet and outlet.

Initial conditions were: (a) uniform velocity �eld ū = (4.81958 ×
10−1, 0, 0) [m/s], (b) null pressure �eld, (c) uniform κ = 1.09456 × 10−3 [m2/s2],

(d) uniform ε = 4.28838× 10−5 [m2/s3].

Cyclic – inlet/outlet

Fixed walls

Symmetry planes

Figure 5.3: Boundary �elds of the square-duct

An area averaged value for the velocity components is imposed, this bulk velocity

is of Ubulk = 4.81958× 10−1 [m/s] in the main �ow direction x and null on the sec-

ondary directions y and z. This is done in OF by implementing a momentumSource

condition on the internal �eld. On each iteration, the main velocity component

u is averaged over the cross sectional area, if the averaged value is di�erent from

the imposed Ubulk, an arti�cial pressure gradient in the main �ow's direction ∂p
∂x

is

calculated and inserted it in the momentum equations to assure that the averaged

value is the bulk velocity.
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Six di�erent Re, with respect to Ubulk and half the duct's wall length h = 1, were

simulated by altering ν. Used values of ν are given in table 5.1.

Table 5.1: Simulated Re and corresponding kinematic viscosities
Re ν[m2/s]

2200 2.1858× 10−4

2400 2.0082× 10−4

2600 1.8537× 10−4

2900 1.6619× 10−4

3200 1.5061× 10−4

3500 1.3770× 10−4

The discretization schemes of the simulations were:

1. Advective terms: Gaussian integration with upwind di�erencing

2. Di�usive terms: Gaussian integration with corrected linear interpolation

3. Gradient terms: Gaussian integration with linear interpolation

4. Interpolation scheme: Linear interpolation

The Gaussian integration indicates that the values at cell centers are interpolated

to and summed at cell faces. Linear di�erencing means that the values at the cell

faces will be a linear interpolation of the two cells separated by the current face.

Upwind di�erencing indicates that the cell face values assumes the value of the

following cell in the positive direction.

Once discretized, the linearized pressure equation was solved using the Precondi-

tioned Conjugate Gradient (PCG) solver, with Diagonal incomplete-Cholesky (DIC)

preconditioner, for symmetric matrices. The linearized systems of equations for ū, κ

and ε were solved using the smooth solver coupled with the symmetric Gauss-Seidel

smoother.

Residuals tolerance was of 1 × 10−7 and under-relaxation factors for all solved

�elds was of 0.3. Relative tolerance between consecutive iterations was of 1× 10−2,

meaning that the linear systems solvers stopped iterating when solving a same

pseudo time-step after their �nal residual had decreased by two orders of magni-

tude. Imposing a relative tolerance is considerably e�ective in reducing compu-

tational time, especially when many simulations need to be carried. This is not

mandatory in OpenFOAM solvers, where one can simply impose that the residu-

als tolerance used as the simulation stopping criterion is also employed on pseudo

time-steps solutions.
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Chapter 6

Methodology

In this chapter the data-driven turbulence models based on the Reynolds Stress

Tensor Transport Equation (RSTE) and the Reynolds Force Vector Transport Equa-

tion (RFVTE) are introduced and explained. Both equations were used as the means

of injecting NN predicted data into the RANS environment for correcting its mean

�ow �eld. The two coupled set of di�erential equations for ū, p and R or r constitute

new turbulence models supplied by data provided by ML schemes.

First, the turbulence model that solves the Reynolds Stress tensor R and it's

numerical implementation in OpenFOAM are explained. Second, the deduction of

the RFVTE is carried in detail and is subsequently adjusted to the case where the

modi�ed Reynolds Force Vector t is to be used instead of r. This modi�cation

is done in order to enable that all involved quantities are calculated by the sole

manipulation of the DNS velocity �eld uDNS. Afterwards, the numerical solver of

the RVTE turbulence model implemented in OpenFOAM is explained.

The CFD segment of the present work is followed by the Machine Learning

segment, where the details of the Neural Networks assembling and training stages

are explained. Four alternative methodologies to be compared in chapter 7 are

detailed. These are: the prediction of the RSTE source term Γ̂, the modi�ed RFVTE

boundary conditions and its source term γ̂, the prediction of the modi�ed RFV t and

the Reynolds stress tensor R. These four constitute alternative ways of correcting

RANS �ows through ML predicted quantities, and their perfomances are evaluated

and compared.

6.1 The Adapted Reynolds Stress Tensor Transport

Equation

The R transport equation can be deducted by multiplying the Navier-Stokes

equations by the �uctuating velocities, decomposing the velocities into an time av-
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erage and a �uctuation and further time averaging the products. The �rst step of

this procedure is shown in equation 6.1b, where N (ui) is the Navier-Stokes opera-

tor. Further mathematical steps of the deduction of equation 6.2 will be skipped to

maintain conciseness.

N (ui) =
∂ui
∂t

+ uk
∂ui
∂xk

+
1

ρ

∂p

∂xi
− ν ∂2ui

∂xk∂xk
= 0 (6.1a)

u′iN (ūj + u′j) + u′jN (ūi + u′i) = 0 (6.1b)

Equation 6.2 presents the RSTE after all calculations in equation 6.1b are carried

(WILCOX, 2006).

u · ∇R = −∇Tu ·R−R · ∇u + ν∇2R + Γ (6.2)

Because the purpose of the present methodology is to deduce an equation con-

taining a term to be used as the target of a NN, all the terms that require modeling

e.g. the triple velocity �uctuation products, pressure �uctuations and pressure-

strain correlation, were grouped into a single tensor Γ, as done in THOMPSON

et al. (2019). In equation 6.2 and subsequent equations the overbar in the mean

velocities is dropped for simplicity.

To preserve numerical stability of the proposed method, two adjustments were

made to equation 6.2. The terms −∇Tu ·R−R · ∇u, canonically referred to as the

production term of the RSTE, were incorporated to the source term of the equation.

Also, a turbulent vicosity νt was introduced into the di�usive term, resulting in

equation 6.3a. The source term of the proposed RSTE model becomes the symmetric

tensor Γ̂, described in equation 6.3b.

u · ∇R = ∇ · ((ν + νt)∇R) + Γ̂ (6.3a)

Γ̂ = Γ−∇Tu ·R−R · ∇u−∇ · (νt∇R) (6.3b)

Modifying equation 6.2 into equation 6.3a was necessary to guarantee not only

numeric stability but also the robustness of the proposed methodology, ensuring

that most NN predictions would be able to correct the RANS �ow �eld.

6.2 The Reynolds Force Vector Transport Equation

Because the Reynolds Force Vector is de�ned as ∇ ·R ≡ r, the divergence of all

terms in the RSTE are taken. For that, equation 6.2 is presented in indicial notation

in equation 6.4.
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uk
∂Rij

∂xk
= −Rjk

∂ui
∂xk
−Rik

∂uj
∂xk

+ ν
∂2Rij

∂xk∂xk
+ Γij (6.4)

First, the divergence of the convective term is taken in equaton 6.5.

∂

∂xm

(
uk
∂Rij

∂xk

)
em · eiej =

[
∂uk
∂xm

∂Rij

∂xk
δim + uk

∂

∂xk

(
∂Rij

∂xm

)
δim

]
ej

=

[
∂uk
∂xi

∂Rij

∂xk
+ uk

∂

∂xk

(
∂Rji

∂xi

)]
ej

(6.5)

Then, the �rst production term, in equation 6.6.

∂

∂xm

(
−Rjk

∂ui
∂xk

)
em · eiej = −

[
∂Rjk

∂xm

∂ui
∂xk

δim +Rjk

∂

∂xm

(
∂ui
∂xk

)
δim

]
ej

= −
[
∂Rjk

∂xi

∂ui
∂xk

+
∂

∂xk

(
∂ui
∂xi

)
Rkj

]
ej

(6.6)

Following, the second production term's divergence is calculated in equation 6.7.

∂

∂xm

(
−Rik

∂uj
∂xk

)
em · eiej = −

[
∂Rik

∂xm

∂uj
∂xk

δim +Rik

∂

∂xm

(
∂uj
∂xk

)
δim

]
ej

= −
[
∂Rik

∂xi

∂uj
∂xk

+Rki

∂

∂xi

(
∂uj
∂xk

)]
ej

(6.7)

Fourth, the divergence of the di�usive term, equation 6.8.

∂

∂xm

(
ν
∂2Rij

∂xk∂xk

)
em · eiej = ν

∂

∂xm

(
∂2Rij

∂xk∂xk

)
δimej

= ν
∂2

∂xk∂xk

(
∂Rji

∂xi

)
ej

(6.8)

Lastly, the divergence of the tensor Γ in equation 6.9.

∂Γij

∂xm
em · eiej =

∂Γij

∂xi
ej (6.9)

Joining all the terms from equations 6.5 until 6.9 leads to Reynolds Force Vector

Transport Equation 6.10, in indicial notation.

∂uk
∂xi

∂Rij

∂xk
+uk

∂

∂xk

(
∂Rij

∂xi

)
= −∂Rjk

∂xi

∂ui
∂xk
−∂Rik

∂xi

∂uj
∂xk
−Rki

∂

∂xi

(
∂uj
∂xk

)
+ν

∂2

∂xk∂xk

(
∂Rij

∂xi

)
+
∂Γij

∂xi
(6.10)

Equation 6.10 translates back into the symbolic equation 6.11. Further math-
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ematical details of translating equation 6.10 back into symbolic notation can be

checked in appendix A.

u · ∇(∇ ·R) = −∇Tu · (∇ ·R) + ν∇2(∇ ·R) + γ (6.11)

Where the vector γ consists of all the terms that require modeling and that are

not a direct function of ∇ ·R. Equation 6.12 shows all terms within γ, in it : is the

double product between a third and a second order tensors.

γ = −2∇Tu : ∇R−R : ∇(∇u) +∇ · Γ (6.12)

Substituting the de�nition of the Reynolds force vector r ≡ ∇ ·R into equation

6.11 results in equation 6.13.

u · ∇r = −∇Tu · r + ν∇2r + γ (6.13)

6.2.1 The Modi�ed RFVTE

Owing to the de�ciencies in the DNS provided R exposed in THOMPSON et al.

(2016), and their limitation in providing reasonable predictions in the ML context

evidentiaded by CRUZ et al. (2019), the present methodology also calculates r

indirectly, through the manipulation of the mean momentum equations, as shown

in equation 6.14.

r = u · ∇u +
1

ρ
∇p− ν∇2u (6.14)

The present work also uses the DNS square-duct data provided by PINELLI

et al. (2010), as in CRUZ et al. (2019). Since no mean pressure �elds are provided

in this dataset, an modi�ed RFV t = r − 1
ρ
∇p was used, therefore, equation 6.14

becomes equation 6.15.

t = u · ∇u− ν∇2u (6.15)

Because the modi�ed RFV t is used, a modi�cation of the RFVTE is necessary.

Substituting the de�nition r = t + 1
ρ
∇p into equation 6.13 results:

u · ∇(t +
1

ρ
∇p) = −∇Tu · (t +

1

ρ
∇p) + ν∇2(t +

1

ρ
∇p) + γ (6.16a)

u · ∇t + u · ∇(
1

ρ
∇p) = −∇Tu · t−∇Tu · (1

ρ
∇p) + ν∇2t + ν∇2(

1

ρ
∇p) + γ (6.16b)
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u · ∇t = −∇Tu · t + ν∇2t + γ − u · ∇(
1

ρ
∇p)−∇Tu · (1

ρ
∇p) + ν∇2(

1

ρ
∇p)︸ ︷︷ ︸

γ̃

(6.16c)

u · ∇t = −∇Tu · t + ν∇2t + γ̃ (6.16d)

Therefore, the RFVTE is adapted to the modi�ed Reynolds Force Vector and

the terms that require modeling and are not a direct function of t are grouped into

the source term γp, as shown in equation 6.17

γp = γ − u · ∇(
1

ρ
∇p)−∇Tu · (1

ρ
∇p) + ν∇2(

1

ρ
∇p) (6.17)

As done in section 6.1 in the RSTE, the proposed transport equation 6.16d re-

quires further adaptions to preserve the equation's numerical stability. Analogously

as in the RSTE, the velocity gradient term in 6.16d is incorporated into the source

term, along with a turbulent viscosity into the di�usive term. Resulting in the �nal

data-driven transport equation for the modi�ed Reynolds Force Vector 6.18a. The

source term of 6.18a is presented in equation 6.18b.

u · ∇t = ∇ · ((ν + νt)∇t) + γ̂ (6.18a)

γ̂ = γp −∇Tu · t−∇ · (νt∇t) (6.18b)

6.3 The Data-Driven Turbulence Models

Both presented source terms Γ̂ and γ̂ were employed as NN targets, responsible

for correcting the RANS �ow �elds. For this purpose, the DNS Γ̂DNS and γ̂DNS

were calculated indirectly, through the manipulation of equations 6.3a and 6.18a,

respectively, resulting in the formulas 6.19a and 6.19b. On both equations 6.19a

and 6.19b the employed turbulent viscosity νt were taken from the baseline RANS

simulations.

Γ̂DNS = uDNS · ∇RDNS −∇ · ((ν + νt)∇RDNS) (6.19a)

γ̂DNS = uDNS · ∇tDNS −∇ · ((ν + νt)∇tDNS) (6.19b)

To calculate γ̂DNS via equation 6.19b a pre-processing in tDNS was required. The

calculation of tDNS through the manipulation of the momentum balance results in
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a �eld with improper values on the symmetry plane on the center line of the duct.

This probably occurs due to the low resolution of the available mesh from the DNS

simulations of the square-duct by PINELLI et al. (2010).

Although relatively small, these regions grow in size and magnitude when in-

puted into equation 6.19b and harm the γ̂DNS �elds, their usage in the RFVTE and

consequently the training of the NN responsible for predicting γ̂.

The pre-processing consists on simply erasing the inaccurate regions and replac-

ing them by an extrapolation of the remaining �eld. The extrapolation was done by

using a 2D cubic spline provided by the RectBivariateSpline command of the SciPy

Python library (VIRTANEN et al., 2020). SciPy is a scienti�c package containing

numerous mathematical algorithms and functions. Figure 6.1 demonstrates the x

component of tDNS with the inaccurate region highlighted.

Figure 6.1: Inaccurate tDNS regions

Figure 6.2 demonstrates the x component of tDNS after the pre-processing step

is performed.
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Figure 6.2: tDNS after pre-processing

Di�erently from the vector γ̂, the indirect calculation of the source term Γ̂ of

the RSTE methodology did not require any pre-processing.

Two data-driven turbulence models are proposed using the presented Reynolds

Stress Tensor Transport Equation 6.3a and the modi�ed Reynolds Force Vector

Transport Equation 6.18a. Using the tensor Γ̂ and the vector γ̂ as a source terms,

both the RSTE and the RFVTE were used to correct the mean �ow provided by

the κ - ε simulations described in chapter 5. This was done by coupling the novel

transport equations with the mean momentum equations and the pressure equation

from the SIMPLE method by PATANKAR e SPALDING (1972). The SIMPLE

method uses the continuity equation to build an equation for the pressure �eld,

while still imposing the conservation of mass to the �ow �eld.

With these schemes, two sets of coupled partial di�erential equations were

formed. The �rst one, using the RSTE, consisted on ten coupled PDEs, solving

the three components of the velocity vector u = [u, v, w], the six components of

the symmetric tensor R = [Rxx, Rxy, Rxz, Ryy, Ryz, Rzz] and the pressure p. The

second data-driven turbulence model solves the three velocity components, the three

components of the modi�ed RFV t = [tx, ty, tzs] and the pressure �eld.

Both algorithms were implemented in OpenFOAM-4.x. Implementation

was done in two separate turbulence models, this type of implementation en-

ables the use of the software's preexisting solvers. Both turbulence mod-

els are available on the GitHub platform at: https://github.com/mthsmcd/

DataDrivenTurbulenceModels/.

The chosen OpenFOAM's solver was simpleFoam, the same used in the κ - ε

simulations detailed in chapter 5. Once the source terms Γ̂ or γ̂ are provided the
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numerical solution procedure works as follows,

1. Update u through mean momentum equations u · ∇u = ν∇2u − ∇ · R or

u · ∇u = ν∇2u + t

2. Impose continuity to new mean velocity �eld and update p

3. Update �eld R or t through their respective transport equations u · ∇R =

∇ · ((ν + νt)∇R) + Γ̂ or u · ∇t = ∇ · ((ν + νt)∇t) + γ̂ using the updated u

The boundary conditions (BC) for u and p are the same as the ones used in the

κ - ε simulations, detailed in chapter 5. The tensor R is null at the wall. For the

vector t, unlike the �rst and second-type boundary conditions of u and p respectively,

the BC are non-canonical. This di�culty imposes the necessity of also using ML

procedures to predict the boundary conditions for the RFV twall, which is also done

in the present work by the use of NN.

To correct the RANS �ow, the presented numerical procedure used uRANS and

pRANS as initial conditions (IC), and the NN predicted Γ̂NN or γ̂NN and twall,NN val-

ues. The initial conditions of R and t however are not their corresponding RANS

�elds. Although possible to use the κ - ε �elds R or t as initial conditions, the proce-

dure achieved better results when departing from null IC on both cases. Numerical

convergence also occurred reasonably faster.

6.4 Neural Networks Setup

In order to fuel the presented turbulence model, three di�erent sets of Neural

Networks were built to predict the source terms Γ̂NN and γ̂NN, and the boundary

�eld twall,NN. The DNS calculated �elds Γ̂DNS, γ̂DNS and twall,DNS were used to

train the networks and to evaluate it. Other two sets of NN were built to predict

respectively t and R, which are trained by using the same setup of the Γ̂ and γ̂

networks. This was done to compare the four methodologies' capabilities.

The DNS database utilized was provided by PINELLI et al. (2010) and post-

processed by RANGEL (2019). The post-processing consisted on enhancing the time

averages of the velocity and the Reynolds stress components by further averaging

the eight square-duct's octants provided in the DNS dataset, taking advantage of

the symmetry between these regions. The symmetry between the eight octants is

illustrated in �gure 5.1. This average increment enhances the dataset, especially the

problematic R, whose numerical convergence is not as well observed in the original

dataset, reducing the disparities when using R as ML targets that will correct the

RANS �ow �eld.
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All NN were built using the Keras Python library for Machine Learning (CHOL-

LET et al., 2015). The Keras library is widely used and provides an extensive

framework for ML purposes, with its �exibility and wide range of available pre-

programmed fully customizable models and con�gurations, Keras makes the devel-

opment of arti�cial intelligence codes much simpler.

6.4.1 Prediction of Γ̂ and γ̂

Neural Network Architecture and Hyper-Parameters Con�guration

The neural networks responsible for predicting the source terms Γ̂NN and γ̂NN

were built with two hidden layers each and 100 neurons per layer. The number

of neurons in the output layer varied with the network's target. The Γ̂ predicting

networks' output layer contained six neurons, while the γ̂ output layers contained

three. Each neuron in the output layer is assigned to each of the target's compo-

nents. Multiple architectures were evaluated, ranging from single layer networks

to deep-learning networks with more than 10 layers and various neurons per layer

con�gurations. The best �t was found to be the two layer, 100 neurons networks.

In the output layer the activation fucntions ϕ(υ) used were linear functions. In

the hidden layers the ϕ(υ) functions were the hyperbolic tangent function, equation

3.8b, whose behavior is depicted in �gure 3.3 (b). Other activation functions like the

sigmoid and ReLU were tested, but results from tanh(υ) were considerably better.

The weights and biases of the network were updated after each iteration ac-

cordingly to an adaptative learning rate α. At the beginning of training α was of

1×10−3, it was reduced by a factor of 0.6 whenever 5 consecutive epochs resulted in

no decrease of the loss function on the validation dataset. Training was interrupted

when 20 consecutive epochs resulted in no improvement of the validation loss. The

training batch-size was of 32 data points, which guaranteed a reasonable training

speed whithout harming the resulting networks predicting abilities. The used loss-

function was the mean-squared error function, and the learning optimizer was the

Adam algorithm (KINGMA e BA, 2014).

Input Selection

The selection of the network's inputs departed from the ones used in CRUZ

et al. (2019). At �rst, the inputs for the Γ̂ networks consisted on the components of

the eight symmetric tensors and associated divergents used in CRUZ et al. (2019),

plus the symmetric tensor Γ̂ and its divergent, resulting in 81 features. As for the γ̂

networks, the same tensorial basis was used, with the addition of the non-symmetric

tensor ∇γ̂ and the vector γ̂, resulting in a total of 84 features. These a priori inputs

are listed in table 6.1.
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Table 6.1: A priori inputs
Tensors Vectors

S ∇ · S
P ∇ ·P
S2 ∇ · S2

P2 ∇ ·P2

S ·P + P · S ∇ · (S ·P + P · S)

S2 ·P + P · S2 ∇ · (S2 ·P + P · S2)

P2 · S + S ·P2 ∇ · (P2 · S + S ·P2)

R r

Γ̂ or ∇γ̂ ∇ · Γ̂ or γ̂

An analysis on each of the tensors and vectors components magnitudes' revealed

that some of them are orders of magnitude higher than others in some regions of

the �ow geometry. This discrepancy was found to greatly impair the networks'

predicting capabilities. Therefore, all components of tensors or vectors whose aver-

age magnitudes were more than 2 orders of magnitude higher than the others were

excluded.

Some other inputs were composed mostly by null components in the whole do-

main e.g. tensor S components Sxx, Syy, Szz and Syz. When inputed into the NN

these variables served as noise to be taken into account by the successive operations

done in the network. Members of this group were also excluded from the inputs list.

Another special case is the tensor S·P+P·S and its divergent, whose components

on the κ - ε context were mostly null on the duct's geometry, but on some very scarce

regions presented notably high values, constituting a cosiderably discontinuous �eld.

This also served as additional noise when inputed into the networks, and impaired

the networks performance, being also excluded.

After �ltering out the three problematic groups within table 6.1, the Γ̂ networks'

inputs were reduced from 81 to 27 and the γ̂ inputs' went from the a priori 84 inputs

to a total of 22. The remaining features for both cases are presented on table 6.2
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Table 6.2: Final list of inputs
Tensors Components Vectors Components

S: [Sxy, Sxz] ∇ · S: (∇ · S)x

P: [Pxx, Pyy, Pyz, Pzz] -

S2: [S2
xx, S

2
yy, S

2
yz, S

2
zz] -

R: [Rxx, Rxy, Rxz, Ryy, Rzz] r: [rx, ry, rz]

∇γ̂: [∇γ̂yx, ∇γ̂zx] γ̂: [γ̂x]

or or

Γ̂: [Γ̂xx, Γ̂xy, Γ̂xz, Γ̂yy, Γ̂zz] ∇ · Γ̂: [(∇ · Γ̂)x, (∇ · Γ̂)y, (∇ · Γ̂)z]

The inputs reduction is bene�cial not only because the impairing and noisy

components are excluded, but also because the considerable number of a priori

inputs increased the number of parameters to be trained in the networks, since

the �rst layer would have more weights to be adjusted. Lesser parameters to be

adjusted when using limited amounts of training data, like the present work's case,

is advantageous to the network.

Figure 6.3 demonstrates the di�erence between the evolution of training and

validation losses when using the a priori 84 inputs of the γ̂ and the a posteriori 22

inputs. The proximity between the training and validation curves indicates that the

network is assimilating and generalizing the training data to the validation dataset

much better when using the reduced number of inputs. The same behaviour depicted

in �gure 6.3 occurred in the Γ̂ networks training.

(a) (b)

Figure 6.3: (a) 84 inputs learning curve, (b) 22 inputs learning curve

Input and Output Normalization

Before being inserted into the network, the inputs are combined in an input

matrix X. In X, each column represents one of the components in table 6.2 and

each line refers to a centroid in the simulation mesh, that is, matrix X in the γ̂
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networks is a 15625 × 22 matrix. Every column of the input matrix X must be

normalized following the formula in equation 6.20, where µ is the mean and σ is

the standard deviation of the column's values. This normalization ensures that the

values of each column will be adjusted to a normal distribution with zero mean and

unit variance. This is a standard procedure in neural network training and use in

general, it must also be done to the testing input matrix Xtest and validation input

matrix Xval.

Xcolumn =
Xcolumn − µcolumn

σcolumn

(6.20)

The output matrix Y organization follows the same logic of the matrix X, lines

correspond to cells of the simulations and columns represent each of the target's

components. In the Γ̂ networks, matrix Y was a 15625×6 matrix. The normalization

procedure in equation 6.20 must also be done to the output training and validation

matrix Ytrain and Yval. Following the training stage, the outputed Ytest will also be

normalized, requiring the rescaling through the inverse procedure, shown in equation

6.21

Ycolumn = Ycolumn × σcolumn + µcolumn (6.21)

Train, Test and Validation Splitting

A cross-validation step was performed to separate the 6 available Re simulations

into train, validation and test datasets. Using four Re to compose the training

group, one Re for validation and one for testing creates a scenario of 30 possible

combinations of the three groups. The cross-validation ensures that the best �t is

chosen based on the performance of the network on the test data of each of the 30

possibilities. To �nd out the combination that lead to the better results, all 30 pos-

sibilites were evaluated, 5 times each, resulting in 150 separately trained networks

for each of the targets. The error metric employed to select the network that per-

formed the better on the predicted Ytest is shown in equation 6.22, where the term

rms(γ̂test, γ̂DNS) is the root mean-squared error, and the term max(mean(|γ̂DNS|))
is the maximum value among local means of the absolute values of the three com-

ponents of γ̂DNS.

S(γ̂test, γ̂DNS) =
rms(γ̂test, γ̂DNS)

max(mean(|γ̂DNS|))
(6.22)

For both Γ̂ and γ̂ networks, better results were achieved by using Re =

2400 as the validation dataset, Re = 2900 as the testing dataset and Re =

[2200, 2600, 3200, 3500] as the training dataset. Train, test and validation input
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and output matrix sizes are exposed in table 6.3. Since every Re contains 15625

computational cells, the training X and Y matrices have 4 times the number of lines

of the validation and test matrices.

Table 6.3: Input and output matrices X and Y sizes
X Y

Lines Columns Lines Columns

Train 62500 27 or 22 62500 6 or 3

Validation 15625 27 or 22 15625 6 or 3

Test 15625 27 or 22 15625 6 or 3

Total 93750 27 or 22 93750 6 or 3

After cross-validation was performed, 100 neural networks were trained for each

of the targets Γ̂ and γ̂ using the con�guration pointed by the cross-validation as

the best setup. The error metric in equation 6.22 was used again to select the best

network in the 100 trained.

Penalization of Loss Function

The γ̂ �eld in the square-duct is mostly restrained to the near wall regions.

Outside this vicinity the values decrease greatly and are almost null. To help the

network correctly assimilate that some of the cell centers it has to predict are more

important than others, a weight can be imposed on some data points. This was only

done in the training of the γ̂ networks, the weights in the mesh elemenst within a 8

cell distance to the wall were assigned a weight of 5, while the remaining cells were

assigned a weight of 1. Other values of wall distances and weight values were also

evaluated.

The weights penalize the loss function on the signalized datapoints. The loss

function in equation 3.2 becomes the function 6.23, where φk is the weight of a

given datapoint k.

J(γ̂NN, γ̂DNS) =
1

2

n∑
k=1

φk(γ̂k,NN − γ̂k,DNS)2 (6.23)

Distribution of loss function's weights can be checked at �gure 6.4.
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Figure 6.4: Training datapoints weights

Prediction of BC's for t

The network for predicting the boundary conditions of the modi�ed RFVTE

consisted of a single hidden layer with 50 neurons. Once again, numerous architec-

tures were evaluated before selecting one. Output layer had again three neurons,

and linear activation functions. Activation functions of the hidden layer were also

the hyperbolic tangent function and an adaptative learning rate was also used, in

this scenario starting at 5× 10−3 and being reduced by a factor of 0.8 whenever 20

consecutive updates resulted in no decrease on validation loss.

The starting α is considerably high when taking into account the network size,

but testing various starting values indicated that higher values, although not capa-

ble of minimizing the loss function by themselves, when reduced after some epochs,

reached better local minima than if starting at smaller α. This did not occur when

training the γ̂ network, where starting with higher α impaired the networks capa-

bilities.

The training batch-size was of 5 data points and the training segment was inter-

rupted after 300 consecutive epochs did not improve validation loss. Loss function

and training optimizer were the same as the ones used in the γ̂ network. The best

�t network was selected using the same error metric of equation 6.22 among 100

trained networks.

Most of the di�erences in the con�guration of the γ̂ and twall networks was due

to the di�erence in the amount of available data points. In the γ̂, all mesh cells

were used to train and predict the target. In the twall network only wall cells can
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be utilized, with a mesh of 125× 125 points, this results in only 250 data points for

each Reynolds number simulation.

The table 6.4 summarizes the input and output matrices sizes for the twall net-

work.

Table 6.4: Input and output matrices X and Y sizes for the twall network
X Y

Lines Columns Lines Columns

Train 1000 22 1000 3

Validation 250 22 250 3

Test 250 22 250 3

Total 1500 22 1500 3

Figure 6.5 summarizes the presented training procedure of the γ̂ neural networks.

The procedure in the Γ̂ networks is analogous. Figure 6.6 illustrates the testing of

the γ̂ NN and the further propagation of the predicted γ̂NN into the computational

�uids dynamics solver simpleFoam using the developed turbulence model.

DNS     
DATABASE

CALCULATE

RANS     
SIMULATIONS

CALCULATE  
INPUTS

TRAINING 

NN OUTPUTED 

CONVERGED?

IMPROVE 
NN

NO

COMPARE

YES
STOP 

TRAINING

Figure 6.5: γ̂ neural networks training �ow-chart
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simpleFoam 

Figure 6.6: γ̂ neural networks testing �ow-chart

6.4.2 Prediction of t and R

Two alternative sets of networks were trained to predict the six components of

the tensor R and the three components of the vector t respectively. Networks' archi-

tectures, adaptative learning rates, activation functions, loss function and optimizer

were the same as the ones used in the Γ̂ and γ̂ networks. Inputs di�ered only by

the exclusion of the components of Γ̂, ∇ · Γ̂, ∇γ̂ and γ̂ listed in table 6.2.

Train, test and validation groups were also the same in order to compare predic-

tions and corrected �ow �elds of the four methodologies. For the injection of both

R and t in the κ - ε environment, other two OpenFOAM turbulence models were

programmed and used with the simpleFoam solver.

Table 6.5 summarizes the networks con�guration used for the prediction of Γ̂, γ̂,

t and R. Table 6.6 summarizes the network con�guration used for the prediction of

the boundary conditions twall to be used on the RFVTE, along with the predicted

γ̂.

Table 6.5: Summary of Γ̂, γ̂, t and R networks
Number of layers 2

Neurons/layer 100

ϕ(υ) tanh(υ)

Batch-size 32

Starting α 1× 10−3

α decay rate 0.6

Number of epochs to reduce α 5

Number of epochs to stop training 20
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Table 6.6: Summary of twall network
Number of layers 1

Neurons/layer 50

ϕ(υ) tanh(υ)

Batch-size 5

Starting α 5× 10−3

α decay rate 0.8

Number of epochs to reduce α 20

Number of epochs to stop training 300

6.4.3 Post-processing Predicted Quantities

The NN outputs Γ̂, γ̂, twall, t and R were subjected to a post-processing stage af-

ter being predicted. This post-processing guaranteed the symmetry in the predicted

components, when it existed. It also guaranteed that di�erent predicted components

that should be mirrored with relation to one another are indeed. This is bene�cial

in two aspects, �rst, in general it considerably reduces the discrepancy between the

DNS and the NN values. Second, it helps numeric convergence and leads to better

corrected results when injected into the RANS environment.

These symmetries are imposed by averaging the symmetric parts. For example,

Γxx, γ̂x, tx and Rxx components are symmetric with respect to the diagonal line

dividing a quadrant in half. An example of components that are mirrored with

relation to one another are γ̂y and γ̂z. Components Γyy and Γzz, Γxy and Γxz, Ryy

and Rzz, Rxy and Rxz, ty and tz also contain the same values, whose distribution in

space is mirrored.

Plots of symmetric components in �gure 6.7 demonstrate this characteristic,

present in many of the square-ducts quantities.
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Figure 6.7: Symmetric and mirrored components demonstration
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Chapter 7

Results

Before training the networks and evaluating their predictions, the four method-

ologies capabilites were evaluated by directly injecting the DNS values of the NN

targets into the κ - ε environment. Since the best NN performance would be the

scenario in which it perfectly predicted the DNS targets, it is important to know

beforehand how accurate the reconstructed u can be in this case. This also serves

as an upper performance boundary for the presented methodologies.

The reconstructed �elds were obtained using the improved dataset post-processed

by RANGEL (2019), all NN were also trained using it. Figure 7.1 compares the

main �ow ux reconstructed by RDNS, tDNS, Γ̂DNS and γ̂DNS with the DNS ux. Re-

constructed secondary �ows components uy and uz are shown in �gures 7.2 and 7.3

respectively. Reconstructed R and t are depicted in �gures 7.4 and 7.5 respectively.

All depicted �elds correspond to the Re = 2900 simulation.

55



0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

0e+00

8e-02

2e-01

2e-01

3e-01

4e-01

5e-01

6e-01

6e-01

(a) DNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

0e+00

8e-02

2e-01

2e-01

3e-01

4e-01

5e-01

6e-01

6e-01

(b) RDNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

0e+00

8e-02

2e-01

2e-01

3e-01

4e-01

5e-01

6e-01

6e-01

(c) tDNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

0e+00

1e-01

2e-01

3e-01

4e-01

5e-01

6e-01

(d) Γ̂DNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

0e+00

8e-02

2e-01

2e-01

3e-01

4e-01

5e-01

6e-01

6e-01

(e) γ̂DNS

Figure 7.1: ux reconstructed by di�erent methodologies (Re = 2900)
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Figure 7.2: uy reconstructed by di�erent methodologies (Re = 2900)
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Figure 7.3: uz reconstructed by di�erent methodologies (Re = 2900)
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Figure 7.4: Reconstructed R components (Re = 2900)
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Figure 7.5: Reconstructed t components (Re = 2900)

7.1 A Priori Results

The a priori results consisted on the NN predictions before being injected into

the CFD environments and being propagated by it. First, the predicted RNN is

shown, following, tNN is demonstrated, then the proposed RSTE source term Γ̂NN is

presented and lastly the proposed the RFVTE source term γ̂NN and the boundary

conditions twall,NN are depicted. All results correspond to the test dataset of Re =

2900.
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7.1.1 Prediction of R

Four components of predicted RNN are demonstrated in contour plots on �gures

7.6, 7.8, 7.10 and 7.12. Samples on four di�erent locations of the square-duct's

domain are shown in �gures 7.7, 7.9, 7.11 and 7.13. Results are compared with the

baseline RANS and the high-�delity DNS tensor.

The omitted components Rxz and Rzz are not shown because their values are,

respectively, components Rxy and Ryy mirrored. This characteristic is ensured in

the predicted quantities by the averaging post-processing step mentioned in chapter

6. The omitted plots can be checked in the appendix B.

The post-processing also ensures that predicted components Rxx and Ryz are

exactly symmetric with respect to the duct's quadrant diagonal. The trained neural

networks are not capable of providing perfectly symmetric results because their

parameters are updated after a batch of training points are passed through it. In

the case that the training batch-size was of 1 data point per update, it would ensure

exact symmetry, but this greatly increases computational costs.
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Figure 7.6: RANS, DNS and predicted Rxx for the test case of Re = 2900
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Figure 7.7: Rxx samples
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Figure 7.8: RANS, DNS and predicted Rxy for the test case of Re = 2900
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Figure 7.9: Rxy samples
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Figure 7.10: RANS, DNS and predicted Ryy for the test case of Re = 2900
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Figure 7.11: Ryy samples
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Figure 7.12: RANS, DNS and predicted Ryz for the test case of Re = 2900
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Figure 7.13: Ryz samples

7.1.2 Prediction of t

Two out of three components of the predicted tNN are shown in comparison with

RANS and DNS values in �gures 7.14 and 7.16. Samples on four y coordinates are

shown in �gures 7.15 and 7.17.

Analogously to components Rxy and Rxz, components tz and ty are mirrored

with respect to each other, therefore tz plots are omitted from the current chapter

for conciseness, but can be checked in appendix B.
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Figure 7.14: RANS, DNS and predicted tx for the test case of Re = 2900
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Figure 7.15: tx samples
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Figure 7.16: RANS, DNS and predicted ty for the test case of Re = 2900
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Figure 7.17: ty samples
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As can be checked in �gures 7.16 (c) and 7.17 (d), the NN has a moderate

di�culty in predicting the modi�ed RFV components in the duct's center region.

7.1.3 Prediction of Γ̂

For the same reasos as the tensor R, only four out of six components of the

source term Γ̂ are presented, omitted plots can also be checked on appendix B.

Figures 7.18, 7.20, 7.22 and 7.24 presents the predicted Γ̂xx, Γ̂xy, Γ̂yy and Γ̂yz

respectively. Each of the four components are also compared with RANS and DNS

�elds. The same four components are shown in more detail on four di�erent locations

on the square-duct quadrant in �gures 7.19, 7.21, 7.23 and 7.25.

Figures 7.21 and 7.25 draw attention to the discontinuities in the DNS �elds.

This beahviour probably occurs due to the low density of DNS points provided in

the employed database. For the Re = [2200, 2400, 2600], a 49× 49 mesh is given in

the duct's quadrant, totalizing only 2401 points. In the other three Re cases, a mesh

of 65× 65 points is provided, totalizing 4225 points. Obviously this is not the mesh

utilized by PINELLI et al. (2010), but rather a small sample of the DNS dataset.

In order to be used in the present work, the given meshes were interpolated to the

125× 125 mesh by using a cubic spline.

Since calculating Γ̂ involves up to second order derivatives on the R DNS �eld,

doing so in a such a low density mesh is probably the cause of the evidenced dis-

continuities. Another probable cause is the statistical uncertainties in high-�delity

turbulent stresses exposed by THOMPSON et al. (2016) and CRUZ et al. (2019).

Despite this aspect of the Γ̂DNS �eld and their e�ects on the networks' training,

NN do achieve reasonable results. The smooth nature of the employed activation

function ϕ(υ) = tanh(υ) ensures that all predictions will also be smooth across the

computational domain.
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Figure 7.18: RANS, DNS and predicted Γ̂xx for the test case of Re = 2900
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Figure 7.19: Γ̂xx samples
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Figure 7.20: RANS, DNS and predicted Γ̂xy for the test case of Re = 2900
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Figure 7.21: Γ̂xy samples
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Figure 7.22: RANS, DNS and predicted Γ̂yy for the test case of Re = 2900
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Figure 7.23: Γ̂yy samples
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Figure 7.24: RANS, DNS and predicted Γ̂yz for the test case of Re = 2900
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Figure 7.25: Γ̂yz samples
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7.1.4 Prediction of γ̂

NN results for the source term γ̂NN components are shown and also compared

with RANS and DNS values in �gures 7.26 and 7.28. As in the vector t, the com-

ponents y and z of the vector γ̂ are mirrored versions of each other, therefore the

plots for component γ̂z can also be checked in appendix B. Samples of γ̂NN on four

di�erent coordinates are shown in �gures 7.27 and 7.29.
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Figure 7.26: RANS, DNS and predicted γ̂x for the test case of Re = 2900
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Figure 7.27: γ̂x samples
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Figure 7.28: RANS, DNS and predicted γ̂y for the test case of Re = 2900
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Figure 7.29: γ̂y samples

Similarly to the source term Γ̂, �gures 7.26 (b), 7.27 and 7.29 also demonstrate

moderate discontinuities in the DNS γ̂ �eld. The reason behind this behaviour is

probably the same as discussed in the previous subsection 7.1.3. Although γ̂ is

calculated by only manipulating the DNS velocity �eld, avoiding the problems in

RDNS, its calculation involves up to fourth order derivatives on uDNS. Doing this

amount of operations on a mesh without a proper spatial resolution is probably the

reason behind this de�ciency on γ̂DNS.

Boundary conditions of t

The predicted boundary values twall are shown in �gure 7.30. Only the values

for the lower wall, z = −1.0, are shown. The x component's values on the upper

wall, where y = −1.0, are the same. The values of component y in the upper wall

are the same as those of component z in the lower wall and vice versa, they were

also subjected to the averaging post-processing described in chapter 6.
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Figure 7.30: twall on z = −1.0

7.2 A Posteriori Results

Corrected turbulent quantities R and t are presented at �rst. Following, the cor-

rected velocity �elds u are shown. Since RANS simulations which use the Boussinesq

hypothesis are unable to provide the recirculation in the square-duct and, therefore,

the main concern of the machine learning employment in this problem is to cor-

rect this de�ciency, the recirculation results are presented �rst. Subsequently, the

results for the propagated main �ows are presented.

Propagated pressure �elds were also calculated by the developed turbulence mod-

els, however, their results are omitted since they were null in all contexts, with ex-

ception to the R and Γ̂ corrections, where a portion of the deviatoric part of R

gets incorporated into the pressure �eld. Since the RANS pressure �eld is null and

no DNS p is provided, no true correction to p is possible and the pressure equation

serves solely to impose continuity to the corrected �ow �elds.

7.2.1 Corrected R and t

Corrected values of Rxx, Rxy, Ryy and Ryz obtained by the propagation of Γ̂NN

in the RSTE turbulence model are demonstrated in �gure 7.31. Rxz and Rzz �elds

can be checked in appendix B.
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Figure 7.31: DNS and corrected R components

The corrected x and y components of the modi�ed RFV t are exposed in com-

parison with DNS values on �gure 7.32.
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Figure 7.32: DNS and corrected t components

7.2.2 Recirculation

All four methodologies are able to correct the null recirculation obtained by the

RANS simulations. This demonstrates the e�ciency of the two methodologies pre-

viously presented in literature and also the e�ciency of the proposed methodologies,

based on the tensor Γ̂ and the vector γ̂ turbulence models.

The corrected secondary �ow's component uy is shown in comparison to DNS

values in �gure 7.33. Corrected uz components can be checked in appendix B. As ex-

posed in �gure 7.3, uz is symmetric to uy, this is guaranteed by the implemeted post-

processing on NN predictions. In case the post-processing was not implemented, uy
and uz would present small but visible discrepancies. RANS uy and uz are omitted

because they are null, as previously noted.

Samples comparing the three methodologies with RANS and DNS values of uy
are shown in �gure 7.34.
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Figure 7.33: uy corrected by the four methodologies

79



1.0 0.8 0.6 0.4 0.2 0.0
z

6

4

2

0

2

4

6

u y

1e 3

Correc. by R
Correc. by t
Correc. by 
Correc. by 
RANS
DNS

(a) y = −0.8

1.0 0.8 0.6 0.4 0.2 0.0
z

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u y

1e 2
Correc. by R
Correc. by t
Correc. by 
Correc. by 
RANS
DNS

(b) y = −0.6

1.0 0.8 0.6 0.4 0.2 0.0
z

2

0

2

4

6

u y

1e 3
Correc. by R
Correc. by t
Correc. by 
Correc. by 
RANS
DNS

(c) y = −0.4

1.0 0.8 0.6 0.4 0.2 0.0
z

1

0

1

2

3

u y

1e 3
Correc. by R
Correc. by t
Correc. by 
Correc. by 
RANS
DNS

(d) y = −0.2

Figure 7.34: Corrected uy samples

In general, the corrections that are closer to DNS values on most of the com-

putational domain, as can observed in �gure 7.34, are the t and Γ̂ methodologies.

The magnitude of the recirculations corrected by all four approaches are depicted

in �gure 7.35.
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Figure 7.35: Recirculation magnitude given by the three methodologies

Figure 7.35 demonstrates that the discrepancy between alternative methodolo-

gies can only be noted by small di�erences in the recirculation shapes, especially

near the duct's center. Once again, �gure 7.35 demonstrates that t and Γ̂ corrections

are closer to DNS than the R and γ̂ corrections.

7.2.3 Primary Flow

Corrected primary �ow results are presented in �gure 7.36 with comparison to

the baseline RANS and the DNS ux. All four approaches e�ciently correct the

primary �ow. Most notably, R and γ̂ corrections performances are poorer than the

other two.
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Figure 7.36: ux corrected by the three methodologies
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Figure 7.37: Corrected ux samples

Although an improved R database is employed, �gure 7.36 (c) demonstrates that

its corrections still are not as close to DNS as the t corrections. Γ̂NN corrected ux
is consistently close to the DNS �eld across the whole duct's domain. Corrections

by γ̂ deviate substantially more than other ones, particularly in the duct's center,

where �gure 7.37 seem farther away from the DNS than the baseline RANS.

7.3 Global Errors

To better compare the Γ̂ and γ̂ methodologies with the ones previously employed

in the literature, a global error metric employed by CRUZ et al. (2019) is used to

evaluate the achieved results in face of their respective upper boundaries. The global

error formulas are given in equations 4.4a and 4.4b, they consist on an area averaging

of the absolute local errors, normalized by the bulk velocity Ubulk.

Figure 7.38 shows the global error comparison for the component y of the ve-

locity �eld. Although the upper performance boundary of γ̂ is comparable to t its

correction on the secondary �ow had the worse performance among all evaluated

methodologies. This is probably due to the nature of the γ̂DNS used in training, as

evidenced by �gures 7.27 and 7.29.
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The better performance of Γ̂DNS and Γ̂NN in comparison with RDNS and RNN

can be explained by the fact that Γ̂ is calculated using both velocity �eld's data

and R data. Therefore, using Γ̂ can be considered as an inverse problem, where

the velocity and the Reynolds stress �elds are used in conjunction to improve the

Reynolds stress itself, through the use of the proposed RSTE 6.3a and its source

term Γ̂.

The primary �ow's global errors are shown in �gure 7.39. With respect to

the primary �ow, the γ̂ corrections' de�ciencies are even more considerable. The

other three procedures performances are reasonably similar, with the t methodology

achieving the most accurate results.
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Figure 7.39: Global error on main �ow Ex
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Chapter 8

Conclusion

Two new data-driven turbulence models based on transport equations for the

Reynolds stress and the Reynolds Force Vector were proposed. The objective of

both models was to correct RANS simulations through the use of machine learning

predictions. Following, the proposed methodologies were evaluated with the use of

Neural Networks as the ML scheme to provide the source terms of the RSTE Γ̂

and the modi�ed RFVTE γ̂. These terms were resposible for correcting the RANS

simulated square-duct �ow.

The proposed NN inputs led to good predictions by the networks on the �ve

targeted quantities, namingly R, t, Γ̂, γ̂ and twall. Also, the applied input selection

criteria proved itself e�cient in reducing the number of inputs while increasing the

network's performance on all of the �ve sets of networks.

The novel methodologies did succeed in correcting the RANS simulations associ-

ated turbulent quantities R and t, as well as the velocity �elds u. As of today, this

is the �rst e�ort to correct not only the velocity �eld but also the Reynolds stress

and its divergence.

The tensor Γ̂ corrections achieved better results on the secondary �ow than

the most usual strategy, which uses the tensor R as the ML target. However, its

recirculation results were not as accurate as the t methodology by CRUZ et al.

(2019). On the primary �ow, the Γ̂ correction's accuracy was lower than both R

and t corrections.

The vector γ̂ performance, on both primary and secondary �ows, was the poorer

of all compared methodologies. This is in contrast with the expectation that the

use of γ̂, which only requires velocity data to be computed, would perform better

than Γ̂ and R.

Further investigations on both methodologies need to be carried on di�erent

setups and problems. The use of di�erent datasets, especially ones with a higher

density of points in the numerical mesh, could lead to substantially di�erent results.
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8.1 Future Works

To better evaluate the e�ciency of the methodologies in face of the other al-

ternatives, and also the e�ects of using scarce meshes, both methods should be

applied to datasets with higher density meshes. Future works should also address

other geometries of interest in the machine learning and turbulence contexts, like

the periodic-hill problem, and other �ows that constitute a challenge to turbulence

modeling.

Possible future research also includes coupling the present methodology with

other sources of high-�delity data, like LES simulations. The use of alternate ML

techniques to predict the source terms Γ̂ and γ̂ can also be an interesting extension

of the present work.

The transport of the Reynolds stress tensor or of the Reynolds force vector have

a source term that needs to be modelled. An alternative approach would be to treat

the source term as an stochastic variable and the PDE associated with this term

as a physically informed approach to propagate the uncertainty of this quantity to

other quantities of interest, such as the velocity �eld.
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Appendix A

Translating RFVTE From Indicial to

Symbolic Notation

Departing from the RFVTE in indicial notation in equation A.1

∂uk
∂xi

∂Rij

∂xk︸ ︷︷ ︸
∇Tu:∇R

+uk
∂

∂xk

(
∂Rji

∂xi

)
︸ ︷︷ ︸

u·∇(∇·R)

= − ∂Rjk

∂xi

∂ui
∂xk︸ ︷︷ ︸

∇Tu:∇R

− ∂Rik

∂xi

∂uj
∂xk︸ ︷︷ ︸

∇Tu·(∇·R)

−Rki

∂

∂xi

(
∂uj
∂xk

)
︸ ︷︷ ︸

R:∇(∇u)

+ ν
∂2

∂xk∂xk

(
∂Rij

∂xi

)
︸ ︷︷ ︸

ν∇2(∇·R)

+
∂Γij

∂xi

(A.1)

Term by term, from left to right:

∇Tu : ∇R =
∂up
∂xq

∂Rjk

∂xi
ep · eieq · ejek =

∂ui
∂xj

∂Rjk

∂xi
ek =

∂Rjk

∂xi

∂ui
∂xk

ej (A.2a)

u · ∇(∇ ·R) = uk
∂

∂xk

[
∂Rij

∂xi

]
ej (A.2b)

∇Tu · (∇ ·R) =
∂uj
∂xk

∂Rim

∂xi
ej(ek · em) =

∂uj
∂xk

∂Rim

∂xi
δmkej =

∂Rik
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∂uj
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ej (A.2c)

R : ∇(∇u) = Rikeiek :
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emenej = Rik

∂2uj
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)
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(A.2d)

ν∇2(∇ ·R) = ν
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[
∂Rij
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]
ej (A.2e)
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Appendix B

Omitted Plots
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Figure B.1: RANS, DNS and predicted Rxz for the test case of Re = 2900
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Figure B.2: Rxz samples
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Figure B.3: RANS, DNS and predicted Rzz for the test case of Re = 2900
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Figure B.4: Rzz samples
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Figure B.5: Corrected R

94



B.2 t

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2
z

-4e-15

0e+00

4e-15

8e-15

1e-14

2e-14

2e-14

2e-14

3e-14

(a) RANS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

-2e-03

-2e-03

-1e-03

-9e-04

-6e-04

-3e-04

0e+00

(b) DNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

-2e-03

-2e-03

-2e-03

-1e-03

-9e-04

-6e-04

-3e-04

0e+00

3e-04

(c) NN predicted

Figure B.6: RANS, DNS and predicted tz for the test case of Re = 2900
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Figure B.7: tz samples
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Figure B.8: Corrected tz component
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B.3 Γ̂ and γ̂
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Figure B.9: RANS, DNS and predicted Γ̂xz for the test case of Re = 2900
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Figure B.10: Γxz samples
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Figure B.11: RANS, DNS and predicted Γ̂zz for the test case of Re = 2900
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Figure B.12: Γzz samples

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

-1e-13

-6e-14

0e+00

6e-14

1e-13

2e-13

2e-13

3e-13

(a) RANS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

-3e-03

-2e-03

-1e-03

0e+00

1e-03

2e-03

3e-03

(b) DNS

0.8 0.6 0.4 0.2
y

0.8

0.6

0.4

0.2

z

-4e-03

-3e-03

-2e-03

-1e-03

0e+00

1e-03

2e-03

3e-03

(c) NN predicted

Figure B.13: RANS, DNS and predicted γ̂z for the test case of Re = 2900

99



1.0 0.8 0.6 0.4 0.2 0.0
z

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

z

1e 3
RANS
NN
DNS

(a) y = −0.8

1.0 0.8 0.6 0.4 0.2 0.0
z

4

2

0

2

4

6

z

1e 4
RANS
NN
DNS

(b) y = −0.6

1.0 0.8 0.6 0.4 0.2 0.0
z

2

1

0

1

2

3

4

5

z

1e 4
RANS
NN
DNS

(c) y = −0.4

1.0 0.8 0.6 0.4 0.2 0.0
z

0.5

0.0

0.5

1.0

z

1e 4
RANS
NN
DNS

(d) y = −0.2

Figure B.14: γ̂z samples
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Figure B.15: uz corrected by the four methodologies
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Figure B.16: Corrected uz samples
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