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The development of  studies in the field of  Aeronautical Meteorology is of  paramount importance 
to maintain the safety and efficiency of  air navigation. To improve the provision of  the Aeronautical 
Meteorological Service, the Department of  Airspace Control (DECEA) reinforces the need to 
understand the behavior of  meteorological phenomena in the Brazilian airspace region and how they 
affect air operations.

The works developed by the “Cátedra” of  Aeronautical Meteorology helped in the improvement of  
scientific knowledge related to turbulence, visibility, ceiling, data assimilation, severe weather, en-route 
convective weather, among others. Providing a meteorological service with accurate weather forecasts 
is a challenge that involves the analysis of  meteorological data and the application of  sophisticated 
mathematical models, which are in full development and improvement, aiming at excellence in results. 

Good planning, based on accurate weather information and assertive forecasts, is critical to provide safe and 
efficient flights. With the experience of  having been a military pilot, I can say that a good prognosis of  such 
meteorological phenomena is essential for decision making.

Finally, I express my satisfaction with the partnership of  DECEA with the Air Force University (UNIFA) and 
the Federal University of  Rio de Janeiro (UFRJ) for the realization of  this book. It is the result of  an arduous 
study, with tireless dedication on the part of  doctors, masters, students, managers, meteorologist officers of  
the Brazilian Air Force and other professionals involved, that consolidates a cycle of  academic production of  
notable contribution to Meteorology.

Lieutenant-Brigadier Alcides Teixeira Barbacovi
Director-General of  DECEA
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Preface

The present book is a compilation of  recent research dedicated to the applications of  prediction models for 

weather nowcasting linked to aeronautical meteorology. Models embrace differential equations for atmospheric 

dynamics, as well as data-driven approaches. 

Convective weather, wind, clear air turbulence, visibility, and ceiling are the significant phenomena affecting 

aviation events investigated by the “Cátedra” project of  aeronautical meteorology. The project is a joint 

effort between the graduate meteorology program from the Federal University of  Rio de Janeiro (UFRJ), 

the Department of  Airspace Control (DECEA) and the Air Force University (UNIFA). The book focuses 

on aviation operational meteorology and deals with numerical weather forecast simulation results obtained 

by deterministic and hybrid models. The latter is based on the composition of  deterministic modeling and 

computational intelligence techniques. The studies presented in this publication make use of  data from 

remote sensing sensors, such as satellite, radiometer, ceilometer, and sodar, as well as information from in-

situ observations for monitoring and developing short-term forecast models. These aim to predict convective 

weather, surface wind shifts, wind gusts, clear air turbulence, low visibility due to fog, and low ceilings. All 

these are important for landing and takeoff  procedures, as well as for scheduling flights and increasing safety 

on Brazilian air routes.

This volume provides a comprehensive overview of  research results, including comments on the currently 

existing knowledge, and the numerous remaining difficulties in predicting and measuring issues related to 

aforementioned meteorological events at different time and space scales.

It will be helpful to academics with an interest in operational meteorology and aviation as well as weather 

offices, pilots, meteorologists, aviation experts, scientists, college students, postgraduates, and others.

Most of  the chapters are produced by “Cátedra” project´s researchers and published in scientific journals. 

Gutemberg B. França   
Francisco L. de Albuquerque Neto

Haroldo F. de Campos Velho
Editors
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Brazilian initiative to improve aviation meteorology

Gutemberg Borges França

1 Federal University of Rio de Janeiro.
2 The National Institute for Space Research.
3 Federal University of Campina Grande.

1

Francisco Leite de Albuquerque Neto1

Vinícius Albuquerque de Almeida1

Antonio Vicente Pereira Neto1

Haroldo Fraga de Campos Velho2

1. CONTEXTUALIZATION

Atmospheric conditions can have an impact on
aviation in any location and at any time, according to 
Ahrens (2008). Although meteorological information 
is required on the airways between departure and 
destination airports, aircraft are most sensitive to weather 
conditions during take-off  and landing procedures. Pilots 
and air traffic controllers require an accurate weather 
forecast for intervals ranging from a few minutes to 6 
hours - the timescale of  nowcasting - for them to make 
immediate or short-term decisions. Several initiatives to 
improve aviation forecasting are underway around the 
world, such as those developed in Canada by Isaac et al. 
(2006), Isaac et al. (2011), and Isaac et al. (2014), which 
use data from numerical models, surface observations, 
radar, satellite, and a microwave radiometer to generate 
forecasts for major airports in Canada down to 
approximately 6 hours. 

A series of  studies has recently been developed in 
the United States to investigate the use of  deep/machine 
learning algorithms for specific weather forecasting 
improvements. NextGen Weather Processor (NWP) 
and Offshore Precipitation Capability (OPC) are two 
initiatives run by MIT Lincoln Laboratory. The first 
(NWP) identifies potential threats to aviation safety by 
combining meteorological data from multiple sources, 
including weather radars, environmental satellites, 
lightning, meteorological observations from surface 

stations and aircraft, and numerical forecast model 
output, to forecast route closures and airspace capacity 
restrictions up to eight hours in advance (Newell et al., 
2010). The OPC project combines data from satellite 
imaging, atmospheric discharges, and numerical weather 
forecast models to estimate the location and intensity of  
precipitation where radar coverage is unavailable (Veillette 
et al., 2016). This data is converted into an image that 
resembles radar using machine learning algorithms. A 
hybrid model that combines discriminatory trained 
prediction algorithms with a deep neural network was put 
out by Grover et al. (2015). In order to offer wind data 
throughout a flight in real time, Kim et al. (2021) created 
a hybrid wind forecasting methodology that combines a 
supervised learning algorithm with the inverse distance 
weighting technique. Both produced encouraging 
outcomes that could help weather forecasting systems 
become more sophisticated.

SIRIUS, a NextGen-like system, was implemented 
in Brazil to improve the organization and operational 
safety of  Brazilian air traffic management (Gavazzi, 
2018). However, the meteorologist at the Integrated 
Center for Aeronautical Meteorology (CIMAER in 
Portuguese) is still using his experience to integrate 
different information from RADAR-satellite images, 
in situ meteorological observations, and/or outputs 
from atmospheric models, as well as using conceptual 
models about how the atmosphere works to issue, 
with a certain level of  subjectivity, warnings of  
significant weather.

Enio Pereira de Souza3
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aviation system block upgrades systems engineering 
modernization strategy. Along with the financial aspects 
of  modernizing the aviation system, it also pinpoints 
problems that need to be resolved soon. It is also 
emphasized how crucial partnerships and collaboration 
are as aviation recognizes and responds to its future 
multidisciplinary challenges.

The three GANP´s meteorology blocks are 
as follows:

1. The first block includes elements that should be 
viewed as a subset of  all available meteorological 
information that can be used to support 
enhanced operational efficiency and safety. It is 
divided into three modules, the first of  which 
depicts the meteorological information made 
available by world area forecast centers, volcanic 
ash advisory centers, and tropical cyclone 
advisory centers that can be used by the ATM 
community to support dynamic and flexible 
airspace management, improved situational 
awareness and collaborative decision making, 
and dynamically opportunistic operations.

2.  The second module depicts meteorological 
information issued by aerodrome meteorological 
offices in the form of  aerodrome warnings, 
wind shear warnings, and alerts (including 
those generated by automated meteorological 
systems) that help to improve safety and 
maximize runway capacity. In some cases, wind 
shear detection systems (such as ground-based 
LIDAR or SODAR) have proven useful in wake 
turbulence detection and tracking/monitoring, 
and thus contribute to improving safety and 
maximizing runway capacity from a wake 
turbulence encounter prevention standpoint. 

3.  The third module discusses SIGMET, which 
is meteorological information provided by 
meteorological watch offices on the occurrence 
and/or expected occurrence of  specified en-
route weather phenomena (such as severe 
turbulence, severe icing, and thunderstorms) 
that may affect aircraft safety. This module 
also describes other operational meteorological 
information (such as METAR/SPECI and 
TAF) provided by aerodrome meteorological 
offices on observed or forecast meteorological 
conditions at the aerodrome. The second 
meteorology block builds upon the first 
block, which detailed a subset of  all available 
meteorological information that can be used 
to support enhanced operational efficiency 
and safety. This block is concerned with 

The aeronautical meteorology service in Brazil 
is managed by the Department of  Airspace Control 
(DECEA, in Portuguese) and supported by the Institute 
for Control of  Air-Space (ICEA in Portuguese) and 
CIMAER. The latter was established to meet the new 
requirements established in the air traffic management 
(ATM) system implementation plan. In order to meet 
these new demands from civil and military aviation, 
DECEA needed to establish new processes for managing 
and optimizing resources. The services provided by the 
main regional meteorological centers were combined and 
are now provided by CIMAER, which, through defense 
meteorology, supports defense activities, particularly 
those aimed at military aviation.

The World Meteorological Organization (WMO) and 
the International Civil Aviation Organization (ICAO) both 
made recommendations that served as the foundation 
for the activities of  aeronautical meteorology as well 
as the current organization of  Meteorological Centers 
and Stations of  the Brazilian Airspace Control System 
(SISCEAB). The aeronautical meteorology service 
still has a contemporary structure considering recent 
technological advancements and user demands for greater 
service effectiveness. Operational meteorology, which 
involves the generation, conception, and dissemination 
of  meteorological information supported by the networks 
of  meteorological centers and stations, and aeronautical 
climatology are the primary activities related to aeronautical 
meteorology within the scope of  SISCEAB.

The International Civil Aviation Organization 
(ICAO) issued the Global Air Navigation Plan (GANP) 
for Aeronautical in 2013, which includes three-time 
blocks that establish the guidelines for global aeronautical 
meteorology, as briefly described below. The GANP is a 
rolling, 15-year strategic methodology that makes use of  
current technologies and foresees future developments 
in accordance with operational goals established by the 
government and the industry. The block upgrades are 
arranged in separate, non-overlapping six-year time 
periods beginning in 2013 and running through 2031 and 
beyond. This methodical approach lays the groundwork 
for wise investment plans and will inspire support from 
governments, equipment suppliers, operators, and 
service providers. To put things in perspective, the ICAO 
work program is approved by the ICAO assembly on a 
triennial basis. The GAMP, on the other hand, provides 
a long-term vision that assists the ICAO, countries, and 
industries in ensuring continuity and harmonization 
among their modernization programs. It investigates 
the need for more integrated aviation planning at both 
the regional and state levels, as well as addresses the 
necessary solutions by introducing the consensus-driven 
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enabling the reliable identification of  solutions 
when forecasted or observed meteorological 
conditions have an impact on aerodromes, 
airspace, or operations in general. Full ATM-
Meteorology integration is required to guarantee 
that meteorological data is incorporated into 
decision making logic and that the effects of  
meteorological conditions on operations are 
automatically deduced, comprehended, and 
taken into account. The supported decision 
time horizons range from a few minutes to 
several hours or days prior to the operation of  
the ATM. This includes optimal flight profile 
planning and execution, as well as assistance 
with tactical in-flight avoidance of  hazardous 
meteorological conditions (improved in-flight 
situational awareness) to typical near-term and 
planning (>20-minute) decision making. It also 
encourages the creation of  guidelines for the 
international exchange of  meteorological data 
that are consistent with other data domains 
and strictly adhere to a single reference. 
It also encourages the improvement of  
meteorological data in terms of  a variety of  
quality-of-service factors, such as the reliability 
and consistency of  the data when applied to 
linked operational decision making processes. 
In summary, the goal is to improve global ATM 
decision making in the context of  decisions 
that should take immediate effect in the face 
of  hazardous meteorological conditions. The 
capabilities created in the second block and 
the initial information integration concept 
are built upon in this module. The following 
are key considerations, a) tactical avoidance 
of  hazardous meteorological conditions, 
particularly in the 0–20-minute time window; 
b) increased use of  aircraft-based capabilities 
to detect meteorological parameters (e.g., 
turbulence, winds, and humidity); and c) display 
of  meteorological information to improve 
situational awareness. This block also promotes 
further the establishment of  standards for the 
global exchange of  information.

It is well known that the creation of  precise models 
for the forecasting of  high-impact aviation weather 
events, such as precipitation type, clean air turbulence 
(CAT), turbulence, wind, gust, low visibility, ice 
formation, and ceiling, as required by air operations, en 
route and during landing and takeoff, depends primarily 
on observations made by radar, radiosondes (traditional 

and via current meteorological satellites), sodar, lidar, 
radiometers, meteorological station, and remote sensing 
orbital platform.

In 2017, the DECEA, a division of  the Brazilian 
Aeronautics Command, encouraged researchers to 
form the "Cátedra de Meteorologia Aeronáutica" or 
"Cátedra," which was approved by the University of  
the Brazilian Air Force (UNIFA, in Portuguese) in 
the National Council for Scientific and Technological 
Research (CNPq in Portuguese). The "Cátedra" has 
three goals for modernizing aeronautical meteorology 
in Brazil:

1. Ongoing research based on the characterization 
of  aviation meteorological events on the 
required time scales via observations recorded 
by state-of-the-art in-situ and remote sensors;

2.  Development and testing of  specific forecast 
models for meteorological events affecting 
aviation in Brazil, with the goal of  reducing 
the current level of  subjectivity to CIMAER 
forecasts; and 

3.  Continuing education for personnel at all levels, 
including undergraduate, master's, doctoral, and 
post-doctoral investigations.

To meet the ICAO´s GANP standards, the Cátedra 
recognizes the importance of  developing accurate 
models for forecasting weather events that affect 
aviation. Therefore, apart from ice formation, most of  
the aforementioned weather events are in detail studied 
throughout this book’s chapters using observations made 
by cutting-edge in-situ instruments, reconstructions 
made using a numerical weather model, and machine 
learning-based algorithms.

Figure 1a depicts the main causes of  flight delays 
in Brazil from 2014 to 2016, according to the DECEA. 
Weather accounts for 63% of  these delays, while flight 
demand accounts for 27%, runway closures account 
for 6%, equipment accounts for 2%, and other 
technical factors account for 2%. The percentage of  
flights in Brazilian airspace that were delayed because 
of  meteorological conditions is specifically shown in 
Figure 1b. According to the records each meteorological 
event has the following percentage impact: 

•  31%, the convective cells (or complexes) 
because they can affect takeoff  and landing 
procedures as well as flights en-route; 

•  fog and low visibility accounted for 27%, 
•  moderate to heavy rain for 19%, 
•  the ceiling for 15%, 
•  wind gust and wind shear for 7%, and 
•  turbulence and CAT for 1%.
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2. MODELLING

The scientific community has used a variety of  
approaches to develop models for predicting meteorological 
events that have an impact on aviation. There are three 
types of  models that can be classified as numerical weather 
prediction (NWP) (Haltiner-Williams, 1983; Kalnay, 2002), 
data-driven models (Scher and Messori, 2018; Schultz 
et al, 2021), and hybrid models (Krasnopolsky and Fox-
Rabinovitz, 2006; Silva et al., 2022).

The time integration of  differential equations is used 
in numerical weather prediction models, which group all of  
the physics of  the atmosphere and its interactions with the 
land surface and the hydrosphere (lakes, rivers, and oceans). 
Based on initial conditions, these models attempt to calculate 
mathematically how atmospheric conditions will evolve over 
time (hours, days, months, or years). These models perform 
well for forecasts of  up to 7 days at a regional level (e.g., city, 

Figure 1 - The primary causes of flight delays in Brazil between 2014 and 2016 (a) and the percentage of each weather 
event's impact on flights (b).

state, country, continent), but have significant limitations for 
forecasts of  minutes to hours at a local level (e.g. airport).

Data-driven models attempt to extract mathematical 
patterns from historical series of  a variety of  meteorological 
variables related to aviation impact phenomena. These 
models can also provide a high-accuracy short-term local 
forecast. The requirement for long historical observation 
series is a constraint to this approach (not always available). 
Multivariate regressions and the use of  computational 
intelligence fall into this category of  models.

The final type of  model is a "hybrid," which uses the 
outputs of  numerical weather prediction models as input 
to data-driven models. In this case, it is possible to extract 
patterns from numerical model outputs and relate them to 
high-impact phenomena in aviation. This last category has 
great potential to be a milestone for modeling, given that it will 
allow the replacement of  numerical parameterizations with 
several limitations by models based on observational data.

Source: DECEA.

(a)

(b)
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2.1 Prediction models 

As mentioned, there are two approaches to addressing 
a scheme to predict atmospheric dynamics. One method is 
to establish a relationship between the quantities involved 
in the phenomenon, and then use mathematical equations 
to quantify how this balance will change over time. These 
mathematical equations are known as partial differential 
equations because they relate all of  the quantities 
involved. Another option is to create a massive database 
that collects time series for those various quantities from 
multiple measured points in the domain of  interest and/
or measurements from remote sensing.

The first strategy is to use numerical methods to solve 
the collection of  mathematical equations, integrating time 
in the future to compute forecasts. A second strategy 
involves calibrating an algorithm to forecast the future 
state of  the desired quantity, with some attributes being 
chosen as algorithm inputs. A data-driven formulation is 
the second framework. To create a prediction model, linear 
regression techniques can be used. Machine learning has 
recently been used as a competitive forecasting technique. 
Both schemes can be combined into hybrid schemes.

All the techniques are used in this book, with a focus 
on the use of  machine learning techniques. Two sections 
ahead will present brief  comments to give an overview 
of  the two modeling schemes as forecasting tools for 
atmospheric dynamics.

2.1.1 Prediction by solving mathematical differential equations

Numerical integration of  the Navier-Stokes (N-S) 
equations is the approach adopted for operational centers 
focused on weather prediction. The N-S equations can be 
expressed in different forms, namely primitive variables 
(using wind components (u, v, w) (Figueroa et al., 2016) 
or prognostic variables – where derived variables are used 
(such as vorticity and divergence (ζ, D) approach). Most 
of  the regional or limited area models employ primitive 
variables (e.g., WRF and BRAMS model). For the 
vorticity-divergence formulation, in general, the velocity 
vector is split into   , where  is 
the horizontal wind velocity. The variable separation is 
employed in all fields: Γ(λ, θ, r, t )=Λ(λ, θ, t )Z(r), where 
t is time,(λ, θ, t) are spherical coordinates – the longitude, 
co-latitude, and radial coordinates, respectively. After 
that, the set of  equations with dependency on (λ, θ) 
can be expressed as - see: Haltiner and Williams (1980) 
Washington and Parkinson (1986), and Krishnamurti 
and co-authors (1998):
1 Space variable α = (α1, α2), where α1 = x and α2 = y for cartesian coordinates; or α1 = λ and α2 = θ in the spherical coordinate system.

where f  is the Coriolis parameter,  is the 
vertical component of  the vorticity,  is the 
divergence, σ = p ⁄ ps  is used as a vertical coordinate, 
ps is the surface pressure, σ. = dσ ⁄ dt  is the sigma 
vertical velocity, T is the air temperature, R is the 
gas constant for dry air, cp is the heat capacity of  
dry air at constant pressure,  is the friction force, 
q is the specific humidity,  is 
the static stability,   is the diabatic heat 
source/sink, and M is the moisture source/sink. 
The relation between  and (ζ, D) is linked to the 
Helmholtz theorem, , where ψ and χ  
are the stream function and the velocity potential, 
respectively. Therefore, the vertical component of  
vorticity and the divergence are computed by solving 
the Poisson equations:

Equations (1)-(6) are integrated by numerical 
methods. Initially, the finite difference method was 
employed (Holton and Hakim, 2012; Krishnamurti 
et al., 1998). But new algorithms reducing the 
computational complexity in the calculations 
were developed, becoming competitive with the 
spectral methods. One relevant example is the fast 
Fourier transform (FFT) (Cooley and Tukey, 1965) 
for speeding up the discrete Fourier transform 
(DFT) for computing the finite Fourier transform 
with N terms by O(Nlog2 N) operations – instead 
of O(N2).

The finite difference method expands a space-
dependent variable α1  the field Λ(αi ) in a truncated 
Taylor’s series:

where  indicates the magnitude of  truncation 
order – third order in the worked example, and Λ = ψ, 
χ, u, v, ζ, D, T, rh , q, φ. It is possible to have a numerical 
representation for the derivatives:

(1)

(2)

(3)

(4)
(5)
(6)

(7)
(8)

(9)
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Basically, the derivatives in the predictive equations are 
substitutes by the finite difference operators – some of  them 
are shown above, transforming the system of  partial differential 
equations into a non-linear vector ordinary differential equation:

The vector ΛF = [Λmn ] 
T represents the values of  the 

fields Λ on the discrete grid points (αi), L is a (sparse) 
matrix associated to the linear part from the system (1)-
(6), N F is the non-linear vector, and K is a constant vector.

In the spectral method, the space dependency is 
pre-described assuming spherical harmonics expansions 
(Washington and Parkinson, 1986):

again Λ = ψ, χ, u, v, T, r_h, q, Φ;   is the associated 
Legendre polynomial of  degree l ; μ=sin θ ; and a is the 
Earth’s average radius. For computing the expansion 
coefficients , the weighted residuals method is 
applied. Substituting the expression (11) in the system (1)-
(6), there will be a residual since the discrete formulation 
(11) is only an approximation of  the exact solution. The 
discrete system is multiplied by a weight function  and 
the resulting system is integrated over the entire space 
domain. Therefore, the expansion coefficients  are 
determined by becoming the residual equal to zero. The 
Galerkin approach is verified when the weight function is 
the same as the basis function used in the expansion (11), 
i.e., . Finally, the Galerkin-spectral method drops 
into a vector ordinary differential equation expressed by:

where vector  represents the expansion 
coefficients of  expression (11), L is the matrix associated 
to the linear components in the system (1)–(6) after 
discretization by the spectral approximation, N S is a non-
linear vector, and C is a constant vector. There are several 
options for time integration to be applied to Equations (10) 
or (12). Options include explicit, implicit, or semi-implicit 

methods (Krishnamurti et al., 1998). Beyond finite difference 
and spectral methods for space representation, using 
structured meshes, nowadays other formulations have been 
proposed based on finite volume and finite element schemes 
have been proposed with the use of  unstructured grids.

Irrespective of  the method employed to solve the set 
(1)–(6) there will always be physical mechanisms whose 
representation is related to higher-order terms in Taylor’s 
expansion or to harmonics in the spectral form that are 
not taken into account due to truncation – subgrid process.

Usually, those are important physical mechanisms for the 
atmosphere’s energetics. The way to properly consider meaningful 
physical mechanisms is to develop physical models that relate 
them to the variables explicitly resolved in the model grid. 
This procedure is called parameterization. The most important 
parameterized processes include turbulence, radiation, surface, 
and saturated processes (Holton and Hakim, 2012; Washington 
and Parkinson, 1986). A physical model used to parametrically 
represent some process is called a parameterization scheme.

Some parameterization schemes can rely on a solidly 
established theory. This is the case of  the short-wave and 
long-wave radiation schemes, whose parameterizations are 
rooted in the radiative transfer equation. Therefore, the 
several different types of  radiation parameterization are a 
specific solution of  the radiative-transfer equation.

Saturated processes, on the other hand, cannot profit from a 
unifying theory. Therefore, any parameterization for convection 
or cloud microphysics depends on a closure hypothesis, which is 
a particular (physically meaningful, though) way to relate clouds 
to some triggering function or a cloud model.

2.1.2 Prediction by Machine Learning Approach

Machine learning (ML) is a set of  computational (machine) 
techniques with a focus on identifying and understanding patterns 
from databases. The learning process is a kind of  algorithm 
configuration applied to calibrate the computer model, in general, 
a non-linear mapping among different types of  data. ML is 
considered as part of  artificial intelligence. Computational statistics 
and data mining can be related to the field of  machine learning.

A sample data used to configure a ML algorithm is called 
the training data. After that – the learning process – the ML 
model can make predictions or decisions, employing data 
out of  the training data, in other words, the ML model can 
produce good results without being explicitly programmed 
for those new data. For the training – or learning – processes, 
optimization schemes are applied to identify a set of  
parameters by searching for the best performance of  the ML 
algorithms. Data mining is also an associated area of  study.

The ML algorithms can be identified according to 
our goal as regression or classification (clustering) models. 
Another separation for the ML algorithms is linked to the 
learning process, where the main schemes are as follows:

– Supervised learning;
– Unsupervised learning;
– Semi-Supervised learning;
– Reinforcement learning.

(10)

(11)

(12)
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Some ML algorithms can be classified as supervised or 
unsupervised schemes. One example is the restricted 
Boltzmann machine (RBM), and the classification algorithm 
depends on the application goal. For the RBM there are visible 
processing units (vi ) and hidden processing units (hj ), where 
the units vi  and hj  are unconnected among themselves. Bias 
for visible (ai ) and hidden (bj ) units, the energy E(v , h) for 
the RBM configuration is given by (Hinton, 2010): 

with the joint probability distribution for both unit types 
(v , h) is expressed as

being Z the partition function - a normalization constant. 
For p visible units and q hidden units, P(h v v)  (conditional 
probability) of  a configuration of  the visible units v - given a 
configuration of the hidden units h, and P(h v v) of h given v  are

  The individual activation probabilities are given by 
(Hinton, 2010).

Finally, the training for the RBM is obtained by  
maximizing the product probabilities P(v):

where E{.} is the expected value.

Supervised learning

A set of  pairs(x, y) of  labeled values is used for a training 
process, being x a set of  input attributes, and y the observed/
measured/desired values. The goal is to calibrate for the ML 
model could produce an output y similar to the label values y. 
In general, the training process is a set of  parameters W that 
minimizes an objective function J:

where   is a L-norm (square difference, for example) to 
evaluate the similarity between the ML output and the labeled 
values y , λj and Ωj ( j = 1, 2) are regularization parameters and 
regularization operators, respectively. The algorithm calibration 
is carried out by minimizing a objective function J(W).

Unsupervised learning

There is no data label to be followed as a reference. The 
idea is to extract patterns from the environment by considering 
some criteria. Therefore, the algorithm is forced to date up its 

parameter set – calibration cycle – following the established 
criterion. There are several criteriums to be selected: 
minimizing a dynamical energy function – equilibrium point 
(Hopfiled neural network (Hopfield, 1982)), self-similarity map 
(Kohonen neural network (Kohonen, 1982)), or classification 
by similarity intra-class with maximum difference inter-classes 
(K-means approach (Everitt et al., 2011). Wassermann (1989) 
presents different algorithms for this training approach.

Semi-Supervised learning

This is a training strategy where there is an amount of  
tagged data and unlabeled data — in general, labeled data 
is in smaller numbers than untagged data. The labeled data 
is used for training by minimizing a regularized functional 
(Chapelle et al., 2006), similar to the objective operator in 
Eq. (17), including Tikhonov of  zeroth and second-order or 
entropy regularizations. The unlabeled data can be used as a 
testing set. Vapnik (1998, 2006) introduced the problem as 
transductive learning (predictions only for the test points). 
Different from inductive learning: the prediction addresses 
all input space. Most methods for semi-supervised are 
transductive approaches.

Reinforcement learning
A source of  inspiration for this strategy is the optimal 

control problem (OCP), The OCP idea is to design a control 
project forcing the system to follow a reference according to a 
control action uk. The control action works as a constraint in the 
optimization control problem. Dynamic programming is a method 
to address optimal control by solving time-backward equations 
(Kröse and van der Smargt, 1996). A solution for optimal control 
without the formal use of  a system model and environment 
is called the dynamic programming technique. Reinforcement 
learning sometimes is also called a heuristic dynamic programming 
technique. The most directly related RL technique to DP is Q 
learning. The basic idea in Q learning is to estimate a function Q 
of  states and actions where Q is the minimum discounted sum 
of  future costs . For convenience, the notation with 
J is continued here:

where uk is the control action. The weights can be computed 
following different strategies for the ML control framework 
(Kröse and van der Smargt, 1996), minimizing a cost function 
as expressed by Eq. (18) above.

3. PURPOSE 

Gather the collection of  scientific works produced by 
researchers throughout the Cátedra project between April 
2018 and March 2023 and make them available in this on five 
major topics studied: convective weather, ceiling and visibility, 
clear air turbulence, wind, and a review of  all weather and 
events that impact aviation.

(13)

(14)

(15)

(16)

(17)

(18)
(19)
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Forecast of Convective Events Via Hybrid Model: WRF and 
Machine Learning Algorithms 

Yasmin Uchôa da Silva

ABSTRACT

This presents a novel hybrid 24-hour forecasting 
model of convect ive weather events based 
on numerical simulation and machine learning 
algorithms. To characterize the convective events, 
13-year from 2008 up to 2020 of precipitation data 
from the main airport stations in Rio de Janeiro, 
Brazil, and atmospheric discharges from the 
surrounding area of around 150 km are investigated. 
The Weather Research and Forecasting (WRF) 
model was used to numerically simulate atmospheric 
conditions for every day in February, as it is the 
month with the greatest daily rate of atmospheric 
discharge for the data period. The p-value hypothesis 
test (with α = 0.05) was applied to each grid point of 
the numerically predicted variables (defined as an 
independent attribute) to find those most associated 
with convective events using the output of the 3-D 
WRF grid. This one identified 36 attributes (or 
predictors) that were used as input in the machine 
learning algorithms’ training-test process in this 
study. Several cross-validation training and testing 
experiments were carried out using the nine-selected 
categorical machine learning algorithms and the 
36 defined predictors. After applying the boosting 
technique to the nine previously trained-tested 
algorithms, the results of the 24-hour predictions of 
convective occurrences were deemed satisfactory. 
The Random Forest method produced the best 
results, with statistics values close to perfection, 
such as POD=1.00, FAR= 0.02, and CSI= 0.98. The 

1 Laboratório de Meteorologia Aplicada, Departamento de Meteorologia-IGEO-CCMN, Universidade Federal do Rio de Janeiro (UFRJ), 
Rio de Janeiro, Brazil, ORCID(s): 0000-0002-6452-1775.
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1

24-hour hindcast utilizing the nine algorithms for the 
28 days of February 2019 was very encouraging 
because it was able to almost recreate the maturation 
phase of events and their eventual failures were 
noted during the formation and dissipation phases. 
The best and worst 24-h hindcast had POD=0.97 
and 0.88, FAR = 0.02 and 0.12, and CSI = 0.94 and 
0.78, respectively.

Keywords: Convective event. Data mining. Machine 
learning. Atmospheric discharge. Forecast.

Gutemberg Borges França1

Heloisa Musetti Ruivo2

Haroldo Fraga de Campos Velho2

1. INTRODUCTION

Atmospheric conditions affect aviation at 
any time and in every location (Ahrens, 2009). 
The region that corresponds to an airport’s TMA 
(Terminal Maneuvering Area), where planes begin 
their approach procedures for landing, is thus 
highly susceptible to weather conditions. The Rio 
de Janeiro TMA (TMA – Rio) - the subject of  this 
study - is made up of  five airports: Galeão, Santos 
Dumont, Santa Cruz, Afonsos, and Jacarepaguá 
(internationally coded as SBGL, SBRJ, SBSC, SBAF, 
and SBJR, respectively), whose flights are significantly 
affected during landing or take-off  approaches due 
to instabilities and adverse phenomena typically 
associated with convective systems.

Between 1960 and 1980, data extrapolation 
techniques were developed and tested, giving 
rise to studies such as Wilson (1966), Wilk and 

Published in: Applied Computing Geosciences, 2022, https://doi.org/10.1016/j.acags.2022.100099
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Gray (1970) and Battan (1973), which utilized 
radar and satellite data to forecast convective 
occurrences. Subsequently, Wilson et al. (1998) 
then proposed utilizing numerical prediction 
models to assimilate radar and/or satellite 
data. Nascimento (2005) examined the use of  
atmospheric indices (or parameters) developed in 
the northern hemisphere (in non-tropical latitudes) 
in identifying atmospheric conditions favorable 
to the appearance of  severe convective storms 
in the tropics in Brazil. Teixeira and Satymurty 
(2007) investigated the dynamic and synoptic 
factors that distinguish heavy rainfall periods 
from non-heavy rainfall events in southern Brazil 
from 1991 to 2001 using reanalysis data. It is 
concluded that the mean flow patterns preceding 
the events are associated with the presence of  
a mean tropospheric trough east of  the South 
Pacific approaching the coast three days earlier, 
a low-pressure center in northern Argentina 
one day earlier, a low-level jet over Paraguay two 
days earlier, and moisture flow convergence over 
southern Brazil (1 day before). Pinto et al. (2006) 
investigated the spatial-temporal distribution of  
atmospheric discharge data collected from 1999 
to 2004 in the southeastern region of  Brazil, 
which is the study area of  this investigation, and 
found that the high-frequency incidence of  AD, 
which occurs in the summer, is coupled to urban 
heat islands. Paulucci et al. (2019) investigated the 
Spatial-temporal variability of  cloud-to-ground 
atmospheric discharges in the Rio de Janeiro 
metropolitan region and observed that the largest 
incidence occurs in the summer (64.3%) and the 
minimum is in the winter (2.3%).

Currently, the prediction of  convective events 
is based on meteorologist’s local experience since 
there is no accurate numerical model to predict the 
occurrence and severity of  these events (Anquetin 
et al., 2005; Meißner et al., 2007) with the accuracy 
required by various sectors of  our society, such as 
civil defense and aviation. McGovern et al. (2017), 
Zhou et al. (2019), Shirali et al. (2020), Teixeira 
et al. (2020), Sayeed et al. (2021), and Dupuy et 
al. (2021) are examples of  recent studies that 
use hybrid models and IA techniques to improve 
forecasts based on numerical models and/or in 
situ observations.

A series of  studies has recently been developed 
to investigate the application of  deep/machine 
learning algorithms for specific weather forecasting 
improvements. MIT Lincoln Laboratory projects 

include the NextGen Weather Processor (NWP) 
and Offshore Precipitation Capability (OPC). The 
first identifies potential threats to aviation safety 
by combining meteorological data from various 
sources (such as weather radars, environmental 
satellites, lightning, meteorological observations 
from surface stations and aircraft, and output from 
the numerical forecast model) to forecast route 
closures and airspace capacity restrictions up to 
eight hours in advance (Newell et al., 2010). In 
Brazil, a system similar to NextGen, called SIRIUS, 
was implemented to improve the organization 
and operational safety of  Brazilian air traffic 
management (Gavazzi, 2018). The OPC project 
combines information from satellite imaging, 
atmospheric discharges, and output numerical 
weather forecast models to estimate the position 
and intensity of  precipitation in places where radar 
coverage is not available (Veillette et al., 2016). This 
data is converted into an image that resembles radar 
using machine learning algorithms. Guikema et al. 
(2010) developed a technique based on regression 
and data mining to predict the number of  electric 
poles that will need to be replaced. The results 
of  the created tool indicate that hurricane-related 
damage to electricity poles can be properly detected. 
A hybrid model that combines discriminatory 
trained prediction algorithms with a deep neural 
network was put out by Grover et al. (2015). 
In order to offer wind data throughout a flight 
in real time, Kim et al. (2021) created a hybrid 
wind forecasting methodology that combines a 
supervised learning algorithm with the Inverse 
Distance Weighting technique. Both produced 
encouraging outcomes that could help weather 
forecasting systems become more sophisticated.
França et al. (2016), Almeida et al. (2020), Freitas 
et al. (2019), and Soares et al. (2021) developed 
models with aeronautical purposes based on deep/
machine learning algorithms that provide successful 
convective event forecasting for specific regions in 
southern Brazil. Likewise, França et al. (2018) used a 
regressive neural network-based nowcasting model 
to forecast low wind profiles at Guarulhos airport 
in São Paulo, Brazil, with favorable performance for 
up to 45 minutes. Gultepe et al. (2019) presented 
a comprehensive literature review that describes 
weather information understanding for aviation 
maneuvers and provides suggestions for major 
improvements in weather-related measurement 
and prediction, numerical weather techniques, and 
next-generation integrated systems.
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National Cancer Institute (NCI) – USA. Choosing 
the attributes with the smallest p-values, the process 
allows dealing with a significant reduction of  the 
attribute dimension.

The main novelties of  this work can be summarized 
as follows:

• A hybrid approach is applied, combining WRF 
simulation with a machine learning algorithm.

• The hybrid approach is executed in two steps: 
Step-1: WRF simulations
Step-2: from the WRF simulations some 
attributes are selected as the inputs for the 
machine learning (ML) algorithms.

• The precipitation events are identified into 
different severity classes.

• The method for the attribute selection is based 
on the statistical p-value scheme.

• A better configuration of  the ML algorithms 
was obtained by using the Adaptive Boosting 
approach.

2. STUDY AREA AND DATA

This represents the irregular polygon in Figure 1 
that depicts the boundary of  TMA – Rio and displays 
the approximate location of  the airports Galeão (SBGL), 
Santa Cruz (SBSC), Jacarepaguá (SBJR), Afonsos 
(SBAF), and Santos Dumont (SBRJ).

According to the statistical overview of  air 
traffic (CENIPA, 2022), in the last 10 years, 
almost 58% of  the meteorological conditions that 
influenced the flow of  air navigation in Brazil 
are associated with the occurrence of  severe 
convective events. In general, frontal systems 
(Derecynski et al., 2009), the existence of  the 
South Atlantic convergence zone (Andrade et 
al., 2015), or isolated convection is associated 
with the genesis of  these events (Teixeira and 
Satyamurty, 2007). Reliable forecasting of  
convective events remains to be a difficulty and 
a critical component of  aviation meteorology. 
So, the goal here is to predict a severe convective 
event. As a result, it intends to use the output of  
the reconstruction of  the atmospheric conditions 
of  convective events (before, during, and after) 
via a numerical model based on machine learning 
algorithm training to create a hybrid model of  
local convective event prediction.

The present study uses outputs from the WRF 
model to provide attributes for feeding a machine 
learning algorithm to classify the convective events. 
The meteorological attributes are selected by using 
a p-value statistical hypothesis testing, where the 
p-value is computed with the help of  software 
package BRB-ArrayTool, developed from the 
Biometrics Research Branch (BRB) team of  the 

Figure 1 - TMA-Rio study area and the location of its five main airports. 
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Table 1 shows the four-time series that had been 
used: 1) atmospheric discharge (AD) collected by 
the national lightning detection network (RINDAT) 
from 2008 to 2018, which were used to characterize 
the severity of  the convective events studied; 2) 
maps and synoptic fields are used to understand 
the atmospheric conditions that origin convective 
events; 3) For the RINDAT data period, data from 
the Global Forecast System with a resolution of  50 
km (GFS 0.5) is available and was utilized as the initial 
condition for the WRF forecast model in simulations 
of  the reconstructed events and, 4) precipitation data 
from surface weather stations are used to observe 
precipitation distribution.

3. METHOD

The difficulty at hand is connected to identifying 
the predicted atmospheric patterns provided by the 
WRF (numerical simulation) that correlate to the start 
and finish of  a convective event. In short, the method 
evaluates each point of  the grid of  meteorological 
variables (defined as an independent attribute) of  the 
WFR output to select the set of  attributes that has the 
highest influence on the occurrence of  a convection 
event using the statistical hypothesis of  the p-value (see 
Ruivo et al., 2018). The selected attributes will serve 
as predictors (or input) for the deep/machine learning 
algorithms, which will be trained and tested to forecast 
the aforementioned atmospheric patterns.

3.1 Numeric Simulation

The WRF model was used to conduct numerical 
reconstruction of  the investigated convective 
and no convective events. The modeling period 
was based on an analysis of  the spatial-temporal 
distribution of  atmospheric discharges (section 
4.1), which considers the atmospheric volume with 
a radius of  150 km centered at the SBGL airport, 
which corresponds roughly to the TMA – Rio. The 
AD distribution analysis revealed that February has 
the highest occurrence, consequently, numerical 
simulations of  February were conducted from 
2008 to 2018, excluding the twenty-nineth day of  
leap years. at 22.8oS and 43.27oW (SBGL) inserted 
at coordinates 15oS – 30oS and 36oW – 51oW with 
a grid of  9 km (d01), 3 km (d02), and 1 km (d03), 
each one with 60×60, 127×112 and 277×277 
points for horizontal respectively, with 33 levels 
at vertical coordinate, and using a Mercator map 
projection (Figure 2). 

The initial and boundary conditions were 
generated from the Global Forecast System (GFS) 
model of  the National Centers for Environmental 
Prediction (NCEP), which has a horizontal 
resolution of  0.5° and 33 integrated vertical levels. 
The model starts the analyses at 00 UTC and extends 
them for 36 hours, however, the first 12 hours are 
disregarded due to a process known as spin-up, which 
is defined as the time necessary to adapt the model 

Source Description Temporal 
resolution Availability period

Lightning detection network
(RINDAT)

http://www.rindat.com.br

The geographical location 
(latitude, longitude) of  

atmospheric discharges using 
remote sensing detectors.

300 ns 2000-present

Surface synoptic charts
(CPTEC)

http://tempo.cptec.inpe.br/cartas.
php?tipo=Superficie

Synopticanalysis. 6 h 2008-present

GFS 0.5
https://catalog.data.gov/dataset/
global-forecast-system-gfs-0-5-deg

Initial and boundary 
atmospheric conditions with 

0.50 resolution.
3 h 2006-present

4. BNDMET 
https://bndmet.inmet.gov.br/mapa

Observational Rainfall data 
from the DECEA/INMET 

network stations.

1 h
24 h

Monthly
2000-present

Table 1 - Data source, description, frequency, and availability of the data used.
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and Campos Velho (2015) are works that apply data 
mining approaches connected with a significant 
weather forecast, although it is still a little-studied 
methodology. The p-value was chosen as the 
dimensionality reduction strategy in this study, which, 
according to the literature, is an innovative approach 
for developing a hybrid forecasting model, as in this 
study, integrating data from a meteorological numerical 
model, data mining techniques, and machine learning 
categorical algorithms.

3.3 Attribute analysis: P-value

The p-value hypothesis testing is calculated for 
each attribute of  3D WRF grid, and a georeferenced 
map of  p-values for each 3D coordinate of  each 
meteorological variable is constructed. The idea is to 
choose attributes from a set of  data that act differently 
in predefined classes of  precipitation intensity, and 
then determine their significance for the occurrence 
of  severe convective events, or, in other words, the 
lower the p-value, the more probably the attribute is 
associated with the phenomenon under investigation. 
The p-value statistical analysis is codified in the BRB-
ArrayTools (version 4.6.1), free software available at 
http://linus.nci.nih.gov/brb/download.html. It has 
a comprehensive collection of  tools for constructing 
predictive classifiers and performing thorough cross-
validation. In this research, the software was adapted 
to environmental problems; the following steps were 
taken in line with the strategy employed by Ruivo et 
al. (2014, 2015, and 2018):

i.  Examine the statistical consistency for outline 
detection of  the hourly rainfall data at TMARio 
of  the five airports (SBSC, SBGL, SBRJ, SBJR, 
SBAF);

ii.  The convective event time series is chosen 
based on the existence of  AD, and the pentad 
precipitation series is calculated in anomalies 
(average of  5 days). Rainfall classes are determined 
by thresholds heavy (≥ 3.0mm) and moderate/
weak (< 3.0mm), so, the most significant pentad 
is selected for simulation with the WRF; 

iii. For the 13-Yr period 2008-2018, atmospheric 
dynamics is simulated employing WRF with the 
settings specified in 3.1 for February;

iv. The predicted WRF variables are preliminarily 
selected (as shown in Table 2), as a guide, to 
be used to determine the p-values, taking into 
account the previous successful experiments 
conducted by Ruivo et al. (2015 and 2018) for 
extreme rainfall events in Brazil;

regardless of  the initial and boundary conditions. 
The simulations employed the following settings, as 
proposed by Silva et al. (pre-print): 1) Grell-Freitas 
(Grell and Freitas, 2014); 2) microphysics, WSM6 
(WRF Single-Moment 6-class Schema) (Hong and 
Lim, 2006); 3) Boundary layer - Yonsei University 
(Hong et al., 2006); and 4) radiation- for long-
wave and short-wave radiation, the RRTM (Rapid 
Radiative Transfer Model) (Mlawer et al., 1997) and 
Dudhia (Dudhia, 1989) models are used.

Figure 2 - Domains of the used simulation grids that are centered 
in SBGL.

3.2 Data mining

Data mining is a subfield of  database study that 
incorporates techniques and concepts from several 
disciplines such as machine learning, statistics, pattern 
recognition, and data visualization (Fayyad et al., 1996). 
Its goal is to find patterns and extract information 
from a set of  data by converting it into smaller subsets 
to promote better interpretation and minimize the 
processing time of  existing data. This data mining 
approach is known as dimensionality reduction. (Hair 
et al., 1995) According to Alppaydin (2010), simpler 
models are more robust in the face of  smaller data 
sets, and if  we can reduce the amount of  the data 
without losing information, the structure and bias 
can be plotted and studied more readily, improving 
interpretation. Dimensionality reduction approaches 
include principal component analysis, associative 
neural networks, and p-value, the latter often known 
as hypothesis testing.

In the meteorological context, Wang et al. (2013), 
Ganguly et al. (2014), Ruivo et al. (2014), Anochi 
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machine learning algorithm. Therefore, a 
methodology can be employed to reduce 
the number of  inputs, without losing the 
information capacity to estimate a quantity 
from the reduced number of  attributes. Table 
2 indicates some meteorological variables for 
specific coordinates for several levels. This set 
of  attributes was used by Ruivo et al. (2015), 
the companion paper, to identify extreme 
events in Brazil. Here, the same strategy is also 
applied, where the p-value hypothesis test is 
computed. Firstly, classifying if  there is (YES) 
or not (NOT) the AD. Secondly, events with 
the presence of  AD are classified into different 

v. Datasheets are structured with characteristics 
– variables at different levels and coordinates – 
precipitation classes, and time series (in pentads) 
for simulated events;

vi. Data dimension reduction: Considering the 
grids (d01, d02, d03) applied to the WRF 
model, the number of  attributes for each time-
step for seven (7) meteorological variables 
(temperature, pressure, moisture, wind 
components: (u,v,w), geopotential height) 
will be: 7variables*464x* 449y*33z = 48,125,616. 
These are too many inputs for a machine 
learning tool, requiring a supercomputer 
for configuring and training a supervised 

No Predicted Variable Attribute observation level (hPa)

1 Sea level pressure (SLP) 1000

2 Air temperature (T) 2 meter, 925, 850, 700, 600, 500, 300

3 Specific humidity (SH) 925, 850, 700, 600, 500, 300

4 Omega (ω) 925, 850, 700, 600, 500, 300, 200

5 Geopotential height (GH) 1000

6 Zonal Wind (U) 925, 850, 700, 600, 500, 300

7 Meridional Wind (V) 925, 850, 700, 600, 500, 300

Table 2 - Predicted variables and their attributes obtained by Ruivo et al. (2015), used here as guide to determine the best predictors (or input) 
of the machine learning algorithms to be trained and tested.

Table 3 - The characteristics of the selected algorithms.

Classifier Description Reference

BayesNet Based on the construction of a Bayesian network, using various search 
algorithms and quality measures.

Witten et al. 
(2016)

NaiveBayes Naive Bayes standard probabilistic classifier. Numerical estimator 
precision values are chosen based on the analysis of training data.

G.H. John and P. 
Langley (1995)

MultilayerPerceptron Uses backpropagation to learn a multilayer perceptron to classify instances. 
It has a hidden layer with a customs number of units also hidden.

Witten et al. 
(2016)

SimpleLogistic Construction of linear logistic regression models. LogitBoost with simple 
regression functions as basic learners is used to fit the logistic models.

Landwehr et al. 
(2005)

LMT Classifier for building classification trees with logistic regression 
functions on leaves.

Landwehr et al. 
(2005)

J48 Creates a single decision tree based on all available input resources. Ross Quinlan 
(1993)

RandomForest Creates decision trees trained on different subsets of input features. Leo Breiman 
(2001)

RandomTree Construction of a tree that considers k attributes randomly chosen at each 
node. Do not perform pruning.

Witten et al. 
(2016)

REPTree Quick decision tree. Build a decision or regression tree using information 
gain/variance and pruning using reduced error pruning (with backfitting).

Witten et al. 
(2016)
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precipitation classes. The p-value is calculated 
at several levels of  significance (α = 0.5, 0.1, 
0.05, 0.01) of  seven meteorological variables 
at each WRF grid point. The BRB software 
package was designed to examine genetic 
propensity to certain types of  cancer. The 
adaption of  this approach and classification 
of  features for convective events is detailed 
further below.

a) For the application of  the BRB-arraytool, the 
following analogy was adopted: genes and 
diseases are associated to meteorological 
attributes and extreme events, respectively.

b) According to Simon et al. (2004), there are 
several schemes to evaluate significant statistical 
diference of  classes. Here, the t-student testing 
is used as a metric to quantify the difference 
(distance) between two samples, considering 
standard deviation units – see equations (1) 
and (2a-b). For an established threshold, it is 
determined the difference significance between 
two samples or classes.

c) The multivariate permutation test (MPT) is used 
for mapping the t-statistics into p-values, by NP 
random permutations for Nattributs. The MPT 
is regularly employed to compute the statistical 
significance (p-values) of  a sample (Knijnenburg 
et al.,2009; Ernst, 2004). The t-test value is 
computed randomly by changing entries among 
classes. For two classes C1 and C2, entries of  
both classes are changed. So, changing an entry 
from class C1 is now to class C2, the same 
situation for a randomly selected entry from class 
C2. With these new classes, a new t-test score 
(t*) is calculated, and the operation is repeated 
for Np permutations. The computation of  the 
t-test score between two classes is determined 
by the formula:

 
 ,                                        (1) 

 

where   (i = 1,2) are the  means of   classes,  and 
is given by:

 

,                  (2a)

The p-value from the MPT is calculated by the 
ratio between the number of  t-test scores (t*)greater 
or equal to the reference value (t) and the total 
number of  permutations plus one, as expressed in 
the formula below:

  
.            (3)

vii. The fields of  the most relevant attributes, as 
well as their respective p-values, are plotted 
for analysis and selection and normalized of  
attributes to be utilized as predictors.

viii. Training and testing: it is expected that 
the machine learning-based algorithms 
that will be trained and tested, with the 
aforementioned attributes as input, would 
be capable of  distinguishing atmospheric 
patterns associated with convective (YES) and 
non-convective (NO) events. WEKA (version 
3.7.12), a machine learning-based categorical 
algorithm developed by the University of  
Waikato in New Zealand (Witten et al., 2016), 
was used for algorithm training and testing. 
By randomly dividing the data in training and 
testing samples into different proportions, 
the algorithms were trained and tested via 
a cross-validation that consists of  testing 
machine learning algorithms by training 
them on subsets of  the input data and then 
evaluating them on the complementary 
subset. This technique is recommended to 
avoid overfitting.

ix. Case study.

3.4 Algorithms Evaluation 

The predicted vs observed can be evaluated using 
the confusion matrix or contingency table (Table 4). 
The columns reflect the observed values, and the rows 
indicate the forecast values, in this NxN order matrix. The 
statistical metrics used are: (1) Probability of  detection 
(POD) is a statistical term that evaluates the percentage 
of  observed events that were correctly predicted. A 
perfect score is 1; (2) False alarm rate (FAR), which is 
the percentage of  YES forecasts that were incorrect. 
(3) Critical Success Index (CSI), the ratio of  correct 
forecasts to the number of  times events were predicted 
and observed; The ideal score is one (Wilks, 2005). In 
addition, the results of  the algorithms’ predictions were 
evaluated using ROC (Relative Operating Characteristic) 
diagrams, which represent the joint plot of  POD Vs 
FAR values.
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4. RESULTS

4.1 Characterization of  events

The AD data were analyzed following the steps of  the 
method in section 3 for the 11-yr period (2008-2018)in the 
cycle centered on SBGL with a radius of  150 km, where the 

TMA-Rio is inserted. The hourly and monthly distributions 
of  AD are shown in figures 3a and 3b. Between 18:00 and 
20:00 (local time) is throughout December to March, 56% 
of  AD events occur, when there is more energy available 
for convection, enhancing the production of  convective 
clouds and the incidence of  lightning (Christian et al. 2003; 
Paulucci et al., 2019). The data was chosen for simulations 
with WRF and test-training of  machine learning algorithms 
because of  the higher density of  AD that occurs in February.

4.2 Analysis by p-value

The aim is to identify those predictor attributes of  
the set of  variables predicted by the WRF that have 
higher correlations with the occurrence of  convective 
events, as suggested by Ruivo et al. (2015), to reduce 
the number of  them used as input for machine learning 
algorithms to be trained and tested in this study.

Observation
Yes No Total

Prediction
Yes a b (a+b) Predicted

No c d (c+d) 
NotPredicted

Total a+c b+d

Table 4 - Contingency table described as: a (Hit) – the phenomenon 
was predicted and observed; b (False Alarm) – the phenomenon 
was predicted and not observed; c (Miss) – the phenomenon was 
not predicted, but it was observed; and d (Correct Negatives) – 
phenomenon was not predicted and was not observed.

Figure 3 - Distribution of atmospheric discharge for the period 2008–2018: (a) Hourly, and (b) Monthly. 
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Figure 4 shows a series of  anomalies in average 
precipitation from the five TMA-Rio airport 
meteorological stations in pentads, including if  AD 
occurred within this time interval, throughout an 11-
year period (2008-2018), classifying those pentads 
that are heavy (rainfall ≥ 3.0 mm) and moderate-weak 
(precipitation < 3.0 mm). The red highlighted rainfall 
pentad from February 13-17, 2018, was selected for WRF 
simulation as it recorded the highest positive rainfall 
anomaly and AD=15,939 occurrence in TMA-Rio.

Following to method´s step vi, the total number 
of  attributes (N-attributes) is equal to 48,125,616 
(which represents 7-variables*464-x* 449-y*33-z) 
that are stimulated by the WRF. Each attribute’s 
p-value (Eq. 1) was calculated using 10,000 random 
permutations (Np) with a significance level α = 0.05, 
which represents a probability of  less than 5% being 
a false positive. The following section discusses the 
behavior patterns of  the p-value field for some of  the 
predicted variables (Table 2). Figure 5 (a-d) depicts 
the p-value of  specific humidity average predicted at 
various levels (925, 850, 600, and 300 hPa) at 00 hs 
(local time) for February 15, 2018. It observes that 
the area surrounding the airports (red dots) shown 
in Figure 5 (a-d) (at 925, 850, 600, and 300 hPa), 
corresponding approximately to TMA-Rio area, has 
a p-value of  SH less than 0.05 (as shown in the dark 
regions in the figures).

T his  means  tha t  the  SH va lues  a t  the 
aforementioned levels (attributes) can be considered 

strong predictors of  convective events. Similarly, the 
p-values of  the mean omega (vertical movement) 
at 600 and 300 hPa (Figure 6, a-b) and the mean 
wind at 925 hPa (Figure 7) are plausible predictors 
for the selected event, since their values are low in 
the TMA-Rio region, where the airports are located 
(red dots). Table 5 summarizes the characteristics 
(variable, level, latitude, longitude, and p-value) of  
the 36 selected attributes, which are the result of  
several experiments and are used as input (predictors) 
to machine learning algorithms.  

4.3 Training and testing

A numerical experimentation process, changing 
the algorithm configuration parameters and verifying 
the performance, is one of  the most used strategies for 
configuring machine learning algorithms. This procedure 
is typically costly. The success of  an ML algorithm is 
strongly dependent on the predictors (inputs) chosen, 
as well as the training set. As inputs, the thirty-six 
attributes with the lowest p-values from the preceding 
section (Table 5) are employed, which are hypothesized 
to be associated with atmospheric conditions of  
the thermodynamic state in the development and 
maintenance of  convective events. The training strategy 
consists of  determining algorithm parameters that can 
perform the best mapping between input data (inputs) 
and ML algorithm outputs, for minimizing the difference 
between predicted and observed values.

Figure 4 - Average precipitation in anomaly (mm) in pentad and its amount of AD in TMA-Rio for February between 2008 and 2018 (average 
of meteorological stations at 5 airports).
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Figure 5 - P-value of specific humidity at levels of 925, 850, 600, and 500 at 00 h s (local time) for the event on February 15, 
2018.at 5 airports).

Figure 6 - P-value of omega at levels of 600 and 300 hPa at 00 h s (local time) for the event on February 15, 2018.
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Figure 7 - It shows the p-value representation of the wind at 925 hPa at 00 h s (local time) 
for the event on February 15, 2018.

No Variable Level  (hPa) Latitude Longitude P-value
1 sh 400 -22.5S 320W 9.2E-05
2 sh 300 -20S 317.5W 1.7E-04
3 sh 400 -25S 322.5W 3.2E-04
4 sh 850 -20S 315W 4.2E-04
5 sh 850 -20S 312.5W 8.5E-04
6 sh 300 -20S 320W 1.4E-03
7 sh 400 -25S 320W 1.4E-03
8 sh 400 -27.5S 322.5W 1.4E-03
9 sh 300 -22.5S 320W 1.5E-03
10 omega 600 -20S 317.5W 1.6E-03
11 omega 300 -20S 315W 2.0E-03
12 u 925 -25S 317.5W 2.3E-03
13 v 925 -25S 317.5W 2.5E-03
14 sh 925 -22.5S 317.5W 3.2E-03
15 omega 600 -20S 317.5W 3.4E-03
16 sh 300 -22.5S 322.5W 3.4E-03
17 sh 400 -22.5S 322.5W 4.4E-03
18 omega 600 -20S 315W 4.7E-03
19 sh 500 -27.5S 322.5W 4.8E-03
20 sh 600 -22.5S 317.5W 4.9E-03
21 omega 700 -20S 312.5W 5.7E-03
22 omega 500 -27.5S 312.5W 6.0E-03
23 omega 600 -27.5S 312.5W 6.5E-03
24 omega 700 -27.5S 312.5W 6.7E-03
25 v 400 -27.5S 322.5W 6.8E-03
26 sh 400 -20S 320W 7.1E-03
27 sh 850 -20S 317.5W 7.2E-03
28 v 700 -25S 322.5W 8.0E-03
29 sh 500 -25S 320W 8.1E-03
30 v 500 -25S 322.5W 8.6E-03
31 omega 850 -20S 310W 8.8E-03
32 sh 700 -27.5S 322.5W 8.8E-03
33 u 500 -27.5S 322.5W 8.9E-03
34 u 700 -22.5S 322.5W 8.9E-03
35 omega 400 -27.5S 312.5W 9.2E-03
36 u 850 -22.5S 317.5W 9.4E-03

Table 5 - The POD, FAR, and CSI statistics for predictions of nine selected algorithms trained (* with boost) using cross-validation for six 
conditions of established data partitions (1: unaltered data, 2: 50% YES and 50% NO, 3: 55 % YES and 45 % NO, 4: 60% YES and 40 % NO, 
5: 65% YES and 35 % NO, and 6: 70% YES and 30 % NO) in 438 experiments.
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Using the WRF hourly output of  9:00 (local time), the 
lead time is defined as 30 hours for the forecast period from 
18:00 to 23:59 (local time), which is the most likely time for AD 
to occur (Figure 4a). Thus, if  the trained category algorithms 
predict YES and AD consciously occurs between 18:00 and 
23:59, the forecast is determined to be right (HIT); otherwise 
(ERROR). Most of  the category algorithms provided in the 
WEKA package were used in several experiments. Because 
of  their observed performance, the nine algorithms shown 
in Table 3 were chosen for further investigation. 

Table 6 presents the values of  the statistical metrics (POD, 
FAR, CSI) for 438 experiments of  best predictions made by 
nine algorithms using cross-validation, taking into account 
six partitions namely: (1) unaltered data, (2) data adjusted 
(repeating or withdrawing) to 50% YES = convective event, 
50% NO = no convective event, (3) 55% YES and 45 % NO, 
(4) 60% YES and 40 % NO, (5) 65% YES and 35 % NO, 
and (6) 70% YES and 30 % NO, for training and test data, 
applying the boosting (*prediction with boost) procedure 
using AdaBoost.M1 algorithm and without boost. The latter 
is accomplished by sequentially combining several weaker 
predictor models. As a result, the next weak learner considers 
the previous weak learner’s predictions, giving higher weight to 
the more difficult predictions (those that the current iteration’s 

weak learner predicted incorrectly), resulting in increased 
optimization of  the final algorithm. Models are trained in 
this manner to reduce the errors of  previous models. In 
this investigation, the algorithm is considered acceptable (or 
model) if  its prediction outcomes achieve POD≥80, FAR≤20, 
and CSI≥80. Thus, given an acceptable model criterion, it is 
seen that none of  the algorithms used, without boost, achieved 
the required performance. On the other hand, the results 
demonstrate that using the boost process improved most 
of  the predictions made by the nine algorithms regardless 
of  the data partition. Only the Naive Bayes algorithms with 
data partition (6), Multilayer Perceptron, partition (1), LMT, 
condition (4), and RandomForest for partitions from (2) to 
(6) achieved results that met the established criterion for a 
model. As a result of  these findings, it can be stated that 
the predictions produced by the group of  five models (set: 
G1) based on the RandomForest* algorithm are statistically 
superior to those produced by the three other models (set: 
G2) based on the Naive Bayes*, Multilayer Perceptron*, and 
LMT*, as the average POD, FAR, and CIS statistics values 
and deviation are a little closer to perfection (i.e., POD (G1) 
= 0.97±0.02 and POD (G2) = 0.90±0.01; FAR (G1) = 
0.07±0.032 and FAR (G2) = 0.12±0.01; CSI (G1) = 0.92±0.05 
and CSI (G2) = 0.80±0.02).

Table 6 - The POD, FAR, and CSI statistics for predictions of nine selected algorithms trained (* with boost) using cross-validation for six 
conditions of established data partitions (1: unaltered data, 2: 50% YES and 50% NO, 3: 55 % YES and 45 % NO, 4: 60% YES and 40 % NO, 
5: 65% YES and 35 % NO, and 6: 70% YES and 30 % NO) in 438 experiments.

Data partition

Algorithm
(1) (2) (3) (4) (5) (6)

POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI POD FAR CSI

BayesNet 0.61 0.38 0.45 0.63 0.35 0.46 0.71 0.42 0.53 0.77 0.50 0.23 0.85 0.65 0.63 0.91 0.81 0.67
BayesNet* 0.70 0.35 0.51 0.55 0.44 0.47 0.61 0.26 0.50 0.64 0.35 0.58 0.70 0.44 0.52 0.82 0.23 0.77
NaiveBayes 0.62 0.39 0.45 0.64 0.34 0.48 0.66 0.38 0.50 0.68 0.43 0.53 1.00 0.99 0.65 0.99 1.00 0.70
NaiveBayes* 0.67 0.26 0.55 0.63 0.37 0.56 0.60 0.32 0.52 0.68 0.32 0.50 0.71 0.32 0.60 0.89 0.11 0.80
MultilayerPerceptron 0.86 0.50 0.58 0.78 0.32 0.59 0.72 0.35 0.56 0.80 0.44 0.62 0.85 0.53 0.66 0.92 0.65 0.72
MultilayerPerceptron* 0.91 0.13 0.84 0.74 0.26 0.67 0.72 0.28 0.65 0.70 0.34 0.59 0.85 0.43 0.67 0.75 0.48 0.63
SimpleLogistic 0.62 0.40 0.44 0.64 0.35 0.47 0.69 0.42 0.51 0.75 0.53 0.56 0.86 0.71 0.62 1.00 1.00 0.60
SimpleLogistic* 0.64 0.36 0.48 0.62 0.36 0.55 0.70 0.31 0.53 0.75 0.24 0.66 0.66 0.31 0.56 0.91 0.59 0.67
J48 0.44 0.21 0.37 0.81 0.21 0.67 0.84 0.27 0.69 0.84 0.27 0.72 0.87 0.33 0.74 0.90 0.46 0.75
J48* 0.61 0.30 0.42 0.48 0.32 0.37 0.84 0.22 0.77 0.80 0.22 0.75 0.87 0.37 0.70 0.90 0.46 0.75
LMT 0.52 0.23 0.42 0.82 0.19 0.69 0.87 0.26 0.72 0.87 0.26 0.74 0.89 0.29 0.77 0.91 0.46 0.76
LMT* 0.66 0.17 0.60 0.60 0.41 0.48 0.74 0.14 0.66 0.91 0.13 0.83 0.90 0.37 0.75 0.92 0.39 0.78
RandomForest 0.61 0.32 0.47 0.86 0.16 0.75 0.88 0.20 0.75 0.91 0.25 0.78 0.94 0.36 0.79 0.96 0.44 0.81
RandomForest* 0.86 0.18 0.78 0.93 0.08 0.84 0.96 0.06 0.90 0.97 0.09 0.92 1.00 0.02 0.98 0.99 0.11 0.96
RandomTree 0.57 0.45 0.39 0.82 0.17 0.70 0.85 0.21 0.72 0.89 0.26 0.75 0.90 0.28 0.78 0.91 0.32 0.80
RandomTree* 0.79 0.21 0.74 0.65 0.34 0.54 0.82 0.18 0.75 0.83 0.20 0.77 0.89 0.28 0.80 0.93 0.27 0.84
REPTree 0.56 0.30 0.43 0.71 0.27 0.56 0.78 0.32 0.62 0.80 0.38 0.64 0.84 0.45 0.68 0.87 0.55 0.71
REPTree* 0.82 0.23 0.71 0.70 0.29 0.62 0.73 0.28 0.67 0.80 0.38 0.62 0.84 0.45 0.68 0.89 0.29 0.79
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4.4 Hindcast

This is the hindcast of  the nine models that 
satisfied the acceptance criterion for hourly data at 
TMA-Rio between February 1-28, 2019. The hourly 
24-h hindcast of  each model is shown in Figures 8 

(a-d). The green and red squares denote HIT if  the 
hindcast YES and the occurrence of  AD within one 
hour, and ERROR otherwise. Observe that there 
were convective events on all of  the investigated 
month’s days. The following is a diagnosis from a 
hindcast analysis:

Figure 8 - (a), (b), (c), (d) Convective events 24-h hindcast for the nine algorithms chosen. for February 1–28, 2019.



31Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

DAY 1 – 8 AD was recorded during an event 
that lasted from 19:00 to 21:00 hours, and only one 
RandomForest*(6) model was able to do the hindcast for 
the entire event. At 00:00 and 14:00, the NaiveBayes*(6) 
model generated two false alarms;

DAY 2  - 208 AD were recorded between 
16:00 and 22:00 hours, and three models from the 
RandomForest*(2-6) family were revealed to have 
detected the event. Some false alarms were generated; 
however, because they occurred during the event’s 
genesis and/or dissipation, when atmospheric conditions 
were still highly unstable, these models cannot be held 
responsible for the inaccuracy.

DAY 3 - There were 1389 AD, with 100 and 1289 
falling between 13:00-14:00 and 17:00-23:00 hours. 

Figure 8 - (continued). 

The RandomForest *(3-6) models detected every event 
perfectly, but the other models generated occasional false 
alarms during the event’s genesis and dissipation stages;

DAYs 4 and 5 – The discharges were distributed in 
two events, the first with 69 AD, which occurred at 07:00 
h, and the second with 993 AD, which happened from 
17:00 h on DAY 4 to 4:00 h on DAY 5 and was accurately 
detected by the RandomForest* models (4)- (5).  As in 
prior examples, it is conceivable to observe the models 
producing false alarms throughout the event formation 
and/or dissipation phases;

DAYs 6 and 7 - On the 6th, there were recordings of  
1330 AD between 05:00 and 23:59 h, with no AD at 18:00 
h. The event lasted until 04:00, when 19 AD occurred, in 
its dissipation phase. The event was detected at all times by 
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5. CONCLUSIONS

A hybrid model is presented here that uses WRF 
numerical simulation and machine learning algorithms 
to 24-h predict convective events in the TMA-Rio. 
The simulated events were reconstructed using data 
from atmospheric discharge, precipitation, and initial 
and boundary conditions (GFS).According to 13-year 
lightning data from 2008 to 2019, February had the highest 
occurrence of  convective events in the area under study. 
The following are the key findings, which are based on a 
simulation of  February for the data period:

• The WRF data simulation’s p-value hypothesis 
testing was able to identify (lower the 
dimensionality of  the predictors to be used by the 
machine learning algorithms) a set of  attributes, 
among millions, that are most associated with the 
occurrence of  a convective event; 

• Nine trained algorithms including boosting 
were selected, and these were able to accurately 
24-predict the time of  occurrence of  convective 
events due to near-perfect POD, FAR, and CSI 
statistical values;

• The time 24-h hindcast for February 2019 by the 
generated set of  models nearly exactly recreated 
the maturation phase of  convective events, 
with any inaccuracies noted in the genesis and 
dissipation phases of  the events studied.

• Assuming that any prediction meteorological 
center can generate the input required (selected 
attributes) by the nine machine learning-based 
models employed in this paper, it is reasonable 
to state that the set of  these models can be an 
important tool for various sectors of  society 
(e.g., aviation, civil defense, tourism, and so 
on) because convective events can be predicted 
within 24 hours with good performance.

In summary, the various strategies used to develop 
hybrid forecasting models here demonstrated to be a viable 
strategy for the prediction of  convective occurrences.
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the set of  models, and it was noted that the performance 
of  some models dropped during the event’s formation 
and dissipation phases. On the 7th, between 16:00 and 
23:00 h, another event with 962 AD occurred, which was 
caught by RandomForest models (3-5), which generate 
YES at 17:00 h when no AD occurs. Another event with 
962 AD happened on the 7th, between 16:00 and 23:00 h, 
which was caught by RandomForest models (3-5), which 
generate YES at 17:00 h when no AD happens. On the 
7th, between 16:00 and 23:00 h, another event with 962 
AD happened, which was recognized by RandomForest 
models (3-5), which generate YES at 17:00 h when no AD 
occurs. The latter cannot be regarded as an error because 
atmospheric conditions remained unstable and 907 AD 
occurred within the next few hours.

DAYs 8 to 28 - During this time, it can be 
seen that, similar to the previous events, the model 
performances that recreate the maturation phase of  
convective events are nearly entirely consistent with 
the observations, with the eventual inaccuracies found 
in the event genesis and dissipation phases.

Table  7  d isplays  the POD, FAR, and 
CSI statistics for each model. The models 
RandomForest*(5) and NaiveBayes*(6) had the 
best and poorest hindcast performance, with 
POD=0.97 and 0.88, FAR = 0.02 and 0.12, and 
CSI = 0.94 and 0.78, respectively.  

Finally, it is worth noting that the time required to 
run the WRF simulations, configured as described in 
section 3.1, on a cluster (CPU Intel, Core (TM) i7-4770, 
with 8 processing cores and architecture of  64 bits) is 
approximately 240 hours. Whereas, the nine machine 
learning models were able to predict whether or not, 
using the input (chosen parameters) generated by the 
WRF simulation, a convective event would occur in 
roughly 0.57 seconds on an hourly basis up to 24 hours 
in advance.

Algorithm POD FAR CSI

NaiveBayes* (6) 0.88 0.12 0.78

MultilayerPerceptron* (1) 0.89 0.11 0.80

LMT* (4) 0.90 0.07 0.84

RandomForest* (2) 0.93 0.05 0.88

RandomForest* (3) 0.94 0.04 0.90

RandomForest* (4) 0.95 0.03 0.92

RandomForest* (5) 0.97 0.02 0.94

RandomForest* (6) 0.95 0.09 0.86

Table 7 - The POD, FAR, and CSI statistics for hour hindcast of 
February of 2019 using the algorithms of defined groups G1 and G2. 
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ABSTRACT

This work developed models, based on machine 
learning, for severe convective weather forecasts 
characterized by remotely sensed atmospheric 
discharge (AD) in the approaching landing region 
of airports in the vicinity of São Paulo. In the 
training and testing of machine learning algorithms, 
classical thermodynamic indices (input), derived 
from the atmospheric profiles of the Marte-São Paulo 
soundings, and ADs were used to characterize the 
convective severe weather (output), considering 
the period 2001 to 2017. The statistical distribution 
defined the locations, times, and severity of the 
convective events. The POD, 1-FAR, BIAS, kappa, 
and f-measure statistics were used to evaluate the 
5-hour prediction of convective event detection (and 
in parentheses for whether it is severe when the 
occurrence of lightning is greater than or equal to 
1,000), yielding values of 0.91 (0.85), 0.95 (0.94), 0.92 
(0.89), 0.74 (0.77), and 0.88 (0,95), respectively. The 
results of applying the model to thirty days (hindcast), 
show that it is effective since it hit 96.7% of occurrence 
and 86.7% if they are severe. The detection errors of 
the model are presented and discussed.

Keywords: convective meteorological event, 
machine learning, thermodynamic instability indices, 
atmospheric discharge. 
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1. INTRODUCTION

A severe convective meteorological event can inflict 
significant damage to society (Barthlott et al., 2006), 
including the loss of  human life in some cases. As it is 
often linked with severe rain (and/or hail), gusts, and 
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ADs, this frequently forms floods, landslides on slopes, 
residences demolition, power outages, and other problems 
in metropolitan areas (Banta, 1990, Barthlott et al., 2006). 
Aviation, in particular, is a sector that is essentially vulnerable 
to convective events, as evidenced by reduced visibility due 
to heavy rain and the appearance of  gust and wind shear 
during landing and takeoff, as well as large deviations that 
result in high fuel consumption en route, and sometimes 
discomfort on board due to the presence of  clear air 
convection-induced turbulence (Gultepe et al., 2019).

Meteorological convective events are increasingly 
becoming the focus of  research in order to improve 
forecasts to avoid or limit damage. The atmospheric 
requirements for the genesis of  convective events are 
generally known to be wet at low levels, instability across 
a significant depth layer, strong vertical wind shear, and 
a lifting mechanism (Dowell, 1987, Houze, 1993). 

Initially, the investigations about convective events, 
such as those by Battan (1953) and Wilson (1966), 
employed meteorological radar data as the major source 
for monitoring convective cells associated with severe 
storms. In the 1980s and 1990s, remotely detected 
lightning data and sampling atmospheric profiles obtained 
by soundings became more accessible and therefore began 
to be used in convective storm studies. For example, 
Weisman and Klemp (1986) used thermodynamics 
instability indices (TII) determined using sounding data 
to differentiate storm types. And Turman and Tettelbach 
(1980), Williams et al. (1989), and Kane (1991) used a 
similar system capable of  monitoring lightning in real-time 
and therefore used this to study and monitor convective 
storms. Subsequently, McCann (1992) proposed a three-
to-seven-hour prediction method for the occurrence of  
severe storms based on two neural networks from variables 

Severe Convective Weather Forecast using Machine 
Learning models 
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based on surface moisture convergence, which resulted in 
the analysis of  atmospheric patterns that precede severe 
events, in addition, to demonstrate the potential impact 
of  neural networks in forecasting weather events. Mueller 
et al. (2003) developed a 1-hour forecast system to locate 
areas of  likely storm occurrence based on different data 
sources, i.e., surface weather stations, radars, satellites, and 
numerical modeling. More recently, Isaac et al. (2006, 2011, 
2012, and 2014) presented several aviation-related studies 
for nowcasting of  restricted weather based on data from 
numerical models, surface observations, radar, satellite, 
and a microwave radiometer for major airports in Canada. 

In Brazil, Nascimento (2005) presented work on 
the severe weather forecast, highlighting atmospheric 
TII applicable to the identification of  the occurrence 
of  severe convective storm events, through the outputs 
of  the mesoscale models. Furthermore, Nascimento 
(2005) demonstrated that some parameters used in the 
midlatitudes of  the northern hemisphere for the prediction 
of  severe weather can be applicable in the prediction of  
convective systems in Brazil, also allowing the use of  these 
parameters for the development of  improved indices for 
the South hemisphere. Nascimento (2005) stated that the 
use of  lightning records strongly contributes to nowcasting 
forecasts and weather monitoring. Queiroz (2009) 
developed the severity index for the immediate prediction 
(nowcasting) of  severe convective storms using weather 
radar data. Paulucci et al. (2019) analyzing the spatial-
temporal distribution of  cloud-to-ground ADs events based 
on data from 2001 to 2016 in the metropolitan area of  Rio 
de Janeiro, observing polarity, peak currents, geographic 
distributions, diurnal and interannual and identified that the 
occurrences of  ADs, in the studied area, are concentrated 
in the summer (64.3%) and spring (20.5%) periods, and in 
the autumn (12.9%) and winter periods ( 2.3%) of  lower 
incidence, in addition to identifying the hours of  6 pm 
and 7 pm as the peak of  occurrences and that most of  the 
observed ADs derived from the orographic effect, which 
stimulates the formation of  convective storms along the 
southern part of  the slope. 

Meteorological convective events are widely known to 
have an influence on air traffic management, and there are 
presently no reliable numerical models to estimate these 
occurrences with exact accuracy (Anquetin et al., 2005; 
Meißner et al., 2007) to airport regions. This forecast remains 
a challenge that must be overcome. Artificial intelligence-
based models are increasingly being used in a wide range 
of  fields. In particular, Guikema et al. (2010), França et al. 
(2016), Bhuiyan et al. (2017), Bhuiyan et al. (2019), Freitas 
et al. (2019), Ehsan et al. (2019), Almeida et al. (2020) and 
Soares et al. (2021), employ these models to conduct weather 
forecasting, which is the subject of  this paper. 

Schulz (1989), Lee and Passner (1993), Huntrieser et 
al. (1997); Manzato (2005), Nascimento (2005), and Kunz 
(2007) investigated the behavior of  the TII values data for 
convective event prediction. Recently, Freitas et al. (2018), 
Almeida et al. (2020), and Soares et al. (2021) developed 
specifically short-term forecasting models that generate 
encouraging predictions of  convective events using 
machine learning algorithms and TII values as predictors, 
with a specific focus on the interests of  Brazilian aviation.

Using this strategy and keeping in mind that TMA-SP, 
the study’s target region, operates about 800,000 flights 
per year, according to the statistical yearbook of  air traffic 
(DECEA, 2019), and that they are heavily impacted by 
frequent convective occurrences, the goal of  this study is 
to use TII values, determined from atmospheric sounding 
data, as predictors to test the WEKA categorical algorithms 
(default versions without any specific hyper optimization 
algorithm) to identify the thermodynamic atmospheric 
pattern that precedes the occurrence of  convective activity 
in the TMA-SP.

2. STUDY AREA AND DATA

The study region is depicted in Figure 1 as a 137-kilometer-
radius circle centered on Marte Airport (23° 30’ 24” S, 46° 
38’ 02” W), whose international location aviation indicator 
is the SBMT (ICAO, 2021). Two data sources are used to 
train and test ML classification algorithms, as shown in 
Table 1, namely, atmospheric soundings, from which daily 
TIIs at 12 (UTC) are determined, and ADs, recorded by the 
Brazilian Lightning Location System (RINDAT), through 
which convective events are characterized.

Figure 1: The circle that roughly encircles TMA-SP represents the 
study region.
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Source Quantity Description Temporal 
resolution Period

Atmospheric Soundings
(weather.uwyo.edu/upperair/sounding) 4,717

The value of  the 
set of  25 instability 

thermodynamic indices1 

Daily at 12 
(UTC) 2001 to 2017 

RINDAT
(www.inpe.br/webelat/rindat/) 6,576,737

Location (latitude, 
longitude)  and time 

(UTC) of  atmospheric 
discharge 

300 ns
December 

2000 to June 
2017

algorithms available in WEKA (version 3.8.5), 
using the inputs and outputs defined in the 
previous step (which entails dividing the total 
data set into k mutually exclusive subsets of  
the same size, with one subset used for testing 
and the remaining k-1 used for parameter 
estimation and calculating the algorithm’s 
accuracy, Holmes et al., 1994). When the values 
of  the probability of  detection (POD) and false 
alarm ratio (FAR) statistics, specified in Table 2, 
meet the conditions of  POD≥ 0.80 and FAR≤ 
0.15 (or 1- FAR ≥ 0.85), an algorithm is called 
an optimal model;

4. C l a s s i f i c a t i o n  o f  c o n v e c t i v e 
e ve n t s  -  t h e  s e ve r i t y  i n d e x  ( S I ) ,             
is defined as the weighted average 
of  the selected n-TII, and their 
optimal weights (Pi) are determined through 
trial and error, varying the weight of  0.1 to k, in 
increment of  0.1, observing the results of  the 
ML classification algorithms considering with the 
inputs, now, the values   of  the selected n-TII and 
SI, for n-AD intervals per event (for example, 
without AD, 1-10, 11-100, 101-500, 501-1,000, 
1,001-2,000, 2,001-3,000, 3,001-4,000, 4,001-
5,000, 5,001-6,000, 6,000-10,000 and >10,001);

5. Case study - The purpose is to use an 
independent sample of  convective and non-
convective events to do a hindcast with the 
best model(s).

Table 1: Data characteristics.

3 METHOD

Based on WM0 (2010), the TII values represent 
the thermodynamic state of  the atmosphere of  
the volume corresponding to a cylinder with a 
radius of  about 150 km. The concept behind 
this research is that ML classification algorithms 
can be trained using the TII as input, resulting 
in models capable of  classifying the atmospheric 
pattern that causes convective events to arise in 
TMA-SP. The following five steps were created 
to do this:

1. Data processing - based on the possible 
time of  determination of  TII values from 
the atmospheric profile (sounding) at 12 
UTC, the hourly and monthly distribution of  
historical AD data is studied and, thus, the 
leading time for convective events prediction 
is defined;

2. Input and output - the redundant values 
are eliminated from the collection of  25 TIIs 
available (detailed in Table 1) utilizing cross-
correlation analysis of  TII data, and the n-input 
vector (or predictor variables represented by 
selected n-TII) of  the ML algorithms to be 
trained is determined. The vector input then is 
concatenated into a binary output (or target), 
which is either YES or NO depending on 
whether or not there is AD;

3. Training and Validation - Cross-validation is 
used to train and validate the ML 25-classification 

1 Instability Thermodynamic Indices: (1) Showalter (SH), (2) Lift (LI), (3) Lift computed by using virtual temperature (LITV), (4) Sweat 
(SW), (5) K index (K), (6) Cross Totals (CT), (7) Vertical Totals (VT), (8) Total Totals (TT), (9) Convective Available Potential Energy 
(CAPE), (10) CAPE computed by using the virtual temperature (CAPV), (11) Convective Inhibition (CINS), (12) CINS computed by using 
virtual temperature (CINV), (13) Equilibrium level (EQLV), (14) EQLV computed by using virtual temperature (EQTV),(15) Level of Free 
Convection (LFCT), (16) LFCT computed by using the virtual temperature (LFCV), (17) Bulk Richardson number (BRCH), (18) BRCH 
computed by using the virtual temperature (BRCV), (19) Temperature (K) at the LCL (LCLT), (20) Pressure (hPa) at the LCL, (21) the 
lifting condensation level, from an average of the lowest 500 meters (LCLP), (22) Mean mixed layer THTA (MLTH), (23) Mean mixed 
layer MIXR (MLMR), (24) 1000 mb to 500 mb thickness (THTK) and (25) Precipitable water (mm) for the entire sounding (PW) (see http://
weather.uwyo.edu/upperair/sounding.html).

(𝑆𝑆𝑆𝑆 = ∑ �������
���
∑��

) 
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(SBSP), Marte (SBMT), Campinas (SBKP) and São José 
dos Campos (SBSJ), are located.

The AD monthly and hourly distributions are 
shown in Figure 3 (a) and (b). Figures 3 (a) show that 
more than 81% of  AD occurrences are concentrated 
between December and March and Figure 3 (b) has 
shown that period between 3 and 11:59 pm (local time) 
is the one with the highest AD occurrences (more than 
84%). Then, it can perhaps be stated that the genesis 
of  convective events that generate AD are chiefly due 
to local convection, rather than frontal systems. Finally, 
based on previous analysis of  Figure 3 (b), the forecast 
period (or leading time), as required in step 1 of  the 
method, will be approximately 5 hours, representing 
the time interval between 10 am (when the TII will be 
determined) and 3 pm (local time), when the period of  
the greatest AD occurrence begins. 
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Provides the correct prediction rate for 
the desired event.

False Alarm Ratio (FAR) Corresponds to the ratio of  the number 
of  false alarms divided by the total of  

non-observed events.

F-measure

        where, 

Harmonic measure between accuracy 
and sensitivity.

KAPPA

where                  

The measure of  agreement between 
predicted and observed.

BIAS Measures the proportion of  the 
frequency of  predictive events by the 
frequency of  observed events, used 
to indicate whether the prognosis is 
overestimated or underestimated.

4 RESULTS

4.1 AD distribution 

For the data period investigated 2001-2017, Table 
1 demonstrates that only 76% (4,717) of  the projected 
soundings were conducted in the SBMT at 12 (UTC). 
It reveals that the average, minimum and maximum 
percentages of  days without observed data (or 
soundings) are expressive equal to 24.1%, 19.2%, and 
31.5%, respectively. 

Figure 2 shows the spatial distribution of  AD 
occurrences for the period from December 1st, 2000 to June 
30th, 2017, and it can be seen that the highest concentrations 
of  AD are strongly associated with the presence of  heat 
islands corresponding to the urban regions where the main 
airports of  TMA-SP, i.e., Guarulhos (SBGR), Congonhas 

Table 2: The statistics utilized are from the contingency table (WILKS, 2006), where a, b, c, and d stand for true-positive, false-negative, 
false-positive, and true-negative, respectively.
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Figure 2: The density of AD between December 1st, 2000, to June 30th, 2017.

Figure 3:  Monthly (a) and hourly (b) distribution of AD occurrences in the period from December 
1st, 2000, and December 31st, 2017.
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4.2 Forecast model

The process of  training and testing ML 
algorithms is well acknowledged to be difficult 
and time-consuming. The success of  this 
procedure is mainly associated with the choice 
of  variables (input), which here characterize the 
local thermodynamic state of  the atmosphere 
that precedes the occurrence of  convective 
events in the study area. Similar to the studies 
developed by Freitas et al. (2019) and Almeida 
et al. (2020), according to step 2 of  the method, 
the cross-correlation of  the twenty-five TII 
available (numbered in section 2, Table 1) was 
performed, resulting in six TIIs, namely, SH, 
LI, SW, K, TT, and PW, which will be used with 
predictor variables (input) of  the ML classification 
algorithms in the training and testing process until 
reaching the optimal model. 

Following step 3 of  the method, 1,025 
experiments were developed using twenty-five 
classificatory algorithms available in WEKA that 
were trained and tested by 10-fold cross-validation 
for each sixteen AD intervals as in column 2 of  
Table 3.Table 3 shows the statistics (POD, 1-FAR, 
BIAS, Kappa, and F-measure) from 10-fold cross-

validation for 5-hour detection forecasting of  the 
highest performing method (column 3). In other 
words, the results provide a 5-hour prediction 
(YES OR NO) of  whether a convective event will 
occur, and if  YES, if  AD will exceed the interval’s 
limit. When employing the optimal model criterion 
established in step 3 (that is, when its findings yield 
POD ≥ 0.8 and 1-FAR ≥ 0.85), only the optimal 
models are limited to completing the 5-hour 
forecast of  convective events up to the limit of  
AD = 100). 

Thus, the   SI = ∑ �������
���
∑ ���
���

 

 

 was designed to 

improve the 5-hour forecast of  the most 
impactful convective events (those more severe 
with the highest number of  AD), according to 
step 4 of  the method, which is defined as the 
weighted average of  the 6-TIIs selected (i.e., SH, 
LI, SW, K, TT and PW).  Twelve AD intervals 
(i.e., 0, 1-10, 11-100, 101-500, 501-1,000, 1,001-
2,000, 2,001-3,000, 3,001-4,000, 4,001-5,000, 
5,001-6,000, 6,001-10,000, and > 10,001) have 
been established to determine the weight (Pi) of  
each TIIi, and the plot of  each of  the six ITTs 

Table 3: The best-performing models (column 3) for 5-hour forecasting using the selected 6-TII as input for each the AD interval. 

Result AD interval 
per event Model POD 1-FAR BIAS Kappa F-measure

1 0 RandomForest 0.91 0.95 0.92 0.74 0.88
2 >10 RandomForest 0.94 0.88 0.91 0.83 0.84
3 >100 RandomForest 0.83 0.85 0.97 0.74 0.84
4 >200 BayesNet 0.74 0.91 0.82 0.71 0.82
5 >300 BayesNet 0.76 0.80 0.96 0.68 0.78
6 >400 BayesNet 0.68 0.92 0.74 0.67 0.78
7 >500 RandomForest 0.75 0.67 1.12 0.62 0.71
8 >600 BayesNet 0.67 0.77 0.88 0.61 0.72
9 >700 LMT 0.60 0.91 0.66 0.62 0.73
10 >800 AdaBoostM1 0.63 0.77 0.82 0.60 0.69
11 >900 AdaBoostM1 0.58 0.83 0.70 0.58 0.69
12 >1,000 Multilayer Perceptron 0.70 0.56 1.25 0.55 0.63
13 >2,000 Multilayer Perceptron 0.66 0.71 0.94 0.60 0.68
14 >3,000 JRip 0.56 0.49 1.15 0.45 0.52
15 >4,000 BayesNet 0.26 0.84 0.31 0.31 0.40
16 >5,000 BayesNet 0.21 0.83 0.26 0.27 0.34
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0.1 to k=3, in increment of  0.1, and observing 
the results of  the algorithms regarding defined 
optimal POD and FAR values, as described in 
step V of  the method. The SH, LI, PW and SW, 
K, TT received weights of  2 and 1, respectively, 
as a result of  this approach. As a result, the SI is 
used as a predictive variable in the training and 
testing of  the twenty-four algorithms, together 
with the chosen TII.

versus AD intervals was analyzed, as shown in 
Figure 4. It shows that the behavior of  all TII 
values is highly correlated to AD values, with 
absolute correlation values ranging between 0.96 
and 0.99. The convective event is then classified 
as severe with AD ≥ 1,000 based on behavior all 
TIIs seem to be similar. 

The ideal weights (Pi) for each TII are 
determined by trial and error, varying o Pi from 
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Figure 4: SH (a), LI (b), SW (c), K (d), TT (e), and PW (f) atmospheric indices versus the twelve AD intervals.
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values. The results reveal that the best model was 
capable of  nowcasting 96.66% of  the events will 
be convective or not (column 3) and if  86.66% 
of  those will be severe ones. As previously stated, 
most of  the convective events that occur in the 
study area are caused by local convection, with 
the exception of  events 2, 6, 23, and 27, which 
all had their origins owing to a frontal system 
through the region, as shown, for example, in 
Figure 6, which shows images from the GOES-
13 satellite (infrared channel) at two moments 
during the passage of  a cold front through studied 
region (red circle) for the events 6 and 27 that 
occurred on February 22nd, 2013, and March 
13th, 2013, respectively. To attempt to explain, it 
is important to note that the learning process of  
ML algorithms is dependent on the data sample 
representation of  the studied phenomenon, 
and since the proportion of  frontal origin 
convective events is smaller when compared to 
local convection ones, it is possible that therefore 
the ML learning algorithms, using as input TIIs 
were unable to capture the advection atmospheric 
pattern generated by a frontal system.

Result AD interval 
per event Model POD 1-FAR BIAS Kappa F-measure

1 0 DecisionTable 0.92 0.91 1.00 0.83 0.90

2 >10 RandomForest 0.93 0.97 0.96 0.89 0.95
3 >100 RandomForest 0.91 0.93 0.98 0.84 0.94
4 >200 RandomForest 0.90 0.93 0.97 0.82 0.94
5 >300 LMT 0.92 0.93 0.99 0.83 0.95
6 >400 LWL 0.96 0.90 1.07 0.80 0.94
7 >500 LogitBoost 0.88 0.92 0.95 0.79 0.94
8 >600 DecisionTable 0.84 0.93 0.90 0.76 0.94
9 >700 RandomForest 0.85 0.92 0.91 0.75 0.94
10 >800 J48 0.84 0.92 0.91 0.73 0.94
11 >900 LMT 0.82 0.94 0.86 0.74 0.95
12 >1,000 REPTree 0.85 0.94 0.89 0.77 0.95
13 >2,000 JRip 0.73 0.92 0.77 0.59 0.94
14 >3,000 JRip 0.68 0.97 0.69 0.60 0.97
15 >4,000 MultilayerPerceptron 0.66 0.95 0.68 0.52 0.97
16 >5,000 KStar 0.63 0.94 0.65 0.43 0.97

Table 4: The best-performing models (column 3) for a 5-hour forecast using the selected 6-TII and SI as input for each the AD interval.

Table 4 shows the statistics of  the best results 
of  10-fold cross-validation for 5-hour prediction 
models of  convective events for TMASP based 
on the results of  38,401 tests with AD intervals, 
similar to the results in Table 3. The 5-hour best-
models of  convective occurrences up to the limit 
of  DA≥1,000 are reliable because the values of  
POD, 1-FAR, BIAS, KAPPA, and F-measure are 
expressive and equal to 0.85, 0.94, 0.89, 0.77, 
and 0.95. This implies that integrating SI as a 
predictive characteristic considerably improved 
the 5-hour prediction models of  convective event 
severity, as they can accurately discriminate the 
severity of  convective events up to 1000 AD 
occurrences. According to Landis (1977), Kappa 
values of  more than 0.6 indicate high agreement 
between forecasts and observations, hence the 
5-hour prediction models may be considered 
credible up to AD=3,000.

Finally, Table 5 illustrates the best model with 
5-hour hindcast for event detection (HIT: H – 
ERROR: E, column 4) and severity (column 5 
for thirty convective and non-convective events 
where the predictor variables are the TII and SI 
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Event
DAY AD number 

per event

RESULT OF PREDICTIVE MODELS
(HIT: H – ERROR: E)

EVENT DETECTION SEVERITY
1 10/Aug/2004 0 H H

2 17/Jan/2006 208 E H

3 09/Jul/2007 0 H H

4 12/Sep/2007 0 H H

5 14/Aug/2013 0 H H

6 22/Feb/2013 12950 H E

7 05/Mar/2013 22796 H H

8 17/Apr/2005 199 H H

9 15/Apr/2002 106 H H

10 28/Dec/2003 609 H H

11 26/Jan/2003 473 H H

12 23/Feb/2005 620 H H

13 24/Dec/2002 2865 H H

14 29/Nov/2013 1640 H H

15 16/Jan/2005 3361 H H

16 07/Feb/2006 7103 H H

17 17/Feb/2011 3619 H H

18 21/Apr/2004 2190 H H

19 03/Mar/2006 4844 H H

20 23/Mar/2006 1843 H H

21 28/Nov/2001 8095 H H

22 22/Feb/2017 1370 H H

23 11/Jan/2012 18 H E

24 19/Feb/2013 14715 H H

25 17/Jan/2010 2763 H H

26 16/Jan/2014 17556 H H

27 13/Mar/2013 77 H E

28 14/Feb/2008 13497 H H

29 09/Jan/2016 6933 H H

30 15/Feb/2016 16398 H H

Table 5: Results of optimum model hindcast-5h for thirty events randomly selected in the dataset.
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(a) (b)

(c) (d)

Figure 6: Infrared images from the GOES-13 satellite, channel 4, taken at (a) 12:30 and (b) 20:00 on February 22nd , 2013, 
and (c) 12:30 and (d) 20:30 (UTC) on March 13th, 2013.

5. CONCLUSION

In this study, prediction models based on machine 
learning were created with the goal of  detecting severe 
convective events in the TMA-SP. The main findings are 
summarized below:

• Atmospher ic  d ischarges  occur  more 
frequently in the summer and are primarily 
associated with heat islands located in the 
cities of  São Paulo (represented by the 
aerodromes identified by: SBGR, SBSP and 
SBMT), Campinas (SBKP), São José dos 
Campos (SBSJ ), in Serra da Mantiqueira 
and along the Dutra Highway, located, 
respectively, to the north and east of  São José 
dos Campos (SBSJ);

• The time period from 3 pm to 11:59 pm 
(local) was identified as having the highest 
occurrence of  convective activity. The 
developed models were able to predict and 
classify the severity (up to 5 hours in advance), 
with high probability of  detection, low rate of  
false alarm and little bias;

• The hindcast results of  the analyses show that 
the models do not currently have a satisfactory 
performance in predicting convective events 
with frontal origin.

Adjusting models to predict frontal genesis convective 
events, testing them outside of  the TMA-SP, and training 
ML algorithms to develop a hybrid model using the result of  
the reconstruction of  atmospheric conditions of  convective 
events via a numerical model are all topics that will be 
investigated in the future.Future studies intend to improve 
the performance of  current machine learning models using 
different regularization techniques, including ensemble 
methods (e.g. bagging, boosting), dropout, among others 
(Goodfellow et al., 2016).
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Study of the Goes-R Thermodynamic Indices for Short-
Term Forecasting of Convective Weather Events using 
Machine Learning 

Caroline Menegussi Soares

ABSTRACT

Forecast models(6 – 8 h) are proposed forpredicting 
meteorological convective events(MCEs) based on 
machine learning algorithms for two pre-established 
areas I and II that correspond to the flight routesfrom 
Rio de Janeiro to São Paulo, Brazil. As input data, 
the models havefive atmospheric instability indices, 
extracted from remotely sensed data retrieved from 
the GOES-R satellite, for January to March of 2018 
and 2019. Temporal characterisation for the events 
was carried out using lightning (i.e.,atmospheric 
discharge) data from 2001 to 2019, and the hourly 
distribution defined the forecast period of the study. 
Five machine learning algorithms were selected and 
trained using 400 experiments aimed at forecasting 
MCEs and their severity. Statistics indicated that 
the multilayer perceptron and simple logistic 
algorithms had the best forecast performance,with 
the probability of detection being 0.86 and 0.94, 
false alarm rate being 0.14 and 0.08, bias being 
1.00 and 1.01, F-measure being 0.86 and 0.94, 
and Kappa values being 0.72 and 0.85 in areas I 
and II, respectively. The hindcast results for April 
2020 reveal that the models were able to capture 
physical characteristicsrelated to the convective 
event patterns and correctly forecast 96% of the 
days, and are toolsthat can be used to improve 
operational forecasts for aviation purposes in the 
region and elsewhere.

Keywords: flight routes, atmospheric discharges, 
convective events, machine learning.
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1. INTRODUCTION

Severe meteorological convective events (MCEs) 
have a serious impact on aviation and are often 
responsible for accidents and incidents worldwide 
(CENIPA, 2018; Gultepe et al., 2019). MCEs can impact 
a flight in its different phases; that is, during landing and 
take-off  with the presence of  hail and/or heavy rain, 
gusts, and wind shear, and en route, by the formation 
of  ice and/or clear air convection-induced turbulence 
(Gultepe et al., 2019).

Aviation meteorology aims to contribute to 
ensuring the safety standards, economy, and 
efficiency of  flights. Therefore, it is necessary to 
determine whether these weather conditions will 
cause significant variations, such as ice formation, 
turbulence, thunderstorms (cumulonimbus clouds), 
low ceilings, low visibility, and wind gusts (or the 
appearance of  wind shears), which may result in 
deviations in the route and, consequently, higher fuel 
consumption. As a result, traffic control requires 
assertive predictions regarding the estimated time for 
the beginning of  these variations and the expected 
period of  their duration. 

With the aim of  improving short-term predictions, 
several early studies regarding weather forecasting, 
such as the ones by Wilson (1966) and Wilk and 
Gray (1970), suggested forecasting approaches based 
on extrapolations of  radar data limited to subjective 
interpretation to predict storms.

Published in: Pure and Applied Geophysics, 2021, https://doi.org/10.1007/s00024-021-02889-7



49Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

For applications in aviation, Isaac et al. (2006), 
Isaac et al. (2011), and Isaac et al. (2012) presented 
a sequence of  analyses that resulted in a refined 
forecasting system for aviation using data from 
numerical models, surface observations, radar, 
satellite, and a microwave radiometer to generate 
projections of  up to approximately 6 h for major 
airports in Canada.

Nascimento (2004) used profiles of  numerical 
models and radiosonde data to verify atmospheric 
conditions for the prediction of  severe storms 
and concluded that the convective parameters and 
indices used in mid-latitudes can be used to elaborate 
or adjust indices that are more appropriate to the 
tropical region. Nascimento (2005) presented a 
comprehensive discussion on the issue of  severe 
weather forecasting in Brazil, a description of  
atmospheric parameters useful to help identify 
atmospheric conditions conducive to the occurrence 
of  severe convective storms and stated that 
atmospheric discharge (AD) is essential for weather 
forecasting and climate monitoring. Pinto et al. (2006) 
presented a description of  the spatial-temporal 
distribution of  AD considering data recorded from 
1999 to 2004 in the southeast region of  Brazil, where 
the Rio de Janeiro to São Paulo air route studied 
here is located. They concluded that high frequency 
occurrence of  AD is associated with the effects of  
urban heat islands and orography, which enhance the 
convection mechanism. 

Recently, Bender (2018) studied the atmospheric 
conditions that generate strong storms in the 
metropolitan region of  São Paulo and analysed 
the potential for increased convective activity with 
urban expansion until 2030, and concluded that 
vertical and horizontal urbanisation will generate 
increased precipitation and displacement of  severe 
storms for the region of  São Paulo city considering 
the current projections. Conversely, Paulucci et al. 
(2019) studied the spatial and temporal variability 
of  cloud-to-ground rays in the metropolitan region 
of  Rio de Janeiro using data from to 2001-2016 and 
observed that, of  258,794 ADs, 64.3% occurred in 
summer, 20.5% in spring, 12.9% in autumn, and 
2.3% in winter. 

The area between Rio de Janeiro and São Paulo, 
located in south-eastern Brazil, is highly impacted by 
MCE, characterised by AD records, primarily during 
the hottest months of  the year between November and 
April (Pinto et al., 2006). 

Presently in Brazil, the nowcast for MCEs is 
done by meteorologists, who uses their experience 

to integrate different in situ  meteorological 
observations and/or atmospheric model outputs 
using conceptual models of  how the atmosphere 
works. It is known that this nowcasting procedure 
results in a high degree of  subjectivity and 
uncertainty. Therefore, the objective of  this work 
is to study the occurrence of  MCEs in the Rio de 
Janeiro – São Paulo air route and evaluate the use 
of  machine learning (ML) algorithms as a tool for 
short-term forecasting of  these events and their 
severity, based on remotely sensed atmospheric 
thermodynamic indices from satellites. 

This article is part of  a sequence of  related 
studies successfully delivered by the Laboratory of  
Applied Meteorology of  the Federal University of  
Rio de Janeiro (Almeida et al., 2009; Silva et al., 2016; 
França et al., 2016; França et al., 2018; Hermsdorff, 
2018; Almeida et al., 2020a; and Almeida et al., 2020b) 
that have utilized machine learning techniques for 
forecasting convective events.

2. DATA AND METHOD

2.1 Study Region

The study region was a rectangular area of    
160.908 km2, corresponding to the Rio de Janeiro – 
São Paulo route, which is approximately represented 
by the geographical position of  the two airports, 
Antonio Carlos Jobim (Rio de Janeiro) and Guarulhos 
(São Paulo). Considering the representativeness of  
the atmospheric profile in a 150 km radius circle, 
according to the World Meteorological Organization, 
the area was divided using the computational package, 
free software, QGIS (version 3.14.0, available at 
https://qgis.org/en/site/), for study purposes, into 
two areas, I and II, as shown in Fig. 1. 

 

Figure 1: Representation of areas I and II.
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greater than 1,000 J/kg of  CAPE (Houze, 1993) 
are related to instability. The indices are determined 
using only non-cloud profiles, represent a 10 km × 
10 km pixel, and have been available for download 
since December 2017. In this study, the listed indices 
were used as predictor variables of  the atmospheric 
conditions that characterise the potential occurrence 
of  MCE in the regions of  interest, areas I and II of  
Figure 1. 

2) The National Network of  Atmospheric Discharge 
Detection (RINDAT) has been continuously recorded 
since December 2000, according to the information 
available at http://simepar.br/rindat/internas/
institucional.shtml. The AD data are used here for the 
MCE characterisation.

2.3 Method

Considering the potential of  GOES-R indices as 
MCE predictors, two important aspects were addressed: 
1) Local thermodynamic indices are not, by themselves, 
unique predictors to identify the atmospheric pattern 
of  severe MCEs, which have complex thermodynamic 
formation mechanisms, since some other aspects such 
as advection, shear, and others could contribute to the 
mechanisms. Thus, the idea is that the model based on 
ML can be identified in the set of  values   of  the indices 
related to MCE atmospheric patterns. 2) If  a given MCE 
appeared at the edge of  the area of    interest and could 
impact the area, it is assumed here that the averages 
of  each index used by area, representing the volume 
of  the atmosphere as approximately recommended by 
the World Meteorological Organization (2013), are a 
potential predictor of  severe MCEs for areas I and II.

2.2 Data

The data used are from two sources, as described 
in Table 1. 

1) The Geostationary Operational Environmental 
Satellite (GOES) series formally began on 16 October 
1975 with the GOES-A or GOES I launch. This series 
is a joint effort between the National Aeronautics 
and Space Administration (NASA) and the National 
Oceanic and Atmospheric Administration (NOAA) 
for the development of  idealised geostationary 
meteorological satellites, of  which 19 have been 
produced (GOES A–U). GOES-Q was not built 
and GOES-T and U are planned to be launched in 
2021 and 2024, respectively. All previous satellites 
were successfully launched (https://www.nasa.gov/
content/goes-overview/index.html). The GOES-R 
Algorithm Working Group (www.star.nesdis.noaa.
gov/goesr/documentation_ATBDs.php) provides 
information that can be used to calculate derived 
stability indices from the retrieved atmospheric 
profiles, such as the lifted index (LI), convective 
available potential energy (CAPE), total totals index 
(TT), Showalter index (SI), and K index values (K). 
In order to determine the favourable sites for the 
formation of  intense storms that give rise to heavy 
rains, the following indices and thresholds were 
considered for this study: K index values (George, 
1960) above 30 °C have a high potential for the 
occurrence of  storms; LI negative values (Galway, 
1956) are related to unstable conditions; low or 
negative values of  SI (Showalter, 1953) indicate more 
atmospheric instability; TT values above 40 °C (Miller, 
1972) imply storm formation potential; and values 

Table 1: Data used in the study.
Source Description Temporal resolution Time 

(UTC)
Qty Period

Atmospheric 
profiles from 

GOES-R
(https://www.
ncdc.noaa.gov/

airs-web/search).

The values of  the 
set of  indices K, 
Showalter, Lifted 

Index, Total Totals 
and CAPE represent 
a 10 km x 10 km pixel 

in areas I and II.

15 min hourly from 
12 to 16

96,400* Jan – Mar,
2018 and 2019

Atmospheric 
discharge from 

RINDAT 
(http://www.
rindat.com.br)

Time and location 
(lat., long.) of  
atmospheric 

discharges in areas I 
and II.

300 ns ---- 9,945,882 
(AD)

2001 – 2019

*The number 96,400 means the number of thermodynamic index values extracted in the period established for the study. On the other hand, 
9,945,882 are the numbers of AD that occurred in the period and in the study area.



51Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

Therefore, the challenge in this work was to 
identify the atmospheric conditions that precede 
the onset of  an MCE for a given period of  the day, 
which in other words represents a classification of  
YES or NO for the MCE occurrence. The WEKA 
software package (version 3.7.12) developed by the 
University of  Waikato in New Zealand (Witten et al., 
2016) was chosen because it has several classification 
algorithms based on ML. These algorithms can 
be trained and tested to identify the atmospheric 
thermodynamic patterns associated with MCE onset 
in target areas I and II. The steps of  the applied 
method are as follows:

1. The nowcasting period was analysed and 
defined based on the distribution of  
daily AD occurrence using the data set 
in Table 1. 

2. The spatial  average of  the GOES-R 
instability indices at 12, 13, 14, 15, and 
16 UTC were calculated for areas I and II 
(Table 1). 

3. The dataset of  average thermodynamic 
indices (input of  the algorithms to be 
trained) were concatenated hourly, for 
12, 13, 14, 15 and 16 UTC, by area I and 
II and classified according to the number 
of  recorded AD (YES when AD>0 
and NO when AD=0). In other words, 
the cumulative number of  AD were 
computed between 18-23:59h local time. 
If  the cumulative value was greater than 
zero the event was classified as “YES” 
(MCE event); if  there is no atmospheric 
discharge the classification will be “NO” 
(non-MCE event). 

4. Testing was carried out via a classical 
cross-validation procedure that consists of  
dividing the total data set into k mutually 
exclusive subsets (folds) of  the same size; 
from there, a fold is used for testing and the 
remaining k-1 folds are used for training. 
For training and testing of  all of  ML 
classification algorithms of  WEKA, the 
weights of  the occurrence of  YES and NO 
events are adjusted (class balance) in the 
training dataset considering the following 
event proportions (where the MCE and 
non-MCE occurrence are ar tif icial ly 
replicated or reduced considering the 
behaviour of  the observed value indices); 
(1) original data, (2) 50% YES and 50% NO, 

(3) 60% YES and 40% NO, (4) 70% YES 
and 30% NO, (5) 80% YES and 20% NO 
for the different forecast lead times from 
12, 13, 14, 15, and 16 UTC, respectively. 
In order to balance the output of  the 
model, so that the model learns efficiently 
the physical patterns related to MCE and 
non-MCE events, the output weights of  
each model were artificially varied. That is, 
if  the model output has many more values 
of  “NO”, a greater weight at the “YES” 
output is applied. The output weights were 
chosen randomly based on trial and error. 
Many tests were carried out in order to find 
the proportion of  weight variation at the 
output of  the model so that it obtained the 
best performance.

5. The optimal ML classification algorithms 
(or model that means that a given algorithm 
was trained and evaluated via the statistics 
in Table 4) with the best performance in the 
previous step were selected, considering 
the values   of  the statistics specified in 
Table 3, for further analysis of  the results 
and discussion. 

6. Using a trial-and-error procedure, the 
AD per hour (AD/h) limit for the MCE 
was determined by gradually varying 
the value of  AD/h (threshold) and 
observing the performance of  the ML 
algorithms in classifying an MCE with 
an AD ≥ the limit until reaching the 
optimum severity limit. 

7. Finally, an optimal model was applied to 
a hindcast experiment using independent 
data sampling.

2.4 Selected ML algorithms 

The ML algorithms used in step 5 are briefly 
described in Table 2. 

2.5 Evaluation

The ML algorithms had their predictions 
evaluated in comparison to the target values using 
a two-dimensional contingency table (Table 3) 
according to Wilks (2006). Thus, it was possible 
to determine five categorical statistics, namely, 
1) probability of  detection (POD), 2) false alarm 
(FAR), 3) BIAS, 4) F-measure, and 5) KAPPA, as 
detailed in Table 4. 
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Table 2: Classifiers used.
Classifier Description Reference in Weka

Random forest A collection of  tree classifiers that are trained on different subsets of  
input features and the one with the best performance is chosen.

Breiman (2001)

J48 Creates a single decision tree based on all input resources available. Quinlan (1993)

MPL Multilayer perceptron; one or more hidden layers and an output layer of  
computational nodes.

-

Hoeffding Tree Grants a certain level of  confidence in the best attribute to split the tree. Hulten et al. (2001)

Logistic Predicts the probability of  an event belonging to the standard class, which 
can be of  type 0 or 1.

Brownlee (2016)

Simple Logistic Builds linear logistic regression models. LogitBoost with simple regression 
functions as base learners was used for fitting the logistic models.

Sumner et al. (2005)

Table 3: Contingency Matrix.
Observed

Yes No Total
Forecast Yes Hits (a) False alarm (c)

No Misses (b) Correct negatives (d)
Total Observed Yes Observed No Total

Statistic Formula Description Reference 
Probability of 
detection (POD) 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑎𝑎

𝑎𝑎 + 𝑐𝑐
 Measures the fraction of observed events that were 

correctly predicted. A perfect score is 1. 
(Wilks, 2006) 

False alarm (FAR) 𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑏𝑏

𝑏𝑏 + 𝑑𝑑
 

Measures the fraction of “YES” predictions in which the 
event did not occur. A perfect score is 0. - 

BIAS 𝐵𝐵 =  
𝑎𝑎 + 𝑏𝑏
𝑎𝑎 + 𝑐𝑐

 
Measures the proportion of the event frequency 

prediction by the observed events frequency. The perfect 
score is 1. 

- 

F-measure1 𝐹𝐹 =  
2𝑃𝑃. 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃

 

It is a measure of the accuracy of a test.It considers the 
accuracy and recall of the test to calculate the score.The 

F-Measure is the harmonic average of precision and 
recall, where it reaches its best value at 1 (perfect 

precision). 

(Sasaki, 2007) 

Kappa2 𝑘𝑘 =  
𝑝𝑝� − 𝑝𝑝�

1 −  𝑝𝑝�
 

It is a way of measuring the performance of the 
classification process where the perfect agreement is 1. 

This coefficient can be defined as a measure of 
association. 

It is used to describe and test the degree of 
agreement in the classification, that is, its 

reliability and accuracy. 
 

(Cohen, 1960) 

 

Tabela 4: Statistics retrieved from the contingency matrix.

 
1where the statistics used are de�ined as 𝑃𝑃 = �

���,
, 

2𝑘𝑘 =  ���
�������

and= [(���)(���)]�[(���)(���)]
(�������)�

. 

 



53Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

the South Atlantic Subtropical High and the associated 
subsidence hinders convective activities in the study 
area; thus, ADs are typically related to mass passages 
(cold or hot fronts). 

Fig. 2(b) represents the hourly distribution of  AD 
in the study area and indicates that convective activity 
increases from 3 pm and peaks at 6 pm local time. It 
is noteworthy that most ADs occurred between 6 pm 
and 0 am local time which was also found by Almeida et 
al. (2020) for the flight terminal area of  Rio de Janeiro. 
Remotely sensed data from GOES-R were retrieved for 
January–March, 2018 and 2019 (Table 1). Fig. 3 shows 
the number of  MCE and AD range for 413 occurrences 
in the study area. Notably, 79.4% of  the events had AD 
of  130 or less. In this study, severe MCE was defined 
when an MCE had more than 130 AD.

3. RESULTS

To train and test the classificatory algorithms for 
MCE short-term forecasting, as described in Section 2.3, 
the distribution of  the occurrence of  ADs was initially 
analysed for the Rio de Janeiro – São Paulo route. Fig. 
2(a) shows the seasonal distribution of  ADs from 2001 
to 2019. As expected, it was observed that in the spring-
summer period, due to the greater availability of  energy, 
approximately 89% of  ADs occur: 57.1% and 31.7% 
in summer and spring, respectively. In autumn, 6.3% 
of  ADs occurred, whereas 4.8% occurred in winter. 
This decrease in the number of  ADs compared to 
spring-summer can be explained by the absence of  local 
convective forcing, as these seasons are usually drier. 
They are characterised by a westward displacement of  
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Figure 2: (a) Seasonal and (b) hourly distribution of atmospheric discharge (AD) for the Rio de 
Janeiro –São Paulo flight route.
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Training and testing any computational intelligence 
algorithms are time-consuming tasks (França et al., 
2016). Following the method, fifty-six classification 
algorithms available in WEKA were trained and tested 
via cross-validation. To select the classifier(s) algorithm(s) 
to be explored in detail, all were initially evaluated with 
input (from to 12-16 UTC for areas I and II. After 280 
experiments, the algorithms called naive Bayes (John 
and Langley, 1995), multilayer perceptron (Quinlan, 
1993), Hoeffding tree (Hulten et al., 2001), logistic 
(Brownlee, 2016), and simple logistic (Sumner et al., 
2005) algorithms obtained superior statistical results and 
were thus selected.

The experiments are described separately for the 
MCE forecast (or detection) (method steps 7 and 8) and 
the severity forecast. 

3.1 MCE forecast

A total of  400 MCE prediction experiments 
were performed considering the following four 
aspects: (1) five selected algorithms; (2) (1) – (5) 
dataset configurations as per the method’s step 
4; (3) different lead times (i.e. 12, 13, 14, 15, and 
16 UTC); and (4) two areas (I and II), step 4 of  
the method.

Table 5 shows the best test results (cross-
validation) for the input times at 12, 13, 14, 15, and 
16 UTC, identifying the configuration of  the training 
dataset. Therefore, all of  the statistics have the unit 
as the ideal value; 1-FAR was adopted instead of  the 
classic statistic FAR (whose ideal value is zero). The 
performances of  the five algorithms were similar 

regardless of  the lead time or area, because the values   
of  the POD, 1-FAR, F-measure, BIAS, and KAPPA 
statistics were in the small ranges of  [0.81, 0.94], 
[0.80, 0.92], [0.81, 0.94], [0.95, 1.01], and [0.61, 0.85], 
respectively. However, the class weight variation used 
in step 4 of  the method proved to be an interesting 
strategy for improving the training of  the algorithms 
because the best result (the MLP algorithm whose 6 
h probability of  detection was of  the order of  86%, 
with a 6 h false alarm rate of  13% and its forecast 
was still slightly skewed, because it is noted only in 
the third decimal place of  the BIAS value) for area I 
is with the 15 UTC inputs and dataset configuration 
(2). For area II, all algorithms had better performance 
(the simple logistic algorithm can generate an 8 h 
forecast of  slightly skewed MCE with BIAS = 1.01, 
a high detection probability value and low false alarm 
rate with values 94% and 8%, respectively) with the 
inputs of  13 UTC and dataset configuration (4). 

3.2 Storm severity

In summary, here two models were developed. The 
first is a model to predict whether there is condition 
favorable to convective events. And the second is a model 
to predict the severity of  the convective event, considering 
that the first model predicted conditions favorable to 
its formation. For the severity of  these events, several 
procedures were performed, by percentiles, by trial 
and error, analysing how the distribution of  significant 
events behaved. It was identified that most events, that 
is, those with the lowest or least significant impacts occur 
more frequently (which can be observed in Fig. 3). And 

 

 

AREA I 
 

Algorithm 

Dataset Configuration: (3) for 
12 UTC 

Dataset Configuration: (2) for 
13 UTC 

Dataset Configuration: (2) for 
14 UTC 

Dataset Configuration: (2) for 
15 UTC 

Dataset Configuration: (2) for 
16 UTC 

P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K 
Naive 
bayes 0.82 0.80 0.81 1.00 0.61 0.82 0.82 0.82 0.98 0.64 0.81 0.81 0.81 1.00 0.63 0.83 0.83 0.83 1.00 0.66 0.82 0.82 0.82 1.00 0.64 

Logistic 0.83 0.80 0.83 0.98 0.64 0.81 0.81 0.81 1.00 0.62 0.82 0.82 0.82 1.00 0.63 0.85 0.85 0.85 1.00 0.69 0.83 0.83 0.83 1.02 0.65 

MPL 0.86 0.80 0.85 0.96 0.69 0.85 0.85 0.84 1.00 0.69 0.82 0.82 0.82 1.00 0.63 0.86 0.86 0.86 1.00 0.72 0.84 0.84 0.84 1.00 0.69 
Simple 
Logistic 0.82 0.78 0.82 0.98 0.62 0.81 0.81 0.81 1.01 0.62 0.82 0.82 0.82 1.00 0.64 0.83 0.83 0.83 1.00 0.67 0.85 0.85 0.85 1.00 0.70 

Hoeffding 
Tree 0.82 0.80 0.82 1.00 0.61 0.82 0.82 0.82 1.00 0.64 0.81 0.81 0.81 1.00 0.63 0.83 0.83 0.83 1.00 0.66 0.82 0.82 0.82 1.00 0.64 

            
AREA II 

 
Algorithm 

Dataset Configuration: (2) for 
12 UTC 

Dataset Configuration: (4) for 
13 UTC 

Dataset Configuration: (3) for 
14 UTC 

Dataset Configuration: (2) for 
15 UTC 

Dataset Configuration: (4) for 
16 UTC 

P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K P 1-F F1 B K 
Naive 
bayes 0.83 0.84 0.83 1.00 0.66 0.90 0.84 0.90 0.98 0.76 0.87 0.85 0.87 1.00 0.73 0.84 0.84 0.84 1.00 0.68 0.86 0.82 0.86 1.00 0.67 

Logistic 0.82 0.82 0.82 1.00 0.64 0.91 0.85 0.91 0.98 0.77 0.86 0.83 0.85 0.98 0.69 0.83 0.83 0.83 1.00 0.66 0.88 0.81 0.87 0.95 0.70 

MPL 0.82 0.82 0.81 1.00 0.63 0.90 0.79 0.90 0.92 0.74 0.91 0.87 0.91 0.97 0.80 0.83 0.83 0.83 1.00 0.66 0.93 0.86 0.93 1.00 0.83 
Simple 
Logistic 0.83 0.83 0.83 1.00 0.65 0.94 0.92 0.94 1.01 0.85 0.86 0.84 0.86 0.99 0.71 0.86 0.86 0.85 1.00 0.71 0.88 0.79 0.88 0.96 0.70 

Hoeffding 
Tree 0.83 0.83 0.83 1.00 0.66 0.90 0.84 0.90 0.98 0.75 0.87 0.85 0.87 0.99 0.73 0.84 0.84 0.84 1.00 0.68 0.87 0.82 0.87 1.01 0.68 

Table 5: Tests of  the five selected algorithms at 12, 13, 14, 15, and 16 UTC (and dataset configuration) for areas I and II. The columns 
represent the statistics Probability of  Detection (P), the difference of  False Alarm from unit (1-F), F-measure (F1), Bias (B) and Kappa (K).
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after several tests it was identified that the threshold 
higher than 130 AD (those of  lower occurrence), is the 
threshold found to verify whether the event is severe or 
not. That said, when there is an AD number greater than 
130 AD/h, there is a severe event.

Following the method´s step 6, the variation of  AD/h 
from 1 to 3,000 was considered in increments of  10 AD/h 
intervals, to calculate the evaluation statistics in Table 4. 
The distribution presented in Fig. 3 shows that the highest 
occurrence of  AD was in the range of  up to 130 discharges 
per hour. Therefore, 81 and 328 convective meteorological 
events were classified as severe and non-severe, respectively 
(according to Table 6). This meant that the training record 
sets generated an output of  “YES” for severe MCE, and 
“NO” for all others. Step 4 was then used to generate five 

dataset configurations. Finally, the algorithms were trained 
and tested until the optimal algorithms were obtained.

The J48 (Breiman, 2001) and RF (Quinlan, 1993) 
algorithms were the ones that obtained the best 
performances and the values   of  these statistics are 
presented in Table 6. Generally, the results for area II are 
superior to those of  area I. Both algorithms are capable of  
a 6-h forecast of  severe MCE (with dataset configuration 
2) with POD = 0.78 and FAR = 0.23, with low bias for 
area I. The same algorithms produced more expressive 
results in the forecast of  the severity of  MCEs for area II. 
The RF generated an 8 h prediction of  severe MCE with 
POD = 92% (14% higher than area I) and a false alarm 
rate of  7% (16% higher than area I) with a positive bias 
of  6% (approximately 6% less than area I).

Table 6: Tests of  performance of  the two selected algorithms at 15 UTC (for area I) and 13 UTC (for area II) with a specific 
dataset configuration.

AREA I   
Algorithm 

Dataset Configuration: (1) for 15 UTC Dataset Configuration: (2) for 15 UTC 
POD 1-FAR F-MEASURE BIAS KAPPA POD 1-FAR F-MEASURE BIAS KAPPA 

J48 0,90 0,56 0,89 0,80 0,58 0,78 0,78 0,77 1,00 0,58 
Random 
Forest 0,90 0,56 0,89 0,80 0,58 0,78 0,78 0,77 1,00 0,58 

AREA II   
Algorithm 

Dataset Configuration: (1) for 13 UTC Dataset Configuration: (2) for 13 UTC 
POD 1-FAR F-MEASURE BIAS KAPPA POD 1-FAR F-MEASURE BIAS KAPPA 

J48 0,88 0,90 0,89 1,08 0,73 0,92 0,92 0,92 1,00 0,84 
Random 
Forest 0,92 0,93 0,92 1,06 0,80 0,93 0,93 0,93 1,00 0,85 
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hour from January to March, 2018 and 2019.
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3.3 Hindcast results 

Considering the definition of  severe MCE, the RF 
algorithm was applied to both areas. Tables 7 and 8 show 
the daily records of  the thermodynamic index values   at 
15 UTC (Area I) and 13 UTC (Area II), corresponding to 
columns 2 to 6, the amount of  AD recorded (column 7), 
and the MCE forecast output (column 8) for days with data 
available for areas I and II in April 2019, respectively. The 
results reveal that the models obtained expressive and similar 
hindcasts and could correctly identify, 8 h in advance, 100% 
of  non-MCE days, and 96% of  MCE days. The observed 
forecast errors correspond to only one MCE day for each 
area, that is, day 13, in area I, and day 28 in area II, as seen 
in column 8 of  Tables 7 and 8, respectively. To evaluate the 
model failures, the instability index values were analysed, 
and it is noteworthy that these are compatible with those 
that occur in typical MCE days, except for the CAPE index 
value, which was null and positive LI (atypical for MCE days 
according to the data in Section 2.2). Intuitively, a plausible 
reason is that there was little quality control in the data 
and, as “YES”, the calculation of  the CAPE and LI values 
were obtained with corrupted data resulting in erroneous 
hindcast for the specific days.

4. CONCLUSIONS

In this study, a forecast model based on machine 
learning algorithms for short-term meteorological 
convective event forecasting was developed for the 
Rio de Janeiro – São Paulo route. The main results 
are summarised below.

• The 6 pm local time period was identified as 
the period with the highest convective activity.

• The models with input data at 10 am and 12 
pm local time are the models with the best 
performances.

• The developed models demonstrate the 
ability to predict and classify the severity of  
MCE and non-MCE with a high probability 
of  detection, low false alarm rate, and a bias 
close to unity (unbiased model).

• Atmospheric profiles extracted from orbital 
remote sensors are promising for characterising 
the thermodynamic states of  the atmosphere at 
high frequency (every 15 min); thus, essential input 
data for any predictive models for MCEs, since the 
results of  the 6 h and 8 h hindcasts of  the model 
(trained algorithms) are satisfactory for nowcasting 
prediction performances in identifying MCE and 
non-MCE for the studied area. 

To use these models in the future as an operational tool 
by Brazilian aviation, the data period has been extended. In 
addition, the methodology developed here will be applied 
to other flight routes and areas with scarce sounding data.

A great advantage of  using machine learning is 
that numerical time models do not solve phenomena 
on a spatial and time (nowcasting) scale. In addition, it 
can be utilized to obtain a local forecast without using 
parameterisations, using only the observed data. Another 
advantage is that ML models require lower computational 
costs, in addition to reducing the forecast uncertainty.

Atmospheric physics and dynamics suggest a good 
representation, because the model is fed with local 
thermodynamic conditions. 

Studies such as those by Almeida et al. (2020) and 
Anochi et al. (2021), among others, show how important 
it is to consider machine learning models for forecasting 
in operational centres to improve the quality of  forecasts 
and reduce computing costs.

 
DECLARATIONS

Funding
This study was funded by the Department 

of  Airspace Control (DECEA) via the Brazilian 
Organization for Scientific and Technological 
Development of  Airspace Control (CTCEA) (GRANT: 
002-2018/ COPPETEC_CTCEA).

Conflicts of  interest/Competing interests
There is no conflict of  interest.

Availability of  data and material
All data and materials as well as software application 

or custom code support their published claims and 
comply with field standards. 

Code availability

Author Contributions
Caroline Menegussi spent more effort writing the 

original draft and suggested corrections. In addition, 
Gutemberg França played a critical role in funding 
acquisition and project administration, in addition to 
his technical contributions. The remaining authors have 
contributed equally to the manuscript: review, editing, 
and investigation. All authors have read and agreed to 
the published version of  the manuscript.

ACKNOWLEDGMENTS

The authors are grateful to FURNAS Centrais Elétricas 
for providing the AD data and DECEA for the insights 
from weekly discussions and bi-annual conferences.



57Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

Table 7: Values   of  thermodynamic indices and atmospheric discharges for area I in April 2019.
DAY CAPE KI LI SI TT AD FORECAST 

RESULT
01 4.54 26.47 0.52 4.73 40.66 0 CORRECT

02 0.00 13.23 4.68 8.35 35.49 0 CORRECT

03 0.00 20.81 2.00 6.95 37.89 0 CORRECT

04 0.00 22.28 3.75 6.00 37.21 0 CORRECT

05 44.78 35.28 -0.99 0.25 44.45 985 CORRECT

06 65.06 35.61 -1.06 -0.30 43.66 29271 CORRECT

07 159.55 35.32 -1.94 -0.02 43.94 3655 CORRECT

08 NO INFORMATION

09 4.98 32.04 0.01 0.66 43.16 9 CORRECT

10 1.62 25.81 1.43 3.22 41.29 3 CORRECT

11 0.01 23.10 2.63 5.06 38.61 0 CORRECT

12 0.00 18.55 3.16 6.27 37.06 0 CORRECT

13 0.00 24.24 0.54 3.56 41.09 175 NOT CORRECT

14 NO INFORMATION

15 NO INFORMATION

16 92.83 31.97 -0.88 0.98 43.85 26244 CORRECT

17 247.71 25.40 -0.33 1.54 43.63 5450 CORRECT

18 2.24 1.49 4.38 8.83 36.48 0 CORRECT

19 2.59 -9.03 5.32 10.94 35.96 0 CORRECT

20 0.00 3.89 7.44 10.90 31.99 0 CORRECT

21 0.00 23.85 3.77 3.85 40.04 88 CORRECT

22 5.25 32.04 0.41 1.39 43.59 0 CORRECT

23 NO INFORMATION

24 NO INFORMATION

25 20.84 27.45 0.66 4.16 39.51 4 CORRECT

26 78.03 29.23 -0.60 2.31 42.23 849 CORRECT

27 5.32 31.71 -0.03 1.23 42.92 0 CORRECT

28 7.45 29.49 -0.05 1.98 43.30 6286 CORRECT

29 0.00 18.86 2.42 5.70 38.34 4 CORRECT

30 0.00 3.28 3.53 8.37 37.46 0 CORRECT
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Table 8: Values   of  thermodynamic indices and atmospheric discharges for area II in April 2019.
DAY CAPE KI LI SI TT AD FORECAST 

RESULT
01 16.30 25.71 0.37 5.60 40.80 0 CORRECT

02 0.00 12.21 3.61 9.02 35.42 0 CORRECT

03 0.27 15.31 0.66 7.59 38.97 0 CORRECT

04 0.00 15.44 2.31 8.75 33.70 0 CORRECT

05 21.07 31.21 -0.77 2.46 42.41 2620 CORRECT

06 16.70 35.89 -0.75 -0.02 43.42 345 CORRECT

07 282.99 26.86 -2.57 2.87 43.59 5735 CORRECT

08 NO INFORMATION

09 55.59 33.98 -0.66 0.91 42.94 1743 CORRECT

10 5.18 29.42 0.25 2.66 41.72 0 CORRECT

11 0.00 23.31 2.13 6.83 36.82 0 CORRECT

12 0.00 18.25 3.40 8.46 34.02 0 CORRECT

13 4.89 25.47 0.62 4.07 39.55 0 CORRECT

14 NO INFORMATION

15 NO INFORMATION

16 31.69 29.03 -0.29 2.58 41.99 28 CORRECT

17 410.52 27.65 -1.44 1.34 44.29 17407 CORRECT

18 23.58 9.39 2.58 7.67 36.42 11 CORRECT

19 53.33 0.81 2.35 7.71 39.74 0 CORRECT

20 0.00 -18.02 3.66 14.15 29.21 0 CORRECT

21 0.00 19.00 5.12 5.92 37.27 0 CORRECT

22 1.72 29.14 0.40 3.09 41.75 0 CORRECT

23 NO INFORMATION

24 NO INFORMATION

25 37.47 25.44 0.24 5.38 38.68 0 CORRECT

26 16.43 24.55 0.43 5.52 39.09 0 CORRECT

27 3.36 28.72 1.25 3.72 40.22 0 CORRECT

28 0.00 26.38 1.67 3.78 40.56 1205 NOT CORRECT

29 1.82 21.07 0.72 4.72 39.72 5 CORRECT

30 0.70 10.60 2.93 5.72 38.16 0 CORRECT
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FIGURE CAPTIONS

Fig. 1 Representation of areas I and II.

Fig. 2 (a) Seasonal and (b) hourly distribution of 
atmospheric discharge (AD) for the Rio de Janeiro – 
São Paulo flight route.

Fig. 3 Distribution of the 413 convective 
meteorological events by atmospheric discharge 
range per hour from January to March, 2018 
and 2019.
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Data assimilation using WRFDA over the terminal area 
of Rio de Janeiro 

Vinícius Albuquerque de Almeida

ABSTRACT

The impact of the data assimilation process of air 
temperature and relative humidity from surface 
meteorological stations and sounding at airports 
in the terminal area of Rio de Janeirois evaluated 
using the Weather Research and ForecastData 
Assimilation system. Synthetic data of temperature, 
relative humidity and wind are generated in the 
locations of airport sensors by applying a white-
noise perturbation in the forecast data. Results 
show a positive overall impact of the assimilation 
process with the removal of part of the noise in 
the observation data but keeping the effect of local 
conditions in the later timesteps of the simulation. 
In addition, with the assimilation process there is a 
global reduction of the error between the analysis 
data and the observation data. In the future, a 
neural network will be trained to emulate the data 
assimilation process to speed-up the assimilation 
process in the WRF model.

Keywords: data assimilation, 3d Var, surface data, 
profile data.
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1. INTRODUCTION

Numerical weather forecasting is considered an 
initial-value problem where the present state of  the 
atmosphere is used as input to a numerical model for 
simulating or forecasting its evolution on space and time. 
The problem of  the initial condition determination for a 

Published in: Revista Brasileira de Meteorologia, 2021,  https://doi.org/10.1590/0102-77863610001 

forecast model is essential and complex, and has become 
a science in itself  (Daley, 1991). Several methods have 
been developed since the 1950s to tackle this problem. 
Lorenc (1986), Daley (1991), Talagrand (1997), Zupanski 
and Kalnay (1999), Kalnay (2002), Barker et al. (2004), 
Barker et al. (2012), Lorenc and Jardak (2018), among 
others provide a broader review on data analysis and 
assimilation techniques.

In meteorology, there is a wide variety of  data 
sources to be assimilated to accurately estimate the 
state of  the atmosphere, which includes conventional 
and non-conventional data. Conventional data include 
surface meteorological stations, balloon soundings, 
aircraft and ship observations. On the other hand, data 
retrieved from satellites (e.g. radiance), wind profilers 
(e.g. SODAR, LIDAR), and radar are usually known as 
non-conventional. Conventional data are commonly 
assimilated in global models, but very often the local 
conditions they represent are smoothed due: low-
resolution models, data quality control that let some 
data sources out of  the global model run1 due to 
missing data or errors, delay in data transmission to 
the global operational centers, many data sources are 
not part of  the Global Telecommunication System 
(GTS), such as local wind profilers (SODAR, LiDAR) 
and RADAR. interpolation methods and quality 
control routines. Also, not all observations are part 
of  the global observation network and thus are not 
processed by data assimilation routines of  global 
models. Therefore, to accurately determine the state 
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of  the atmosphere it is mandatory not to rely only on 
the global model’s analysis, but also, to assimilate all 
the available local data. 

The present article is part of  a sequence of  studies 
related to nowcasting that have been executed by the 
Applied Meteorological Laboratory at the Federal 
University of  Rio de Janeiro, following Almeida 
(2009), Silva et al. (2016), França, Almeida, and 
Rossete (2016), França et al. (2018), Paulucci et al. 
(2019), and Almeida et al. (2020a, 2020b). All these 
studies encompass researches based on artificial 
intelligence and methods of  limited-area numerical 
weather forecasts. This work relates to the latter, 
exploring the sensibility of  the Weather Research 
and Forecasting (WRF) regional model for surface 
and upper-air data assimilation in the metropolitan 
area of  Rio de Janeiro.

2. MATERIAL AND METHODS

The study area in the present work is the 
metropol i tan area of  Rio de Janeiro and i ts 
surroundings (Fig. 1) located approximately at latitude 
22°55’44.3” S and longitude 43°24’21.1” W. The most 
import airports in the region are highlighted in Fig. 
1 by their International Civil Aviation Organization 
(ICAO) codes: Santos Dumont Airport (SBRJ), Galeão 
International Airport (SBGL), Santa Cruz Air Force 
Base (SBSC), Jacarepaguá Airport and Afonsos Air 
Force Base (SBAF).

Each airport is responsible for local hourly routine 
and special reports surface observations of  several 
meteorological parameters as surface wind (direction and 
speed), visibility, significant weather, cloud cover, air and 
dewpoint temperature, and station pressure. Besides, the 
SBGL airport has an upper-air (or sounding) station that 
produces regularly atmospheric soundings twice a day, 
the atmospheric profile of  pressure, air and dewpoint 
temperature, relative humidity, and wind (direction and 
speed), from the surface up to more than 25 km.

The numerical experiments performed using the 
NCEP FNL (Final) Operational Global Analysis data 
for initial and boundary conditions. The FNL data 
are available on 1-degree grids prepared operationally 
every 6 h. This product is from the Global Data 
Assimilation System (GDAS), which continuously collects 
observational data from the Global Telecommunications 
System (GTS), and other sources. 

2.1. WRF model

The WRF Model is a mesoscale numerical weather 
prediction system designed for both atmospheric research 
and operational forecasting applications. It features two 
dynamical cores, a data assimilation system, and a software 
architecture supporting parallel computation and system 
extensibility. The effort to develop WRF began in the latter 
1990s and was a collaborative partnership of  the National 
Center for Atmospheric Research (NCAR), the National 
Oceanic and Atmospheric Administration (represented by 
the National Centers for Environmental Prediction (NCEP) 
and the Earth System Research Laboratory), the U.S. Air 
Force, the Naval Research Laboratory, the University of  
Oklahoma, and the Federal Aviation Administration (FAA). 
Please refer to the WRF Users Guide and the Technical 
Note document available at WRF website for completeness 
of  the description of  WRF (Skamarock et al., 2019).

The WRF model solves a set of  equations that control 
the state and evolution of  the atmosphere, including: 
(i) conservation of  momentum; (ii) thermodynamic 
energy conservation; (iii) mass conservation; (iv) 
geopotential relation; and (v) the equation of  state. 
Also, several physical processes are parameterized (e.g. 
short and longwave radiation transfer, surface modeling, 
turbulence, cumulus convection, cloud microphysics 
and precipitation), because these ones are too small, 
too brief, too complex, too poorly understood, or too 
computationally costly to be explicitly represented.

In our numerical experiments, the WRF model is 
integrated into a 2-km grid with 35 levels in vertical, 
generating hourly outputs from the surface and pressure-
level variables. Regarding the parametrizations the 

Figure 1: Domain and computational grid. The labels SBSC, SBAF, 
SBJR, SBRJ and SBGL are the locations of the airports in the 
metropolitan area of Rio de Janeiro.
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(seven days). February is a very important month in Southern 
Hemisphere summer. This month is characterized by a 
peak of  atmospheric discharges in Rio de Janeiro (Paulucci 
et al., 2019) and the development of  intense convective 
events. Lastly, after the end-of-the-year holidays, February 
has a peak of  movements in airports, becoming the period 
relevant - since our study is a joint research between the 
Federal University of  Rio de Janeiro and the Department 
of  Airspace Control (DECEA), a division of  the Brazilian 
Air Force. The data assimilation is carried out every 6 h for 
surface variables (air temperature, relative humidity, and wind 
direction and speed) at the airport locations, and every 12 
h for upper-air variables (air temperature, relative humidity, 
and wind direction and speed) at SBGL location.

The experiment was performed in the following steps: 
(i) White-noise perturbation is applied to GFS 

analysis field on Feb, 1st 00 UTC at the airport 
locations for surface and upper-air data generating 
synthetic observations; 

(ii) Synthetic observations are placed on the exact 
coordinates where real sensors are located;

(iii)New analysis field is generated from synthetic 
observations and background field using the 3D-Var 
data assimilation technique;

(iv) WRF model is integrated for 6-h;
(v)  Steps (i)-(iii) are repeated until Feb, 8th 00 UTC 

with surface data assimilation every 6h and upper-air data 
assimilation every 12h;

(vi) Steps (i)-(iv) are repeated for the same period of  
168h for 2014 and 2015.

3. RESULTS AND DISCUSSIONS

This section presents the results of  the experiments 
performed in this work showing the characteristics of  
data assimilation in the study area.

Before presenting the results, a discussion is necessary 
regarding the domain definition and the use of  a single 
domain instead of  nested domains. An experiment 
comparing 6-h assimilation cycle was performed considering 
a nested experiment (with three grids of  32 km, 8 km and 
2 km for horizontal resolutions, respectively), and a single-
domain experiment (with a 2-km grid). Figure 2 shows 
the result of  a 6-h assimilation cycle for the single-domain 
(Fig. 2a) and the nested-domain (Fig. 2b) experiments at 
each airport within the study area. The comparison was 
performed on the 2-km horizontal resolution grid. Figure 
2 shows the effect of  the assimilation process is very similar 
for both experiments, in other words, there is a reduction of  
the white-noise perturbation for both analysis. Therefore, 
the mentioned experiments allow us to use a single-domain 
(computationally cheaper) instead of  using nested domains.

following options were chosen: Microphysics - WRF 
Single-moment 3 (Hong et al., 2004), Cumulus - Grell-
Freitas Ensemble Scheme (Grell and Freitas, 2014), 
Radiation - Dudhia Shortwave Scheme (Dudhia, 1989)/ 
RRTM Longwave Scheme (Mlawer et al., 1997), Planetary 
Boundary Layer - Yonsei University Scheme (YSU) (Hong, 
2006) and Land-Surface model - Unified Noah Land 
Surface Model (Tewari et al., 2004).

2.2. Data assimilation method: 3D-Var 

The 3D-Var approach was used as implemented 
in the Data Assimilation component of  the WRF 
framework. The basic ideas of  variational data 
assimilation and specifically the WRF Data Assimilation 
(WRFDA) system is deeply discussed in Barker et al. 
(2004) and Barker et al. (2012). 

Among various data assimilation methods, the 
variational approaches have been widely used in 
meteorology, specifically the method 3D-Var. In the 
3D-Var approach, a cost function (Eq. (1)) is defined 
which is proportional to the square of  the distance 
between analysis ( x a→

 ) and both the background(x b→
) 

a n d  t h e observations (y 0→
) (Sasaki, 1970;    

alnay, 2012). The analysis field is computed by the direct 
minimization of  such function. Important to notice that 
the error matrices for both the background(B) and 
observation(R) are considered in the minimization 
process. The operator H mapped the gridded analysis 
to the observation space for comparison against the 
observation matrix y 0→

. The analysis x a→
 is computed by 

minimizing the cost function (J) expressed below:

where R is the covariance matrix of  the observation 
errors, and B is the covariance of  the background errors 
matrix. The latter matrix is computed as a vector product 
from the difference of  two WRF executions for a certain 
initial condition (Barker et al., 2004). Here, the B matrix 
was computed by the NMC method (Parrish and Derber, 
1992) and the R matrix entries are the same from a table 
of  observation errors for each major observation type, 
as used in the US Air Force Weather Agency applications 
(Barker et al., 2012).

The 3D-Var approach is described in the details in Barker 
et al. (2004), and also in chapter 6 of  the WRF User’s Guide.

2.3. Description of  Experiments

Experiments with 6h-cycle for 7 days with data 
assimilation are performed using the WRFDA in 2014 and 
2015 starting on February 1st with 168 h for time-integration 
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1
2
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Any data assimilation method consists basically in 
optimally merging observation and forecast fields to 
generate the best approximation of  the true state of  
a dynamic system. The observations do not represent 
“the reality” but the closest estimate of  the true state 
superimposed with some noise due to the nature of  the 
sensors. Therefore, a good strategy to evaluate a data 
assimilation algorithm is to apply some perturbation 
in the location of  the sensors and perform a data 
assimilation process. If  this algorithm is working, the 
expected result is that the perturbation would be partially 
removed and the analysis field would be closer to the 
original field (before the perturbation application), that 
is, our “true” state of  the dynamical system.

Figures 3 to 6 present the results of  the assimilation 
process for air temperature, relative humidity, wind speed 

and wind speed profile at SBGL. All figures have the 
following structure: (a) control - 6-h forecast from initial 
field without assimilation; (b) background - 6-h forecast 
from initial field with assimilation; (c) analysis - initial 
field with surface and upper-air assimilation; and (d) the 
difference from analysis and control field.  

Figure 3a shows that on Feb 1st, 2014 06 UTC 
the process of  data assimilation generated an analysis 
field (Fig. 3c) with greater temperature values in the 
surroundings of  the station locations, mainly close to 
SBAF. Considering that the white-noise perturbation 
magnitude was a real number between 0 and 3 K the 
differences between analysis and control field (Fig. 3d) 
show that the data assimilation process removed 80-90% 
of  the noise, and the resulting magnitude of  innovation 
was not greater than |0.6|.  

 
 

 

(a) 

(b) 

 

 

Figure 2: Experiments for 6-h assimilation cycle at each airport for (a) single domain and 
(b) nested domain.
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(Fig. 5d) of  up to 60% of  the white-noise 
perturbation applied to the control field – 
which had a magnitude of  up to 1 m s-1. The 
difficulties involved into analyzing a vector 
field (the wind variable) in comparison to 
scalar variables (e.g. air temperature and relative 
humidity) are noteworthy. As shown in Fig. 5d, 
small perturbations in vector fields seem to 
cause perturbation in almost the whole domain 

In a similar analysis, Fig. 4 show the impact of  
data assimilation process to the 2-m relative humidity 
field. Differently from what was observed for the 
temperature field in Fig. 3, the resulting innovation 
matrix generated by the 3D-Var (Fig. 4d) reached 
greater values, with regions with innovations up to 
50% of  the initial perturbation. 

The wind speed (Fig. 5) shows that the data 
assimilation process generated an innovation 

 

 

 
 

 

 

Control and observation points (a) 

  

Background (b) 

 

Analysis (c) 

 

Analysis – Control (d) 

 

Figure 3: Air temperature field for (a) control and observation points, (b) background, (c) analysis and (d) difference 
from analysis and control, for Feb 1st, 2014 06 UTC.
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surface data assimilation. Differently from 
the surface field, the impact in the vertical 
profile does not exceed 20% of  the white 
noise perturbation. The small effect of  the 
assimilation process might be related to the way 
that 3D-Var computes the impact of  the station 
data in its surroundings, that is, the process 
of  interpolation from observation grid to the 
model grid by the H operator (see eq. 1) after 
the innovation calculation. 

whereas the innovation in scalar fields (Fig. 3d 
and 4d) are more restricted to surroundings 
of  stations – where the perturbation was 
applied. The analysis of  wind speed profile 
(Fig. 6) shows that the difference between 
analysis and control (Fig. 6d) was close to zero 
from 850 hPa upward, with small increase in 
the layer between 800 and 650 hPa.  Greater 
positive impact is observed close to surface, 
possibly related to the contribution of  the 

Figure 4: Relative humidity field for (a) control and observation points, (b) analysis and (c) background and (d) difference 
from analysis and control field, for Feb 1st, 2014 06 UTC.
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In summary, all figures show a similar behavior, 
with small errors between analysis and control field, 
as expected, showing that the assimilation process 
removed most of  the white-noise perturbation 
existent on the observation data. 

Therefore, the results of  data assimilation 
process using synthetic data (air temperature, 
relative humidity and wind speed), show that 
the 3D-Var method in the WRFDA system is 
able to perform a good estimate of  the control 

field, here representing the “true” state of  the 
dynamic system. The implications of  such 
results are important since it implicitly states 
that only by using local data in the regional 
atmospheric model initialization the weather 
forecasts are to be improved. Currently, many 
observational data are not used because they are 
not considered by the global model assimilation 
system or because they are not part of  the global 
observation system. 

Figure 5: Wind speed field for (a) control and observation points, (b) analysis and (c) background and (d) difference 
from analysis and control field, for Feb 1st, 2014 06 UTC.
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Figure 6: Profile field of  wind speed for (a) control field, (b) analysis (c) background and (d) difference from analysis 
and observation field at SBGL, for Feb 1st, 2014 06 UTC.
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Figures 7 presents the result of  the background 
and analysis errors (against synthetic observations) of  
air temperature assimilation process at SBGL for every 
6-h between Feb 1st to 7th, 2014, and Feb 1st to 7th, 
2015. As expected, the assimilation process removes 

most of  the white-noise perturbation existent on the 
observation data, represented by lower errors in the data 
(solid line) compared to the forecast (or background) 
values (dashed line), as previously discussed in the 
analysis of  Fig. 3.



69Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

Figure 7: Error on the air temperature field from synthetic observation to background (dashed line) and analysis (solid 
line) at SBGL between Feb 1st to 7th, 2014, and from Feb 1st to 7th, 2015.

Table 1 displays the statistics for all grid points 
and surface variables used on the assimilation 
process. The overall impact of  the assimilation is 
positive for scalar variables (air temperature and 
relative humidity) as shown by the smaller values 
of  analysis error compared to the forecast error. 
As discussed in the analysis of  Fig. 5-6 there is 
a difference in the assimilation for vector fields 
in comparison to scalar variables. While the 
standard deviations of  scalar variables are around 
10% and 30% of  the mean for air temperature 
and relative humidity, respectively, the standard 
deviation for wind speed is of  the order of  the 
mean. Although the error is relatively small for 
wind speed, the innovation in the wind speed 
is spread for almost the whole domain - see 
from Fig. 5d, whereas the innovation for scalar 
variables was closed to the station locations and 
their surroundings.

4. CONCLUSIONS

The 3D-Var approach for data assimilation 
from the WRF framework was evaluated for the 
surface and upper-air data assimilation of  METAR 
and TEMP at different airports of  the metropolitan 
area of  Rio de Janeiro for a 168-h period in 
February 2014 and 2015.

Results showed that the assimilation routine was able 
to adjust the background field of  the airport temperature, 
relative humidity, and wind, providing a better estimate of  
the true state of  the atmosphere - closer to the control 
field. Even though conventional data are commonly 
assimilated in global models, the local conditions are 
smoothed. Therefore, meteorological fields can be 
adjusted for improvements in mesoscale forecasts.  

This results are in accordance to the results in 
the experiments commonly carried out by University 

Observation Background Analysis
Mean Std Mean Std Error Mean Std Error

Air temperature 30.13 3.84 27.48 3.45 9.00% 27.74 3.49 8.00%
Relative humidity 69.81 18.71 63.63 17.56 9.00% 65.22 17.46 7.00%
Wind speed 4.80 3.37 4.81 3.40 0.21% 4.79 3.38 0.21%

Table  1: Statistics for all grid points and surface variables in the study domain. In the table, “std” refers to the standard 
variation and “error” to the difference between the background and analysis field to the synthetic observation.
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Corporation for Atmospheric Research (UCAR) 
and the National Center for Atmospheric Research 
(NCAR), where numerical experiments are described 
for 1D systems and also to the results presented 
in Almeida et al. (2020b). From the cited UCAR-
NCAR experiments, they conclude that the data 
assimilation process reduces the added noise in the 
prior forecast and makes the posterior field closer 
to the “actual dynamics”, that is, closer to the true 
state of  the system. 

The assimilation method can be effective for 
the short-range forecast and nowcasting time-
window, under 24-h, removing the white-noise 
perturbation that is present in real observations 
and also adjusting the meteorological fields to 
local information.

In the future, the assimilation for real data using 
neural networks (Cintra and Campos Velho, 2012) will 

be tested to speed up the assimilation process, allowing 
for high-frequency assimilation processes (e.g. rapid 
update cycle) in the operational environment. The 
neural network approach will be trained to emulate the 
3D-Var, as described in the framework described here. 
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Short-range forecasting system for meteorological 
convective events in Rio de Janeiro using remote sensing 
of atmospheric discharges 

Vinícius Albuquerque de Almeida

ABSTRACT

In this study, a method is presented for 
meteorological convective event forecasting 
at the terminal control area of the Galeão 
International Airport, Rio de Janeiro, Brazil, using 
machine learning, sounding and remotely sensed 
atmospheric discharge data from 2001 to 2016. A 
monthly and daily climatology were computed for 
the atmospheric discharge temporal distribution 
in the study area. Six machine learning models 
were trained and cross-validated for 10 years 
(2001-2010), and a test was produced for 6 
years (2011-2016). The results showed that the 
deep learning fully-connected (dense) algorithm 
achieved the best results for storm forecast 
and severity based on the following statistics: 
probability of detection (0.91 and0.85), BIAS 
(1.03 and 1.07), false-alarm ratio (0.12 and 
0.20) and CSI (0.81 and 0.69), respectively. The 
6-year test analysis showed that the model has 
increasing performance for high-impact events, 
and this performance decreases gradually as the 
events become weaker and more frequent. The 
models presented here could be useful tools for 
air traffic management purposes.

Keywords:  convective events, aeronautical 
meteorology, Galeão International Airport– Brazil, 
machine learning models, atmospheric discharge.
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1. INTRODUCTION

Meteorological convective events (MCE) are 
usually related to many harmful effects to society, 
such as transportation disruption, interruption of  
energy distribution, landslides, flash floods, other 
financial impacts, and ultimately loss of  lives. In 
particular, aviation may be severely affected by 
such events both in terminal control area (TCA), 
mainly in landing and take-off  procedures, and 
in-flight routes. It is evident that for secure air 
traffic management, there is a high demand for 
precise short-range forecasts (minutes to hours), 
normally referred to as nowcasts, to guide TCA 
operations in particular.

Mass (2012), Sun et al. (2014), França et 
al. (2016), and Gultepe et al. (2019) presented 
comprehensive reviews regarding efforts that have 
been made in the context of  nowcasting since 
the 1960s. The earliest work on nowcasting was 
mainly limited to the subjective interpretation and 
temporal extrapolation of  meteorological radar 
(Wilson 1966; Battan 1973; Wilson and Wilk 1982) 
and satellite (Purdom 1976). To follow up this idea, 
the convective tracking approaches were improved 
by including the cell evolution in time and intensity 
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using radar data, the TITAN algorithm (Dixon and 
Wiener, 1993). Johnson et al. (1998) presented the 
Storm Cell Identification and Tracking algorithm 
(SCIT), a centroid tracking algorithm with improved 
methods of  identifying storms (both isolated and 
clustered). Wilson et al. (1998) reviews the status of  
forecasting convective precipitation for nowcasting 
showing two promising methods for thunderstorm 
evolution: knowledge-based expert systems and 
numerical forecasting models that are initialized 
with radar data (data assimilation). Lately, the data 
assimilation problem has been largely studied, e.g. 
Xue et al. (2003), Sun and Wilson (2003), Schroeder 
et al. (2006), Liu et al. (2008), and others. Mueller et 
al. (2003) presented a nowcast (up to 1 h) method 
to forecast thunderstorm locations based on a 
combination of  different data types (surface, radar, 
satellite, and numerical modelling. Han et al. (2009) 
presented advances in the identification, tracking, and 
forecast of  convective storm cells with enhancements 
to the aforementioned TITAN algorithm.

Some field experiments have been conducted 
to allow further development of  nowcasting, such 
as the Chesapeake Bay Nowcasting Experiment 
(Scofield and Weiss 1977), the summer Olympics 
in Atlanta (Rothfusz et al. 1998), the Spring 
Forecast Experiment (Coniglio et al. 2010; Kain 
et al. 2003, 2010), and an experiment in Helsinki, 
Finland (Koskinen et al. 2011). Considering the 
aviation applications, Isaac et al. (2006, 2011, 2014) 
presented a sequence of  works that resulted in a 
refined nowcasting system for aviation using data 
from numerical models, surface observations, 
radar, satellite, and a microwave radiometer to 
generate nowcasts of  up to approximately 6 h for 
principal airports in Canada. Recently, França et 
al. (2018) presented a nowcast model for low-level 
wind profiles at Guarulhos International Airport, 
São Paulo, Brazil.

According to França et al. (2016), in Brazil, 
a meteorologist is currently using his experience 
(conceptual models on how the atmosphere works) 
to integrate different site-specific meteorological 
observations and/or atmospheric model outputs to 
generate nowcasts at principal airports. In particular, 
the TCA of  Rio de Janeiro, the focus of  this study, 
has five airports whose flights are significantly 
affected (by delays and trajectory changes), especially 
during the approximations for landing or take-off, 
by significant MCE, which are normally associated 
with convective weather. Groisman et al. (2005) 
discussed trends in intense precipitation in the 

climate records, showing a systematic increase of  very 
heavy precipitation since the 1940s in subtropical part 
of  Brazil an increase of  58% in 100 years. França et 
al. (2016) presented a model based on neural network 
techniques to produce short-term and local-specific 
forecasts of  significant instability for flights in the 
TCA of  Rio de Janeiro with a performance for 
three forecast hours: BIAS (1.10, 1.42, and 2.31), 
the probability of  detection (POD) (0.79, 0.78, and 
0.67) and the false-alarm ratio (FAR) (0.28, 0.45, 
and 0.73). Paulucci et al. (2019) studied the spatial-
temporal variability of  cloud-to-ground atmospheric 
discharges in the metropolitan region of  Rio de 
Janeiro, revealing that most atmospheric discharges 
observed over Rio de Janeiro were derived from the 
orographic effect, which spurs the formation of  
convective storms along the southern part of  the 
slope. Additionally, this work shows that the peak 
levels of  electrical activity were observed from 18:00 
to 19:00 local time and most of  the cloud-to-ground 
lightning events recorded over the analyzed period 
(2001-2016) occurred in austral summer.

The objective of  the current study is to develop 
MCE nowcasting models (approximately 6 h in advance) 
for the TCA of  Rio de Janeiro based on machine 
learning algorithms considering the characterizations 
of  MCEs and their genesis via atmospheric discharges 
(AD) data and instability indices (extracted from the 
sounding profiles).

The present article is part of  a sequence of  
studies related to nowcasting that have been 
successfully executed by the Applied Meteorological 
Laboratory at the Federal University of  Rio de 
Janeiro, following Almeida (2009), Silva et al. 
(2016), França et al. (2016), França et al. (2018), 
and Paulucci et al. (2019).

2. DATA AND STUDY AREA

The Galeão International Airport (SBGL) is 
located in the city of  Rio de Janeiro (RJ), Brazil, 
where latitude and longitude are approximately 
22°48’18.9”S and 43°15’23.9”W, respectively. Figure 
1 shows the study area and the influence of  SBGL 
soundings. This area represents the approximate limit 
of  influence of  the airport sounding data to evaluate 
atmospheric conditions on the neighborhood.  Also, 
Figure 1 shows the domain from which the remotely 
sensed atmospheric discharges were extracted. The 
time period of  data used in this work was from 
January 2001 to December 2016. Table 1 describes 
the data characteristics.
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Figure 1: Study area and region of  influence of  SBGL soundings.

Source Description Frequency Data availability

Lightning detection network 
(RINDAT)

http://www.rindat.com.br/

RINDAT is a network of 
detectors for the remote 
sensing of atmospheric dis-
charges that covers most of 
the South-Central Brazil.

300 nanoseconds 2000-present

Atmospheric Sounding

https://www.redemet.aer.mil.br

Atmospheric profiles of SBGL 
of temperature, relative 
humidity, atmospheric pres-
sure, winds and sounding-
derived atmospheric instabil-
ity indices.

daily (12Z) 1977-present

Table 1: Data source, description, and frequency of  the data used for the events classification, training, validation and 
test for the forecast method proposed in this study.

3. METHODS

Figure 2 shows the steps sequence to obtain the 
optimum models, depictedin the following subsections.

3.1 Data Preprocessing

The main objective of  this step was to initially review 
the data characteristics and to detect whether there were 
outliers and errors present.

According to Naccarato (2005), there are three main types 
of  remotely sensed AD: (1) intracloud (IC), which occur inside 
the same storm cloud; (2) cloud-to-cloud (CC), occurring 
between different clouds; and (3) in the air (AIR), starting from 
a cloud and ending in the atmosphere, without reaching another 
cloud or the ground. AD striking the ground, also known 
simply as lightning, is classified into two basic types: (1) cloud-
to-ground (CG), characterized by discharges that start from a 
cloud and reaching the surface of  the Earth; and (2) ground-
to-cloud (GC), occurring from the ground toward the cloud.
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To understand the atmospheric discharge distribution 
in the study area, a monthly climatology spanning the 
16 years of  data was constructed. Figure 3 shows the 
monthly atmospheric discharge distribution curves for 
a region of  150-km radius centered at SBGL. From the 
distribution curve, it is possible to infer the following: 
(i) atmospheric discharge more often occurs from 
September to April, i.e., from austral spring to austral 
autumn; (ii) the maximum number of  atmospheric 

discharge strikes is observed between December and 
March (region within the dashed black lines in figure 
3), due to more energy available for convection and 
consequently the formation of  convective clouds and 
atmospheric discharges occurrence (Christian et al. 2003; 
Paulucci et al., 2019); and (iii) the minimum is observed 
during austral winter.

Nascimento (2005) presents a review regarding 
the atmospheric indices normally used to identify 
favorable atmospheric conditions for MCE occurrence 
and maintenance, which highlights intense convective 
instability and vertical wind shear conditions in the 
atmosphere in South America (and specifically, in 
Brazil). Among other indices presented by the author, 
the following indices and thresholds were considered 
in the current paper: low or negative Showalter index 
(Showalter, 1947) values indicate more atmospheric 
instability; negative values of  the Lifted index (Galway, 
1956) are related to unstable conditions; Severe WEather 
Threat (SWEAT) index (Miller, 1972) values higher than 
300 are considered favorable to severe storm formation. 
Total Totals Index (Miller, 1972) values higher than 
40°C are related to storm formation. K Index (George, 
1960) values higher than 30°C have a high potential for 
storm occurrence. Convective available potential energy 
(CAPE) (Houze, 1993) values higher than 1,000 J/kg are 
related to instability. Convective inhibition energy (CINE) 
(Houze, 1993) values close to zero are considered more 
favorable to atmospheric instability. In the current study, 
these seven atmospheric indices were selected and used 
to describe the thermodynamic state of  the atmosphere 
for characterizing MCE genesis. Table 2 details the 
formulation of  each index.

Figure 2: Methodological steps followed in this study.

Figure 3: Monthly distribution of  atmospheric discharge (AD) at the TCA along 
the 16 years of  data for the region of  150-km radius centered at SBGL.
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• Remotely sensed AD data were grouped in days 
and hours defining the events to be studied;

• Days without storms were added to the dataset 
defining 0 for the AD number. This procedure 
was applied to allow the model to differentiate 
between atmospheric conditions with and 
without AD;

• An integration was performed between 
atmospheric sounding derived indices and 
AD data;

• According to the 16-year  hourly  AD 
climatology (Figure 4), most AD occurs at 
night. Therefore, only AD records between 
6 pm and midnight were retained. This 
period accounts for more than 65% of  the 
recorded AD;

• A new binary variable (0: no-storm; 1: storm) 
was created to classify the events for the 
occurrence or absence of  AD;

For completeness of  the text and its brevity, the 
discussion about the statistical behavior of  the atmospheric 
indices is not presented here. Some outliers and error 
records were found and highlighted to be treated on the 
data preparation step.

In this phase, a correlation analysis was also performed 
between AD and the atmospheric indices to verify which 
variables would be most related to AD and among themselves. 

Correlation analysis among atmospheric instability 
indices showed high intercorrelation among some 
of  them. Additionally, each index contains different 
information for the genesis and development of  
convective storms, and thus, all indices were used in the 
learning process of  the predictive models used here.

3.2 Data Transformation

Following, there is an objective list of  activities performed 
on this study for data preparation to the modeling step:

*Observations: In equations, T and Td represent the air temperature and the dewpoint temperature, respectively. 
The values next to those variables refer to the isobaric levels (hPa) in which the variables should be measured. 
The index parcel refers to the parcel lifting, from an isobaric level to the assigned level. Tvp and Tva refer to 
the virtual temperature of a parcel and of the environment. EL refer to the equilibrium level, LFC the level of 
free convection and SUP the surface level. V refers to the wind at a specified isobaric level (hPa).

 

Index Formulation Reference 

Showalter 𝑆𝑆 = 𝑇𝑇��� − 𝑇𝑇��� (������)���� ������ Showalter (1947) 

Lifted Index LI = 𝑇𝑇��� − 𝑇𝑇(������)��� Galway (1956) 

SWEAT SWEAT =  12 × 𝑇𝑇���� + 2 × 𝑉𝑉��� + 𝑉𝑉��� + 20

× (TT − 49) + 125 × f(𝛼𝛼) 

f(𝛼𝛼) = exp �− �
(𝛼𝛼 − 90)

40
�

�

� 

Miller (1972) 

Total Totals TT = 𝑇𝑇��� − 𝑇𝑇���� − 2 × 𝑇𝑇��� Miller (1972) 

K K = (𝑇𝑇��� + 𝑇𝑇����) − (𝑇𝑇��� − 𝑇𝑇����) − 𝑇𝑇��� George (1960) 

CAPE 
CAPE = 𝑔𝑔 �

𝑇𝑇�� − 𝑇𝑇��

𝑇𝑇��

��

���
dz 

Houze (1993) 

CINE 
CINE = 𝑔𝑔 �

𝑇𝑇�� − 𝑇𝑇��

𝑇𝑇��

���

���
dz 

Houze (1993) 

 

  

Table 2: Formulas and reference of  the used atmospheric instability indices.
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Table 2: Formulas and reference of  the used atmospheric instability indices. • All input variables were normalized to a 
common interval [-1,+1];

• Finally, the data were divided into two different 
datasets: (i) 2001-2010 for training and cross-
validation and (ii) 2011-2016 for testing.

Table 3 summarizes the final input and output 
variables set used in the modeling step.

• The percentiles from 0.5 to 0.9 of  AD for storm 
events were computed to determine the optimum 
threshold for storm severity classification;

• A new binary variable (0: no; 1: yes) was 
created classifying whether the AD records 
were above or below the severity threshold;

Variable Type Description

Julian day

Input

Numeric value representing the number of days in the year after Jan 1st

Monthly mean Numeric value representing the monthly mean of AD for that month 
etween 6pm and midnight

Showalter index

Numeric value extracted from SBGL sounding

Lifted index

K index

Total totals

CAPE

CINE

Sweat

Precipitable water

Indices(julian day – 1) Numeric value extracted from SBGL with a lag of one day

Storm? (yes/no)
Output

Boolean value representing the presence (yes) or absence (no) of AD on that record

SeverityP0.X? (yes/no) Boolean value representing if the number of AD on that record is over (yes) 
or under (no) the percentile 0.X of the number of AD in storm events

Table 3: Input and output variables and description.

Figure 4: Atmospheric discharge (AD) hourly cumulative probability density function (pdf). 
The upper-right region - defined by the intersection between the black dashed lines - shows 
that the AD cumulative probability from 18 to 23:59h (local time) is greater than 65%.
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Figure 5: Architecture for the DL-FC model for storm (a) forecast and 
(b) severity.

(a) 

(b) 

 

 

3.3 Training

The models were based on artificial intelligence to 
create the relation between the thermodynamic state 
of  the atmosphere and storm occurrence and severity..

There are several classifiers in the Weka 
software package (developed by the University 

of  Waikato, Frank et al., 2016), but for the 
present study, only the five classifiers described 
intable 4 (line 2-6) were used.A python routine 
was developed for the Deep Learning Fully-
Connected (DL-FC) algorithm, which architecture 
is presented in Figure 5a and 5b, for storm forecast 
and severity, respectively.

(a) 

(b) 
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3.4 Evaluation

There are several strategies for evaluating machine 
learning algorithm performance to find the optimum 
model for the classification problem.

Here, the cross-validation method was 
chosen as a strategy for evaluating model 
performance. This evaluation method consists 
of  the following steps:

• Split training set into N arbitrarily chosen folds. 
In general, ten folds is enough, and this number 
is the Weka’s default;

• The training cycle runs Ntimes, and, at every 
iteration, N-1 folds are used for training, with 
the remaining fold used for validation. This 
procedure is repeated until every fold has been 
used both for training and validation.

• Statistics metrics are generated for every single 
fold, and the model performance is the average 
among them.

The statistical metrics are evaluated from the 
confusion matrix. This matrix has order N×N, where 
the columns represent the observed values, and the rows 
represent the forecast values (see Table 5 for a matrix 
example). Ideally, a perfect result occurs when only values 
on the main diagonal are verified, representing that all 
the forecasted and observed values match. Values out of  
the main diagonal from the confusion matrix imply that 
our model has an error, which should be well known for 
those who will use the results.

Table 6 shows the statistics obtained from the 
confusion matrix, which are shown in the Results section 
for the forecast model analysis. Table 6 presents the 
statistical values used in our study.

Observed

Yes No Total

Forecast
Yes Hits (a) False Alarm (b) Forecast Yes

No Misses (c) Correct Negatives (d) Forecast No

Total Observed Yes Observed No Total

Statistic Formula Description

Probability of 
detection (POD)

Measures the fraction of observed events that were 
correctly forecast. A perfect score is 1.

False alarm Ratio 
(FAR)

Measures the fraction of “yes” forecasts in which the 
event did not occur. A perfect score is 0.

BIAS Measures the ratio of the frequency of forecast events to 
the frequency of observed events. A perfect score is 1.

Critical Success 
Index (CSI)

This statistic combines hit rate and falser alarm ration 
in one statistic. It does not consider the “not forecast/
not occurred” (d) events. This score ranges from zero 
(0) from one (1), the perfect score.

Table 6: Statistics retrieved from the confusion matrix.

Table 5: Confusion Matrix.
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3.5 Test

After finding the optimum models for storm 
forecast and severity a test was performed for the period 
from 2011 to 2016. The test is a simulation of  what 
can be expected as the model’s performance after its 
operational deployment.

4. RESULTS AND DISCUSSION

This section summarizes the testresults for storm 
forecasts (4.1) and storm severity (4.2) models built 
on the training dataset (2001-2010). Additionally, 
the results from a 6-year test (2011 to 2016) are 
presented (4.3).

4.1 Storm forecast

This section describes the results for the 9-h 
storm forecast based on the 9-h local time sounding 
at the International Airport of  Rio de Janeiro. 
Positive events indicate the occurrence of  forecasted 
convective activity at the TCA of  Rio de Janeiro with 
atmospheric discharge.

Figure 6a and Table 7 present the cross-validation 
results on the training dataset (2001-2010) for storm 
forecast using algorithms defined inTable 4. 

Analyzing the model performance, most of  the 
results are on or above the optimum threshold– here 
defined as the region where both POD and (1-FAR) 
statistics are greater than 80%. 

 

 
(a) 

 
(b) 
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The DL-FC model showed results with values of  0.91, 
0.12 and 0.809 for POD, FAR and CSI, respectively. Also, 
the decision tree algorithms (J48 and Random Forest) and 
the Voting committee achieved CSI values greater than 0.70.

Comparing the results, they are divided in decision trees 
(J48 and random forest) and neural networks (Multilayer 
Perceptron - MLP, Radial Basis Function - RBFand Deep 
Learning - DL) algorithms, respectively. In relation to the 
decision tree algorithms (lines 1 and 2, Table 4), the increase 
of  performance from the single decision tree (J48) to the 
random forest is related to the skill of  the latter to learn 
more patterns since it consists of  multiple trees trained from 
different combination of  input parameters. Regarding to the 
neural network algorithms (lines 3, 4 and 6, Table 4), it is 
evident that the DL algorithm outstands the other methods 
(MLP and RBF) since, e.g., POD of  DL is higher than 
MLP and RBF by 20% and 22%, respectively. The reason 
for the learning improvements on the DL versus MLP and 
RBF (shown in statistics of  Table 4) are mainly due to the 
use of  (i) more layers and hidden units; (ii) regularization 
method (dropout); and (iii) Adam optimizer (Kingma and 
Lei Ba, 2014). Also, the DL results are slightly better than 
the decision tree, as shown by POD, FAR and CSI values in 
Table 4. Finally, the voting committee performs worse than 
the Random Forest, penalized by the poor performance of  
the MLP and RBF methods.

4.2 Storm severity

Figure 6b presents the cross-validation results on 
the training dataset (2001-2010) for storm severity using 
algorithms defined in Table 4 for all possible percentiles 
of  AD in storm events. 

As may be noted, most of  the models are located in 
the optimum region – here defined as the region where 
both POD and (1-FAR) statistics are greater than 70%. 
However, there is a greater dispersion of  results compared 
with the results presented in Table 7, which was expected, 

since here the percentile thresholds for storm severity from 
50% to 90% were used, which has gradually increased the 
difficulty of  modeling.

The models performed poorly to classify events with 
more than 438.0 h-1 (90% percentile) with CSI values 
mostly under 0.6. The performance gradually increases 
for lower thresholds, since the events get more frequent. 
For the of  91 h-1 (70% percentile) threshold the DL-
FC algorithm shows values of  0.845, 0.207 and 0.69 for 
POD, FAR and CSI, respectively.

4.3 Test results for the 2011-2016 data period

To clarify how the 6-h MCE forecast model results 
were analyzed, the following steps were carried out:

• The thermodynamic indices were computed 
using 12Zsounding, which are regularly available 
at SBGL approximately 13:30Z;

• Considering the 16-year hourly AD climatology 
(Figure 4), the storm occurrence was defined 
based on the existence of  at least one AD 
between 6 pm and midnight;

• Based on the 0.7 percentile of  AD on storm events 
(91 h-1 AD), the severity parameter was defined.

Figure 7 presents a hit and error rate for all events 
on the test dataset, using the DL-FC algorithm, that was 
selected here based on the analysis of  the maximum POD 
and minimum FAR for storm forecasting and severity. It 
is noteworthy that as the events become more intense 
and rarer, the prediction model becomes more precise 
on stormforecast. However, weaker events tend to be 
more frequent, leading to greater prediction errors. As 
noted, for weaker events (under 1,000 AD), the model 
performance decreases for stormforecast. As the events 
became stronger, progressively, there was an increase in 
performance. Events with more than 3,000 AD are almost 
always predicted (only 3 errors).

Algorithm
POD

(Ideal value 1)

FAR

(Ideal value 0)

1-FAR

(Ideal value 1)

BIAS

(Ideal value 1)

CSI

(Ideal value 1)

J48 0.84 0.17 0.83 1.01 0.71

Random Forest 0.88 0.13 0.87 1.01 0.78

MLP Classifier 0.71 0.26 0.74 0.96 0.57

RBF Classifier 0.69 0.27 0.73 0.94 0.55

Vote 0.84 0.15 0.85 0.99 0.73

DL-FC 0.91 0.12 0.88 1.03 0.81

Table 7: Results of  storm forecast with approximately 6 h in advance.
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For the completeness of  this work, Table 8 presents 
the most intense events on the test dataset – ordered in 
decreasing order by the daily accumulated AD between 6 
pm and midnight. It is important to note, for the selected 
events, the AD ranged between 4,966 and 15,122; that is, 
these were relevant events that occurred in the study area.

Considering this subset, the optimum model (DL-
FC) correctly predicted all storm occurrence. 

5. CONCLUSIONS

This study developed techniques for forecasting 
meteorological convective events in theflight terminal 
area of  Rio de Janeiro using different computational 
intelligence algorithms, remotely sensed atmospheric 
discharge data for classifying storm occurrence and 
severity, and atmospheric instability indices. The main 
conclusions of  this work are summarized as follows:

• The analysis of  the results showed that the 
deep learning fully-connected model presented 
the highest results for storm forecast and 
severity, respectively, considering POD, FAR 
and CSI values;

• The error analysis showed that most of  the 
incorrect predictions were related to low-intensity 
events. Therefore, the models presented here can 
be used for high-intensity events, which have the 
greatest potential to disrupt aviation operations;

• The 6-year test analysis showed that the model 
can be used for operational application by the 
aviation sector;

• The model can be a potential tool for elaborating 
the standard meteorological messages of  
significant weather (with six hours in advance) 
for aviation in the TCA of  Rio de Janeiro;

• The results presented a development from our 
previous work (França et al., 2016) with increase 
(decrease) of  POD (FAR) for storm forecast and 
included storm severity forecasts of  AD events;

• It is important to highlight the importance of  
remotely sensed data (e.g. atmospheric discharges) 
for the development of  improved models for 
weather forecasts aligned to the aviation purposes.

In the future, these models will be improved to 
predict the most likely areas (or sector of  the TCA) to be 
affected by MCEs. A complete analysis of  the synoptic 
conditions related to the most intense events should be 
studied to develop a conceptual model of  storm genesis 
and intensification. In addition, the use of  remotely sensed 
atmospheric profiles and derived atmospheric instability 
indices from high-frequency satellite data may be useful 
for applying this forecasting technique to flight routes and 
areas in which there is no sounding available.
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Year Month Day Forecast DA

2016 2 20 yes 15122

2016 2 17 yes 12973

2014 1 16 yes 11075

2012 12 30 yes 10988

2013 3 5 yes 10478

2016 3 6 yes 10053

2016 3 23 yes 9750

2012 12 27 yes 9026

2016 12 12 yes 8936

2016 12 22 yes 8437

2016 12 8 yes 8129

2012 12 29 yes 7922

2015 11 8 yes 7720

2016 2 22 yes 7518

2016 2 15 yes 7359

2014 2 28 yes 6956

2016 2 28 yes 6696

2012 12 13 yes 6525

2016 12 31 yes 6198

2013 3 4 yes 5867

2013 12 10 yes 5809

2016 2 25 yes 5753

2013 3 9 yes 5681

2016 2 27 yes 5568

2013 2 26 yes 5541

2012 12 12 yes 5473

2012 12 17 yes 5436

2013 1 15 yes 5358

2013 1 14 yes 4980

2012 12 14 yes 4966

Table 8: Results of  storm forecastfor the top 30 events of  the test dataset.
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Precipitation Nowcasting with Weather Radar Images and 
Deep Learning in São Paulo, Brasil

Suzanna Maria Bonnet 

ABSTRACT

Precipitation nowcasting can predict and alert for any 
possibility of abrupt weather changes which may cause 
both human and material risks. Most of the conventional 
nowcasting methods extrapolate weather radar echoes, 
but precipitation nowcasting is still a challenge, mainly 
due to rapid changes in meteorological systems and 
time required for numerical simulations. Recently video 
prediction deep learning (VPDL) algorithms have been 
applied in precipitation nowcasting. In this study, we 
use the VPDL PredRNN++ and sequences of radar 
reflectivity images to predict the future sequence of 
reflectivity images for up to 1-h lead time for São Paulo, 
Brazil. We also verify the feasibility for the continuous 
use of the VPDL model, providing the meteorologist with 
trends and forecasts in precipitation edges regardless 
of the weather event occurring. The results obtained 
confirm the potential of the VPDL model as an additional 
tool to assist nowcasting. Even though meteorological 
systems that trigger natural disasters vary by location, 
a general solution can contribute as a tool to assist 
decision-makers and consequently issue efficient alerts.

Keywords: precipitation nowcasting; spatiotemporal 
forecast; video prediction deep learning; weather radar.
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1. INTRODUCTION

The occurrence of  severe weather events, such as 
storms, tornadoes, lightning, strong winds, can cause damage 
to human lives and social, economic and environmental 
assets of  communities and countries [1–3]. According to 
Golnaraghi et al. [1], between 1970 and 2012, floods, mass 
movement, and storms accounted for 85% of  disasters 

Published in: Atmosphere, 2020, https://doi.org/10.3390/atmos11111157

linked to weather, climate and water extremes, responsible 
for more than 1 million deaths and caused an economic 
loss of  about USD 2 billion across the globe. Moreover, 
floods are expected to be more complex and affect more 
people with temperature rise due to climate change [4,5].

In addition to people in situations vulnerable to 
severe weather phenomena, floods also affect decision-
makers in disaster management, energy, agriculture and 
aviation agencies, which are responsible for safety and 
administration. The possibility of  obtaining accurate 
hazardous weather warnings at least one hour in advance 
could help in the planning and mobilization of  the 
responsible agencies and may contribute to reducing losses, 
mitigating damage and saving lives.

Precipitation nowcasting tools have been used to 
forecast severe weather events. Briefly, this comprises 
a detailed description of  the current weather to make 
predictions for a small range (meters to few kilometers) and 
for a short period of  time (0 to 6 h) [6]. In general, severe 
storms are localized, with a small spatial area and a short 
duration (life cycle). One type of  precipitation nowcasting 
is based on weather radars, due to its high spatial (~1 km) 
and temporal resolutions (~5 min) [6–10].

Several methodologies applicable to nowcasting can be 
found in the literature, from the analysis of  meteorological 
variables, such as the evaluation of  images from weather 
radars or satellites [9,11–14], evaluation of  observed 
meteorological variables like wind and precipitation, and 
instability indexes from radiosonde [9,11–14], to predicting 
methods, such as models of  Eulerian persistence [10,15], 
models of  Lagrangian persistence (e.g., optical flow) 
[10,15], models of  mathematical extrapolation of  images 
from weather radars or satellites [9–11,15–18] and 
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computational intelligence models [19–21]. Nowcasting 
systems can use only one of  these methods or combine 
several of  them [11,12,18].

The most-used predicting method for nowcasting is 
the extrapolation model: either based on cell tracking or 
based on area tracking. The former is principally designed to 
locate severe weather objects (mostly convective), while the 
latter is better for stratiform precipitation. These models use 
many radar products, such as volume scan, the definition of  
the movement field for system advection, fixed reflectivity, 
precipitation relationship, and fixed thresholds for system 
detection (such as size and intensity) [10,17].

Extrapolation models conserve the elements in the 
image and advect these elements by a motion field or vector, 
so they only change the position of  the storm cells; taking 
a cloud as an example of  an image element, these models 
cannot predict dissipation due to rain, or the formation of  a 
new cloud where there was nothing before [22]. In addition, 
observed storms cannot significantly deviate from their 
path [13]. Pierce et al. [15] enumerated some limitations 
in nowcasting models. For example, a typical error is the 
identification of  the storm, leading to tracking errors 
(speed and direction) and the wrong estimate of  intensity. 
Additionally, because of  mistakes in the estimation of  size 
and lifetime, the forecast quality decrease.

Extrapolation models do not take physical processes 
into account, unless the nowcasting system uses a field 
of  a numerical weather prediction model as input, the 
usage of  this method is restricted in time (~60 min) 
and space, due to the nonlinearity of  meteorological 
systems and cloud dynamics [10]. So, only very complex 
nowcasting systems (e.g., the Auto Nowcast system [23]), 
that combine many techniques and observational data, 
are able to predict storm initiation or decay. Furthermore, 
some points that limit the predictability of  nowcasting are: 
intrinsic features of  weather events [24]; model definition 
and parameterizations [24]; topography [24]; observational 
data, that may contain uncertainty, noise, spurious data, 
and insufficient spatial and temporal coverage [20,24]; 
computational resources, which are still limited to evaluate 
and integrate information to solve these problems in time 
to be used for decision-making [20]. 

Apart from conventional methods, recent applications 
of  video prediction deep learning (VPDL) algorithms 
using weather radar images have shown good possibilities 
for precipitation nowcasting [25]. These are data-driven 
models that show promise for the building and integration 
of  understanding the weather system [26]. VPDL combines 
computer vision (convolutional layers) with the memory of  
temporal aspects of  the time series (recurrent layers) in a 
data-driven spatiotemporal model. Most of  these solutions 
are not specific for precipitation nowcasting, and they have 

been used for diverse datasets such as moving-MNIST [27], 
people movement [28], and animal migration [29]. 

Shi et al. [27] proposed the Convolutional Long 
Short-Term Memory (ConvLSTM) neural network unit 
to model the spatiotemporal relationships between frames 
of  a video, extending the idea of  fully connected LSTM 
to convolutional structures. The ConvLSTM model was 
applied to precipitation nowcasting [27]. 

Wang et al. [28] proposed the Predictive Recurrent Neural 
Network (PredRNN) model, composed by spatiotemporal 
LSTM (ST-LSTM) as the basic unit. Different from the 
ConvLSTM unit, which has only temporal memory, the 
ST-LSTM unit memorizes both spatial appearances and 
temporal variations. As in Shi et al. [27], PredRNN was also 
applied to the weather radar sequences of  images.

Shi et al. [30] proposed the Trajectory Gated Recurrent 
Unit (TrajGRU) algorithm, which learns the location-
variant structure—intrinsic of  natural motion, as an 
improvement of  the ConvLSTM.  Tran, and Song [31], 
following the suggestions of  Klein et al. [32] and Mathieu 
et al. [33], adapted the TrajGRU model using image quality 
assessment metrics as the loss function for the same 
problem of  precipitation nowcasting, in order to reduce 
the blurry image issue. 

Franch et al. [25] presented a method to improve 
the nowcasting skills of  VPDL models, in particular for 
extreme rain rates, by combining orographic features with 
a model ensemble. They used the TrajGRU algorithm 
as a baseline model to build the ensembles, where the 
ensemble members have different rain thresholds as 
input. The proposed method doubled the forecasting 
skill of  the VPDL model in extreme precipitations. 

Purely VPDL models are subject to the same restriction 
as any model using just mathematical extrapolation of  
images. Both lack the physics and dynamics behind cloud 
formation and dissipation that would differentiate the 
application of  video prediction for nowcasting problems 
from common video prediction problems, such as the 
movement of  digits [34]. Nevertheless, we expect the 
VPDL to learn the effect of  the topography and dynamics 
of  the cloud life cycle from a series of  reflectivity images. 

In this study, we evaluate the applicability of  a VPDL 
model as a tool to support nowcasting. We also evaluate 
the feasibility of  the continuous use of  the VPDL model, 
providing the meteorologist with trends and forecasts 
in precipitation edges regardless of  the weather event 
occurring. We predict reflectivity images and precipitation 
edges from weather radar images for up to 1-h lead time 
using the PredRNN++ model [35] as a VPDL model 
and radar reflectivity at only one level of  measurement 
(0.5° Plan Position Indicator—PPI) as a single input. The 
PredRNN++ model is compared to the conventional 
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of  the refractive index in the atmosphere, for example, the 
beam at an elevation angle of  0.5° rises to approximately 1 
km about 100 km far from the radar [37]. 

In this study, we have used a total of  254,270 
PPIs of  the radar reflectivity factor. These radar 
measurements represent sweeps at 0.5° of  elevation 
restricted to 100 km of  range (Figure 1b) for the period 
of  March 2015 to December 2019 with a time interval 
of  5 min. Each PPI has been quality controlled to 
avoid ground clutter and anomalous propagations by 
means of  the coincident polarimetric measurements 
of  this radar [38]. Based on these data, the following 
pre-processing steps were performed:

1. Transformation from polar to Cartesian 
coordinates: with the objective of  obtaining images 
on a regular grid, with a horizontal grid resolution 
of  4 km per pixel (the matrix had 40 × 40 pixels). 
Thus, each new image represents a matrix of  
Cartesian coordinates with 4 × 4 km² resolution;

2. Defining the boundaries: To utilize a regular 
square grid and eliminate the area without data 
as measured by radar, the images were cut into a 
square inscribed in a circle of  100 km (Figure 1);

3. Normalization of  the reflectivity values: 
Reflectivity values range typically from 0 to 
60 dBZ. To obtain values of  reflectivity in the 
interval (0,1), the data were divided by 60.

4. Organization of  datasets with a time interval of  15 
min: train (2016, 2017 and 2019), validation (from 
March 2015 to December 2015) and test (2018).

 
Pre-processed dataset used in this study is available 

at https://doi.org/10.7910/DVN/ZADDNQ. 

precipitation nowcasting model, Ensemble NowCASTing 
(ENCAST), which is the model operationally used by 
the Hydraulic Technology Center Foundation (FCTH, 
Portuguese acronym), in three case studies. We evaluate 
the model’s performance and propose a number of  
improvements. Even though meteorological systems that 
trigger natural disasters vary by location, a general solution 
can contribute as a tool to assist decision-makers and 
consequently issue efficient alerts. 

This paper is organized as follows. The next section 
presents the datasets used in this work and briefly discusses 
the models. Section 3 presents the experimental setup 
and evaluation measures. Section 4 presents results and 
discussion, and Section 5 the conclusions of  the work.

2. MATERIALS AND METHODS

2.1 Dataset

This study uses a dual-polarization S-band (SPOL) 
Doppler weather radar from the Department of  Water and 
Electric Energy, DAEE (Portuguese acronym), manufacture 
Selex ES GmbH, installed at Ponta Nova [36], State of  
São Paulo, Brazil, at latitude 23°36’ S, longitude 45°58’20” 
W (Figure 1a). The radar is operated by the Hydraulic 
Technology Center Foundation, FCTH (Portuguese 
acronym) and it is configured to cover a distance of  240 
km with 250 m gate resolution (gate or bins are discrete 
illuminated volume that are sampled by pulsed weather 
radars). It makes measurements at eight elevation angles 
and completes a volume scan every 5 min. As a note, one 
sweep represents a Plan Position Indicator (PPI). At each 
sweep the radar beam rises in the atmosphere as it moves 
away from the radar due to Earth curvature and variation 

Figure 1: (a) Location of the weather radar. The red circle marks 100-km of range; (b) Reflectivity image from the Plan Position Indicator (PPI) 
radar at 0.5°, with a map of the surrounding area in the background. The red line marks the radius of 100 km and the darker-colored square 
defines the borders.

(a) (b)
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2.2 Models

2.2.1 ENCAST

Ensemble NowCASTing (ENCAST) [16] is 
the nowcasting algorithm available at SELEX 
weather radar and it is used operationally by 
SPOL-FCTH radar. The model identifies, tracks, 
and extrapolates rain cells by using the differences 
between pairs of  consecutive derived images 
from the weather radar. The tracking algorithm 
is based on the cross-correlation procedure 
that derives one movement vector for each area 
of  precipitation analyzed and performs cross-
correlation over this area. Moreover, ENCAST 
converts pseudo radar reflectivity factor CAPPIs 
(Constant Altitude PPI, a horizontal cross-section 
of  PPIs obtained from radar scans at different 
elevation angles) to the rainfall rate by using a fixed 
Z-R relation (Z = 300R1.4) and uses it to represent 
the closest surface rainfall as the image input. It 
uses a rain threshold in cell identification. Based 
on the cell’s position in the present and previous 
scans a forecast is computed for a user-defined 
time interval. 

For this study, FCTH provided the ENCAST 
outputs with 500-m × 500-m resolution. For each 
output, ENCAST forecast 7 time steps, ranging 
from 0 to 60 min lead time. Later, the rain fields 
were downscaled to a pixel of  4 km × 4 km.

2.2.2 PredRNN++

PredRNN++ is the model proposed by 
Wang et al. (2018) [35,39] as an improvement 
of  PredRNN [28]. To increase the temporal and 
spatial long-term memory, the model utilizes two 
structures: “causal LSTM”, to capture complex 
dependencies and variations, and “gradient 
highway unit” (GHU), to keep the gradients 
during training. The Causal LSTM adopts a 
cascaded mechanism [40,41], where spatial 
memory is a function of  temporal memory. 
Inspired by LSTM [42,43], GHU facilitates the 
training of  deep neural networks. It uses adaptive 
units to regulate information flow inside the 
model, preventing the gradient backpropagated 
from quickly vanishing [35,43]. Figure 2 illustrates 
the PredRNN++ information flow.

The PredRNN++ model predicts 10 future frames 
(target) given 10 previous inputs, so each register is a 
sequence of  20 images. The input was organized in such 
a way that, between one record and the next, there is one 
time-step forward in the dataset. 

The model architecture and the hyperparameters 
established by the authors were maintained [35,39]: 4 layers 
of  causal LSTM with 128, 64, 64, 64 units in each layer, 
respectively, one gradient highway layer with 128 units, 
convolution filter of  size 5. The loss function was used with 
ADAM optimization algorithm with a starting learning rate of  
10−3 , and a batch size of  8 records, also organized in sequence. 

To train and test the PredRNN++ model, we 
considered the entire dataset, which means that we did not 
separate the days with and without reflectivity. Further, we 
considered all the reflectivity range, from 0 to 60 dBZ, but 
we scaled the data into the (0,1) interval. The period of  data 
used for training includes the complete years of  2016, 2017 
and 2019; the data from March 2015 to December 2015 

Figure 2: PredRNN++ architecture of the model. Blue parts 
indicate the gradient highway connecting the current time step 
directly with prior inputs, while the red parts show the deep 
transition pathway. Where t denotes time step, k denotes kth 
hidden layer in the stacked model,   is the spatial memory,  
is the temporal memory, i s  t h e final output (determined 
by the dual memory states)and Zt is the hidden state, provided 
by “gradient highway unit” (GHU). Source: adapted from Wang 
et al. [35].
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of  the reflectivity dataset and preliminary analysis of  the 
results of  the VPDL model reinforced the choice to evaluate 
the results in binary form. 

We calculated the verification statistics up to 1-h 
lead time, using pairs of  forecast and observation for 
second subsets and three rain cases (listed below). Pixel 
by pixel, the forecast hits and misses for each case or 
subset were accumulated in confusion matrix (Table 
1), and then we calculate the statistics. The subsets are 
the complete test set (the year of  2018), named “All”, 
and the summer season set, from January to March 
of  2018), called “Summer”. The dates of  the three 
rain cases are: 31 July 2018, 05 December 2018 and 22 
December 2018.

The following are the forecast and observation pairs of  
the thresholds used to evaluate the model’s performance:

• 1 dBZ for reflectivity predicted and observed;
• 10 dBZ for reflectivity predicted and 20 dBZ for 

reflectivity observed (the choice of  the predicted 
threshold is explained in the results section). These 
values are compared with the ENCAST forecast;

• 1 mm/h for precipitation predicted from 
ENCAST, and 20 dBZ for reflectivity observed.

In the analyses of  the results, we refer to pixels with 
and without reflectivity as wet and dry pixels, respectively. 
In Table 1, a positive event corresponds to a wet pixel 
(reflectivity greater than the threshold) and a negative 
event corresponds to a dry pixel (reflectivity lower than 
or equal to the threshold).”

Table 1: Confusion matrix (a type of contingency table).

  Observed
  YES NO

Predicted
YES TP FP
NO FN TN

where:

TP: corresponds to the number of  observed positive 
events (yes) that were correctly predicted;

FP: corresponds to the number of  observed negative 
events (no) that were predicted incorrectly;

FN: corresponds to the number of  observed positive 
events that were not predicted;

TN: corresponds to the number of  observed 
negative events that were correctly predicted as negative.

Based on the confusion matrix, six standard 
categorical statistics were calculated:

were used as validation sets; the data from the complete 
year of  2018 were used as a blind test set. The time step 
used between images was 15 min instead of  5 min so 
that the training set comprises around 51,800 images, the 
validation set 15,800 images, and the test set 19,900 images. 

The VPDL model was run on the Santos Dumont 
supercomputer, installed in the National Laboratory for 
Scientific Computing, LNCC (Portuguese acronym). The 
hardware used was two NVIDIA Tesla V100-16 GB with 
NVLink and 384 Gb of  RAM.

The model was trained for 20 epochs and validated every 
1 epoch (51,800 iterations). Each output comprises 10 time 
steps, ranging from 15 min to 150 min lead time. It should be 
mentioned that the training of  the model is time-consuming 
(about 12 h/epoch) and requires computational resources 
to speed up the training (such as GPU) in addition to RAM 
and storage capacity. However, once the model is trained, 
the execution of  the test set is fast (about 3 s/iteration).

3. EXPERIMENTAL SETUP

To evaluate the performance of  the PredRNN++ 
model, we calculate standard categorical statistics, enumerated 
below, for the test set (the year of  2018), between the results 
of  the VPDL model and the observed reflectivity images 
and between the results of  the ENCAST precipitation 
nowcasting model and the observed reflectivity images. 

Different precipitation nowcasting systems cannot 
be compared if  they are designed for different purposes 
[10]. However, ENCAST works with both convective 
and stratiform precipitation [16] and PredRNN++ is also 
expected to work with both types of  precipitation. It is 
worth mentioning that although the radar reflectivity images 
have been quality controlled, we observed random noise that 
could be attributed to anomalous propagation, especially 
over the metropolitan area of  São Paulo, which changes the 
refractivity index. As an approximation, based on the Z-R 
relation (Z = 300R1.4), to avoid such spurious contamination, 
we considered that pixels above the threshold of  20 dBZ 
represent rainy pixels in the radar images, which is equivalent 
to approximately 0.5 mm/h. This threshold will also be 
compared with the ENCAST precipitation forecast. 

As ENCAST predicts precipitation rate and 
PredRNN++ predicts radar reflectivity, we used binary 
metrics to evaluate the results of  the VPDL model against 
the ENCAST results. We converted the values of  the pixels 
into a 0/1 (e.g., no/yes) matrix using a dBZ threshold 
(defined below) for the observed and predicted fields of  
the VPDL model, and a mm/h threshold for the ENCAST 
forecast, where values lower than or equal these thresholds 
were converted to 0, and values greater than the thresholds 
were set to 1. As shown in the results section, some analyses 
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1. The Probability Of  Detection (POD) or Recall: 
the fraction of  observed positive events that 
were correctly predicted. The range of  possible 
values is 0 to 1, where the best possible POD is 
1 and the worst is 0.

POD=
TP

TP+FN

FAR=
FP

TP+FP

POFD=
FP

FP+TN

BIAS=
TP+FP
TP+FN

CSI=
TP

TP+FP+FN
=

TP

Total−TN

Total=TP+FP+FN+TN

ETS=
TP−R

TP+FP+FN−R

R=
(TP+FP)∗(TP+FN )

Total

(1)

2. The False Alarm Rate (FAR): the fraction of  
predicted positive events that did not occur. The 
range of  possible values is 0 to 1, where the best 
possible FAR is 0 and the worst is 1.

POD=
TP

TP+FN

FAR=
FP

TP+FP

POFD=
FP

FP+TN

BIAS=
TP+FP
TP+FN

CSI=
TP

TP+FP+FN
=

TP

Total−TN

Total=TP+FP+FN+TN

ETS=
TP−R

TP+FP+FN−R

R=
(TP+FP)∗(TP+FN )

Total

(2)

3. The Probability Of  False Detection (POFD) or the 
probability of  false alarm: the fraction of  observed 
negative events that were incorrectly predicted as 
positive. The range of  possible values is 0 to 1, 
where the best possible POFD is 0 and the worst is 1.

POD=
TP

TP+FN

FAR=
FP

TP+FP

POFD=
FP

FP+TN

BIAS=
TP+FP
TP+FN

CSI=
TP

TP+FP+FN
=

TP

Total−TN

Total=TP+FP+FN+TN

ETS=
TP−R

TP+FP+FN−R

R=
(TP+FP)∗(TP+FN )

Total

(3)

4. The Bias score: the ratio between the number 
of  predicted positive events and the number 
of  observed positive events. This indicates how 
many times the number of  predicted positive 
events exceeds the number of  observed 
positive events [44]. BIAS = 1 indicates 
unbiased forecast, BIAS > 1 overforecast and 
BIAS < 1 underforecast.

POD=
TP

TP+FN

FAR=
FP

TP+FP

POFD=
FP

FP+TN

BIAS=
TP+FP
TP+FN

CSI=
TP

TP+FP+FN
=

TP

Total−TN

Total=TP+FP+FN+TN

ETS=
TP−R

TP+FP+FN−R

R=
(TP+FP)∗(TP+FN )

Total

(4)

6. The Equitable Threat Score (ETS) or the 
Gilbert Threat Score: this is a skill score based 
on the CSI [44,45]. The ETS quantifies the 
improvement of  the forecast compared to a 
random forecast. The range of  possible values 
is −1/3 to 1, where the best possible ETS is 1 
and 0 indicates no skill.
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Different from the CSI, the ETS depends directly 
on the TN due to the R. The frequency of  observed 
positive events ((TP + FN)/Total ) determines how close 
the ETS and CSI are; so, as the positive event becomes 
rarer, the ETS gets closer to the CSI [45].

The CSI and ETS are generally used in the 
assessment of  quantitative precipitation forecasting 
[46–48]. A subjective analysis of  the images must be 
made in order to visually certify the quality of  the results.

4. RESULTS AND DISCUSSION

The training and test sets of  PredRNN++ include 
both dry (without rain) and wet days (with rain). When 
considering wet days, all types of  weather events (e.g., rain, 
hail) are included in the dataset and can occur anywhere in 
the image. We did not discriminate isolated storms from 
storms caused by frontal systems, for example. However, 
it is evident that all storms do not behave in the same way 
[16], and the formation of  storms can be associated with 
diverse characteristics, such as development speed, variable 
intensity, atmospheric and terrain forcing (e.g., surface and 
ocean), and association with other weather systems. 

Figure 3 illustrates the prediction for 8:25 on 31 July 
2018 and Figure 4 illustrates the prediction for 16:50 on 22 
December 2018. As in the examples of  Figures 3 and 4, we 
observed that in general the PredRNN++ model smoothed 
the predicted reflectivity values; this was another reason why 
we chose to evaluate the results in binary form, by analyzing 
the occurrence and non-occurrence of  reflectivity above 
the defined thresholds. We associate the model smoothing 
to a forecast error, instead of  systematic bias, as shown in 
the scatter plot in Figure 5. As we can see by the red dashed 
line in the graphs of  observed vs. predicted 30 min (Figure 
5a) and 60 min (Figure 5b) forecasts, this behavior increases 
with the prediction horizon.
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Total=TP+FP+FN+TN

ETS=
TP−R
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R=
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5. The Critical Success Index (CSI), also known as 
the Threat Score: the ratio of  correctly predicted 
observed positive events by the total number of  
positive events, predicted or needed. The CSI 
is an alternative to the POD when the positive 
event occurs substantially less than the negative 
event [44]. The CSI depends on the number of  
TNs compared to the total number of  cases [45]. 
The range of  possible values is 0 to 1, where the 
best possible CSI is 1 and the worst is 0. where:

where:
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4.1 Evaluation of  the Models

First, the performance of  the PredRNN++ model was 
evaluated against the reflectivity image (ground truth) by 
calculating the following verification statistics: False Alarm 
Rate (FAR), Probability Of  Detection (POD), Probability Of  
False Detection (POFD), BIAS, Critical Success Index (CSI), 

Equitable Threat Score (ETS). From Figure 6, we can quickly 
visualize the expected degradation of  the forecast with increasing 
prediction period up to 150 min lead time. Table 2 shows these 
statistical values for the subsets “All” and “Summer” for 15, 30, 
45 and 60-min lead times. Table 2 considers the 1 dBZ threshold 
for both observed and predicted reflectivity.

Figure 3: Prediction for 8:25 on 31 July 2018: (a) 10 input frames of PredRNN++; (b) 1-h prediction of PredRNN++; (c) observed reflectivity, ground 
truth of (b); (d) observed reflectivity greater than 20 dBZ, used as “truth” compared to (e); (e) 1-h prediction of Ensemble NowCASTing (ENCAST).

Figure 4: Prediction for 16:50 on 22 December 2018: (a) 10 input frames of PredRNN++; (b) 1-h prediction of PredRNN++; (c) observed reflectivity, 
ground truth of (b); (d) observed reflectivity greater than 20 dBZ, used as “truth” compared to (e); (e) 1-h prediction of ENCAST.

Figure 5: Scatter plot of results of PredRNN++for the test set (the year of 2018): (a) observed vs. predicted 30-min forecast; 
(b) observed vs. predicted 60-min forecast.
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Period Lead time (min) FAR ↓ POD ↑ POFD ↓ BIAS (~1) CSI ↑ ETS ↑

All

15 0.45 0.90 0.10 1.62 0.52 0.46
30 0.53 0.86 0.13 1.82 0.44 0.37
45 0.59 0.83 0.15 1.99 0.38 0.31
60 0.62 0.79 0.17 2.09 0.35 0.27

Summer

15 0.43 0.91 0.12 1.61 0.54 0.46

30 0.51 0.87 0.16 1.80 0.45 0.36

45 0.56 0.84 0.19 1.93 0.40 0.31
60 0.59 0.81 0.21 1.99 0.37 0.27

The 15-min lead time, the first output, has the best 
statistics. In general (in the “All” subset) the model 
overforecasts by 1.6 times the number of  predicted positive 
events (BIAS); 90% of  the observed positive events were 
correctly predicted (POD); 45% of  the predicted positive 
events did not occur (FAR); and 10% of  the observed 
negative events were predicted as positive (POFD). The 
frequency of  observed positive events was 12% of  the total, 
and the CSI and ETS were 0.52 and 0.46, respectively. As 
observed in Figure 6, as time increases, the forecast skills 
decrease. The statistics for 60-min lead time are: BIAS of  
2.09, POD of  79%, FAR of  62%, POFD of  17%, CSI of  
0.35, and ETS of  0.27. 

“All” considered all dry and wet weather events in a 
whole year. By including dry days in statistical computations, 
the number of  TNs increased, and the number of  TPs 
decreased. The presence of  other echoes (ground clutter 
for example) throughout the dataset also had an influence 

Figure 6: Verification statistics per prediction time (minutes) up to 150 min lead time, calculated over the subset minutes.

Table 2: Binary statistics from PredRNN++ model applied to all test data, for each lead time (in minutes): False Alarm Rate (FAR); Probability of 
Detection (POD); Probability of False Detection (POFD); the BIAS score; Critical Success Index (CSI), and Equitable Threat Score (ETS). All statistics 
were computed using thresholds of 1 dBZ for predicted and observed reflectivity.

as this can increase the number of  FPs. As a note, the 
return from particulates in the atmosphere is usually very 
similar to the return from raindrops or cloud particles; the 
concentration and size of  these particles can be enough 
to give a radar detectable echo [44]. In the summer, the 
percentage of  wet days is expected to be greater than 
when considering an entire year. This difference can be 
seen in Table 2 when comparing “All” and “Summer”. 
The frequency of  observed positive events increased to 
15% of  the total. 

“Summer” compared with “All” has a lower FAR 
(43% for 15-min, and 59% for 60-min lead time); and 
the number of  correctly predicted positive events (POD) 
was also higher (91% for 15-min, and 81% for 60-min 
prediction). However, the number of  events incorrectly 
predicted as positive increased to 12% for 15-min, and 
21% for 60-min prediction. The BIAS, CSI and ETS 
showed similar values.
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4.2 Case Studies

In this subsection, the results of  the PredRNN++ 
model were compared with the precipitation nowcasting 
model ENCAST for three rain cases. As stated earlier, 
these cases were collected within the test set (the year of  
2018). The cases were selected from the significant cases of  
the monthly bulletin published by the Center for Weather 
Forecasting and Climate Studies, part of  the National 
Institute for Space Research (CPTEC/INPE, Portuguese 
acronym) [49]. The first case occurred on 31 July 2018, when 
a frontal system passed over São Paulo. The second case 
occurred on 5 December 2018, where the displacement of  
a frontal system by the ocean, associated with convection 
in the interior of  the continent formed a moisture channel 
that extended over the state of  São Paulo, among other 
regions, causing deep convection. The third case occurred 
on 22 December 2018, in which the passage of  a frontal 
system, associated with high-level circulation, caused deep 

convection over São Paulo, among other regions. In the 
latter case, in addition to hail, a record number of  trees 
were reported to have been blown down.

As stated earlier, the ENCAST model predicts 
precipitation and the output of  the PredRNN++ model 
is reflectivity. To calculate the verification statistics, the 
outputs of  the two models were compared to the observed 
reflectivity fields at the threshold of  20 dBZ. Additionally, 
from an analysis presented earlier, the PredRNN++ model 
smoothed the predicted reflectivity values. By evaluating the 
number of  pixels per reflectivity range (as shown in Figure 
7), we noted that the number of  pixels above 10 dBZ in the 
predicted images is comparable to the number of pixels above 
20 dBZ in the observed images. Thus, we established the 
threshold of 10 dBZ for predicted values and compared them 
to the observed values above 20 dBZ, in order to evaluate 
precipitation edges. Figures 3 and 4 illustrate examples of  the 
cases of  31 July 2018 and 22 December 2018, respectively. 
We can observe the thresholds in the color bar.

Figure 7: Time series of the number of pixels per image according to the thresholds established in the legend 
(for 30-min prediction) and time lag (x 15 min) of TP events up to 60 min lead time forecast for each case study: 
(a) and (b) 31 July 2018, (c) and (d) 5 December 2018, (e) and (f) 22 December 2018. The arrows mark the 
delays between the observed (red) and predicted (blue) number of pixel peaks. The vertical red dashed lines 
mark the observed and predicted “rain start”.
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The statistics of  the cases are presented in Table 3 and 
are organized into three blocks according to the reflectivity 
thresholds used in the observed (obs) and predicted (pre) 
data for 15, 30, 45 and 60-min lead times: Block 1 does not 
alter the thresholds used as input and output of  the DL 
model, as presented in Table 2 (pre > 1 dBZ and obs > 
1 dBZ); Block 2 is used to assess whether the model can 
generate precipitation pixels (pre > 10 dBZ and obs > 20 
dBZ); Block 3 represents the statistics for comparison with 
Block 2, calculated on the ENCAST model (ENCAST > 
1 mm/h and obs > 20 dBZ). The verification metrics are 
the same as shown in Table 2.

We highlight that two different variables, reflectivity 
and rain, were compared in Block 3. So, as shown 
before, we evaluated image patterns instead of  numerical 
values. In these analyses, it is necessary to remember 
that not all echoes above 20 dBZ observed on the 
radar are equivalent to rain as predicted by ENCAST. 
The ENCAST model takes different radar fields when 
calculating precipitation. 

In all cases, we can note the degradation of  the 
forecast with an increasing prediction period, but in 
Block 3 this degradation is very subtle. Between Blocks 
1 and 2, the degradation of  certain statistics is noted, 
which can be explained by the decrease in the number 
of  positive events predicted and observed (TP, FP and 
FN) and, consequently, the increase in TN due to the 
thresholds used in Block 2. 

The observed variation between the cases in each Block 
is explained by the nature of  the rainfall, which is different in 
each case. Figure 7a,c,e shows the time series of  the number 
of  pixels per image for 30-min lead time. We can observe 
the variations in the number of  peaks and the number 
of  pixels for each case, in the y-axis scale. In quantitative 
terms, ENCAST has fewer wet pixels compared with the 
other fields presented; this also has a negative effect on 
the calculation of  verification statistics, as will be discussed 
below. Figure 7a,c,e also shows different delays between 
the time of  occurrence and the forecast of  the number of  
pixel peaks forecasted (shown by arrows); lags between the 
increase in the number of  observed wet pixels, which can be 
seen as the start of  the rain, and the increase in predicted wet 
pixels (vertical red dashed lines). Figure 7b,d,f  specifically 
shows the time lag of  TP events up to 60 min forecast for 
each case study. We can note that for the 30-min prediction, 
the lag is around 15 min, and for the 1-h prediction, between 
15 and 30 min. We can also note the degradation of  the 
results with an increasing prediction period.

Comparing the statistics obtained in Blocks 2 and 3 
in Table 3, we note that within each Block the difference 
between cases is presented differently by the two models. 
Despite the thresholds used in Block 2, which reduced the 
observed and predicted positive areas, Block 2 performed 
better than ENCAST (Block 3). The fact that the verification 
statistics were calculated on small positive areas penalized 
the evaluation of  the models. Although the pattern is 
similar between the images, if  the centers are displaced and 
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Table 3: Binary statistics of PredRNN++ model (for 15, 30, 45 and 60-min prediction times) and ENCAST nowcasting model (for 10, 20, 30, 40, 50, 60-
min prediction times) applied to selected cases: 31 July 2018, 05 December 2018 and 22 December 2018. The graphics and metrics are similar to those 
presented in Figure 5 and Table 2. The table is divided into three blocks according to the evaluated model and the thresholds: (Block 1) PredRNN++, 
pre > 1 dBZ and obs > 1 dBZ; (Block 2) PredRNN++, pre > 10 dBZ and obs > 20 dBZ; (Block 3) ENCAST, ENCAST > 1 mm/h and obs > 20 dBZ.
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do not overlap, the forecast is given as wrong in the pixel 
by pixel confusion matrix [50]. Therefore, even though the 
number of  hits (TP) was small in both models, TP of  the 
PredRNN++ model was slightly higher than ENCAST, 
which improved its statistics when compared with ENCAST. 
The examples presented in the Figures 3 and 4 show the 
aspect of  the lack of  overlap in the positive areas predicted 
and observed, and also that the PredRNN++ model predicts 
a larger positive area compared with ENCAST. This can 
masquerade pixel by pixel statistics.

5. CONCLUSIONS

In this study, we evaluate the usability of  a video 
prediction deep learning (VPDL) model to support 
nowcasting. We use the PredRNN++ model as a VPDL 
model to predict reflectivity images and precipitation edges 
from weather radar images for up to 1-h lead time and 
compare the results with an extrapolation-based model used 
for precipitation nowcasting, ENCAST. We also evaluate 
the feasibility of  a VPDL model for continuous use in 
nowcasting, as this gives the meteorologist an indication or a 
trend of  the occurrence of  localized precipitation regardless 
of  the type of  weather event. 

We evaluate the model results against the ground 
truth images in two subsets and compare the VPDL 
model statistics with ENCAST statistics in three case 
studies: the entire test set (“All”, the entire year of  2018), 
the summer season set (“Summer”), and the days 31 July 
2018, 5 December 2018, and 22 December 2018, as the 
case studies, respectively. By using pixel by pixel confusion 
matrix for the architecture used in the VPDL model, we 
find that: the VPDL model overforecasts the prediction of  
wet pixels; “Summer” (more homogeneous dataset) shows 
a better performance than “All”; and the VPDL model 
outperforms the ENCAST model in the three analyzed 
cases. We highlight that we only had access to three cases of  
ENCAST and to compute the ENCAST statistics we used 
the binary field of  precipitation as prediction and the binary 
field of  reflectivity greater than 20 dBZ as observation. 

The forecast for precipitation is an important aspect 
of  nowcasting. However, due to model architecture, the 
results are smoothed, which affects the analysis of  predicted 
reflectivity instead of  the analysis of  pixels with rain and 
no rain. As a tool to assist nowcasting, this model should 
be used in parallel with other data and models. In fact, the 
model provides trends in the localization and development 
of  rain edges of  systems that can cause damage. We 
recommend that caution be taken in analyzing the range 
of  predicted values since this can lead to a tendentious 
prediction of  a strong system. 

In general, the results obtained here agree with the most 
recent results published on the potential of  the use of  a 

VPDL model as an additional tool to assist nowcasting. We 
highlight certain advantages such as rapid execution (after 
training), 3 s/iteration, the use of  a single input with little 
pre-processing, but a long history for training is necessary. 

From other studies, we assume that training the model 
with events of  the same type can improve the model’s 
performance. However, another aim of  the present study 
is to assess the viability of  a continuous execution of  the 
VPDL model in predicting reflectivity edges regardless of  
the meteorological phenomena. In this respect, the model 
shows some lags between the “rain start” in observed 
images and predicted images. We assume that the addition 
of  other variables that give an indication of  the state of  the 
atmosphere before the sudden appearance of  targets in the 
radar image adds extra information to the model training and 
improves the quality of  the forecast in terms of  the life cycle 
of  the weather event and even the prediction of  the event.

As expected, an issue that arises in not considering 
physical processes is that extrapolation models are 
conservative: the model considers that an element will remain 
in the image and may only change its position (rotation 
and translation). Taking a cloud as an example of  an image 
element, these models cannot predict dissipation due to rain, 
or the formation of  a new cloud where there was nothing 
before. This is observed in mathematical extrapolation 
models as well as VPDL models. Deep learning models can 
fit observations very well, but only by integrating knowledge 
of  the physical processes to train and provide constraints can 
the model achieve physical consistency [26]. 

With the addition of  topography information, 
the model will be able to distinguish the formation of  
clouds by an orographic barrier, for example. It is worth 
mentioning that the addition of  more variables to the 
VPDL model increases the model’s complexity, storage, 
processing time, among other limiting factors. 

The next steps in this study, which are currently 
being developed, also include the evaluation of  possible 
improvements in the architecture of  the VPDL model 
and the running of  other VPDL models. 

Even though meteorological systems that trigger 
natural disasters vary by location, a general solution 
can contribute as a tool to assist decision-makers and 
consequently issue efficient alerts.
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Long-term spatial-temporal characterization of 
cloud-to-ground lightning in the metropolitan region 
of Rio de Janeiro

Tales Bernardes Paulucci

ABSTRACT

Remote-sensing techniques are currently the 
only means of collecting information to monitor 
the atmospheric dynamics of lightning from 
the regional to the national scales, allowing for 
the generation of homogeneous and long time 
series. Attempts to characterize the impacts of 
atmospheric discharge in Brazil presuppose an 
understanding of spatial and temporal lightning 
patterns. Despite the high frequency of lightning 
and significant disturbances caused in highly 
populated regions such as the metropolitan region 
of Rio de Janeiro (MRRJ), these phenomena are 
not well characterized when using a long-term 
contemporaneous dataset. Accordingly, this work 
focuses on the spatial and temporal variability 
of cloud-to-ground lightning in the metropolitan 
region of Rio de Janeiro, an area affected by a 
high level of atmospheric discharge every year. 
We performed a statistical analysis of lightning 
data taken from a Lightning Location System for 
the 16-year period of 2001 to 2016 and analysed 
characteristics such as polarity, peak currents, 
geographic distributions and diurnal, intra- and 
inter-annual variability. Extremely high levels of 
high activity were observed from 258,794 cloud-to-
ground lightning events recorded over the analysed 
period and for 64.3% events occurring in summer, 
20.5% events occurring in spring and 12.9%, and 
2.3% events occurring in autumn and winter. The 
discharge events were predominantly negative 
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(93.54% of the total). Peak levels of electrical 
activity were observed from roughly 18:00 to 19:00 
local time, when there is more potential energy 
available for convection. The results of the spatial 
analysis reveal that most lightning observed over 
Rio de Janeiro derived from the orographic effect, 
which spurs the formation of convective storms 
along the southern part of the slope. 

Keywords: Cloud to ground lightning, Thunderstorm, 
Flashes, Southeastern Brazil, Rio de Janeiro.

1. INTRODUCTION

The occurrence of  electric discharge from the 
atmosphere is a result of  complex physical interactions 
of  the climate system associated with microphysical, 
dynamic and thermodynamic processes and which occur 
predominantly within clouds with intense convective 
activity. The activity of  atmospheric electricity can be 
related to the anomalies of  land and sea temperatures 
(Petersen and Rutledge 1998; Soriano and Pablo 2002), 
atmospheric aerosols of  urban pollution, heat island 
effects or fire (Orville et al. 2001; Wierzchowski et 
al. 2002; Naccarato et al. 2003; Boian and Kirchhoff  
2004; Farias 2009; Pinto et al. 2013, Russo et al. 2017). 
Storm events generated by convective clouds are 
responsible for the redistribution of  heat and moisture 
into the atmosphere and are often accompanied by 
heavy rains; strong winds; hail; electric discharge; and 
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floods and landslides with various direct and indirect 
human and socio-economic impacts such as power grid 
collapses, aviation disorders and other disturbances 
(Wierzchowski et al. 2002). In particular, in terms of  
storm intensity levels, the associated lightning activity 
plays an important role. 

Over the last decades the use of  remote sensing 
systems has allowed for unprecedented advances in the 
monitoring of  atmospheric dynamics of  lightning and 
especially by tracking its occurrence in time and space. 
The first Lightning Location Systems (LLSs) introduced 
in the late 1970s (Krider et al. 1980) collected detailed 
information on the spatial distribution and temporal 
variations of  lightning occurrence in specific regions, 
accurately showing the instant at which a flash reaches 
the ground and informing parameters such as polarity 
and peak discharge currents. LLSs have been operating 
around the world, providing data for atmospheric 
research in different countries and mainly in the United 
States of  America (Lopez and Holle 1986; Orville 1991; 
Watson et al. 1994; Reap 1994; Orville and Silver 1997; 
Hodanish et al. 1997; Lyons et al. 1998; Huffines and 
Orville 1999, Romps et al. 2014), Japan (Hojo et al. 1989). 
More recently, many studies have emerged from Eurasia 
from Austria (Diendorfer et al. 1998; Schulz et al. 2005), 
Spain (Soriano et al. 2001; Soriano et al. 2005), Portugal 
(Rodrigues et al. 2010; Ramos et al. 2011; Russo et al. 
2017), China (Chen et al. 2004), and Papua New Guinea 
(Orville et al. 1997) in particular. In South America, Brazil 
has been the focus of  considerable lightning research 
(Pinto et al. 1996; Rocha et al. 1997; Pinto et al. 1999a; 
Pinto et al. 1999b; Naccarato et al. 2001; Pinto et al. 2003; 
Naccarato et al. 2003; Pinto et al. 2004; Fernandes et al. 
2006; Pinto and Pinto 2008; Bourscheidt et al. 2009; Gin 
et al. 2012; Pinto et al. 2013; Santos et al. 2016, Santos 
et al. 2018) among many other countries. 

Brazil, due to its large territorial coverage and 
predominant situation in a tropical region (particularly its 
southeastern region) is one of  the regions experiencing 
the highest rates of  lightning in the world (Pinto and 
Pinto 2003). Several studies have investigated lightning 
patterns over the southeastern region of  Brazil (SRB) and 
mainly during the 1990s and early 2000s. For example, 
Pinto et al. (1996) used the Lightning Positioning and 
Tracking System (LPATS) for the first time to observe 
characteristics of  lightning in the SRB during the summer 
season of  1992-1993. Rocha et al. (1997) conducted 
a similar study in the winter of  1993 in the SRB on 
polarity, multiplicity, and peak current patterns of  the 
first stroke and compared their results to data for the 
same region for summer following Pinto et al. (1996). 
Pinto et al. (1999a, 1999b) presented information on 1.1 

million cloud-to-ground lightning (CG) events detected 
by LPATS in the SRB in 1993, representing the first 
studies on the country to collect data for an entire year. 
One of  the first long-term analyses of  lightning patterns 
in Brazil was conducted by Pinto et al. (2006), showing 
a comparison between mean monthly distributions of  
lightning frequency and percentages of  positive and peak 
currents of  positive and negative CG for 1999 to 2004. 
The first climatological records of  lightning in the SRB 
were presented by Pinto et al. (2003) for a 7-year period 
of  negative CG running from 1989-1995 while Pinto 
et al. (2009) and Pinto et al. (2008) conducted studies 
based on data taken from BrazilDAT for 1999 to 2006 
and Naccarato et al. (2005) addressed the 6-year period 
running from 1999-2004 for the SRB. More recently, 
Pinto et al. (2013) conducted a thorough overview of  
temporal and spatial distributions of  lightning for the 
decade of  1999 to 2009 for Campinas, São Paulo and 
Rio de Janeiro, 3 important cities in the SRB, and found 
that variability in thunderstorm patterns may be related 
to variations in atmospheric circulation that modulate 
convective activity over large scales with two different 
mechanisms of  urban activity found in the city of  Rio 
de Janeiro: pollution and heat islands.

Although the footprint and process related to the 
occurrence of  lightning are well known for various 
tropical regions around the world, analogous research 
is still needed for highly populated regions such as the 
Metropolitan Region of  Rio de Janeiro (MRRJ), Brazil, 
which is a complex urban area of  unequal socioeconomic 
relevance often hit by a large volume of  atmospheric 
discharge every year. Despite the region’s specific 
vulnerability to atmospheric discharge, to the best of  
our knowledge studies focusing on the characterization 
of  lightning patterns and on the MRRJ in particular is 
still lacking. In this regard, this work aims to serve as 
a reference of  the incidence of  lightning in the MRRJ. 
Here we conduct a study on a 16-year period (2001-
2016), which is much longer than periods usually used 
in studies of  Southeastern Brazilian. Pinto et al. (2006), 
for example, studied CG patterns in the southeastern 
region and in some central-western and southern regions 
over a period of  6 years (1999-2004); Pinto and Pinto 
(2008) studied the city of  São Paulo for a period of  8 
years (1999-2006); Pinto et al. (2003) conducted a 7-year 
study of  strictly negative CG patterns for 1989-1995, 
Naccarato et al. (2005) addressed a 6-year period (1999-
2004), and Pinto et al. (2013) studied the 10-year period 
running from 1999-2009 for the southeastern region of  
Brazil. Therefore, we conduct a comprehensive analysis 
of  long-term variations occurring over this region for 
the past 16-years. 
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country with a population estimated at 6,498,837, with 
a high population density (5,265.82 habitants/km²), 
with an area of  approximately 1200 km², and with the 
second largest Gross Domestic Product (GDP). It is 
also the most popular international tourist destination 
in Brazil (IBGE, 2017).

2. DATA AND METHODS

The MRRJ was selected for this study due to its 
economic, political and cultural importance. According 
to the Brazilian Institute of  Geography and Statistics 
(IBGE), it is the second most populous region in the 

Fig. 1:  Topographical map of the state of Rio de Janeiro highlighted within the SRB (a).  Map of the metropolitan region of 
Rio de Janeiro (black rectangle: 22.7-23.1oS and 43-44oW) highlighting principal counties within and close to the MRRJ 
(thin black lines) and the altitude (m) (b). 

(a)

(b)
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within a pre-defined radius of  influence. Here we used 
a regular grid of  600 m x 600 m.

All temporal analyses were carried out at the MRRJ 
scale considering all lightning occurring over the area. 
Lightning summary statistics were estimated from the 
averaged value for the 16-year period. For instance, daily 
cycles were computed by averaging the total number of  
lightning events (as well as other characteristics such as 
polarity and peak currents) occurring in each hour of  
the day over the 16-year period. The same procedure 
was applied for monthly, seasonal and annual cycles. 
Standardized anomalies (Z) were also used to compare 
normal years with years with above/below average 
lightning occurrence. Annual values of  lightning 
occurrence are used to calculate long-term means (X)
and standard deviations (s) used to obtain standardized 
anomalies (Z) for each year:  

3. RESULTS AND DISCUSSION

The mean spatial lightning density is equal to 3.54 
flashes.km-2.yr-1 for the study area for the 16-year period 
(2001-2016). Fig. 2 shows a clear spatial density pattern 
of  flashes occurring over the region and shows a higher 
frequency of  GCL occurrence in the eastern area of  the 
municipality of  Piraí, northeast of  Rio Claro, southeast 
and east of  Nova Iguaçu, in Belford Roxo and southeast of  
Queimados. We find a density gradient oriented from south 
to north where oceanic and coastal areas present lower 
values for continental regions to the north and positioned 
further away from the coast, accordingly to Williams et al. 
(2003), some studies reveal a logical relationship between 
lightning activity and vertical ascension speed. 

It is also worth mentioning two separate regions with 
high density values: one near the municipality of  Nova 
Iguaçu and another close to the northwestern end of  a 
rectangular region south of  the municipality of  Piraí. The 
distribution close to the municipality of  Nova Iguaçu may 
be related to the presence of  the Mendanha Massif  in the 
region. In general, the highest values are predominantly 
found in the mountainous region (which includes a chain 
of  mountains called the Órgãos and Mar Mountains) 
positioned in northern and northwestern areas of  the 
study area. Such a spatial distribution may serve as evidence 
of  the orographic effect, as the frequent passage of  frontal 
systems and tropical heat sources combined with dynamics 
of  winds close to the mountain chain would induce the 
formation of  convective storms along the southern part of  

The term atmospheric electric discharge has often 
been used as a term equivalent to lightning. There are 
two fundamental types of  lightning: (1) that occurring 
in the sky and (2) that reaching the ground (Naccarato 
2005). Three types of  lightning occurring in the sky can 
be identified: (1) intracloud (IC) lightning, which occurs 
within the same storm cloud; (2) cloud-to-cloud (CC) 
lightning occurring between different clouds; and (3) air 
(AIR) lightning forming from a cloud and traveling into 
the atmosphere itself  without reaching another cloud or 
the ground. Cargo pockets that form in the atmosphere 
around storm clouds are responsible for this kind of  
lightning (Ogawa 1995). Lightning striking the ground, 
also known as lightning, is classified into two basic types: 
(1) cloud-to-ground (CG) lightning characterized by 
discharge starting from a cloud and reaching the surface 
of  the Earth and (2) ground-to-cloud (GC) lightning 
moving from the ground to a cloud (Naccarato 2005).   

Here we present an analysis to describe the main 
patterns of  temporal and spatial distributions of  
atmospheric electrical discharge to study particular 
characteristics such as polarity and peak currents on 
hourly, monthly, seasonal and inter-annual time scales 
for a 16-year period (2001-2016) in the MRRJ. An 
exploratory data analysis was conducted on cloud-to-
ground lightning (CG) occurring from 1 January 2001 to 
31 December 2016 for a region delimited by coordinates 
22.7oS to 23.1oS and 43.0oW to 44.0oW, which correspond 
to an area of  4,573 km² (Fig.1).

The dataset used here was provided by the Integrated 
National Network of  Atmospheric Discharge Detection 
(RINDAT). The data cover geographic locations, times, 
peak currents, and polarity and multiplicity levels (which 
were not used here) of  CG atmospheric discharge. 
Detection efficiency levels range between 70% and 90%; 
the average location accuracy level ranges from 0.5 km 
to 2 km; the average accuracy of  peak current estimates 
of  discharge range from 20% to 50% and discrimination 
capacities of  CG and CC discharge are valued at 
approximately 80% to 90%. The system operates through 
a Global Positioning System (GPS), which provides 
lightning timing information at resolutions of  up to 
300 nanoseconds (additional information is available on 
http://www.rindat.com.br/).

First, spatial patterns of  the observed CG incidents 
for the 16-year period were analysed using a density 
function, which is a spatial analysis tool used to calculate 
the density of  point features (in this case, each incidence 
of  cloud-to-ground lightning detected) per unit of  area 
for each location within an area of  interest. The result 
is a smoothed spatial grid of  frequency for each grid 
point representing the number of  points (CG) positioned 

(1)
Z=

(X−X )
s

(1)
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For instance, Fig. 3 shows inter-annual variations 
in the total levels of  electric discharge for the 
MRRJ for the study period and the inter-annual 
percentage of  positive CG events. The annual mean 
and standard deviation are equal to 16,175 and 
7,121 flashes, respectively. With lightning density 
defined as the annual rate of  flashes occurring per 
area, the study region presents a relatively strong 
average lightning density level of  equal to 3.54 ± 
1.56 flashes.km-².yr-1. The most and fewest flashes 
occurred in 2001 (31,853 flashes) and 2011 (2,984 
flashes). Although inter-annual variations in CG are 
dependent on local factors, a 2001 peak was also 
found by Naccarato (2005), Pinto and Pinto (2008), 
Pinto et al. (2013) and dos Santos et al. (2016) for 
the SRB, which includes our study region. Naccarato 
(2005) suggested that this peak may be related to a La 
Niña phenomena of  moderate intensity as discussed 
by Horizonte (2005) and Pinto et al. (2004b). We 
also find an interesting pattern in lightning events 
occurring from 2004 involving an approximately 
cyclical pattern of  growth occurring in from 2004 
to 2006, from 2007 to 2009 and from 2011 to 2013 
and with declining trends observed from 2006 
to 2007, for 2009 to 2011 and for 2013 to 2014, 
denoting the possibility of  periodicity in the annual 
variation of  the number of  flashes occurring over 
the MRRJ. While the atmospheric mechanisms that 
explain the inter-annual variability of  lightning in the 
tropics are complex and still not fully understood, 
they may be associated with processes that spur 
variability in convective activity such as El Niño/La 

the slope, increasing the occurrence of  electric discharge in 
this region. Naccarato (2005) showed - in agreement with 
this work - that the spatial configuration of  GC peaks in 
the southeastern area of  the state of  Minas Gerais south 
of  the state of  Rio de Janeiro and east of  the state of  
São Paulo following from the elevation of  terrain in the 
same region (Serra da Mantiqueira configuration), during 
warmer months of  the year, which is used as a convection 
mechanism by the steep slope (orography) of  Serra do Mar 
topography (reaching more than 1,000 meters in altitude 
in some areas) for formation of  cumulonimbus clouds.

 The distribution of  atmospheric discharge peaks in 
the windward area and close to this slope and this may 
be attributed to the windward slope and to the distance 
between the windward and leeward faces of  Serra do 
Mar formed by a mountain chain. Pinto et al. (2013) 
also presents spatial density levels in the SRB and shows 
high values in the northern area of  the city of  Rio de 
Janeiro. Similar results were found by Orville et al. (2002), 
Burrows et al. (2002) and Ramos et al. (2011) for regions 
characterized by complex terrain with orographic systems 
in the USA, Canada, and Portugal, respectively. 

 The study of  inter- and intra-annual variability in the 
incidence of  atmospheric discharge is an essential facet of  
this work, as it covers a study period of  16 years (2001-2016), 
which is much longer than periods usually used in studies 
of  the Southeastern Brazilian region. Pinto et al. (2006), for 
example, studied CG in the southeast region and in parts 
of  central-west and south regions for a period of  6 years 
(1999-2004) and Pinto and Pinto (2008) studied the city of  
São Paulo for a period of  8 years (1999-2006). Therefore, 
this part of  the study allows for a comprehensive analysis 
of  long-term variations observed in the region. 

Fig. 2:  Spatial pattern of CG density (flashes/km²) in the study region from 2001 to 2016 showing each municipality encompassing the MRRJ.
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austral summer due to a persistent pattern of  mid-
level anticyclone circulation (Coelho et al. 2015) 
offsetting convection over the region and inhibiting 
lightning occurrence as observed in Fig. 3. On the 
other hand, anthropogenic climate modification at 
the local level in the MRRJ was identified by Lucena 
et al. (2011), Lucena et al. (2013) and Peres et al. 
(2018) and has characterized the region as an urban 
heat island over the past decades. Accordingly to 
several studies there is evidence of  a thermal and 
pollution effect on CG activity over urban areas 
and relationships with inter-annual variations in 
lightning (Steiger et al. 2002; Naccarato et. al. 2003, 
Pinto et al. 2004). 

Fig. 4a presents a histogram of  peak current (in 
kA) distributions of  positive and negative GC flashes 
observed at kA intervals of  [0,20[, [20,40[, [40,60[, 
[60,80[ and [80,∞[ in the MRRJ from 20 April 2000 
to 31 December 2016. Mean values of  peak currents 
of  negative and positive flashes are equal to 20.6 
and 21.3 kA, respectively, and their maximum values 
are 360 and 222 kA, respectively. It is important to 
emphasize that the mean peak current of  negative 
flashes differs significantly from values obtained by 
Pinto et al. (1996) for Southeastern Brazil (42 kA), by 
Orville (1990) for Florida (40-45 kA) and by Petersen 
et al. (1992) for Australia (39 kA). However, the 
mean peak current generated from positive flashes 
is very similar to that obtained by Pinto et al. (1999) 
(22 kA for the SRB). 

Niña phenomena (Sátori et al. 2009). Variations in 
atmospheric circulation due to frontal systems, the 
South Atlantic Convergence Zone (SACZ) and El 
Niño/La Niña phenomena are the main mechanisms 
that modulate convective activity at a large scale in 
the SRB (Pinto et al. 2003). 

According to studies conducted by Chaves 
and Nobre (2004), warm and cool SST anomalies 
observed in the South Atlantic intensify and weaken 
the SACZ, respectively. The aforementioned work 
shows a positive anomaly for the SST running 
from November 2000 to February 2001 and thus 
perhaps the cause of  peak flashes occurring in 
2001 as shown in Fig. 3. It is also important to 
note that during the austral summer rainfall in the 
SRB is modulated by the SACZ with a northwest-
southeast-oriented cloud cover band generated 
from moisture from the Amazon region and 
transported by the South American Low-Level 
Jet (SALLJ) (Herdies et al. 2002). The advection 
of  moisture over the SRB by the SACZ is shaped 
by interactions occurring between frontal systems 
originating from the extra-tropics and from 
tropical convection. Almost 65% of  all extreme 
precipitation events occurring in the region are 
associated with broad and intense patterns of  
convective activity in the SACZ (Carvalho et al. 
2002). During 2014 the SRB experienced an extreme 
and prolonged drought event with a complete 
absence of  SACZ episodes occurring during the 

Fig. 3: Inter-annual variability of total CG within the MRRJ during the study period. Open (closed) circles indicate years with above (below) 
1 (-1) standard deviations from the mean values of the total number of CG, i.e., of high (low) lighting activity considering the 16-year period.
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Annual variat ion in peak cur rents of  GC 
atmospheric discharge is illustrated in Fig. 4b. The 
observed patterns of  current peaks differ from those 
observed in the SRB (Naccarato 2005), in the USA 
(Orville and Huffines 2001) and in Austria (Schulz et 
al. 2005), which show only minor variations and less 
pronounced negative flashes while positive patterns 
show stronger variations and higher values. Variations 
in the peak currents of  negative flashes do not show 
statistically significant values in the MRRJ whereas 

positive patterns show a tendency of  decline at a rate 
of  0.77 kA.year-1 (1% significance test ANOVA). 
Mean values of  the peak currents of  positive flashes 
are relatively higher than negative values for most of  
the period although from 2011 lower values and a 
tendency toward both polarities were observed. The 
years 2003, 2004, 2008 and 2016 were the only years 
for which differences in mean values of  positive and 
negative current peaks were higher than 5 kA. Thus, 
in most years both polarities present close values.

Fig. 4:  (a) Distribution of the peak current of positive and negative CG at kA intervals of [0, 20[, [20, 40[, [40, 60[, [60, 
80[ and [80,∞[; (b) Inter-annual variability of the peak current of positive and negative CG.

(a)

(b)
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Fig. 5 shows the seasonal distribution of  CG 
flashes [+-] and CG flashes [+] for the MRRJ and 
the total number of  CG flashes [+-] occurring in 
each season of  the study period. As expected, most 
discharge events occurred in summer, corresponding 
to 64.3% of  all discharge for the period, followed 
by those occurring in spring at 20.5%. Winter is the 
season with the lowest average frequency of  flashes 
in the period with only 2.3% of  the total number. 
This distribution differs from that observed by 
Pinto et al. (1999b) for Southeastern Brazil for 1993, 
showing maximum levels of  electric activity in spring 
attributed to differences in the sizes and locations of  
both study areas. 

It is found that MRRJ discharge is characterized 
as predominantly negative (93.54% of  all 258,794 
flashes detected). Stratiform regions of  mesoscale 
convective systems (MCSs) tend to produce more 
lightning with positive polarity due to a significant 
reduction in cloud depth. On the other hand, regions 
with intense convection such as the SRB, which 
consequently leads to the formation of  clouds of  
great depth, produce more lightning with negative 
polarity (Rakov and Uman 2003). Changes in the 
height and depth of  the negative charge centre near 
the base and in the positive charge centre overtop 
of  clouds may be caused by high concentrations 
of  aerosols in the atmosphere (so-called cloud 
condensation nuclei or CCN), which affect the 
relationship between positive and negative lightning 
(Lyons et al. 1998; Naccarato et al. 2003). This 
effect is more common in regions with high rates of  
air pollution taking the form of  particulate matter 
such as in large urban centres and nearby burning 
areas. The percentage of  positive flashes in the 

region is small with little variation during spring, 
summer and autumn. On the other hand, in  winter, 
this percentage almost doubles in relation to other 
seasons of  the year, which may be attributed to the 
higher vertical shear of  wind (Orville and Huffines 
2001) due to the passage of  cold fronts and due to 
an enormous increase in aerosol concentrations in 
this period, which is usually dry (Naccarato et al. 
2003). The vertical gradient of  winds with height 
is directly related to weather and seasonal patterns. 
The higher the gradient with height, the stronger 
the displacement of  positive versus negative charges 
(cloud shear), exposing a positive charge centre on 
the surface and making it easier for positive lightning 
to reach the ground. This behaviour has often been 
observed in winter storms in Japan (MacGorman and 
Rust 1998; Rakov and Uman 2003). 

These results are compatible with those 
obtained by Orville et al. (1997) for Papua New 
Guinea. Orville et al. (1987) analysed results for the 
northeastern USA where polarity reverses abruptly, 
accounting for 80% of  positive flashes occurring in 
winter and for less than 5% occurring in summer. 
Pinto et al. (1999.b) found values of  approximately 
35% for summer and winter in Southeastern 
Brazil, little variation in polarity levels throughout 
the year for tropical areas and higher percentages 
of  positive flashes during winter storms than in 
summer at higher latitudes, supporting the results 
observed here. 

Fig. 6 shows the monthly variation in the average 
rate of  flashes (and not the total number) for data 
time series and the monthly variation in the average 
peak current for negative and positive discharge. It 
should be noted that the months with the highest 

Fig. 5: Percentage of CG flashes [+-] (grey – left axis) and positive CG flashes [+] (black outline– right axis) 
occurring in the MRRJ in each season of the study period. Values shown above grey bars indicate the total 
number of CG [+-] events occurring per season.
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frequency of  discharge run from December to 
March with a rate exceeding 2500 flashes.month-1, 
corresponding to more than 80% of  all lightning 
detected by the RINDAT in the period and agreeing 
with the results of  Pinto et al. (1999.b); Naccarato 
et al. (2001); Naccarato (2005) and Pinto et al. 
(2003) in their work on flash data for Southeastern 
Brazil. These results also complement results for 
the USA presented by Orville and Huffines (2001), 
patterns for Europe given by Soriano et al. (2001) 
and Schulz et al. (2005) and trends for Oceania 
given by Orville et al. (1997) who observe monthly/
seasonal distributions of  electric discharge across 
the globe with more significant activity observed in 
the hottest months of  the year. This characterises 
widely recognised seasonal and climatic lightning 
patterns resulting from higher potential levels of  
energy available for convection in summer in each 
hemisphere, which promotes the formation of  
convective clouds and thunderstorms across all 
continents but mainly in tropical regions (Christian 
et al. 2003). The highest average flash rate is 
equal to 4041 flashes.month-1 (25% of  the total)  
observed in February while months running from 
May to August present average rates of  less than 
130 flashes.month-1 (corresponding of  roughly 
3% of  the total data population). The work of  
Pinto et al. (2013) in particular shows variations 
in monthly thunderstorm data for the city of  Rio 
de Janeiro for 1997-2009 and presents the same 
intra-annual behaviours except that the month with 
the most significant day of  thunderstorms occurs 
in January. We find no significant differences in 
atmospheric discharge levels across polarities of  
monthly variations. 

It also should be noted that Fig. 6 illustrates 
that variations between discharge levels of  both 
polarities present approximately similar seasonal 
variations. This diverges from the results of  
Naccarato (2005) who observed more considerable 
differences in monthly polarity variations from data 
for the SRB. The mean peak currents of  negative 
flashes tend to be higher from January to March and 
lower than positive ones from April to December, 
which results in the formation of  average annual 
peak currents for positive and negative values of  
23.8 kA and 20.5 kA, respectively. In summer and 
early autumn, mean peak positive and negative 
currents are more similar in value. However, the 
positive mean is higher in the colder months 
(from May to November), which may suggest 
that positive discharge behaves differently in the 
colder seasons as also noted by Naccarato (2005). 
This differentiation may be associated with the 
fire period and consequently an increase in aerosol 
concentrations in the atmosphere (observed mainly 
in the Brazilian Cerrado and predominantly in 
the states of  Mato Grosso and Mato Grosso 
do Sul) transported to study area (Boian and 
Kirchhoff  2004). Fernandes et al. (2006) revealed 
an association between the reduction of  currents 
of  negative flashes and fire periods. On the other 
hand, Naccarato (2005) observed a recovery of  
peak current values   as summer approaches and as 
the rainy season begins in the SRB.

Fig. 7a depicts hourly variations in the percentage 
of  total CG levels from both polarities in the MRRJ 
for the data time series. It is important to note 

Fig. 6: Intra-annual variability of CG (bars, right axis) and positive and negative CG peak current (black curves, left 
axis) for the 2001-2016 period.
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that the scale of  the number of  positive flashes is 
reduced and presented on the secondary vertical 
axis to facilitate a comparison with information on 
negative flashes. A typical daily variation is observed 
with higher values shown for the late afternoon 
and early evening and with lower values shown for 
the morning. In the period running between 16:00 
and 20:00 local time, 56% of  total discharge events 
are detected by the RINDAT and the period with 
the highest occurrence of  atmospheric electrical 
activity occurs from 18:00 to 19:00 local time with 
15.4% of  total lightning events as observed by 
Pinto and Pinto (2008) and Pinto et al. (1999b) and 
Bourscheidt et al. (2009) for the city of  São Paulo 
and for the SRB, respectively. Peak electrical activity 
is observed at approximately 18:00 local time and 2 
hours from the occurrence of  the maximum daily 

temperature in the region (Naccarato 2005) when the 
atmosphere includes more potential energy available 
for convection conditions generating instability that 
leads to the formation of  convective storms which 
generate atmospheric discharge. Orville and Huffines 
(2001) noted for the USA that peak activity schedules 
are influenced by regional factors. Fig. 7b shows that 
average hourly variations in the current peak between 
both polarities show similar patterns during daytime 
hours and that the average peak current value of  
positive flashes (23,56 kA) is higher than the negative 
average (21,63 kA) for a full day. We also find a 
significant decrease in mean current peaks at 10:00 
and 12:00 local time following a gradual increase in 
values. According to Naccarato (2005), from 22:00 
to 11:00 local time the atmosphere does not present 
thermodynamic characteristics necessary for the 

Fig. 7:  (a) Average daily cycle of total numbers of positive (left axis) and negative (right axis) CG concerning the 
16-year period. (b) The same as the upper panel but for average peak current (kA).

(a)

(b)
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formation of  storms and its flash origins are more 
related to the passage of  frontal systems. From 12:00 
to 21:00 local time storms are caused predominantly 
by atmospheric instability caused by an increase in 
temperature and heat exchange across the surface. 

It is important to note that the period of  the day 
with the highest occurrence of  lightning does not 
coincide with the period of  higher peak currents, 
which suggests that storms caused by late-afternoon 
thermodynamic instability involve less intense 
discharge in terms of  electric currents despite a 
higher frequency of  lightning occurrence.

4. CONCLUSION

This study provides an updated overview of  
spatial and temporal variability in CG events recorded 
for the MRRJ over a 16-year period, revealing the 
main characteristics (geographic distribution, intra- 
and inter-annual variability, diurnal cycles, and peak 
currents) of  atmospheric electricity for the region 
with 258,794 flashes detected over an area of  4,573 
km2 from 2001 to 2016. 

Through an analysis of  the temporal characteristics 
of  lightning it was possible to detect behaviours already 
known by the scientific community and common to 
different regions of  the globe: (1) a predominance 
of  discharge with negative polarity; (2) seasonal 
variations in polarity with increases in the percentage 
of  positive flashes occurring in winter; (3) seasonal 
variations in the number of  flashes with the highest 
values occurring in summer and with the lowest 
values observed in winter; (4) seasonal variations in 
current intensity (positive values are more intense in 
winter/spring and negative values are more intense 
in summer); (5) relationships between polarity and 
current intensity (positive flashes are on average more 
intense than negative flashes); and (6) daytime cycles 
of  electrical activity with the most frequent occurrence 
observed in the late afternoon and early evening.

The results of  this study have demonstrated 
unique geographic and temporal characteristics of  
CG observed in the MRRJ over the past 16 years. In 
general, we observed declines in the peak currents 
of  positive events over the years with a significant 
decrease observed in the period running from 2011 
to 2016. The highest incidence levels are observed in 
the late afternoon (18:00-19:00 local time), and 93% 
of  events occur in spring and summer (November 
to April), with February being the month with the 

highest incidence of  lightning, followed by January 
and December. The intensity of  the peak currents 
of  positive and negative lightning is higher from 
00:00-10:00 local time and during summer. On the 
other hand, in winter positive flashes are of  a higher 
intensity than negative ones, and in September a 
difference of  roughly 1/3 is observed in agreement 
with the work of  Nacarato (2005). Our analysis of  
spatial density highlights the influence of  the Atlantic 
Ocean (in the southern region) and of  orographic 
effects of  the Orgãos and Mar mountain chains (along 
the north side) on lightning distribution, revealing an 
increasing gradient from southern to northern areas 
of  the study region.

Climate model projections point to considerable 
alterations in atmospheric variables, such as air 
temperature and moisture, leading to changes in 
convection and stability, particularly in the tropics. 
Consequently, future patterns of  lightning are also 
expected to change since all of  these factors directly 
and indirectly drive them. However, considerable 
uncertainties remain regarding regional responses 
to lightning in a changing climate and partly due to 
the current lack of  information on recent patterns 
occurring in specific regions. This study significantly 
extends earlier analyses of  atmospheric electricity 
patterns in Southeastern Brazil by using a long-term 
and contemporaneous dataset and by specifically 
focusing on the representation of  lightning processes 
occurring over the MRRJ. The findings reported here 
together with instability indices should be of  great 
use for the development of  early warning systems 
and prevention strategies mitigating the impacts of  
atmospheric discharge in an area that is especially 
prone to such phenomena. Given the observed 
interannual variability in lightning occurrence over the 
past 16 years, further long-term studies focusing on 
how climate variability and change affect SRB lightning 
are of  paramount importance. Further research must 
also quantify urban heat island effects on lightning 
occurrence in the region. 
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An Automated Nowcasting Model of Significant Instability 
Events in the Flight Terminal Area of Rio de Janeiro - Brazil  

Gutemberg Borges França

ABSTRACT

This paper presents anovel model, based on neural 
network techniques, to produce short-term and 
locally specific forecasts of significant instability for 
flight in the terminal area of Rio de Janeiro, Brazil. 
Twelve years of data were used for neural network 
training/validation and test. Data are originally from 
four sources: 1) hourly meteorological observations 
from surface meteorological stations at five airports 
distributed around the study area; 2) atmospheric 
profiles collected twice a day at the meteorological 
station at Galeão Airport; 3) rain rate data collected 
from a network of twenty-nine rain gauges in the 
study area; and 4) lightning data regularly collected 
by national detection networks. An investigation 
was undertaken regarding the capability of a neural 
network to produce early warning signs—or as a 
nowcasting tool—for significant instability events in 
the study area. The automated nowcasting model was 
tested using results from five categorical statistics, 
indicated in parentheses in forecasts of the first, 
second, and third hours, respectively—namely: 
proportion correct (0.99, 0.97, and 0.94), BIAS 
(1.10, 1.42, and 2.31), the probability of detection 
(0.79, 0.78, and 0.67), false-alarm ratio (0.28, 0.45, 
and 0.73), and threat score (0.61, 0.47, and 0.25). 
Possible sources of error related to the test procedure 
are presented and discussed. The test showed that 
the proposed model (or neural network) can grab 
the physical content inside the dataset, and its 
performance is quite encouraging for the first and 
second hours to nowcast significant instability events 
in the study area.

Keywords: neural networks; nowcasting; significant 
instability event.
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I

1. INTRODUCTION
 
Aviation is negatively or positively influenced 

by the atmospheric conditions at any place and 
time (Ahrens, 2008). In particular, the Terminal 
Area (TA) of  an airport is the area where the 
aircraft are waiting for landing or take-off  and, 
thus, is quite sensitive to weather conditions. The 
air traffic controllers and pilots require precise 
information about the weather conditions at the 
TA to make short-term decisions that fall into 
the time scale of  nowcasting, which ranges from 
the interval of  a few minutes up to 6 h. During 
the few last decades, various works associated 
with nowcasting—for example, Wilson (1966), 
Wilk and Gray (1970) and others—have initially 
proposed nowcasting approaches based on 
extrapolations of  radar data to generate nowcasting 
of  thunderstorms. To follow up this idea, the 
convective tracking approaches were improved by 
including the cell evolution in time and intensity 
using radar data (Dixon and Wiener 1993). Wilson 
et al. (1998) presented a review of  the nowcasting 
techniques developed during the 1960s and 1970s. 
The advancement of  parallel computing and data 
availability allowed a numerical weather model 
to assimilate via rapid update cycle (and, more 
recently, via rapid refresh method) mesoscale data 
such as satellite and/or radar data to nowcast 
convective systems. Several authors have addressed 
the latter in the last two decades or so—e.g., Xue 
et al. (2003), Sun and Wilson (2003), Schroeder 
et at. (2006), Liu et al. (2008) and others. Mueller 
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Figure 1: Satellite image of Rio de Janeiro´s metropolitan area. Yellow triangles [red squares] indicate location of the twenty-nine rain 
gauges from Alerta Rio’s System that belongs the City Hall of Rio de Janeiro [five airport meteorological stations]. 

et al. (2003) proposed a sophisticated system to 
nowcast (up to 1 h) thunderstorm locations based 
on a combination of  surface meteorological, radar, 
satellite data and numerical modelling, which 
considers the storm stages. Mass (2012) provided 
a comprehensive review of  nowcasting including 
current developments and future challenges. 
Considering the aviation application, Isaac et al. 
(2006), Isaac et al. (2011) and Isaac et al. (2012) 
presented a sequence of  works that resulted in a 
refined nowcasting system for aviation that uses 
data from numerical models, surface observations, 
radar, satellite and a microwave radiometer to 
generate nowcasts for principal airports in Canada 
up to approximately 6 h. In contrast, in Brazil, 
a meteorologist currently uses his experience 
to integrate different in situ meteorological 
observations and/or atmospheric model outputs 
using conceptual models on how the atmosphere 
works to generate nowcast at principal airports. In 
particular, the TA of  Rio de Janeiro, the focus of  
this study, has five airports (see Fig. 1) whose flights 
are significantly affected (by delays and trajectory 
changes), especially during the approximations 
for landing or take-off, by Significant Instability 
Events (SIE), which are normally associated 
with convective weather. Groisman et al. (2005) 

presented evidence that the incidence of  convective 
weather has increased approximately 58 % per 
year in south-eastern Brazil—where the Rio de 
Janeiro TA is located—since the 1940s. Therefore, 
the objective here is to present an Automated 
Nowcast Model (ANM) to generate short-term 
and local-specific predictions of  SIEs, based on 
neural network techniques, for the fight TA of  Rio 
de Janeiro, Brazil.

2. METEOROLOGICAL DATASETS AND 
STUDY AREA 

 
This study used four datasets from 1 January 1997 

to 31 December 2008, as follows: 
 
• TEMP is the meteorological code used to 

report profiles of  atmospheric variables and 
is normally generated daily at 00:00 UTC and 
12:00 UTC on all radiosonde stations, one 
of  which, in this work, is located at Galeão´s 
Airport, whose international aviation code 
is SBGL, where SB and GL denote Brazil 
and Galeão, respectively (see Fig. 1). The 
TEMP-coded dataset was obtained online 
from http://weather.uwyo.edu/upperair/
sounding.html;  

Source: Adapted from www.google.com.br/maps. 
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Rio de Janeiro metropolitan area. The data 
were obtained from http://www.rio.rj.gov.
br/alertario/  and collected by Alerta Rio’s 
System, which belongs the City Hall of  Rio 
de Janeiro; and  

• lightning reports, regularly collected by the 
National Integrated Lightning Detection 
Network (RINDAT), characterize each 
occurrence by indicating location (latitude, 
longitude), intensity polarity (cloud to 
ground or ground to the cloud), and time 
(UTC with accuracy in mill iseconds). 
ELETROBRAS FURNAS Company kindly 
made the data available.   

Table 1 summarizes all information on the datasets 
used for ANM training, test and validation in this 
study. Figure 1 shows the study region and the flight 
terminal area of  Rio de Janeiro.

• METAR and SPECI are meteorological 
codes employed to report hourly surface 
meteorological conditions and significant 
change (decline or improvement) in the 
weather condition, at any time from the 
full hour. Figure 1 shows the locations 
of  five surface meteorological stations 
(represented by red icons) in the Rio de 
Janeiro metropolitan area. The SPECI data 
were used only for the model test. The 
stations (or airports) are Galeão (SBGL), 
Santa Cruz (SBSC), Santos Dumont (SBRJ), 
Jacarepaguá (SBJR), and Afonsos (SBAF). 
The data were obtained at the URL address 
mentioned above;  

• rain rate (RR) is obtained from twenty-
nine rain gauges (represented by yellow 
triangles in Fig. 1) distributed over the 

Table 1: Datasets and meteorological variables used in the distinct stages of development of the neural network-based automated
nowcasting model. It covers a period from 1 January of 1997 to 31 December 2009.

Time series
Frequency 
and data 
period

Input: Primary 
variables 

Total number: 8

Input: Derived 
variables

Total number: 4

Data 
percentage 

used for SNM 
training/
validation

Data 
percentage 
used for 

SNM test

Validation 
variables

Output 
variable

Predictors purpose: characterization of  
atmospheric conditions

METAR 
(data are 

from SBGL, 
SBSC, SBJR, 
SBAF and 

SBRJ) 

Hourly from 
1 January 

1997 to 31 
December 

2008

Dew point at surface Julian day

70 % 30 %

Class 1 as 
in Table 2

Yes = 
class 1 
or No 
= class 

0

TEMP (data 
are from 
SBGL)

Daily at 0000 
and 1200 

UTC from 
1 January 

1997 to 31 
December 

2008

Humidity at 850 and 
500 hPa. Pression at 
1000, 850, 700, and 

500 hPa

K, Vapour 
pressure at 1000, 

and 850 hPa,
---

Rain rate 
(RR) per 

hour (data 
are from 

the 29 rain 
gauges)

Every 15 
minutes from 

1 January 
1997 to 31 
December 

2008

RR for 1 hour --- ---

Lightning 
inside a 

radius of  50 
km centred 
at SBGL

Varies --- --- --- 100%

1 
(lightning) 
or 0 (no 

lightning)
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3. METHODOLOGY AND ALGORITHM 
DESCRIPTION 

 
Meteorologists have limited windows of  

time in which to integrate all available data 
and generate a nowcast, as stated by Mueller 
et al. (2003). Therefore, the idea is to create an 
automated nowcast model in which a neural 
network algorithm is used for data fusion, similar 
to the work performed by Cornman et al. (1998) 
for detecting and extrapolating weather fronts. 
At present, one may find applications of  neural 
network in numerous fields of  science, such as 
modelling, time series investigations, and image 
pattern recognition, owing to their capability to 
learn from input data (Haykin, 1999). Normally, 
stages of  neural networks are denoted by a global 
function (Equation 1), as described by Bishop 
(2006)—for example:

Figure 3 depicts a general flowchart for 
the proposed automated nowcasting model. It 
has four major steps: (1) data processing; (2) 
definitions of  input and output variables; (3) 
training and validation; and (4) test. These steps 
are described below.

where xi and yk are the input and output, respectively; (1), 
(2) and wji, wkj represent the input layer, hidden layer and 
the connection weights (that should be determinated) 
between input and hidden layers and hidden and output 
layers, respectively; D and M are the number of  inputs 
and number of  neurons in the internal layer, respectively; 
and σ and h are linear and no linear transfer functions 
between the neural network layers, respectively. Thus, 
determination of  the output via Eq. (1) crucially depends 
on the values of  the weights that are worked out, similarly 
as in a multiple linear regression using a set of  inputs and 
outputs; however, instead, to minimize the distance as 
in nonlinear regression, the neural networks attempt to 
minimize the cost function. Given that the SIE forecast 
problem requires a categorical output, it was decided 
to use probabilistic neural networks, initially proposed 
by Specht (1990, 1991), which is based on radial-basis 
function (RBF), A RBF network consists of  three 
layers: the input layer; the second layer (or hidden), 
apply a non-linear transformation, denoted as h that, 
here, is Gaussian function, of  the input space to the 
hidden space. The third layer, the outgoing, is linear (σ), 
providing the network response. Further details about 
neural networks and their applications may be found in 
Pasini et al. (2001), Haykin (1999), Pasero and Moniaci 
(2004), Bremnes and Michaelide (2005), Bishop (2006), 
Haupt et al. (2009) and Hsieh (2009). 

Figure 3: Automated Nowcast Model flowchart.

3.1 Step 1—Data processing:
    

All datasets were sorted chronologically, and 
their statistical consistency was observed, resulting 
in 63,320 hours of  meteorological records. Based 
on weather conditions reported by METAR, each 
meteorological record was classified into two 
classes — “0” and “1”, representing nonexistence 
of  important weather conditions (low impact 
to flight flow) and the existence of  significant 
atmospheric instability (or SIE, as previously 
defined) for flights in the TA of  Rio de Janeiro, 
respectively. Table 1 shows all weather conditions 
reported in terms of  METAR code and their 
classification per class. 

    
3.2 Step 2—Input and output definition:  

 
ANM data fusion is based on a neural network, 

which must be sequentially trained, validated and 
subsequently tested to forecast the presence or 
absence of  SIEs. The latter corresponds to the 
learning process of  a neural network. The input and 

(1)
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GPH denotes the geopotential height; and others 
defined in columns three and four of  Table 1. At the 
beginning, many inputs were generated. However, 
with regard to the neural network training, it is 
necessary to adopt a method to prune collinear 
inputs that bring no new information and, thus, 
could reduce the network performance. Pasini and 
Ameli (2003) have investigated heuristic pruning 
methods. Here, autocorrelation was selected and 
enforced to remove collinearity of  the input. Twelve 
variables then remained, divided into eight primary 
and four derived variables as listed in columns three 
and four of  Table 1, respectively. 

 
3.2.2 Output variables 

 
The output is defined as weather conditions 

reported in METAR codes and divided into two 
classes, “0” and “1”, which represent the absence and 
presence of  SIEs, respectively, as shown in Table 2. 
In other words, classes 0 and 1 indicate nonexistence 
of  significant instability and existence of  significant 
instability (i.e., weather condition of  METAR code 
as T, TL, TRW-, TRW, TRW+) in the TA of  Rio de 
Janeiro, respectively. 

Following Pasini (2015) and aiming to avoid the 
overfitting problem during the learning process of  
the neural network, which is represented by step 3, 
the meteorological records were divided into three 
subsets: training, validation and test. Figure 4(a) shows 
the initial training and validation datasets representing 
70 % of  the original records (or 44,324) with 30 % 
(or 18,996) for testing, as shown in Fig. 4(b).

output variables play an important role in ANM data 
fusion and should be previously defined.   

3.2.1 Input variables 
 
These variables are the predictors of  ANM 

and indicate the atmospheric stages of  SIEs in 
the study area that are used by the ANM during 
its learning process. A meteorological record is 
composed of  primary and derived variables that 
are extracted from METAR, TEMP, and RR and 
calculated using primary variables. The purpose 
of  ANM is to nowcast SIEs and other weather 
conditions; therefore, all inputs (or predictors) 
should thermodynamically represent the presence 
or absence of  SIE, which are embedded in the 
meteorological records utilized to train/validate and 
test the ANM. The latter should be able to classify 
or forecast weather conditions of  classes numbered 
as “0” and “1”, and its performance is evaluated 
by cross-test with observations as presented later. 
The criterion to select input (primary and derived) 
variables is based on a conceptual model of  how 
the atmosphere works—particularly during SIE 
occurrence, which have typical atmospheric patterns. 
Several input variables are used—for example, 
atmospheric instability indices, i.e., K-index (K) 
= (T850 - T500) + Td850 - (T700 -Td500), where Tz 
and Tdz represent temperature and dew point, 
respectively, in Celsius degrees, and z is the given 
atmospheric pressure in hPa; Total Totals (TT) = 
T850+Td850 - 2T500; Lapse Rate (LR), represented by 
LR = 1000(T500 - T700)/ (GPH500 - GPH700), where 

Class METAR code Weather condition Class METAR code Weather condition

0

H Haze

0

R Moderate rain

K Smog RF Moderate rain with fog

F Fog R+ Heavy rain

L- Light drizzle R+ F Heavy rain with fog

L- F Light drizzle with fog RW Showers

L Moderate drizzle RW+ Heavy showers

LF Moderate drizzle with fog

1

T Thunderstorms

L Heavy drizzle TL Thunderstorms with light drizzle

R- Light rain TRW- Thunderstorms with showers

R- H Light rain with haze TRW Thunderstorms with moderate showers

R- F Light rain with fog TRW+ Thunderstorms with heavy showers

Table 2: Weather condition classification in METAR and attributed ANM classes.
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1. It starts with a minimal (only one neuron) internal 
layer of  the neural network (represented generally 
by Eq. (1)) and automatically adds new hidden 
neurons one at a time, in each round, finally 
resulting in a multilayer structure with the input 
connection frozen (represented by squares in 
Fig. 2); and  

2. The follow-on neural network is applied to the 
validation dataset, and the error is calculated. 
There are then two options: first, return to (i) 
if  the test error has not increased from the 
previous round and the number of  neurons in 
the internal layers is less than 150; or second, 
to go step 4, which means that the final (or 
that could be an optimum) neural network 
configuration (or ANM) has been obtained.

3.4 Step 4—Test: 
 
This step compares the SIE forecasts (output) of  ANM 

with the true observations, which are assumed to have at 
least one of  two conditions:  

 a) weather conditions (class 1 of  Table 2) reported 
by METAR or SPECI (corresponding the test dataset 
in Fig. 4(b)); and/or 

b) lightning reported inside a 50-km radius centred 
at Galeão airport during a 1-h period. The lighting data 
are included in the test because the weather conditions 
reported in METAR or SPECI represent an observation 
by the meteorologist at an instant of  time; therefore, 
sometimes it does not correctly represent an entire 
one-hour period, which is the minimum time interval 
for an ANM forecast, and the lightning data will be 
continuously generated during the entire ANM forecast 
time and beyond the METAR observation, which 

3.3 Step 3—Neural Network Training and Validation 
 
The internal number of  neurons (previously defined 

as M) of  probabilistic neural networks is here determined 
based on cascade-correlation algorithm suggested by 
Fahman and Lebiere (1990). Figure 2 shows generally an 
example of  a cascade forward network for five inputs and 
one output. The training and validation are performed in 
an iterative cycle composed of  a looping of  two phases, 
which are executed using a specific dataset (initially the 
one in Fig. 4(a), which could be artificially modified until 
the optimal dataset is reached, as described in step 4), 
and a constant number of  inputs (defined as D is equal 
to twelve). The two phases are described as follows:     
Figure 2: A schematic view of a cascade forward network with five inputs.

Figure 4: Histograms of frequency accordingly to two classes “0” and “1” that represent no SIE and SIE, respectively: (a) and (b) show initial 
class distribution of training/validation and test datasets that correspond to 70% (or 44,324) and 30% (or 18.996) of meteorological records, 
respectively. (c) similarly presents class distribution of meteorological recordings for optimal training.
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depends on the meteorologist’s observation skills. The 
lightning data allow the ANM forecast verification to 
be spread out to encompass the entire flight terminal 
area of  Rio de Janeiro. Moreover, it is assumed in this 
work that the presence of  lighting is related with SIE. 
Therefore, these two conditions will certainly permit 
a better ANM test, which is accomplished via a two-
dimensional contingency table. The calculation of  five 
categorical statistics used to verify the frequency of  
correct and incorrect forecasted values is performed as 
follows: 1) proportion correct (PC), which shows the 
frequency of  the ANM forecasts that were correct (a 
perfect score equals one); 2) BIAS, which represents the 
ratio between the frequency of  ANM estimated events 
and the frequency of  ANM observed events (a perfect 
score equals one); 3) probability of  detection (POD), 
which represents the probability of  the occasions when 
the forecast event actually occurred (hits), and the scale 
varies from zero to one, where one indicates a perfect 
forecast; 4) false-alarm ratio (FAR), which indicates the 
fraction of  ANM-predicted SIEs that did not occur 
(a perfect score equals zero); and 5) threat score (TS), 
which indicates how the ANM forecasts correspond 
to the observed SIEs (a perfect score equals one). In 
particular, the TS is relatively sensitive to the climatology 
of  the studied event, tending to produce poorer scores 
for rare events, such as an SIE. Therefore, the model is 
considered to be optimal when it creates SIE nowcasting 
with scores as near perfect as possible for the five 
statistics described (Wilks, 2006). 

Finally, if  the test results of  the ANM do not indicate 
satisfactory performance, a normal procedure is to rearrange 
the representativeness of  the target class one in the training 
data (i.e., modifying the training/testing dataset) and then go 
to step 3 and repeat step 4 in Fig. 3. Otherwise, the optimal 
model is reached. The ANM training strategy and results 
are discussed in the next section.  

    
4. ANALYSIS AND RESULTS  

To assess the performance of  the nowcasting system 
proposed for the TA of  Rio de Janeiro, the ANM output 
variables were divided into two classes as previously 
defined—namely: class zero (no SIE) and class one 
(SIE). Figure 4(a) and Fig. 4(b) depict the frequency 
of  the classes in the initial (1st) training/validation and 
test datasets, respectively, corresponding to 70 % and 
30 % of  the total number of  meteorological records. 
It is observed in Fig. 4(a), that class frequencies are 
not proportionally distributed. In particular, class one 
(defined as SIE) is poorly represented, accounting 
for approximately two percent of  all meteorological 

records. This increases the difficulty of  the neural 
network learning process; for phenomenon knowledge, 
a better representation of  target class one is needed in 
the training dataset—i.e., class one should have a higher 
weight than the other classes or at least a similar weight 
to another class in the training dataset—to facilitate 
better neural network training. The following paragraphs 
summarize the strategy to overcome the low frequency 
of  SIEs in the sequence of  training/validation executed 
in this work in the procedure to achieve the optimal 
model, as illustrated in Fig. 3. 

4.1 Neural network training  

Neural network training is a time-consuming activity, 
and to overcome the mentioned problem, a common 
strategy is to alter the training dataset—for example, 
by taking the original data as a reference to artificially 
create another new training dataset by modifying the 
representation of  the classes in the data population and 
testing the model performance to make an optimum and/
or gradually reducing the input variables by evaluating a 
particular variable relevance (or contribution) for the output 
results. The latter was not performed in this work, and the 
input number was held constant and equal as previously 
explained in §3.2. In fact, there is no straightforward set 
of  calculations to accomplish this goal. It is significant to 
observe that the test dataset shown in Fig. 4(b) has similar 
class frequencies to the original dataset, shown in Fig. 4(a). 
The idea is to provide real scenarios of  rare events during 
the test process. Table 3 presents the training scheme (or 
strategy) and attempts to convey the concept of  successive 
training used in the present work. The training strategy is 
based on decreasing records of  class 0 and keeping class 
1 fixed in each training/testing executed by following the 
steps in Fig. 3. The optimal ANM was obtained in the 
nth training corresponding to the dataset in Fig. 4(c). The 
resulting test statistics were achieved by two options: first, 
by considering items a); and second, by considering items a) 
and b) of  §3.4. The latter item (item b)—lightning reported 
inside a 50-km radius centred at SBGL airport during a 
1-h period—represents an SIE. Table 3 shows categorical 
statistical verifications of  the optimal model results. The 
ANM forecast performance slowly declines from the first to 
the second hour and declines more rapidly from the second 
to the third hour. By including the lightning data in the test, 
the ANM results were improved, as shown by the first (L), 
second (L), and third (L) hours. The comparison between the 
two test datasets (with and without lightning data) shows 
that BIAS, POD, and FAR values improved by 14 %, 11 
%, and 12 % (for the first, second, and third hours); 3 %, 3 
%, and 6 % (for the first, second, and third hours); and 13 
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%, 13 %, and 5 % (for the first, second, and third hours), 
respectively. In particular, the BIAS values improved more 
than the other statistics because of  the inclusion of  the 
lightning data in the test. In addition, although TS normally 
tends to produce poorer scores for rare events, its results 
have also improved here with the inclusion of  lightning 
data in the test of  optimal training as shown in Table 3, 
column thirteen. 

The best ANM result corresponds to the first hour. 
The BIAS is the lowest, equal to 1.10 (which means that 
the results slightly overestimated the observations for the 
considered forecasts); even so, the readings for PC, POD, 
FAR, and TS are quite respectable, equal to 0.99, 0.79, 0.28, 
and 0.61, respectively. The effects of  the ANM for the 
second hour are slightly less useful than those for the first 
hour forecast but are nonetheless satisfactory. However, 
the statistical values for the third hour forecast are poorer 
than those for the second hour. One cause of  the ANM’s 
overall performance degeneration is that a neural network is 
a statistical model rather than a physical one, which means 
that the physical aspects are not included. In summary, it 
is possible to state that an optimal ANM should be able to 
forecast SIEs in the study area for up to 2 h.  

4.2. Possible sources of  error in the ANM test 
 
The ANM optimal model output is considered a hit 

when it corresponds to event observations, if  at least 
one of  two weather conditions in §3.4 is satisfied. In 

particular, the weather condition reported in the METAR 
or SPECI is obtained from a human observer and may 
have some inconsistencies. The latter is common in 
meteorological observations; thus, consciousness of  
such matters is important when interpreting results from 
METAR at a specific time. The ANM results are slightly 
biased as previously presented for first hour forecast; 
therefore, in an attempt to explain that BIAS, the study 
pursued an investigation of  possible sources of  error in 
the meteorological observations used to verify the model 
forecasts. First of  all, with regard to the learning process, 
the training dataset was composed only of  meteorological 
records with a unique true association between their output 
(as class 1) and input variables (represented somehow 
in the thermodynamic atmospheric pattern during the 
development of  an SIE from the METAR records). In other 
words, the training used only meteorological records whose 
output was characterized as a true SIE and none. However, 
in the test dataset, there are many meteorological records in 
which such a unique association (one-to-one relationship 
between input and output) is not always true; i.e., some 
meteorological records have a typical thermodynamic 
pattern of  SIE (input), but the weather condition (output) 
does not correspond to an SIE (or prevailing actual weather 
situation). These records were used in the present study to 
verify ANM forecasts and have consequently produced the 
results in Table 3. A possible reason for false alarms and 
consequently biased ANM results is that hourly METAR 
records represent quasi-instantaneous meteorological 

Training Strategy
Output 

class Test data

Neural 
network 

configuration 
(Number 
of  hidden 
neurons)

Statistics for SIE and no SIE

Training 
(from 1st to 

nth)

Training 
dataset and 

strategy

Number 
of  Inputs Hour PC BIAS POD FAR TS

nth

Optimum 
training

Gradually 
modifies 
for each 

looping in 
Figure 3 by 
decreasing 

classes 0 and 
keeping class 

1 fixed

12

Yes, or No
(Yes= 
class 1) 

or (No= 
class 0)

Yes, or No 
means classes 
one (including 

lighting 
existence in 

the period of  
1 h) or zero 
in Table 2, 
respectively

123
1st 0.98 1,28 0.76 0.41 0.50

1st (L) 0.99 1.10 0.79 0.28 0.6

138
2nd 0.97 1.59 0.75 0.52 0.41

2nd (L) 0.97 1.42 0.78 0.45 0.47

134
3rd 0.94 2.64 0.61 0.77 0.20

3rd(L) 0.94 2.31 0.67 0.73 0.25

Table 3: Strategy condition and final test statistics of the optimal ANM. The ANM output equal to class one represents a true SIE (or 
yes) and class zero represents a false SIE (or no) forecast. The statistic values associated with the first (L), second (L), and third (L) are 
hours in which the ANM test using the lightning data was included.
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observations (which take approximately 10 min to generate 
and may carry inconsistencies); therefore, the weather 
condition (output) may be affected by a certain amount of  
subjectivity on the part of  the meteorologist (see discussion 
below). These results have provided plenty of  evidence that 
the validation parameters (i.e., weather condition report 
just mentioned in the METAR or SPECI in Table 2) are 
not totally appropriate for ANM validation because the 
METAR or SPECI are quasi-instantaneous observations 
and thus do not cover the entire ANM forecast time. The 
lightning data permit the ANM forecast verification to be 
spread out to encompass the entire TA of  Rio de Janeiro. 
The comparisons between ANM forecasts and lightning 
detection have improved all statistical values.  

4.3 Case Study 
 
To elucidate the foregoing discussion, this section 

shows the ANM results for an SIE that occurred from 15:00 
to 23:00 LT on 18 March 2009. Figure 5 depicts a synoptic 
weather situation through an enhanced GOES-10 (channel 
4) satellite image at 1800 (local time), in which a cloud (or 
cloud complex) is classified, by an automatic stretch process, 
as a convective cell (which could certainly be associated with 
an SIE) if  its top temperature is lower than minus 30° C. 

The red box roughly represents the TA of  Rio de Janeiro, 
which is influenced by SIEs (located approximately at the 
centre of  the red box) and where a complex convective 
cloud (with cloud top temperature equal to minus 70° C) 
is clearly observed in the east. On this day, the K, TT, and 
LR index values, calculated from the SBGL atmospheric 
profile, were equal to 33.64, 44.97, and 5.5, respectively, 
indicating that a typical atmospheric instability pattern was 
dominating the area. Table 4 presents a comparison between 
ANM forecasts (column four) and the weather observations 
made by the meteorologist and registered in the METAR 
(columns two and three) for the considered period. From 
this result, it seems that the ANM overestimated the 
possibility of  an SIE (compare columns three and four). 
However, the problem of  verification of  the output of  the 
ANM is difficult because the meteorologist’s observation 
does not always give a more appropriate weather condition 
(or a prevailing condition) for comparison; therefore, biased 
results may be obtained from the ANM. Lightning has been 
coincidently detected (column five) for all ANM forecasts 
of  SIEs during the time of  this particular case study, which 
indicates an unstable atmospheric pattern (meaning true 
SIE) in the flight area of  the airport influenced by the event. 
In summary, the ANM forecasts usually capture the signs 
of  an atmospheric instability pattern.

Figure 5: GOES-10 (channel 4)extracted and adapted from www.cptec.inpe.br that represents the synoptic weather situation at 1800 (local time) on 18 March 
2009, where the top convective cloud temperatures are categorized by a temperature range from -30°C to -80°C. The red box roughly represents the study region.
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5. CONCLUSIONS 
 

 In Brazil, the numerical prediction models 
have presently demonstrated certain difficulties in 
attempting to forecast local or short-term heavy 
rain, strong wind, and turbulence events that are 
normally associated with SIE occurrences. Hence, 
this work shows an automated nowcasting model for 
short-term and local-specific forecasting of  SIEs 
based on a neural network technique for the flight 
terminal area of  Rio de Janeiro. The main findings 
of  this study are as follows: 

 
a) the optimal ANM results of  SIE forecasts 

for the first and second hours are encouraging 
because the categorical statistical values are quite 
acceptable. The proposed model has a very low 
computational cost, and it is possible to say that 
the ANM could alternatively forecast short-term 
strong atmospheric instability;  

 
b) the third hour ANM forecast has the 

highest BIAS; perhaps the main reason for the 
ANM performance degeneration in time is that 
the neural network model is purely statistical 
rather than physical, and its use should therefore 
be limited to short-term nowcasting, possibly up 
to a 2-h timeframe;   

c) there is visible evidence that the test data 
contain a certain amount of  uncertainty. A key 

consideration regarding the ANM results versus 
test data and possible sources of  error should be 
addressed; i.e., the use of  METAR or SPECI weather 
conditions is affected by subjectivity on the part of  
the meteorologist and sometimes does not represent 
prevailing weather conditions. The results and case 
study showed that ANM forecasts might falsely be 
classified as hits; 

  
d) the inclusion of  lightning data in the test 

significantly improved the ANM statistic results 
and also provided evidence that weather conditions 
discussed in the previous item are not totally 
appropriate for ANM test; and 

 
e) finally, the study may conclude that the optimal 

ANM developed here is clearly capable of  predicting 
signs of  a local atmospheric instability pattern in the 
TA of  Rio de Janeiro.  

 
Future studies are planned to include other data 

sources in the learning process, such as numerical 
models, meteorological satellites, RADAR, and/or 
SODAR wind profiles.  
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Local time Weather condition 
(METAR)

Observed class SNM class forecasts Lightning detection

15 H 0 0 no

16 TRW- 1 1 yes

17 R 0 1 yes

18 R- 0 1 yes

19 H 0 1 yes

20 TRW- 1 1 yes

21 R+ 0 1 yes

22 T 1 1 yes

23 TRW+ 1 1 yes

Table 4: ANM forecasts versus meteorological observations on March 18, 2009.
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Visibility and ceiling now casting using machine learning 
analysis for aviation applications 

Fabricio Cordeiro

ABSTRACT

This work presents a novel approach for simulating 
visibility (Vis) and ceiling base height (Hc) in up 
to 1 hour using several machine learning (ML) 
algorithms.Ten years of meteorological data at 15 
min intervals for Santos Dumont airport(SDA), Rio 
de Janeiro, Brazil were used in the ML method 
training and testing process. In the investigation, 
several categorical and regressive algorithms were 
trained and tested, and theresults were verified. The 
forecast results reveal that the categorical methods 
produced satisfactory results only up to 15-min for 
visibility prediction with the probability of detection 
greater than 85%. On the other hand, the regressive 
methods are found to be more capable of generating 
an accurate prediction of Vis and Hc compared to 
categorical methods simulations at least up to 60 
minutes. The forecast evaluation metrics for Vis and 
Hc had correlation coefficients of 0.99±0.00 and 
0.96±0.00 with mean absolute errors of 324+77 m, 
and 167+21 m, respectively. Results suggested that 
the ML methods can improve the prediction of Vis 
and Hc up to 1 h.

Keywords: Aviation meteorology, aeronautical 
meteorology; weather prediction; Nowcasting, 
Visibility, and Ceiling.
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1. INTRODUCTION

Visibility and low ceiling parameters are often 
a matter of  concern in aircraft landing operations 
because of  their obstruction in the pilot’s view over 
the airports. The Instrument Landing System (ILS), an 
accurate vertical and lateral landing guiding technology, 
permits airplanes to land with significantly reduced 
visibility and ceiling. Despite the fact that many 
airports have been certified to operate in accordance 
with instrument flight rules (IFR), some of  them 
lack ILS and must rely on often inaccurate weather 
forecasts to avoid an unexpected landing impossibility 
due to visibility or ceiling limitations. According to 
the Brazilian Aeronautical Information Service (www.
aisweb.decea.mil.br), there are 141 airports in Brazil 
that are approved for IFR operations, although only 
47 of  them presently have an ILS. Although rain and 
drizzle may impact the visibility (Vis) and ceiling height 
(Hc) significantly, mist and fog are the most restrictive 
events affecting the mentioned parameters in Brazilian 
airports [1]. Although rain and drizzle may impact 
the Vis and Hc significantly, mist and fog are the most 
restrictive events affecting the mentioned parameters 
in Brazilian airports [1]. 
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Recently, a review of  aviation meteorological issues 
presented all types of  weather events that are critical 
for aviation operations [2]. It stated that the aviation 
accidents related to Vis and Hc can reach up to about 
30% and comes after the wind impact. 

The genesis of  the fog/mist in the forecast models is 
usually a significant problem due to poor representation 
of  the microphysical and aerosol properties [2]. For 
example, an objective 12-hour fog prediction model 
was developed based on the curve adjustment analysis 
via the least-squares technique of  the observational 
data for Porto Alegre airport [3]; a numerical weather 
forecasting model for the regional scales was utilized to 
investigate the evolution of  local mesoscale circulation 
and its impact on the occurrence of  night fog formation 
in São Paulo [4]; and an alternative stochastic model 
for fog forecasting was established for the Guarulhos 
International Airport [5]. A visibility forecasting model 
developed in the early 1980s for fog events at the airports 
of  Curitiba and Porto Alegre concludes that detailed 
observations and improved physical algorithms are 
required for accurate Vis predictions [6]. In addition to 
these studies, investigations [7, 8] were conducted on the 
physical and synoptic processes of  fog and formation of  
stratus clouds and concluded that they are related to a 
wave disturbance field in trade wind in northern Brazilian 
cost and a high-pressure displacement along the east 
coast of  South America in conjunction with a low hot 
core barotropic occurrence in northern Argentina and 
[9, 10] emphasized how difficult to predict the life cycle 
of  marine and coastal fog. 

Later in the 2000s, machine learning was limited to a 
single ML algorithm for visibility and ceiling predictions 
[11]. A neural network was tested to diagnose Vis 
using the Met Office’s unified model prediction [12]. 
This study concludes that the performance of  the 
parameterization is determined by the quality of  the 
meteorological input parameters and the structure of  
the parameterization. Because of  the changing weather 
conditions over short time periods, weather parameters 
are critical to improving aviation operations. Then, a 
pioneering method for very short-term forecasting [13] 
was developed based on neural network algorithms 
to predict the Vis and Hc at Guarulhos Airport, São 
Paulo. Similarly, a fog prediction method based on 
ML algorithm was developed for the Brazilian Air 
Force aerodrome at Pirassununga using meteorological 
observation data collected from 1989 to 2008, and 
it was concluded that the suggested neural network 
algorithm predictions are 95 percent equivalent to 
observations [14]. A series of  works, [15], [16], and 
[17], explored the use of  ML algorithms for short-term 

forecasting of  convective events for the Rio de Janeiro 
metropolitan region. The current results of  the ML 
algorithms show that they are capable of  nowcasting 
convective events with high probability and low false 
alarm ratio. Recently, a fog forecasting method based 
on the ML algorithm was developed for the Afonso 
Pena International Airport in Paraná, Brazil [18]. The 
algorithm diagnoses Vis based on 15-min observed 
and predicted meteorological data, from the automatic 
surface meteorological station and simulated data using 
the numerical model of  Weather Research and Forecast, 
respectively. The correlation coefficient of  the 24-hour 
forecast, at 15-min intervals, and the observations is 
close to 90%. The fog predictions are slightly biased, i.e., 
a delayed onset and anticipated demise in 30 minutes 
or less.

On the other hand, numerical weather prediction 
(NWP) models perform poorly for low visibility and 
ceiling predictions [19]. In 2015, an investigation was 
conducted on the impact of  the horizontal resolution 
of  a regional climate model (RCM) on the reproduction 
of  local weather characteristics related to fog in the 
metropolitan region of  São Paulo [20]. RCM simulations 
showed the ability to characterize fog events with 
horizontal resolutions of  50 km and 20 km using 
data from June to September for 2003 and 2004 and 
stated that increased resolution resulted in prediction 
improvement of  the fog occurrence. 

The landing procedure in adverse weather conditions 
at the SDA in Rio de Janeiro is usually difficult for 
three reasons: 1) its runways are short, 2) there is no 
ILS to be used, and 3) its location is very close to the 
Rio Janeiro-Niterói bridge and Sugarloaf  Mountain, as 
seen in Figure 1a and b. According to the INFRAERO 
(Airport Management Company) yearbook [21] 
approximately 100,144 aircraft landed during 2018, and 
9,206,059 passengers traveled through the SDA and it 
was ranked as the third airport in Brazil that was most 
impacted by visibility restrictions. The Rio-São Paulo air 
bridge runs between Santos Dumont and Congonhas 
Airports, connecting the two largest cities in Brazil and 
representing 58% of  SDA movements, with an average 
duration of  45 minutes.

The focus of  this research is to use machine 
learning-based regressive and categorical algorithms to 
develop new short-term Vis and Hc forecasts for SDA, 
with potential general application to other Brazilian 
airports. In this work, section 2 provides the location 
of  the project and observations. Section 3 presents the 
methods and characteristics of  the ML algorithms used 
in the work. Section 4 is for the results. Section 5 is given 
for the conclusions driven from the work.
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(a)  (b)

(c)

2. PROJECT SITE AND OBSERVATIONS

The SDA is located at 22.9103°S and 
43.1631°W, near the center of  Rio de Janeiro. 
Figure 1 shows the airport views from the 
northern and southern points. The Sugarloaf  
Mountain (pique at 407 meters) 4000 m away 
from the two airport runways is shown in Fig. 1c. 
The main runway identified as 20L/02R is 1323 
meters long and only 63 meters longer than the 
secondary runway (20R/02L).

Considering the aircraft landing restrictions 
imposed by the obstacles, the Airspace Control 
Department established the visibility and ceiling 
limits for landing on the runways. Table 1 presents 
the operational limits for visibility (m) and ceiling 
height (feet) for the three main landing procedures 
at SDA. These procedures are 1) Area Navigation/
Global Navigation Satellite Systems (RNAV/
GNSS), 2) Non-Directional Beacon (NDB), 
and 3) Area Navigation/Required Navigation 
Performance (RNAV/RNP).

Table 1: Shows the operational limits for Vis and ceiling representing 
the three landing procedures on the runways of the SDA.

Figure 1: Views from the north (a) and south (b) directions for the SDA runways (02and 20), and SODAR and the automatic 
surface weather station (ASWS) are shown in (c).

Source: Images from Shutterstock and the map is adapted from www.google.com.br/maps.

Observations for this work came from three 
sources: 1) SOnic Detection And Ranging (SODAR) 
as atmospheric profiler, 2) Automatic Surface Weather 
Station (ASWS), and 3) human observer. Table 2 shows 
details about the data sources and the 253 meteorological 
variables labeled as primary (collected directly from the 
meteorological instruments) and derived (determined 
using the primary) ones. The parameters used are the 
predominant visibility (Visp), the Ceiling  (Hc), cloud 
cover (Cc), or cloud quantity (Cq), low cloud cover in okta 
(Clcc), backscatter intensity (β), surface horizontal wind 
direction in degrees (θdir) and horizontal wind speed (Uh), 

Landing procedure RUNWAY

                                             20 2

(1) RNAV/GNSS 4,500 meters 
/1,000 feet

5,000 meters/ 
1,000 feet

(2) NDB 3,700 meters / 
1,200 feet

4,800 meters / 
1,500 feet

(3) RNAV/RNP 1,600 meters / 
300 feet

1,600 meters / 
300 feet
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zonal wind component (u), meridional wind component 
(v), vertical air velocity (wa), turbulent kinetic energy in  
(TKE), energy dissipation rate (EDR), relative humidity 
to water in % (RHw), surface atmospheric pressure(Ps), 
dew point temperature (Td), and air temperature (Ta ). 
The red star and cross in Figure 1c represent the locations 
of  SODAR and ASWS at SDA, respectively.

3. METHOD

In this work, the machine learning analysis with 
categorical or regressive algorithms are used to evaluate Vis 
and Hc predictions at the SDA because they are commonly 
used to recognize physical patterns in a specific data set. They 
are based on the principle that it is possible to learn from 
a set of  training data and consequently be able to correctly 
classify new standards [22]. This research is part of  a 
sequence of  short-term prediction studies based on machine 
learning algorithms that have been carried out by the Applied 
Meteorology Laboratory at the Federal University of  Rio de 
Janeiro and can be found in the work of  [13, 15, 16, 17, 18, 
23 and 24]. So, in the present study, the WEKA software 

package [25] developed by the University of  Waikato in 
New Zealand is used, with and without the Auto-WEKA 
subsystem [26, 27]. WEKA was chosen because it has a series 
of  machine-learning-based algorithms that can be used to 
classify thermodynamic atmospheric patterns in the data set 
related with Vis and Hc limits at the SDA.

3.1. Detailed analysis

Knowing that meteorological observations represent 
the variation in time and space of  the local atmospheric 
thermodynamic behavior, local atmospheric patterns 
with restricted Vis and Hc thresholds for the landing 
procedures are obtained at the above-mentioned airport. 
Analysis steps taken are followed up as:

i. Taking the 15-min ASWS data as a reference, 
the other data were chronologically disposed, and 
then their statistical consistency was verified. Data are 
represented at 15, 30, 45 minutes for each hour, and 
all the observations are interpolated to the same time 
intervals (Table 2). Overall, the number of  observations 
at 15 min intervals reached 350,400 data;

Table 2: Observation characteristics and meteorological variables used in the machine learning algorithms 
during training and testing. A total of 253 meteorological variables are used in the analysis.

* The ceiling height is registered automatically by a ceilometer which is part of the ASWS instrument set. 
**For when restriction has occurred.

Source 
Freq. 
(min) 

(Input) variable 
   Primary                   Derived 

 
Variable 

qty. 

 
Record 

qty. 

 
Data 

Period 
Output 

1) 15 

β (h,-t), where h and t  
are equal to 30, 40, 50, 
60 e 70 meters and 00, 
15, 30, 45, 60 and 120 
minutes, respectively

u(h,-t), v(h, -t), wa 
(h,-t),  EDR (h,-t) 
and TKE(h,t), 
where h and t  are 
equal to  30, 40, 50, 
60 e 70 meters and 
0, 15, 30, 45, 60 and 
120 minutes, 
respectively 

150 70,080 
2017 to 

2018 Visibility-
range-t (where 
range is equal 
to 4,500, 3,700, 

1,600 m) and/or 
Ceiling-range-t 
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ix. Training-test experiments for each lead time are 
carried out using the categorical or regressive original data 
set with Auto-WEKA (version 2.0) [27]. In this tool all 
available algorithms are tested and their hyperparameters 
optimized, which employs the unmodified dataset 
partitioned into 70% training and 30% testing (thus the 
step iv is ignored in here)[26]. Each experiment yields 
a ranking of  the top-performing algorithms from best 
to worst.

3.2. Algorithm evaluation

The WEKA software with several classical statistics 
is used to evaluate the performance of  categorical and 
regressive algorithms. The categorical algorithms have 
their forecasts versus the observed values by using a 
two-dimensional contingency table that makes it possible 
to determine the following categorical statistics [29]: (1) 
probability of  detection (POD) that is a measured fraction 
of  observed events that were correctly predicted. A perfect 
score is 1; (2) False alarm ratio (FAR), is a measure of  
the fraction of  YES predictions in which the event did 
not occur. A perfect score is 0; (3) BIAS, measures the 
proportion of  the event frequency prediction by the 
frequency of  the observed events. The perfect score is 1; 
(4) F-measure (F-M), is a measure of  the accuracy of  a 
test. The perfect score is 1; and (5) KAPPA, is a way of  
measuring the performance of  the binary classification 
algorithms where the perfect agreement is 1 ([30]). 

The WEKA software evaluates regressive algorithms 
that have their performances mainly evaluated by the four 
following statistics [29]: (1) correlation coefficient (CC) 
that represents a measure of  linear correlation between 
the forecasts and observations. It varies from +1 and 1, 
where here values near 1 are desired; (2) mean absolute 
error (MAE), which is a measure of  error between paired 
observation and forecasts. The perfect score is zero; and 
(3) Relative absolute error (RAE), is expressed as a ratio, 
comparing a mean residual error to errors produced by 
a trivial method. The result of  a practical method (or its 
predictions are better than a trivial method) generates a 
ratio of  less than one.

3.3. Characteristics of  the selected ML algorithms

The statistical evaluation of  All WEKA’s algorithms 
with default configuration given in step vii indicated that 
the following five algorithms performed better than the 
others and given as follows:

1) Bayes Net (BN) is a classifier based on the 
construction of  a Bayesian network, using various 
research algorithms and quality measures, provides data 

ii. Examine the history of  event occurrences that 
were limited by the airport operating Vis and Hc threshold 
values;

iii. The inputs (the meteorological variables, 
primary and derived) are selected by measuring the 
cross-correlation between a given variable and the class 
(output), and then the redundant ones are eliminated;

iv. Data sets are generated in order to train and test 
categorical and regression algorithms. For categorical 
data sets, the vector input represented by variables (in 
columns 2 and 3 of  Table 2), that meet the intervals of  
Vis(t) ≤ 4,500, 3,700, 1,600 m, are connected to respective 
outputs associated with the advanced values of  Visp(+t) 
for each leading time of  15, 30, 45, and 60 minutes. These 
inputs are then connected to a binary output (target) of  
YES or NO, depending on whether the Vis intervals are 
satisfied. For regressive data sets, the vector inputs 
(variables) are directly coupled to the advanced values 
Visp(+t)  or Hc(+t)/Cq(+t) values of  each leading time of  
15, 30, 45, and 60 minutes (because of  the uncertainty 
in the observation of  ceiling data, only regressive 
algorithms were used for ceiling prediction); 

v. The data sets (categorical and regressive) are 
then randomly divided into 60% for training and 40% 
for testing the categorical and regressive algorithms, 
respectively. It is a frequent practice to avoid overfitting, 
which occurs when a statistical model fits previously 
observed data very well but fails to predict new results.

vi. The YES and NO records of  the categorical 
algorithms training dataset, defined in step v, are 
balanced through the WEKA ClassBalancer option in 
four configurations: (1) unmodified data set, (2) 50% 
YES, and 50% NO, (3) 60% YES and 40% NO, (4) 65% 
YES and 35% NO for the lead times using operational 
thresholds. For regressive algorithms, the training 
test data sets are as defined as given step iv without any 
artificial adjustment;

vii. Cross-validation approach (this includes dividing 
the complete data set into k mutually exclusive subsets 
of  the same size, one for testing and the remaining k-1 
for parameter estimation and assessing the algorithm’s 
accuracy, [28]) is used to train all categorical algorithms 
available in WEKA, with the four training dataset 
configurations defined in step vi. Similarly, regressive 
algorithms are trained. The forecast preliminary findings 
are examined, and the algorithms with the highest 
performance (here referred to as selected ones) are 
chosen for future examination. 

viii. Using the proper test dataset to run the 
algorithm tests. Sections 4.3, 4.4, 4.5, and 4.6 discuss the 
results of  the highest performing category and regressive 
selected algorithms with WEKA´s default configuration.
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Figure 2: Represent the hourly (a) and monthly (b) distribution of 15-min meteorological records whose 
visibility are below or equal to the limits of 4,500 (bar and line in gray), 3,700 (bar and line in blue), and 1,600 
(bar and line in orange) meters, respectively.

4. RESULTS

In this section, results are presented for Vis and Hc 
predictions using the five algorithms explained in the 
method section.

4.1. Visibility thresholds

The data set had the occurrence of  11,070, 3,996, 
and 728 low visibility events at 15-min intervals with Visp 
≤ 4,500, 3,700, and 1,600 meters, respectively. Figure 2 
illustrates the hourly (a) and monthly (b) distributions 
of  these events. This reveals that the three main aircraft 
landing procedures, (1) RNAV / GNSS, (2) NDB and (3) 
RNAV / RNP (Table 1) in some ways are compromised 
by the visibility restriction in every hour of  the day, being 
a critical period just before sunrise until close to noon 
(approximately from 06 am to 11 am), throughout all 
months and the critical period is between May and July.

structures, network structures, and conditional probability 
distributions, and can classify binary, class values absent, and 
nominal class. [25]; 2) Multilayer Perceptron (MP) consists 
of  standard perceptron with a defined number of  hidden 
units using the activation function (for example, ReLu or 
sigmoid) and optimization based on minimizing the loss of  
quadratic error function [25]; 3) Random Forest (RF) is a 
classifier that consists of  a collection of  tree classifiers and 
is trained in different subsets of  input resources and the 
one with the best performance is chosen [31]; 4) REPTree 
(RT) is a quick decision tree, which uses the logic of  the 
decision and regression tree and creates several trees in 
different iterations, selecting the best of  all trees generated 
through the mean square error [25]; and 5) Hoeffding 
Tree (HT) consists of  a decision tree induction algorithm 
capable of  learning from large data streams, assuming that 
the distribution generation examples do not change over 
time, as well as exploring the fact that a small sample may 
be sufficient to choose an ideal division attribute [25].
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4.2. Ceiling thresholds

Similar to Vis analysis, using ceiling-related threshold, 
Figure 3 illustrates the hourly (a) and monthly (b) 
distributions of  4,736 events with Hc ≤ 1,000 ft from 
May to July, which is the most critical period. Figure 3b 
reveals that the RNAV / GNSS (1) landing procedure is 
affected somehow for the entire day. The critical period 
was usually occurring before sunrise until close to noon 
(06 am-11 am).

4.3. Algorithm Training and Results

The task of  training and testing machine learning 
algorithms is time-consuming, and success depends 
directly on the choice of  variables (input) that 
characterizes weather hazard conditions such as 

the local thermodynamic state of  the atmosphere 
that precedes the occurrence of  restrictions on the 
operational thresholds of  Vis and Hc. Table 2 shows the 
253 meteorological variables called primary and derived 
ones that are possible predictors. Thus, disregarding the 
150 variables generated by SODAR (data source 1) in 
method´s step vi the cross-correlation of  the remaining 
103 variables were analyzed and the redundant ones were 
eliminated, resulting in an input data set consisting of  20 
components, namely: month, Julian day, hour, θdir (2,0), 
Uh (2,0), Uh (2,-15), Uh (2,-30), cl(0), Clcc (0), Ta (2,0), 
Td (2,0), RHw (2,0), Ps (2,0), Visp(0), Visp(-15), Visp(-30), 
Visp(-45), Visp(-60), and Visp(-120). These were the inputs 
used in the various training procedures for the Vis and 
Hc prediction algorithms. For experiments of  training 
algorithms that included data from SODAR, the cross-
correlation of  the variables was also analyzed.

Figure 3: Represent the hourly (a) and monthly (b) distribution of 4,736 15-min meteorological 
records whose ceiling was ≤ 1,000 ft.

(b)

(a)
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Several experiments of  training and testing via 
cross-validation for 15-min forecasting of  Visp ≤ 4,500 
meters and Hc ≤ 1,000 feet were carried out using all 
available WEKA’s algorithms with the goal of  selecting 
ML WEKA’s algorithms for future investigation (step 
vii). Following an evaluation of  the performance results 
of  the algorithms, the five algorithms in Section 3.2 were 
selected and discussed further below.

4.4. Visibility categorical nowcasting

Experiments were carried out in order to assess 
visibility forecasts, and the following requirements 
were satisfied, namely: 1) the five categorical WEKA 

algorithms selected (step viii in the method section), 2) 
the three visibility thresholds are used as Visp ≤ 4,500, ≤ 
3,700, and ≤ 1,600; 3) the four lead times having at 15 
min intervals up to 60 min, and 4) data set configuration 
based on using SODAR data or not, and using the Auto-
WEKA support (namely Auto-WEKA default). 

Tables 3 and 4 show the best test results of  the 15- 
and 30-min predictions for the three defined visibility 
thresholds for the five selected algorithms (here called 
optimal). It is observed that the performance of  the 
forecast decreases as the lead time increases and the 
visibility limit decreases. Just so that all statistics have 
the unit’s ideal value, 1-FAR is adopted. Here it is 
defined whether a given method (the latter are defined 

Table 3: Statistical test results of 15-minute VIS forecasts ≤ 4,500 (a), 3,700 (b), and 1,600 (c) meters for the five algorithms selected with input 

from ASWS (source 2) and observer (source 3), and the results highlighted in gray are those that also included data from SODAR (source 1).
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as the trained and tested algorithms) has the satisfactory 
performance to predict visibility for a given lead time when 
their POD and 1-FAR values are ≥ 0.8. Table 3 highlights 
the statistical results of  the 15-minute forecast (and those 
satisfactory algorithms in bold) for visibility thresholds and 
they reveal that eleven algorithms performed coherently 
since the averages of  the categorical statistics are almost 
close to the perfect score (value in parentheses), which 
are: POD (Y, N) (0.884 ± 0.012, 0.999±0.000), 1-FAR 
(Y,N) (0.996 ± 0.005, 0.884 ±0.012), F-M (Y, N) (0.891 ± 
0.011, 0.998± 0.001), BIAS (Y,N) (1.016 ± 0.022, 1.000 
± 0.000), KAPPA (0.89 ± 0.008).

As previously analyzed, Table 4 also shows 
the best performance algorithms (and those 

satisfactory algorithms in bold), by visibility limit, 
30-minute forecast. It is observed that no algorithm 
obtained POD (V) greater than 80% for the limit 
of  VIS ≤ 3,700 meters and there are only three 
algorithms, i.e., one and two for VIS ≤ 4,500 and VIS 
≤1,600, respectively, with satisfactory performance. 
The evaluation statistics suffered a percentage 
reduction (in parentheses) in relation to the 15-min 
predictions, as follows: POD(S,N) (7.53%, 0.08%), 
1-FAR(S,N) (0.08%, 7.53%), F-M(S,N) (5.28%, 
0.14%), BIAS(S,N) (5.06%, 0.06%), KAPPA(S, N) 
(10.89%, 0.008%). The results of  the 45- and 60-
min forecasts have deteriorated significantly and are 
therefore not discussed.

Table 4: Statistical test results of 30-minute VIS forecasts ≤ 4,500 (a), 3,700 (b), and 1,600 (c) meters for the five algorithms selected with input 
from ASWS (source 2) and observer (source 3), and the results highlighted in gray are those that also included data from SODAR (source 1).
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4.5. Visibility regressive nowcasting

Similarly, in the previous case, the experiments 
were run out employing regressive algorithms 
while considering conditions, which are as 
follows: 1) the five WEKA regressive algorithms 
selected, 2) the three visibility thresholds are 
used as Visp = 4,500, = 3,700, and = 1,600 the 
four lead times of  15 min intervals up to 60 min, 
3) for the data set of  four delivery times, and 4) 
two data sets including SODAR data or not and 
using the Auto-WEKA support. Table 5 shows the 
summary of  the best statistical results for the test 
experiments with regressive algorithms for all lead 
time and it is noted that RF is the algorithm with 
the best performance regardless of  the input data 
set or the lead time considered. All predictions 
are almost perfectly correlated (column 4), which 
means that the trends of  the predicted values 
follow the behavior of  the observations almost 
perfectly. Figure 4 shows the three thresholds 
(± MAE) of  visibility represented by the black 
lines and their respective minimum (cross) and 
maximum (black triangle) errors for better 15-, 
30-, 45-, 60-min predictions. It is also noted that 
the results are quite reliable because the variations 
in meters of  the visibility forecasts, regardless 

the lead time, for 4,500, 3,700 and 1,600, vary 
within the following ranges of  [4,148; 4,852], 
[3,348; 4,052], and [1,248; 1,952], representing 
maximum percentage changes for each respective 
visibility limit equal to 7.8%, 9.5%], and 22%, 
respectively. In short, assuming here that the 
absolute maximum percentage acceptable error 
of  forecasting the visibility of  a given method is 
equal to 20%, the results of  the predictions with 
the regressive algorithms are more expressive 
than with the categorical ones since these remain 
consistent and close to the observations for the 
entire forecast time.

Algorithm Lead time 
(minute)

Input data 
source

CC MAE 
(meter)

RAE

RF 15 1, 2 and 3 0.99 198.58 0.04
RF 15 2 and 3 0.99 189.85 0.04
RF 30 1, 2 and 3 0.99 304.86 0.06
RF 30 2 and 3 0.99 291.38 0.06
RF 45 1, 2 and 3 0.99 378.70 0.08
RF 45 2 and 3 0.99 351.85 0.07
RF 60 1, 2 and 3 0.99 409.32 0.08
RF 60 2 and 3 0.99 343.88 0.07

Figure 4: Minimum (cross) and maximum (black triangle) errors for each visibility thresholds (± mean absolute error), 
represented by the horizontal black lines at 4,500, 3,700, and 1,600 meters of the best regressive forecasts of 15, 30, 45, 
60 minutes in Table 5.

Table 5: Better statistical results of short-term visibility forecast using 
regressive algorithms and whose training was performed using the 
data set with the configuration (5) whose records are divided as 
Auto-WEKA default.
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Figure 5 exemplifies the performance of  the 
set of  predictions and the observations for a 
low-visibility event that occurred between 5 am 
and 1 pm on June 23, 2009. Regardless of  the 
forecast time, it is noted that the 15-, 30-, 45- and 
60-min visibility forecasts followed the behavior 
of  the observation (black line in Fig. 5) with all 
correlation coefficients > 0.95 and their mean 
absolute errors are ≤ 321 meters. This can be 
verified through the behavior of  the predicted 
visibilities, as they followed the observations 
almost perfectly, that is, they decreased at 5:45 
am, remained relatively stable after 8:00 am - 
when the observed visibility oscillated close to 
1,000 meters -, and increased with the increase 
in observations from 11:45 am. Furthermore, 
the 15-, 30-, 45-, and 60-min forecasts slightly 
overestimated the observations (based on the 
mean error of  forecast-observation values for 
each leading time) by about 146.4, 121.9, 224.2, 
and 292.1 meter, respectively.

4.6. Ceiling nowcasting

Before presenting the results of  the algorithms 
for forecasting the ceiling and the quantity of  

clouds, it is important to mention that the SODAR 
data was collected in the period 2017-2018 and 
during this period the ceilometer, part of  the 
ASWS instrument panel, was inoperative. Thus, the 
training of  the algorithms for the ceiling is limited 
to the period 2009-2016 and that is why the results 
in Table 6 are missing data from SODAR. Table 
6 shows a summary of  the best results for the 
ceiling test experiments with regressive algorithms 
for all lead times. Similarly, to the visibility 
results, the RF algorithm also resulted in the best 
performance of  ceiling forecasts, regardless of  
the input data set or the lead time considered. It is 
also observed that the predicted values of  Hc/Cq 
of  15-, 30-, 45- and 60-min are highly correlated 
with the observations with their values varying in 
the range of  [0.96;0.97]/[0.77;0.86], respectively 
(column 4, Table 6) and the observations are 
close to the predictions since the MAE and the 
RAE, specifically for ceiling, vary in the ranges of  
[126.13;195.19] and [0.10;0.16], respectively. The 
results of  the three ceiling thresholds (i.e., 1,200, 
1,000, and 300 feet) can be considered encouraging 
since they vary approximately within the following 
ranges of  Hc [1,005; 1,395], [805; 1,195] and [105; 
495], respectively.

Figure 5: Regressive forecasts of visibilities and observations in the period from 5 am to 1 pm on June 23, 2009.
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5. CONCLUSION

This study proposes a set of  objective 
methods based on ML (the latter are defined 
as the trained and tested algorithms), with an 
extremely low computational cost but capable 
of  making short-term forecasts up to 60 min 
for the operational thresholds related to the 
visibility and ceiling reporting periods for the 
airport operations. 

Analysis of  historical meteorological data 
suggested that the weather conditions at any 
airport can be more impacted by the restriction 
of  visibility than the ceiling, and the critical 
period of  the day is just before sunrise until close 
to noon during May, June, and July. The results 
with optimal categorical methods of  the visibility 
predictions are satisfactory in 15 minutes and have 
not been successful in any forecast for the ceiling. 
On the other hand, the ceiling and visibility 
predictions, based on regressive methods, up to 
60 min are encouraging since the values of  the 
metrics are quite acceptable. 

In summary following conclusions can be drawn 
from the present work:

• ML algorithms resulted in up to 20% better 
prediction in Vis when regressive techniques 
were used with a significant amount of  
reliable data;

• Training data sets need to be improved 
accura t e l y  in  t empora l  and  space 
resolutions and use of  data from sensors 
(visibility meters, ceilometer, etc.) instead 
of  human observations. When sensor’s 
observations were used in training, ML 

algorithms resulted more accurate Vis and 
Hc predictions;

• The 1-h Vis and Hc data obtained by 
observers may not follow the dynamics 
of  some meteorological phenomena, 
impairing the asser t iveness of  the 
method. Furthermore, observations 
provide a spatial resolution for Vis, 
which may reduce the efficacy of  the 
algorithm’s training compared to a 
continuous sensor Vis collection. It is 
obvious that the lack of  lengthier history 
series for the SODAR data profiles, the 
absence of  visibility sensor usage, and 
the ceilometer’s inoperability since 2016 
were all factors that led to the trained 
algorithm’s performance decline; and

• Based on the results, it is concluded 
that the ML methods proposed here can 
identify the visibility and ceiling restrictions 
accurately and, thus, can improve short 
term forecast up to 1 hr. Thus, the new 
ML based methods can be considered as an 
alternative for operational forecasts based 
on NWP models. 

In the future, it intends to use a numerical 
weather forecasting model to simulate the 
atmospheric conditions of  visibil ity and 
ceiling limits, followed by training-testing 
ML algorithms with simulated numerical and 
observations - including a long series of  high-
frequency data sampling from sources such as 
SODAR, ceilometer, and automatic weather 
station - to extend the prediction time beyond 
one hour.
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Table 6: Better statistical results of short-term Hc/Cq forecast using 
regressive algorithms and whose training was performed using the 
data set with the configuration 5) whose records are divided as 
Auto-WEKA default.

Algorithm Lead time 

(minute)

Input data 

source

CC MAE 
(feet/okta)

RAE

RF 15 2 and 3 0.97 126.13 feet 0.1
RF 15 2 and 3 0.86 0.55 okta 0.32
RF 30 2 and 3 0.97 166.02 feet 0.14
RF 30 2 and 3 0.81 0.69 okta 0.4
RF 45 2 and 3 0.96 182.95 feet 0.15
RF 45 2 and 3 0.83 0.63 okta 0.37
RF 60 2 and 3 0.96 195.19 feet 0.16
RF 60 2 and 3 0.77 0.77 okta 0.44
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Multi-criteria fog forecast based on WRF simulations for 
Afonso Pena International Airport

José Eduardo Gonçalves Platenik

ABSTRACT

It provides a method for 24-hour fog forecasting at 
Curitiba’s Afonso Pena International Airport, Brazil. 
Eighty-one fog events from May to July 2019 were 
utilized to develop, test, and train the multi-criteria 
approach (decision tree), and their 15-minute 
reconstructions and records were made by the 
Weather Research and Forecasting (WRF) model 
and an automatic weather station, respectively. The 
correlation for the predicted and observed temperature, 
relative humidity, and wind speed data are equal to 
0.93, 0.89, and 0.74, respectively. The application 
of the four established multi-criteriaindicates that 
the probability ofdetection by criteria I, II, III, and 
IVof the fogevents forecastfor the onset (demise in 
parentheses) are, respectively, 93.22% (91.53%), 
93.22% (93.75%), 88.14% (88.75%) and 90% (87.5%).
The fog forecastsare slightly biased, i.e.,a delayed 
onset and anticipated demise in 30 minutes or less.

Keywords: fog; multi-criteria; forecast.
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1. INTRODUCTION

In general, visibility-restricting meteorological events 
like fog, precipitation, and others have a significant 
impact on airport landing and takeoff  operations. Data 
presented by Gultepeet al. (2007) show that the monetary 
losses—and occasionally the human losses—caused by 

low visibility in various societal sectors are comparable 
to the losses brought on by severe weather events like 
tornadoes and hurricanes.

Fog is defined by the World Meteorological 
Organization (WMO) as the suspension in the 
atmosphere of  water droplets or ice crystals that 
reduces horizontal visibility to less than 1,000 meters 
(WMO, 1992), and this phenomenon has a significant 
impact on some Brazilian airports’ landing and take-
off  operations (INFRAERO, 2019). Fog is frequently 
categorized as either radiation (caused by radiative loss 
cooling the Earth’s surface, typically on cloudless nights) 
or advection (caused by warm, humid air moving over a 
cooler surface). The mechanisms of  fog formation and 
classification are described in detail in the works of  Oke 
(1988), Varejão-Silva (2005), and França et al. (2018), 
among others.

Meteorological phenomena are thought to be critical 
for the organization, execution, and management of  air 
navigation and airflow management, with a focus not 
only on flight safety but also on resource and logistics 
optimization. Due to the enormous losses associated 
with fog’s effect on air travel, the aeronautical industry 
must plan and take specific safety precautions to avoid 
accidents, delays, or flight cancellations. The fog forecast 
is critical to the logistics of  flight planning and the safety 
of  air operations (Gultepe et al., 2019).

The numerical models of  weather forecasting 
(Richardson, 1922), or simply atmospheric models, which 
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Figure 1: Computational domain for WRF simulations, with nested 
grids of 9, 3, and 1 km. The black dot represents the approximate 
location of Afonso Pena International Airport.

which is regarded as critical information for optimizing 
resources and contributing to flight safety and efficiency.

Fog influences airport operations, particularly 
takeoffs and landings, to varying degrees depending 
on the airport infrastructure. According to the 2018 
operational statistical yearbook (INFRAERO, 2019), 
the Afonso Pena international airport is the sixth 
largest in the country in terms of  aircraft movement, 
and fourth in passenger movement, with approximately 
210 (two hundred and ten) landings and takeoffs daily 
and has its landing and takeoff  operations impacted by 
approximately 300 (three hundred) hours per year due 
to low visibility restrictions (Oliveira, 2019).Given the 
limitations imposed by fog on Curitiba airport, as well as 
the current degree of  subjectivity used by meteorologists 
to prepare fog forecasts for this location, more assertive 
prognostic models are required.

The goal of  this work is to develop a 24h-predictive 
fog model for the Afonso Pena International Airport 
(Curitiba) using a multiple criteria approach (decision 
tree) and observational data from the Curitiba airfield 
surface meteorological station, as well as forecasts 
generated by the WRF atmospheric model, as developed 
by Payra and Mohan (2014).

2. STUDY AREA AND DATA

Figure 1 depicts the domain used in the WRF 
simulations, as described in section 4, with nested grids of  
9, 3, and 1 km spatial resolution, centered on Afonso Pena 
International Airport, São José dos Pinhais (black dot), 
which is located at latitude 25o 32’ S and longitude 49o10’ W.

are based on partial differential equations and initialized 
from initial conditions obtained from various sources of  
observed and estimated data, are one of  the operational 
tools currently used in meteorological forecasting 
services. These models produce forecasts for basic and 
parametric meteorological quantities. Despite advances 
in the development of  atmospheric models, these must 
still be improved in order to overcome the challenge of  
confidently and accurately forecasting fog formation 
conditions, as well as its onset and end, as required by 
aviation (Gultepe, 2006; Croft & Ward, 2015).

Pereira (2014) pioneered fog forecasting work based 
on artificial neural networks for Curitiba airport, which 
is the focus of  this paper. The results show a significant 
false alarm rate of  about six times the frequency of  
the phenomenon.Payra and Mohan (2014) developed 
a procedure that provides very confident fog forecast 
results 24 hours in advance using surface meteorological 
data from New Delhi, India, and forecast data generated 
by the Weather Research and Forecasting atmospheric 
model (WRF, Skamarock et al., 2008). The results of  fog 
and non-fog occurrences indicate a hit rate of  around 
94% and an accuracy of  event onset ranging from 30 
to 90 minutes. France et al. (2018) investigated two fog 
events at Guarulhos International Airport in So Paulo, 
Brazil, using data collected at high frequency (15 minutes) 
from automatic surface stations and the vertical wind 
profile of  the lower troposphere extracted by Sound 
Detection And Ranging (SODAR) and radiosounding 
every 12 hours from Marte Airport in São Paulo, Brazil, 
demonstrating that the processes associated with low 
visibility phenomena (beginning, duration, and end) are 
similar (e.g. height of  the layer, turbulent kinetic energy, 
wind intensity, among others).

In their review of  the meteorology knowledge that is 
currently available for aeronautical operations, Gultepe et 
al. (2019) examined the variables produced by a regional 
atmospheric model to describe the boundary layer’s 
favorable environment for the occurrence of  fog.

In Brazil, the Department of  Air Space Control 
(DECEA) is the sector in charge of  providing the 
necessary means (systems and equipment) for the safe 
and efficient management, control, and security of  the 
air navigation service, as established in national standards 
and international agreements and treaties established by 
the International Civil Aviation Organization (ICAO), 
to which Brazil is a signatory (Federal Decree No. 
21,713/1946). In order to comply with ICAO standards, 
DECEA maintains an aeronautical meteorology service, 
issuing routine meteorological forecasts that include the 
forecast of  reduced horizontal visibility, whether with a 
focus on flight safety or on airflow management. air traffic, 
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Table 1 displays the specifics (source, frequency, and 
meteorological variables) of  the data used to examine 
the behavior of  visibility in the study area and establish 
here multi-criteria fog forecasting.

3. METHOD

Figure 2 depicts the steps of  the method, which are 
as follows:

Step 1: Collect data as shown in Table 1;
Step 2: Select fog events based on the visibility of  

the runway visual range;
Step 3: The WRF model is used to simulate atmospheric 

conditions, with outputs every 15 minutes beginning at 00Z 
on the day before the events (selected in Step 2), removing 
the initial 12 hours of  model spin-up. Simulations are run 
with the GFS model’s initial and boundary conditions (as 
described in Table 1). Skamarock et al. (2019) provide a 
detailed description of  the WRF model, which is used 
as a simulation tool. Several authors, including Goswami 
and Tyagi (2007), Mohan and Bhati (2011), Goswami and 
Sarkar (2017), Naira et al. (2017), and Pithani et al. (2018), 
have studied different configurations of  the WRF model 
for simulating physical processes within the boundary layer 
(e.g., fog). This work used the same WRF configuration as 
Payra and Mohan (2014), which is based on the sensitivity 
tests performed by Mohan and Bhati (2011), in this work:

a) Three computational domains covering the area 
between 20°S-34°S and 40°W-58°W were established, 

1 https://www.redemet.aer.mil.br/
2  https://rda.ucar.edu/datasets/ds084.1/
3  https://rda.ucar.edu/datasets/ds084.1/#metadata/grib2_levels.html?_do=y

Source Period Frequency Variables

Automatic Surface 
Weather Station (EMS)1 2019 15-minute

atmospheric pressure (hPa), air temperature 
(°C); Wet bulb temperature (°C), relative 
humidity (%); precipitation (mm); solar 
radiation (W/m2); Runway Visual Range 
(RVR – Runway Visual Range) (m); wind 

direction (°) and wind speed (m/s).

Meteorological Aerodrome 
Report (METAR) e Special 

Report (SPECI) 1
2019

METAR, hourly; 
SPECI, varies, can be 
registered at any time 
except the full hour.

atmospheric pressure (hPa), air temperature 
(°C); Wet bulb temperature (°C), relative 

humidity (%); wind direction (°) and wind 
speed (m/s); cloud coverage; horizontal 

visibility (unit of  length); weather present.

Global Forecast System 
(GFS) / National Centers 

for Environmental 
Prediction (NCEP) 1

2015-present 3-hour Initialization and contour variables for 
simulations with the WRF2 model2

roughly centered on the Afonso Pena International 
Airport (Figure 1). In the three domains, the horizontal 
resolutions are 9 km (60 x 60 grid points), 3 km (112 x 97 
points), and 1 km (214 x 160 points) (Figure 1);

b) According to Payra and Mohan (2014), a vertical 
discretization with 33 levels is used, with 10 levels below 
2,500 meters; and

c) The parameterizations of  physical processes were 
selected: Kessler Scheme (Kessler, 1969) for microphysics, 
Kain-Fritsch Scheme (Kain, 2004) for cumulus; Rapid 
Radiative Transfer Model- RRTMG (Iacono et al., 2008) 
for long and short wave radiation; Mellor-Yamada-Janjic 
Scheme (MYJ) (Janjic, 1994) for planetary boundary layer; 
and Noah-MP Land Surface Model (Niu et al., 2011; Yang 
et al., 2011) for surface processes; Eta Similarity Scheme 
(Janjic, 1994) for surface layer.

Step 4: The behavior of  a sample of  observational 
data (temperature, relative humidity, and wind speed 
and direction) from the events is compared to data 
simulated by the WRF (for the grid point closest to the 
airport), using the fog formation principle described, 
for example, in Oke (1988), Varejão-Silva (2005), 
and Payra and Mohan (2014). Thus, multi-criteria 
(intervals of  meteorological variable behavior) are 
established for detecting fog formation and dissipation 
conditions; and

Step 5: Performance is statistically assessed after 
multi-criteria are applied to an independent test sample 
of  fog events.

Table 1: Data used.
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4. RESULTS

4.1 Fog Selection

Eighty-one fog events that took place over a 
period of  thirty days between May and July 2019 
were chosen for this study. Twenty-two events 
were used to create the multi-criteria, and fifty-
nine events were used to assess them, as shown 
in Table 2.

4 .2  WRF s imula t ion  and  mul t i -c r i te r ia 
establishment

All events in Table 2 were simulated using 
the WRF atmospheric model in accordance with 
the setup described in step 3 of  the method, and 
both the observed and jointly modeled data were 
examined. Observing the behavior of  variable 
temperature, relative humidity, and wind speed in 
15-minute intervals, the observed correlations are 
0.93, 0.89, and 0.74, respectively. Figures 3a, 3b, 3c, 
3d, and 3e show the behaviors of  observations and 
WRF simulations of  temperature at 2 m, relative 
humidity, wind speed, wind direction, and wind 
speed for the twenty and two fog events used to 
establish the multicriteria, respectively.

In most cases, criteria must be established 
through a process of  trial and error, which 

Figure 2: Block diagram of method steps.

takes time, until an ideal balance between false 
alarm reduction and event detection is found. 
The following criteria were established based 
on the behavior of  the observed and predicted 
meteorological variables:

I)    relative air humidity greater than 95% and 
wind speed between 0.5 m/s and 3 m/s;

II)  relative air humidity greater than 95% and 
air temperature at a height of  2 m, between 8o C 
and 16o C;

III) relative air humidity greater than 95%; 
wind speed between 0.5 m/s and 3 m/s; air 
temperature at 2 m height between 8o C and 16o 
C; and 

IV)  relative air humidity greater than 95%;

4.3 Application of  multicriteria and evaluation

The 15-minute results of  applying the four 
criteria as specified in step 4 of  the method 
and established in item 5.2 are shown in Table 
3. Each line shows the date, the start and end 
of  the period during which the fog events 
occurred (column 4), the overall length of  the 
events during the period, and the other columns 
show the application of  the four criteria—that 
is, whether the event meets the requirements 
for beginning or ending (columns 6 to 9) and 
termination (columns 10 to 13), respectively.                                                           
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Results indicate that criteria I and II slightly 
outperform criteria III and IV when applied 
separately. It has been found that criteria I (related 
to relative humidity and wind speed), II (related to 
relative humidity and temperature at 2 m), III (related 
to relative humidity, wind speed, and temperature at 2 
m), and IV (related to relative humidity, wind speed, 
wind direction, and temperature at 2 m) are able to 

Day Date Onset (h) Demise (h)
Number of fog event

(Visibility<1.000 meters)
Used for

1 26/05/19 04:30 12:30 3

Establishment of

Multi-criteria

2 27/05/19 01:45 10:45 4
3 04/06/19 00:00 10:00 4
4 07/06/19 03:45 11:40 2
5 11/06/19 01:45 23:00 3
6 12/06/19 03:30 10:45 2
7 25/07/19 04:30 04:45 1
8 26/07/19 06:30 10:30 3
9 03/05/19 00:45 11:30 3

Evaluation

10 04/05/19 07:30 10:45 4
11 05/05/19 08:15 08:30 1
12 21/05/19 00:00 12:30 3
13 22/05/19 03:30 10:00 5
14 08/06/19 05:45 09:45 3
15 09/06/19 05:15 12:45 2
16 10/06/19 09:00 10:45 2
17 13/06/19 04:45 10:45 6
18 18/06/19 04:15 07:15 1
19 19/06/19 05:30 09:45 2
20 22/06/19 04:00 04:15 1
21 23/06/19 04:00 13:00 2
22 24/06/19 08:15 08:30 1
23 09/07/19 00:45 13:15 2
24 10/07/19 01:30 03:15 1
25 11/07/19 04:00 09:45 2
26 12/07/19 04:00 11:00 5
27 20/07/19 10:15 12:30 1
28 24/07/19 08:00 10:30 3
29 27/07/19 07:00 07:30 1
30 31/07/19 02:45 00:00 8

Table 2: Fog events selected for establishment and evaluation of the multi-criteria.

predict the start (end in parentheses) with respective 
hit rates of  93.22% (91.53%), 93.22% (93.75%), 
88.14% (88.75%), and 90% (87.5%). The criteria 
typically cause events to begin 15 to 30 minutes 
later and end 15 to 30 minutes earlier. In short, the 
findings show that the forecasting power is reduced 
by the addition of  meteorological variables, such as 
in criteria III and IV.
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Figure 3: Observed (dash line) and simulated (continuous line) behavior of: a. temperature at 2 m, b. relative humidity at 2 m, c. wind 
speed for the period between May 3 and 5, 2019. Figures 3d and 3e represent the observed and simulated wind speed and direction, 
respectively, for the 8 days of fog events used to establish the multi-criteria.
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5. CONCLUSION

In this work, multiple criteria are established 
for forecasting the beginning and end of  fog 
events, with a lead time of  24 hours, for Afonso 
Pena International Airport, Paraná - Brazil. These 
criteria are based on data modeled by the WRF 
atmospheric model and observed data. The results 
show that the multi-criteria can forecast when a 

Day Onset 
(h) End (h) Event Duration 

(h)
Forecast Criterion (onset) Forecast Criterion (End)

I II III IV I II III IV

03/05/19 00:45 11:30 3 04:30 yes yes no no yes yes no no

04/05/19 07:30 10:45 4 01:15 no no no no yes yes no no

05/05/19 08:15 08:30 1 00:15 yes yes no no yes yes no no

21/05/19 00:00 12:30 3 12:00 yes yes yes yes yes yes yes yes

22/05/19 03:30 10:00 5 00:45 yes yes yes yes yes yes yes yes

08/06/19 05:45 09:45 3 02:00 yes yes yes yes yes yes no no

09/06/19 05:15 12:45 2 06:00 no no no no no no no no

10/06/19 09:00 10:45 2 01:30 yes yes yes yes yes yes yes yes

13/06/19 04:45 10:45 6 13:00 yes yes yes yes yes yes yes yes

18/06/19 04:15 07:15 1 03:00 yes yes yes yes yes yes yes yes

19/06/19 05:30 09:45 2 02:30 yes yes yes no yes yes yes yes

22/06/19 04:00 04:15 1 00:15 no no no no no no no no

23/06/19 04:00 13:00 2 08:45 yes yes yes yes no no no no

24/06/19 08:15 08:30 1 00:15 yes yes yes yes yes yes yes yes

09/07/19 00:45 13:15 2 12:00 yes yes no no no no no no

10/07/19 01:30 03:15 1 01:45 yes yes yes yes yes yes yes yes

11/07/19 04:00 09:45 2 00:30 no no no no yes yes no no

12/07/19 04:00 11:00 5 04:00 yes yes yes yes no no no no

20/07/19 10:15 12:30 1 02:15 yes yes yes yes yes yes yes no

24/07/19 08:00 10:30 3 00:45 yes yes yes yes yes yes yes yes

27/07/19 07:00 07:30 1 00:30 yes yes yes yes yes yes yes yes

31/07/19 02:45 00:00 8 05:00 yes yes yes yes yes yes yes yes

Hitting rate 93% 93% 88% 90% 91% 93% 88% 87%

Table 3: List of days where fog occurred that was used to assess the four established criteria.

fog event will start and end, but it is noted that 
the established criteria have a slight tendency to 
postpone the fog’s beginning and anticipate its end. 
To ensure statistical consistency of  the results, it 
is planned to expand the sample of  data that 
has been analyzed. Additionally, computational 
intelligence (such as neural networks and decision 
trees) will be used to operationalize the developed 
model in the future.
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Fog at the Guarulhos International Airport from 1951 to 2015 

Gutemberg Borges França

Abstract

This paper presents and discusses the fog 
occurrences before and after the construction 
of the Guarulhos International Airport,usingdata 
from 1951 to 2015. The analysis showed the 
following: 1) A total of 19,816 hours of fog were 
registered. 2) The  minimum average, mean 
and maximum average of the fog temperature 
had significantlyincreased after the airport was 
constructed from 1.2°C to 6.9°C, 12.1°C to 14.5°C 
and 20.2°C to 20.7°C, respectively, due to the 
urban development around the airport during the 
study period. 3) The average fog hours per year 
decreased by approximately 73.1%, i.e., from 
492±84.45 to 132±54.51 hours per year. 4) Most 
of the fog events occurred due to longwave cooling 
on clear nights with relatively low wind speeds 
(characterizing radiation fog), with over 65% having 
duration of 2 hours and occurring in the early hours 
of the day during March-September period. 5) The 
maximum probability of fog occurrence dropped 
about 10% from before to after the construction of 
the airport. Finally, two fog events are investigated 
using data collected during the fog evolution using 
atmospheric sounding profiles (from an acoustic 
sounder) and automatic meteorological stations 
and preliminary results showed that the values of 
cooling rate and turbulent kinetic energy play key 
roles in the onset and growth-dissipation phases 
of the fog, respectively.
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1. INTRODUCTION

Fog is the majorrestrictive physical phenomenon 
that influences the landing and take-off  operations at 
Guarulhos International Airport, São Paulo, Brazil. 
Restricted visibility for take-off  and landing means 
that flights will be diverted or delayed,thereby causing 
substantial financial losses in the aviation and related 
sectors. According WMO (1966), fog is defined as 
microscopic water droplets or ice crystals suspended 
in air that reduce horizontal visibility to less than 
1,000 meters. It is usual to classify fog event based 
on its geneses as radiation fog (caused by cooling 
thermal radiation at the land surface, predominantly 
cloud-free atmosphere) and advection fog (caused 
by the blowing of  warm-humid air on a cooler 
land/water surface). Studies about fog formation 
and forecasting have been conducted over time, for 
example, Emmons and Montgomery (1947) described 
the process of  fog formation; Kunkel (1984) studied 
the parameterization for extinction coefficients and 
mean terminal velocities based on 11 fogs drop size 
measurements;Bott et al. (1990) and  Bott (1991) had 
invetigated the microphysics and physico-chemical 
properties of  aerosols of  radiation fog;  Bergot and 
Guedalia (1994), Teixeira (1999) and Bergot et al. 
(2005) carried out studies on fog prediction using 
deterministic models;Tardif  (2007) studied radiation 

Manoel Valdonel de Almeida

Francisco Leite de Albuquerque Neto

I

I

Published in: Pure and Applied Geophysics, 2019, https://doi.org/10.1007/s00024-018-1781-5



149Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

fog and the impacts on vertical resolution in the 
numerical prediction model;  Gultepe and Milbrandt 
(2007) and Gultepe et al. (2009) had been carried out 
studies about fog forecasting based on field campaigns, 
which had been investigated marine and continental 
fog conditions. In particular, Silva Dias and Jaschke 
Machado (1997) used a regional-scale numerical 
model to investigate the local circulation evolution 
and its impacts on convection and nocturnal fog 
occurrence in São Paulo. Oliveira (2002) proposed 
an alternative stochastic model for fog forecasting 
for the Guarulhos International Airport. Fedorova 
et al. (2008) investigated the physical and synoptic 
processes of  fog and stratus cloud formation over 
the northern and southern coasts of  Brazil, and 
Fedorova et al. (2013) investigated the visibility and its 
forecasting at the Maceio International Airport in the 
Brazilian Northeast. Da Rocha et al. (2015) evaluated 
the impact of  the horizontal resolution of  a regional 
climate model on reproducing local climate features 
caused by foggy conditionsat the Metropolitan Area 
of  São Paulo. Colabone et al. (2015) proposed a 
neural network-based fog nowcastingmodel for the 
Brazilian Air Force airfield, called Campo Fontenelle, 
in Pirassununga city in the State of  São Paulo, Brazil.
Silva et al. (2016) proposed a conceptual model for 
runway changes based on acoustic sound data for 
the Guarulhos International Airport. The latter is 
the largest airport in Brazil based on the number 
of  passengers served and is also the hub for most 
national/international aviation companies operating in 
Brazil. The airport is often affected by fog eventsevery 
year bringing major problems to landing and take-off  
operations and thus was recently equipped with an 
acoustic sounder, or SODAR, aiming to study fog 
evolution by observing the top fog layer. Therefore, 
the objective of  this work is to present an unique 
diagnostic of  the variations and daily probability 

fog occurrences before and after construction ofthe 
Guarulhos International Airport, São Paulo, Brazil, 
based on data collection from 1951 to 2015 and, also, 
show the preliminary results of  the characterizations 
of  fog events using high temporal resolution data 
from a SODAR and automatic meteorological stations.

2. STUDY REGION AND DATA

The Guarulhos International Airport was 
inaugurated on 20 January 1985 and originatedas a 
Brazilian Air Force airfield called Cumbica, which, 
in the Tupi-Guarani indigenous language, means low 
cloud or fog. In fact, the Guarulhos airport location 
favors the formation of  fog since its runways are 
located near the Forest of  Cantareira Mountain and 
permanent marsh region due to waters from the 
Baquirivu-Guaçu River. Figure 1 gives an overview of  
the study area. Over time, the data collection facilities 
at the Guarulhos International Airport havebeen 
improved. Table 1 provides details about the dataset 
used to characterize the fog events in this work. Most 
of  the fog data used herewere generated from human 
observations, except for the period starting in 2006 
when an Automatic Meteorological Station (AMS) was 
installed. In addition, the visibilitieson the two runways 
were automatically registered by Runway Visual Range 
(RVR – MITRAS Transmissometer-Vaisala) starting 
in 2005. Table 1 specifies the meteorological variables 
used, which are represented by W, u, v w, BLH, TKE, 
PRP and RH, which correspond to surface wind (i.e., 
direction in degrees and speed in m.s-1 or knots), 
zonal wind component, meridional wind component, 
vertical wind component, boundary layer height (km), 
turbulent kinetic energy (m2/s2), precipitation (mm) 
and relative humidity (%), respectively. To standardize 
the differences between the automatically collected 
information, including the instantaneous visibility 

Data Source Meterological Variable Sampling frequency Period

SODAR u, v, w, BLH and TKE 15-minute 2011-2015

Conventional 
meteorological station

W, Tair, RH, PRP and AP. 1-hour 1951-2006

Automated meteorological 
station

W, Tair, RH, PRP and Atmospheric pression. 1-minute 2006-2015

VAISALA - RVR Visibility 1-second 2005-2015

Table 1 : Meteorological variables usedand their data sources.
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Guarulhos International Airport caused by the 
construction of  new roads, houses, buildings 
and population increase.Figure 2 (b) shows the 
variation minimum average (dotted line), mean 
(solid line)  and maximum average (dashed line) 
of  the fog Tair per year during the data period 
and the gray rectangle represents data recorded 
in period (2), as in Figure 2 (a). And it can be 
observed that there were significant increases in 
the mean values   of  minimum average, mean and 
maximum average of  the fog Tair,   between period 
(1) and period (3), from 1.2°C to 6.9°C (this is one 
more expressive of  5.65 times), 12.1°C to 14.5°C 
and 20.2°C to 20.7°C, respectively.

Figure 3 shows the percentage variations 
of  FH versus the hour of  the day (local time) 
corresponding to 19.816 events (or hours) with 
visibilities of  less than 1 km at the Guarulhos 
International Airportduring the period from 
1951 to 2015. The highest frequencies of  fog 
occurrence (representing 91.1% of  fog population)
are distributed in early hours of  the day, i.e., 
from 00 to 09h (local time), with peak frequency 
of  15.6% at the time of  sunrise at 06h, and the 
main reason is that the most fog events in the 
study area are generated due to longwave cooling 
on predominantly cloud-free atmosphere with 
relatively low wind speeds (which typifies a 
radiation fog), as discussed here in section 4. 

registered by the RVR, and that collected by human 
beings, only the fog events that lasted a full hour (i.e., 
one hour, two hours, etc.) were included in the study; 
therefore, the fog climatology presented in the results 
sections may be slightly less than that observed. 

3. DISCUSSION OF RESULTS 

Figure 2 (a) shows the average of  Tair and the 
variations of  fog hours per year during the period 
from 1951 to 2015 corresponding to the total 
of  19,816 hours of  fog. There are three distinct 
periods of  numbers of  fog hours, i.e., (1) from 
1951 to 1979, during which the fog hours (FH) 
per year and STandard Deviation (STD) are equal 
to 491.47 and 84.45, respectively; (2) from 1980 to 
1985 (FH=266.2 and STD =118.37); and (3) from 
1986 to 2015 (FH=132 and STD =54.51). Overall, 
the average Tair and FH have oppositebehaviors, 
i.e., when Tair was gradually growing, the FH 
declined. Period (2) coincides with the building 
period of  the Guarulhos International Airport. 
It is also noted that between period (1) and 
period (3) there were a significant increase of  
the meanTairof  1.4 °C, from 18.4 °Cto 19.8 °C, 
anddecrease of  the average of  number of  fog 
hours of  approximately 73.1%, from 491.47 
to 132 hours. The latter may be attributed to 
the development of  the area surrounding the 

Source: Adapted from www.google.com.br/maps.

Figure 1 : Characteristics of the region of the Guarulhos International Airport. 
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Figure 2: (a) Variations of fog hours and average Tair in the degree Celsius per year and where (1), (2) and (3) represent, 
in the data set, the periods before, during and after the installation of the Guarulhos International Airport, respectively. (b) 
The maximum average (dashed line), mean (solid line) and minimum average (dotted line) values of the fog temperature 
per year during the study period. 

Figure 3 : Percentage of fog occurrence versus local time during the period from 1951 to 2015.
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hours (3.47%), seven hours (2.31%), eight hours (2.31%), 
nine hours (1.73%), ten hours (1.16%), eleven hours 
(1.16%) and twelve hours (0.58%).The data set reveals 
that, during fog events, the mean values of  visibility, the 
mean fogTair, RH versus fog duration up to 1-h; greater 
than 1-h and less than or equal to 3-h and greater than 
3-h are approximately equal to 798 ± 128 meters, 16.6 
± 0.6 °C; 89.6 ± 8%; 592 ± 324 meters; 16.3 ± 2.0°C, 
99.0 ± 1.0%; and 322 ± 173 meters, 15.1 ± 1.8 °C, 99.1 
± 0.8%, respectively. As expected, the latter shows that 
longer fog events, i.e., lasting more than 3 hours, have 
their average visibility and temperature lower than the 
shorter fog events.

Figure 4 (a) depicts the monthly frequency of  FH. The 
highest fog frequencies occurredfrom March to September 
that is the coldest period of  the year− corresponding 
to approximately 80.6% of  fog events − with peaks of  
16.3% and 16.0% in May and June, respectively.Figure 4 
(b) shows the percentage of  fog occurrences in relation 
to fog duration in hours, which shows that the highest 
occurrence was two hours, corresponding to 66.9% of  the 
population. The longest recorded fogswere twelve hours 
long. The fog periods and their percentages of  occurrence 
are, respectively, written and specified in parentheses, 
i.e., one hour (47.40%), two hours (18.50%), three hours 
(9.25%), four hours (7.51%), five hours (5.78%), six 

Figure 4: (a) and (b) represent the monthly variations of fog hours and percentages of fog occurrence versus 
its duration (hour) during the period from 1951 to 2015, respectively.
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With the aim of  studying foggy conditions 
beforeand after the construction of  the 
Guarulhos International Airport, the data set 
was subdivided into two subsets, corresponding 
to 1961-1990 and 1991-2015, and referred to 
herein as A and B. The period A is classified 
as the fog climatology, following the World 
Meteorological Organization (WMO, 2011) 
definition (when fog conditions were recorded 
over a period of  30 years). On the other 
hand, although the B period is an incomplete 
climatology spanning 25-year, this period is 
used here to analyze the post-construction 
airport period. Figure 5 (a) shows the variation 
fog hours versus the month of  each period A 
and B represented by the dotted and solid lines, 
respectively.The peaks of  the curves occurred 
in different months, i.e., in May for period 
A and in June for period B. In addition, a 
significant decrease in the amplitude variation 
of  fog hours per month was observed during 
the B period. Possiblyit can affirm that the 
decrease in fog hours, as previouslydiscussed, 
is due to the increase in mean Tair that 
occurred between 70s and 80s (related  to 
the development of  the area surrounding the 
airport), as observed clearly in Figure 2 (a). In 

summary, the data set revealed that there were 
significant changes, indicated in parentheses, 
of  the physics quantities between period A and 
B, respectively, i.e., RH (from 82.9% to 81.7%), 
mean fog Tair (from 12.8°C to 14.6°C), mean 
minimum fog Tair (from 2.2°C to 7.7°C), mean 
maximum fog Tair (from 20.3°C to 20.7°C) and 
fog hours (from 298 hours to 152 hours). 

The Figure 6 shows the percentage 
of  fog occurrence versus fog duration in 
hours for period A and B andobserves that 
the occurrence of  fog persists with the 
same durations of  the period before the 
construction of  the airport. However, fogs 
lasting 1 and 2 hours increased, respectively, 
their occurrence frequencies of  approximately 
6.9% and 0.4% between period A and B, while 
the longer fogs decreased their frequencies.

Additionally, Figures 7(a) and 7(b) show 
the probabilities of  fog occurrences per month 
and hour of  the day, i.e., when the horizontal 
visibility is less than 1 km, for periods A and B, 
respectively. Generally, the maximum probability 
of  fog occurrences drops from over 50%, in 
Figure7 (a) in period A to less than 40%, in 
Figure 7 (b), in period B, which is likely due to 
the increase of  Tair during period B.

Figure 5 : the average, minimum, maximum monthly fog hours for the periods corresponding to 1961-1990 (dash line) and 
1991-2015 (solid line).
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4. SYNOPTIC ANALYSIS AND THE USEOF 
SODAR AND AMS DURING TWO FOG EVENTS

In the study of  this airport, the fog typically occurs 
because oflongwave cooling, which reduces Tair to the dew 
point temperature (Td), on clear nights with low wind 
speeds. After the fog onset, the liquid water in the fog 
increases due to the cooling rate, which will be higher with 
a dryer atmosphere (Teixeira and Miranda, 2001). After 
sunrise, Tair begins to gradually increase at the surface, 
working in conjunction with the longwave cooling rate 
at the top layer of  the fog, which causes an increase in 
the turbulent kinetic energy (TKE), and thus, the fog 

is intensified for some time until the fog dissipates. To 
analyze the importance of  each measured and calculated 
physical quantity in the fog evolution (i.e., its onset, growth, 
and dissipation), two typical radiation fog events of  3:45 
hours that occurred on 08 September 2011 and 05 April 
2012 (referred to herein as events 1 and 2) and are here 
characterized and discussed.

Figures 8 (a)-(c) and (b)-(d) depict images of  
brightness temperature of  channel 4 registered by GOES-
12 satellite at 1000 (GMT)and 0900 (GMT), which roughly 
represents the onset times of  events 1 and 2 (as in Figure 
9 (a) and (c)), and synoptic charts of  0000 (GMT) on 08 
September 2011 and 05 April 2012, respectively, which 

Figure 6 : Percentages of fog versus its duration (hour) during from 1951 to 1980 (gray bar) and 199 to 1991 to 2015 (black bar), respectively.

Figure 7 : Percentages of fog versus its duration (hour) during from 1951 to 1980 (gray bar) and 199 to 1991 to 2015 (black bar), respectively.
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are regularly made available by the National Institute for 
Space Research (INPE) on http://satelite.cptec.inpe.br. 

The synoptic surface analysis event 1, represented 
by Figure 8 (a-b), shows that the study area, represented 
roughly by the black rectangle, had been influenced 
by the proximity of  South Atlantic Subtropical High, 
whose point core of  1027 hPa is approximately located 
at 26oS,27oW, which brought divergence and clear sky 
and, thus, conditions for formation of  radiation fog. 

It noted also that there was a very low intensity trough 
positioned over the area with NW-SE orientation.
Similarly to event 1, the synoptic surface analysis for 
event 2 (Figures 8 (c) - (d)) shows the positioning of  
South Atlantic Subtropical High, whose point core 
of  1026 hPa is approximately located at 38oS,30oW 
influencing also the circulation in the study area 
bringing typical conditions, as aforementioned, for 
formation of  radiation fog. 

Figure 8: (a)-(b) and (b)-(d) are GOES 12 brightness temperature images of Channel 4 (spectral band centered at 11µm) collected at 1000 (GMT) and 0900 
(GMT) and synoptic analysis charts of 0000 (GMT) on 08 September 2011 and 05 April 2012, respectively. The black rectangle represents the study regions.
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Figures 9 (a) and 9 (b) show the variations of  TKE, 
BLH and visibility at 15-minute intervals during fog events 
that occurred at the International Guarulhos Airport on 08 
September 2011 and 05 April 2012. The two vertical lines 
limit the periods of  the fog in the aforementioned figures, i.e., 
the lines delineate the period when the visibility is less than 
1 km. Figures 9 (c) and 9 (d) show the Skew-T profile plots of  
Tair (solid black line on the right) and Td (solid black line on 
the left), collected viaa sounding launched at Marte receiving 
station, located approximately 18 km from the airport, at 
09:00 (local time) during fog events 1 and 2, respectively. Table 
2 presents the averages and variations of  the atmospheric 
pressure, Tair, cooling rate (CR), TKE and wind registered 
during the seven hours before (columns 2 and 3) and during 
(columns 4 and 5) the fog evolution registered for event 1 
and 2, respectively. The investigation shows the following:

a) The thickness of  the fog represented by the BLH of  event 
1 is approximately twice that ofevent 2; a reasonable reason for 
this is the atmospheric conditions during event 1, which was much 
drier than event 2, as shown by the differencesTair –Td (i.e., the drier 
the atmosphere), as seenin Figures 9 (b) and 9 (d), respectively. As 
a consequence, the CR of  the event 1 is approximately twice as 
high -due to the lower atmospheric absorption –as that of  event 
2, as seen in Table 2, columns 2 and 3, respectively. In addition, 
the CR value seems to be fundamental in the onset process of  
the radiation fog, as event 1 and 2;

b) Despite a Tair difference of  approximately 5 °C 
between events 1 and 2, Tair had no apparent impact on 
the duration of  the fog;

c) The wind blew from the northeast influenced by the 
proximity of  South Atlantic Subtropical High, with wind 
speeds varying between approximately 1.5 and 4.0 m.s-1. 
The average speed is approximately three times greater in 
event 1 than in event 2 before the fog onset and is almost 
the same magnitude during the event maturations;

d) As far as the fog dissipation is concerned, the TKE 
seems – as shown in Figure 9 (a) and 9 (c)– to play a 
pivotal role in fog dissipation, givinga clear advance signal 
of  the dissipation. In both figures, TKE (dashed line 
with dot) and BLH (dashed line) are positively correlated 
since their values tend to follow each otherdue to the 
turbulence process noted above, which is responsible for 
the intensification of  the fog and, a few minutes later, 
triggers the fog dissipation, in concordance with the 
results presented by Dabas et al. (2011), which also used 
SODAR data to study fog evolution. On the other hand, 
the trigger for fog onset is not so clear, and thus, further 
investigations will be needed. In summary, the preliminary 
results presented show that SODAR is able to identify the 
BLH or the thickness of  a fog layer; therefore, its data 
will be important for the future parameterization of  fog 
onset, growth, and dissipation.

Figure 9: (a)-(c) are the two time series of visibility (solid line), turbulent kinetic energy (dashed line with dot) and boundary layer 
height (dashed line with dot) at 15-minute sampling intervals, and (b)-(d) show the Skew-T plots from the Marte soundings launched 
at 0900 hours (local time) on 08 September 2011 and 05 April 2012, respectively. 
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5. CONCLUSION

This paper mainly presents the climatological 
study of  the fog occurrences before and after the 
construction of  the International Guarulhos Airport 
for the period from 1951 to 2016. In addition, fog 
events were characterized using acoustic sounder and 
automatic meteorological station data with 15-minute 
sampling intervals. The principal conclusions of  this 
work are given below.

• The construction of  the studied airport and 
local urban development promoted a significant 
increase in the fog temperature, which caused a 
significant decrease of  fog hours (to approximately 
one fifth the initial value), which has lowered 
the restrictions on the landing and take-off  
operations at the airport.

• More fog events occur in the early hours of  the 
day, with over 72% of  them occurring during 
the fall-spring period. The majority of  fog 
events (over 65% of  fog events) had durations 
about two hours.

•  Most fogs were caused bylongwave cooling 
on clear nights with low wind speedsand 
the values of  the cooling rate and TKE play 
important roles their onset and growth-
dissipation phases, respectively;

• The maximum probability of  fog occurrence 
fell significantly from before to after 
the construction of  the International 
Guarulhos Airport;

• The SODAR provided reliable measurements 
of  the thickness of  the fog,in concordance with 
the results obtained by Dabas et al. (2011). The 
preliminary results have revealed that the fog 
evolution is positively correlated with turbulent 
kinetic energy and is potentially an important 
physical quantity for the parameterization 
offogonset,growth and dissipation.

Currently, researchers from the Applied Meteorological 
Laboratory of  the Federal University of  Rio de Janeiro 
and the operational community are involved in testing and 
validating models based on computational intelligence or 
deterministic modeling for short-term fog forecasting; the 
results will be published in future works.
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Physical quantity
7 hours before fog onset Fog period: 3:45 hours

08-SET-2011 05-APR-2012 08-SET-11 05-APR-2012

Pressure (hPa) 1017.0 ± 1.1 1017.0 ± 1.1 1016.0 ± 0.5 1017.2± 0.8

Boundary layer height (m) 220 ± 1 140 ± 2 211 ± 1 134 ± 2

Tair (
oC) 15.3 ± 0.8 22.7 ± 2.3 14.2 ± 0.3 19.5 ± 0.9

Cooling rate °C per hour -0.41 ± 0.01 -0.26 ± 0.78 -0.25 ± 0.01 -1.01 ± 0.21

TKE (m2/s2) 0.56 ± 0.22 0.031 ± 0.024 0.65 ± 0.31 0.039 ± 0.021

Wind speed (m.s-1) 2.9 ± 1.0 1.17 ± 0.48 2.1 ± 0.6 1.69 ± 0.35

Wind direction (o) 58.9 ± 15 68.5 ± 30.5 69.8 ± 41 60.89 ± 13

Table 2: Averages and variations of atmospheric pressure, Tair, cooling rate, TKE and the wind before and during the two fog 
events registered on 8 September 2011 and 5 April 2012.
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Clear Air Turbulence in Southeast Brazil: Case Studies

Francisco Pinheiro Gomes

ABSTRACT

This analyzes the classic indexes that are modelled 
numerically to predict turbulence in the southern 
region of Brazil. Historical clear sky turbulence (CAT) 
events were reconstructed by using 25.465 AIREP 
messages, from 2015 to 2019, and 12.959 CAT records 
by aircraft from February 2018 to December 2019. 
The observations have shown that CAT events are 
proportionally distributed (in parentheses, its severity) 
in 94 % (light), 4 % (moderate), and 1 % (severe). 
Synoptic analyses of five cases studied reveal that 
turbulence records occurred during clear sky conditions 
in the presence of jet stream. Three joint analysis of the 
compositions of the variables modeled by GFS0.25 and 
WRF (18, 6 and 2 km grid), defined as, (1) wind profile, 
potential temperature (Θ), turbulent kinetic energy 
(TKE); and (2)  Richardson (Ri) and vertical speed (W), 
and  (3) separately the CAT indicator indices called Ri, 
Brown, Ellrod-Endlich, and Ellrod-Knap, and Ellroad-
Knox, showed that the improvement of spatial resolution 
data plays an important role in CAT forecasting. The 
result of the initial attempt to adjust the predictive 
indexes, using modeled WRF data (18, 6, and 2 km 
grid) is encouraging since the adjusted indexes were 
able to detect over 96% of CAT events.

Keywords: Clear air turbulence, CAT Index, WRF 
Model Simulations, AIREP.
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1. INTRODUÇÃO

Depending on its intensity, turbulence during 
a flight can be uncomfortable for the crew and 
passengers, cause physical harm, or result in serious 
accidents. Although knowledge of  the causes and 

characteristics of  turbulence has grown substantially in 
recent decades (Endlich, 1964; Dutton and Panofsky, 
1970; Lilly, 1971; Brown, 1973; Lee et al. 1984; Mc 
Lean, 1986, Ellrod and Knapp, 1992 ; Clark, 1997; 
Marroquin,1998; Kaplan et al., 2000; Ellrod et al., 
2010; and Sharman et al., 2017), this phenomenon 
continues to be a risk for aviation. Turbulence is a 
property of  most fluids (liquid and gas) found in nature. 
Perhaps the best example of  turbulent flow is found 
in the atmosphere where those flying can experience 
extreme swaying that affects the safety of  the aircraft. 
Fortunately, flights in a turbulent atmosphere are still 
less frequent at a rate of  1 in 20, according to Lester 
(1990). The latter defines turbulence as the fluid state 
where the velocity is chaotic and apparently random. 
In aviation, the concept of  turbulence is related to the 
response of  the aircraft (or bumps suffered). According 
to the International Civil Aviation Organization (ICAO) 
global air navigation plan, the number of  flights has 
been doubling since 1977 at 15-year intervals (ICAO, 
2016) and in a recent study carried out by Gultepe 
et al. (2019). it is concluded that clear sky turbulence 
(CAT) was responsible for more than 70% of  global air 
incidents in the period from 2000 to 2011. The main 
airports in the country, with the exception of  Brasilia 
airport, are located in the flight region that is controlled 
by the Curitiba air navigation control center, known 
as Curitiba FIR, as shown in Fig. 1. According to the 
Department of  Airspace Control, there were 488,743 
flights in 2018 (with a monthly average of  40,000 flights) 
in this region (DECEA, 2018). According to Lyra et al. 
(2007), the airspace of  the Curitiba FIR is one of  those 
regions influenced by the subtropical jet that is probably 
the shear formation mechanism for the CAT records.
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Figure 1: The region in emphasis represents the Curitiba FIR and 
the circles are the occurrences of turbulence records by the A320 
aircraft of the airline LATAM in the period from 2018 to 2019.

Thus, the purpose of  this research is to compare 
clear-sky turbulence indicator variables simulated by a 
numerical model to in situ turbulence recorded by aircraft 
in the Curitiba FIR.

2. MATERIAL AND METHOD

Table 1 presents details of  the modeled and collected 
data used in this work.

Figure 1 depicts the spatial representation of  the 
12,959 vertical variations of  gravitational acceleration 
(VRTG) events (also known as anomalies of  gravitational 
acceleration [g] or CAT) recorded by the LATAM 
Company’s A320 aircraft in 2018. (LATAM, 2019).  Table 
2 shows the limits of  g intervals for VRTG records that 
classify turbulent events as (1) mild, (2) moderate, and (3) 
severe. The VRTG is recorded, on an hourly basis, and 
represents only the highest absolute value of  this time 
interval, and this ensures that only one event is recorded 
in conditions of  long turbulence (LATAM, 2019).

Table 1: Data Summary.

Source Freq. Information Quant. Period

1. VRTG 
(LATAM company) variable record of  vertical acceleration 

in flight (g). 12,959 01/12/2018 to 
31/12/2019

2. AIREP
(www.redemet.aer.mil.br) variable

coded position message from 
an aircraft in flight, containing 

operational and/or meteorological 
information, including location 

(latitude, longitude, and altitude) of  
the occurrence of  CAT.

25,465 02/10/2015 to  
04/06/2019

3. GFS 0.25 
(http://www.wxmaps.org/pix/sa.vv) 3h analysis and forecast with grid 

(latitude; longitude) of  0.25° by 0.25° --- selected cases

 4. WRF 3h
forecast with grids of  18, 6, and 2 km 

with 87 levels 
(according to Kim et al., 2018)

3,840 selected cases

5. TEMP 
(www.redemet.aer.mil.br) 12h

coded message from altitude 
meteorological stations. It represents 

the temperature, relative humidity 
and wind profiles for the locations of  
Bueno Aires, Porto Alegre, Curitiba, 

São Paulo and Rio de Janeiro.

--- selected cases

6. Surface charts 
(www.redemet.aer.mil.br) 6h meteorological information from 

surface meteorological stations. --- selected cases

7. GOES-16 Image 15 min thermal images (13.3 µm). --- selected cases

8. METAR (Meteorological 
Aerodrome Report)

1 h

meteorological codes containing 
present weather, wind, air temperature 
and atmospheric pressure observations 

generated by surface meteorological 
stations located at aerodromes.

--- selected cases
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AIREP messages report the operational conditions 
of  the flight and may also include CAT detection. 
Here, the AIREP was used to observe the space-
time distribution of  turbulence occurrences in the 
Curitiba FIR from 10/02/2015 to 06/04/2019. The 
images from the GOES-16 satellite (Geostationary 
Operational Environmental Satellite), atmospheric 
profiles, and surface charts were jointly analyzed 
to diagnose the synoptic conditions acting (verify 
possible mechanisms of  formation of  CAT, presence 
of  convective cells, wind shear, and atmospheric 
circulation) during VRTG recordings by aircraft for 
selected and studied events.

The numerically modeled atmospheric data has 
two sources, namely: 1) analysis and forecast from the 
GFS0.25 model (Global Forecast System), and 2) forecast 
data generated by the atmospheric model Weather 
Research and Forecasting (WRF). The simulations were 
carried out using the dynamic solution ARW (Advanced 
Research WRF). Shared memory parallel computing 
support was used. For the 24 h simulations, with a 12 h 
spinoff, three computational domains centered at 27°S 
49°W were created, covering the area between 20°S-33°S 
and 40°W-58°W. The horizontal resolutions applied in 
the three domains are 18 km (90 x 90 points), 6 km (151 
x 151 points), and 2 km (253 x 253 points). The number 
of  vertical levels is equal to 87 with the pressure at the 
top of  the atmosphere being 50 hPa, according to Kim et 
al. (2010). The parameterization schemes of  the physical 
processes used in this work were, according to Table 3:

Table 2: Values of the g variation intervals in the VRTG records 
that classify the classes of turbulence events defined as 1 (light), 
2 (moderate), and 3 (severe) for aircraft of the type A320 LATAM. 

The sequence of  steps of  the idealized method to 
identify the turbulent or non-turbulent atmospheric 
environment, in the forecasts generated by the GFS0.25° 
and WRF, is described below. The steps consider the 
behavior of  the values of  9 (nine) variables that are 
defined as follows: (1) wind profile (PV), (2) vertical wind 
speed (W), (3) potential temperature (Θ), (4) turbulent 
kinetic energy (TKE), (5), and turbulence indices, as 
briefly described Table 4, called (6) Richardson number 
(Ri), (7) Brown (B), (6) Ellrod-Endlich (E-1), (8) Ellrod-
Knap (E-2), and (9) Ellroad Knox (E-3).

The steps are:
i .  Data  process ing  -  ana lys i s  o f  the 

spatiotemporal distribution of  historical data 
from CAT records considering AIREP messages 
and VRTG records;

ii. Selection of  events - cases with and without 
CAT records are collected and synoptic conditions are 
analyzed using the atmospheric profile, surface map, 
GOES-16 satellite image and METAR data, as described 
in Table 1;

iii. Simulation of  events - the atmospheric conditions 
of  the cases selected in item ii are reproduced using 
the WRF with grid resolutions of  18, 6, and 2 km with 
87 levels;

iv. Analysis of  meteorological compounds - two 
meteorological Compounds (C) were defined with the 
following variables, that is,
C1: PV, Θ, TKE and
C2: Ri, W
using the GFS0.25º and WRF outputs for the selected 
cases and, thus considering the selected events, the 
behavior of  these compounds C1 and C2 is analyzed as 
a function of  the VRTG observations;

v. Adjustment of  the CAT indexes with the 
observations - The distribution of  the statistics 
of  the values   of  each index (Ri, B, E-1, E-2, 
E-3) is analyzed versus the observations of  the 

Class 1 Class 2 Class 3
-g +g -g +g -g +g

0.6g≤ ≥1.4g 0.4g≤ ≥1.6g 0.2g≤ ≥1.8g

Physical Process Reference

For deep convection Kain-Fritsch (Kain, 2004)

For explicit convection Kessler (Kessler, 1969)

For long and shortwave radiation Rapid Radiative Transfer Model- RRTMG (Iacono et al., 2008)

For planetary boundary layer Mellor-Yamada Janjic (Janjic, 1994)

For surface processes Noah Land Surface Model- Noah LSM (Chen e Dudhia, 2001)

Table 3: Parameterizations used in simulations with WRF.

Source: Adapted from LATAM(2019).
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VRTG and, thus, it is done adjustment, via trial 
and error, the classifying LIMITE value, of  each 
index i (LIMITEClas(i)), of  CAT testing, for 
n-intervals of  values   of  index i, considering the 
following routine:

a) use the expression LIMITEclas(i) ≥ [Average 
of  Index(i) – factor(DEVPAD(i) ], where factor varies 
in the range of  [0+∆X; n] in ∆X =0 to n, increment 
of  0.1; and

b) test each LIMITEclas(i) with an independent 
sample and statistically evaluate the results 
versus the VRTG observations until the optimal 
LIMITEclas(i) is obtained.

3. RESULTADOS E DISCUSSÕES

Fig. 2 presents the spatial density variation 
(where light colors represent higher values) of  CAT 
occurrences considering 25,465 AIREP records that 
occurred between October 2, 2015, and June 4, 2019, 
in the Curitiba FIR. It is observed that there are CAT 
records throughout the FIR area, which may indicate 
that the reason for this distribution is associated with 
the presence, for most of  the year, of  the jet stream 
(which causes wind shear). Note, as the lighter colors in 
Fig. 2, that the higher frequency of  CAT corresponds 
approximately to the São Paulo-Porto Alegre route 

Índice Descrição Referência 

1. Richardson 
(Ri) 

 is the static stability with g 

representing the acceleration of gravity (9.8 m. s-2 ), is the potential 
temperature and represents the potential temperature at the middle 
level of the layer, 

and If there 

is a higher probability of turbulence occurring, and u and v are the 
zonal and meridional components of the wind, respectively.  
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Howard 
(1964) 
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Table 4: Summary of CAT indexes.
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Figure 2: Density of CAT records considering 25,465 AIREP records that 
occurred in the South FIR between October 2, 2015, and June 4, 2019.

where there is a higher frequency of  flights in relation 
to the other routes of  the FIR Curitiba. Fig. 3a shows 
the distribution of  12,959 occurrences of  CAT by 
VRTG class and it is observed that 12,189, 638 and 
132 occurrences are respectively of  class 1, class 2, and 
class 3 corresponding to 94% (light), 4% (moderate) 
and 1% (severe) of  records. Fig. 3b shows the hourly 
distribution of  the amount of  turbulence detected by 
LATAM flights, via VRTG(G), for classes 2 and 3, 
and it can be seen that there are turbulence records 
throughout all times, with the highest CAT frequency 
in daytime when flights are most frequent.

Figure 3: (a) Distribution of 12,959 VRTG records by class. (b) hourly distribution of the joint records of VRTG classes 2 and 3 in the Curitiba 
FIR in the period from December 1, 2018, to December 31, 2019.

3.1 Seleção e ANÁLISE do evento de cat

Using the 132 class 3 VRTG records that occurred 
over the Curitiba FIR for the data period, a synoptic 
analysis was carried out, considering meteorological 
information within the 12-hour interval that preceded 
the VRTG record, using data from sources 5, 6, 7 and 
8 (atmospheric profiles, surface chart, GOES-16 and 
METAR satellite images) described in Table 1.

Table 5 shows the details of  the VRTG hourly 
records of  September 29, 2018, the classes, geographic 
position, and flight level of  the VRTG events detected 
by the aircraft. It is observed that the atmosphere 
was turbulent throughout the day, given the temporal 
distribution of  the VRTG records. In Figs. 4a, 4b, and 4c 
are, respectively, shown GOES-16 images (thermal band, 
centered at 13.0 µm), part of  the surface synoptic map 
and vertical section of  the atmospheric profile between 
Porto Alegre (SBPA) and Galeão (SBGL), which includes 
the profiles of  Curitiba (SBCT) and São Paulo (SBMT), 
corresponding to 12 UTC. The two red dots in Fig. 4a 
approximately represent the geographic positions of  the 
class 3 VRTG records that occurred for the case studied, 
as shown in column 3 of  Table 5. The surface synoptic 
chart (Fig. 4b) reveals that there was a high-pressure 
center of  1,023 hPa over the Atlantic Ocean near the 
coast of  the state of  Rio Grande do Sul. The METAR 
at Porto Alegre airport during the first hours of  that day 
registered a clear sky condition with excellent visibility.

In Fig. 4c shows the longitudinal section of  the wind 
profiles (in barbels) versus the positions of  Porto Alegre 
(SBPA), Curitiba (SBCT), São Paulo (SBMT), and Galeão 
(SBGL), where it is possible to identify the location of  
the jet ( J), between the gray lines, which is above the 
pressure level of  290 hPa over Porto Alegre. Wind speed 
varies between 50-80 knots and between 65-80 knots 
over Curitiba (SBCT) corresponding respectively to flight 
levels of  30,000 (FL300) and 32,000 feet (FL320).

(b)(a)



165Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

Figure 4: (a) GOES-16 image (thermal band, centered at 13.0 µm) with black dots representing the locations of the VRTG recorded on 
September 29, 2018 (according to Table 5). (b) Surface map clipping at 12 UTC and (c) Vertical section between Porto Alegre (SBPA) and 
Galeão (SBGL), which includes the profiles of Curitiba (SBCT) and São Paulo (SBMT) at 12 UTC.

(a) 

 

(b) 

 

 

(c) 

 

 
Date Time (UTC) Class Latitude (S) Longitude(W) Flight Level (ft)

29/set/2018

2 1 29.98 51.37 3,192
4 3 27.16 50.31 33,568
4 3 27.60 50.82 33,568
5 1 22.93 43.78 8,796
14 2 25.39 49.30 3,152
15 1 23.59 46.72 2,044
20 1 22.53 46.40 18,500
23 1 30.11 56.02 31,828

Table 5: VRTG records and their severity during the day 29/09/18.

Source: LATAM(2019).
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Considering the meteorological compounds 
defined in the method of  this work, Figs. 5a-
5b respectively show the variable fields of  
compounds C1 and C2 in the longitudinal vertical 
section at 50°W, where the ordinates represent the 
atmospheric pressure in hPa versus the latitudinal 
interval between 30°S to 22°S, determined with 
GFS 0.25º to 3 UTC-29/09/2018 (closest time of  
recorded VRTG observation from 3:01(UTC) to 
4 UTC). The black dot approximately represents 
the position of  the occurrence of  one of  the 
class 3 VRTG, on the variable fields of  the 
defined meteorological compounds, that is, C1 
(Fig. 5a): wind profile (black barbels), Θ ( values   
represented by the white lines approximately 
arranged along the profile), TKE, whose values   
in the field represented by the colors of  the 
lower legend vary in the interval [100;900] m2.s-2, 
and C2 (Fig. 5b): Ri (values   in field represented 
by the colors of  the lower legend) and W 
(white curve with negative and positive values). 
Bearing in mind that the model results are hardly 
synchronized with the observations, the analysis 
area of    the fields generated by the models was 
adopted in a rectangular area - dashed red line 
in Figs. 5, 6, and 7, wherein the vertical it was 
limited to pressure levels from 200 to 400 hPa, 
and in the horizontal, the approximate course of  
1 hour of  flight of  the mentioned aircraft type, 
400 km, or the interval 24-29S, corresponding to 
the VRTG recording time. The wind direction 
of  C1 (from bottom to top, as shown in Figure 
5a) generated by GFS 0.25º is quite similar to 

the observations of  radiosonde profiles (Fig. 4c), 
however, it differs significantly in magnitude. On 
the other hand, it clearly shows the present shear 
and consequently the indication of  a turbulent 
flow of  the atmosphere in the region where the 
VRTG recording took place. TKE values   vary 
approximately in the observation area in the 
range of  [200; 800] m2.s-2 which corroborates 
with the CAT indicator. The behaviors of  Θ, W 
did not appear, in this case, as CAT indicators, 
since the lines of  Θ hardly suffer variations when 
there is turbulence; W presented values   close to 
zero and Ri with values   between 0 and 1. The 
latter, according to Miles and Howard (1964), is 
an indicator of  CAT when Ri ≤ 0.25. Similarly, 
Figs. 6-7 respectively illustrate the composites C1 
and C2 closest to the VRTG record generated by 
the WRF for resolution of  18, 6 and 2 km, and 
considering conditions of  the simulation described 
in advance of  12 h. As in the previous analysis, in 
the observation area, the simulated wind profiles 
showed a more pronounced shear and positioned 
the jet similarly to the observations, as shown in 
Fig. 4(c); the TKE varies in range greater than 
the previous [200; 900] m2.s-2; Ri with values   less 
than 1 and W ranging from negative to positive 
values. Thus, the results with increased spatial 
resolution using the WRF data (Figs. 6-7), like the 
results obtained by Kim et al. (2010), reproduced 
atmospheric conditions similar to those generated 
with GFS 0.25º data (Fig. 5), but slightly superior 
in identifying CAT conditions.

Figure 5: (a) represents the C1 composite: wind profile (barbs), Θ (white lines arranged along the profile), TKE (values in the field represented 
by the colors of the lower legend in m2.s-2. (b) represents the compound C2: Ri (values in the field represented by the colors of the lower legend) 
and W (white curves with negative and positive values), determined with GFS0.25 data from the 03Z of September 29, 2018.

(a) (b)
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Figure 6: (a), (b) and (c) represent the C1 composite with WRF data, respectively for 18 km, 6 km and 2 km 
at 04Z on September 29, 2018. The wind profile is represented by barbs, Θ by white lines arranged along 
the profile and TKE by the lower legend colors in m2.s-2.

(a)

(b)

(c)
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Figure 7: (a), (b) and (c) represent the C2 composite with WRF data, respectively for 18 km, 6 km and 
2 km at 04Z on September 29, 2018. W is represented by the white curves with negative and positive 
values, Ri by the colors of the lower legend.

(a)

(b)

(c)
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Table 6 shows the results of  the analysis of  the 
indices that represent the conditions of  a turbulent 
atmosphere in the vicinity of  the VRTG records, 
that is, where the indices vary within the following 
intervals Ri =[0; 0.25] (Miles and Howard, 1964), 
Brown =[4.0.10-6;12.10-6 ]m/s (Roach, 1970) 
E-1=[4.0.10-6; 12.10-6 ]m/s, E-2 =[4.0.10-6; 12.10-
6 ]m/s, E-3=[4.0.10-6; 12.10-6 ]m/s (Knox, 2010 
and Williams, 2016). It is observed that the Brown 
index was able to identify turbulent atmospheric 
conditions in line with all VRTG events, regardless 
of  the model and/or spatial resolution used. The 
increase in resolution with the use of  WRF caused 
the Ri number to increase its VRTG detection 
efficiency from 66%, with GFS 0.25º, to 100%. 
The E-1, E-2 and E-3 indices determined by 
the GFS 0.25º and WRF have, respectively, joint 
averages of  VRTG hits similar and equal to 73% 
and 74%. In short, increasing the resolution in the 
simulations using WRF improved the efficiency 
of  the detection rates for turbulent atmosphere 
conditions from 78% (with GFS) to 84% (with 
WRF), considering 22 VRTG events out of  the 
five analyzed cases.

3.2 Adjustment of  indices with observations

The adjustment of  the indices with the 
obser vat ions a ims to obta in the opt imal 
classification limit per index (LIMITEClas(i)). For 
example, the Brown index, E-1 and E-2, which are 
calculated from the WRF outputs (18, 6 and 2km) 
for T-1h to T+1h (T time of  VRTG recording) and 
in levels between the VRTG record (in hPa) with 
a spacing of  ±50 hPa from the altitude, it allows 

analyzing the volume of  the atmosphere around 
the records of  each VRTG (day, time, latitude, 
longitude, time and altitude). In this way, the index 
values determined with WRF data, according to 
the mentioned conditions, were associated with 
the VRTG data for 04/23/2018, 05/18/2018, 
05/21/2018 and 03/27/2019, resulting in 1,681 
events. The optimal LIMITEclas(i) for the indices 
were determined via steps vi and vii of  the method, 
and using data referring to 05/18/2018 and 
03/27/2019, that is:

a) The mean and standard deviation were 
calculated for each index for the three mentioned grids 
of  the modeled data;

b) The value of  n was randomly assigned, 
and the percentage of  correct answers was 
observed, according to each increment defined 
in step vi of  the method. It is assumed that the 
optimal LIMITEclas(i) value is the one that 
correctly classifies 80% or more of  the VRTG 
events until the optimal classifying threshold 
value per index is obtained. The values   of  the 
optimal LIMITEclas(B), LIMITEclas(E-1), 
and LIMITEclas(E-2) obtained from step vi of  
the method are equal to 3.82, 1.37, and 1.91, 
corresponding to the n factors of  2.5, 1.2 and 
1.2, respectively, considering the VRTG events 
on 03/27/19 and 05/18/2018.

c) Finally, all three optimal limits calculated from 
the WRF data of  all grades (18, 6, and 2 km) on 
23/04/2018 and 21/05/2018 obtained previously 
were tested separately versus the events of  VRTG. 
Preliminary results showed that the adjusted indices 
of  B, E-,1 and E-2 were able to classify 0.96, 0.9,6 
and 0.99% of  VRTG events.

  Model   GFS     WRF   

Case Date
Flight 
level 
(ft)

Quant.

VRTG
Ri B E-1 E-2 E-3 Ri B E-1 E-2 E-3

I 23/04/2018 32,000 4 20% 100% 100% 80% 100% 100% 100% 80% 100% 100%

II 29/09/2018 33,000 8 100% 100% 100% 100% 100% 100% 100% 88% 100% 100%

III 18/05/2018 15,000 4 75% 100% 100% 100% 100% 100% 100% 100% 100% 100%

IV 21/05/2018 38,000 3 33% 100% 0% 33% 0% 100% 100% 0% 0% 0%
V 27/03/2019 38.000 3 100% 100% 100% 100% 0% 100% 100% 100% 100% 33%

Average 
score 66% 100% 80% 83% 60% 100% 100% 74% 80% 67%

Table 6: Percentage of correct answers for the Ri, Brown, E-1, E-2 and E-3 indexes (GFS0.25 and WRF) versus the VRTG records of the 
five cases studied.
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4. CONCLUSION

This work proposes an analysis of  clear 
sky turbulence indicator indices, obtained with 
numerical simulations via GFS 0.25º and WRF, 
versus data from turbulence event records by 
aircraft, for the prediction of  CAT events in the 
Curitiba FIR. In summary, the main conclusions 
of  this work are:

• In the studied area, the formation mechanism 
of  turbulence events is associated only with 
the presence of  the jet stream and not with 
convection;

• Considering the analysis of  compounds C1 
(wind profile, Θ, TKE) and C2 (Ri and W 
profile) for the presented case study, it was 
observed that the intensities of  the wind 
profiles are underestimated in comparison 
to the observations but identified almost 
perfectly the jet stream (hence the shear) 
for both the data modeled by the 0.25º 
GFS as well as the one generated by the 
WRF. The values   of  TKE and Ri are more 
reliable in the presence of  CAT the greater 
the resolution of  the modeled data. The Θ 
and W values   did not clearly indicate the 
turbulent atmosphere where the CAT in-situ 
recordings were observed;

• Analysis of  the indices in representing the 
conditions of  a turbulent atmosphere in 
the vicinity of  the VRTG records (Table 5), 
demonstrated that the Brown index is the 
most efficient and that Ri becomes more 
efficient as the resolution of  the modeled 
data increases. The E-1, E-2 and E-3 indices 
have similar efficiency regardless of  the 
resolution or model used.

• Preliminary testing of  the adjusted B, E-1 
and E-2 indices determined with WRF 
data (18, 6 and 2 km) were able to predict 
the volume of  the atmosphere with CAT 
twelve hours in advance for two days of  
VRTG records.

As a future goal, it is intended to extend the 
sample of  analyzed events, considering only data 
modeled by WFR, aiming to establish a CAT forecast 
mechanism for operational use by organizations in 
the aeronautical sectors.
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In-flight turbulence forecast model based on machine 
learning for the Santiago (Chile) - Mendoza (Argentina) 
Air Route 

Filipe Menegardo-Souza

ABSTRACT

This article evaluates the traditional in-flight turbulence 
forecast tool for mountainous regions known as 
Harrison’s Abacus and proposes a set of models based 
on machine learning (ML) techniques to generate 24-
hour moderate-or-greater (MOG) turbulence predictions 
using post-processed data numerically modeled. 
The  analyses are performed using measurements 
of automated in situ turbulence observations of the 
vertical acceleration in flight (VRTG) of LATAM aircrafts 
that occurred at the Andes crossing, on the Santiago 
(Chile) – Mendoza (Argentina)air route. The VRTG 
database contains 1300 records in 22 months from 
March 2018 to December 2019. Training and testing 
of several categorical ML algorithms were carried out 
and different thresholds applied to Harrison’s Abacus 
were evaluated. The results of the MOG turbulence 
forecast demonstrate that the Harrison’s Abacus based 
method has limited performance with true skill statistic 
(TSS) below 0.25, while those appropriately trained 
and balanced ML models can achieve TSS values 
greater than or equal to 0.60. The proposed MOG 
turbulence forecasting models based on ML presented 
ability to make successful predictions using new data 
(generalization capacity), showing promising tools for 
operational use, allowing for more reliable forecasts 
aiming at the safety of air navigation.

Keywords: CAT; Andes; machine learning; 
aviation weather.
1 Federal University of Rio de Janeiro. Av Brigadeiro Trompowski, s/n, Ilha do Fundão, Rio de Janeiro, RJ, Brazil, CEP 21941-890.
2 Integrated Center of Aeronautical Meteorology. Ponta do Galeão, s/n, Ilha do Governador, Rio de Janeiro, RJ, Brazil, CEP 21941-520.
E-mails: menegardo@yahoo.com.br; gutemberg@lma.ufrj.br; wallace.menezes@gmail.com; vinicius@lma.ufrj.br

1,2

Gutemberg Borges França1

Wallace Figueiredo Menezes

Vinícius Albuquerque de Almeida

1

1

1. INTRODUCTION

In-flight turbulence is a major concern for aviation as 
it can sometimes cause serious flight instability(Sharman, 
Trier, Lane, & Doyle, 2012; Storer, Williams, & Gill, 2019; 
Gultepe et al., 2019). The sudden fluctuations in speed 
and altitude that occur in this type of  environment may 
lead to structural damage to aircraft and, more commonly, 
to incidents with passengers and crew(Sharman, Tebaldi, 
Wiener, & Wolff, 2006; Wolff  & Sharman, 2008; 
Sharman, Cornman, Meymaris, & Pearson, 2014). 
These occurrences, in addition to the human cost, incur 
expenses for air carriers through paid indemnities and 
days of  absence from work for the crew(Sharman & 
Lane, 2016; Storer et al., 2019). Several atmospheric 
mechanisms are associated with in-flight turbulence such 
as strong vertical and horizontal shear that occurs in the 
vicinity of  jet streams(Dutton & Panofsky, 1970; Wolff  
& Sharman, 2008; Kim & Chun, 2010), gravity waves in 
strongly anticyclonic flows(Knox, 1997; Ellrod & Knox, 
2010; Kim, Chun, Sharman, & Trier, 2014), breaking 
mountain waves(Smith, 1989; Nastrom & Fritts, 1992; 
Dörnbrack, Gerz, & Schumann, 1995; Wolff  & Sharman, 
2008; Smith, 2019), and breaking gravity waves induced 
by intense convection(Lane, Sharman, Trier, Fovell, & 
Williams, 2012; Kim et al., 2014; Sharman & Trier, 2019).
It is important to note that in-flight turbulence generally 

Published in: Pure and Applied Geophysics, 2022,  https://doi.org/10.1007/s00024-022-03053-5
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occurs at upper-level sand can last for several hours over 
the same region, especially when associated with synoptic 
scale meteorological events, such as those that occur in 
the vicinity of  jet streams and in mountainous regions 
(Kim & Chun, 2010; Kim et al., 2018).

Although atmospheric disturbances occur at 
different scales, only the turbulent eddies encountered 
with size comparable to the aircraft(approximately 
100 m) affect aviation(Sharman et al., 2006). For this 
dimension, it is not possible to directly and routinely 
predict atmospheric movement, but most of  the energy 
associated with turbulent events at smaller scales comes 
from large-scale events (Dutton & Panofsky, 1970). As 
larger dimensions can be solved by numerical weather 
prediction (NWP) models, the problem of  turbulence 
prediction is to identify the large-scale characteristics 
that lead to turbulent scale motions that affect aircraft 
(Storer et al., 2019). Thus, post-processing algorithms 
applied to the output of  NWP models are commonly 
used to infer regions of  significant turbulence. These 
inferences are based on diagnoses typically derived from 
spatial gradients of  model variables (Gultepe et al., 2019).

Over the years, many post-processing diagnoses 
have been proposed, and some are used operationally. 
For example, Ellrod & Knapp (1992) developed an 
algorithm that uses velocity field outputs to derive 
a diagnosis based on horizontal strain and vertical 
wind shear. As each diagnosis is unable to predict all 
turbulence events, Sharman et al., (2006) generated the 
Graphical Turbulence Guidance (GTG). The product 
uses an ensemble of  many diagnoses, which according 
to the authors, seems to improve the statistical 
performance of  the predictions. However, as the 
diagnoses are empirical or are based on assumptions 
that cover physical aspects of  the atmosphere, which 
are treated in part or are simplified, they are therefore 
subject to natural deficiencies of  the technique 
used(Hon, Ng, & Chan, 2020).

Another technique used in forecasting is the 
application of  objective methods based on observational 
data analysis. A well-known method used for mountainous 
regions is Harrison’s Abacus. Developed by Harrison 
(1957 as cited in WMO, 1973), the model is a diagram 
that uses only two predictors, as follows: a) the pressure 
difference between windward and leeward (DP), and b) 
the normal wind speed about the mountain at 18000 ft 
flight level (FL180) (Vn).Originally, Harrison’s Abacus 
was developed for mountain wave turbulence (MWT) 
prediction in the Rocky Mountain region of  the United 
States of  America (USA), but it is widely used by air 
carriers for flight planning across the Andes(Menegardo-
Souza, 2018; Menegardo-Souza, França, Menezes, & 

Almeida, 2021). For this purpose, Vn is used as the 
normal wind about the mountain range in FL180 to 
windward, and DP is the reduced pressure difference 
at mean sea level (QNH) extracted from the METAR 
code between Santiago (SCEL) and Mendoza (SAME) 
airports. According to Harrison’s Abacus, for turbulence 
to occur, Vn must be at least 20 kt and DP greater than 
or equal to 0 hPa.

The application of  machine learning(ML) techniques 
in in-flight turbulence studies is relatively recent. Williams 
(2014)produced a Convectively Induced Turbulence(CIT) 
now casting prediction, based on several data sources 
using the ML algorithm called random forest. Muñoz-
Esparza, Sharman, & Deierling (2020) explored the 
use of  regression trees in the combination of  physics-
based turbulence diagnostics derived from NWP model 
output within GTG to predict turbulence above 20000 
ft. In both studies, the authors used Eddy Dissipation 
Rate(EDR) data for the USA. Hon et al. (2020)developed 
turbulence predictions for the Asia-Pacific region with 
ML techniques by combining a collection of  turbulence 
diagnoses produced with post-processing of  the NWP 
model. According to the authors, performance gains of  
3% to 17% were obtained compared to turbulence indices 
when considered individually.

There are few studies on in-flight turbulence over 
South America, and in particular, the Andes. Many of  
them are related to the processes of  generation, and 
forecasting of  the zonda wind (regional term for the 
foehn wind) or relating it to mountain waves (Silva, 2004; 
Norte, 2015; Vásquez & Falcón, 2015). Lyra, Chan, & 
Dereczynski (2007)used post-processing algorithms 
applied to the NWP output to infer regions of  significant 
turbulence in Brazil. Menegardo-Souza et al. (2021) 
carried out, based on measurements of  automated in 
situ turbulence observations of  the vertical acceleration 
in flight (VRTG) data, a study of  synoptic patterns 
associated with unusual events of  severe turbulence in 
the region of  the Santiago (Chile) - Mendoza (Argentina) 
air route in summer in the southern hemisphere.

The objective of  this study isto evaluate Harrison’s 
Abacus as a turbulence prediction tool for the Andes 
and to present a set of  categorical ML techniques to 
generate moderate or greater (MOG) turbulence24-
hour predictions. This effort is part of  aeronautical 
meteorology studies that have been carried out by the 
Laboratory of  Applied Meteorology at the Federal 
University of  Rio de Janeiro including França, Almeida, 
& Rosette (2016), França, Almeida, Bonnet, & Neto 
(2018), Paulucci, França, Libonati, & Ramos (2019), 
Almeida, França, & Velho (2020)and Menegardo-Souza 
et al. (2021). There are some internal papers (written not 



174 Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

turbulent conditions. After 300 s of  normal acceleration 
a new event can be generated (LATAM, 2019).

Class 1 Class 2 Class 3
-g +g -g +g -g +g

0.6g<= >=1.4g 0.4g<= >=1.6g 0.2g<= >=1.8g

Here, it is assumed as MOG turbulence when the 
values   of  VRTG correspond to those of  class 2 or 3 that 
are less than or equal to 0.4g or greater than or equal to 
1.6g (changes in accelerometer >=0.6g), values that are in 
accordance with the established by the International Civil 
Aviation Organization (ICAO) for turbulence based on 
vertical accelerations in flight (Eick, 2014; ICAO, 2016). 
As air carriers operate with many limitations, despite being 
structurally prepared for much larger loads, the components 
of  VRTG when the aircraft maneuvers in flight as in a turn, 
are small, hardly exceeding 1.13g or less than 0.87g, thus 
being far from the limits for registration (LATAM, 2019).

The study area is chosen to be (32.5°S-34.5°S, 
068°W-071°W). A 22-months study period covering 
March 2018 to December 2019 is used. During this period, 
originally a total of  1300 VRTG records were collected 
by LATAM aircraft in the domain above the FL100 (3048 
m), 1190 of  which are Class 1, 91 of  Class 2, and 19 of  
Class 3. The spatial distribution of  these data with the 
distinction between the intensities can be seen in Figure 
1. It is observed that there is a concentration of  records 
in certain areas due to the alignment of  aircraft on the 
region’s airway. Turbulent events occurred in all sectors 
of  the mountain range crossing, with no preferential 
region, affecting aircraft both to the west, east and above 
the Andes. It is noted that for the same time (minutes and 
seconds are not used), more than one VRTG record can 
occur, and with various intensity values. This is because 
there is more than one aircraft in flight and in different 
locations in the study area. Furthermore, the same aircraft 
can record more than one VRTG for the same hour, and 
of  various intensities, following the measurement criteria.

In the 22 months of  research, 16039 hours were 
analyzed to identify the existence of  turbulence in the study 
area, regardless of  the flight level that it has occurred. It 
should be noted that each hour may not contain VRTG 
data, or have one or more VRTG data, even at different 
intensities. If  a given hour has at least one VRTG class 2 
or 3 record, regardless of  its spatial position in the domain, 
that hour is considered “YES” for MOG turbulence. A 
given hour with only VRTG class 1, or no data is considered 
“NO” for MOG turbulence. For the development of  the 

in English) in the references, but all of  them have at least 
English abstract.

2. OBSERVATION AND FORECAST DATA

This section describes the aviation turbulence 
observations used in this study, namely the vertical 
acceleration in flight, as well as weather station 
observations and the NWP model from which turbulence 
forecasts are generated.

2.1 Vertical acceleration in flight (VRTG) data

Aircraft record vertical accelerations in terms of  
anomalous gravitational acceleration, which can be used 
as an indicator of  turbulent areas(LATAM, 2019). They 
are automated observations from vertical acceleration in 
flight (VRTG), with records of  latitude, longitude, flight 
level, time and intensity event based on gravitational force 
(g). Although they are measurements dependent on the 
aircraft (Sharman et al., 2014), the VRTG data used here 
in this article was collected from similar size aircraft, 
which means that the “g” variation recorded via VRTG 
normalizes the turbulence events (i.e., light, moderate, 
and severe). These data have the advantage of  reducing 
the known problems related to PIREP/AIREP(Sharman 
et al., 2006)as they are direct measures without human 
intervention. The aircraft-independent metric (Eddy 
Dissipation Rate - EDR), which is another way to 
infer regions with in-flight turbulence, although being 
implemented in some commercial airlines (Sharman 
et al., 2014), is not yet available in any of  the Brazilian 
air carriers. It is important to note that VRTG data is 
not collected systematically, which is also the case with 
PIREP / AIREP messages, and its absence does not 
necessarily mean that there is no turbulence. According 
to Wandishin, Pettegrew, Petty, & Mahoney (2011), the 
spatial uncertainty of  each in-flight turbulence record is 
around 150 km3, that is, each in-flight turbulence point 
represents a volume of  the atmosphere.

In an undisturbed flight, the VRTG is equal to the 
unit g. If  the aircraft experiences a sudden rise or fall, 
the VRTG values will be higher (positive g) or lower 
(negative g), respectively. Table 1 presents the VRTG 
thresholds used for turbulent events classification. 
VRTG measurements are carried out in the so-called 
monitoring window, which starts 10 s after takeoff  
and ends 4 s before landing. The turbulent event is 
considered when the VRTG values are within the 
limits established in Table 1, however only the highest 
maximum or lowest minimum will be recorded. This 
ensures that only one event is generated in long 

Table 1 - The severity of VRTG as a function of variation in vertical 
acceleration in flight (g).

Source: Authors adapted from (LATAM, 2019).



175Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

Figure 1 - Spatial distribution of the 1,300 VRTG records above the FL100, from March 2018 to December 2019 in the study 
area, indicated according to their intensities. VRTG Class 1 (green), Class 2 (yellow), Class 3 (red). In black circles the airports 
of Santo Domingo (SCSN), Santiago (Arturo Merino Benítez International Airport - SCEL) and Mendoza (Governor Francisco 
Gabrielli International Airport - SAME).

models proposed here, each observation of  turbulence 
was considered valid for a period of  3-h before and after 
recording. In this way, the uncertainty in the data is reduced 
since the VRTG is dependent on the realization of  the flight, 
and some hours could not have turbulence observation 
due to air traffic and flight planning reasons. Thus, of  the 
16039 hourly data analyzed, 662 were identified as “YES” 
for MOG turbulence and 15377 as “NO”. To carry out case 
studies, the records of  March 2nd, 2018, May 6th, 2018, 
and September 28th, 2018, were separated from the data 
set (leaving 15967 hourly data). With this, it was possible 
to evaluate the performance of  the proposed models 
simulating the operating environment.

2.2 Weather station observations

Observational data from weather stations were 
collected from March 2018 to December 2019, for the 
implementation of  the MOG turbulence prediction 
model based on Harrison’s Abacus. 

Data retrieved from the altitude weather station at Santo 
Domingo airport (SCSN) is used to obtain wind direction 
and speed at FL180. As usually only two meteorological 
balloon launches are performed per day, it was necessary 
to consider that the wind profiles obtained in 12Z and 
00Z are constant in the periods between 07Z and 18Z and 
between 19Z and 06Z, respectively. QNH hourly pressure 
data from SCEL and SAME airports are taken from the 
METAR weather report code. 

2.3 Numeric weather prediction (NWP) model

The spatial-temporal  predict ion f ields of  
meteorological variables were generated using output 
data from the Global Forecast System (GFS), which is 
an NWP model produced by the National Center for 
Environmental Prediction (NCEP) with 3-h intervals 
analysis and prediction, on a global latitude-longitude 
grid of  0.25° by 0.25°. On all days analyzed, GFS data 
from 00Z were used with a forecast for up to 21Z of  
each day.

The NWP model outputs are defined for the so-called 
interest rectangle (Figure 2), which is a vertical section at 
33.5°S, between 068°W - 071°W and vertical levels from 
700 hPa to 200 hPa, to represent the atmosphere state 
in the study region. The interest rectangle is exactly at 
the mid-latitude of  the domain, covering all flight levels 
that can be used to cross the Andes and the entire region 
between SCEL and SAME airports.

The Richardson number(Kronebach, 1964) (equation 
01) and some atmospheric data  extracted from the interest 
rectangle are shows in Table 2.

                            (01)

where N2 is the Brunt-Vaisala frequency squared, U is 
horizontal wind speed, z is altitude, g is gravitational 
acceleration, and θ potential temperature.
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Source: Authors.



176 Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

The zonal wind speed (u), vertical speed (w), 
potential temperature (θ), zonal variation of  the potential 
temperature (∂θ/∂x), zonal variation of  the vertical speed 
(∂w/∂x), vertical windshear (vws) and the Richardson 
number (Ri) are extracted for each of  the twenty-four 
points within the interest rectangle(each  longitude degree 
and every 100 hPa).

In addition to the parameters in table 2, the Brunt-
Vaisala frequency (N), the Froude number(Stull, 1988) 
(equation 02) and the maximum zonal wind speed 
between the levels of  1000 hPa and 500 hPa at longitude 
071°W (u max 1000 – 500 hPa)were calculated and added 
to the data set, totaling 184 selected attributes for each 
modeled time.

                                                                              

where U is the mean flow speed perpendicular to the 
mountain, N is the Brunt-Vaisala frequency and H the 
height of  the mountain.

3. MODEL DEVELOPMENT METHODOLOGY

This section describes the methodological steps to 
carry out the evaluation of  different thresholds applied 
to Harrison’s Abacus and the training and testing of  
several categorical ML algorithms.

3.1 MOG turbulence prediction models

With the 15967 hourly data analyzed defined as 
“YES” or “NO” for MOG turbulence, as described in 
Section 2.1, along with the corresponding Vn and DP 
data (seen in Section 2.2), the model calibration based 
on Harrison’s Abacus was performed, defining different 
thresholds for the predictors pair. The hourly dataset is 
randomly partitioned into 70% for calibration and 30% 
for testing. 

For the development of  the ML-based model using 
NWP model post-processing, the algorithms available 
in WEKA (Waikato Environment for Knowledge 
Analysis)software(Hall et al., 2009)were used. Of  the 
fifty-six algorithms available on the platform, thirteen 
were selected during training and testing so they could 
be used with all the established methods aiming at the 
subsequent performance comparison and selection of  
the optimal model. These algorithms are described in 
Table 3. In all algorithms, the default WEKA software 
configuration was used. All models (trained algorithms) 
are evaluated by 10-fold cross-validation.

 

𝐹𝐹𝐹𝐹 = �
��

,                                                                       

Parameter Description

u Zonal windspeed
w Vertical speed
θ Potential temperature

∂θ/∂x Zonal variation of  the potential 
temperature

∂w/∂x Zonal variation of  the vertical speed
vws Vertical windshear
Ri Richardson number

w max Maximum vertical speed
w min Minimum vertical speed
w ave Average vertical speed
w std Standart deviation vertical speed
∂w Difference between the highest and 

lowest vertical speed
Ri min Minimum Richardson number
Ri ave Average Richardson number
Ri max Maximum Richardson number

ΣRi Sum of  Richardson number
vws max Maximum vertical windshear
vws min Minimum vertical windshear
vwsave Average vertical windshear
Σvws Sum of  vertical windshear

Figure 2 - Delimitation of the interest rectangle (red rectangle) 
at 33.5°°S, between 068º°W - 071°°W and vertical levels of 
700 hPa and 200 hPa, representing the atmosphere state in 
the study area.

Table 2 - Atmospheric parameters extracted from the 
interest rectangle.

(02)

Source: Authors.

Source: Authors.
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As the NWP model outputs are at 3-hour intervals, 
the turbulence observational dataset (15967 hourly 
data) needed to be paired to the model instances. In 
this case, 5344data (3-h interval) were now totaled in the 
study period, with 267 identified as “YES” for MOG 
turbulence and 5077 as “NO”. For each of  these times, 
the 184 attributes extracted from the interest rectangle 

Table 3 - Algorithms used in the article.

Classifier Description

BayesNet

classifier based on the construction of  a Bayesian network, using various research 
algorithms and quality measures, provides data structures, network structures, and 

conditional probability distributions, and can classify binary, class values absent, and 
nominal class(Witten, Frank, Hall, & Pal, 2016).

NaiveBayes
it is a simple probabilistic classifier based on Bayes’ theorem of  posterior probability that 
calculates a set of  probabilities by counting the frequency and combinations of  values in 

a given data set (Patil & Sherekar, 2013).

Logistic builds and uses a multinomial logistic regression model with a ridge estimator (Cessie & 
Houwelingen, 1992).

Multi-layer Perceptron 
consists of  standard perceptron with a defined number of  hidden units using the 

activation function (for example, ReLu or sigmoid) and optimization based on 
minimizing the loss of  quadratic error function(Witten et al., 2016).

Simple Logistic builds linear logistic regression models. LogitBoost with simple regression functions as 
base learners is used for fitting the logistic models(Landwehr, Hall, & Frank, 2005).

Decision Table decision table with a default rule mapping for the majority class. Searches for exact 
matches in the decision table using only the features included in the table(Kohavi, 1995)

JRip
bottom–up method learns rules by treating particular judgment of  the examples in the 

training data as a class and finding the set of  rules covering all the members of  the class 
(Sonawani & Mukhopadhyay, 2013)

PART
generates ordered set of  rules called decision lists. New data is compared with each rule 
in the list and the data is assigned the category of  the rule to which it is best matching 

(Sonawani & Mukhopadhyay, 2013)

Hoeffding Tree

decision tree induction algorithm capable of  learning from large data streams, assuming 
that the distribution generation examples do not change over time, as well as exploring 

the fact that a small sample may be sufficient to choose an ideal division attribute(Witten 
et al., 2016).

J48

generates a classification-decision tree for the given dataset by recursive partitioning 
of  data. The basic algorithm recursively classifies until each leaf  is pure that is the data 
has been categorized perfectly as possible ensuring maximum accuracy on the training 

data(Salzberg, 1994)

Random Forest a collection of  tree classifiers that are trained on different subsets of  input features and 
the one with the best performance is chosen(Breiman, 2001).

RandomTree
constructs a tree that considers K randomly chosen attributes at each node. Performs no 

pruning. Also has an option to allow estimation of  class probabilities (or target mean in the 
regression case) based on a hold-out set (backfitting)(Sonawani & Mukhopadhyay, 2013)

REPTree
quick decision tree, which uses the logic of  the decision and regression tree and creates 
several trees in different iterations, selecting the best of  all trees generated through the 

mean square error(Witten et al., 2016).

(seen in Section 2.3) are determined to characterize the 
atmosphere state.

The dataset is unbalanced, so it is necessary to correct 
the prevalence, statistically balancing the occurrence of  
classes. The methods that implement this correction 
strategy are: 1) CostMatrix, attributing a weight to the 
error associated with the record whose class is less 

Source: Authors.
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PODy and PODn are not considered true 
probabilities, but the proportion of  the observed 
data set correctly categorized by predictions(Kay 
et al., 2006). Together, PODy and PODn form the 
vertical and horizontal axes of  the ROC diagram. 
A ROC curve is generated from a data set in 
space (PODy, PODn). In this way, the ROC curve 
reflects the skill of  the prediction method as a 
whole, instead of  focusing on particular realizations 
or configurations. Positive skill is indicated by 
proximity to the top left corner of  the ROC 
diagram (i.e., high hit rate with few false alarms) 
while the diagonal represents ‘‘no skill’’ or a skill 
level equivalent to blind guess. To quantify the skill 
level, TSS is calculated, which is a measure of  the 
ability of  a model to discriminate between “YES” 
and “NO” predictions(Ellrod & Knox, 2010), 
ranging from -1 to +1, where +1 indicates perfect 
agreement and values of  zero or less indicate 
performance no better than random(Allouche, 
Tsoar, & Kadmon, 2006).

4. RESULTS AND DISCUSSIONS

Following the method´s phases, the MOG 
turbulence forecast models with the Harrison’s 
Abacus calibration and the training/testing of  the ML 
algorithms are presented.

4.1 Performance of  the Harrison’s Abacus based 
MOG turbulence forecast

Several combinations of  Vn and DP pair values 
were performed during the calibration phase, of  
which eight were selected as representative of  all 
for illustration in the ROC curve, totaling sixteen 
experiments performed between calibration 
and test. The results of  these experiments are 
seen in Figure 3. In it, each index shown refers 
to a pair of  Vn and DP values. Index 1 is the 
original Harrison’s Abacus parameters that are 
operationally used.
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𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 1,      (05) 
 

numerous; 2) ClassBalancer, evaluates the instances in the 
data by adjusting the weight of  each class in relation to 
the total set; 3) Replication or random removal of  records 
so that the new set is representative of  the original data. 
Thus, the following procedures were performed:

a) CostMatrix: it is modified the weights assigned to 
False Negative (Table 4) with the following multiples: 10, 
20, 30, 50, 100, 200, and 380;

b) ClassBalancer: the weights of  “YES” and “NO” 
of  the dataset are varied by 50/50, 60/40, 70/30, 80/20, 
90/10, and 96/4;

c) Majority class data removal: randomly remove 
data “NO”;

d) Minority class data replication: “YES” data is 
replicated randomly in three ways: mode 1) considering 
values between the mean and one standard deviation 
for each of  the 184attributes; mode2) considering 
values between the mean and two standard deviations 
for each of  the 184 attributes, and mode 3) considering 
values between the median and quartiles for each of  
the 184 attributes.

Attributes are selected for each of  the five dataset 
configurations (one unbalanced, one balanced by random 
removal of  majority class data, and three balanced 
by random replication of  minority class data) by the 
Correlation-based feature selection (CFS) method and 
Best First-Search heuristic with stopping criterion of  five 
consecutive subsets that do not improve the method.

3.2 Model evaluation metrics

Quantitative evaluation of  the effectiveness in 
predicting aviation turbulence events is performed using 
the relative operating characteristics (ROC) diagram. 
The ROC analysis is a well-established methodology 
for verifying binary forecasts of  high-impact aviation 
weather phenomena such as turbulence(Sharman & Lane, 
2016). The contingency table can be seen in Table 4.

Table 4 - Contingency table for the relative operating characteristics 
(ROC) analysis used in this study for performance evaluation. True 
Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN).

Source: Authors.

  FORECAST
  YES NO

OBSERVATION
YES TP FN
NO FP TN

Using Table 4, the probability of detection(PODy), 
the probability of false detection(PODn) and the true skill 
statistic (TSS) are calculated as follows:
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It is verified that the objective method considering 
only the parameters Vn and DP as predictors has 
an operational limitation in the predicting of  MOG 
turbulence, with a TSS performance of  less than 0.25.
Index 1 reached PODy 0.58, PODn 0.55 and TSS 0.13. 
The best model was index 5, reaching PODy 0.55, PODn 
0.67, and TSS of  0.22, showing an 9% gain compared 
to the original parameters of  Harrison’s Abacus. Table 5 
shows the Vn and DP values used in each index and the 
results obtained in the calibration. The calibration results 
are practically the same as those obtained in the test.

Index Vn>= DP>= PODy PODn TSS

1 20 0 0.58 0.55 0.13
2 0 3 0.60 0.60 0.20

3 40 0 0.35 0.84 0.19

4 20 -5 0.65 0.41 0.06

5 0 4 0.55 0.67 0.22

6 30 -2 0.49 0.66 0.15

7 26 -3 0.57 0.56 0.13

8 0 10 0.19 0.93 0.12

methods that use other predictors and/or greater number 
of  variables need to be applied to obtain an acceptable 
level of  predictability.

4.2  Perfor mance of  the ML based MOG 
turbulence forecast

Considering the thirteen selected algorithms, the 
five dataset configurations (seen in Section 3.1), and the 
thirteen prevalence corrections (applied to the unbalanced 
dataset with CostMatrix and ClassBalancer), a total of  two 
hundred and thirty-four experiments were performed.

Even with the great variability of  selected attributes 
for each configuration of  the data sets (more than 40), it is 
identified by CFS method and Best First-Search heuristic 
(seen in Section 3.1) that the atmospheric parameters 
most related to the predictability of  MOG turbulence 
were the horizontal variations in potential temperature 
and vertical velocity in all sectors of  the mountain range, 
and zonal wind, vertical wind shear, and Bulk Richardson 
number immediately above the mountain. This may be 
related to wave disturbances caused by MWT, causing 
both the potential temperature and the vertical velocity 
to oscillate abruptly over short distances, as well as the 
presence of  strong winds that cause intense vertical 
shears, generating Clear Air Turbulence (CAT).

Figure 4a shows the ROC curve with the results 
of  the thirteen experiments of  the training and testing 
of  ML algorithms using the unbalanced original data. 
Due to the problem of  unbalanced MOG turbulence 
records (5% “YES” and 95% “NO”), most models 
were biased towards the majority class, demonstrated 
by the concentration in the lower-left corner of  the 
ROC curve, with a high rate of  PODn (above 0.90) and 
reduced PODy (less than 0.30). The best result with 
this data configuration was obtained with BayesNet 
finding PODy,  PODn and TSS of  0.543, 0.898 and 
0.441, respectively.

Correction of  data prevalence by modifying the 
weights(ClassBalancer) of  the “YES” and “NO” records 
to the proportions of  50/50, 60/40, 70/30, 80/20, 90/10 
and 96/04, seventy-eight experiments were performed. 
There was an improvement in the overall performance 
of  the models concerning the results obtained in training 
and testing with the unbalanced original data (Figure 
4b). As the weight attributed to the “YES” records 
increased (from 50/50 to 96/04), the models gradually 
began prioritizing this class, losing quality in detecting 
“NO”, moving from the lower-left corner of  the ROC 
curve to the upper-right corner. The best result found 
with this method was obtained using the “YES” / “NO” 
ratio of  96/04, in which the model with Random Forest 

Figure 3 - Results of calibration experiments with Harrison’s 
Abacus. ROC curve of PODy versus 1-PODn. Each index is a 
pair with different values of Vn and DP.

Table 5 - Model calibration results based on Harrison’s Abacus 
and Vn and DP values used for each index. VN in kt and DP in hPa.

Source: Authors.

Source: Authors.

The reason for the low performance shown by 
the model may be related to the great variability of  
turbulence possibilities, when only Vn and DP are used 
as predictors. During Harrison’s Abacus calibration, 
it was found that there is no possible combination of  
DP/Vn values that allows a TSS above 0.22. Thus, other 
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reached PODy, PODn and TSS of  0.824, 0.789 and 
0.613, respectively.

Using the CostMatrix to correct the prevalence in 
the data, assigning weight to the false negative (FN) in 
the proportions of  10, 20, 30, 50, 100, 200 and 380, 
ninety-one experiments were performed. As the assigned 
weight increased, the models gradually began to show 
the same trend seen with the ClassBalancer, moving 
from the lower-left corner of  the ROC curve to the 
upper-right corner. The best result of  this method was 
obtained with a weight of  380 (Figure 4c), in which the 
model with Random Forest reached PODy, PODn and 
TSS of  0.820, 0.826 and 0.646, respectively.

Performing the random removal of  data from the 
majority class aiming at the statistical balance of  the 
classes, 4810 records of  “NO” were removed, leaving 

a total of  534 data, divided equally between “YES” 
and “NO”. All models presented PODy and PODn 
performance above 70%, with values very close to each 
other. The best result obtained with this method was 
with the model using Random Forest, reaching a PODy, 
PODn and TSS of  0.839, 0.787 and 0.626, respectively.

For the statistical balancing of  occurrences 
replicating new data from the minority class, 4810 
“YES” records were added, using the three procedures 
described in Section 3.1, totaling 10154 data, divided 
equally between “YES” and “NO”. In this case, all 
configurations generated models concentrated close to 
the upper left corner of  the ROC curve, with high rates 
of  PODy, PODn and TSS (Figure 4d). The best results 
were obtained with Random Forest. Table 6 shows the 
TSS values of  all the trained algorithms in Figure 4.

Figure 4 - ROC curve with PODy versus 1-PODn values of the training and testing results of the ML algorithms: a) unbalanced original 
data; b)ClassBalancer 50/50; c)CostMatrix 380FN; d) Random Replication “YES” - mode 1.

Source: Authors.
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Algorithm Fig.4a Fig.4b Fig.4c Fig.4d

TSS
BayesNet 0.441 0.391 0.463 0.947

NaiveBayes 0.438 0.345 0.173 0.304
Logistic 0.121 0.508 0.178 0.755

Multilayer
Perceptron 0.221 0.467 0.152 0.906

Simple Logistic 0.042 0.530 0.113 0.755
Decision Table 0.041 0.219 0.150 0.944

JRip 0.098 0.435 0.070 0.936
PART 0.112 0.269 0.401 0.936

Hoeffding Tree 0.017 0.328 0.010 0.927
J48 0.176 0.242 0.406 0.932

Random Forest 0.095 0.221 0.646 0.952
Random Tree 0.227 0.205 0.180 0.917

REPTress 0.077 0.406 0.022 0.941

In Table 7 there is a summary with the best TSS 
results obtained during the training and testing of  the ML 
algorithms, identified for each of  the different method 
configurations, number of  samples, type of  algorithm, 
PODy, PODn and TSS.

Among the methods that artificially manipulate 
the dataset, the best performance for each method 
was achieved using the CostMatrix 380FN, followed 
by ClassBalancer 96/04, and the worst with the 
unbalanced original data. By directly modifying the 
dataset, the best result was with the replication of  data 
from the minority class “YES” based on the mean and 
one standard deviation, followed by the replication of  
“YES’ based on the mean and two standard deviations, 
replication of  “ YES” based on the median and 
quartiles and the worst with the removal of  data from 
the majority class “NO”.

4.3 Case Studies

In this section, the case studies of  the optimal 
predictive models in Table 7 (Unbalance Original Data, 
ClassBalancer 96/04, CostMatrix 380FN, Random 
Removal “NO”, Random Replication “YES” - mode 
1, Random Replication “YES” - mode 2, Random 
Replication “YES” - mode 3) is carried out, together 
with the index 5 model in Table 5, to evaluate their 
performance in predicting MOG turbulence, simulating 
the operating environment. Twenty-four data referring to 
March 2nd, 2018, May 6th, 2018, and September 28th, 
2018 are analyzed.

Table 6 - TSS of all models (trained algorithms) shown in Figure 4.

Method Samples Algorithm PODy PODn TSS
Unbalance Original Data 05344 BayesNet 0.543 0.898 0.441

ClassBalancer 50/50 05344 Simple Logistic 0.738 0.792 0.530

ClassBalancer 60/40 05344 Logistic 0.813 0.703 0.516

ClassBalancer 70/30 05344 Multilayer Perceptron 0.738 0.743 0.481

ClassBalancer 80/20 05344 BayesNet 0.610 0.829 0.439

ClassBalancer 90/10 05344 Random Forest 0.599 0.928 0.527

ClassBalancer 96/04 05344 Random Forest 0.824 0.789 0.613

CostMatrix 10FN 05344 Logistic 0.566 0.893 0.459

CostMatrix 20FN 05344 Simple Logistic 0.749 0.782 0.531

CostMatrix 30FN 05344 Multilayer Perceptron 0.640 0.877 0.517

CostMatrix 50FN 05344 Multilayer Perceptron 0.798 0.693 0.491

CostMatrix 100FN 05344 PART 0.581 0.866 0.447

CostMatrix 200FN 05344 Random Forest 0.618 0.910 0.528

CostMatrix380FN 05344 Random Forest 0.820 0.826 0.646

Random Removal “NO” 00534 Random Forest 0.839 0.787 0.626

Random Replication “YES” - mode1 10154 Random Forest 0.952 1.000 0.952

Random Replication “YES” - mode2 10154 Random Forest 0.951 0.999 0.950

Random Replication “YES” - mode3 10154 BayesNet
Random Forest

0.948
0.950

1.000
0.998

0.948
0.948

Table 7 - Summary with the best TSS results obtained during the ML algorithms experiments.

Source: Authors.

Source: Authors.
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The days were selected so that the models 
could be evaluated in three distinct situations 
of  the atmosphere state: 1) day with all non-
favorable times for turbulence; 2) day when there 
was a change in the atmosphere state, going from 
unfavorable to favorable to turbulence; and 3) day 
with all favorable times for turbulence. March 2nd, 
2018 was selected as the non-favorable day as it 
was the median day of  a total of  three consecutive 
days characterized by the absence of  VRTG data 
at all times. May 6th, 2018 was selected as the day 
on which there was a change in the  atmosphere 
state, as in the two previous days no VRTG data 
were recorded at any time, and on the two following 
days yes. September 28th, 2018 was selected as a 
favorable day, as it was the median day of  a total 
of  three consecutive days characterized by the 
presence of  VRTG data at most times.

To analyze the atmosphere state in those days, 
images from the GOES-16 satellite (channel 13 
thermal band) and the NWP data from the GFS 
were used. In the interest rectangle (seen in Section 
2.3) the wind, potential temperature, vertical 
velocity, and vertical wind shear were verified. In 
none of  the tests was identified the presence of  
deep-convection in the satellite images, ruling out 
the possibility of  CIT.

4.3.1 Case I: March 2nd, 2018

For March 2nd, 2018, no VRTG class 2 or 3 
data were recorded. Analyzing the behavior of  
the atmosphere (Figure 5a), it appears that within 
the interestrectangle the wind has a speed less 
than or equal to 20 kt. The potential temperature 
isolines practically do not present disturbances 
and the vertical velocity is not significant, with 
values between +/- 0.1 m/s. This atmospheric 
pattern was maintained at all times of  the day. The 
behavior of  the vertical wind shear (Figure 5b), 
within the interestrectangle, was not significant, 
registering values smaller than 6 (10-3 s-1), during 
all times of  the day.

It is observed that the atmosphere state on 
March 2nd, 2018 did not present significant 
variations over the hours, indicating an unfavorable 
atmosphere for the formation of  orographic waves 
and vertical wind shear.

Evaluating the optimal forecast models of  
MOG turbulence for March 2nd, 2018, Table 
8 shows that all had the same performance, 
predicting that for this day there would be no 
possibility of  turbulence at any time, agreeing 
with the observed data and the analysis of  the 
atmosphere state.

Figure 5 - Representation of the atmosphere state on March 2nd, 2018 with data from the GFS model. The vertical section at 33.3 ° 
S between 65 ° W and 75 ° W and from 1000 hPa to 100 hPa, with corresponding FL at 18Z: a) wind (kt), potential temperature (K) in 
red isolines and vertical speed (m/s) in colored hatching; b) wind (kt) and vertical wind shear (10-3 s-1) in colored hatching. Highlighted 
interest rectangle.

Source: Authors.
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4.3.2 Case II: May 6th, 2018

For May 6th, 2018, only the hours of  18Z and 21Z 
were recorded VRTG class 2 and 3 data, indicating the 
possibility that the atmosphere was initially non-turbulent, 
changing to turbulent at the end of  the period. Analyzing 
the behavior of  the atmosphere (Figure 6a), within the 
interest rectangle the wind maintained a predominant 
northwesterly direction, increasing in intensity over time. 
Between FL100-180 the speed was up to 30 kt, while above 
this level it reached a peak of  90 kt at 21Z. Consequently, 
the zonal wind increased throughout the day, reaching its 
highest value at the end of  the period, when it allowed the 

formation of  orographic waves, which can be observed 
by disturbances in the potential temperature lines that 
gained amplitude from 12Z, and mainly at 18Z and 21Z. 
This fact was favored by the increase in vertical velocity 
alternating between rising and falling currents above and 
to the leeward of  the Andes with maximum values   of  +0.2 
m/s and - 0.3 m/s. The vertical wind shear behavior within 
the interest rectangle (Figure 6b) was more significant 
between FL140-240, with values greater than 8 (10-3 s-1) at 
all hours. However, due to the intensification of  the winds 
throughout the day, the vertical wind shear also increased, 
reaching over 12 (10-3 s-1) at 12Z, and a peak above 14 (10-3 
s-1) at 18Z and 21Z.

0Z 3Z 6Z 9Z 12Z 15Z 18Z 21Z

OBSERVED

Index 5

Unbalance Original Data (BayesNet)

ClassBalancer 96/04 (Random Forest)

CostMatrix 380FN (Random Forest)

RandomRemoval “NO” (Random Forest)

Random Replication “YES” - mode 1 (Random Forest)

Random Replication “YES” - mode2 (Random Forest)

Random Replication “YES” - mode3 (BayesNet)

Random Replication “YES” - mode3 (Random Forest)

Table 8 - Results of optimal forecast MOG turbulence models for March 2nd, 2018 compared to observed data. Ingray absence 
of turbulence, in red presence.

Figure 6 - Representation of the atmosphere state on May 6th, 2018 with data from the GFS model. The vertical section at 33.3 ° S between 
65 ° W and 75 ° W and from 1000 hPa to 100 hPa, with corresponding FL at 18Z: a) wind (kt), potential temperature (K) in red isolines and 
vertical speed (m/s) in colored hatching; b) wind (kt) and vertical wind shear (10-3 s-1) in colored hatching. Highlighted interest rectangle.

Source: Authors.

Source: Authors.
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It is observed that the atmosphere state on 
May 6th, 2018 changed over the hours due to the 
intensification of  the winds, which favored the 
formation of  orographic waves and the increase in 
vertical wind shear, leaving a non-turbulent condition 
for turbulent.

Table 9 shows that the four predictive models 
based on the Random Replication of  “YES” and 
the Index 5 model failed to identify the trend of  
variation in the state of  the atmosphere, from 
non-turbulent to turbulent, not predicting the 
occurrence of  MOG turbulence at any time of  
day. All other models were skilled in this indication 
but differing as to the start time of  the MOG 
turbulence. The model based on the CostMatrix 
380FN(Random Forest) predicted that the 
turbulence would start at 18Z, agreeing 100% with 
the observed data and with the atmosphere state. 
Models based on the Unbalanced Original Data 
(BayesNet), ClassBalancer 96/04 (Random Forest), 
and Random Removal of  “NO” (Random Forest) 
anticipated the start time to 12Z, disagreeing with 
the observed data, but showing up possible, even 
if  to a lesser degree, according to the analysis of  
the atmosphere state.

4.3.3 Case III: September 28 th, 2018

On September 28th, 2018, only at 06Z, 
09Z and 12Z there were no VRTG class 2 or 3 
data, which could indicate that it was a day with 
favorable conditions for the occurrence of  MOG 
turbulence, however, interspersed with a period 

of  attenuation of  the phenomenon. Analyzing 
the behavior of  the atmosphere (Figure 7a), it is 
verified that within the interest rectangle the wind 
above FL100 has a predominant west direction 
with a speed greater than or equal to 20 kt and 
peaks of  more than 100 kt. These winds with a 
strong component perpendicular to the relief  
favor the formation of  orographic waves, which 
can be observed along the vertical section by the 
large amplitude disturbances presented by the 
potential temperature lines, associated with intense 
ascending and descending currents in the upper 
and leeward Andes with extreme values greater 
than +/- 0.6 m/s. This atmospheric pattern was 
maintained at all times of  the day. The vertical 
wind shear behavior within the interest rectangle 
(Figure 7b) was significant near FL390, ranging 
from 6 to 12 (10-3 s-1) and mainly between FL100-
240, where it presented values greater than 14 (10-3 
s-1) and highs above 16 (10-3 s-1) during all times 
of  the day.

It is observed that the atmosphere state on 
September 28, 2018, did not show significant 
variations over the hours, being influenced by 
orographic waves and by vertical wind shear, with 
both contributing to the generation of  MOG 
turbulence. Thus, the absence of  VRTG class 2 
and 3 data in the period from 06Z to 12Z does not 
necessarily mean that there was no MOG turbulence, 
but that possibly it simply was not recorded, either 
because a flight was not performed at those times, 
or the flight was performed at a less favorable FL 
for the selected severity.

Table 9 - Results of optimal forecast MOG turbulence models for May 6th, 2018 compared to observed data. In gray absence of turbulence, 
in red presence.

0Z 3Z 6Z 9Z 12Z 15Z 18Z 21Z

OBSERVED

Index 5

Unbalance Original Data (BayesNet)

ClassBalancer 96/04 (Random Forest)

CostMatrix 380FN (Random Forest)

RandomRemoval “NO” (Random Forest)

Random Replication “YES” - mode 1 (Random Forest)

Random Replication “YES” - mode2 (Random Forest)

Random Replication “YES” - mode3 (BayesNet)

Random Replication “YES” - mode3 (Random Forest)

Source: Authors.
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Table 10 shows that the four predictive models based 
on Random Replication of  “YES” failed to identify the 
occurrence of  MOG turbulence at any time. All other 
models were effective in predicting turbulence, differing 
in terms of  the possibility of  having some time for 
attenuation of  the phenomenon. The Index 5 model 
predicted that there would be no turbulence from 3Z 
to 6Z and the model based on the Unbalanced Original 
Data(BayesNet) that there would be no turbulence 
only at 3Z. The models based on ClassBalancer 96/04 
(RandomForest), CostMatrix 380FN (Random Forest), 
and Random Removal “NO” (Random Forest) predicted 
that MOG turbulence would occur throughout the day. 

These models presenting the best performances, going 
accordingly with the analysis of  the atmosphere state.

5. CONCLUSIONS

This article evaluates a traditional in-flight turbulence 
forecast tool for mountainous regions known as 
Harrison’s Abacus and presents a set of  machine learning 
(ML) techniques to generate MOG turbulence 24-hour 
predictions. The research covers the Santiago (Chile) – 
Mendoza (Argentina) route, over the 22 months, from 
March 2018 to December 2019, using LATAM aircraft 
VRTG records. The main conclusions are as follows.

Figure 7 - Representation of the atmosphere state on September 28th, 2018 with data from the GFS model. The vertical section at 33.3 ° S 
between 65 ° W and 75 ° W and from 1000 hPa to 100 hPa, with corresponding FL at 18Z: a) wind (kt), potential temperature (K) in red isolines 
and vertical speed (m/s) in colored hatching; b) wind (kt) and vertical wind shear (10-3 s-1) in colored hatching. Highlighted interest rectangle.

Table 10 - Results of optimal forecast MOG turbulence models for September28th, 2018 compared to observed data. In gray absence of 
turbulence, in red presence.

0Z 3Z 6Z 9Z 12Z 15Z 18Z 21Z

OBSERVED

Index 5

Unbalance Original Data (BayesNet)

ClassBalancer 96/04 (Random Forest)

CostMatrix 380FN (Random Forest)

RandomRemoval “NO” (Random Forest)

Random Replication “YES” - mode 1 (Random Forest)

Random Replication “YES” - mode2 (Random Forest)

Random Replication “YES” - mode3 (BayesNet)

Random Replication “YES” - mode3 (Random Forest)

Source: Authors.

Source: Authors.
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The use of  an objective model based on Vn and DP 
(Harrison’s Abacus) to predict MOG turbulence proved 
to be ineffective for operational use, because it was 
found impracticable to define a threshold of  the pair of  
predictors with the acceptable performance of  PODy, 
PODn and TSS. Its extreme simplicity, while conceptually 
appealing, makes it incompatible with the atmospheric 
complexity associated with MOG turbulence and with 
the necessary reliability of  a forecast for flight planning 
and safety.

With ML techniques, it was possible to expand the 
dimensionality of  the analyzed parameters, covering 
a greater number of  variables necessary for good 
predictability of  the phenomenon. The best results 
found with these techniques were obtained through 
the artificial manipulation of  the dataset using weights 
(ClassBalancer and CostMatrix) and with the random 
removal of  data from the majority class “NO”, aiming 
at balancing classes. Such procedures responded with 
positive performances, both in training and testing and 
in the case studies, and these three models being skillful 
tools for operational use.

The prevalence correction technique with random 
replication of  data from the minority class “YES”, despite 
having generated models with the best performances 
during the training and testing phase, it was verified with 
the case studies that they were biased. The method ended 
up greatly altering the data, making the new dataset not 
representative of  the original data. As a result, the model 
presented over fitting, failing to acquire the necessary 
generalizability. For this study, this data balancing 
technique proved to be inappropriate.

This research demonstrates the benefits and how 
promising is the application of  ML techniques to the 
problem of  in-flight turbulence forecasting, presenting 
generalization capacity and out performing traditional 
tools. For future works, it is suggested to use a longer 
study period and include EDR data, if  available, aiming 
at the statistical consistency of  the results. Analyze the 
effectiveness of  applying the technique in areas that have 
little relief  influence. It is also suggested to compare the 
prediction of  the proposed models with other turbulence 
models that are operationally used.
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Synoptic patterns of unusual severe turbulence events 
on Santiago (Chile) – Mendoza (Argentina) route region 
insummer in Southern Hemisphere

Filipe Menegardo-Souza

ABSTRACT

Statistical analyzes of the seasonal and temporal 
distributions of the turbulence events on the 
Santiago (Chile) – Mendoza (Argentina) route 
region are constructed using automated in situ 
turbulence observationsmeasurements of the 
vertical acceleration in flight (VRTG) fromLATAM 
airlines aircraft. The VRTG database contains 
2,485 recordsover 22 months, from March 
2018 to December 2019. Although in the winter 
inSouthern Hemisphere (SH) was the period 
with the greatest occurrence of turbulence in the 
Andes, the severe ones were more frequent in 
the summer and early autumn in SH. Throughon 
synoptic-scale analysis generated by the post-
processing of Global Forecasting System,it 
was possible to identifythat the unusual severe 
turbulence events are not related to neither 
Convectively Induced Turbulence (CIT) nor 
Mountain Wave Turbulence (MWT), but withthe 
upper-levels atmospheric mechanismsthat 
caused severe Clear Air Turbulence (CAT) by 
an interaction tripodbetween the Bolivian High, 
Upper-level Jet Stream, and Topography.

Keywords:  CAT; Bolivian High; aviat ion 
weather; Andes.
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1. INTRODUCTION

In-flight turbulence can be dangerous, representing 
a major concern for aviation, as it can sometimes 
cause serious flight instability (Sharman, Trier, Lane, 
& Doyle, 2012);(Sharman & Pearson, 2017);(Storer, 
Williams, & Gill, 2019);(Gultepe et al., 2019). And 
so, the sudden fluctuations in speed and altitude 
that occur in this type of  environment may lead to 
structural damage to aircraft and, more commonly, 
to incidents with passengers and crew (Sharman, 
Tebaldi, Wiener, & Wolff, 2006);(Wolff  & Sharman, 
2008);(Sharman, Cornman, Meymaris, & Pearson, 
2014). There are three main sources of  turbulence 
that impact aviation as follows (Marlton, 2016);(Kim 
et al., 2018): 1) shear instability, typically in regions 
without significant cloud coverage associated with 
the strong vertical and horizontal shear that occurs 
in the vicinity of  jet streams  (Dutton & Panofsky, 
1970);(Wolff  & Sharman, 2008);(Kim & Chun, 
2010);(Storer et al., 2019). Gravity waves in strongly 
anticyclonic flows related to inertial instability and/
or geostrophic adjustment have also been considered 
as an important mechanism (Knox, 1997); (Ellrod 
& Knox, 2010);(Kim, Chun, Sharman, & Trier, 
2014)(Clear Air Turbulence – CAT); 2) breaking 
mountain waves, that occurs in the presence of  
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al., 2014).Currently, none ofthe Brazilian air carriers 
has implemented the algorithm. However, automated 
turbulence observations fromthe vertical acceleration 
in flight (VRTG) have become available, with records 
of  latitude, longitude, flight level, time, and intensity 
of  the turbulence eventbased on gravitational force 
(g).These data have the advantage of  reducing the 
aforementioned problems related to PIREP/AIREP as 
they are direct measures without human intervention. 
Regarding in-flight turbulence, it is known that its 
intensity is proportional to the aircraft type. However, 
the VRTG data used here was collected from the similar 
size LATAM aircrafts, which means that the “g” variation 
recorded via VRTG normalizes the turbulence events 
(i.e., light, moderate, and severe). Another important 
point is that VRTG data is not collected systematically, 
which is also the case with PIREP/AIREP messages, 
and its absence does not necessarily mean that there is 
no turbulence.

There arefew studies on in-flight turbulence 
over South America, and in particular, the Andes.
The papersare related to the processes of  generation, 
formation, and forecasting of  the zonda wind (a regional 
term for the foehn wind) or relating it to the mountain 
waves, such asSilva (2004),Norte (2015) andVásquez & 
Falcón (2015). Climatological survey using AIREP data 
was made by Mello (2015) in Brazil, and other studies 
used post-processing algorithms applied to the output 
of  the numerical weather prediction (NWP) to infer 
regions of  significant turbulence such asLyra, Chan, & 
Dereczynski (2007) in Brazil, andSharman & Pearson 
(2017) in USA based on EDR data from American air 
carriers.No research has been found in the literature 
specifically related to atmospheric turbulence and the 
use of  VRTG.

The objective of  this study is to investigate and 
understand the atmospheric conditions favorable to the 
frequent reports of  severe turbulence in the Santiago-
Mendoza route region from December 2018 to April 
2019, based on the post-processing of  data recovered 
from Global Forecasting System analysis, considering 
the combined investigation of  windshear, potential 
temperature, and other variables using synoptic-scale 
analysis. This technique is widely applied  to identify  
atmospheric patterns as example Andrade & Cavalcanti 
(2018).This paper contributes to understand possible 
mechanisms for atmospheric turbulence events in South 
America. The application of  synoptic-scale analysis helps 
to show the interaction between different atmospheric 
scales, including the importance of  a seasonal synoptic 
system, such as Bolivian High, which can directly 

orography(Nastrom & Fritts, 1992); (Wolff  & 
Sharman, 2008); (Kim & Chun, 2010)related to the 
upward propagation of  the gravitational wave’s energy 
in a stable environmentcarrying momentum to the 
upper troposphere, providing the breaking of  the 
wave at cruise levels(Smith, 1989);(Turner, 1999). 
Additionally, these waves may overturn and break as 
they approach a critical level where the wave phase 
speed is equal to the wind component projected 
along the horizontal wave vector(Dörnbrack, 
Gerz, & Schumann, 1995);(Doyle, Shapiro, Jiang, 
& Bartels, 2005);(Sharman et al., 2012). When the 
energy does not propagate vertically, trapped lee 
waves are produced downstream and are normally 
restricted to low altitudes(Carney et al., 1995);(Smith, 
2019)(Mountain Wave Turbulence – MWT); and 3) 
breaking gravity waves induced by intense convection, 
categorized into in-cloud and out-of-cloud, depending 
on its location (Convectively Induced Turbulence 
- CIT). Far away from convection, this event is 
defined as Near-Cloud Turbulence (NCT)(Lane, 
Sharman, Trier, Fovell, & Williams, 2012); (Kim et 
al., 2014);(Sharman & Trier, 2019).

In South America, the Andes acts as an obstacle to the 
flow of  prevailing westerly winds on the subtropical and 
extratropical latitudes (Silva, 2004);(Menegardo-Souza, 
2018). It is a continuous mountain range that extends in 
the North-South direction for more than 7000 km, with a 
width varying from 200 to 700 km and an average altitude 
of  4500 m (Norte, 2015). Airflow, often associated with 
jet stream, when interacting with the topography, cause 
disturbances that can reach the tropopause and reach 
thousands of  kilometers downstream. For this reason, 
air carriers  have specific operational procedures for 
crossing the Andes and the turbulence condition is vital 
for flight planning, influencing even the choice of  the 
route to be used (Menegardo-Souza, 2018). 

The validation of  the in-flight turbulence prediction, 
and diagnosisis difficult, because the objective verification 
data sets are limited (Storer et al., 2019). Traditionally, the 
only routine observationsare those provided verbally by 
pilots, known as PIREP, in the United States of  America 
(USA), and as AIREP internationally(Sharman et al., 
2014). The use of  flight reporting data has a limitation, 
as it can contain a substantial positioning and time error 
when the turbulence occurred, in addition to being 
dependent on the subjectivity of  the crew and the type 
of  aircraft (Sharman et al., 2006). To resolve these 
deficiencies, an in-situ turbulence notification algorithm 
based on the Eddy Dissipation Rate (EDR) has been 
implemented in some commercial airlines(Sharman et 
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The study area is characterized by different 
atmospheric systems throughout the year such as the 
Bolivian High (BH) and the Upper-Level Jet Streams 
(JS) (Reboita, Gan, Rocha, & Ambrizzi, 2010). The BH 
is an upper-level anticyclone that occurs in Southern 
Hemisphere (SH)summer over centralSouth America 
along with a trough in northeastern Brazil(Carvalho, 
1989). Its origin and maintenance are related to the 
latent heat released in severe thunderstorms and to a 
lesser degree by the sensible heating of  the atmosphere 
over the Bolivian plateau (Zhou &Lau, 1998);(Figueroa, 
Satyamurty, & Silva Dias, 1995);(Marengo, Soares, Saulo, 
& Nicolini, 2004). Its seasonal variability is directly 
related to the spatial and temporal distribution of  
precipitation in the Amazon basin (Lenters & Cook, 
1997). In SH fall, the BH moves northward following 
the trend towards the end of  the rainy season. In SH 
winter, the upper-level high practically disappears only 
returning in SH late spring with the intensification of  
convection over the continent. However, its  maximum 
occurs in SH summer(Shi, Higgis, Yarosh, & Kousky, 
2000);(Reboita et al., 2010). 

influence the determination of  a preferential region of  
severe turbulence, a smaller scale process, affecting an 
important air route.This effort is part of  aeronautical 
meteorology studies that have been carried out by the 
Laboratory of  Applied Meteorology at the Federal 
University of  Rio de Janeiro includingFrança, Almeida, 
&Rosette(2016),França, Almeida, Bonnet, & Neto 
(2018),Paulucci, França, Libonati, & Ramos (2019)
andAlmeida, França, & Velho (2020). There are some 
internal papers (written not in English) in the references, 
but some of  them have at least English abstract.

2. STUDY AREA

The study area is the region delimited by the 
latitudes 28°S and 39°S and longitudes 64°W and 76°W 
(polygon highlighted in Figure 1),including the Andes 
region between the airports of  Santo Domingo (SCSN), 
Santiago (Arturo Merino Benítez International Airport- 
SCEL), and Mendoza (Governor Francisco Gabrielli 
International Airport - SAME), which is the main airway 
for crossing the Andes. 

Figure 1: Study area with an indication of Santo Domingo (SCSN), Santiago (SCEL), and Mendoza (SAME) airports.
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Source: Adapted from (LATAM, 2019).

Table 1: Data set used in the research.

The JS forms a relatively narrow range of  strong winds 
at the upper levels of  the atmosphere (National Weather 
Service, 2020), close to the tropopause in a region where the 
zonal wind component, from the west, reaches maximum 
values (Zimmermann, 2017);(Pezzi, Rosa, & Batista, 2020). 
In the significant weather (SIGWX) charts it appears as 
a line of  maximum speed with its surroundings showing 
strong horizontal and vertical shear. According to Reiter 
(1969) there are two distinct jet streams: the polar jet (PJ) 
and the subtropical jet (SJ). They flow around the globe, 
alternating in altitude and latitude, sometimes dividing 
and even disappearing completely to appear elsewhere 
(National Weather Service, 2020). Its average position 
moves towards the equator in the SH winter period and 
towards the poles in the SH summer (Cavalcanti, Ferreira, 
Dias, & Silva, 2009). During the SH summer, the SJ 
practically disappears,the PJ predominating. In some cases, 
the jets are coupled and even associated with the BH, 
located on the southern edge of  this circulation (Pezzi et 
al., 2020). InSH fall, the gradual increase in the latitudinal 
temperature gradient favors the intensification of  the JS. 
However, their maximum speed over South America is 
reached in SH winter(Pezzi et al., 2020). InSH spring, the 
jets begin to lose strength in comparisontoSH winter and 
acquire a slight anticyclonic curvature on their north side 
in response to the appearance of  BH (Pezzi et al., 2020).

3. DATA AND METHOD

The research data and methodological steps are 
described in this section.

3.1 Data

Table 1 shows the details inherent to the data set used 
(that is, type, frequency, specific information, and source) 
for the period from March 2018 to December 2019.

Aircraft record vertical accelerations in terms 
of  the anomalous gravitational acceleration (g), 
which can be used as an indicator of  turbulent areas 
(LATAM, 2019). In an undisturbed flight, the VRTG 
is equal to the unit g. If  the aircraft experiences a 
sudden rise or fall, the VRTG values will be higher 
(positive g) or lower (negative g), respectively. Table 
2 presents theVRTGthresholds used for turbulent 
events classification. VRTG measurements are carried 
out in the so-called monitoring window, which starts 
10 s after takeoff  and ends 4 s before landing. The 
turbulent event is considered when the VRTG values 
are within the limits established in Table 2, however 
only the highest maximum or lowest minimum 
will be recorded. This ensures that only one event 
is generated in long turbulent conditions. After 
300 s of  normal acceleration a new event can be 
generated(LATAM, 2019).

Here, it is assumed as severe turbulence when 
the values of  VRTG correspond to those of  class 3 
(column 3) that are less than or equal to 0.2g or greater 
than or equal to 1.8g, values similar to those used by 
International Civil Aviation Organization (ICAO) for 
vertical accelerations in flight according toEick (2014).
As air carriers operate with many limitations, despite 
being structurally prepared for much larger loads, the 
components of  VRTG when the aircraft maneuvers 
in flight as in a turn, are small, hardly exceeding 1.13g 
or less than 0.87g, thus being far from the limits for 
registration(LATAM, 2019).It is worth mentioning that 
2,485 VRTG eventsof  classes 1, 2 and 3 were recorded 
during the study period and although only LATAM 
has provided these data for the paper, it is the main air 
carrier to carry out flights in the Santiago-Mendoza 
route region, performing a monthly average in 2019 
of  7,212 landings and takeoffs only in SCEL, with 
variations less than 10%.

Data Frequency Information Source
VRTG variable Vertical acceleration in flight (g) LATAM Airlines Brazil
TEMP 12h Wind at FL180 (500hPa) REDEMET (https://redemet.decea.gov.br)

GFS 0.25° 3h Analysis and forecast grids on a 0.25 
by 0.25 global latitude-longitude grid

NCAR (https://rda.ucar.edu/datasets/ds084.1/)

GOES-16 15min Channel 13 thermal band CPTEC    (http://satelite.cptec.inpe.br/)

Class 1 Class 2 Class 3
-g +g -g +g -g +g

0.6g<= >=1.4g 0.4g<= >=1.6g 0.2g<= >=1.8g

Table 2: The severity of VRTG as a function of variation in vertical acceleration in flight (g) (adapted from (LATAM, 2019).



194 Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

data, for FL300, FL340, and FL 390 
when VRTG class 3 was recorded in the 
dataset; another analysis was constructed 
by performing a vertical section at 33.5°S 
(the average latitude of  the study area), 
with data on wind, vertical speed, and 
potential temperature.

4. RESULTS AND DISCUSSIONS

Following the method´s phases, the results as 
presented and discussed.

4.1 VRTG Data Analysis

Over the 22 months of  the study period2,485 
VRTG records were identified, resulting in an 
average of  almost 4 encounters with in-flight 
turbulence per day. If  only severe turbulence is 
considered, it would be at least 3 per month. Figure 
2 displays the VRTG occurrence versus class 
intensity from March 2018 to December 2019. It 
may be noted thatVRTG records are predominantly 
of  class 1 (91.6% or 2277 occurrences) followed 
by VRTG classes 2 and 3 with 5.51%. (137 
occurrences) and 2.85% (71 occurrences), 
respectively. These results are somewhat similar 
to those obtained from the CAT climatology 
carried out by Mello (2015), but in Brazil, using 
data from AIREP, when the author found that 
only 2.7% were severe turbulences.Therefore,the 
turbulence that most concerns aviation, the severe 
one,affects less than 3% of  cases.According to 
Figure 2,generally there are more VRTG records in 
July with nearly 200 occurrences in 2018 and 2019. 
Besides, it is observed from May to November 
2018, the monthly VRTG exceed the limit of  100 
occurrences, while in 2019, four months (i.e., June, 
July, September, and October).There is an apparent 
seasonal behavior of  total turbulence considering 
the monthly average, alternating between the 
months of  greatest occurrence, typically from 
May to November with a peak in July (SH winter) 
and the lowest between December and April with 
a minimum in December (SH summer). The same 
variability in turbulence events was found in some 
studies, even though they deal with other regions 
such as Mello (2015),Wolff  & Sharman (2008) 
and Jaeger & Sprenger (2007), the last performed 
a CAT climatology using reanalysis data with 
turbulence indicators.

TEMP meteorological code is extensively used 
to report the atmospheric profile of  temperature, 
humidity, and wind and is normally generated 
daily at 00Z and 12Z. Here, data retrieved from 
an upper-air station in SCSN (seen in Figure 
1), is used. This weather station was chosen 
because it is located on the windward side of  the 
Andes,close to the Pacific Ocean. It is assumed 
here that the wind profiles obtained in 12Z and 
00Z are constant in the periods between 07Z 
to 18Z and 19Z to 06Z, respectively. In the 
absence of  TEMP data, forecast data generated 
by World Area Forecast Center (WAFC) (available 
at Meteorological Portal of  the Aeronautical 
Command–REDEMET) are used.

The data used to build thesynoptic-scale analysis 
(in section 3.2) are 00Z analysis with 0.25° x 0.25° 
horizontal resolution from the Global Forecast 
System (GFS) / National Centers for Environmental 
Prediction (NCEP). 

Images fromthe Geostationary Operational 
Environmental Satellite (GOES) 16 satellite channel 
13 (thermal band centered at 10.3 µm) is used to 
identify the presence of  convective cells and resolve 
doubts regarding the origin of  the turbulence 
(available at Center for Weather Forecasting and 
Climate Studies– CPTEC).

3.2 Method

The investigation performed here is composed of  
two steps, as follows:

1. Analysis of  turbulence occurrence: 
analysis of  the VRTG records by class, 
according to Table 2, and its monthly 
occurrence for the data period; selection 
of  VRTG value above flight level 100 
(FL100) to avoid low VRTG oscillations 
during landing and take-off  procedures; 
and calculation ofzonal wind component at 
a flight level (FL) 180, its monthly average 
and standard deviation using data from 
the wind profile collected by radiosondes 
(TEMP code); and

2. Atmospheric patter ns related to 
turbulence events :  construction of  
synoptic-scale analysis based on the 
streamlines, wind speed, vertical windshear, 
and potential temperature from the GFS 
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Figure 2: The VRTG occurrence versus Class turbulence from March 2018 to December 2019. Class 1 (green), Class 2 (yellow) e Class 3 (red).

unexpected increase of  severe turbulence occurrences 
in the SH summer and early autumn is probably not 
related to turbulent mechanisms of  CIT.

A very important questionis whether the air will 
flow over a mountain or not. The interaction between 
atmospheric stability, air flow and topography can 
generate a wide spectrum of  different characteristics 
waves and this can be verified analyzing low-level 
winds(Stull, 1988); (Wolff  & Sharman, 2008). Then, 
according to the constant cross-mountain wind speed (U) 
and stratification (CUS) theory(Smith, 1989); (Reinecke 
& Durran, 2008), the FL180 wind was chosen to estimate 
an effective constant wind speed across the mountain. 
Thisparameter is also commonly used in air carriers flight 
planning to predict MWT based on Harrison’s Abaco 
(Harrison 1957 as cited in WMO, 1973); (Menegardo-
Souza, 2018).Figure 3 shows that the monthly average of  
the zonal component of  the wind speed in FL180 (Vn) 
experienced an intensification between SH late autumn 
to early spring, remaining in a large part of  this period 
with an average speed above 30 kt, reaching a peak of  
almost 70 kt. The opposite occurred during SH summer 
and early autumn, when Vn was lower, with an average 
speed below 20 kt, even reaching negative values (close to 
minus 10 kt), which also indicates the presence of  weak 
low easterly winds. The Vn has a high variability given 
the values of  the standard deviations reaching values 
between 10 to 20 kt. This shows that in the study area 
it can occursincestrong westerly to weak easterly winds, 
but with the prevalence of  the first. 

Many studies disregard light turbulence data, 
considering only those of  moderate or greater intensity 
(MOG). Here, all turbulence intensities are considered. 
Comparing the turbulence of  classes 1 and 2, there is 
a similarity in the seasonal variation. But an important 
fact to be highlighted is the specific behavior of  severe 
turbulence (class 3). Although the total VRTG shows a 
minimum in the SH summer, the maximum of  severe 
turbulence is observed in this period. More than half  
of  the VRTG class 3, about 51% (corresponding 
to 36 events), are concentrated in just five months 
from December 2018 to April 2019, in contrast to 
only 14% (or 343 occurrences) of  the total VRTG of  
classes 1 and 2. This characteristic was not found in 
any other research in the literature. One hypothesis 
for this increase in cases of  severe turbulence could 
be CIT. This kind of  turbulence event occur within 
convective clouds, as well as in the clear air above or 
around the cloud, and sometimes far from the cloud 
boundaries (Sharman & Trier, 2019). According to 
Kaplan et al. (2005), about 86% of  the cases of  severe 
turbulence examined in the USA were within 100 km 
of  deep convection. But CIT frequency estimates 
vary, depending on the region and favorable season 
for a thunderstorm to form.All thirty-six cases of  
severe turbulence were studied and verified through 
satellite image data that there was no record of  deep-
convection. According to Shi et al. (2000) andReboita 
et al.(2010) the Andes study region has one of  the 
least rainfall in South America, which indicates that the 
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So, perhaps, the highest record of  total 
cases of  turbulence detected between May to 
November indicates that it may be related to the 
intensification of  prevailing westerly winds in 
mid-latitudes during SH winter, as also identified 
in several studies (e.g. Jaeger & Sprenger (2007), 
Mello (2015)andWolff  & Sharman (2008)). This 
mechanism is extremely important in the Andes 
region, since the specific positioning of  the 
north-south oriented mountain range acts as an 
obstacle with average topographic heights of  
4.5 km to the predominant westerly atmospheric 
flow, causing mountain waves that can break and 
generate MWT. A similar feature was seen by 
Wolff  & Sharman (2008) for the Rocky Mountains 
in the USA and Vásquez & Falcón (2015) for the 
Venezuelan Andes. The first identified that in 
the western part of  the USA the occurrences of  
MWT predominate due to the strong, westerly 
low-level wind, which are more common in the 
Northern Hemisphere (NH) winter months and 
over regions with topographic heights greater than 
or equal to 1.5 km. Another type of  analysis was 
done by Silva (2004), studying the dynamics of  the 
atmosphere in the Andes near SAME during the 
occurrence of  the zonda winds (Andean Foehn), 
identified the importance of  the interaction of  the 
elevation with the atmospheric flow, finding high 
values of  turbulent kinetic energy (TKE) at the 
top of  the mountain and the presence of  intense 

and deep JS between the levels of  100 and 650 
hPa. The zonda winds have a higher frequency 
in SH winter and spring seasons (Norte, 2015). 
However, lower values of  Vn from December 
2018 to April 2019, indicate that the unexpected 
increase of  severe turbulence occurrences in the 
SH summer and early autumn is probably also not 
related to thetrapped lee waves.

Regarding flight levels versus VRTG records 
in the study area, it isobserved, as shown in Figure 
4, that all VRTG classes are detected at all flight 
levels below FL400. Considering the total VRTG 
data, 21% (523 occurrences) were between 
FL300-400, and the rest below FL300 (1962 
occurrences). However, it is noted an increase 
of  VRTG class 3 at higher altitude with 54% 
(38 events) of  these cases above the FL300. The 
comparison of  these results with other studies 
is not so simple, since the flight levels used by 
the aircraft may differ for each region based on 
aspects such as topography, type of  aircraft, 
flight phase and flight time. Another point to be 
considered is that the aircraft are usually at cruise 
levels, which would cause a bias in the records, 
as well as proximity to JS.Mello (2015) identified 
that the largest occurrences of  CAT in Brazil are 
between FL300-400, with about 82.2% of  the 
cases, not categorizing between the intensities 
of  the turbulences.Mello’s results differ greatly 
from those found here.

Figure 3: Monthly average and standard deviation of the zonal wind speed at FL180 (Vn).
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As the aircraft in the study area are close to the 
landing or takeoff  from Santiago airport (SCEL), 
the main airport in the region, this influences the 
preferred flight level to be used and, subsequently, 
in the VRTG records. As the flight levels most used 
in the study area are below FL300, this indicates that 
the reason for the increase in VRTG class 3 numbers 
with altitude, has a predominant relationship with the 
atmospheric mechanisms of  the upper levels. Thus, 
it can perhaps be said that the increase of  severe 
turbulence events in the SH summer and early autumn, 
as shown in Figure 2, in addition to the origin in 
vertically propagating mountain waves (MWT), could 
also be CAT.  Therefore, a synoptic-scale analysisis 
discussed in the next section.

4.2 Synoptic-scale analysis

As presented and discussed in the previous section, 
the turbulence that most impacts the flight, the severe 
one, was most significant from December 2018 to April 
2019 (SH summer and early autumn), precisely in a period 
already known for lower incidence of  turbulence given 
the results found in other studies and also in this paper, 
when considering the total VRTG records. This unusual 
result was investigated with the generation of  synoptic-
scale analysisabove FL300, which represents here the 
average of  the atmospheric variablesconsidering the 
thirty-six events of  severeturbulence. 

Figure 5 a-c represent the synoptic-scale analysis 
of  FL300, FL340, and FL390 for streamlines 
(blue lines), wind speed (kt) (black dotted line), 
and vertical wind shear (10-3s-1) (hatched area 
in color), for only severe events, from December 
2018 to April 2019. There is a presence of  a wide 
anticyclonic circulation (BH) dominating central 
South America, acting between the FL300 and 
FL390 with an Upper Tropospheric Cyclonic 
Vortex(UTCV) downstream northeastern coast of  
Brazil. This is a typical atmospheric configuration 
for the season according toCarvalho (1989),Shi et 
al. (2000) andReboita et al. (2010). The maximum 
wind speeds (greater than or equal to 50 kt),are 
predominantly restricted to high and middle 
latitudes, according to Cavalcanti et al. (2009) 
andPezzi et al. (2020), reaching up to 25°S and over 
60 kt in part of  the study area. It isimportant to 
note that the streamlines associated to BH spread 
along its southern border over the central-north of  
Chile and Argentina, which favors a narrowing of  
the atmospheric flow, causing vertical windshear. 
Over the central region of  Argentina, there is also 
an area of  strong shear that occurs together with 
maximum wind speeds, which may indicate the 
coupling of  PJ with SJ. In general, the shear values 
are less than 5 (10-3s-1), which may be the result 
of  the attenuation of  the values due to the analysis 
being an average of  the parameters.

Figure 4: Flight levels versus VRTG records in the study area. Class 1 (green), Class 2 (yellow) e Class 3 (red).
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For more details on atmospheric patterns, Figure 6 
represents the vertical section at 33.5°S from 1000 to 100 
hPa with corresponding flight level, between longitudes 
64°W to 70°W of  the wind (kt), potential temperature (K) 
(red line), and vertical speed (m/s) (hatched area in color) of  
synoptic-scale analysis from December 2018 to April 2019. 
Note that above the FL300 the wind has a predominant west 

direction with a speed greater than or equal to 50 kt and the 
wind below the FL180 is normally lower than 20kt, which 
confirms the results found in Figure 3. These low-level 
weak winds do not favor the formation of  mountain waves, 
which can be seen along the vertical section, by the potential 
temperature lines that show almost no disturbances, which, 
in other words, indicates almost no vertical speed. Another 

Figure 5: The synoptic-scale analysis from December 2018 to April 2019 for only VRTG Class 3 events above FL300. In the black rectangle, 
the study area of this research. Streamlines(blue lines), wind speed (kt) in the black dotted line and vertical wind shear (10-3s-1) in the hatched 
area in color to a) FL300; b) FL340; c) FL390.
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important fact is that approximately 67% (24 events) of  the 
VRTG class 3 records from December 2018 to April 2019 
occurred to the windward side of  the mountain range. Thus, 
perhaps mountain waves were not so significant for the 
occurrences of  severe turbulence from December 2018 to 
April 2019, since MWT normally occurs above and leeward 
of  the mountain (Carney et al., 1995). 

This specific form of  data processing has not been seen 
in any other survey of  known turbulence, especially in the 
summer and early autumn months.Normally, attention to 
the hazard of  the turbulence is restricted to winter, which 
has not proved an absolute truth for the Andes region.

 
4.2.1 Case Study 

Although the use ofsynoptic-scale analysis is a classic 
tool to study patterns in the occurrence of  atmospheric 
phenomena, these are averaged values of  the parameters 
and, therefore, can smooth or mask some specific 
characteristics. For this reason, the VRTG class 3 record that 
occurred at FL300 at 71.8°W 31.5°S,on 03ZJanuary 21st, 
2019, was selected as a case study aimed at further detailing 
the conditions for the generation of  severe turbulence, and 
to be a counterpoint to the previous analysis. Figure 7 a-c 
represent the atmospheric patterns on 03Z January 21st, 

2019, combining GOES-16 satellite channel 13 thermal 
band, synoptic characteristics, and vertical section.It can be 
seen in Figure 7a that there are no convective clouds in the 
study area, showing only a few medium and high clouds. 
There is also an apparent anticyclonic pattern of  cloudiness 
centered in northern Argentina. Thus, the absence of  
thunderstorms again eliminates the possibility a CIT event.

In the analysis of  the atmospheric flow at FL300 
(Figure 7b),one can observe the BH centered in the north 
of  Argentina, with its southern edge spreading down 
to 35°S. Below this latitude, PJ and SJ are coupled, with 
slightly anticyclonic curvature, acting on the study region 
and diverging towards eastern Argentina. The interaction 
between these systems causes the formation of  a strong 
vertical wind shear area with values above 6 (10-3s-1).
In the vertical section at latitude 31.5°S (Figure 7c), the 
wind is predominant from the west with a speed greater 
than or equal to 50 kt above the FL300 and less intense 
winds below this level. From the surface to the top of  the 
mountain, the wind is weak, reaching only the intensity of  
20 kt in FL180. The potential temperature lines indicate a 
slight wave of  small amplitude over the mountain range, 
where the vertical speed was minimal. However, the aircraft 
experienced severe turbulence in the windward Andes, so 
MWT did not contribute to the origin of  the phenomenon.

Figure 6: The synoptic-scale analysis from December 2018 to April 2019 for only VRTG Class 3 events above 
FL300. The vertical section at 33.5°S from 1000 to 100hPa between 64°W to 70°W displays wind (kt) on 
the dewlap, potential temperature (k) on the red lines, and vertical speed (m/s) in the hatched area in color.
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The synoptic patterns found in the case study were 
therefore like those found in the synoptic-scale analysis. 
Once again, BH acts as a flagship, dominating the 
atmospheric flow, modulating, and favoring the coupling 
of  SJ with PJ, causing strong vertical wind shear in a 
thin atmospheric layer already due to the Andes. These 
mechanisms favor the formation of  severe CAT with 
vertical windshear values higher than those shown in the 
compounds because they did not suffer the attenuation 
of  the technique. Maximum windshear valuespeak above 

6 (10-3s-1) in a wide area, showing a more adequate value 
for the generation of  severe turbulences, serving as a 
parameter to be observed by researchers and forecasters.

5. CONCLUSIONS

The mechanisms of  severe turbulence formations are 
investigated, based on modeled data and VRTG records 
by LATAM aircraft from December 2018 to April 2019 
in the Andes region. The main conclusions are as follows.

Figure 7: The atmospheric patterns on 03Z January 21st, 2019: a) GOES-16 satellite channel 13 thermal band with a temperature range in °C. Source: adapted 
from CPTEC (http://satelite.cptec.inpe.br/); b) streamlines (blue lines), wind speed (kt) (black dotted line), and vertical wind shear (10-3s-1) (hatched area in color) 
for the FL300; c) vertical section at 31.5°S from 1000 to 100hPa between 64°W to 70°W of the wind (kt) on dewlap, potential temperature (k) (red lines), and 
vertical speed (m/s) (hatched area in color). Highlighted in the rectangle, the study area, and in “x” the positioning of the aircraft that registered the VRTG Class 3.
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When analyzing the VRTG, it appears that 
although SH winter was the period of  greatest 
occurrence of  turbulence in the Andes, a result 
similar to that found for others regions byMello 
(2015), Wolff  & Sharman (2008) and Jaeger & 
Sprenger (2007), it was in the SH summer and early 
autumn that the greatest records of  severe turbulence 
were found. Thisfact, which was unknown and had 
no similar result in other studies, proved to have 
origins at the upper levels that caused severe CAT.

The synoptic-scale analysis showed the presence 
of  a wide anticyclonic circulation that is characteristic 
mainly in SH summer, the Bolivian High. It can 
be observed that the spread of  its southern edge 
modulates the flow of  winds at high levels to 
higher latitudes, providing an anticyclonic curvature 
of  the JS over the region.This narrowing of  the 
atmospheric flow together with the topography, 
favors the coupling of  PJ with SJ, channeling an 
area of  maximum wind.

As verified by Wolff  & Sharman (2008), MWT 
is favored by strong westerly winds perpendicular 
to the mountain, with turbulence occurring to 
the leeward. However, in this research, low-level 
winds are of  weak intensity and, besides, many 
of  the VRTG class 3 occurred windward of  the 
mountain range. Convective clouds are not so 
significant in the study area, see the low rainfall 
indexes presented by Shi et al. (2000) andReboita 
et al. (2010), and the case study carried out. Thus, 
mountain waves and convective formations were 
of  little significance for the genesis of  the severe 
turbulence cases analyzed.

The BH spreading its southern edge to mid-
latitudes, the coupling of  PJ with SJ, and the 
presence of  topography with an average altitude of  
4500 m favored the occurrence of  strong vertical 
wind shear at upper levels and, consequently, a 
greater number of  severe CAT recorded in the 
summer and early autumn. 

It is expected that this knowledge may contribute 
to reduce the gap of  atmospheric turbulence 
studies in South America and help the researchers 
and forecasters to identify the phenomenon risk 
situations, enabling better diagnostics and issuing 
more easily alerts aiming at the safety of  air 
navigation.For future studies, it is suggested to use 
a longer study period and include the EDR data, 
if  available, to confirm the conditionsof  severe 
CAT in the SH summer and early autumn here 
identified. Also, we suggest the development of  
CAT forecast models using GFS post-processing 
and machine learning to verify if  there is an 
improvementcompared to existing methods.
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Nowcasting model of low wind profile based on neural 
network using SODAR data at Guarulhos Airport, Brazil

Gutemberg Borges França

ABSTRACT

A generalized regression neural network model was 
tested—as a nowcasting tool—to forecast the low 
wind profiles up to 45 minutes (i.e., at heights of 10, 
100, 200 and 300 m) at the Guarulhos International 
Airport, São Paulo, Brazil. A dataset representing 
over four years was generated from sonic detection 
and ranging and surface meteorological station, 
which registered vertical wind profiles with intervals 
from 10 m to approximately 500 m in height every 
15 minutes, and surface meteorological variables 
were collected each minute, respectively. These 
data were simultaneously used to train, validate 
and test the proposed model. The u and v forecasts 
generated at 300, 200 and 100 m were better than 
at 10 m, which could certainly be attributable to 
the surface roughness. In addition, the results 
also revealed that the performance of the model is 
time-dependent—decreasing over time —and that 
this may be correlated with the fact that the neural 
network is a statistical rather than physical model. 
The forecasts of wind components u and v are 
slightly biased (or closely matched to observations) 
at all heights, and forecast intervals with maximum 
values have median and average errors equal to 
0.070 ms-1 and -0.017 ms-1 , respectively. The 
forecast model’s results were evaluated using the 
values of four categorical statistics: probability of 
detection; probability for non-events; bias; and 

1. Centro de Ciências Matemáticas e da Natureza (CCMN) - IGEO/Meteorologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio 
de Janeiro, Brazil

false-alarm ratio, with respectable minimum and 
maximum values for u wind principal components 
equal to 0.841, 0.833, 0.159, 0.981 at 10 m for 45 
minutes forecasts and 0.989, 0.987, 0.011, 0.999 
at 300 m for 15 minutes forecasts, respectively. 

Manoel Valdonel de Almeida

Suzanna Maria Bonnet

Francisco Leite Albuquerque Neto

1. INTRODUCTION 

Landing could be considered the most dangerous 
phase of  a flight, since the aircraft has lower speed and 
more limited control due to the use of  flaps, spoilers and 
landing gear. In addition, the aforementioned danger may 
increase if  it coexists with meteorological phenomena 
such as wind gusts, downdrafts or wind shear, which 
could quickly alter the wind profile and influence the 
trajectory of  the approach for landing.

The traffic pattern of  aircraft landing and taking-
off  in any airport depends mainly on the behaviour 
of  the wind direction profile near the surface. In fact, 
the runway should have a preferable surface wind 
blowing in opposite directions for landing and take-
off  procedures. Therefore, the air traffic controller 
requires precise short-term wind forecasts in order to 
make rapid and correct decisions on whether or not the 
runway-in-use will be changed, considering air traffic 
flux optimization and safety requirements. At present, 
the majority of  Brazilian airports are lacking sensors 
capable of  generating a precise diagnostic of  vertical 
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Figure 1: Runways (yellow arrows) and location of SODAR (red cross) and SMS (red star) at Guarulhos Airport.

wind profiles at high frequency and detecting changes in 
the wind direction. Furthermore, the current numerical 
weather prediction models used in Brazil are not yet able 
to produce short-term and locally specific predictions of  
the aforementioned phenomena. 

The SOnic Detection And Ranging (SODAR) 
equipment is an atmospheric profiler with a high 
frequency of  data collection that has been used to 
investigate the turbulence of  the atmospheric boundary 
layer for the last three decades. Motta et al. (2005), Sumner 
and Masson (2006), Gottschall and Peinke (2008) and 
Van den Berg (2008) have studied atmospheric stability, 
wind shear impact and intensity of  turbulence in wind 
energy production using SODAR data. Gerz et al. (2009) 
used SODAR data for diagnosing and nowcasting fog 
and wind shear at the Frankfurt International Airport. 
Chan (2014) found efficient uses of  SODAR data in 
detecting turbulence and wind shear at the Hong Kong 
International Airport. Silva et al. (2016) developed a 
conceptual model for wind profile behaviour based 
on an investigation of  234 runway-in-use changes 
using SODAR and surface meteorological station 
data for the Guarulhos International Airport (Brazil) 
from 1 September 2011 to 31 December 2013. The 
results showed that a change of  wind direction at 10 
m occurs after an interval period of  30 to 60 minutes 
past the change of  wind direction at 300 m. Therefore, 
the main purpose of  this study is to develop a Wind 

Profile Forecast Model (WPFM) to generate short-term 
forecasts of  wind profiles at 10, 100, 200 and 300 m 
for the Guarulhos international airport based on neural 
network techniques and using SODAR and Surface 
Meteorological Station (SMS) data.

The present paper is part of  a sequence of  studies 
related to nowcasting that has been successfully 
executed by our group at the Applied Meteorological 
Laboratory at the Federal University of  Rio de Janeiro, 
as described in Almeida (2009), Silva et al. (2016), and 
França et al. (2016). 

2.  STUDY AREA AND DATA 

The Guarulhos International Airport is located in the 
city of  Guarulhos-SP, approximately 25 km from downtown 
São Paulo. It has two parallel runways aligned in magnetic 
orientation, i.e., runway 09 (270° magnetic) and 27 (90° 
magnetic). It is situated at an altitude of  750 m. As in Figure 
1, runway 09R has a length of  3000 m and runway 27R 3700 
m, while both are 45 m wide. The cross and star, both in red, 
represent the locations of  SODAR and SMS, respectively. 
[Figure 1 near here] The time period for the data used in 
this work was from 1 September 2011 to 15 September 
2015. Runway 09R is considered the main runway since it is 
aligned to the prevailing easterly wind, and most take-offs/
landings are realized in that direction. Table 1 describes the 
meteorological variables extracted from each data source.
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3. METHOD
 
The neural network model is a well-known 

technique used to classify and recognize patterns. 
Its principle is to learn patterns from a set of  
training data and thus develop the ability to 
correctly classify new standards (Bishop, 2006). 
The main problem in using neural networks is 
deducing the proper size of  the network to carry 
out a certain task; here, that task is to forecast a 
wind profile. According to Haykin (1994), it is 
not possible to design a high-performance neural 
network model using its minimum network size. 
Generally, a neural network is represented by a 
function, such as:  

Considering the objective previously 
defined, the neural network model output (yk) 
corresponds to forecasts of  the wind profile 
at heights of  10, 100, 200 and 300 m for time 
periods of  15, 30 and 45 minutes (Table 1, 
output column). To obtain the optimum WPFM, 
three steps were followed:

Step 1- data processing: here, the input 
and output of  WPFM were defined. The SMS 
and SODAR datasets were sorted, and their 
relevance was statistically analysed from the 
correlation significance among variables and 
targets. All selected variables were normalized 
to a range of  [-1, 1]. The wind direction forecast 
can show some difficulties regarding number 
sequence discontinuity in a northerly direction, 
as (for example) when the wind direction changes 
from 355° to 5° (or vice-versa). To avoid this 
scenario, the wind vector was decomposed into 
u and v components and used as WPFM input/
output. Initially, 82 variables were selected, but 
after removing collinear inputs from correlation/
autocorrelation analysis (Pasini and Ameli, 2003), 
58 variables remained. The time series was divided 
in three subsets: train (80.0%), validation (10.0%) 
and test (10.0%). Table 2 shows the total number 
of  meteorological recordings used for each 
developed model. For a same level and forecast 
period, the same input dataset in the models 
WPFM-u and WPFM-v (or WPFM-u-v) were used 
to predict u and v wind components, respectively. 

TKE*, SigW*and EDR* represent turbulence kinetic energy, standard deviation of vertical wind component and energy dissipation rate, 
respectively.training-validation and testing of all wind profile forecast models.

where wji and wkj are the connection weights 
between input and hidden layers and hidden and 
output layers, respectively, xi is the vector of  
inputs with length D, M is the number of  neurons 
in the hidden layer and yk is the output vector. 
The superscripts (1) and (2) of  the Equation 
(1) are references to input and hidden layers, 
respectively, σ and h are linear and nonlinear 
transfer functions between neural network model 
layers, respectively. 

yk (x ,w )=σ[∑
j=0

M

wkj
(2 )h(∑

i=0

D

w ji

(1) xi)] ( 1 )

Source Frequency
Inputs 

Output
Primary Derived

SODAR 15 min.

v and u wind components at 
heights of: 30, 60, 90, 120, 150, 
180, 210, 240, 270 and 300 m 

(collected for a given time (T));

TKE*, SigW* and EDR* (at 
heights: 30, 60, 90, 120, 150 and 

180 m).

v and u wind components 
at heights: 100, 200, and 
300 m (collected for a 
given T-15 minutes);

Wind profile (v and u 
at heights of  10, 100, 
200 and 300 m) for 

15, 30 and 45 minutes

SMS 15 min.        
Temperature in 2 m, atmospheric 

pressure and dewpoint 
temperature in 2 m.

v and u averages of  the 
last two minutes   

Table 1: Data sources, input (primary and derived, corresponding to 58 inputs), and output used for training-validation and testing of all wind 
profile forecast models.
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Level in height 
(metros)

Forecast 
period

Number of  meteorological recordings

Optimum Number of  neurons
Training and 
Validation Test Total

 
10
 

15 9269 2595 11864 131
30 9348 2455 11803 128
45 8347 2087 10434 134

 
100
 

15 10306 2601 12907 128
30 7323 1831 9154 121
45 7219 1852 9071 120

 
200
 

15 8448 2113 10561 122
30 10141 2468 12609 123
45 9101 2277 11378 122

 
300

15 8302 2075 10377 124
30
45 7945 1987 9932 126

123

4. RESULTS AND DISCUSSION

The training-test of  the neural network is a pivotal 
phase for the effective model and is usually a trial and 
error task in order to obtain an optimum model as, 
for example, discussed by França et al. 2016, Pasini 
(2015), Pasini (2003) and Pasini et al., (2001). Table 1 
and lines 2 and 3 of  column 3 present the resulting 
inputs used for validating all optimum neural networks 
models to forecast the wind profile at the Guarulhos 
International Airport. It is observed that the optimal 
WPFM was obtained by minimizing the MSE rather than 
by reaching the defined limit of  neurons (equal to 150) 
in the hidden layer, as in Table 2, column 6. Columns 4 
and 5 in Table 2 present the number of  meteorological 
recordings used for the training-test and validation of  
all WPFMs. Column 6 shows the number of  neurons 
for each optimum WPFM obtained.

4.1 WPFM results versus wind observations 

To evaluate the potential wind forecast 
profile model proposed here, the u and v wind 
observations collected at heights of  10 m from 
the SMS and at 100, 200, and 300 m from the SMS 
and SODAR (as in Table 2, column 5) are used 
for validation of  the forecast results generated 
by WPFM-u-v at the wind heights for forecast 
intervals. Figure 2 shows error histograms 
(observation–WPFM) for u and v components at 

Table 2: Number of meteorological recordings used for training-validation and testing of WPFM at 10, 100, 200, and 300 m for interval times 
in the forecasting of 15, 30, and 45 min, respectively.

Step 2 – Train-validation of  WPFM: This step 
corresponds to obtaining the optimal topology for each 
WPFM via the use of  a cascade-correlation algorithm 
(Fahman and Lebiere, 1990) by defining the number 
of  neurons at the hidden layer:

a) This algorithm starts WPFM with only one neuron 
in the hidden layer. For each interaction, a new hidden 
unit neuron is added, one by one, resulting in final multi-
layer; and

b) Validation corresponds to evaluate the Mean 
Square Error (MSE) (observation – forecast) by 
considering the observation as the validation subset. It 
then returns to (a) if  the MSE has not increased from 
previous interaction or the number of  neurons in the 
hidden layer is less than or equal to 150 (the defined 
limit). Otherwise, the final WPFM configuration is 
obtained and thus goes to step 3;

Step 3 – The test of  WPFM: The algorithm 
creates a simple comparison between WPFM 
results and observations—represented by test 
subset—by investigating the MSE (observation – 
forecast). The optimum WPFM is reached when 
the MSE for the test dataset is acceptable, which 
here means that a WPFM is able to satisfactorily 
generate nowcasting of  wind profile for specific 
height and forecast periods. Otherwise, the usual 
procedure is to try (for example) to introduce 
eventually new inputs or rearrange/combine them 
and repeat step 2. 
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10 m of  height for 15, 30 and 45 minutes forecasts. 
It is evident that the majority of  the errors are 
quite small, and most of  the density (more than 
90.0%) falls within the interval between [-3, 3] 
ms-1, independent of  wind component. As seen 

Figure 2: (a–c) and (d–f) are the histogram of errors (observation – WPFM) of u and v wind components at 10 m in height for 15, 30, and 45 min.

in Table 3, the average (AE) and median (ME) 
errors are also small, which means that all WPFMs 
tend to forecast with a slight bias (in some of  the 
models negative and in others positive) compared 
to the observed data. 

Wind component Time (minute) Statistics
Height (m)

10 100 200 300

u

15
MD 0.07 -0.01 -0.02 -0.009
AE -0.004 -0.014 -0.003 0.004

30
MD 0.1 -0.03 -0.01 0.02
AE -0.006 -0.017 -0.012 0.026

45
MD 0.1 -0.03 -0.008 0.011
AE -0.02 -0.01 -0.01 0.004

v

15
MD -0.06 0.004 0.005 0.02
AE -0.003 0.004 0.012 0.016

30
MD -0.04 -0.01 -0.01 0.007
AE 0.035 -0.011 -0.007 0.027

45
MD -0.09 -0.01 -0.02 -0.02
AE -0.006 -0.002 0.001 0.006

Table 3:  Median and average and errors (observation – forecast) of u and v winds for nowcasting of 15, 30 and 45 minutes. 
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v components than at 100, 200 and 300 m. This means 
that forecast products are better generated at 300, 200 and 
100 m than at 10 m and that all nowcasting undergoes 
deterioration over time. 

 Figure 4 displays the hourly frequency of  wind 
direction at 10 m from the meteorological station of  the 
Guarulhos International Airport, excluding calm wind 
occurrences corresponding to 4.5% of  132,014 events. It 
is observed that the major frequencies are zonal (East to 
West) rather than meridional (North to South) from 10° 
to 200o, directions which correspond to approximately 
80.4% of  the occurrences. The latter defines that u is the 
domain wind component.

Aiming to investigate for which intervals the 
forecasts of  WPFM-u-v are more or less accurate, plots 
of  forecasts versus observations were generated, showing 
1:1 plots represented by Figure 3 of  10 m in height 
at 15, 30 and 45 minutes forecasts. This type of  plot 
contrasts the similarities between the model results and 
observations (Dhar et al., 2014). In general, all WPFMs 
tend to systematically overestimate at the lower end and 
underestimate at the higher end. This can be observed for 
both wind components at all heights and forecast times. 
Additionally, these differences in the extremes increase 
over time. The tendency is greatest at 10 m because of  
surface roughness, which induces higher variance of u and 

Figure 3: (a–c) and (d–f) are plots of predictions versus observations of u and v wind components at 10 m in height for 
15, 30, and 45 mins, respectively.and 45 min.
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Figure 4: Hourly wind direction at 10 m; climatology of Guarulhos Airport at 10 m in height from 1 
January 1987 to 31 December 2006, corresponding to 126,074 samples.
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Figure 5 shows the WPFM results for wind 
speed specifically at 10 m for the 15 minutes 
forecast period. It reveals that the WPFM 
results tend to underestimate the high-speed 
wind (approximately 91.0% of  the wind speed 
observed are below 10 ms-1). 

conditions: 1) using all pairs of u and v; and 2) using 
only samples of  u where │ut+∆t │≥ 3 ms-1 . The latter 
condition represents typical aeronautical purposes. 
From this contingency table, certain statistical tests 
are computed (Wilks, 1995): 1) Probability Of  
Detection (POD); 2) Probability for non-events 
(Podno); 3) Bias (the ratio between the frequency 
of  forecasted events and the frequency of  observed 
events) and 4) False-Alarm Ratio (FAR). The 
aforementioned statistics are determined based a 
standard contingency table as Table 4. 

Figure 5: Wind speed observed versus forecasted at 10 m in height 
for forecast intervals of 15 min. 

4.2 Results for aeronautical applications 

The runways of  Guarulhos International 
Airport are oriented in magnetic coordinates based 
on the preferential wind direction Northeast–
Southwest, as shown in Figure 4. At this airport, the 
frequency of  high-speed winds is quite negligible. 
However, since the wind direction should preferably 
occur in opposition to the wind direction at 10 m, 
that preferential wind direction plays an important 
role whether or not the air traffic controller decides 
to reassess the traffic pattern for landing/take-
off  procedures. Once the u component is aligned 
with the runways and, as previously verified, the 
dominant wind direction at the Guarulhos airport, 
a high-quality nowcasting of  the u component 
is required to make the decision to change the 
runway-in-use. Based on ICAO Air Navigation 
Services Procedures (2007), which are followed 
by the Brazilian Aeronautics Command (see ICA 
100-37, 2016), the criteria to change the runway-
in-use is based on whether or not the signal of  
ut+∆t (forecast for ∆t minutes) is in opposition to 
ut (observation at time t), i.e., from negative to 
positive direction (or vice-versa), when │ut+∆t │≥ 
3 ms-1. Then, in order to evaluate the performance 
of  the WPFM-u-v results, results are cross-verified 
based on a two-dimensional contingency table. The 
cross-verification is done while considering two 

Table 4: Contingency table for validation statistics representing 
the sums of each WPFM and observation pair.

Wind Direction

Forecast

Observation 

+ -

+ ++ + -

- - + --

The comparisons between u and v statistics (i.e., 
columns 3, 5, 7 and 9, 10, 11 of  Table 5, respectively) 
show that all v statistics are relatively better, with the 
exception of  Podno at 10 m. Considering the aeronautical 
purposes (condition 2), the statistics (columns 4, 6 and 8) 
show that all WPFM-u have good ability to predict u and 
signal changes with POD, Bias, and FAR. Podno values 
are highly regarded, and their minimum and maximum 
values are equal to 0.841, 0.833, 0.159, and 0.981 at 10 
m for a 45 minutes forecast and equal to 0.989, 0.987, 
0.011, and 0.999 at 300 m for a 15 minutes forecast, 
respectively. The forecast performance is better at upper 
levels (300 m) and declines near the surface (10 m). This 
can be seen for the forecast period too, as the prediction 
accuracy declines slightly as the forecast period increases. 
One reason for the WPFM performance degeneration is 
that a neural network is a data model, which means that 
the physical aspects are not included. 

4. CONCLUSIONS

This study used cascade-correlation training of  a 
generation regression neural network model to nowcast 
the wind profiles up to 300 m in height at Guarulhos 
International Airport, and its performance was evaluated 
using a cross-verification approach. The results indicate 
that the model has enough skill to perform wind profile 
forecasts at a specific location for short-term use, as 
aviation requires. The findings are as follows: 
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The u and v forecasts for 15, 30 and 45 minutes 
are closely matched to observations at all levels, as 
indicated by the small average and median errors, 
which represent that all WPFM forecasts tend towards 
some minor bias. Considering the absolute value 
wind speed at 10 m for a 15 minutes forecast period, 
the WPFM results tend to underestimate the high-
speed wind (approximately 91.0% of  the wind speed 
occurrences are below than limit of  10 ms-1).  

The u and v forecasts are better generated at 300, 
200 and 100 m than at 10 m, which could certainly be 
blamed on the surface roughness. In addition, the results 
also revealed that the performance of  the model is time-
dependent—decreasing over time—and that this may be 

correlated with the neural network’s nature as a statistical 
rather than physical model.  

Regarding the use of  the model for possible utilization 
in decision-making for the runway in use, it is observed that 
all statistical values are close to ideal; thus, it has potential 
use as an operational tool to corroborate with the aircraft 
controller’s judgement in making decisions in the future.
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15 min. 30 min. 45 min.
Level (m) Statistics all u u≥3m/s all u u≥3m/s all u u≥3m/s all v all v all v

POD 0.721 0.875 0.713 0.857 0.715 0.841 0.909 0.904 0.899

10 Bias 0.805 0.926 0.755 0.862 0.713 0.833 1.041 1.039 1.044
FAR 0.279 0.125 0.287 0.143 0.285 0.159 0.091 0.096 0.101

Podno 0.940 0.985 0.941 0.983 0.943 0.981 0.596 0.572 0.569

Statistics all u u≥3m/s all u u≥3m/s all u u≥3m/s all v all v all v
POD 0.837 0.984 0.797 0.973 0.797 0.955 0.932 0.915 0.902

100 Bias 0.931 0.975 0.899 0.970 0.899 0.957 1.013 1.009 1.010

FAR 0.163 0.016 0.203 0.027 0.203 0.045 0.068 0.085 0.098

Podno 0.968 0.999 0.962 0.998 0.962 0.996 0.891 0.865 0.846
Statistics all u u≥3m/s all u u≥3m/s all u u≥3m/s all v all v all v

POD 0.858 0.973 0.825 0.959 0.809 0.956 0.939 0.925 0.917

200 Bias 0.914 0.995 0.890 0.971 0.859 0.941 1.010 1.017 1.009

FAR 0.142 0.027 0.175 0.041 0.191 0.044 0.061 0.075 0.083

Podno 0.973 0.998 0.967 0.997 0.964 0.996 0.906 0.886 0.872
Statistics all u u≥3m/s all u u≥3m/s all u u≥3m/s all v all v all v

POD 0.862 0.989 0.844 0.971 0.817 0.929 0.939 0.928 0.917

300 Bias 0.933 0.987 0.865 0.941 0.826 0.956 1.009 1.003 1.004

FAR 0.138 0.011 0.156 0.029 0.183 0.071 0.061 0.072 0.083

Podno 0.980 0.999 0.978 0.998 0.974 0.995 0.930 0.917 0.906

Wind component U V

15 min. 30 min. 45 min.

Table 5: Test statistics of cross-verification of u and v wind directions (positive and negative) for forecast intervals of 15, 30, and 45 min, 
respectively. Columns 4, 6, and 8 are the statistical results for u (− or +) greater than or equal to 3 ms−1 for forecast intervals of 15, 30, and 
45 min (for 5819 events), respectively.
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Conceptual Model for Runway Change Procedure in 
Guarulhos International Airport based on SODAR Data

Wanderson Luiz Silva

ABSTRACT

In this work, we qualify and quantify the 
advantages of using SODAR (sonic detection 
and ranging) from current scenarios of 
Aeronautical Meteorology, with the goal of 
establishing a conceptual model for runway 
change procedures at Guarulhos International 
Airport (São Paulo, Brazil). The methods 
consist of the analysis of data from DECEA and 
INFRAERO about the reports of the runway 
changes in Guarulhos, besides the SODAR 
data between September 2011 and December 
2013. It is noted that in 234 analyzed cases of 
runway change, there were significant periods 
of weak intensity wind on the surface as well 
as the anticipated modification wind direction 
at altitude detected by SODAR, indicating a 
future change in levels closer to the surface. 
Checking the intersection of both scenarios, it 
is possible to observe that there is time enough 
so that the air traffic controller could anticipate 
the needed runway change minimizing the 
impact on the aircraftflow, and this period has 
an average duration of 1 hour and 24 minutes. 
Therefore, it confirms that the preliminary 
analysis of the information provided by SODAR 
can help predict alterations in wind direction, 
requiring redirection and bringing advantages 
in economic and security terms.

1 Laboratory of Applied Meteorology, Federal University of Rio de Janeiro, Brazil.
2 Implementation Commission of theAirspace Control System, Brazil. wanderson@igeo.ufrj.br.

1

Keywords: Aeronautical Meteorology; Guarulhos 
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Nomenclature 

AIP = Airport Improvement Program

COPPETEC = Project, Research and Technology 
Studies Coordination

CTCEA = Brazilian Organization for Scientific and 
Technological Development of Airspace Control

DECEA = Department of Airspace Control

GMT = Greenwich Mean Time

ICAO = International Civil Aviation Organization

INFRAERO = Brazilian Airport Infrastructure Company

LMA = Laboratory of Applied Meteorology

NREL = National Renewable Energy Laboratory

SBGR = Guarulhos International Airport

SODAR = Sonic Detection and Ranging

UFRJ = Federal University of Rio de Janeiro

WCA = Wind Change in Altitude

Wd = Wind Direction

Wr = Aligned Wind

Wt = Total Wind
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Figure 1: SODAR (Sonic Detection and Ranging) equipment.

1. INTRODUCTION

The atmospheric conditions have positive or 
negative influences on aviation in any time and place1. 
Meteorological products for aviation are chosen 
according to the user’s knowledge of  their applications, 
need and operational significance, ease of  access and 
available technology. The Aeronautical Meteorology 
marks conditions through observations with continuous 
and integrated monitoring of  the meteorological 
variables on the surface and at altitude, serving as raw 
material for the most appropriate operating procedures 
for safe, efficient and economical air traffic flow.

The first 500 meters of  the atmosphere, starting from 
the surface, is most critical especially for the initial and 
final stages of  flight operations due to possible presence 
of  turbulence, wind shear, sudden changes in wind 
direction and formation of  fog2. These unsteady low-
altitude atmospheric phenomena have negative impacts on 
safety of  flight during take-off, final approach and landing 
phases at which aircraft have relatively lower airspeed 
and compromised maneuverability by extension of  flaps, 
spoilers and exposed landing gear. However, the surface 
meteorological stations installed in airports are incapable 
of  detecting most of  the mentioned phenomena. Altitude 
meteorological stations would be able to detect such 
phenomena, but their temporal resolution of  12 hours 
(published at 00 GMT and 12 GMT) makes this capacity 
incompatible with the frequency and the time of  occurrence 
of  the reported phenomena.

The staff  of  Applied Meteorology Laboratory at the 
Federal University of  Rio de Janeiro (LMA – UFRJ) has 
been conducting studies and experiments with two SODAR 
(Sonic Detection and Ranging) equipments installed in 
Guarulhos International Airport (SBGR, São Paulo, Brazil) 
since 2011. This equipment is a low-cost, easily installed 

acoustic wind profiler (Fig. 1) that uses the reflection of  
acoustic pulses in the atmospheric inhomogeneities to 
estimate the wind direction and speed in three dimensions 
at 15-minute intervals3. These activities have been allowing 
the development of  methods for detection and prediction 
of  phenomena in question, with a potential of  sequencing 
arrival and departures optimally, as well as an increase in 
flight safety.

A monitoring and short-term forecasting 
(“nowcasting”) study of  local weather was developed at 
Frankfurt International Airport in Germany using SODAR 
and other instruments4. The analysis showed a fairly stable 
system and the time of  separation between aircraft could 
be reduced by about 75% when compared to the stipulated 
time by the International Civil Aviation Organization 
(ICAO)5. The National Renewable Energy Laboratory 
(NREL6) compared wind direction and speed data for 
120 days coming from a meteorological tower, 70 meters 
high with measurements made by a SODAR instrument 
in Hebei (China). The data measured by SODAR showed 
excellent agreement with the meteorological tower data, 
with correlation coefficients equal to or greater than 0.96.

Chan examined the application and the performance 
of  two minisodars at the Hong Kong International Airport 
(China)7. The available data measurements in various heights 
show that minisodars grant, in general, reliable information 
for aviation. They provide useful indications of  windshear at 
low levels, mechanical turbulence associated with markedly 
rough terrain, and downburst related to thunderstorms. 
Through these case studies, it was found that minisodars 
are very fruitful in monitoring wind direction change at 
low levels, since these events may compromise aircraft 
performance and safety.

The goal of  this study is the qualification and 
quantification of  the existing gains in the use of  wind 
profiler information (SODAR) at Guarulhos International 
Airport (São Paulo, Brazil) to serve as the scope for 
establishing a conceptual model for changing in runway-in-
use procedure, aiming to enhance air traffic safety and save 
aircraft fuel, allowing planning the change of  runway in use 
driven by the shift in wind direction, in order to minimize 
delays in landing and take-off  procedures on these cases.

2. DATA AND METHODOLOGY

According to the Airport Improvement Program 
(AIP), São Paulo/Guarulhos International Airport 
(SBGR) has two parallel runways which are identified as 
09R/27L and 09L/27R (Figure 2). The length of  runway 
09R/27L and 09L/27R are 3000 m (9842 ft) and 3700 
m (12139 ft), respectively8. Runways cannot be used 
simultaneously since the lateral spacing between their 
centerlines is less than the minimum safe wake turbulence 
separation of  760 m (2500 ft).
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via movement data in SBGR. Analyses are based on 
dates and times (GMT) when the changes in runway-
in-use took place.

b) From the cases identified in the item a, those 
cases that wind actually changed at the surface are 
selected, that is, when there really was a need for 
runway change (with or without change in runway-
in-use from air traffic control tower). Wind changes 
at altitude occur earlier than on the surface since the 
increased viscous friction near the ground delays 
the propagation of  these changes in the wind field. 
Thus, only those that SODAR detected in relative 
advance of  wind alteration at 300 m above the 
runway surface are considered. Moreover, the main 
objective of  this study is focused on the gain that 
the instrument can provide, so it is selected to work 
only the cases which it is observed. This refers to 
about 92% of  the total.

c) Considering the wind profile change described 
in item b, these wind direction change patterns at the 
surface are identified via SODAR data. In Figure 3, 
as an example, it is shown the wind vector measured 
by SODAR on 09/05/2011 in several vertical levels. 
It is noted that around 11 a.m., the wind modified 
its direction on the surface (from NE to NW), and 
at 300 m it had already changed around 10 a.m., as 
highlighted in the black box.

In situations with a low volume of  air traffic, 
runway 09L/27R is used because this runway is longer 
and is closer to the airport apron. At times of  heavy air 
traffic volume, runway 09L/27R is used for take-off  and 
runway 09R/27L is used for landing, because the latter 
runway has high-speed exits and its threshold begins 
500m before the threshold of  the runway 09L/27R, 
preventing the turbulence wake of  landing aircraft from 
interfering with aircraft operating on runway 09L/27R. 
Runway 09 is aligned to the prevailing east wind, so it is 
considered the standard airport runway. Therefore, in 
the presence of  west winds, the direction of  landings 
and take-offs must be changed to the Runway 27, as 
explained below.

The methodology is based on an evaluation 
of  data from SBGR, where there are two SODAR 
installations next to its runways. Therefore, the 
methods consist in collecting data from the 
Department of  Airspace Control (DECEA) and 
on the Brazilian Airport Infrastructure Company 
(Infraero) about the change in runway-in-use 
reports at SBGR, along with the SODAR data at the 
airport. This study analyzes change in runway-in-use 
cases with SODAR data from September 2011 to 
December 2013 (234 cases) following the conceptual 
model described hereafter.

a) Firstly, cases with Runway 09 changed to 
Runway 27 at the airport between September 2011 
and December 2013 (available total time) are identified 

Figure 2: Schematic illustration of the runways from Guarulhos International Airport.
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Figure 3: 05th September 2011.

d) Then, the resultant speed components aligned 
with the runway direction on the aircraft are calculated. 
This is made with wind direction and speed data on 
surface (minute by minute), considering operations on 
the Runway 09, in accordance with Equation 1:

                                                                                     
        (1)

where Wr is the wind component aligned with the runway 
(the wind component in the direction of  landing or take-
off) in knots, Wt is the total wind in knots, Wd is the wind 
direction in degrees and φ is the magnetic North correction. 
The 9 and 27 runways of  Guarulhos airport are oriented 
to the magnetic north, that is, with a difference of  around 
20° to the true north. Since the runways are oriented east 
to west, there is a slight inclination, as seen in Fig. 2. This 
explains the reason for the difference between the wind 
direction Wd and the angle of  Ø = 70° in the cosine of  
Equation (1). Thus, winds direction between 340° and 
160°, passing by 0° (360°), mean normal operation on the 
09 runway, while wind direction between 160° and 340° 
indicates the need to use the 27 runway.

The Department of  Airspace Control (DECEA)9, 
which regulates the choice of  runway, provides a 
selection of  the most advantageous runway to air 
traffic control when the total wind Wt is less than 
6Kn. In this work, the definition of  calm period 
relates to an aligned wind speed Wr that does not 
cause any inconvenience to air traffic (<1-6Kn).

e) From the aligned wind Wr, wind intensity values 
between 0 and 6 knots are filtered to check the calm 
period in each value selected with the aim of  future 
comparisons, in order to define which one is the best 
to adopt.

f) Finally, the start time of  the calm period via 
minute-by-minute surface data is identified. As the 
main goal is to identify the time between the calm 
period (with wind change in altitude in order to 
indicate future need of  change in runway-in-use) and 
the time when the wind finally changes its direction 
on the surface, these conditions are evaluated with the 
aim of  quantifying this period.
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3. RESULTS AND DISCUSSIONS

In Table 1, as an initial demonstrative example, it is 
presented the values for the aligned wind Wr module up to 
4 knots, that is, the analysis considering possible change in 
runway-in-use in SBGR with Wr module less than 4 knots 
and wind at 300 m with indicative of  changing its direction 
between September and November 2011. The first two 
columns indicate the date and the time, respectively, when 
there was change in runway-in-use ordered by the air traffic 
controller. Then, it is shown the begin (outset) of  the calm 
periods around the change in runway-in-use time, so the 
period during which the aircraft from SBGR remained 
under aligned wind Wr less than 4 knots.

Soon after the start times of  calm periods in Table 
1, there are the times when the wind began to change its 
direction at 300 m to indicate future change in runway-in-use 
(that is, out of  the range between 340° and 160°) and the 
times when it changed on the surface, that is, the moment 
when it went from headwind to tailwind on the Runway 09 
(even that below the maximum value of  calm period). This 
is verified more intuitively knowing that positive values of  
Equation 1 indicate a headwind (09 runway, winds between 
340° and 160°), while negative values indicate a tailwind 
(need to switch to Runway 27, winds between 160° and 
340°), as the wind rose shown in Figure 5.

Figure 4 shows a schematic diagram representing 
briefly the applied methodology in this study. Once 
SODAR detects the wind direction change at altitude, 
it must be observed when the air is calm at the surface. 
Thereafter, it becomes possible to arrange for a runway 
change before the wind direction change at the surface, so 
that the aircraft flow doesn’t suffer significant disruption.

Date
Time         

(Runway Change)
Outset

Time - Wind  
Change (Altitude)

Time - Wind 
Change (Surface)

Total Time

9/5/11 16:04 15:59 13:30 14:05 00:00:00
9/6/11 07:33 07:19 05:00 05:54 00:00:00
9/8/11 15:16 15:12 13:45 14:43 00:00:00
9/9/11 08:49 - 06:45 07:39 -
9/9/11 17:43 - 15:15 17:05 -
9/20/11 14:26 14:05 12:30 13:56 00:00:00
9/21/11 11:02 04:26 10:00 11:09 01:09:00
9/23/11 15:50 13:44 15:00 15:50 00:50:00
10/1/11 15:12 - 14:00 14:38 -
10/2/11 14:28 07:10 12:00 14:27 02:27:00
10/8/11 20:18 - 19:00 19:45 -
10/14/11 09:39 05:50 08:00 09:18 01:18:00
10/25/11 14:30 14:17 13:45 14:27 00:10:00
10/26/11 07:24 00:00 02:00 07:25 05:25:00
10/27/11 11:34 01:35 06:15 11:30 05:15:00
10/29/11 17:07 14:21 16:00 16:54 00:54:00

Table 1: Analysis for the ligned wind Wr module up to 4 knots.

Figure 4: Schematic flowchart representing shortly the methodology 
of this research.
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In this way, it was possible to make a calculation 
of  the available total time to change in runway-in-
use by programmed way (last column), meeting 
economy and safety criteria, considering that 
for the runway modification, it is necessary the 
coincidence of  calm period on surface with wind 
direction alteration at 300 m. Between September 
2011 and December 2013 were analyzed 234 
cases of  change in runway-in-use, as described 
previously. Table 2 summarizes the available 
average time in each calm period (according to 
Wr values) for that change in runway-in-use could 
be carried out in order to contribute to greater 
efficiency in air traffic flow.

In all cases evaluated, there were significant calm 
periods on the surface, as well as the anticipated 
modification of  the direction of  the wind at altitude, 
indicating a later change at the surface. Checking the 

Figure 5: Finally, the start time of the calm period via minute-by-minute 
surface data is identified. As the main goal is to identify the time between 
the calm period (with wind change in altitude in order to indicate future 
need of change in runway-in-use) and the time when the wind finally 
changes its direction on the surface, these conditions are evaluated 
with the aim of quantifying this period.

Table 2: Mean time available for changing in runway-in-use related to calm periods of aligned wind Wr.

Calm Period Time
Wr < 1 knots 00h07min

1 < Wr < 2 knots 00h32min
2 < Wr < 3 knots 01h12min
3 < Wr < 4 knots 01h24min
4 < Wr < 5 knots 01h42min
5 < Wr < 6 knots 01h56min

intersection of  both scenarios, it was observed that 
there is adequate time for the air traffic controller to 
perform the change in runway-in-use, minimizing the 
impact on the aircraft flow. This period has an average 
duration of  1 hour and 24 minutes considering calm 
period with Wr less than 4 knots and 1 hour and 42 
minutes to calm period with Wr less than 5 knots.

It is important to note that the available periods to 
change in runway-in-use vary by method of  evaluating 
the calm period. For example, considering calm 
period with Wr less than 3 knots, there is a period 
for changing in runway-in-use about 1 hour and 12 
minutes while for calm period with Wr less than 6 
knots, this time settles around 1 hour and 56 minutes.

Figure 6 shows the statistics associated with 
the changes in runway-in-use at Guarulhos airport 
taking into account wind and time (chronological) 
conditions sufficiently reasonable for the air traffic. 
From 234 cases with change in runway-in-use, in 196 
of  them (84%) there was an indication, more than 
20 minutes in advance of  wind direction change by 
SODAR at higher levels (about 300 meters), before 
it changes on surface, regardless of  the calm period. 
This information is already significantly valuable for 
operational organization purposes of  landings and 
take-offs at an airport, since the indication that in the 
future the wind at surface will change is essential for 
the proper precautions.

If  we evaluate the cases in which this wind direction 
change anticipation was followed by calm period on 
surface, it is observed that in 41% of  cases there was 
enough time (more than 20 minutes) for air traffic 
redirection under calm conditions with Wr less than 4 
knots and 58% for 5 knots. Obviously, the higher the 
level considered to calm period, the longer available 
time the air traffic controller will have to perform the 
change in runway-in-use. Therefore, it confirms that 
the preliminary analysis of  information provided by 
SODAR can help to predict these changes, enabling a 
flow redirection and bringing advantages in economic 
and security terms.
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4. CONCLUSIONS

The creation and description of  a conceptual 
model for changing in runway-in-use procedure in 
Guarulhos International Airport recognises that 
air traffic control centres depend dramatically on 
knowledge of  weather conditions for their operations.

In the event of  wind direction change, the runway 
for landings and take-offs must be changed so that 
aircraft always land or take off  in the opposite direction 
to the wind at the surface and in the first metres of  
height above the airport. It was observed that there 
is enough time for the air traffic controller to plan 
and perform the change in runway-in-use minimizing 
the impact on the aircraft flow with the support of  
SODAR, and this period has an average duration of  1 
hour and 24 minutes considering calm period Wr less 
than 4 knots. In addition, it was found that in 58% of  
cases there was time (more than 20 minutes) for air 
traffic redirection under conditions of  calm period 
on surface with Wr below 5 knots, preceded by wind 
change in altitude detected by SODAR.

With this in mind, and knowing that the 
wind direction change associated with breezes 

and frontal systems primarily occurs first a few 
hundred meters above the surface, mainly due to 
friction, the preliminary analysis of  information 
provided by SODAR can help predict these changes 
enabling a redirection of  traffic flow and bringing 
advantages in economic and security terms, as 
shown. Currently, the LMA-UFRJ is developing 
predictive models based on artificial neural 
networks to perform nowcasting up to an hour at 
intervals of  15 minutes of  the wind direction and 
speed in Guarulhos airport.
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period for Wt less than 6Kn.
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Abstract

This review paper summarizes current knowledge 
available for aviation operations related to 
meteorology and provides suggestions for 
necessary improvements in the measurement and 
prediction of weather-related parameters, new 
physical methods for numerical weather predictions 
(NWP), and next-generation integrated systems. 
Severe weather can disrupt aviation operations 
on the ground or in-flight. The most important 
parameters related to aviation meteorology are wind 
and turbulence, fog visibility (Vis) and ceiling, rain 
and snow amount and rates, icing, ice microphysical 
parameters, convection and precipitation intensity, 
microbursts, hail, and lightning. Measurements 
of these parameters are functions of sensor 
response times and measurement thresholds in 
extreme weather conditions. In addition to these, 
airport environments can also play an important 
role leading to intensification of extreme weather 
conditions or high impact weather events, e.g., 
anthropogenic ice fog. To observe meteorological 
parameters, new remote sensing platforms, namely 
wind LIDAR, sodars, radars, and geostationary 
satellites, and in-situ instruments at the surface and 
in the atmosphere, as well as aircraft and Unmanned 
Aerial Vehicles (UAV) mounted sensors, are 
becoming more common. At smaller time and space 
scales (e.g., <1 km), meteorological forecasts from 
NWP models need to be continuously improved 
for accurate physical parameterizations. Aviation 
weather forecasts also need to be developed to 
provide detailed information that represents both 
deterministic and statistical approaches.  In this 
review, we present available resources and issues 
for aviation meteorology and evaluate them for 
required improvements related to measurements, 
nowcasting, forecasting, and climate change, and 
emphasize future challenges.

Keywords: Fog and precipitation visibility, Aviation 
Meteorology, Ice microphysics, Wind shear and Gust, 
Nowcasting and Forecasting.

1. INTRODUCTION 

Numerous studies have shown that weather severely 
impacts both civilian and defense aviation operations 
(e.g., Cook et al. 2009, Rudra et al., 2015, Gultepe et 
al. 2014; 2017a). The impact of  atmospheric processes 
on aviation has been recognized since the 1900s. For 
example, Dines (1917) stated that 

“thus it appears that the demand of the airman on the 
meteorologist is that he shall be able to forecast wind 
and fog, and to less extent clouds, on the route, the 
airman is proposing to follow.”  

Presently, his comments on aviation-related 
parameters such as wind speed (Uh) and visibility (Vis) 
are still valid. 

Weather conditions that cause or contribute to the 
aviation accidents include wind, visibility/ceiling, high 
density altitude, turbulence, carburetor icing, updrafts/
downdrafts, precipitation, icing, thunderstorms, wind 
shear, thermal lift, temperature (T) extremes, and 
lightning (NTBS 2010). Figure 1a shows a bar plot of  
the statistics of  weather-related conditions from 1994 to 
2003 that affect near-surface aviation operations; they are 
mostly wind and visibility (NTSB 2010). In Figure 1a, Vis, 
ceiling height (hc), and precipitation related conditions 
occurred 485 times, wind and turbulence 1381 times, and 
icing and engine icing 150 times. This work suggested 
that from 2003 through 2007, there were 8,657 aviation 
related accidents and weather was a factor in 1,740 of  
these accidents. Figure 1b shows these parameters in 
percentiles also for 1994-2003 period; wind and visibility 
are still the most critical parameters.  For small, non-
commercial aircraft (Part 91 class) the primary cause of  
weather-related accidents from 2000-2011 was adverse 
winds, followed by low ceilings (hc) (Figure 1c). At 
cruising levels of  commercial jet aircraft (Part 121 class), 
this picture is different, with over 70% of  weather-related 
accidents from 2000-2011 being related to turbulence 
(Figure 1d) (e.g., Sharman and Lane 2016).
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Figure 1: Statistics for 2223 aircraft related accidents related to meteorological parameters during 2003-2017 time period; (a) 
actual numbers of accidents, and (b) probabilistic distributions (NTSB aviation accident and incident data base; NTSB 2007).
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Continued; (c) Part 91-Weather as cause/factor during all accidents for the period of  2000-2011. The NTSB (national Transportation Safety 
Board) based statistics which resulted in 19441 accidents and 29% of these accidents was related to weather conditions (Eick, 2017). (d) 
Part 121-air carrier weather related cause/factors for 2000-2011.
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Delays and damage to aircraft during landing, taking 
off  and high-level cruise due to hazardous weather can 
often occur. Gultepe et al. (2007) stated that a three-days 
freezing fog event in the UK resulted in about 50M US$ 
in financial losses for businesses. Kessinger et al. (2006) 
also stated that aviation hazards for oceanic flights could 
impact both safety, economic efficiency, and productivity 
that lead to a total cost of  about 62.7M US$ per year.  
Cook et al. (2009) quantified the impact of  weather 
factors on flight delays and find the contributing factors 
are highly airport dependent.  Because of  its importance 
to aviation, the National Oceanic and Atmospheric 
Administration (NOAA) National Weather Service 
(NWS) operationally provides forecasts of  cloud-top 
height, turbulence, lightning detection, precipitation, 
icing,  low clouds and fog, and volcanic ash.  These 
forecasts are available to the public through their website 
(https://www.aviationweather.gov/).

Strong wind regions within jet streams called jet 
streaks (JS) can also affect aircraft operations (Uccellini 
and Johnson 1979; Uccellini 1980). They studied 
transverse circulations in the left exit and right entrance 
regions of  jet streaks (which are the divergence regions) 
using Numerical Weather Prediction (NWP) models. 
Rose et al. (2004) detailed the interactions between upper 
and lower level jets, and the development of  severe 
convective system. They stated that 

“in the (jet) exit region, the geometry of this adjustment, 
combined with warm, moist, lower tropospheric air to 
the right and ahead of the jet streak and cool, dry air at 
the jet streak level, produced the differential advections 
that convectively destabilized the atmosphere.” 

Results of  their work suggest that development of  
severe convective storms can be influenced by mass 
and momentum fluxes along the propagation of  an 
upper tropospheric jet streak. The development of  
a low-level jet (LLJ) usually was not considered for 
convection development in regard to synoptic-scale 
processes (Uccellini 1980). He stated that a systematic 
upper level flow pattern led to leeside cyclogenesis or 
a leeside trough, and that produced the strong pressure 
gradient forces needed for the development of  LLJs. 
These studies suggested that improved knowledge of  
the relationships between JS and LLJ are important 
for understanding aviation weather hazards. Clear-air 
turbulence (CAT) and eddies related to jet streams can 
also be extremely important for mountainous and high-
level flights near jet streams (e.g., Ellrod and Knapp 1992; 
Gultepe et al 1995).  

Reduced Vis, commonly caused by fog and 
precipitation (Tardiff  and Rasmussen 2007; Gultepe 
et al. 2009), is also caused by dust and ash (Fig. 2). The 
transport of  fine-grained dust by strong winds can occur 
over a broad range of  time and spatial scales (Hadley 
et al. 2004) and impact not only Vis but have also been 
associated with engine failure. 

Another critical hazard for aviation is aircraft icing 
(Isaac and Schemenauer, 1979; Guttman and Jeck 1987; 
Politovich 1989; Tafferner et al., 2003; Vivekanandan et 
al. 2001). Prediction of  icing and deicing conditions (at 
the airports) is important for flight safety (Rasmussen et 
al. 2001; Black and Mote 2015).  The accumulation of  
ice on aircraft before takeoff  has long been recognized 
as one of  the most significant safety hazards affecting 
the aviation industry. As little as 0.1 mm of  clear ice 
over 2 minutes on a wing surface can increase drag and 
reduce airplane lift by 25-30% and reduce critical angle 
of  attack by 8 degrees (https://aircrafticing.grc.nasa.
gov/1_1_3_2.html; TC 2004).

Figure 2: Various weather condit ions representing 
visibilities related to warm fog, moisture, rain, freezing 
fog, ice fog, snow, blowing snow, and ashes (from top left 
to the right boxes).
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The goal of  this review is to provide a summary 
of  meteorological parameters, processes, and their 
prediction issues that are critical for aviation operations 
and that create challenges for forecasters. The critical 
parameters, processes, and analysis techniques of  
importance for aviation meteorology over various scales 
can be listed as

• Weather physics 
1. Clouds and fog
2. Ice and droplet microphysics
3. Precipitation type and rate
4. Freezing precipitation
5. Icing, and ground deicing 
6. Frost
7. Visibility and ceiling
8. Blowing snow
9. Convective activities and high ice water content
10. Lightning
11. Ash and dust 
12. Physical parameterizations

• Weather Dynamics
1. Turbulence
2. Wind gusts 
3. Waves
4. Jet streak intensity
5. Low Level Wind Shear (LLWS)
6. Microburst and tornados
7. Temperature and RH (relative humidity)

• Weather Forecasting (Multi-scale)
1. NWP time and space scale issues 
2. Data integration 
3. Artificial intelligence
4. Deterministic versus probabilistic methods 

for nowcasting
5. Integrated systems
6. Climate change modeling for aviation applications
7. Contrails and climate change
8. R e p o r t i n g  s y s t e m s  f o r  a v i a t i o n 

meteorological applications

Considering the above items, NWP and climate change 
models play an important role on their own or integrated 
with observations to improve nowcasting and long-term 
forecasting of  high impact weather events. Weather-related 
events such as fog, precipitation, clear-air and in-cloud 
turbulence, wind shear, gust, or icing may be related to 
changing climate conditions; if  this is the case, for the 
next 50 years and beyond, aircraft flying conditions need 
to be considered to improve future aviation operations in 
response to extreme weather conditions. 

Recently it has been realized that prevention of  aircraft 
engine power losses due to high ice water content (HIWC) 
at higher elevations is essential for safe aviation operations 
(Leroy et al. 2016; 2017). The HIWC conditions, typically 
associated with deep convection, can cause engine power 
loss and air data events (affecting altitude and airspeed 
measurements) on commercial aircraft and need to be 
better characterized (Mason et al., 2006). 

Improvements in aviation nowcasts and forecasts 
require better measurements and predictions of  
atmospheric parameters such as T, RH, wind and 
turbulence, icing, and Vis. These parameters are also 
related to climatic change over various scales. Therefore, 
for future research, the impact of  climate change on 
meteorological parameters needs to be evaluated. For 
example, state-of-the-art research done by Goodman and 
Griswold (2017) suggest that temperature and pressure 
are important for aviation applications because they 
can impact aircraft drag and lift. Their work suggested 
suggests that aviation related impacts due to climate 
change need to be evaluated.

 State-of-the-art global climate models were used in 
the Coupled Model Inter-comparison Project Phase 5 
(CMIP5) simulating climate extreme indices described 
by the Expert Team on Climate Change Detection 
and Indices (ETCCDI) (Sillmann et al. 2001; 2013). In 
their work, the climatic indices based on daily T and 
precipitation amounts and rates were calculated using 
multi-model simulations.  They found that the duration 
of  cold and warm spells changed significantly since the 
1950s. These works also suggest that climate change 
issues related to aviation operations are needed be 
evaluated in depth.

Global and regional weather prediction systems are 
needed to characterize the atmospheric state in details 
required to diagnose aviation related hazards. Accu rate 
predictions of  the most dangerous processes related to Vis, 
wind and turbulence, icing, and convection are essential 
to reduce in-flight injuries, structural damage, ground 
preparations for flights, and flight delays (e.g., Mecikalski 
et al. 2007, Sharman et al. 2012; Sharman and Lane 2016; 
Karstens et al 2018). Therefore, forecasting and nowcasting 
of  aviation related meteorological parameters require a 
better understanding of  the underlying meteorological 
processes. In this respect, knowledge of  dynamics of  
upper-level and low-level jets, gusts, eddies, large-amplitude 
gravity waves, wind shear (including low level wind shear 
(LLWS) as well as physics and thermodynamics of  cloud, 
fog, and precipitation can be very important for aviation 
mission planning and reducing financial losses (Uccelini 
and Johnson 1979; Zhou et al., 2004; NWSPD 2004; FAA 
1988 Thobois et al 2018). 
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icing diagnostic algorithm (IIDA) that extensively utilized 
ground based in-situ systems with other observational and 
prediction systems. Similarly, supersites having various 
high-resolution ground based in-situ sensors (see next 
subsection) were also designed and used for operations. 

2.2 Meteorological Supersites

Meteorological supersites with various sensors can 
be designed for specific goals related to atmospheric-
hydrologic-oceanographic applications. Presently, these 
supersites with extensive ground based in-situ and 
remote sensing platforms have been used by researchers 
(Rasmussen et al. 2012, Gultepe et al. 2018, 2015; Ralph et 
al. 2014; Song et al., 2018). They were designed for aviation 
and forecasting validations/operations and included 
mainly observations representing Vis, Uh, turbulence, fog 
(FG), precipitation amount (PA) and intensity (PR), hc, 
and cloud base height (hb), and atmospheric profiling of  
meteorological parameters. Although supersites usually are 
located at a single point, representing a small area around 
it, Gultepe et al. (2018) used their supersites with satellite 
sites (e.g., smaller weather observing station) located within 
a 1 km perimeter radius. These observations provided 
statistical advantages to evaluate the scale issues related 
to measurements (Gultepe et al. 2018). The fact that 
most accidents occur around airports emphasizes that 
high resolution observations and areal representation of  
observations as done in above work are needed to improve 
aviation operations/NWP simulations.

2.3 Aviation Weather reports  

Detailed airport observations can be used for making 
flight decisions by pilots and airport authorities, and 
for verifying forecasts.  These observations usually are 
reported at 30-min or 60-min intervals as METARs 
(Meteorological Aviation Routine Weather Reports). At 
some airports, observations are also performed by using 
weather sensors autonomously (Gultepe et al. 2017). 
Weather forecasts for aviation operations are provided 2 
hrs in advance based on trend-type forecasts (TRENDs) 
and over 2 hrs as terminal aerodrome forecasts (TAFs) 
(Jacobs and Maat 2004). Both TAFs and TRENDs contain 
information on horizontal wind (Uh), Vis, cloud amount 
(Ca), hb, and PR in the vicinity of  the airport (Lynn 1997).  
The TAF can be issued as often as 12 times a day, including 
eight short TAFs with lead times from 1 to 10 h, and four 
long TAFs with lead times from 8 to 26 h (Jacobs and Maat 
2004). In fact, most aircraft landing and takeoff  decisions 
are made based on Vis and hb, as well as wind conditions 
at the airports (Thobias et al 2018). 

In this overview, observations will first be 
summarized in the next sections and followed by 
discussions of  NWP issues. Then, integrated methods 
will be introduced for aviation operation applications. 
In the final section, future issues and possible 
challenges related to observations, NWP, and climate 
change will be provided.

2. OBSERVATIONS

Observations are needed to discern and monitor 
meteorological parameters required for safe and efficient 
aviation operations. These are clearly needed in the 
terminal area of  major airports and at cruise levels 
along flight routes, but also over wide areas to support 
a range of  operational activities at smaller airfields 
and other remote locations. Helicopter air ambulance 
operation in remote areas, for example, represents a 
particular aviation weather need that  creates significant 
forecasting challenges. Observations are important 
since some parameters are poorly diagnosed by NWP 
models at the scales needed by the aviation community 
and they are also used for model initializations. Clearly, 
observations are critical for providing monitoring and 
nowcasting related to aviation meteorological parameters 
for operations, and that cannot be predicted accurately 
with NWPs alone for lead times less than a few hours.  

2.1 Ground based in-situ observations

The Aviation Automated Weather Observation 
System (AV-AWOS) originally suggested by Mandel 
(1975) provides meteorological parameters critical for 
aviation operations. Their proposed AWOS included 
additional parameters such as Vis and sky conditions. 
Later, Wade (2003) used the ASOS (Automated Surface 
Observing Systems) with a the light-emitting diode 
weather identifier (LEDWI) sensor to discriminate 
drizzle from other particles because precipitation rate 
from drizzle is usually less than 0.25 mm hr-1. AWOS 
and ASOS were designed for unattended locations and 
use multi-sensor based algorithms (Ramsay et al 1999). 
Presently, these types of  systems are continuously being 
improved by adding ultrasonic 3D wind systems, fog and 
precipitation sensors, as well as a portable ceilometer 
and a microwave radiometer (Ware et al., 2010; Gultepe 
et al., 2018). In addition to individual ground based in-
situ sensors, compact meteorological platforms were 
also developed for visibility, icing, fog, and precipitation 
type studies and applications such as ones developed by 
Landolt et al. (2010), Rasmussen and Landolt (2008), and 
Gultepe et al. (2018). Sims et al. (2000) used an integrated 
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PIREPS (voice-transmitted pilot reports) are 
commonly used to report icing and turbulence 
conditions and they are easily available but the PIREP 
reporting system was not proposed to be used for 
research or forecasting applications (Schultz and 
Politovich 1992a, 1992b; Kelsch and Wharton 1996; 
Schwartz 1996). These studies stated that inspection 
of  PIREPS on turbulence and icing conditions reveal 
serious shortcomings that limit their usefulness. Lately, 
Bernstein et al. (2004) also stated that icing algorithms 
developed by many others overestimated icing amounts 
compared to PIREPS. These works suggested that the 
PIREP reporting systems need to be improved. Shultz 
and Politovich (1992a; 1992b) suggested that the FAA 
should consider creating a standard PIREPS system 
similar to the standard airways report made by surface 
weather reporting stations.

The TAFs and TRENDs are a good source of  
meteorological short time predictions and provide 
important support for forecasters. The TAF and TREND 
guidance and the AUTOTAF encoding software have been 
developed and implemented in close cooperation with 
the German company Meteo Service Weather Research 
(Knüppfer 1997; Jacobs and Maat 2004). Automated TAFs 
(Lynn 1997; Kilpinen 1994) use both direct NWP model 
outputs and model observation soundings (MOS; Glahn 
and Lowry 1972; Hart et al. 2004). The MOS-based methods 
usually use local data as in Jacobs and Matt (2004). In their 
work, an approach using observations from upstream 
locations and local data were used. Recently, using PIREPS, 
blended algorithms for aviation operations have been 
suggested for improving short term forecasts (Bailey et al. 
2016). A combined physical–statistical approach is often 
applied to low clouds and Vis predictions because of  NWP 
short-term unreliable prediction issues. Lately, Herzegh et 
al. (2015) developed an expert system for Vis and cloud 
base (hb) forecasts based on blended numerical model and 
observational data. In their work, current and historical 
METARs, GOES observations, NWP output from the 
Rapid Update Cycle (RUC ), NCEP (National Center for 
Environment Prediction), and GFS (global forecasting 
system) runs, MOS forecasts, as well as observational based 
rule methods for short term predictions were used. These 
works indicated importance of  airport and pilot reports to 
be used for aviation operations.

2.4 Aircraft in-situ observations for icing

Research aircraft observations have been used 
for meteorological research extensively and here we 
only provided icing related research that generated 
significant improvements for icing measurements 

and predictions (Politovich 1989; Cooper et al. 1984; 
Sand et al. 1984; Isaac et al. and Schemenauer 1979; 
Isaac et al. 2005; Reehorst et al. 2005). For example, 
icing research using aircraft platforms has been done 
by NASA Glenn, Canadian NRC (National Research 
Council) and EC (Environment Canada), NCAR, 
and University of  Wyoming (Politovich 1989, 1996; 
Isaac et al. 2005; Serke et al. 2008; Reehorst et al. 
2005). Bernstein et al. (2005) developed a Current 
Icing Algorithm (CIP) that utilized satellite, radar, 
surface, lightning and PIREPS observations together 
with 3D model hourly diagnostics to retrieve icing 
and SLD potentials. Figure 3a shows the conceptual 
diagram of  their CIP algorithm that was adapted 
by FAA to be used operationally. Figure 3b shows 
an example  of  the splintering mechanism which 
generated many small droplets which then quickly 
froze during a wet snow case at T=-3ºC on March 
15 2013 during SAAWSO (Satellite Applications 
for Arctic Weather and SAR (Search And Rescue) 
Operations) project took place over St. Johns’ area, 
NL, Canada (Gultepe et al. 2018). 

Based on aircraft in-situ observations of  cloud 
microphysical parameters, super cooled large droplets 
(SLD) impact on aviation certification issues was 
emphasized by Politovich (1989), Isaac et al. (2005), 
and Bernstein et al. (2005).  Politovich (1989) noted 
that substantial loss in rate of  climb capability occurs in 
less than 10 mins when droplet number concentration, 
Nd<0.1-1 cm-3 and mean volume diameter (MVD) at 
about 30-400 µm. Various icing types occurring at the 
surface of  aircraft (Politovich 1996; Levis 1947; 1978) can 
significantly impact aircraft lift and drag forces that can 
lead to aircraft accidents. Lately, high ice water content is 
also found to be an important factor for aircraft engine 
icing (Leroy et al. 2016; Haggerty et al. 2018) and that 
needs to be further researched for operational applications.

 
2.5 Satellite Observations

Observations from passive radiometric imagers 
(e.g. the Advanced Baseline Imager, ABI) mounted 
on operational satellites, such as the Geostationary 
Operational Environmental Satellites (GOES), are used 
extensively for evaluation of  meteorological events e.g., 
fog and convection, as well as for nowcasting and data 
assimilation algorithms used in the NWP modeling 
systems. Both imager and sounder spectral radiances 
and relevant parameters derived from  radiances have 
been used extensively for these purposes. Examples of  
these products and potential applications are discussed 
below and in following sections.
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In addition to passive radiometric imagers on 
satellites, active remote sensing platforms are also 
starting to be used on the satellites such as Cloudsat 
(Sun-Mack 2017; Deng et al. 2010) and CALIPSO 
(Smith 2014). The EarthCARE satellite mission is 
planned for 3D weather predictions by blending 
data from satellite based active sensors together with 
simulations from a 3D NWP model (Miller et al. 2014; 
Illingworth et al. 2015; Barker et al. 2011). The use of  
active sensors on these satellite platforms can provide 
insight information on cloud vertical structure, cloud 
top properties, and both microphysics and precipitation 
that can be blended with NWP simulations and ground 
based remote sensing platform data to be used for 
aviation applications.

A variety of  cloud properties are retrieved in 
near-real time using the Satellite Clouds and Radiation 
Property retrieval System (SatCORPS; https://satcorps.
larc.nasa.gov) applied to global geostationary and polar 
orbiting satellite imager data (Minnis et al. 2008; Minnis 

et al. 2016) using adaptations of  the algorithms of  
Minnis et al. (2011). The parameters retrieved include, 
among others, the scene identification of  the pixel as 
either cloudy or clear, cloud top phase, cloud top and 
height temperatures and altitudes, cloud optical depth, 
and cloud particle effective radius. Recent additions 
include multi-layered cloud detection and properties, 
aerosol concentration over ocean, and convective cloud 
overshooting top identification (e.g., Bedka et al., 2017). 
These products are currently used for a number of  
aviation applications such as aircraft icing (Bernstein et 
al. 2006; Smith et al. 2012), engine icing (Yost et al. 2018), 
and cloud ceiling, and aviation and severe weather NWP 
model data assimilation (Benjamin et al. 2016; Jones et al. 
2016). Satellite observations retain significant potential 
for additional use by aviation systems. Improvements and 
enhancements in the satellite based retrieved products 
l can expand that potential. For example, determining 
the separation between multilayer clouds (Sun-Mack et 
al. 2018) will likely improve chances of  flying in clear 
air in multilayered conditions.Knowing the thickness of  
an icing layer and a thick ice cloud location above the 
supercooled droplets segment (e.g., Smith 2014) can 
further provide more choices for pilots faced with a 
hazard and few options. 

Another source of  cloud information is the 
algorithm developed by Sieglaff  et al. (2011), which 
classifies each GOES pixel into groups of  clear, liquid 
water, supercooled liquid water, mixed phase, opaque 
ice, non-opaque ice, and multilayered ice cloud (ice cloud 
is the highest cloud layer). These groups are described 
in the work of  Pavolonis and Heidinger (2004) and 
Pavolonis et al. (2005). Details of  the algorithm can 
be found in Pavolonis (2010a,b) and Heidinger (2010). 
Similarly, Liu et al. (2009) also defined cloud types based 
on China’s FY-2C multichannel images and a neural 
network method. The satellite cloud analyses utilize 
clear-sky background correction, satellite zenith angle, 
and sensor spectral response functions. These were 
then used for the cloud mask and type algorithms to 
be portable to many sensors. The cloud-type algorithm 
relies on an upfront cloud mask algorithm to determine 
which pixels contain cloud (Heidinger 2010). The 
satellite observations can usually lead to detection of  
cloud phase, fog, icing, and turbulence from spectral 
radiance measurements (Minnis et al. 2011; Pavolonis et 
al. 2010a, 2010b, Pavolonis and Heidinger 2004; Smith 
et al. 2012, Gultepe et al. 2007; Ellrod and Pryor 2018). 
Integrated systems based on in-situ observations, NWP 
model output, as well as GOES satellite products can 
improve monitoring fog conditions that include fog area 
and its intensity (defined by optical depth). 

Figure 3: CIP (Current Icing Potential) project conceptual 
diagram (a). Precipitation types: snow (asterisks), rain (large open 
circles), and freezing drizzle (small gray circles). (Adapted from 
Bernstein et al. 2005)  American Meteorological Society. Used 
with permission. (b) shows a picture of splintering mechanism, 
which generated many small droplets and then quickly froze 
occurred during a wet snow case at T = - 3  C on March 15 2013 
during SAAWSO project (Gultepe et al. 2017a, b) took place over 
St. Johns’ area, NL, Canada.
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A number of  efforts have focused on detecting and 
analyzing overshooting tops (indicating convective activity) 
using GOES products from VIS (Visible) and IR (Infrared) 
imagery (Nair et al. 1998; Mecikalski et al. 2007; Bedka et 
al. 2010). In addition to garnering information directly 
from the VIS reflectance and IR brightness temperatures, 
and their differences with other channels were used to 
detect overshooting tops. Texture analyses have allowed 
the discrimination of  convective cloud features within a 
shield of  stratus-like clouds that often cover a convective 
complex. Figure 4a-c show the texture-based clustering 
analysis results based on Mecikalski et al. (2007). In this 
figure, large-scale convective structures are visible, along 
with smaller cumulus and stratiform clouds. Figure 4d 
shows a cloud-top pressure product developed through 
the combination of  height estimates from the CO2 ratio 
technique for the upper clouds and from the older “IR 
window” technique for lower clouds (Schreiner et al. 1993; 
Donovan et al. 2007). The IR window technique uses the 
11µm thermal IR temperature to estimate T at cloud top, 
and combines it with an atmospheric sounding to get 
T to a corresponding pressure and height. The isolated 

overshooting cumulus tops were also detected as in red. 
Improvements on this technique have been reported by 
Bedka and Khlopenkov (2016).

The reasons for recent advances in aviation safety 
due to meteorological satellites are their ability to 
provide critical information of  weather conditions, the 
enhanced speeds of  data transmission and computer 
analysis, better calibrated high-resolution satellites, 
algorithm maturity, and more reliable validations using 
observations. Therefore, hazards, such as turbulence, 
in-flight icing, convective storms, and volcanic ash, can 
be diagnosed from satellite-based observations, and are 
used extensively in national aviation forecasting systems 
(Mecikalski et al. 2007). The algorithms are always 
subject to improvement based on validation studies 
using in-situ observations, passive (e.g., microwave) 
and active (radar and lidar) remote sensing retrievals, 
and integrated observations.

The aviation products in NOAA NWS operations 
include volcanic ash, cloud-top height, turbulence, lightning 
detection, precipitation, icing, and low clouds and fog 
(Schmit et al. 2017; Goodman et al. 2012). Recently, with the 

Figure 4: Example of texture-based clustering of GOES imagery on Dec. 5 2003: Three-band red, green, blue (RGB) image (a) and color-
coded clustering classifier (b). Color bar shows cloud types (c). An example of the GOES-12 imager-derived cloud top pressure product 
at 1800 U T C 15 Nov 2005 is shown in d (Adapted from Meckalski et al. 2007). American Meteorological Society. Used with permission.
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introduction of  GOES-16 (16th Geostationary Operational 
and Environmental Satellite) products, lightning detection 
for aviation applications became possible. New sensors 
available on GOES-16 include total lightning detection and 
mapping of  in-cloud and cloud-to-ground flashes (from the 
Geostationary Lightning Mapper (GLM; Goodman et al. 
2012; Goodman et al. 2013). It is expected that the use of  
GLM data for severe weather research will improve aviation 
weather forecasts related to convection and storm physics. 

Airborne ash from volcanic eruptions can also be a 
major threat to aviation safety (Casadevall 1994; Miller and 
Casadevall 2000; Hufford et al. 2000; Simpson et al. 2000). 
VIS satellite imagery can be used to detect ash clouds, but 
not to discriminate ash particles from natural water and ice 
clouds. Ash detection and discrimination is accomplished 
via multispectral infrared image analysis. The multispectral 
technique uses a strong 12-µm absorption signature (e.g., 
Prata 1989; Hufford et al. 2000; Mecikalski et al. 2007), leading 
to a negative value of  the 11-12 µm brightness temperature 
difference. As discussed by Ellrod et al. (2003), this technique 
is often termed as the reverse-absorption method. Volcanic 
eruptions usually release high concentrations of  SO2 having 
strong absorption bands at 7.3 and 8.6 µm that can aid the ash 
detection algorithms. SO2 absorption channels are presently 
available on the high-resolution Moderate Resolution Imaging 
Spectroradiometer (MODIS) imager and the Atmospheric 
Infrared Sounder (AIRS) sounding instrument in polar orbit 
on NASA’s Earth Observing System (EOS) satellites, and with 
the next-generation operational geostationary satellites (e.g., 
Himawari-8, GOES-16) (Goodman et al. 2010; Hutchison et 
al. 2008; Mecikalski et al. 2007; Schmit et al. 2005). 

The National Aeronautics and Space Administration 
(NASA) developed an Advanced Satellite Aviation-Weather 
Products (ASAP) system that transfers new satellite-observing 
products into operational use based on a collaborative effort 
with the FAA’s existing Aviation Weather Research Program 
(AWRP) (Mecikalski et al. 2002; 2007). The ASAP ash 
detection algorithms are currently being developed at UW-
CIMSS. The standard reverse absorption technique (Prata 
1989) that uses channel differencing between 11-12 µm 
BBT (Black Body Temperature), is supplemented with VIS 
at 0.65 µm and near-IR at 3.75 µm channels for volcanic ash 
detection (Pavolonis et al. 2006). This new algorithm does 
not depend on a negative value of  11-12 µm brightness 
temperature difference because this difference is often absent 
in tropical eruptions and it is used globally.

Hadley et al. (2004) studied the rare resuspension of  
volcanic ash and dust from the Katmai area volcanic eruption 
by strong winds on 20–21 September 2003 and found that 
the ash/dust cloud created severe disruptions to aviation 
operations while aircraft were attempting to avoid dust/ash 
clouds. Another volcanic ash event occurred from Mount 
Cleveland, Alaska when it erupted on 19 February 2009 

and led to several severe disruptions of  commercial aircraft 
traffic. The use of  satellites for ash detection has recently 
become very common but issues with data analysis are still 
important, and more work needs to be done. Simpson et al. 
(2000) also suggested that detailed volcanic ash PIREPs are 
needed to improve real-time awareness for aviation routing. 

Two major regions of  dust originate from Asia (Gobi and 
Mongolian deserts) and Africa (Sahara Desert). Dust events 
usually occur when surface winds exceeding 5 m s-1 (Hadley 
et al. 2004) loft the dust particles into the atmosphere where 
they can travel across either the North Pacific or the tropical 
Atlantic Oceans, respectively (Gillette 1978). Dust can also 
affect radiative forcing and world climate (Myhre and Stordal 
2001), as well as aviation safety (Simpson et al. 2003).  

Satellite-based wind vectors can be used to infer wind 
shear, turbulence, and convective activity (Hubert and 
Whitney 1971; Mecikalski et al. 2007; Perrier et al 2008; Bedka 
et al 2009).  In the northern latitudes, polar winds are needed 
for better aviation flight planning because of  lack of  other 
observations and issues with NWPs through assimilation 
of  observations (Key et al. 2003). Polar winds from satellite 
based retrievals (Turner and Warren 1989; Herman 1993) can 
be highly effective for aviation management because of  the 
lack of  airport availability after long flight times over Arctic 
regions. Santek et al. (2010), using the National Centers for 
Environmental Prediction (NCEP) Global Forecast System 
(GFS), ran an experiment during August and September 
2004, with and without the Terra satellite based MODIS 
(Moderate Resolution Imaging Spectroradiometer) Polar 
winds. From the five cases examined, it was determined that 
the addition of  the polar winds modifies the mass balance 
in synoptic-scale waves near the polar jet streams that can 
affect flight planning.   

2.6 LIDAR observations

LIDAR-based observations are used to obtain  Doppler 
wind speed (Vd) based on motion of  air particles and 
backscattering ratio as well as  depolarization rate. Excluding 
deep and heavy in-cloud water content conditions, they can 
provide 3D wind components from combination of  LIDARS 
and based on various scanning modes. At low elevation angles, 
they can also provide horizontal wind profiles to analyze 
turbulence and gust, and aerosol loading at higher levels.

LIDAR-based wind retrievals using the Doppler concept 
became important in the 1980s. Bilbro and Vaughan (1978) 
and Bilbro et al. (1984) used a coherent Doppler system to 
obtain 2-D wind components from an installation onboard 
the NASA Convair 990.  For a recent overview of  the use 
of  LIDARs in atmospheric research see Reitebuch (2012). 
Recently, LIDARs have been used for aviation research and 
operations (Gultepe et al 2017; Fuertes et al 2014; Tucker 
et al 2009, and Sathe et al. 2011). Tucker et al. (2009) used 
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a High Resolution Dial LIDAR (HRDL) at 2.022 µm to 
study mixing height, turbulence, shear, and aerosol profiles. 
The HRDL velocity and backscattered signal measurements 
collected during a ship-based field campaign were used in 
wind analysis. In their work, wind air velocity variance profiles 
were used for mixing height estimation. This was a significant 
development of  LIDAR use in the aviation research. Their 
results are shown in Figure 5 which shows time-height cross 

sections of   (vertical air velocity variance) and boundary 
layer height (ho) (a), horizontal wind shear height (hspd) (b), 
and multiple products related to shear and mixing height (c). 
Their work also suggested that a motion-stabilized scanning 
coherent Doppler LIDAR can perform azimuth scans, 
elevation scans, and zenith stares to obtain the velocity field 
in three dimensions from a moving platform and that can 
improve aviation forecasts over the coastal regions. 

Figure 5 : The time-height cross sections of HRDL (lidar) vertical air velocity variance (σw2) (a), horizontal mean wind speed shear height (hspb) 

(b), and composite velocity variance (σv2) (c) for a 24-h period on 11 Aug 2006 during TexAQS 2006 project (Adapted from Tucker et al. 2009).
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Figure 6: The 16 January 2015 mountain ice fog event during MATERNHORN project occurred over the Utah Mountains; a) Halo backscatter 
ratio and 3D winds based on Doppler  velocities and VAD technique,  and b) CL-31 Backscatter ratio (β).

Lately, Doppler Lidar wind measurements have been 
used for aircraft operations at airports (Thobois et al. 
2018; Chan and Shao 2007; Chan et al. 2006) to diagnose 
wind shear, gust, microburst, and aerosol loading, which 
can be serious issues for aviation operations (Sharman 
et al., 2012, Kessinger et al. 2006, Wong et al. 2013, Kim 
et al. 2015, 2016, and Gultepe et al. 2018). But, presently 
Doppler lidars are used mostly in an experimental mode 
at the airports. Among Doppler LIDARs commercially 
available are 1) Halo LIDAR (Gultepe et al 2016), 2) 
Leosphere Cube LIDAR (Thobois et al 2018), and 3) 
Lockheed Martin Coherent Technologies (LMCT) LIDAR 
(http://www.lockheedmartin.com). These LIDARS 
provide Doppler wind measurements in various scanning 
modes. The Halo LIDAR observations were used to obtain 
backscatter ratio and VAD winds, and compared to CL51 
ceilometer backscatter ratio observations during an ice 

fog event occurred nearby Heber City, UT, are shown in 
Figs. 6a and 6b, respectively. The Cube Doppler LIDAR 
from Leosphere Inc is designed specifically for aviation 
applications and provides related aviation wind and 
turbulence parameters continuously (Tobia et al., 2018).  
Examples of  turbulence estimation from LIDARs can 
be found in e.g., Frehlich and Cornman (2002), Hill et al. 
(2010), Chan (2016), and Vrancken (2016).   

LMCT LIDAR at 2 µm (latest one at 1.6 µm) uses 
pulsed laser light to detect particles and varying weather 
conditions in the atmosphere (Bluestein et al 2010; De 
Wekker et al. 2012; Bluestein et al 2014). The company has 
developed a pulsed coherent 2 limiting diode-pumped solid-
state LIDAR receiver on an injection-seeded, Q-switched, 
2 micron laser that meets Navy requirements for remote 
sensing, moderate range, high spatial resolution wind field 
measurements around air stations and aircraft carriers.
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2.7 Sodar observations

The SOnic Detection And Ranging (SODAR) is 
often used for atmospheric profiling.  SODAR   uses 
the Doppler concept to estimate 3D wind profiles from 
the propagation characteristics of  high frequency sound 
waves to investigate the atmospheric boundary layer and 
has been used since 1980s. For example, SODAR data 
were used to investigate the boundary layer dynamics 
in detail by Motta, et al. (2005), Sumner and Masson 
(2006), Gottschall and Peinke (2008), and Van den 
Berg (2008). In these works, atmospheric stability, 
wind shear, and turbulence intensity were analyzed 
for wind energy production. Gerz et al. (2009) and 
Chan (2014) used SODAR observations specifically 
for nowcasting applications to investigate aviation 
related meteorological events, such as fog, gust, and 
wind shear, at the Frankfurt International Airport and 
at the Hong Kong International Airport, respectively. 
Silva et al. (2016) developed a conceptual model to 
investigate wind profile changes using 234 runway 
cases that utilized a SODAR and surface meteorological 
station data from the Guarulhos International Airport 
(GIA) São Paulo, Brazil. França et al. (2018) also used 
SODAR data for training a neural network model for 
nowcasting the low level wind profiles at the lead times 
of  45 mins for the GIA Airport.

2.8 Radar observations

Doppler and dual-polarized radars (and 
conventional ones) such as X (8-12GHz), C(4-8 
GHz), and S (2-4GHz) band radars have been used 
to detect storm convective activity and intensity, as 
well as icing conditions within clouds to identify 
particle microphysical characteristics (Merritt, 
1969; Rasmussen et al 1992;  Ryzhkov et al. 2002; 
Schuur et al. 2012; Smith et al 2016; Hubbert et al 
2018). Storm precipitation type and intensity are 
related to Vis, icing levels, and convective intensity, 
and these are all important for aviation operations. 
Smith et al. (2016) developed the Multi-Radar 
Multi-Sensor (MRMS) system that is operational at 
the National Centers for Environmen tal Prediction 
(NCEP). The MRMS system consists of  the 
Warning Decision Support System–Integrated 
Information (WDSS-II; Lakshmana et al. 2007) 
suite. The severe weather and aviation products, 
as well as the quantitative precipitation estimation 
(QPE) products, are created by the National 
Mosaic and Multi-Sensor QPE (NMQ; Zhang et 
al. 2011) system. 

Dual polarized Doppler radars such as the Weather 
Surveillance Radar-1988 (WSR-88D) radar and radars 
with dual polarization capabilities such as S-band radars 
(S-Pol) can improve rainfall estimates, discriminate ice 
and rain, iden tify hail cores and updraft regions, and as 
a result in general increase data quality (Hubbert et al. 
2017, 2018; Chandrasekar et al. 2013; Kumjian 2012 
and 2013a,b). Hubbert et al stated that the Weather 
Surveillance Radar-1988 Doppler polarimetric (WSR-
88DP) is not able to scan along vertical planes (RHIs), 
and although this may be acceptable for operational 
purposes, it does limit research objectives. The S-Pol 
has increased range resolution using 1-μs transmit 
pulse length that corresponds to 150-m compared 
to WSR-88DP’s 250-m resolution. The result is that 
S-Pol is able to obtain high-resolution, high-data-
quality measurements related to storm structure and 
microphysics. In the end, improved storm physics and 
dynamical information can further be used for aviation 
operations that concern with wind and turbulence, 
gust, icing, high IWC, and low visibilities, as well as 
lightning and particle type and phase.

Dual polarized radars can effectively be used for 
melting layer and particle phase and type detection 
(Schuur et al. 2012; Ryzhkov et al. 2002, 2013; 
Van Den Broeke 2016; Hubbert et al 2018). The 
sensitivity of  this radar decreases with reducing 
particle size but retrieval of  particle phase and 
3D wind structure can improve forecasting and 
nowcasting algorithms related to gust and low Vis. 
Van Den Broeke et al. (2016) stated that quasi-
vertical profiles of  the polarimetric radar variables 
could improve short term forecasts in winter. 
Hubbert et al. (1018) summarized polarimetric 
variables used in S-Pol data interpretation. Figure 
7 shows range-height plots of  reflectivity (Z), and 
VD, differential reflectivity (ZDR), and  differential 
phase (φDP) parameters from a convective storm. 
Using Z (indicates core of  storms), ZDR (reflectivity 
weighted particle mean axis ratio of  particle 
distribution), VD (particle motion), and φDP (particle 
microphysics), LDR defined as linear depolarization 
ratio (particle shape), KDP defined as specific 
differential phase (particle type and shape), ρhv 
defined as co-polar correlation coefficient (particle 
type and phase), and ρco-x defined as co- to cross-
channel correlation coefficient (canted crystals 
and cloud electrification). A combination of  these 
variables can be used for evaluating storm physics 
and dynamics (Hubbert et al., 1998, 2018; Ryzhkov 
et al. 2002, 2013; Van Den Broeke 2016) that can 
further be used for operation applications. 
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Doppler radar applications for fog and Vis 
work can be used to provide accurate nowcasting 
products for aviation weather. Hamazu et al. (2003) 
used a 35-GHz scanning Doppler radar (Ka band, 
27-40 GHz) for fog observations and prediction. 
They used the three-dimensional structure of  
reflectivity and velocity field in a fog event for 
short term predictions.  The characteristics and 
performance of  an 8.6-mm-wavelength Doppler 
radar were described in observing sea fog. The 
Doppler radar measurements were also used for eddy 
dissipation rate predictions. Aircraft based turbulence 
measurements with well-coordinated Doppler radar 
spectral width measurements were used to estimate 
energy dissipation rates within thunderstorms anvils 
(Meischner et al. 2001; Cohn 1995). The lower limit 
detectable dissipation rate with the C-band Doppler 
radar is found to be about 10-3 m2 s-3. Techniques 
for deriving Doppler radar estimates of  energy 
dissipation rate were also described by Williams 
and Meymaris (2016), and comparisons to in situ 

aircraft measurements were provided in Dehghan 
et al. (2014).  Doppler spectrum width as measured 
by operational weather radars was used for both 
turbulence and wind shear estimation and could also 
possibly be used for severe weather warnings (e.g., 
Hocking and Hocking 2018).

The K-band radars (Ku (12-18GHz), K(18-27 
GHz), Ka (27-40 GHz) (Matrosov 1995; Loffler-Mang 
et al. 1999), and W-band radars (40-300 GHz, Gossard 
et al. 1997; Mead et al., 1989) have been used for cloud 
microphysical structure but usually they are not used 
operationally for Aviation operations. When large 
water mass content exists within clouds, these radar 
beams can be attenuated significantly. Presently, Ku 
and Ka band radars are part of  active sensors used 
on GPM satellite that focuses on precipitation from 
the space (Skofronic-Jackson et al. 2017). These cloud 
radars can provide specific information for cloud and 
fog properties, as well as precipitation information but 
they are operationally expensive and mostly they are 
used for experimental research.

Figure 7: A reflectivity RHI of a large convective cell gathered at 0005:23 UTC 26 Jun 2015. Reflectivity field (Z) is shown in a where the dashed 
line marks the 55-dBZ contour; 60 dBZ is seen up to 13 km MSL, indicating the likely presence of large hail, Doppler velocities in b, the various
regions based on S-Pol radar ZDR marked with white contour lines ìn (c), and differential phase e ØDP is shown in d; starting offset is set at 
about 0 ° C and over marked regions of vertical ice crystals, ØDP is decreasing in range (d) Adapted from Hubbert et al. (2018), © American 
Meteorological Society (AMS). Used with permission.
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2.9 Atmospheric thermodynamic profiling

2.9.1 Water vapor and temperature profiling

Water vapor profiling is critical for weather 
forecasting because of  the detail it can provide about 
cloud formation, nucleation processes, and storm 
development. Ferrare et al. (1995) provided a summary 
of  water vapor measurements that included satellite-
based retrievals (Soden et al. 1994), microwave (Han et 
al. 1994), differential absorption LIDAR (DIAL) (Ismail 
and Browell 1994), and Raman LIDAR (Ansman et al. 
1997; Whiteman et al. 1992).  The difference between 
the Raman LIDAR and DIAL LIDAR is that the 
former measures only vapor mixing ratio (qv) and the 
latter measures both qv and T. The work of  Wulfmeyer 
(1998) used a DIAL system developed at the MaxPlanck 
Institute (MPI) in Hamburg for the measurement of  
absolute humidity profiles and this has been improved 
through the work of  many others (Wulfmeyer et al. 1995, 
Wulfmeyer and Bosenberg 1996; Wulfmeyer 1998’, and 
Wulfmeyer and Bosenberg 1998). Eichinger et al. (1999) 
used a Raman LIDAR to study ABL vapor profiles.  The 
DIAL systems have some inherent advantages over 
Raman LIDARs profiles. The DIAL systems are generally 
smaller, lighter, and use considerably less energy than 
Raman LIDAR systems. They can be used for aircraft 
based research because atmospheric backscatter increases 
with a range in a downward-looking system, and thus 
partially compensates the decrease in signal strength with 
range. Because of  the strong atmospheric attenuation of  
both UV and near-UV light channels, DIAL systems in 
the near-IR are better suited for deep atmospheric water 
vapor sounding profiles. Recent overviews of  the DIAL 
can be found in Wirth (2012), and Fix (2012).

The radar–RASS system (Radio Acoustic Sounding 
System) was developed at the University of  Hamburg 
for measuring wind profiles in the lower troposphere 
and virtual temperature profiles in the boundary layer 
(Peters et al. 1988; Peters 1990).  The turbulent variables 
measured with the DIAL system and the radar–RASS 
include vertical profiles of  water vapor and vertical 
wind variance and latent heat flux that uses the eddy 
correlation technique. Neely and Thayer (2011) also used 
a similar method to study high level moisture profiles 
over Greenland, which can be used to detect thermal 
and dynamical instabilities leading to particle formation 
and eventually cloud formation.

The Profiling microwave radiometers (PMWRs)  
have been also used for measuring qv and T, as 
well as Liquid Water Content (LWC) which can be 
important for supercooled droplet detection and icing 

conditions (Solheim et al. 1998; Gultepe et al. 2014). 
The Radiometrics Inc. MP-3000A profiling radiometer 
is used to retrieve the profiles of  T, RH with respect 
to water (RHw), and LWC over Whistler Mountain 
(Ware et al., 2013; Gultepe et al 2014). The MP-3000A 
observes 21 K-band (22–30 GHz) and 14 V-band 
(51–59 GHz) microwave channels at multiple elevation 
angles, one zenith infrared (9.6–11.5 μm) channel, and 
surface temperature, humidity and pressure sensors. The 
atmosphere is semi-transparent in the K-band and lower 
V-band channels during non-precipitating conditions, 
receiving emission from the atmosphere in addition to 
cosmic background radiation. The PMWR provides T, qv, 
RHw, and LWC in the vertical (Bianco et al., 2005) but it 
needs to be validated using in-situ observations; this may 
be a challenge for stratiform clouds because of  a weak 
signal from cloud water content compared to convective 
clouds’ water content. Integrated liquid water retrieval 
from microwave radiometer observations near the 22.2 
GHz water vapor molecular resonance is well established 
(Westwater, 1978; Turner et al., 2007). Integration of  
above remote sensing platforms can cover atmospheric 
thermodynamic conditions over the airports, and when 
they are combined with LIDAR and Radar observations, 
as well as with surface in-situ observations, both clear air 
and cloud regions nearby airports can be analyzed for 
evaluating aviation hazards.

Atmospheric thermodynamic profil ing for 
operational icing research is important to prevent aviation 
accidents. Serke et al (2008; 2014) developed a compact 
small platform attachable to a radiosonde balloon that 
is similar to the radiosonde unit. With this system they 
were able to measure liquid water content profile within 
the clouds. This state-of-the-art icing platform promises 
to develop future balloon based systems to be used for 
icing and thermodynamic profiling.   

In Arctic regions, profiles of  water vapor can 
be important for aviation nowcasting applications, 
such as fog and low clouds, and storm development. 
The Arctic LIDAR Technology (ARCLITE) facility, 
having a Rayleigh/Mie/Raman LIDAR system, has 
been in operational use since 1993 at the Sondrestrom 
Upper Atmospheric Research Facility, Kangerlussuaq, 
Greenland (Neely and Thayer 2011). In their research, 
molecular and aerosol backscatter is measured at 532 nm 
to retrieve T profiles, and a Raman channel for molecular 
nitrogen (608 nm) to determine aerosol extinction values. 
A Raman water vapor channel at 661 nm was used 
to measure water vapor mixing ratio profiles into the 
upper troposphere. They suggested that use of  Raman 
LIDAR technology for ABL water vapor soundings is 
available and is comparable with balloon based profiles. 
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Because measurements of  water vapor profiles in Arctic 
environments are rare, DIAL and Raman LIDAR based 
methods for water vapor profiling can improve fog, 
cloud, and Vis for short term predictions.

2.9.2 UAVs thermodynamic profiling

Unmanned aerial vehicles (UAVs) are becoming very 
popular for meteorological and environmental applications 
(e.g., Bottyan et al. 2013; 2016; Gultepe et al. 2018).  UAVs 
can be accurately controlled by ground based pilots to move 
the UAVs in certain flight paths that represent constant 
altitude flights and profiling models. Measurements from 
the UAVs include various meteorological parameters 
similar to a radiosonde sounding. In addition to T, RHw, 
pressure (P), altitude (z), Vis, Uh and direction (Gultepe 
et al 2018; Bates et al 2013). They may also be used for air 
quality monitioring of  trace gases such as O3, CO2, CO, 
and PM2.5, and earth surface morphology, including snow 
coverage, water accumulation, and surface temperature. 
Measurements from UAVs have also been used to estimate 
temperature and velocity turbulence levels (e.g., Lawrence 
and Balsley 2013).  

For aviation operations, UAVs can be used near 
airports to gather weather information that can help 
to improve the NWP’s initial conditions and monitor 
weather conditions in real time. Although they have 
limitations on flying time (e.g., quadcopter UAVs), 
measuring 3D windcomponents, and flying into 
the clouds and fog, UAVs are being developed for 
extreme weather conditions (especially with fixed 
wing UAVs, Griffin and Velden., 2018).I In the future, 
UAVs can fly into the cloud systems (Wick et al. 2018; 
Wurman et al. 2012), and may provide  continuous 
and accurate weather measurements. Uncertainty in 
UAV measurements can be significant for wind related 
parameters because of  the impact of  the rotors or body 
of  the UAV on airflow. Therefore, additional work is 
needed to improve wind measurements from UAVs 
(Reineman et al. 2013; Gultepe et al. 2018). Various 
meteorological parameters from the UAVs are also being 
used by Jonassen et al. (2012) for boundary layer (BL) 
research. These parameters include aerosol number 
concentrations (Na), fog droplet number concentration 
(Nd), Vis, particle spectra, and air quality parameters 
(Boer et al. 2017; Gultepe et al. 2017). 

The UAVs can be used to improve NWP predictions 
for meteorological applications that include wind speed, 
Vis, RH and T. Jonassen et al. (2012) work also stated 
the importance of  UAVs observations to improve NWP 
simulations, and this area of  research is needed for 
further development of  aviation products.

2.9.3 Aircraft based in-situ systems

Commercial aircraft flights can provide additional 
observations of  meteorological parameters related to 
aviation operations. Automated meteorological reports 
from on board sensors mounted on major commercial 
air carriers are generally referred to internationally as 
Aircraft Meteorological Data Relay (AMDAR) reports. 
In the USA, they are called Aircraft Communication 
Addressing and Reporting System (ACARS) reports, and 
the meteorological data is referred to as Meteorological Data 
Collection and Reporting System (MDCRS) (Moninger et al. 
2003). The MDCRS reports are essential for NWP model 
initializations, especially for rapidly updated models such 
as the NOAA’s WRF-RAP model (Benjamin et al. 2016). 
Also, the commercially available Tropospheric Airborne 
Meteorological Data Reporting system (TAMDAR), 
utilizing commercial flight data collection systems, provides 
a data base for aviation parameters such as wind, turbulence, 
temperature, etc. (Moosakhanian et al. 2006). The TAMDAR 
data (Moninger et al. 2010; Benjamin et al. 2006a,b; Fournier 
2006) used with the RUC model over three year period 
revealed that TAMDAR data significantly improved 
RUC forecasts.  The meteorological parameters obtained 
from AMDAR and TAMDAR are similar to radiosonde 
measurements. TAMDAR also provides EDR (defined 
as energy dissipation rate to the 1/3 power) estimates 
and icing detection amount.  Moninger et al. (2010) over 
two 10-day periods provided results on meteorological 
parameters such as T, RHw, and wind representing winter 
and summer conditions. Their assessment showed that 
TAMDAR’s impacts on 3-h RUC forecasts of  temperature, 
relative humidity, and wind are found to be positive and, 
for temperature and relative humidity, the improvements 
were substantial.  

Estimates of  turbulence are also available from selected 
AMDAR flights as either derived equivalent gust velocity 
(DEVG), or EDR.  Both of  these turbulence estimation 
algorithms are summarized in Sharman (2016); for more 
detailed discussions see Sharman et al. (2014), Cornman 
(2016), Cornman et al (1995), and Kim et al. (2017). 
Stickland (1998) reevaluated DEVG and EDR estimations 
for aviation applications. Even thoughboth parameters are 
dependent on aircraft type,  he recommended the use of  
EDR for aviation operations. This recommendation has 
been followed up by requiring EDR to be the international 
standard for aircraft turbulence intensity reporting (ICAO 
2001).  EDR can also be estimated from second-order 
structure functions of  the AMDAR winds (Frehlich and 
Sharman 2010), and possibly through Mode-S and ADS-B 
(Automatic Dependent Surveillance-Broadcast) messages 
(Kopec et al. 2016).  So far though, these techniques have 
not been implemented operationally.
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Another experimental commercial aircraft on-board 
system is the Backscatter Cloud Probe (BCP) that provides 
information about the concentration and size of  ice 
crystals in clouds. The probe has been tested as part of  the 
European Research Infrastructure program, IAGOS (In-
service Aircraft for a Global Observing System). Bestwick 
et al. (2015) demonstrated that the BCP measurements 
could be used to diagnose HIWC conditions, providing 
pilots with an onboard warning of  an HIWC hazard. The 
sensor output could also be broadcast as part of  other 
systems such as TAMDAR. Additional research is needed 
for use of  the BCP operationally.

A number of  experiments for evaluating high 
ice water content regions (HIWC), including the EU 
High Altitude Ice Crystals (http://www.haic.eu ) and 
North American HIWC Projects (Strapp et al. 2016), 
were developed and executed using remote sensing 
and airborne in situ probes. Leroy et al. (2016; 2017). 
Leroy et al studies characterized the ice particle size 
distributions in HIWC regions in the atmoshere using in 
situ measurements while Protat et al. (2014) used airborne 
C-band polarimetric radar data to profile the cloud 
IWC. Yost et al. (2017) developed a prototype method 
for detecting HIWC conditions using geostationary 
satellite data coupled with in-situ total water content 
(TWC) observations obtained during aircraft-related 
icing projects. They developed three satellite-derived 
parameters that were used for determining high HIWC 
probability conditions. These include 1) the overshooting 
convective updraft or textured anvil cloud, 2) tropopause-
relative infrared brightness T, and 3) daytime-only cloud 
optical depth. Their results are consistent with aircraft 
flight reports obtained near deep convective storms 
and cirrus anvils (Lawson et al. 1998; Mason et al. 2006; 
Bravin et al., 2015). Prediction of  HIWC conditions 
needs to be improved by combining NWP model 
simulations and remote sensing results. Both require 
more in-situ observations to establish reliable statistics 
(Gultepe and Heymsfield 2016; Haggerty et al., 2018).

Overall, observations from various observational 
platforms summarized above can contribute to 
improvements of  aviation nowcasts, weather reports, and 
NWP predictions extensively, and they may eventually 
lead to improvements in aviation operations, but their 
limitations should also be considered. 

3. NWP MODELS

NWP models are important for improving aviation 
related nowcasts (defined here as lead times < 3 hrs) 
and forecasts over medium and large lead times (>3 
hrs). Their short-term success in nowcasting is strongly 

related to the incorporation of  observations. An NWP 
model’s ability to accurately simulate atmospheric 
dynamical and physical processes depends critically on 
several initialization parameters and PBL characteristics 
(Jonassen et al. 2012).  The spatial grid resolution and 
the parameterization schemes used to represent processes 
related to clouds, radiation, precipitation, and turbulence 
are most crucial ones (Pleim and Xiu 1995; Alapaty et al. 
2001; Teixeira et al. 2008; Lin et al 1983; Tomita 2008; 
Khairoutdinov and Kogan, 2000; Ferrier et al. 1994; 
Herrington et al. 2013; Pu et al. 2018). 

The quality of  the data used to initialize and force the 
model for predictions is also essential for the success of  
numerical model simulations. Many models are initialized 
from global atmospheric analyses or forecasts (e.g., from 
the Global Forecast System (GFS) or the European 
Centre for Medium-Range Weather Forecasts (ECMWF)) 
with low resolutions, typically being 15–50 km in the 
horizontal and 3–6 h in time. Therefore, scale issues play 
an important role for predictions over short times scales. 
These atmospheric data may not be accurate enough for 
high-resolution simulations of  local features such as fog 
or turbulence, and these can be sensitive to small errors 
in the large-scale flow (Nance and Durran 1997; Belair 
et al. 1998; Khairoutdinov and Randall 2006; Kucken 
et al. 2012; Selz and Craig, 2014). Because of  these 
errors, data assimilation techniques using detailed and 
accurate observations are necessary for generating more 
accurate initial conditions for NWP models for all scales. 
The quality of  the analysis data for model initialization 
depends mainly on the data assimilation techniques and 
quality of  observations, which compile the short-range 
forecasts (from a model to generate the first guess), 
observations, and their error statistics (Kalnay 2003; 
1996). The quality and coverage of  the observations used 
to create the analysis have also influence on the accuracy 
of  the analysis (e.g., Langlandet al. 1999). Observations 
can be particularly sparse over areas such as the world’s 
oceans, Arctic, and Antarctic, and that can likely lead to 
large uncertainties in predictions.

3.1 downscaling

Because of  scale resolution issues, numerical 
model simulations can include large uncertainties in the 
predicted parameters. The winds can be to some extent 
reproduced by numerical downscaling of  a state-of-
the-art ECMWF operational analysis using the WRF 
model (Jonassen et al. 2012). By assimilating profile 
data obtained from the UAS (Unmanned Airplane 
Systems) at Eyrarbakki in southwest Iceland into a NWP 
model,substantial improvements of  wind, T, and RH 
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predictions in the region were achieved. Using automatic 
nonlinear/linear methods that use NWP MOS (Model 
Output Statistics) data, Vislocky and Fritsch (1995) also 
developed a statistical model to predict meteorological 
sounding parameters that are important for aviation. 
Their method was time consuming but, with increasing 
computer resources, their method could improve 
integrated predictive systems over various scales.

3.2 Initial conditions

Initialization of  NWP forecasts requires assimilation 
of  various observations for regional models as well as 
short-range NWP model outputs (Kalnay 2003; 1996, 
Warner 2011).  For instance, inputs into the operational 
MRMS-Severe/Aviation system (Smith et al. 2016; Wen 
et al. 2017; Benjamin et al. 2009) include radar data from 
the U.S. WSR-88D network, GOES radiances and cloud 
properties (Minnis et al. 2008), surface terrain elevation 
information, the National Lightning Detection Network 
(Orville 2008; Smith et al. 2016), and hourly surface 
and upper-air analyses from the Rapid Refresh model 
(Benjamin et al. 2009). Several individual and automated 
algo rithms have been developed using the MRMS 
system to obtain an integrated forecasting and analysis 
system that provides real-time products applicable to 
severe weather and aviation nowcasting. In this system, 
automated algorithms based on data from multiple 
radars provided better in formation with greater temporal 
resolution and spatial coverage than a single-radar.

3.3 Turbulence

Since operational NWP models are too coarse to 
even begin to resolve turbulence scales relevant for 
aircraft, post-processing algorithms applied to NWP 
model output are commonly used to infer regions of  
significant turbulence. These inferences are based on 
“diagnostics” of  turbulence derived typically from spatial 
gradients of  various NWP model output variables.  In 
the past, various post-processing turbulence diagnostics 
have been proposed, and some are used operationally. For 
example, the TI (Turbulence Index) diagnostic developed 
by Ellrod and Knapp (1992) uses NWP model output 
velocity fields to derive a diagnostic based on the product 
of  horizontal wind deformation and vertical wind shear.  
The TI  has been used by the Aviation Weather Center 
(NOAA/AWC) (Behne 2008), the Air Force Weather 
Agency (Brooks and Oder 2004), the Met Office in 
the United Kingdom (Turp and Gill 2008), and the 
Canadian Meteorological Centre (Turcotte and Verret 
1999). The physical basis of  TI was considered initially 

due to frontogenesis through the process of  dynamical 
deformation (Mancuso and Endlich 1966; Ellrod and 
Knapp 1992). The hypothesis suggested that stronger 
horizontal thermal gradients caused by frontogenesis can 
lead to an increase in the vertical shear of  the horizontal 
wind through the thermal wind relation, and indicates 
that a higher potential for clear air turbulence (CAT) 
occurs via the local reduction in Richardson number 
(Ri) and consequent production of  Kelvin–Helmholtz 
instability). Commercial aircraft encounter severe or 
greater turbulence about 5000 times each year. These 
incidents resulted in tens of  millions of  dollars in injury 
claims per year (Sharman et al. 2006). In fact, these 
statistics were obtained only for the US airspace and 
are not a global representation. A significant limitation 
for the forecasting of  all aviation turbulence types is 
to identify the source of  gravity waves (McCann 2001; 
McCann et al 2012; Knox et al 2008). Observations from 
early field projects (Sorenson 1964) indicated that two 
flow regimes associated with CAT are possible: strongly 
cyclonic and strongly anticyclonic flows. Because the TI 
neglects anticyclonic shear or curvature in its derivation, 
Ellrod and Knox (2010) suggested that a new methods 
should be taken into account for the anticyclonic shear.  

The Graphical Turbulence Guidance (GTG) product 
uses an ensemble mean of  many different diagnostics, 
which seems to improve the statistical performance of  
the turbulence forecasts (Sharman et al. 2006, Kim et 
al. 2011, Sharman and Pearson 2016, Kim et al. 2018).  
Example turbulence diagnostics typically used for 
clear-air and mountain wave sources include vertical 
and horizontal wind shears, static stability, wind speed, 
horizontal deformation, frontogenesis, ageostrophic 
indicators, turbulent kinetic energy (TKE), and 
Richardson number (Ri) (e.g., Knox et al. 2016). These 
diagnostics are designed to capture grid-scale processes 
(10–100 km) that may lead to sub-grid scale turbulence. 

The GTG product does provide short-term 
forecasts, but its usage is limited by a 1-h update cycle, 
because of  the latency in receiving the underlying 
NWP-model data and the time required to compute the 
turbulence diagnostics.  Therefore, forecasts are usually 
not available until at least 2h beyond the valid time.   Pinto 
et al. (2015) and Sharman and Pearson (2016) also stated 
that because of  the highly transient and small spatial 
scales of  turbulence associated with convective storms, 
neither the NWP model nor the turbulence-forecasting 
post-processing algorithms are particularly skillful at 
forecasting turbulence associated with convection. To 
address these issues, Pearson and Sharman et al. (2016) 
developed a turbulence nowcast system (GTGN) 
which merges turbulence observations with short-term 
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GTG forecasts to produce more timely and accurate 
information for tactical turbulence avoidance. Their 
results suggested that turbulence nowcasts integrated 
with observations considerably outperforms the 
corresponding turbulence forecasts.

3.4 Low level wind shear (LLWS)

Low level wind shear (LLWS) at airports can occur 
due to fronts, thunderstorms, inversions, and surface 
obstructions (FAA-P-8740-40, 2008).  Traditionally, 
surface in-situ wind sensors are used to identify LLWS 
cases, but recently, remote sensing platforms and aircraft 
based measurements are also used for detection. The 
surface sensors are located at the certain distances 
along the flight paths (Thobois et al. 2018; Oude et al. 
2018), but do not cover higher levels; therefore, Doppler 
lidar (for cloud free conditions) and radars (cloudy air 
conditions) can be used for LLWS detection (Chan et 
al. 2007). Low level wind shear prediction using NWP 
models depends on model time and space resolutions 
(especially within the PBL), model physics, and large 
scale forcing conditions, and initial conditions. Using a 
NWP model output, and both QuikSCAT space borne 
scatterometer (QSCAT) and Buoy observations (Kara et 
al. 2007, 2008)  stated that wind speed errors near ocean 
boundaries can be up to 5 m s-1. For high resolution 
NWP forecasts, root mean square error (RMSE) in wind 
speed is estimated as high as 4 m s-1. Banta et al. (2017) 
suggested that wind speed error in NWPs were larger 
than the required accuracy overhigh resolution areas and 
suggested the use of  LIDAR observations to improve 
forecasts (McCarty et al 2017). Gao et al. (2012) and 
Moninger et al. (2010) stated that errors in AMDAR 
measurements can be as high as 4-6 m s-1, and suggested 
some corrections. Wind speed directional errors can 
be up to 35 degrees for AMDAR measurements and 
usually increase toward to the surface (Gao et al. 2012). 
Therefore, accuracy of  wind speed and direction 
measurements as well as their simulation from NWP 
models need to be improved since these parameters are 
directly used in the LLWS calculations (Chun et al. 2017). 

3.5 Physical processes for aviation nowcasts

The production of  aviation meteorological forecasts 
is based mainly on forecasters using numerical weather 
prediction (NWP) model data in combination with 
available observations (e.g., Jacobs and Matt 2004, Fahey 
et al. 2016, Bright et al. 2016). Their work suggests 
that NWP modeling has not yet reached a state where 
physical processes such as clouds and precipitation 

can be resolved at the spatial and temporal resolutions 
necessary for reliable aviation weather forecasts.  Jacobs 
and Maat (2004) also emphasized that various physical 
processes associated with fog and low stratus clouds are 
not adequately described in NWP models due to the 
complexity of  the underlying physical processes and the 
lack of  sufficient vertical resolution in the atmospheric 
BL. Because of  this, sudden weather changes on 
small time and spatial scales can only be evaluated 
and predicted if  the forecaster has access to detailed 
observations concerning current weather changes. The 
results of  their work strongly emphasized that quality of  
short-term forecasts, up to 6 h, depends mainly on the 
availability of  local and upstream observations.

3.6 Icing 

Most if  not all, current icing algorithms include 
empirical relations (e.g., temperature dependency) as 
described in Thompson et al. (1997). In their work, 
inflight icing potential was predicted using algorithms 
developed by the National Center for Atmospheric 
Research (NCAR), the National Weather Service’s 
National Aviation Weather Advisory Unit, and the Air 
Force Global Weather Center.  The numerical model 
data from the Eta, MAPS, and MM5 models were used 
in their research. As part of  the WISP94 field program 
(Thompson et al. 1997), detailed evaluations of  icing 
algorithms were conducted.  Most of  the icing algorithms 
used in NWPs are only functions of  T (Noh et al. 2013; 
Tan and Storelvmo 2016; Odegaard 1997). Thompson et 
al. (1997) stated that they all predict a flat or increasing 
frequency of  icing at decreasing temperatures. 

Statistical studies of  pilot-reported icing (Rasmussen 
et al. 1992) suggested that the number of  icing reports 
decreases with decreasing T. Note that saturation vapor 
pressure also diminishes with decreasing T. The decreases 
usually occurs at lower temperatures (<-15ºC) because 
of  increasing ice nucleation processes at cold T and less 
available vapor content. In the Thompson et al. work 
(1997), all algorithms predicted increasing or stable icing 
at lower temperatures as expected because of  nature of  
the parameterizations used in the models. These models 
simply diagnose icing conditions empirically where clouds 
can occur as a function of  RH and T interval between 0ºC 
and -20ºC. In fact, the large uncertainty in RH, as high 
as 10-15% (Gultepe et al. 2016), may lead to substantial 
differences in icing rates. Similar issues also exist for airport 
ground operations where de-icing calculations are strongly 
related to T and Vis (Thompson et al. 1997, Brown et al. 
1997).  Traditionally, the need for ground de-icing was 
assessed based on horizontal Vis, but research by Rasmussen 
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et al. (2001, 2003) showed that the icing hazard was more 
dependent on the liquid equivalent of  snowfall rate and 
particle shape.  This discovery led to the development of  
NCAR’s Weather Support to De–Icing Decision Making 
System (WSDDM, Rasmussen, et al. 2001).  

The above studies signify that icing research is 
presently immature and need to be improved for NWP 
model simulations for aviation operations.

   
3.7  Visibility Reduction due to Fog and Precipitation

Visibility reduction due to fog and precipitation is critical 
for aircraft operations. In fact, fog after wind represents one 
of  the most hazardous weather events affecting aviation 
activities. Over last decade, progress has been made in the 
study of  fog processes (e.g., MATERHORN-fog, Gultepe 
et al. 2016) and climatology (Hodgess and Pu 2016; Albers 
1977; Tardif  and Rasmussen, 2007; Dorman et al. 2017). 
NWP models were also used for simulating various types 
of  fog events (e.g., Bergot et al. 2007; Guedalia and Bergot 
1994;  Bott et al. 1990; Pu et al. 2016; Lin et al. 2017; 
Chachare and Pu 2018; Pithani et al., 2018) and indicated 
that numerical simulation of  fog is sensitive to various 
physical parameterization schemes (Gultepe et al 2006; 
Stolinga and Warner 1999), initial model conditions (Jones 
1965; Anderson 1996), and land surface processes (Guedalia 
and Bergot 1994). Specifically, numerical prediction of  
the fog presents one of  the challenges in NWP due to 
uncertainties in model physics and Vis algorithms (Gultepe 
et al. 2009, Guedalia and Bergot 1994, Lin et al. 2017). Also, 
significant errors in near-surface atmospheric variables 
prevent accurate prediction of  fog and precipitation 
(especially snow) in NWPs (e.g., Pu et al. 2016; Pu 2017). 
These errors, therefore, need to be reduced when using 
NWP models for Vis predictions.

3.8 Satellite data assimilations

Satellite-based wind vectors can be used to infer wind 
shear, turbulence, and convective activity. Convective 
clouds identified by the CCM (convective cloud mask, 
Mecikalski et al. 2007) were supported by the work 
of  Velden et al. (1997, 1998, 2005) that developed the 
atmospheric motion vector (AMV) algorithm. In this 
way, GOES-based wind products can be utilized for 
wind-related event analysis and in data assimilation that 
can be used for NWP initial conditions and nowcasting 
applications. Short-term (0 to 1 hr) convective storm 
nowcasting remains a problem for operational weather 
forecasting and poses a significant financial risk for the 
aviation industry (Sieglaff  et al. 2011). The output from 
NWP models and meteorological observations, including 

these from radars, are extensively used for short-term 
convective forecasting but all these have shortcomings. 
Geostationary imagers data can help reduce some 
uncertainty, and that can be valuable for convective 
initiation predictions. The University of  Wisconsin 
Convective Initiation (UWCI) nowcasting algorithm 
provides an objective, satellite-based decision support tool 
(Mecikalski et al. 2007). Lately, winds are being obtained 
from satellites (e.g., Aeolus  satellite, Baker et al., 2014) 
based active platforms such as Doppler LIDARs that 
can also be used for data assimilations techniques but 
currently they are used in research method and their data 
can be used cautiously for aviation operations. Folger and 
Weissmann (2014) investigated pressure height corrections 
operational atmospheric motion vectors (AMVs) from the 
geostationary satellites Meteosat-9 and -10 with cloud-top 
heights retrieved from LIDAR observations by the polar 
orbiting Cloud–Aerosol Lidar and Infrared Pathfinder 
Satellite Observations (CALIPSO) satellite. They found 
out that 700 mb pressure errors were reduced up to 20%.

3.9 Cloud base height

Cloud base height (hc)is an important parameter 
for aviation operations (Table 1), but without proper 
prediction of  cloud microphysical parameters, hc cannot 
be estimated accurately. Its estimation is related to cloud 
total water content (CTWC) and relative humidity (as 
well as dew point temperature depression (Guttman and 
Jeck 1987). The formation of  cloud at low levels is also 
related to Planetary Boundary Layer (PBL) physical and 
dynamical conditions. Unfortunately, cloud TWC from 
NWPs can be subject to large uncertainties in the PBL 
because of  issues related to model resolution at low 
levels and turbulence/physical processes interactions. 
For example, a warm bias of  about 3.3 ºC in sea surface 
temperature (SST) can lead to a qv bias of  1.2 g kg-1 that 
was simulated by ECMWF (Sun et al., 2003). Therefore, 
improved NWP prediction of  RH and T in the PBL can 
lead to more accurate TWC prediction and that can be 
used for improving forecasting of  hc levels. 

Flight 
classification

Cloud ceiling (ft)
Horizontal 
Visibility (miles) 

IFR <1000 <3

MVFR >=1000 and <=3000 >=3 and <=5

VFR >3000 >5

Table 1: FAA based flight classification that is based on cloud 
ceiling height and horizontal visibility (Adapted from Verlinden and 
Bright 2017).
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3.10 Microphysical schemes for fog, cloud, and 
precipitation

NWPs need better physically-based algorithms 
to improve fog, cloud and precipitation processes. 
Detailedand accurate microphysical algorithms 
are required at various scales to obtain reliable 
precipitation amount and types, Vis,  wind, 
and turbulence, and cloud radiative properties. 
Recently, new microphysical algorithms based on 
improving the single particle growth history were 
developed (Harrington et al 2013a; 2013b) rather 
than assumed size distributions for each particle 
phase (Gultepe et al. 2018; Ferrier 1994, Lin et al. 
1983) improved predictions. Pu et al. (2018) found 
that the simulation of  clouds within mesoscale 
convective systems is sensitive to the various 
microphysical schemes. They commented that ice 
hydrometeors play an important role in the accurate 
numerical prediction of  clouds and precipitation. 
Lately, there has been a shift in the way ice-phase 
hydrometeors are represented in microphysics 
schemes, moving from predefined hydrometeor 
categories with prescribed physical characteristics 
(e.g., bulk density) and focusing on the prediction of  
the particle physical evolution instead (Harrington 
et al. 2013a,b; Morrison and Milbrandt 2015). This 
has led to the smoother evolution of  ice crystals 
during growth and avoids the artificial process 
of  ‘‘conversion’’ between ice categories and 
auto-conversion processes. These results suggest 
that further improvements of  the microphysical 
algorithms can lead to the development of  better 
weather warning and decision making systems.

The NCEP and UKMet Office are working 
together to create World Area Forecast (WAF) 
guidance for the aviation weather community 
worldwide. NCEP has a plan to upgrade its GFS 
to a Finite Volume – Version 3 model in 2019 
(FV3: see https://www.gfdl.noaa.gov/fv3/fv3-
documentation-and-references), which will employ 
an advanced cloud-allowed microphysical scheme, so 
that better cloud-related predictions of  Vis, ceiling, 
and reflectivity can be provided to the global aviation 
weather community. 

As stated on the various challenging topics 
described above, NWP predictions for nowcasting 
applications related to aviation operations may 
include large uncertainties; therefore, integrated 
methods should be considered for short term 
forecasts (e.g., lead time <6 hours), and these are 
described in next section.

4. INTEGRATED SYSTEMS

4.1 Numerical guidance systems for aviation

A numerical guidance system (NGS) for aviation 
applications that includes post-processing NWP model 
output, and local and upstream observations representing 
high-resolution topography can be used to provide 
information on changing weather conditions at airports 
(Hansen et al. 2008). The NGS, supported by detailed 
predictions of  Vis, ceiling, wind, and precipitation 
observations as well as TAF and TREND type weather 
forecasts, can be used more efficiently for aviation 
weather nowcasts.

The NGS can be supplied with high-resolution 
remote sensing observations such as radar, LIDAR, 
and wind profilers. For example, Nakamura et al. (2009) 
and Luce et al. (2010) used both LIDAR and radar to 
study CAT conditions below a cirrus cloud system.  A 
statistical approach, known as the Graphical Turbulence 
Guidance (Sharman et al. 2006, Sharman and Pearson 
2017), was developed to predict turbulence using a 
weighted regression of  multiple turbulence diagnostics. 
This product and others such as convection, icing, 
ceiling and visibility, and surface wind gusts are available 
operationally on NOAA’s Aviation Digital Data Service 
website (https://www.aviationweather.gov/).  

4.2 Integrated systems for nowcasting and test bed 
sites (supersites)

Integrated weather nowcast systems rely on both 
in-situ and remote sensing observations, as well as NWP 
model forecasts. Test bed sites (also called supersites) 
are an integral part of  meteorological research and 
operations. Ralph et al. (2013) emphasized that they 
(supersites) can foster new forecast innovations and 
their transition into operations. The supersites present 
new opportunities for businesses and agencies to 
improve their products and services. Their work 
extensively studied the importance of  test beds for 
research and operations.  They also stated that: “Test 
beds tend to be “outsiders” relative to either the core 
mission of  forecasting or the core mission of  research. 
In spite of  this, they enable more rapid improvements 
in forecast services and demonstrate tangible relevance 
of  research centers to forecast services in the future.” A 
supersite, planned by NWS as the “Operations Proving 
Ground (OPG)” in Kansas City, MO, will provide 
full integration testing of  new tools and methods in 
an operational environment. These OPGs require 
a well-established research community focused on 
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performing exploratory research and development. 
They also suggested that transformational research can 
provide breakthrough advances for forecast/operation 
services in the future. The objectives of  test beds can 
accelerate the translation of  research and development 
into operations, services, and decision making for short 
lead time periods.  Overall, a test bed site can be used 
for operational systems, and provide better use of  data 
in forecasts and applications to improve economic/
public safety benefits (Ralph et al., 2013).

A new integrated system for aviation operations 
called The Short-Term Prediction Research and 
Transition (SPoRT) program using NASA, NOAA, and 
DoD satellite data and research capabilities is available 
to the operational weather community to improve short 
term weather forecasts on regional and local scales (Ralph 
et al. 2013; Stano et al. 2010; Ellrod and Gultepe 2007). 
The SPoRT focuses on weather and aviation related 
problems that include the timing and location of  severe 
weather, changing weather conditions influenced by 
topography, visibility, land-ocean boundaries, and the 
monitoring weather in remote areas. The SPoRT involves 
forecasters in the entire process who help develop 
product training materials and help assess the utility of  
the products. 

The NOAA NWS Advanced Weather Interactive 
Processing System (AWIPS, Argyle et al. 2017; Raytheon, 
2016) program is a complex network of  systems that 
ingest and integrate meteorological, hydrological, 
satellite, and radar data for display at Weather Forecast 
and River Forecast Centers. Weather forecasters then use 
the data to provide accurate weather, water, and climate 
predictions and highly reliable warnings and advisories 
(Kelly and Ghirardelli 1998). As stated in their work, the 
AWIPS results are extensively used in aviation operations 
and nowcasting, including time-sensitive, high-impact 
warnings to protect life and property (Ghirardelli and 
Glahn 2010). Their work emphasized that the Localized 
Aviation MOS (Model Observed Sounding) Program 
(LAMP) consisting of  analyzing observations, advective 
models, and statistical methods can improve the longer-
range MOS forecasts based on the GFS model.

One of  the earlier integrated systems developed 
was the CAN-Now project, and its primary objective 
was to provide a four-season Forecasting/nowcasting 
system at the major Canadian airports with detailed 
nowcasts and forecasts (Isaac et al. 2014). The CAN-Now 
output allows airport related decision makers, including 
pilots, dispatchers, de-icing crews, ground operators, 
and air traffic controllers to make accurate decisions to 
improve safety and efficiency. The prototype nowcasts 
rely on existing routinely available weather information 

including NWP model output, site climatologies, remote 
sensing and lightning network observations, and in-situ 
measurements of  wind, precipitation, visibility, ceiling, 
and temperature. The integrated nowcast system called 
The Adaptive Blending of  Observations and Models 
(ABOM) system was developed by Bailey et al. (2009) 
to be included in the CAN-Now system. The prototype 
system  was used in a nowcasting mode for detecting 
weather hazards and providing forecasts out to about 
3–6 h for most phenomena, and out to 36 h for some 
subsets of  phenomena. 

There are several other types of  integrated systems 
that are being used in Europe.  The integrated nowcasting 
through comprehensive analysis (INCA) (Haiden et 
al. 2011) and AROME-NWC (Auger et al. 2015; Seity 
et al. 2011) are common ones. These systems include 
downscale processes and updates NWP predictions 
using the latest observations from surface in-situ 
observations and high-resolution (1 km) orography data. 
A verification of  INCA simulations of  T, RH, and wind 
analyses was performed against high-resolution network 
observations in Austria by Kann et al. (2011) and Haiden 
et al. (2011). The AROME was developed in France 
that uses a non-hydrostatic mesoscale model version 
simulated for the forecast time range of  0–30 h (Auger 
et al. 2011; Seity et al., 2011). This model is initialized 
by using a 3-D variational data assimilation scheme 
(3DVar), and that provides the initial fields relevant for 
an accurate nowcast; The AROME system was related 
to the ALADIN–France model (Fischer et al., 2005).  
Integrated turbulence nowcasts have also been developed 
to be used for short-term NWP forecasts nudged by in 
situ and radar observations of  turbulence (Pearson and 
Sharman 2016).

Another example of  the use of  integrated systems 
to detect and nowcast hazardous weather is provided by 
the low-level wind shear (LLWS) alert systems (Thobois 
et al 2018).  It is well-known that thunderstorms can be 
accompanied by intense updrafts and downdrafts.  The 
strong downdrafts or downbursts below cloud base on or 
near the ground can force low flying aircraft downward. 
Then, strong divergent flow, producing low-level 
(horizontal) wind shear, can lead to unexpected rapid 
changes in aircraft airspeed and heading.  The outflow 
winds associated with downbursts have horizontal extents 
> 4 km and can typically persist from 5-30 min.  During 
the Joint Airport Weather Studies project (McCarthy 
et al. 1982), Doppler radar examination of  numerous 
thunderstorm downdrafts and outflows indicated that 
wind shear particularly hazardous to aircraft occurred 
on much smaller temporal and spatial scales, and Fujita 
(1981, see also McCarthy and Serafin 1984, Wilson and 
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Wakimoto, 2001) termed this smaller scale, but more 
hazardous downdrafts/outflows as “microbursts”.  The 
damaging outflow winds associated with microbursts 
have horizontal extents of  ≤ 4 km and can persist from 
2-10 min, typically (Wilson et al. 1984).  

The scale and suddenness of  microbursts make 
them particularly hazardous to aircraft departing or 
approaching an airport. Thunderstorm outflow or 
microburst wind shear is known to have caused 21 
aircraft accidents with 438 fatalities in the United 
States between 1975 and 1994 (Wolfson et al. 1994). In 
response to these accidents, the Federal Aviation Agency 
(FAA) developed and deployed three ground-based low 
altitude wind-shear detection systems: the Low Altitude 
Wind Shear Alert System (LLWAS) (e.g., Linden and 
Simpson 1985, Wilson and Gramzow 1991), Terminal 
Doppler Weather Radar (TDWR) (e.g., Wilson et al. 1984, 
Michelson et al. 1990), and Airport Surveillance Radar 
Weather Systems Processor (ASR-9 WSP) (Weber and 
Stone 1995, Cho 2015). The FAA-sponsored Integrated 
Terminal Weather System (ITWS) uses TDWR 
reflectivity data with short-term NWP model nowcasts 
to predict microburst intensity and location (Wolfson et 
al. 1994).  Since the deployment of  these systems, along 
with enhanced pilot training, commercial aircraft LLWS 
accidents have dropped to nearly zero in the U.S.  The 
dramatic decrease in these accidents testifies to the safety 
benefits provided by these detection systems.

Enhanced physical understanding of  the microburst 
phenomenon has been provided by high-resolution 
simulations (e.g., Proctor 1988, 1989, Orf  et al. 1996, 
Orf  and Anderson 1999, Nicholls et al. 1993), and 
laboratory studies (e.g., Ferrero et al. 2014).  Because of  
its importance to aviation, LLWS is routinely forecasted 
using the vector wind difference of  wind between 2000 
ft AGL (619.5 m) and the surface (e.g.,  NOAA NWS 
Instruction 10-813, 2016), although these forecasts are 
mainly driven by resolvable non-convective sources, 
e.g., frontal passages, low-level jets, lee side mountain 
effects, sea breeze fronts, etc.  As NWP model resolution 
increases to become convection-resolving, routine 
microburst nowcasts using both observations and NWP 
forecasts can become routine.

4.3 Artificial Intelligence 

As done for other scientific research involving 
large data sets, increasing data volume and resolution 
of  observations, as well as model simulation output for 
weather forecasting, led to the application of  artificial 
intelligence for aviation (AIA) research and guidance.  
Because current NWP models runs have increased time 

and space resolutions (McGovern et al. 2017; Weygandt 
et al. 2009), as well as new observing systems, including 
in-situ platforms, weather radars, LIDARs, and GOES-16 
also generate data at high time and space scale resolutions 
(Stano et al. 2010; Goodman et al. 2012). Forecasters and 
users do not have usually time to make rapid decisions 
if  data are not somehow prepared for easy evaluation 
in advance (Karstens et al. 2015). These data sets are 
called “big data.” Artificial intelligence (AI) methods 
(Pasini and Marzban 2008) use various techniques to 
process big data sets and then apply the results to weather 
forecasting issues, which are crucial for creating timely 
weather reports (McGovern et al. 2017). They stated 
that AI techniques based on physical understanding of  
the environment could improve prediction skill of  high-
impact weather situations. The AI approach ex pands 
information available over MOS techniques (Glahn and 
Lowry 1972) for deriving probabilistic, categorical, and 
deterministic forecasts available from NWP models. 

McGovern et al. (2017) provided an extensive 
summary of  AI techniques used in the meteorological 
applications.  Haupt et al. (2008) also provided an 
overview of  AI techniques applicable to artificial neural 
networks (ANNs), including decision tree algorithms, 
genetic algorithms (Allen et al. 2007), fuzzy logic, and 
principal component analysis (Elmore and Richman 
2001). In this area, using a decision tree technique, Burrow 
et al. (2005) developed lightning detection algorithms for 
mid-latitudes.  Williams (2014) used a random forest 
approach to diagnose convectively-induced turbulence. 
These works suggest that AI methods are starting to be 
used extensively in post-processing of  NWP output and 
in-situ observations. 

The AI systems and statistical based neural network 
systems can help transfer knowledge related to aviation 
forecasts into the aviation operations when fast computer 
systems become easily available in the future. But, basic 
understanding of  physical and dynamical processes still 
need to be developed for the atmosphere that includes 
cloud, fog, aerosols, as well as wind and turbulence.

 
5. FUTURE CHALLENGES AND ISSUES

There are various challenging topics related to 
aviation meteorology that can significantly impact 
aviation operations, and these are summarized below.

5.1 Visibility and Ceiling Issues

Jacobs and Maat (2005) show that for lead times 
greater than 4 h, the TAF guidance provides more 
accurate cloud hc and Vis forecasts than those derived 
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fog, haze, mist, rain, snow, and blowing snow. Figure 2 
shows the meteorological events that contribute to the 
integrated Vis estimations. Because of  Vis complexity 
and difficulty in measurements especially in cold climates, 
its use in NWPs can still be difficult and includes large 
uncertainties (Gultepe et al. 2006, 2018).

5.2 Contrails and Frost

Contrail formation, development, and dissipation 
are important for aviation and climate sciences but 
studies on these are limited.  Contrails form when 
water vapor condenses on IN (ice nuclei) and then 
freeze on aerosols from the exhaust of  aircraft 
engines at T less than typically -40°C (Schumann 
et al. 2012 for an overview).  Although contrails 
at -40ºC occur at high levels in mid-latitudes and 
tropical weather, they can also occur near the 
surface during Arctic winter (Gultepe et al. 2015). 
Heymsfield et al. (2010; 2011; 2005) also stated the 
importance of  contrail microphysical conditions 
for better understanding of  ice cloud nucleation 
processes. Contrails can indicate higher values of  
moisture at the cold temperatures that may cause 
frost and light snow precipitation at high northern 
latitudes (Gultepe et al. 2016; 2017). Figure 8 shows 
heavy frost conditions occurred on an ice particle 
counter during an Arctic project (Gultepe et al., 
2015; 2018). Frost formation on aircraft surfaces is 
also a condition for deicing at the airports which is 
a required by the FAA (2017).

manually by forecasters. For shorter lead times (<3 
hr), their work suggested that the differences in 
the comparisons of  aviation related parameters are 
found to be small. For aviation applications, the 
economic value of  reliable weather forecasts is very 
high (Hansen et al 2009; Gultepe et al 2016). For 
this reason, large occurrence of  high impact weather 
related to hc and Vis at an airport can reduce airport 
capacity that can leadi to enormous economic costs.  
The cloud ceiling (defined in meters for cloud cover 
>=6/10 of  the sky) predictions can be performed 
based on NWP predictions using the lowest level 
of  cloud total condensed water content (TCWC). 
The fuzzy logic-based analog forecasting systems 
(Hansen 2007; Bankert et al. 2004) can also be used 
for this purpose. A terminal aerodrome forecast (TAF) 
provides weather conditions and their most probable 
time of  occurrence at the airports. The Ch and Vis 
(defined by Glickman 2000) are the two variables that 
together determine flight category [e.g., instrumented 
flight rules (IFR where Ch<1000 ft or Vis<3 miles) 
or visual flight rules (VFR) (see Table 1 for flight 
condition definitions). 

The meteorological and aviation scientific 
communities recently studied meteorological parameters 
important for aviation operations that are related to 
ceiling height and Vis forecasts (Rudack and Ghirardelli 
2010). These forecasts are valuable for making 
economical decisions and societal context (e.g. the loss 
of  life). Gultepe et al. (2007) suggested that reductions in 
Vis can be caused by several hydrometeor types including 

Figure 8: Frost formation on ice particle counter sensor which occurred during the FRAM ice fog project in Barrow, AL, 
on April 16 2008.
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Over the northern latitudes, contrails, including 
aircraft-produced ice particles (APIPs), can be visible 
within the ABL over the airports (Gultepe and 
Heymsfield 2016; Heymsfield et al. 2011; Schumann and 
Heymsfield 2017; Gultepe et al. 2014; 2015, Woodley 
et al. 1991; Langmuir et al. 1948; Ludlam 1956). 
Contrails may modify the atmospheric environment 
in several ways.  For example, Heymsfield et al. (2011) 
stated that holes in clouds are also due to inadvertent 
seeding of  clouds with IN particles generated by 
aircraft and these are produced through spontaneous 
freezing of  cloud droplets in air (Heymsfield and Sabin 
1993; Heymsfield and Sabin 1989) and that is cooled 
as it flows around aircraft propeller tips or jet aircraft 
wings.Their work also suggested that polar clouds are 
particularly susceptible to the APIPs effects through 
modifications in radiative processes. This may also 
suggest that ice crystals sampled by aircraft probes 
over the Arctic environment may include APIPs and 
these need to be researched.  Contrails are considered 
as prototype cirrus which impacts the energy budget 
of  the atmosphere by reflecting incoming SW radiation 
and trapping outgoing IR radiation (Markowicz and 
Witek 2011, Schumann et al. 2012; Spangenberg et al. 
2013; Minnis et al. 2013). How contrails from an aircraft 
can contribute to global climate change was studied in 
detail by Minnis et al. (1998, 1999), Schumann et al. 
(2012), Schumann and Heymsfield (2017). Whether 
or not contrails would contribute to global warming 
or cooling is still not clear, and probably cannot be 
ascertained without resort to high-resolution climate 
models (Schumann and Mayer 2017).  

5.3 Climate change impact on aviation

Future research on the combined impacts of  climate 
change and climate variability on aviation operations can 
help airlines and other aircraft operators for long term 
planning. For example, Goodman and Griswold (2017) 
investigated future density-altitude (DA) trend evaluations.  
Their work stressed the importance of  future investigations 
on the impacts of  ENSO and Atlantic Oscillations (AO) 
on DA to be used in seasonal-scale planning of  aviation 
operations.  The weight restriction is an important factor 
in planning future flight operations, therefore, needs to 
be evaluated. For this reason, airlines may need to be 
rescheduled out of  the hottest parts of  the day.  Other 
potential impacts include anticipated jet stream changes 
with consequent impacts to CAT (e.g., Williams and Joshi 
2013; Williams 2017; Storer et al. 2017), and changes to 
convection (e.g., Del Genio et al. 2007) and other extreme 
events (Puempel and Williams 2016). Both Irvine et al. 

(2016) and Williams (2016) suggested that the effect of  
wind changes as a potential impact of  climate change on 
aviation can be important for future aviation operations. 
This is of  particular interest for trans-Atlantic flights, where 
the pattern of  upper-level winds over the north Atlantic, 
in particular the location and strength of  the jet stream, 
strongly influences both the optimal flight route and the 
resulting flight time.  Some of  these effects may be mitigated 
by “climate optimized routing” procedures (e.g., Matthes 
et al. 2012).

Figure 9 shows the time series of  cold spell T and 
warm spell T indexes obtained from CMIPS models 
(Sillmann et al. 2013a,b) where increasing warm days 
and slightly decreasing cold days are seen from 1948 to 
2005. Therefore, increasing convective activities are likely 
expected and that can be related to shear, turbulence, 
and heating processes and these can play an important 
role for planning procedures of  the aviation applications.

5.4 Operational satellites

Lately, geostationary satellites with more than the 
traditional five imaging channels are being used for 
weather analysis and operations, and these satellites carry 
additional channels in the IR windows. A review paper 
on geostationary satellites is given this special issue by 
Ellrod and Pryor (2018); therefore, limited information 
is provided in this sub-section. The ABI is used on the 
Geostationary Operational Environmental Satellite-R 
Series (GOES-16) and that views Earth with 16 spectral 
bands (compared to five on previous GOES), including 
two visible channels, four near-infrared channels, and 
ten infrared channels. Himawari 8 is a Japanese weather 
satellite and carries an Advanced Himawari Imager (AHI) 
with also a 16 channel multispectral imager to capture 
visible and infrared images of  the Asia-Pacific region 
(Berndt et al 2018). The instrument was designed and 
built by Exelis Geospatial Systems (now Harris Space & 
Intelligence Systems). The FY-4 (FengYun-4) is the China 
Meteorological Administration (CMA) second-generation 
three-axis stabilized, geostationary meteorological 
satellite developed by CAST (China Academy of  Space 
Technology) (Yang et al 2017). Two variants of  spacecraft 
of  the FY-4, with one carrying optical sensors and the 
other carrying microwave sensors were developed. FV-4 
carries an AGRI (Advanced Geosynchronous Radiation 
Imager) with 14 channels, VISSR (Visible and Infrared 
Spin-Scan Radiometer) 5 channels, GIIRS (Geostationary 
Interferometric Infrared Sounder), LMI (Lightning 
Mapping Imager, Goodman et al. 2013), and a SEP (Space 
Environment Package). All these satellites can improve 
global aviation products in more detail.
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Figure 9: Time series of percentile indices from 1948 to 2005 of the ensemble mean (solid) and median (dashed) of 31 CMIP5 models (black) and 18 
CMIP3 models (green). The shading indicates the interquartile ensemble spread (range between the 25th and 75th quantiles). Note that the percentile 
indices from the reanalysis ERA40 (blue) from 1958 to 2001 and NCEP1 (red) from 1948 to 2005 are calculated with a different base period (1961 
to 1990) than those from ERA-Interim (cyan) and NCEP2 (orange) with a base period from 1979 to 2008. Displayed are global averages over all 
land for CSDI (a) and for WSDI (b). Grey shading along the horizontal x-axis indicates the evolution of globally averaged volcanic forcing according 
to Sato et al. (1993) (Adapted from Sillmann 2013a, b).  American Meteorological Society. Used with permission.

New generation imagers are also being deployed 
on polar-orbiting satellites, which provide aviation 
information over high-latitude regions, which are only 
partially observed by geostationary orbiters. These new 
imagers, such as the Visible Infrared Imaging Radiometer 
Suite (VIIRS) on the Suomi National Polar-orbiting 
Partnership (NPP) satellite and NOAA-20+ series, 
provide a large number of  channels that are similar 
to or more expansive than their geostationary satellite 
counterparts (Menzel et al. 2018). These imagers will 
greatly enhance the satellite information useful for 
aviation over Polar Regions. Inclusion of  spectral IR 
capability for geostationary satellites such as Chinese 
GIIRS (Menzel et al. 2018) can improve knowledge 
obtained for atmospheric stability, providing information 
on convective weather warnings and forecasts (Chiodi 
and Harrison 2010). Spectral IR capability has been used 
in polar orbiting satellites e.g., AIRS (the Atmospheric 
Infrared Sounder), CrIS (Cross-Track Infrared Sounder; 
Zhang et al. 2016, Wang et al., 2012) and IASI (the 
Infrared Atmosphere Sounding Instrument) on Aqua, 
Suomi-NPP, NOAA-20, and METOP (Meteorological 
Operation) satellites (Mittaz and Harris 2011; Blumstein 
et al. 2007; Wang and Cao 2008) to obtain T, RH, and 
wind vertical structure in the region with no clouds and 
above the cloud tops. More extensive development of  
spectral IR techniques can revolutionize technology 
related to aviation weather forecasts.

To improve nowcasting techniques for detecting, 
tracking, and monitoring the early development of  small 

convective clouds, convective initiation forecasts over the 
CONUS and possibly over marine environments were 
studied in detail using satellite observations (Mecikalski 
et al. 2007).  Historically, most of  the convective weather 
predictions used weather radars (e.g., Mueller et al. 2003). 
However, radars usually do not see the early stages of  
convective cloud development prior to precipitation 
development. Since the 1990s, NCAR began to 
incorporate satellite information into convective storm 
nowcasting system (the Auto-Nowcaster). Satellite 
feature detection algorithms (e.g., Bankert 1994; Bankert 
et al 2009; Roberts et al. 1999; Tag et al. 2000, and 
Roberts and Rutledge 2003) were usually used to classify 
cloud types, identify surface convergence boundaries, 
and monitor the cloud growth based on the changes in 
their IR cloud-top T. These developments were positive 
for nowcasting systems but additional data sets from 
GOES-16 channels can further provide information 
related to cloud types and related physics and dynamical 
processes, and need to be researched.

 
5.5 Measurement uncertainties

5.5.1 T and RH: A better understanding of  the 
uncertainties in observations can be important 
for decision making systems, and that can be used 
for obtaining better physical parameterizations 
for NWP simulations and improvements in data 
assimilation techniques (e.g. 4-D Var).  Both T and RH 
uncertainties in NWP predictions can be very large 



251Nowcasting using Machine Learning and Deterministic Models: A Brazilian initiative to improve aviation meteorology

and that affect the prediction of  cloud formation, 
visibility, and convective intensity, and surface-air 
interactions through turbulent fluxes using NWPs 
(Feingold 1999). Figure 10 shows RHw measurements 
obtained during the FRAM project (Gultepe et al. 
2014; Gultepe 2015). This plot shows that Vis is 
strongly related to RHw; increasing RHw results 
in decreasing Vis. A small change in RHw at about 
4-5% can lead to Vis changes from 50 km down to 
few meters. This means the possible errors in RHw 
from NWP predictions can lead to significant issues 
for aviation forecasts, e.g. Vis and cloud types and that 
can affect operations significantly.

Based on fog occurrence,  forecasting Vis 
over short time intervals (0-6 hrs) is challenging 
and most NWP models do not explicitly predict 
Vis (Chmielecki and Raftery 2011); therefore, 
Vis forecasts must first be derived from other 
meteorological parameters such as cloud 
water content (CWC), RHw, and precipitation. 
Roquelaure and Bergot (2008, 2009) were the first 
to use Bayesian model averaging (BMA) analysis in 
Vis forecasting. Zhou et al. (2009) also described 
the use of  a short-range ensemble forecast system 
to generate probabilistic visibility forecasts. The 
UK Met Office Global and Regional Ensemble 
Prediction System (MOGREPS) and NOAA 
NCEP Ensemble Prediction Model (Zhou et al. 
2009; Zhou and Du 2010) have already been used 
for probabilistic aviation weather predictions 
(Gill and Buchanan 2014; Chun et al. 2017; Kim 
et al., 2015).  

Figure 10: Vis versus RHw from a severe fog case event at the 
FRAM site during in Snow-V10 project.

5.5.2 Visibility and Ceiling height: The present 
challenges of  Vis and hc measurements are related to 
precipitation/fog hydrometeors types and scale issues 
(Gultepe and Isaac 2004; 2006). They suggested that 
discrimination of  droplets from precipitation and its 
usage in Vis parameterizations are critical for NWP 
Vis predictions. Figure 11a shows a scatter plot of  
Vis measurements from the most commonly used 
sensors (Vaisala FD12p and Sentry sensors), and ice 
fog crystals (Fig. 11b) occurring over Yellowknife 
International Airport (CYK) during the FRAM ice 
fog project (2010-2011 winter, Gultepe et al., 2016).I 
Ice fog crystal sizes were found to be usually <300 
µm. The concentration of  the Vis observations (along 
green line) in Fig. 11a is seen above the 1:1 line (red 
line), indicating that FD12p instrument Vis values 
were usually larger than Sentry Vis by about 50%. 
For this reason, in automated observing systems, 
a double Vis sensor approach should be used for 
model validations and comparisons with METAR 
observations. Especially, this needs to be improved 
for cold climate applications where warming trend 
can cause severe cold fog events (Figure 12).

Figure 11: Vis from FD12P sensor against Sentry Vis (a) for all 
precipitation types and ice fog, and ice fog crystals (b) collected 
during FRAMIF project took place over Yellowknife International 
Airport (2010–2011 Winter).
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Figure 12: Ice fog occurrence over the Arctic Ocean on Aug 24 2010
(Permission by G. Toth).

Operationally, aviation-related interests in 
the US typically use two types of  ceiling and Vis 
forecasts provided by the NWS Global Forecast 
System (GFS) model: 1) GFS MOS forecasts 
and 2) GFS Localized Aviation Model Output 
Statistics Program (LAMP) forecasts. Both the 
GFS MOS and GFSLAMP produce probabilistic 
forecasts for seven ranges of  Vis and return to 
the user a categorical forecast corresponding to 
the most likely range of  values. These existing 
methods do not provide a general framework 
for generating a full predictive probability 
density function (PDF) for Vis (Chmielecki and 
Raftery 2011). They stated that predictive PDFs 
are attractive for Vis forecasts because both 
thresholds of  ceiling height and Vis correspond 
directly to the conditions governing flight rules. 
A predictive PDF allows the user to determine 
the probability of  Vis falling below any threshold 
of  interest rather than a single pre-specified 

threshold. Therefore, PDF based approaches for 
ensemble prediction of  Vis and ceiling height 
need more research.

Cloud cei l ing measurements are usual ly 
performed by ceilometers or are based on manual 
observations of  sky conditions at airports. It 
is defined as the height of  the lowest layer of  
clouds above the surface that is either broken or 
overcast, but not thin. The broken and overcast 
conditions are measured by the “octals”, which are 
8 equal segments of  the sky (NOAA 2012; Free 
and Sun 2013). The ceilometers measurements 
usually provide cloud conditions at 3 levels e.g. 
low clouds, middle clouds, and high level clouds, 
but they may not have the same meaning as man-
made observations. Therefore, these measurements 
should be properly compared and integrated for 
aviation applications.

5.5.3 Turbulence and EDR 

Measurements of  3D wind components 
and prediction of  EDR and gust conditions are 
also critical to aviation operations (Sharman 
et al. 2018, Gultepe et al. 2018, current issue). 
Although gust values usually are presented based 
on the horizontal wind components, the vertical 
component also plays a significant role in gust 
and EDR estimation. These can be obtained 
using in-situ ultrasonic sensors (Gultepe et al. 
2018) or from AMDAR or TAMDAR EDR 
reports obtained from commercial flights, and 
also likely from remote sensing platforms such 
as LIDAR and radar, and inferences for satellite 
features (Benjamin et al. 2007). In all events, 
EDR is an estimated quantity that is not actually 
“measured”, so it is particularly difficult to 
determine the uncertainty in the estimate. Pearson 
and Sharman (2017) studied EDR from onboard 
aircraft estimates versus nearby METARs wind 
speed and wind gust measurements (Figures 13a 
and 13b, respectively). The fits for each represent 
large variability in data.  The scatter around the 
mean curves was very large. This is not surprising 
since turbulence is a microscale phenomenon with 
large spatial and temporal variability.   But this 
implies that uncertainties in the use of  dynamical 
parameterizations for EDR versus gust can be 
large and NWPs need probabilistic approaches or 
better diagnostic approaches.
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5.5.4  Low Level Wind Shear (LLWS) measurements

As provided previously low level wind shear 
measurements can have large uncertainties based 
on measurement field designs and instrument type. 
For example, ultrasonic wind sensors (2D or 3D) 
can have issues when icing or precipitation occur 
(Gultepe et al. 2018). If  they are heated for icing 
conditions, additional issues may arise due to heating 
the tips of  sensing units. On the other hand, icing may 

Figure 13: Plots of (left) 117 069 wind speed and (right) 15 382 wind gust observations (kt) matched with in situ EDR reports within 5 km, 5 
min, and 1000 ft of each other. Median speed and gust values within each 1-kt bin are shown as black dots. Fit lines to the median values are 
shown in black (linear) and purple (square root). Adapted from Pearson and Sharman 2017).

also affect conventional wind measurements using 
regular anemometers. Use of  Doppler LIDAR based 
techniques may work nicely to obtain good results for 
clear air and light cloud conditions but under the heavy 
precipitation and large optical thickness conditions 
they cannot penetrate in-cloud conditions and will fail 
for wind measurement retrievals (Thobois et al. 2018). 
Table 2 (ICAO 2005) provides criteria for low LLWS 
definitions that indicates the accuracy wind speed and 
direction measurements should have.

Features Alerts Warnings

Coverage 3 NM extension to runways is commonly used whatever the wind 
shear equipment (LLWAS, Lidars, TDWR/Radars)

Up to 9.55 km for a glide slope 
of 3Deg in order to monitor up 
to the altitude of 500 m.

Update 
Frequency

• LLWAS: update every 30 sec
• Radar/lidar:  update between 1 to 6 mins

Typically 5 minutes are used 
for radars and lidars

Resolution
• LLWAS: 1 NM between 2 anemometers
• RADAR: 100-250 m
• Lidar: 100-200 m

Same as alerts

Scanning 
patterns One horizontal scan (PPI) at 3 deg scans per approach are used Several products can be used 

from 2 to 5 PPI scans

Methods for 
computing 
alerts

• Wind shear alerts: Headwind/tailwind changes over 1 NM or 
along the runway superior to 15 Knots.

• Microburst alerts: Headwind/tailwind changes over 1 NM or 
along the runway superior to 40 Knots.

• LLWAS: NCAR Algorithm
• RADAR: Runway-oriented wind shears algorithms like 

the ones developed by MIT-Lincoln Lab for TDWR, HKO 
algorithm, products of commercial software like RAINBOW5 
developed by Selex and IRIS developed by Vaisala.

Additional products 
can be computed from 
radial radar or lidar data 
according to local needs 
like shear products, gust 
front detection, wind 
reconstruction

Table 2: Synthesis of the ICAO guidelines for observing low level wind shears (ICAO, 2005). TDWR: Terminal Doppler Weather Radar, LLWAS: 
Low level wind shear, PPI: Plan Position Indicator. HKO: Hong Kong Observatory.
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5.6 Convection parameterization and prediction 

Convection parameterizations developed based on 
the data obtained from NWP models, observations, and 
integrated methods can play an important role for aviation 
operations (Wang and Seeman1997; Megenhardt et al., 2000; 
Grell and Deveny 2002; Dupree et al., 2009; Yang et al., 2012). 
Wang and Seeman (1997) used four cumulus parameterization 
schemes (CPSs) representing the Anthes–Kuo, Betts–Miller, 
Grell, and Kain–Fritsch schemes based on The Pennsylvania 
State University–National Center for Atmospheric Research 
mesoscale model. The model’s precipitation forecast skill is 
found to be better in rainfall amount compared to the areal 
coverage or the peak amount. They also stated that CPSs 
in warm-season cases with moist downdrafts were able to 
predict the surface features, such as pressure centers and gust 
front, more accurately but improving mesoscale quantitative 
precipitation forecasts overall remain a very challenging 
problem, even when a model is equipped with a sophisticated 
subgrid-scale convective scheme. This suggests that use of  
forecaster contributions for providing convective outlooks, 
mesoscale concepts, and severe weather warnings such as 
heavy precipitation, hail, and tornado watches can improve 
short term predictions for aviation operations.  Usually, 
aviation forecasts need a forecast warning time of  less than 
a 1 hr time-period.  The Storm Prediction Center (SPC) 
of  NOAA NWS has also a human component for severe 
weather prediction (Karstens et al. 2018; Cohen et al. 2017). 
The human component needs to be considered because 
accumulated errors of  NWP model physical components 
for predictions can be significant when simulation times are 
less than 1 hr. In fact, synoptic scale environments associated 
with severe weather conditions can complicate short term 
predictions but human based knowledge can help to improve 
short term predictions. 

Convection-allowing numerical model (CAM) 
ensembles can provide extensive information related to 
storm intensity, location, and evolution but do not forecast 
accurately maximum hail size at the surface (McGovern 
et al. 2017). Based on the large variability related to 
meteorological observations and NWP scale issues, and 
deterministic parameterizations, probabilistic analysis of  the 
aviation meteorological parameters predictions are needed. 
For example, Figure 14 shows the observed frequency of  
hail amount for sizes >25 mm versus forecast probability 
using the CAM Analysis and Prediction of  Storms (CAPS) 
ensemble predictions(McGovern et al., 2017).  Verification 
results and a single forecast case in Fig. 14 are given for the 
machine-learning hail forecasts and other storm surrogate 
probability forecasts, including HAILCAST (1-D Hail 
Forecasting model, Jewell and Brimelow 2009), column 
total graupel, and updraft helicity (McGovern et al. 2017). 
The Random Forest (RF) analysis (Ahijevych et al. 2016) 

used for this experiment was trained using CAPS ensemble 
forecasts during May-June 2014, and evaluated based on 
CAPS ensemble forecasts. The performance diagram in 
Fig. 14a shows that for a given probability threshold, the 
machine-learning models tend to have fewer false alarms, a 
lower frequency bias, and higher overall accuracy than other 
methods. The attributes diagram in Fig. 14b indicates that 
the probabilities from the machine-learning models and 
updraft helicity are generally reliable, while other methods 
tend to produce probabilities that are overconfident. These 
results suggest that probabilistic approaches for convection 
prediction need to be developed in the future that are based 
on RF or other AI methods.

The demand for accurate nowcasts of  convective 
precipitation that includes heavy precipitation and hail 
has led to development of  the high-resolution data 
assimilation and rapid cycling numerical weather prediction 
system (e.g., Sun et al. 2013). In their work, they reviewed 
the recent progress on the use of  NWP for nowcasting 
convective precipitation and provided future expected 
challenges and opportunities. They emphasized that NWP 
models generally produce larger quantitative precipitation 
forecasts (QPFs) than nowcasting systems beyond a few 
forecast hours. Therefore, they suggest blending radar 
echo extrapolation with a numerical model run to generate 
a seamless 0–6-h forecast. Nowcasting and Initialization 
for Modeling Using Regional Observation Data System 
(NIMROD; Golding 1998) was the first system that used 
blended radar echo extrapolation with a NWP output. For 
the first hour nowcast, the extrapolation of  the observed 
precipitation field was given full weight, and it was gradually 
relaxed with increasing lead time to where the model 
eventually received full weight. This method was better 
than earlier radar echo tracking systems. The blending of  
the corrected model forecasts with extrapolation forecasts 
allows for a smooth transition from the extrapolation 
to model forecasts (Sun et al. 2013). Similar results have 
been shown over the years starting with Browning (1980), 
Doswell (1986), and Austin et al. (1987). 

A recent paper by Sokol and Zacharov (2012) described 
a new blending method that assimilates the extrapolated 
radar reflectivity with a nudging technique. The decrease 
in skill by extrapolation related to the size and organization 
of  the precipitation were also emphasized by Wilson 
(1966) and Wilson et al. (1998).  Based on a large set of  
predictor fields, and inserting the location of  boundary 
layer convergence lines in NCAR’s AutoNowcaster 
(ANC) (Mueller et al. 1993), Wilson et al. (2004) predicted 
storm initiation up to one hour in advance that shows 
the importance of  BL processes. The ANC system uses 
fuzzy logic to combine predictor fields that reflect the 
atmospheric environmental conditions and boundary layer 
forcing based on observations and numerical model runs. 
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To meet the needs of  nowcasting, numerical models 
have to be run at resolutions less than a few kilometers. 
Wilson and Roberts (2006) stated that the 10-km Rapid 
Update Cycle (RUC10) 3-h forecasts issued every 3 hr were 
correct at predicting areas of  convective initiation only 13% 
of  the time. Sun et al. (2013) stated that possible factors 
limiting the model’s ability to predict precipitation initiation 
was likely insufficient model resolution in addition to many 
other factors. Models with high resolutions can enable the 
explicit representation of  convective processes without 
cumulus parameterization schemes. These models are 
called as “convection-permitting” or “convection-allowing” 
NWP (e.g., Sun et al. 2013). Many other studies show that 
forecasts from the convection-permitting models produced 
more skillful guidance than those from a coarser-resolution 
model employing convective parameterization (e.g., Done 
et al. 2004; Kain et al. 2006; Weisman et al. 2008; Clark et al. 
2009). Verification of  convection forecasts is challenging, and 
innovative methods are needed to account for small errors 
in model derived location and timing (e.g., Pinto et al. 2015).

Overall, various algorithms and systems have been 
used in storm convection prediction. The FAA Aviation 
Weather Research Program (AWRP) has led to very 
successful development of  forecasts of  both convective 
systems and winter storms, using heuristic and numerical 
models for aviation applications (Wolfson et al 2008; 
Wolfson and Clark 2006). The FAA effort consolidating 
the storm prediction systems led to the establishment 
of  collaboration between MIT Lincoln Laboratory (MIT 
LL), the National Center for Atmospheric Research 
(NCAR) Research Applications Laboratory (RAL), the 
NOAA Earth Systems Research Laboratory (ESRL) 
Global Systems Division (GSD) and NASA, called the 
Consolidated Storm Prediction for Aviation (CoSPA; 
Wolfson et al. 2008). The CoSPA is funded under the 
FAA’s Aviation Weather Research Program (AWRP) 
(Dupree et al 2009). One of  the goals of  the Next 
Generation Air Transportation System (NextGen) 
project (Stobie et al 2008) is to consolidate the redundant 
and sometimes conflicting forecast systems into a Single 
Authoritative Source (SAS) for aviation uses (Dupree 
et al 2009). The current CoSPA prototype for 0-6 hour 
forecasts is part of  the NextGen Initial Operational 
Capability (IOC) in 2013. 

5.7 Observational methods

The accurate testing of  nowcasting products is strongly 
related to observations and their analysis. Golding (1998) 
suggested that products should be assessed against both 
point observations and analyses. Nowcasting systems usually 
integrate observations with Numerical Weather Prediction 
(NWP) model products for short term predictions up to six 

hours ahead. In Golding et al. (1998), precipitation, cloud, 
and visibility were the main conditions to be considered 
in the analysis. The precipitation rate in the analysis 
used a combination of  the processed radar and satellite 
data, surface reports, and NWP simulation output. The 
precipitation type was also diagnosed in their work using 
NWP fields. Improving nowcasts is a strong function of  
the integrated systems that are used in the observations and 
model outputs (Bailey et al. 2009). Developments of  these 
nowcasting systems in the near future will likely be improved 
by artificial intelligence (AI) methods and using new 
observational platforms such as S-Pol radars and LIDARs. 

Generally, NWP prediction assessments against point 
observations are only reported for analyses because the 
representativeness errors of  meteorological parameters 
are of  similar magnitude to the forecast errors. In general, 
assessments of  predictions against analyses performed 
over restricted geographical areas are considered good 
because of  observational coverage. If  not considered, 
then the verification statistics can be very uncertain. 
Because of  possible natural variability in observations, use 
of  supersites with satellite stations (Gultepe et al. 2018; 
Ralph et al. 2013) should to be further researched for data 
assimilation and model output validations. Verifications 
performed by (Vislocky and Fritsch 1997) showed that the 
observations-based methods were not only far superior 
to persistence climatology at all lead times (5%–20% 
improvement) but also outperformed the MOS-based 
technique at the 1- and 3-hr lead time projections with skill 
increases averaging four percentage points. This suggests 
that for nowcasting applications, observations should be 
weighted more than MOS techniques.

In the future, although expanded computational 
techniques can be expected to reduce the uncertainty in 
the predicted parameters related to aviation meteorology, 
improvements in individual models and physical 
parameterizations and their careful verification is 
paramount  (e.g., Yano et al. 2018 and references therein).  
Physical parameterizations related to aviation meteorology 
forecasting are not well-represented at NWP scales 
presently in use; therefore, new scale-dependent physical 
parameterizations will be needed to improve the NWPs 
predictions in deterministic or probabilistic approaches. 

Forecasting accuracy of  high impact weather parameters 
are strongly dependent on availability of  integrated data 
sets (both observations and predictions) and should take 
advantage of  probabilistic forecast methods (Benjamin et 
al. 2010; Zhou et al. 2009).  Unfortunately, errors related 
to components of  the NWP ensemble simulations do not 
usually cancel out each other but tend to accumulate. As 
shown in this review, both measurements and statistical 
approaches, as well as newly developed scale-dependent 
physical (e.g. Vis) and dynamical parameterizations (e.g. 
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Figure 14: Performance diagram comparing different hail forecasting methods (a). Attributes diagram indicating 
the reliability of different forecasting methods (b) (Adapted from McGovern et al. 2017).  American Meteorological 
Society. Used with permission.
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Editors



Weather nowcasting is an essential activity for many sectors of  
society. Aviation meteorology is one of  the most relevant activities for this 
kind of  prediction. The book deals with the description and applications of  
computer codes using mesoscale atmospheric numerical models, machine 
learning algorithms, and hybrid models - combining those two mentioned 
approaches. Applications range from convective complexes, airport ceiling 
and visibility, clear air turbulence, wind conditions, and a final chapter with 
a review of  challenges for aviation meteorology. 

The text is of  interest to professionals, graduate students, and operational 
meteorological centers. Most of  the chapters are results from a research 
program between the Department of  Meteorology of  the Federal University 
of  Rio de Janeiro (UFRJ) and the Department of  Airspace Control 
(DECEA), a division of  the Brazilian air force. The joint project between 
UFRJ and DECEA, named “Cátedra” project of  aeronautical meteorology, 
is a very good example of  the effort to address priority topics selected by 
an operational player and the academic advanced techniques. 

Techniques and applications are explained clearly, with the intention to 
make the text the most self-content as possible. 
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