

Bernardo Barbagelata Khater

CONTROLE ESTRUTURAL E CARACTERIZAÇÃO DOS DIQUES DE DIABÁSIO E DAS FALHAS DO CRETÁCEO NOS COSTÕES ROCHOSOS DA PRAIA BRAVA, CABO FRIO - RJ

Trabalho de Conclusão de Curso (Geologia) Bernardo Barbagelata Khater

CONTROLE ESTRUTURAL E CARACTERIZAÇÃO DOS DIQUES DE DIABÁSIO E DAS FALHAS DO CRETÁCEO NOS COSTÕES ROCHOSOS DA PRAIA BRAVA, CABO FRIO - RJ

Trabalho de Conclusão de Curso de Graduação em Geologia do Instituto de Geociências, Universidade Federal do Rio de Janeiro – UFRJ, apresentado como requisito necessário para obtenção do grau de Geólogo.

Orientadora:

Renata da Silva Schmitt

BERNARDO, Barbagelata Khater

CONTROLE ESTRUTURAL E CARACTERIZAÇÃO DOS DIQUES DE DIABÁSIO E DAS FALHAS DO CRETÁCEO NOS COSTÕES ROCHOSOS DA PRAIA BRAVA, CABO FRIO - RJ / Bernardo Barbagelata Khater- - Rio de Janeiro: UFRJ / IGeo, 2020.

viii, 81 p. : il.; 30cm

Trabalho Final de Curso (Geologia) – Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, ano.

Orientadora: Renata da Silva Schmitt, Nome Sobrenomes

1. Geologia. 2. Setor da Graduação – Trabalho de Conclusão de Curso. I. Renata da Silva Schmitt. II. Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia. III. Título. Bernardo Barbagelata Khater

CONTROLE ESTRUTURAL E CARACTERIZAÇÃO DOS DIQUES DE DIABÁSIO E DAS FALHAS DO CRETÁCEO NOS COSTÕES ROCHOSOS DA PRAIA BRAVA, CABO FRIO - RJ

Trabalho de Conclusão de Curso de Graduação em Geologia do Instituto de Geociências, Universidade Federal do Rio de Janeiro – UFRJ, apresentado como requisito necessário para obtenção do grau de Geólogo.

> Orientadora: Renata da Silva Schmitt

Aprovada em:

Por:

Orientadora: Renata da Silva Schmitt (UFRJ)

Gustavo Luiz Campos Pires (UFRJ)

Sérgio de Castro Valente (UFRRJ)

Agradecimentos

À minha orientadora, Renata Schmitt, quem me ensinou grande parte dos meus conhecimentos geológicos, me incentivou a descobrir mais sobre a Geologia Estrutural e quem me orientou por todo o trajeto deste trabalho de conclusão de curso.

Aos meus pais Maria Edith e Carlos Alberto, por terem me moldado e me permitido uma educação tão boa desde meus primeiros anos.

Ao meu irmão Augusto, o primeiro que me incentivou aprender desde criança.

Aos motoristas do IGEO, por disponibilizarem transporte seguro e eficiente às campanhas de campo em Cabo Frio.

Às minhas colegas de campo, Thayla, Raphaela e Úrsula, mulheres maravilhosas de conhecimento extenso de geologia.

Ao Vitor Savastano e Maria José Oliveira, geólogos da Petrobrás que realizaram o levantamento de drone da área e permitiram o uso das imagens.

Ao Tarcísio, que confeccionou as lâminas das amostradas coletadas neste trabalho.

Ao LAGESED, que permitiu o uso dos microscópios ópticos para descrição e confecção de mosaicos para as fichas petrográficas.

Ao Laboratório Gondwana e toda sua equipe, que me acompanhou desde o início do trabalho, permitindo o uso do ARCGIS e me auxiliando no uso.

À equipe de engenharia cartográfica da Unisinos, que trataram as imagens obtidas por levantamento de drone e criaram o mosaico utilizado no meu trabalho.

Resumo

KHATER, Bernardo. CONTROLE ESTRUTURAL E CARACTERIZAÇÃO DOS DIQUES DE DIABÁSIO E DAS FALHAS DO CRETÁCEO NOS COSTÕES ROCHOSOS DA PRAIA BRAVA, CABO FRIO – RJ. 2020. viii, 81 f. Trabalho Final de Curso (Geologia) – Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

A região de Cabo Frio, costa leste do Estado do Rio de Janeiro, apresenta enxames de diques toleíticos de aproximadamente 132 Ma e de orientação principal NE-SW coincidente em parte com o sistema de falhas e fraturas no embasamento cristalino do Domínio Tectônico do Cabo Frio. A análise geométrica e cinemática dessas estruturas, a assinatura geoquímica dos diques e as condições de emplacement são fundamentais para a reconstrução do evento tectônico de quebra do paleocontinente Gondwana durante o Cretáceo Inferior e iniciação das bacias da margem continental sudeste brasileira. Este trabalho estuda a relação intrínseca entre os diques toleíticos e as falhas cataclásticas que afloram nos costões da Praia Brava de Cabo Frio - RJ. Essas feições cortam ortogonalmente a trama estrutural pretérita NW-SE do embasamento cristalino. A espessura dos diques varia desde poucos centímetros até quinze metros, aflorando por no mínimo um quilômetro com direções principais NE-SW, ENE-WSW e NNE-SSW. Esses corpos máficos podem bifurcar ou alterar sua direção, dependendo da espessura e da orientação do sistema de fraturas/falhas associado. Os diabásios têm predomínio de labradorita e augita em texturas ofíticas e subofíticas, sem presença de vesículas e amígdalas, semelhantes à suíte de baixo TiO₂ do conhecido Enxame de Diques da Serra do Mar. O contato intrusivo é abrupto, por vezes com apófises, pontes e xenólitos, podendo ser retilíneo, na maior parte dos casos, seguindo as medidas do sistema de falhas NE-SW ou raramente N-S, defletindo e bifurcando. Essas falhas apresentam movimento normal oblíquo, com as orientações NE-SW de componente sinistral e N-S de componente destral, deduzidos a partir de planos estriados. O rejeito varia desde sub-milimétrico até poucos metros. Falhas de maior expressão, espessura e/ou rejeito podem formar zonas de dano contendo falhas e fraturas de menor expressão. Formam desde brechas até cataclasitos, com cimentação de carbonatos, sílica, epidoto e óxidos de ferro. Esse material ocorre como uma massa fina homogênea concordante com a orientação da falha, mas também recristalizado na forma euédrica, indicando percolação pós-cinemática. A relação cronológica de campo indica cinemática tanto sin-, tardi- quanto pós-emplacement dos diques.

Palavras-chave: Diques de Diabásio, Domínio Tectônico de Cabo Frio, controle estrutural, falhas, cataclasitos.

Abstract

iii

KHATER, Bernardo. STRUCTURAL CONTROL AND CHARACTERIZATION OF DIABASE DIKES AND CRETACEOUS FAULTS IN ROCKY SHORE OF PRAIA BRAVA, CABO FRIO – RJ 2020. viii, 81 f. Trabalho Final de Curso (Geologia) – Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

The Cabo Frio region, east coast of the State of Rio de Janeiro, presents swarms of tholeiitic dikes of approximately 132 Ma and the main NE-SW orientation partly coincident with the system of failures and fractures in the crystalline basement of the Cabo Frio Tectonic Domain. The geometrical and kinematic analysis of these structures, the geochemical signature of the dikes and the conditions of emplacement are fundamental for the reconstruction of the tectonic breaking event of the Gondwana paleocontinent during the Lower Cretaceous and initiation of the basins of the Brazilian southeastern continental margin. This work studies the intrinsic relationship between tholeiitic dikes and cataclastic faults that emerge on the shores of Praia Brava in Cabo Frio - RJ. These features orthogonally cut the past NW-SE structural trend of the crystalline basement. The thickness of the dikes varies from a few centimeters to fifteen meters, outcropping for at least one kilometer with main directions NE-SW, ENE-WSW and NNE-SSW. These mafic bodies can bifurcate or change their direction, depending on the thickness and orientation of the associated fracture / fault system. The diabase rocks have a predominance of labradorite and augite in ophitic and subophitic textures, without the presence of vesicles and amygdules, similar to the low TiO2 suite of the well-known Serra do Mar Dike Swarm. The intrusive contact is abrupt, sometimes with apophyses, bridges and xenoliths, which can be rectilinear in most cases, following the measurements of the NE-SW or rarely NS fault system, deflecting and bifurcating. These faults present normal oblique movement, with the NE-SW directions for a sinistral component and the N-S for the dextral component, based on observations in striated planes. The slip varies from sub-millimeter to a few meters. Faults of greater thickness and/or slip can form damage zones containing faults and fractures of lesser expression. They form breccia to cataclasites with carbonates, silica, epidote and iron oxides cementation. This material occurs as a concordant homogeneous thin mass with the fault orientation, but also recrystallized in euhedral shape, indicating post-kinematic percolation. The chronological field relationship indicates kinematics both syn-, late- and post-emplacement of the dikes.

Keywords: Diabase dikes, Cabo Frio Tectonic Domain, structural control, faults, cataclasitos.

Lista de Figuras

CAPÍTULO 1

Figura 1.1 – **A** – Mapa de Localização contendo pontos de referência e rota desde a Ilha do Fundão (Rio de Janeiro) até a Praia Brava (Cabo Frio), local estudado neste trabalho. **B** – Localização da cidade de Cabo Frio e destaque da área estudada. Retirados das imagens de satélite e mapas da plataforma Google (2019). 03

CAPÍTULO 2

Figura 2.2 - Configuração Tectônica da região Sudeste do Brasil, modificado de Schmitt et al. (2016). 15

CAPÍTULO 3

Figura 3.21 – (A) Diagrama de rosetas de todas as fraturas fotointerpretadas no embasamento da área do mapa do Anexo 4. Vale ressaltar três tendências principais: NE-SW, N-S e NW-SE. A última orientação tendenciosa se deve principalmente a quantidade de fraturas associadas à foliação do embasamento e também devido às fraturas do tipo *pinnate*. (B) Diagrama de rosetas de juntas de resfriamento do dique de diabásio presente no mapa do Anexo 4, formando duas orientações principais ortogonais entre si. (C) Diagrama de rosetas das juntas tectônicas no dique no mapa do Anexo 4, com orientaçõe principalmente ENE-WSW. 51

Figura 3.23 – Diversos tipos de falhas normais com movimento tanto sinistral quanto destral em bifurcações e trifurcações, em mapa do Anexo 4
Figura 3.24 – Relação de contemporaneidade entre os sistemas de falhas NE-SW e NNE-SSW. Notar deslocamento dos contatos do embasamento. Imagem retirada do mapa do Anexo 4
Figura 3.25 – Minerais precipitados a partir de percolação de fluídos, em destaque a cimentação de carbonato de coloração branca, mas também os óxidos de ferro em coloração marrom-avermelhada. Também é importante ressaltar a espessura, cerca de 30 centímetros, dos cataclasitos as quais foram submetidos a essa cimentação, no ponto TH-33
Figura 3.26 – Precipitação de epidoto em fraturas e falhas próximas a diques de diabásio, ponto TH-10.
Figura 3.27 – Ramificação de falha cataclástica em diferentes microfalhas e fraturas subordinadas, com variação de orientação e mergulho entre si, no ponto TH-33
Figura 3.28 – Foto mosaico da lâmina da amostra BK-2F do Anexo 8, mostrando diversas reativações tanto depois de precipitação de carbonato e óxido de ferro quanto durante
Figura 3.29 – Reativação de zona cataclástica também deslocando em movimento destral outra zona cataclástica dentro da própria lâmina da amostra BK-2E no Anexo 7
Figura 3.30 – Microfalhas reverberadas de uma falha principal de lâmina da amostra BK-3D do Anexo 10. 61
Figura 3.31 – Brecha em falha cataclástica muito bem marcada com orientação de movimento normal oblíquo no ponto TH-33
Figura 3.32 – Falha cataclástica com orientação de movimento predominantemente vertical normal no ponto TH-33
Figura 3.33 – Falha cataclástica com orientação de movimento predominantemente horizontal no ponto TH- 33
Figura 3.34 – (A) Fraturas do tipo <i>en echelon</i> em paragnaisse no ponto TH-10. (B) Exemplo de fraturas do tipo <i>pinnate</i> mapeáveis através das imagens de VANT, no mapa do Anexo 4

CAPÍTULO 4

Sumário

AG	RADECIMENTOS	I
RE	SUMO	II
AB	STRACT	ш
1 16		
LIS	STA DE FIGURAS	IV
1.	INTRODUÇÃO	1
	1.1. Localização da Área	
	1.2. Objetivo	4
	1.3. Metodologia	5
2.	GEOLOGIA REGIONAL	12
3.	GEOLOGIA LOCAL	
	3.1 Unidades de Maneamento	23
	3.1.1. Complexo Região dos Lagos	23
	3.1.2. Suíte José Goncalves	
	3.1.3. Unidade Búzios	
	3.1.4. Unidade Forte de São Mateus	
	3.1.5. Diques de Diabásio	
	3.1.5.1. Micropetrografia	41
	3.2. Geologia Estrutural	
	3.2.1. Estruturas Dúcteis do Embasamento	
	3.2.2. Estrutural dos Diques	45
	3.2.3. Falhas e Rochas de Falha	49
	3.2.3.1. Tipos de Falha	
	3.2.3.2. Cataclasitos e Brechas	
	3.2.4. Análise Cinemática	62
4.	DISCUSSÃO	67
	4.1. Emplacement dos Diques Toleíticos	67
	4.2. Cinemática e composição das Zonas Cataclásticas	68
	4.3. Cronologia Relativa entre Falhas e Diques	71
5.	CONCLUSÕES E RECOMENDAÇÕES	74
6.	REFERÊNCIAS BIBLIOGRÁFICAS	76
7.	ANEXOS	80

1 INTRODUÇÃO

Durante o Cretáceo Inferior, o paleocontinente Gondwana foi submetido a uma série de processos de afinamento e rompimento litosférico que resultaram na abertura do Atlântico Sul. Esses processos geraram enxames de diques por toda a costa brasileira e africana, relacionados aos esforços distensivos perpendiculares à orientação dos corpos (Tomba, 2012). Além dos enxames de diques estão registrados derrames basálticos em bacias paleozoicas e mesozoicas *onshore*, como na bacia do Paraná, e *offshore*, como na bacia de Campos e Santos.

Na região sudeste do Brasil, destaca-se o Enxame de Diques da Serra do Mar (EDSM), uma série de diques basálticos de afinidade toleítica (Valente, 1997; Valente *et al.*, 2007; Corval *et al.*, 2008) e de orientação principal NE-SW e ENE-WSW (Dutra, 2006; Corval *et al.*, 2008; Tomba, 2012; Almeida *et al.*, 2013) que caracterizou a atividade magmática do rifteamento nessa região. Duas suítes foram diferenciadas quimicamente baseado na proporção de TiO₂: uma suíte de baixo TiO₂ e outra de alto TiO₂. Na região do Domínio Tectônico de Cabo Frio (DTCF), a área de estudo onde esse trabalho se inclui, predominam os diques de baixo teor de TiO₂ do EDSM.

Em conjunto, várias estruturas rúpteis se formaram em consequência do afinamento crustal, concomitantes com a intrusão do EDSM, seguindo essa orientação principal NE-SW, porém com outras direções E-W e N-S aparecendo de maneira expressiva ao longo do rifte. Zonas de falha de grandes extensões foram caracterizadas em trabalhos pretéritos (Ferrari, 2001; Corval *et al.*, 2008; Souza, 2011; Almeida *et al.*, 2013; Souza *et al.*, 2017; Savastano *et al.*, 2017), porém com pobre correlação cronológica e ausência de datações absolutas.

Os costões rochosos da Praia Brava no município de Cabo Frio apresentam rochas paleo e neoproterozoico do DTCF que compõem as rochas do embasamento da área, mas também apresentam falhas e diques de diabásio gerados durante o Cretáceo Inferior. Ainda, essas duas feições cretáceas aparentam estar intimamente ligadas entre si, o que não pode ser confirmado somente por estudos anteriores devido à ausência de mapeamento detalhado, análises estruturais e petrografía macro e microscópica. Próximo à região, alguns trabalhos seguindo partes dessa metodologia foram realizados, em Araruama (Souza, 2011; Souza *et al.*, 2017) e Arraial do Cabo (Carvas, 2016) por exemplo. Porém trabalhos de correlação entre os diques basálticos e as zonas de falha cretáceas na região são escassos, limitando o avanço dos estudos da formação e *emplacement* dessas feições provenientes do rifte, da análise de paleotensão local e dos mecanismos de quebra da crosta no DTCF. Esses métodos irão auxiliar a entender o nível crustal de geração dessas estruturas e da intrusão dos diques.

1.1 Localização da Área

A área de estudo localiza-se no estado do Rio de Janeiro, na Região dos Lagos, litoral leste fluminense, no município de Cabo Frio. Seu acesso é feito pelas rodovias RJ-101 e RJ-124 a cerca de 160 km de distância da cidade do Rio de Janeiro (Figura 1.1). A área engloba a Praia Brava e seus costões adjacentes com cerca de 1,5 km de comprimento e 0,5 km de largura.

Figura 1.1 – **A** – Mapa de Localização contendo pontos de referência e rota desde a Ilha do Fundão (Rio de Janeiro) até a Praia Brava (Cabo Frio), local estudado neste trabalho. **B** – Localização da cidade de Cabo Frio e destaque da área estudada. Retirados das imagens de satélite e mapas da plataforma Google (2019).

1.2 Objetivo

Este trabalho propõe o estudo do controle estrutural, geométrico e cinemático dos corpos basálticos e sua relação com os sistemas de falhas que recortam o embasamento cristalino do costão da Praia Brava, em Cabo Frio (RJ). A partir da descrição petrográfica e mapeamento geológico de detalhe, os diques basálticos e zonas de falha são caracterizados a fim de corroborar com o estudo da evolução cinemática do sistema de rifteamento do Atlântico Sul no Cretáceo.

1.3 Metodologia

A metodologia utilizada nesse trabalho engloba:

- Revisão bibliográfica dos trabalhos regionais envolvendo o DTCF e a área de estudo; trabalhos voltados à análise estrutural de falhas e cataclasitos; trabalhos com foco em descrição estrutural e petrográfica de diques de diabásio; e trabalhos contendo mapas locais e regionais dos municípios de Arraial do Cabo, Cabo Frio e Armação dos Búzios.
- 2. Fotointerpretação de imagens de satélite (Google, 2017-2019) inicialmente e, posteriormente, de foto-mosaicos a partir de imagens aéreas obtidas por levantamento de Veículo Aéreo Não Tripulado (VANT), de resolução aproximada de 2,0 cm/pixel (Figura 1.2). Também foi realizado o Modelo Digital de Elevação (MDE) no qual foi possível confeccionar, com o ArcMap 10.7.1, o *hillshade* da área mapeada.

Figura 1.2 – **A** – Mosaico das imagens de satélite adquiridas pelo Google (2019) sobrepostas pelo mosaico de imagens obtidas por VANT. Área destacada corresponde à aproximação em B e C. **B** – Aproximação da área destacada usando somente o mosaico das imagens de satélite, evidenciando a resolução limitada. **C** – Aproximação da área destacada usando o mosaico de imagens obtidas por VANT e *hillshade*. Destaca-se a resolução suficiente para visualizar as diferentes estruturas presentes.

3. Campanhas de campo (13 dias de campo no total) realizadas para reconhecimento

de afloramentos chaves a fim de compreender a geologia regional, descrição

detalhada, mapeamento, classificação das diferentes litologias e estruturas aflorantes, coleta de amostras e análise da cronologia relativa. Tudo isso se utilizando dos métodos descritos anteriormente.

- 4. Confecção de quatro mapas, elaborados a partir dos métodos descritos acima: um mapa regional contendo as principais litologias e estruturas regionais (1:150.000) para correlação geológica de áreas próximas e correlação das amostras de áreas vizinhas; dois mapas geológicos da área estudada, o primeiro com a disposição das diferentes litologias por toda a costa (1:10.000) e o segundo contendo também os pontos e medidas de foliação pelos afloramentos visitados (1:5.000); e o último mapa exibindo as feições litológicas e suas estruturas em grande detalhe (1:700). Todos os mapas foram feitos no software ArcMap 10.7.1 e estão dispostos nesse trabalho na seção de Anexos (1 a 4).
- 5. Descrição Petrográfica em macro e microescala de amostras coletadas da área e outras já coletadas de áreas vizinhas, descrevendo tanto textura e composição tão bem como classificando as amostras de diques basálticos de acordo com Le Maitre *et al.* (2002) e caracterizando os cataclasitos e brechas presentes, tanto em aspectos de campo quanto na análise petrográfica macroscópica e microscópica, e na deformação associada à intrusão dos diques, baseado em Twiss and Moore (1992) e McClay (2000) (Figura 1.3a e 1.3b). A partir das descrições, foi confeccionado um total de 15 fichas petrográficas que estão dispostas nesse trabalho na seção de Anexos (5 a 20).

Figura 1.3 – **A** – Classificação de falhas usando os parâmetros de profundidade da geração da rocha e tamanho dos grãos do arcabouço, de acordo com McClay (2000). **B** – Definição, características e nomenclatura das rochas de falha de acordo com Twiss & Moores (1992).

6. Tratamento dos dados estruturais obtidos em campo para elaboração de Redes Estereográficas e Diagramas de Roseta usando os programas OpenStereo 0.1.2

(2011) e Oriana 4.02 (2013), respectivamente. Foram analisadas falhas, lineações

de estiramento de falha, fraturas e orientação dos diques. As projeções são feitas usando o Diagrama de Schmidt, hemisfério inferior, com medidas plotadas em notação de mergulho. As Grandes Curvas foram utilizadas para representar os planos de falha, os Pontos para representar as lineações de estiramento e os Contornos, feitos através do método de Vizinho Natural, foram utilizados para densidade de estrias. Os diagramas de roseta foram separados em 24 partes (15° cada parte) contendo as medidas plotadas em notação de orientação.

7. Análise cinemática e dinâmica das estruturas rúpteis e dos diques por métodos convencionais de análise estrutural em conjunto com métodos de análise por microtectônica dos cataclasitos estudados (Passchier & Trouw, 2005). Ainda quanto às falhas e fraturas, também foram classificadas as fraturas presentes na região quanto à forma e derivação de falhas de maior componente, como descrito por Twiss and Moore (2007), dentre fraturas do tipo *pinnate* ou do tipo *gash* (Figura 1.4). Adicionalmente, análise mecânica do fluxo e estrutural dos diques basálticos através da metodologia adotada por Corrêa-Gomes (2001) e exemplificado por Corrêa-Gomes (2012), caracterizando detalhadamente as estruturas presentes nos diques da área (Figura 1.5).

Figura 1.4 – **A** – Fraturas do tipo *pinnate* ao longo de uma zona de falhas, evidenciando padrão *en echelon*. **B** – Fraturas do tipo *gash* em padrão *en echelon*. No esquema da esquerda, padrão comum ao longo de zona de cisalhamento. Já no da direita, padrão produzido por sistema dúctil-rúptil, rotacionando as partes centrais das fraturas (Twiss and Moores, 2007).

Figura 1.5 – Possíveis indicadores de direção de fluxo de lava ou de cisalhamento simples presentes em diques magmáticos (Correa-Gomes *et al.*, 2001).

Para compreender as causas da configuração de *emplacement* dos diques e das estruturas regionais geradas com a ruptura litosférica, torna-se necessário caracterizar o embasamento cristalino gerado nos eventos do Paleoproterozoico e Neoproterozoico-Cambriano.

A Faixa Ribeira encontra-se dentro da Província Mantiqueira, englobando rochas deformadas e metamorfizadas durante a formação do paleocontinente Gondwana (Schmitt et al., 2004; Figura 2.1) em um período orogênico de convergência e colisão entre o Cráton do São Francisco e o Cráton do Congo (Heilbron et al., 2004). É dividido em quatro terrenos tectônicos com estruturas de direção NE-SW principalmente (Trouw et al., 2000). São eles: Domínio do Paraíba do Sul, porção mais à Oeste, composto de unidades granulíticas tanto orto- quanto para-derivadas; Terreno Ocidental, contendo unidades do Cráton do São Francisco anteriores ao evento orogênico retrabalhadas em alto grau metamórfico; Terreno Oriental, composto de intrusões magmáticas e sucessões vulcanossedimentares neoproterozoicas-ordovicianas também deformadas em alto grau metamórfico; e o Domínio Tectônico de Cabo Frio.

10°E

Figura 2.1 – A – DTCF no contexto do Gondwana. Em rosa estão presentes os principais blocos cratônicos arqueanos-paleoproterozoicos: AM - Amazônico; KAL – Kalahari; L – Luis Alves; P – Paranapanema; R – Rio de La Plata; RA – Rio Apa; AS – Saara; SL – São

20°Ė

Luís; WA – West Africa. Dentro do Cráton São Francisco-Congo estão os blocos arqueanos principais: a – Angola; b – Bangweulu; cf – DTCF; g – Gabão; k – Kasai; NEu-t – Congo-Uganda e Tanzânia; sf – São Francisco. **B** – Configuração paleogeográfica do Gondwana na parte mais a norte do Atlântico Sul em 130 Ma de acordo com a proposta de reconstrução de Moulin *et al.* (2010). Linha de costa atual do Brasil em vermelho e da África em azul. Os domínios do Arqueano-Paleoproterozoico são detalhados de acordo com os períodos descritos na legenda. A – Bloco da Angola, Q – bloco do Quadrilatero e adjacentes, Mb – Cinturão Mineiro; Manb- Cinturão da Mantiqueira; JFb – Cinturão de Juiz de Fora. Algumas cidades foram marcadas: RIO – Rio de Janeiro; BH – Belo Horizonte; SAN – Santos; JOI – Joinville, VIT – Vitória; LUA – Luanda; BEN – Benguela. Essa figura foi modificada de Schmitt *et al.*, (2016)

O Domínio Tectônico de Cabo Frio (DTCF) é identificado como a porção mais a leste da região da Faixa Ribeira, adjacente à porção da Faixa Ribeira Oriental em uma zona de sutura (Schmitt et al., 2016; Figura 2.2). É basicamente composto de um embasamento de ortognaisses paleoproterozoicos, denominado Complexo Região dos Lagos (Fonseca et al., 1979), supracrustais vulcanossedimentares neoproterozoicas, as unidades Palmital e Búzios (Schmitt et al., 2004) e corpos máficos ediacaranos intercalados com a Sucessão Búzios (Capistrano et al., submetido). Estas foram amalgamadas e retrabalhadas em um evento tectono-metamórfico cambro-ordoviciano conhecido como Orogenia Búzios (Schmitt et al., 2004). Esta orogenia é considerada segunda etapa de colisão do Orógeno Ribeira. A trama orogênica do embasamento do DTCF é NW-SE em sua porção central, um contraste perpendicular em relação à orientação das estruturas NE-SE dos Terrenos Ocidental e Oriental (Trouw et al., 2000). Algumas hipóteses quanto à sua origem e seu desenvolvimento foram levantadas nas últimas décadas. Uma delas seria a de que o DTCF seria uma porção da plataforma continental do Cráton do Congo, alguns autores interpretando como se a subducção da placa precedente à colisão se daria para Leste (Heilbron *et al.*, 2008) e outros, em oposição, interpretam que a subducção da placa se daria para Oeste (Schmitt et al., 2008, 2016). Alguns outros autores ainda interpretam como

sendo um terreno exótico empurrado sobre a microplaca Serra do Mar (Campos Neto e Figueiredo, 1995).

Figura 2.2 – Configuração Tectônica da região Sudeste do Brasil, modificado de Schmitt *et al.* (2016).

O embasamento paleoproterozoico Complexo Região dos Lagos engloba metagranitoides por vezes gnáissicos e migmatizados. Aflora por todo o DTCF e está em contato de alto *strain* com corpos máficos anfibolíticos paleo e neoproterozóicos (Capistrano *et al.*, submetido) e em contato tectônico com as unidades supracrustais (Figura 2.3). Também é intrudido por paleodiques anfibolíticos denominados Suíte José Gonçalves UFRJ

(Schmitt, *et al.*, 2011). A unidade Búzios inclui paragnaisses aluminosos com intercalações de quartzitos e calci-silicáticas, enquanto os paragnaisses quartzo-feldspáticos com intercalações de aluminosos compõem a unidade Palmital (Schmitt *et al.*, 2004). As duas unidades neoproterozoicas são datadas com sedimentação ocorrendo de 610 até 590 Ma para unidade Búzios e 590 até 570 Ma para unidade Palmital, de acordo com método U-Pb em zircão detrítico usando ablação a laser ICP-MS (Schmitt *et al.*, 2004; Fernandes *et al.*, 2015). Os corpos máficos ediacaranos afloram nas regiões costeiras do DTCF dos municípios de Cabo Frio e Búzios. São intercalados ocasionalmente com sucessões sedimentares da unidade Búzios e, de acordo com Capistrano *et al.* (submetido), consistem-se de corpos ofiolíticos que foram subductados parcialmente e empurrados e justapostos com o embasamento paleoproterozoico devido a um evento colisional posterior.

Figura 2.3 – Mapa geológico e seção transversal do DTCF e áreas adjacentes do Faixa Ribeira Oriental, contendo as estruturas tectônicas regionais, modificado de Capistrano *et al.* (submetido).

O metamorfismo, caracterizado como de alta pressão e temperatura, e a deformação dessas unidades litológicas foram datados como Cambriano, de 550 até 490 Ma de acordo com método U-Pb em cristais de zircão e monazita de leucomas por TIMS e ablação a laser

ICP-MS (Schmitt *et al.*, 2004; 2008; Fernandes *et al.*, 2015). Essas idades compreendem as fases D₁₋₃ enquanto as fases D₄₋₅, que compreende a etapa de colapso do orógeno. Os termos ígneos mais jovens relacionados ao período pós- colisão são datados de 490 até 470 Ma pelo método U-Pb em cristais de zircão por TIMS e SHRIMP (Bongiolo *et al.*, 2015).

Durante o restante do Paleozoico até o final do Mesozoico a região manteve inatividade e estabilidade tectônica. Somente durante o Cretáceo Inferior é que a região finalmente teve novas atividades tectônicas em processo. A quebra do paleocontinente Gondwana se inicia na região por enfraquecimento e afinamento da litosfera, originando diques de diabásio e estruturas rúpteis diversas que resultariam, por fim, na abertura do Oceano Atlântico Sul. O rifte tem direção N-S pela costa da região Norte do estado do RJ. No entanto, a região de Cabo Frio age como uma zona de inflexão, onde a orientação do rifte muda para E-W (Figura 2.4). Os diques e estruturas ocorrem principalmente seguindo a orientação NE-SW (Valente *et al.*, 2005a; Corval *et al.*, 2008; Almeida *et al.*, 2013; Schmitt *et al.*, 2016; Souza *et al.*, 2017).

Figura 2.4 – Mapa geológico e tectônico da margem Sudeste brasileira em conjunto com as estruturas *offshore* adaptado de Stanton *et al.* (2019). Nota-se a mudança de orientação das estruturas da margem continental na região das bacias de Espírito Santo, Campos e Santos.

Os diques de diabásio na porção leste do Estado do Rio de Janeiro são denominados como parte do Enxame de Diques da Serra do Mar (Figura 2.5). Possuem afinidade toleítica (Valente, 1997; Corval, 2005; Dutra, 2006) e origem distinta de acordo com a assinatura geoquímica e relacionada à localização. Na parte Oeste e Central do estado do Rio de Janeiro, a litogeoquímica indica uma suíte de alto TiO₂ (Valente *et al.*, 1998) e pela Região dos Lagos e Norte Fluminense predominam diques de suítes de Baixo TiO₂ (Monteiro & Valente, 2003; Dutra, 2006). As espessuras podem variar de poucos metros a dezenas de metros e extensões de centenas a milhares de metros (Valente *et al.*, 2005a). A composição se dá basicamente de augita e plagioclásio, sem presença de olivina. A ausência de xenólitos, vesículas e amídalas por todo o Enxame de Diques da Serra do Mar sugere pouca ou nenhuma interação entre o magma basáltico e as rochas encaixantes (Corval *et al.*, 2008). Carvas (2016) datou 132 Ma como idade de intrusão do magma pelo método Ar-Ar em amostras de diques de Arraial do Cabo e Búzios.

Souza (2011) e Souza *et al.* (2017) indicam que, ao longo do DTCF, as zonas de falha correlacionadas ao EDSM (Figura 2.6) têm predominância de orientação ENE-WSW, com principal componente distensivo NNW-SSE e leve componente destral. Outros eventos de deformação tanto transpressivos quanto distensivos ocorreram, alguns anteriores e outros posteriores à deformação principal. Há evidências de geração de brechas de falha e cataclasito por todas as zonas de falha presentes na região, podendo haver reativações marcadas por outras brechas e cataclasitos que contêm clastos de paleobrechas e paleocataclasitos. Ferrari (2001) indica que essas zonas de falha foram geradas sob paleotensões de σ 1 (NE-SW) e σ 3 (NW-SE).

Figura 2.6 – Mapa geológico simplificado da região da Lagoa de Araruama mostrando o Sistema de Falha da Lagoa de Araruama, com cálculos de paleotensão e proposta de sequência de fases de deformação rúptil relacionado à sua evolução. Primeira fase: Transcorrência Destral NE-SW (transcorrência E-W sinistral subordinada e local); segunda fase: distensão oblíqua destral NNW-SSE; e terceira fase: distensão oblíqua destral ENE-WSW (Souza *et al.*, 2017)

3 GEOLOGIA LOCAL

A área deste estudo abrange o costão rochoso que vai deste a Ponta do Chapéu até a Ponta do Farol no município de Cabo de Frio (Figuras 1.1 e 1.2). Este costão tem elevação máxima de 80 metros e as unidades afloram em encostas de rochas bem expostas com ação de ondas.

O embasamento cristalino predomina na área, representado por diferentes unidades litoestratigráficas deformadas e metamorfizadas em conjunto. O mesmo é recortado pelos diques de diabásio que constituem corpos de até 15 metros de espessura, usualmente paralelos à costa. As cinco unidades litoestratigráficas identificadas equivalem na literatura da região a (Schmitt et al., 2004, 2016; Ramos, 2009; Capistrano et al., submetido): o Complexo Região dos Lagos, caracterizados de ortognaisses paleoproterozoicos predominantes; a Suíte José Gonçalves, finos corpos tabulares deformados e ortoanfibolíticos; a Unidade Búzios, na área com pouca espessura e composto basicamente de paragnaisses, quartzitos e calcissilicáticas de idade máxima neoproterozoica; a Unidade Forte de São Mateus, outro corpo de grande extensão e compreendido como ortoanfibolitos de origem de crosta oceânica; e, por último, o Enxame de Diques da Serra do Mar (EDSM), a unidade estudada com maior foco nesse trabalho, compostos de diques de diabásio toleíticos datados do início da ruptura do paleocontinente Gondwana durante o Cretáceo Inferior.

Como o EDSM é a unidade de foco e caracterização principal, todas as outras quatro unidades litoestratigráficas de origem proterozoica foram classificadas como componentes do embasamento da área. Esses diques intrudem todas tais rochas proterozoicas.

3.1 Unidades de mapeamento

3.1.1 Complexo Região dos Lagos

Compreendem a maior extensão rochosa presente na área mapeada, constituem-se de ortognaisses do Paleoproterozóico de origem granítica à granodiorítica deformados e metamorfizados, evidente pela foliação muito bem marcada, dobras e migmatização (Figura 3.1). Os afloramentos, no geral, apresentam coloração típica de rochas félsicas, muitas fraturas e falhas, intrusões de paleodiques da Unidade José Gonçalves e diques do Cretáceo, com pouca ação intempérica.

Figura 3.1 – Foliação Tectônica e bandamento do Complexo Região dos Lagos com direção NW-SE, observando-se de duas unidades ortoderivadas: o leuco-granito gnáissico e o ortognaisse diorítico em cinza. Notar migmatização localizada em ambos (ponto TH-56).

Em campo, foram usadas duas formas de classificação para diferenciar tanto os protólitos dessa unidade quanto o grau metamórfico registrado nelas: dois protólitos predominantes, ortognaisse diorítico e ortognaisse granítico porfirítico (Figura 3.2A); e

variação migmatítica ou não, que poderia estar presente nas duas rochas (Figura 3.2B, 3.2C e 3.2D). O ortognaisse diorítico, de coloração predominantemente acinzentada, é composto de hornblenda, plagioclásio e quartzo com minerais essenciais; zircão e apatita como minerais acessórios (Anexo 7). Quando migmatizado, apresenta bandas ricas em minerais máficos e bandas mais leucocráticas. Já o ortognaisse granítico, de coloração predominantemente esbranquiçada ou levemente alaranjada, é constituído por microclima, quartzo, hornblenda e plagioclásio, biotita (Anexo 6, 9 e 10), também contendo minerais acessórios como zircão e apatita. Quando migmatizado há maior concentração de minerais máficos bem separados de concentrações leucocráticas (Figura 3.2D).

Figura 3.2 – Fotos do Complexo Região dos Lagos do ponto TH-33: (A) Ortognaisse de protólito granítico preservando textura ígnea porfirítica. (B) Porção migmatítica no ortognaisse. (C) Ortognaisse de protólito diorítico com migmatização localizada. (D)
Ortognaisse de protólito granítico com nível de *boudins* de anfibolitos. Notar os veios leucossomáticos dobrados juntamente com o bandamento composicional.

3.1.2 Suíte José Gonçalves

Apresenta rochas ortoanfibolíticas pouco expressivas, de espessura variando entre 1 e 4 metros, de coloração acinzentada escura, maciças e homogêneas que intrudem os ortognaisses do Complexo Região dos Lagos (Figura 3.3A). Portanto são interpretados como terem sido corpos tabulares, como diques, sills e soleiras. Isso também pode ser evidenciado por xenólitos do Complexo Região do Lagos. Todavia os ortoanfibolitos estão deformados, *boudinados* e dobrados, mascarando as relações primárias (Figura 3.3B). Localmente apresentam feições de fusão parcial (leucossomas). Podem ter poucos centímetros até cerca de dez metros de espessura, com comprimento indeterminado.

Figura 3.3 - (A) Paleodique de ortoanfibolito num domínio de baixa concentração de *strain* no ponto TH-7. (B) *Boudin* de ortoanfibolito rotacionado em charneira de dobra do ponto TH-36.

Caracterizam-se como anfibolitos de granulação média (Figura 3.4) contendo principalmente hornblenda e plagioclásio, mas também alguns cristais de clinopiroxênio. Também é possível observar presença de granada, titanita e quartzo como minerais acessórios. Biotita e actinolita também se apresentam secundariamente.

Figura 3.4 – Textura do ortoanfibolito com granulação média a grossa nas porções internas dos corpos máficos no ponto TH-7.

A Suíte José Gonçalves não intrude os paragnaisses da Unidade Búzios ou com os ortoanfibolitos da Unidade Forte São Mateus. Porém nota-se que os dois anfibolitos parecem estar sempre próximos um do outro, não sendo possível observar afloramentos da suíte longe dos afloramentos da Unidade Forte São Mateus.

3.1.3 Unidade Búzios

Os paragnaisses, quartzitos e calcissilicáticas da Unidade Búzios presentes na área de mapeamento compreendem afloramentos de fina espessura, desde poucos centímetros até no máximo cinco metros, normalmente estratificado em camadas tabulares, de coloração geralmente clara e muito dobrado. As rochas podem apresentar feições migmatíticas também, com veios leucocráticos e melanossomas presentes em porções onde registrou-se concentração do alto grau de metamorfismo (Figura 3.5).

Figura 3.5 – (A) Paragnaisse com granada em grande quantidade do ponto TH-10. (B) Paragnaisse migmatítico, afetado por dobra recumbente no ponto TH-12. (C) Paragnaisse com cristais de sillimanita e cianita estirados em conjunto com cristais de granada no ponto TH-10. (D) Camadas para-derivadas em gnaisse com porções máficas. Notar a separação das camadas em falha normal ortogonal ao bandamento no ponto TH-35.

Os paragnaisses têm foliação marcada pela biotita, com lineação de estiramento de quartzo e feldspato, diferenciando-se pela presença ou ausência de granada, cianita e sillimanita. A granulação é geralmente média e de bandamento centimétrico marcados por estratificação composicional de origem sedimentar. Os quartzitos e calcissilicáticas estão intercalados como paragnaisses com no máximo meio metro de espessura. No caso dos quartzitos, a composição é predominante de quartzo e feldspato de tamanho fino a médio, e no caso das calcissilicáticas, a composição é de média a grossa com muita variação mineralógica: carbonatos, clinopiroxênio, granada, biotita, hornblenda, escapolita, plagioclásio e quartzo, além de outros acessórios (ANEXO).

A unidade está em contato brusco e deformado com os ortognaisses do Complexo Região dos Lagos e com os ortoanfibolitos da Unidade Forte de São Mateus.

3.1.4 Unidade Forte São Mateus

Essa unidade apresenta ortoanfibolitos bandados e maciços em contato tectônico com os ortognaisses do Complexo Região dos Lagos (Figura 3.6A). São caracterizados por seus afloramentos negros, maciços, homogêneos e com presença de leucossomas em forma de veios (Figura 3.6B). Também ocorrem bem menos expressivos bandado em camadas acinzentadas, negras e esverdeadas, relacionadas à concentração mineralógica (Figura 3.6C e D).

Figura 3.6 – (A) Feição comum dos ortoanfibolitos da Unidade Forte São Mateus no ponto TH-5. (B) Veio pegmatítico intrudindo o ortoanfibolito no ponto TH-4. (C) Feição detalhada do ortoanfibolito com coloração preta, cinza e esverdeada no ponto TH-4. (D) Feição detalhada dos cristais organizados em bandas no ponto TH-4.

A mineralogia principal é de anfibólio, plagioclásio, diopsídio e granada em porfiroblastos, com granulação média. Os leucossomas apresentam concentração de plagioclásio e quartzo, de granulação média a grossa, e os melanossomas que normalmente bordeiam esses leucossomas compõem-se dos máficos remanescentes. Nos afloramentos bandados, as camadas podem apresentar concentrações de hornblenda, de plagioclásio ou até mesmo apresentar uma composição mais próxima de rochas calcissilicáticas, tendo concentrações de diopsidio e granada.

3.1.5. Diques de diabásio

Os diques de diabásio encontram-se intrudindo todas as outras unidades do embasamento. Os corpos basálticos são maciços, cristalinos, usualmente homogêneos, de coloração preta, normalmente muito fraturados internamente, de espessura variando desde poucos centímetros até quinze metros, extensões quilométricas dos principais corpos, sem metamorfismo e sem deformações associadas (Figura 3.7A e B).

Figura 3.7 – Feição comum do dique de diabásio chegando a dez ou quinze metros de espessura. Fotos do ponto TH-36 (A) e TH-13 (B).

Na área mapeada, destacam-se dois principais diques com espessuras de 12 a 15 metros ocorrendo próximos um ao outro e estendendo-se pela costa (Anexo 2). Pode-se observar o afinamento dos mesmos, porém não sendo possível avistar onde terminam,

chegando a ter quilômetros de extensão com pouco mais de dez metros de espessura cada um (Anexo 3). Em sua maior parte, apresentam apófises de poucos centímetros até cerca de 3 metros e outros diques menores ocorrem subordinados aos principais, todos estes com direção semelhante entre si (Anexo 3).

O contato com as rochas encaixantes é discordante e costuma ser abrupto e bem marcado (Figura 3.8). Por vezes o contato encontra-se com deflexões, alterando sua direção, porém normalmente defletindo de volta à direção original, esse efeito ocorrendo tanto verticalmente quanto horizontalmente (Figura 3.8C e Anexo 3). Algumas poucas vezes o contato apresenta-se sinuoso, normalmente quanto menor a espessura, e muitas vezes acompanhando falhas, fraturas, cataclasitos e brechas de grande expressão (Anexo 4).

Figura 3.8 – (A e B) Dique de diabásio cortando ortogonalmente a foliação das rochas do embasamento, notar fraturas de resfriamento. Ponto TH-33. (C) Dique com contato retilíneo e com deflexões verticais em parede no ponto TH-35. (D) Foto em detalhe do contato retilíneo e característica do dique na zona de contato no ponto TH-50.

Macroscopicamente é constituído por fenocristais de piroxênio e plagioclásio em ripas em conjunto com uma matriz afanítica. A presença de fenocristais diminui consideravelmente nas bordas, predominando a matriz afanítica. Raramente há uma leve alteração mineralógica hidrotermal em rochas encaixantes na região de contato com o corpo intrusivo, com a presença de alguns minerais incomuns no embasamento, como óxido de ferro presente nas bordas de contato, além de cristalizações de epidoto e carbonatos ainda mais raros, onde estrias de falha podem estar marcadas (Figura 3.9). Superficialmente formam-se capas de alteração intempérica tornando a coloração da rocha amarronzado-avermelhada.

Figura 3.9 – (A) Direção de Mergulho dos diques e tendência de apófises paralelas à orientação do dique do ponto TH-34. (B e C) Borda com óxido de ferro na zona de contato do dique com rocha encaixante, onde ficou registrado a cinemática de falha por uma estria de falha.

Não há estruturas de fluxo visíveis no corpo principal, somente a presença de apófises (Figura 3.9A). Essas apófises, no entanto, ocorrem de duas formas. A primeira forma é a comum dos corpos de diques, onde ela se forma por intrusão a partir da direção do fluxo magmático, indicando a direção do fluxo (Correa-Gomes *et al.*, 2001). O segundo tipo seria a partir de estruturas pretéritas que teriam espaço já aberto com facilidade para intrusão do magma basáltico, um processo muito mais de encaixe em um espaço de fácil preenchimento do que de intrusão do magma na rocha. É possível observar a diferença entre esses dois tipos de apófises por dois parâmetros: o primeiro seria pela orientação, onde apófises que se aproveitam de espaços criados por falhas e fraturas encontram-se dispostos com orientação idêntica a tais estruturas, enquanto apófises feitas a partir do fluxo magmático tem igual ou próxima orientação do corpo principal; já o segundo parâmetro, mais determinante, seria de acordo com a geometria de contato da apófise, pois os contatos retilíneos contínuos indicam aproveitamento de estruturas pré- ou sin*-emplacement* (Figura 3.11), enquanto os contatos sinuosos e desconexos indicam apófises feitas através do fluxo magmático (Figura 3.9A e Figura 3.10).

Tendo sido diferenciados os tipos de apófises, foi observado que todas as apófises provenientes da intrusão pelo fluxo magmático possuem o mesmo sentido horizontal: para sudoeste. De acordo com Correa-Gomes *et al.* (2001), este seria um importante indicador de sentido do fluxo magmático, consequentemente nos evidenciando que o fluxo basáltico viria de nordeste para sudoeste (Figura 3.10, 3.12, 3.13 e 3.14). Também foi observado fluxo magmático de componente vertical ascendente em todas as apófises mapeadas (Figura 3.9A)

Figura 3.10 – Fotointerpretação do dique aflorante marcada no Anexo 2 contendo apófises paralelas ao corpo principal, fraturas de resfriamento e zona de fraturamento mais intensa.

Figura 3.11 - Fotointerpretação do dique aflorante marcada no Anexo 2 com apófises seguindo orientação N-S e NNE-SSW, juntas de resfriamento e juntas tectônicas provenientes de reativação posterior ao *emplacement* dos diques.

Figura 3.12 - Fotointerpretação do dique aflorante marcada no Anexo 2 com juntas de resfriamento e juntas tectônicas provenientes de reativação posterior ao *emplacement* dos diques. Nota-se também uma pequena apófise com formação interrompida no contato inferior.

Figura 3.13 - Fotointerpretação do dique aflorante marcada no Anexo 2 contendo apófises com formação interrompida e com juntas de resfriamento.

Figura 3.14 - Fotointerpretação do dique aflorante marcada no Anexo 2 contendo uma grande apófise com formação interrompida na zona de contato inferior, com juntas de resfriamento e juntas tectônicas provenientes de reativação posterior ao *emplacement* dos diques.

É possível observar também que os diques apresentam maior taxa de erosão que as rochas encaixantes, principalmente se comparado ao Complexo Região dos Lagos, com um

claro contraste de relevo onde aflora. Também foi observado que há maior concentração de alteração intempérica nas fraturas dos diques, tanto nas de resfriamento quanto nas de tectonismo.

3.1.5.1. Micropetrografia

Foram amostrados, no total, 7 diques basálticos para estudos petrográficos (Anexos 13 à 19), além de terem sido descritas outras 14 lâminas de diabásio em áreas próximas e vizinhas a da região (Anexos 20 a 33), para comparação de aspectos mineralógicos e texturais.

As 14 lâminas pretéritas incluem amostras da Ilha Comprida, Ilha dos Papagaios, e Ilha de Pargos (Anexo 1). Todas elas incluem mineralogia essencial composta de fenocristais e matriz de plagioclásio em ripas, variando entre labradorita e oligoclásio (de acordo com a medição do ângulo de extinção plotado no diagrama de Michel-Levy). Tem textura de contato sub-ofítica e ofítica com os cristais de clinopiroxênio (identificados como augita) também compondo fenocristais e matriz. Também foi possível observar óxidos de ferro primários, muito provavelmente de magnetita e ilmenita. Nenhuma das lâminas pré-existentes apresentou alguma textura ou estrutura relacionada a fluxo ígneo. A granulação varia entre fina e média predominantemente, com matrizes finas ou afaníticas. Também se notou diferentes graus de alteração intempérica em cada amostra, onde algumas apresentaram um baixo grau contendo substituição de piroxênio por óxido de ferro. Já amostras de maior grau de alteração tanto intempéricas quanto hidrotermais apresentaram biotita, muscovita, indignita e até clorita alterando os cristais de piroxênio, enquanto os cristais de plagioclásio encontram-se sendo substituíção por sericita.

Os litotipos da área de estudo apresentam microtextura de plagioclásio ofítico e subofítico nos cristais de piroxênio. São classificados em cristais de augita e de labradorita, matriz predominantemente de piroxênio, plagioclásio, magnetita e ilmenita e também podem apresentar, de acordo com o grau de alteração, minerais secundários como óxido de ferro, biotita, muscovita, clorita e sericita.

Quando comparadas com os aspectos de campo, foi observado que as lâminas das amostras de borda dos diques mais espessos apresentam pouca porcentagem de fenocristais e menor granulação da matriz chegando a ser afanítica em alguns casos, enquanto nas amostras do núcleo há uma maior quantidade de fenocristais e maior granulação da matriz, sendo possível distinguir todos os cristais individualmente. As lâminas da borda também apresentam muito maior grau de alteração hidrotermal e intempérica dos cristais do que as lâminas do núcleo. Quando o corpo é mais fino, no entanto, essa diferenciação da borda para o núcleo não costuma ficar evidente o suficiente, predominando uma matriz fina e fenocristais médios em proporções semelhantes.

3.2 Geologia Estrutural

3.2.1 ESTRUTURAS DÚCTEIS DO EMBASAMENTO

As unidades do embasamento apresentam um conjunto de estruturas dúcteis penetrativas desenvolvidas durante o evento tectono-metamórfico cambriano. A foliação principal tectônica é marcada por alguns minerais bem como pelas variações composicionais dos gnaisses tanto originais quanto segregações metamórficas, que apresentam ainda camadas dobradas isoclinalmente e boudinadas.

Essa foliação principal tem orientação NW-SE usualmente com mergulho entre 50° e 90° para ambos os quadrantes (Figura 3.15D). Formam dobras fechadas a isoclinais antiformais e sinformais com eixos sub-horizontais plungeantes para NW ou SE (Figura 3.15B). Esses eixos têm caimento suave de dez a quinze graus, e os planos axiais de alto ângulo. Essas dobras são interpretadas como da fase F2 (Schmitt *et al.*, 2016, Ramos, 2009). Estão redobradas por dobras suaves até abertas com eixos também de baixo caimento NW-SE, mas planos axiais horizontais (Figura 3.15A), interpretados por Ramos (2009) como da fase deformacional F3. Os *boudins* de anfibolito (suíte Jose Goncalves) são elipsoidais ou ovais geralmente, mas também podem estar dobrados suavemente, formando geometrias diversas como sigmoides de grande extensão (Figura 3.15C). Isto sugere uma extensão anterior ao dobramento da fase F3. Alguns afloramentos *boudins*, somente dobrados e vice-e-versa (Figura 3.15B).

Figura 3.15 - (A) Dobra recumbente em paragnaisse interpretada como da fase de deformação F3 de plano axial horizontal, no ponto TH-15. (B) Dobras fechadas nos anfibolitos no ponto TH-30. (C) *Boudin* de anfibolito suavemente dobrado no ponto TH-30. (D) Mergulho de 50° das camadas do Complexo Região dos Lagos sentido NE no ponto TH-57.

As unidades litológicas em geral mostram estiramento mineral de quartzo, feldspato, anfibólio e sillimanita/cianita, paralelas aos eixos das dobras F2 e F3, de baixo caimento com direção NW-SE (Figura 3.16).

Figura 3.16 – Rede estereográfica contendo a orientação de todas as medidas de foliação do embasamento medidas ao longo da área do Anexo 2, além dos polos dos planos dessas medidas. Nota-se que as medidas concentram-se principalmente ao longo de um eixo sub-horizontal para NW.

Todas essas feições estruturais dúcteis sejam foliações, dobras ou *boudins*, estão igualmente falhadas e fraturadas num evento cronologicamente posterior, que analisaremos mais a seguir.

3.2.2 ANÁLISE ESTRUTURAL DOS DIQUES

Ao analisar os corpos dos diques máficos em campo, além da orientação principal NE-SW também se distingue a deflexão nos contatos em suas bordas, como descrito anteriormente (Figura 3.17). Muitas vezes podendo realizar deflexões suaves ou bruscas, alterando sua orientação, porém realizando outras deflexões que retornam à orientação original ou quase para a mesma. Essas deflexões são observadas não só na orientação, mas também no mergulho dos corpos, variando entre sub-verticalizado até sessenta graus para noroeste. Essas variações também dependem do mergulho principal associado ao corpo de diabásio analisado, podendo variar de sessenta graus (Figura 3.9A) ou sub-vertical (Figura 3.8A).

As fraturas presentes nos diques são, em boa parte, referentes ao resfriamento da rocha em superfície, orientadas em três principais direções e orientações tridimensionais perpendiculares umas as outras, formando paralelepípedos distribuídos por toda a extensão do corpo com laterais orientadas de acordo com as bordas dos diques (Figura 3.18).

Entretanto, destacam-se as fraturas ortogonais e oblíquas às fraturas de resfriamento, formadas durante ativações tectônicas que podem produzir falhas também. Estes são também vistos em continuidade nas rochas encaixantes, tratando-se de atividade posterior à formação do dique. Destaca-se especialmente a zona brechada encontrada em um dos afloramentos estudados em maior detalhe na área, onde ocorrem falhas e zona de danos transversais ao dique relacionadas à reativação dessa brecha (Figura 3.18 e 3.19).

Figura 3.18 – Fotointerpretação do contato do dique em paredão no ponto TH-35. Nota-se como o contato é discordante em relação ao embasamento e como comporta-se com deflexões retilíneas de mesma orientação do sistema de falhas. Também nota-se a formação das juntas de resfriamento ortogonais entre si, formando fraturamento em paralelepípedos, mas também é possível observar poucas fraturas ortogonais a estas que são juntas tectônicas, causada por reativações posteriores ao *emplacement* do dique.

Figura 3.19 – Aproximação de uma porção do mapa no Anexo 4 onde é possível observar a zona de brecha do local e a zona de dano de falhas tectônicas no dique próximas entre si. As apófises dos diques têm principal sentido de fluxo de NE para SW (Figura 3.9A,

As aponses dos diques tem principal sentido de nuxo de NE para 5 w (rigura 5.9A,

3.10, 3.12, 3.13 e 3.14). No sentido vertical, podemos ver que a origem das apófises

também se da de baixo para cima, indicando fluxo ascendente (Figura 3.9A). Nem todas as apófises apresentam exatamente essa mesma orientação, devido às fraturas já presentes e as que se formaram durante a intrusão dos diques (Figura 3.11). Algumas apófises, no entanto, seguem a orientação N-S e NNE-SSW, com contatos retilíneos contínuos (Figura 3.11).

Importante também citar que as bordas de contato dos diques apresentam, muitas vezes, estrias minerais de óxido de ferro ou carbonato indicando movimentação de alguma ativação ou reativação de falha localizada nos contatos (Figura 3.9b e 3.9c). Evidências dessa movimentação se tornam mais clara quando analisamos mais minuciosamente o contato dos diques e das suas apófises, pois, como citado anteriormente, os próprios diques intrudem pelas superfícies das falhas cretáceas.

3.2.3 FALHAS E ROCHAS DE FALHA

A área apresentam inúmeras falhas e fraturas sendo identificados quatro conjuntos de orientações de falhas e fraturas nas imagens de drone:

- NW-SE Fraturas paralelas à foliação de caráter dúctil do embasamento (trama), apresentando falhas somente subordinadas e ramificadas a outras falhas NE-SW e N-S (Figura 3.20A).
- (2) NE-SW Sistema paralelo aos diques de diabásio. Ocorre internamente nos diques e também interceptam o embasamento. Variam de mergulho entre 85º a 65º (Figura 3.20C).
- (3) N-S Formam par conjugado com o sistema de falhas e fraturas NE-SW. Ocorrem também internamente nos diques e no embasamento. Variam de mergulho entre 85 a 65 graus (Figura 3.20B).

(4) E-W – Conjunto de fraturas menos significativa, apresentando falhas somente subordinadas a outras falhas NE-SW e N-S.

Figura 3.20 – (A) Diagrama de rosetas contendo todas as falhas fotointerpretadas (através de deslocamento de contatos e de estruturas) e medidas na região do mapa no Anexo 4. (B) Diagrama de rosetas contendo as falhas N-S. (C) Diagrama de rosetas contendo as falhas NE-SW.

De maneira geral, existem três tipos de fraturas dependentes ou não de orientação: as fraturas paralelas à foliação do embasamento, muito bem definidas e pouco variantes em direção para NW-SE (Figura 3.21); as fraturas de resfriamento dos diques, não atreladas a uma direção específica, mas associadas à orientação principal do dique em que ocorrem, indicando duas direções principais; e as fraturas distensivas que podem formar falhas normais/oblíquas ou não e têm orientação variante de NNW-SSE até ENE-WSW, mas de principal componente NE-SW e N-S, sempre em pares conjugados. Ainda é importante ressaltar que algumas fraturas desse terceiro tipo ocorrem de direção NW-SE até NNW-SSE, como resposta de outras falhas de grande alívio de tensão, as fraturas do tipo *pinnate*.

Estes últimos encontram-se distribuídos por todo o afloramento independendo da litologia, até mesmo nos diques de diabásio, onde formam as falhas e fraturas transversais. O foco principal desta parte será nesse último tipo de fratura, que muitas vezes também formam rochas de falha.

Figura 3.21 – (A) Diagrama de rosetas de todas as fraturas fotointerpretadas no embasamento da área do mapa do Anexo 4. Vale ressaltar três tendências principais: NE-SW, N-S e NW-SE. A última orientação tendenciosa se deve principalmente a quantidade de fraturas associadas à foliação do embasamento e também devido às fraturas do tipo *pinnate.* (B) Diagrama de rosetas de juntas de resfriamento do dique de diabásio presente no mapa do Anexo 4, formando duas orientações principais ortogonais entre si. (C) Diagrama de rosetas das juntas tectônicas no dique no mapa do Anexo 4, com orientação principalmente ENE-WSW.

3.2.3.1 Tipos de Falha

A partir da fotointerpretação aliado à medição em campo, observou-se que as falhas NE-SW têm componente normal em conjunto de movimento sinistral e as falhas N-S movimento destral. Esses componentes foram estabelecidos por indicadores cinemáticos

como deslocamento de contato, outras fraturas e principalmente estrias com ressaltos observadas em suas superfícies formadas por carbonato e óxido de ferro. A maioria das estrias analisadas indica movimento oblíquo, algumas com maior componente vertical e outras com maior componente horizontal (Figura 3.22). A obliquidade das estrias nas falhas de maior componente vertical varia de 81° até 35° enquanto que as estrias de maior componente horizontal varia obliquidade de 10° até 5°. Os deslocamentos aparentes podem apresentar centímetros até cerca de 5 metros quando observado macroscopicamente e individualmente, porém quando analisados em conjunto de falhas de mesma orientação e continuamente chegam a ter rejeitos de 15 à 20 metros. Offshore essas falhas podem chegar a ordem quilométrica de rejeito. Em lâmina, também é possível medir rejeitos aparentes (Anexos 7, 8 e 10), sejam estes de poucos centímetros ou até menor que um milímetro.

Figura 3.22 – Rede estereográfica contendo orientação de falhas medidas ao longo da área delimitada no Anexo 3 e também das estrias de falhas associadas à estas. Nota-se a predominância de estrias de movimento próximo ao vertical e poucas de movimento horizontal, tanto sinistrais quanto destrais.

O padrão de falha identificado principalmente foi o de pares conjugados de falha do experimento de Riedel, além de estruturas em flor, bifurcação e trifurcação de falhas, todas essas não só em plano horizontal, mas também em plano vertical (Figura 3.23). Os planos de falha também não costumam ser retos, em grande parte são curvados e muitas vezes são divididos em componentes diferentes de orientação. A disposição de falhas também ocorre com zonas de dano associadas, onde falhas e fraturas de menor espessura e extensão são ramificações de uma falha principal. Essas zonas de dano podem ter desde meio metro até cerca de 7 metros (Figura 3.24).

Figura 3.23 – Diversos tipos de falhas normais com movimento tanto sinistral quanto destral em bifurcações e trifurcações, em mapa do Anexo 4.

A maioria dessas falhas está relacionada aos diques, nem sempre sendo claro qual feição tem precedência sobre a outra. Em campo foi estabelecido que todas as falhas se formaram tanto sin-, tardi- quanto pós-intrusão dos diques, através da relação de corte entre si. Observa-se que os diques aproveitam estruturas principalmente NE-SW, além de intrudir também subordinamente estruturas N-S, sejam através de deflexões ou através de apófises (Figuras 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 e 3.19). Em algumas zonas é possível observar que a ativação ou reativação de falhas que cruzam esses diques provocam fraturamento tectônico oblíquo à orientação do corpo ígneo, em contraste com as fraturas de resfriamento (Figura 3.19).

Grande parte das falhas apresentam cataclasitos e brechas, descritas a seguir.

3.2.3.2 Cataclasitos e Brechas

A análise micropetrográfica foi de grande necessidade para classificar e caracterizar tais rochas específicas e muitos resultados e informações diferentes foram obtidos em cada lâmina. Foram analisadas 8 lâminas de cataclasitos selecionados ao longo da área (Anexos 5 à 12). Brechas ocorrem com maior tamanho e em bem menos quantidade que os cataclasitos.

Uma das brechas mais significativas, de espessura de quase 2 metros e orientação NNE-SSW, encontra-se na área do ponto TH-35 (Anexo 4). Motoki *et al.* (2011) descreveram tal estrutura detalhadamente compondo-se de clastos angulosos do embasamento e outros fragmentos de cataclasitos, consolidados por matriz de carbonato, hematita, sílica e sericita. Ainda definiram, por relação de corte, que a intrusão do dique localizado nesse ponto ocorreu posterior à formação da brecha. No entanto, um aspecto visível durante as atividades de campo é que o dique apresenta estruturas relacionadas à reativação dessa brecha, formando fraturas tectônicas, padrão já descrito anteriormente, logo posterior à colocação do dique (Figura 3.19). Ainda mais, as medições da brecha coincidem com as estruturas N-S presentes em toda a área, relacionados a essa fase inicial do rift.

Outros cataclasitos e brechas ocorrem em zonas de dano com espessura variando de 50 milímetros até 1 metro de espessura, incluindo variações na mesma falha. Esses cataclasitos ocorrem nos sistemas de falhas NE-SW e N-S, mas também em outras orientações ramificadas dessas duas principais, como NNW-SSE e ENE-WSW (Figura 3.27). Na descrição micropetrográfica observou-se que são coesas, compostos de clastos

angulosos e também estão presentes minerais de cimentação a partir de percolação de fluidos (Figura 3.25 e 3.26) assim como a brecha descrita anteriormente. Mas também diferentes tamanhos e formas de clastos estão presentes. Os minerais de cimentação variam entre epidoto, carbonatos, sílica e óxidos de ferro.

Figura 3.25 – Minerais precipitados a partir de percolação de fluídos, em destaque a cimentação de carbonato de coloração branca, mas também os óxidos de ferro em coloração marrom-avermelhada. Também é importante ressaltar a espessura, cerca de 30 centímetros, dos cataclasitos as quais foram submetidos a essa cimentação, no ponto TH-33.

Figura 3.26 – Precipitação de epidoto em fraturas e falhas próximas a diques de diabásio, no ponto TH-10.

Figura 3.27 – Ramificação de falha cataclástica em diferentes microfalhas e fraturas subordinadas, com variação de orientação e mergulho entre si, no ponto TH-33.

Na micropetrografía foi possível observar que os clastos podem ser compostos do embasamento falhado ou de outros cataclasitos (Figuras 3.28 e 3.29, Anexos 5 e 6). Tendo sido caracterizado cada amostra, observou-se a predominância de cataclasitos, além de protocataclasitos e microbrechas (Anexos 5, 7 e 8), com clastos do arcabouço variando de 0,1 mm até 5 mm. A presença dos minerais cristalizados a partir de percolação de fluidos pode ser diversa, combinando-se entre si em momentos diferentes de cristalização (Figura 3.28, 3.29 e 3.30), como cristalização de carbonato sin-cinemático (Anexo 8) ou póscinemático (Anexo 10) em conjunto com cristalização de óxido de ferro, e compondo a etapa de cimentação dos cataclasitos. Muitas vezes as ativações podem se ramificar em micro falhas através da falha principal (Figura 3.30). Também se observou presença de pseudotaquilito em três das amostras (Anexo 9, 10 e 11; McClay, 2000).

Figura 3.28 – Foto mosaico da lâmina da amostra BK-2F do Anexo 8, mostrando diversas reativações tanto depois de precipitação de carbonato e óxido de ferro quanto durante.

Figura 3.29 – Reativação de zona cataclástica também deslocando em movimento destral outra zona cataclástica dentro da própria lâmina da amostra BK-2E no Anexo 7.

Figura 3.30 – Microfalhas reverberadas de uma falha principal de lâmina da amostra BK-3D do Anexo 10. 3.2.4 ANÁLISE CINEMÁTICA

Inicialmente, podemos correlacionar as estrias de falha medidas obtidas entre si. Foram adquiridas 16 medidas de estrias e separados em dois grupos, as de movimento oblíquo de componente normal (Figuras 3.31 e 3.32) e as de movimento sub-horizontal (Figura 3.33). As estrias indicando movimento sub-horizontal destral estão relacionadas ao sistema de orientação N-S, enquanto as de movimento sinistral com o sistema de falhas de orientação NE-SW.

Figura 3.31 – Brecha em falha cataclástica muito bem marcada com orientação de movimento normal oblíquo no ponto TH-33

Figura 3.32 – Falha cataclástica com orientação de movimento predominantemente vertical normal no ponto TH-33.

Figura 3.33 – Falha cataclástica com orientação de movimento predominantemente horizontal no ponto TH-33.

As estrias de falha oblíquas de maior componente normal (Figuras 3.31 e 3.32), 11 das 16 estrias medidas, apresentam-se com maiores ressaltos do que as sub-horizontais restantes (Figura 3.33). Os dois grupos, no entanto, se encontram presentes tanto no sistema de falhas NE-SW quanto no sistema de falhas N-S (Figura 3.22).

Fraturas do tipo *pinnate* e *en echelon* (Figura 3.34) também foram utilizadas para determinar o sentido do movimento horizontal de algumas falhas presentes (McClay, 2000).

Figura 3.34 – (A) Fraturas do tipo *en echelon* em paragnaisse no ponto TH-10. (B) Exemplo de fraturas do tipo *pinnate* mapeáveis através das imagens de VANT, no mapa do Anexo 4.

Feições de reativação de falha analisadas microscopicamente são identificadas através da relação de contato entre as cimentações de óxido de ferro, carbonato, quartzo microcristalino e epidoto. Microfalhas estão presentes não só nos clastos como também em diferentes etapas de cimentação (Figura 3.35; Anexos 5, 7 e 8).

Figura 3.35 – Reativações e rompimento no de cristais e clastos de microbrecha na lâmina de cataclasito da amostra BK-1A do Anexo 5. Nota-se que a precipitação de sílica quebra os clastos cataclasticos e cristais de carbonatos, que por sua vez também já tinham cimentado o cataclasito.

As diferentes ativações evidenciadas pelas estrias podem indicar pelo menos duas fases de regime de paleotensão geradores de falha na área: um seria de maior componente vertical e outro de maior componente transcorrente. Não foram encontradas, no entanto, estrias de falha de diferentes orientações no mesmo plano de falha.

As estruturas NE-SW são de principal componente sinistral e as estruturas N-S são de principal componente destral. Esse binário transcorrente com principais componentes normais podem configurar um binário conjugado, com sigma 3 horizontal de direção WNW-ESE, sigma 1 vertical.

4 DISCUSSÃO

Os diques que se apresentam na área assemelham-se petrograficamente aos diques toleíticos descritos na bibliografia (Valente, 1997; Valente *et al.*, 1998; Monteiro & Valente, 2003; Corval, 2005; Valente *et al.*, 2005a; Dutra, 2006; Corval *et al.*, 2008), contendo plagioclásio cálcico e augita na composição (Anexos 13 à 33), espessuras de alguns metros, comprimentos de quilômetros ou centenas de metros e ainda mesma orientação (Anexo 2).

Um dos aspectos importantes é avaliar o controle estrutural que as falhas e fraturas impõem na colocação dos diques. Neste trabalho, observou-se que as estruturas controlam a geometria dos corpos máficos, causando deflexões, bifurcações, tortuosidade e até mesmo gerando algumas das apófises presentes. Fraturamento nos diques pós-*emplacement* também evidenciam reativações tectônicas. Poucos foram os trabalhos pretéritos que correlacionaram à atividade tectônica rúptil no Dominio Tectônico do Cabo Frio (DTCF) com as múltiplas intrusões dos diques (Corval *et al.*, 2008; Savastano *et al.*, 2017; Souza *et al.*, 2017).

Neste trabalho apresentamos dados que corroboram com informações acerca da cinemática de intrusão dos diques e da mineralogia das zonas cataclásticas associadas e uma cronologia relativa entre falhas e diques. Esses três itens serão discutidos abaixo.

4.1. Emplacement dos diques toleiticos

A maior parte dos diques têm orientação variando entre N40E-S40W e N60E-S60W (Figura 3.16) e mergulho predominante de 75° variando para de sub-vertical até o 60° com sentido para NW, com espessuras de até 15 metros e comprimento no mínimo quilométrico. As ramificações dos mesmos tem orientação principal N-S, mas também NNE-SSW e

NNW-SSE. As fraturas de resfriamento seguem um padrão ortogonal entre si e de acordo com a orientação do corpo do dique (Figura 3.20b). Já as fraturas tectônicas seguem em dois sistemas de N50E-S50W até N70E-S70W (Figura 3.20c) ou N10E-S10W até N25E-S25W. A zona de contato dos diques, em até cerca de 15 cm da borda ao centro, apresenta granulação muito fina a afanítica, resultado da diferença de temperatura nas bordas do dique. O núcleo apresenta granulação média a fina e fenocristais visíveis a olho nu.

Observou-se uma série de indicadores de fluxo ígneo tais como apófises de contato sinuoso paralelas aos diques e orientação dos fenocristais na trama interna dos diques. Estes indicadores mostram que a direção do fluxo magmático desses diques seria originária de nordeste para sudoeste. Outros trabalhos relacionados ao magmatismo e fluxo magmático não indicam direção horizontal preferencial desses diques, carecendo maiores informações para contribuição da origem destes corpos.

4.2 – Cinemática e composição das zonas cataclásticas associadas

O sistema de falhas registrado e interpretado como *sin-emplacement* tem orientação principal N45E-S45W com uma cinemática sinistral normal. Subordinado, ocorre um sistema N10E-S10W com cinemática destral normal. A maior taxa de rejeito, comprimento, espessura da zona cataclástica e predominância de direção dos diques para o sistema sinistral normal configura-o como primário em relação ao sistema destral. Além disso, reativações sugerem que pelo menos uma fase de componente mais horizontal ocorreu na área, tanto para o sistema destral quanto para o sinistral.

O contato dos diques retilíneos e contínuos observados com mesma orientação desses dois tipos de sistema de falhas, sejam através do conduto principal ou por apófises (Figura 4.1B), é um indicativo do controle que esses sistemas de falha exercem na geometria dos

diques. Contatos sinuosos e irregulares relacionados à intrusão por fluxo magmático (Figura 4.1A) evidenciam as incomuns porções dos diques que não estão controladas pela geometria das falhas.

UFRJ Rio de Janeiro 2020

Figura 4.1 – Esquematização dos dois tipos de apófises de diques encontrados na área. (A) Dique com formação de apófises paralelas ao corpo principal e de acordo com o fluxo magmático. (B) Dique com formação de apófises quase que perpendiculares ao corpo principal e de acordo com estruturas pré- ou sin-tectônicas. Setas em vermelho indicam sentido dos paleoesforços distensivos. Setas em azul indicam sentido do fluxo magmático.

O sistema principal apresenta zonas cataclásticas de mais de 5 m de comprimento e até 50 cm de espessura, enquanto o sistema subordinado apresenta zonas cataclásticas de no máximo 1 m de comprimento e com 5 cm de espessura.

A análise petrográfica dos cataclasitos indica diferentes tamanhos de arcabouço e diferentes tipos de cataclasitos. Ainda, a coesão das rochas cataclásticas, que é um fator determinante para inferir a profundidade mínima da formação das falhas (Twiss & Moores, 1992; McClay, 2000), pode vir a ser inteiramente consequente da precipitação destes minerais cimentadores. Mesmo em lâminas que é possível observar reativação com clastos de cataclasito, não há evidências que sugiram ser coesas ou incoesas preteritamente.

Portanto, a vasta variação de composição (presença ou não de carbonato, óxido de ferro, sílica e epidoto), forma, tamanho dos clastos e relação rúptil sugere diferentes tempos de formação. Deposições a partir de fluidos hidrotermais são possíveis, podendo também ter tido diferentes profundidades. Entretanto, a presença de pseudotaquilito pode indicar mais precisamente uma profundidade específica de formação (Passchier & Trouw, 2005). Mesmo sob a observação comparada de amostras coletadas tanto próximas quanto distantes de possíveis fontes desses minerais cimentadores, não foi possível determinar padronização que nos indicassem rochas geradoras destes minerais cimentadores.

4.3 - Cronologia relativa entre falhas e diques

As falhas e fraturas da região de Cabo Frio não possuem datações absolutas, sendo possível determinar a ordem cronológica dos eventos geológicos presentes através das observações de campo.

Essas estruturas cortam o embasamento Proterozoico-Cambriano, porém a sua relação com os diques de diabásio, datados em 132 Ma (Carvas, 2016), ora corta-os, ora é cortado por eles, indicando que há ativações e reativações pretéritas ao *emplacement* dos diques máficos e outras posteriores a estes.

Os diques em geral têm atitude similar aos sistemas de falhas e fraturas NE-SW e N-S, indicados anteriormente. Isto corrobora com a hipótese de que essas estruturas recémformadas serviram como condutos de intrusão. A deformação rúptil ainda continua depois do *emplacement* dos diques, evidenciado pelas relações de corte (Anexo 4), de fraturamentos tectônicos nos diques (Figura 3.18) e estrias presentes nas bordas dos diques (Figura 3.9)

Além do sistema *sin*-diques, identificou-se que a zona brechada descrita anteriormente (Figura 3.18) encontra-se intrudida pelo dique do cretáceo, indicando uma possível etapa anterior ao *emplacement* dos diques. Esse sistema poderia também controlar a entrada dos diques como uma estrutura herdada.

Este tipo de mecanismo de intrusão de diques, com geometria controlada por falhas pretéritas, é muito bem detalhado por Correa-Gomes *et al.* (2001), indicando principalmente três fases do *emplacement* de diques (Figura 4.2): a primeira pela geração de sistema de fratura que constrói a geometria a qual o dique irá intrudir, a segunda como propagação de fluídos magmáticos iniciais e a terceira como o fluxo de magma que compõem a maior parte do corpo magmático.

Figura 4.2 – Evolução do *emplacement* dos diques de acordo com Correa-Gomes *et al.* (2001). (a) Zona 1 - evolução de um sistema de fraturas; (b) Zona 2 – propagação de fluidos inicial; e (c) – Zona 3: fluxo magmático principal. Adaptado de Correa-Gomes *et al.* (2001)

Estes dados condizem com as conclusões apresentados por Souza (2011) e Souza *et al.* (2017) e Savastano *et al.*, (2017), e também indicam semelhante idades de formação. Na nossa área de estudo não existem corpos alcalinos pós rifte, o que limita o entendimento da evolução cinemática posterior aos diques toleíticos.

5 Conclusões e Recomendações

O sistema de falhas e o enxame de diques presentes nos costões da Praia Brava de Cabo Frio tem origem durante o rifteamento do Cretáceo Inferior e estão intimamente ligados entre si. Os diques apresentam extensão quilométrica, espessuras de 0,5 à 15m, orientação NE-SW similar aos diques do Enxame de Diques da Serra do Mar (EDSM; Dutra, 2006; Corval *et al.*, 2008; Tomba, 2012; Almeida *et al.*, 2013) e ainda mergulho variante de 65 à sub-vertical, com mergulho em direção a NW. Coincide com a direção de mergulho da maioria do sistema de falhas concordante, porém apenas metade das falhas possui orientação NE-SW, outra parte predominante também é orientada N-S. A primeira possui componente sinistral associada e a segunda componente destral, similar ao de regiões próximas (Souza *et al.*, 2017).

Petrograficamente também se assemelham os diques em relação ao EDSM (Valente, 1997; Corval *et al.*, 2008), com mineralogia essencial de labradorita e augita, textura de cristais de plagioclásio sub-ofíticos e ofíticos em contato com os piroxênios, sem vesículas e amígdalas e com bordas de contato afaníticas e núcleo porfirítico. As falhas também coincidem petrograficamente com os de trabalhos anteriores (Savastano *et al.*, 2017; Souza *et al.*, 2017) com rochas cataclásticas diversificando-se desde brechas, microbrechas, protocataclasitos, cataclasitos e pseudotaquilitos. A cimentação de variedade mineralógica desde carbonatos, epidoto, sílica e óxidos de ferro também estão presentes em outros trabalhos de regiões próximas.

Percebe-se que a coesão das rochas cataclásticas pode se dar justamente a tal cimentação sin-, tardi- e pós-cinemática das falhas e diques. Poucos dados coletados, desenvolvidos e discutidos nesse trabalho colaboraram com o entendimento das condições físicas da formação das falhas e do *emplacement* dos diques, muito menos da origem dos

fluídos que gerou os minerais cimentadores. No entanto, compreende-se que o sistema de falhas consequente dos paleoesforços distensivos durante o enfraquecimento crustal (Schmitt *et al.*, 2016) serviu de conduto para intrusão desses diques, evidenciado pela forma de contato na maior parte dos corpos dos diques e pela orientação e mergulho predominantes.

Através da correlação cronológica de campo e das conclusões obtidas por microtectônica, foi possível estabelecer que a ocorrência das falhas seja tanto sin-, tadiquanto pós-*emplacement* dos diques. No entanto, datações absolutas seriam de importante necessidade para determinar os pulsos variantes de movimento cisalhante das falhas e também determinar as idades precisas das inclusões fluídas que deram origem à cimentação diversa, especialmente das falhas posteriores ao *emplacement* dos diques.

Este trabalho pode servir de base para futuros estudos quanto às condições de P e T durante o *emplacement* dos diques e falhas da região, tão bem para determinar todos os diferentes momentos de ativação tectônica, sejam elas distensivas ou transpressivas, e até quando esta área ficou ativa significantemente. Também é possível correlacionar tais estruturas e suas propriedades estudadas aqui com as de bacias *offshore*, como correlacionou Savastano *et al.* (2017).

6 Referências bibliográficas

ALMEIDA J.; Dios F.; Mohriak W.U.; Valeriano C.D.M.; Heilbron M.; Eirado L.G.; Tomazzoli E. 2013. Pre-rift tectonic scenario of the Eo-Cretaceous Gondwana break-up along SE Brazil-SW Africa: insights from tholeiitic mafic dyke swarms. In: Mohriak W.U., Danforth A., Post P.J., Brown D.E., Tari G.C., Nemcok M. & Sinha S.T. (eds). **Conjugate Divergent Margins**. Geological Society, London, Special Publications, 369: 11-40.

ANGELIER, J. & MECHLER, P. 1977. Sur une méthode graphique de recherche des contraintes principales, egalement utilisable en tectonique et en seismologie: la méthode des diédres droits. **Bull. Soc. Geol**. 7: 1309-1318.

BONGIOLO, E.; RENAC, C.; D'ALMEIDA, P. T.; SCHMITT, R.S.; FAULSTICH F. R. L.; MEXIAS, A. S.; SILVA F. P. C. 2015. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late- to post-collisional stages of the Gondwana Assembly. Lithos. 240: 259-275.

CAMPOS NETO, M.C. & FIGUEIREDO, M.C.H. 1995. The Rio Doce Orogeny, southeastern Brazil. Journal of South American Earth Science, 8(2): 143-162.

CAPISTRANO, G. G.; SCHMITT, R. S.; MEDEIROS, S. M.; VIEIRA, T. A. T. 2020. Ediacaran juvenile oceanic crust in high PT metabasites– a non-subductionplume related ophiolite in the SE Brazilian margin. **Journal of South America**. In review.

CARVAS, Karine Zuccolan. **Diques mesozoicos subalcalinos de baixo titânio da Região dos Lagos (RJ): geoquímica e geocronologia** ⁴⁰Ar/³⁹Ar. 2016. 111p. Dissertação de Mestrado. Programa de Pós-Graduação em Geofísica e Tectônica. Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Universidade de São Paulo. São Paulo.

CORREA-GOMES, L. C.; Souza Filho, C. R.; Martins, C. J. F. N.; OLIVEIRA, E. P. 2001. Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. **Journal of Structural Geology**. 23: 1415-1428.

CORVAL, Arthur. Petrogênese das suítes basálticas toleíticas do Enxame de Diques da Serra do Mar nos setores central e norte do estado do Rio de Janeiro. 2005. 92p. Dissertação de Mestrado. Programa de Pós, UERJ, 92p.

CORVAL, A.; VALENTES, S. C.; DUARTE, B. P.; FAMELLI, N.; ZANON, M. 2008. Dados petrológicos dos diabásios dos setores centro-norte e nordeste do Enxame de Diques da Serra do Mar. **Geochimica Brasiliensis**. 22(3):159-177.

DUTRA, Thiago dos Santos. **Petrogênese dos basaltos de baixo-TiO2 do Enxame de Diques da Serra do Mar na Região dos Lagos, RJ**. 2006. 111p. Dissertação de Mestrado. Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis. Faculdade de Geologia. Universidade Estadual do Rio de Janeiro. Rio de Janeiro.

FERNANDES, G. L.; SCHMITT R. S.; BONGIOLO, E.; MENDES, J. C.; BASEI, M. A. S.; 2015. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (SE Brazil): U-Pb and Lu-Hf provenance data. **Precambrian Research**, 266: 337-360.

FERRARI, André Luiz. **Evolução Tectônica do** *Graben* da Guanabara. 2001. 412p. Tese de Doutorado. Programa de Pós-Graduação em Geologia Sedimentar. Instituto de Geociências. Universidade de São Paulo. São Paulo.

FONSECA, M. J. G.; SILVA Z. C. G.; Campos D. A.; TOSATTO, P. 1979. Folhas do Rio de Janeiro, Vitória e Iguape. Texto explicativo e Mapa. DNPM, Brasília, 239 p.

HEILBRON, M.; PEDROSA-SOARES, A.C.; CAMPOS NETO, M. C.; SILVA, L. C.; TROUW, R. A. J.; JANASI, V. A.; 2004. Província Mantiqueira. In: MANTESSONETO, V.; BARTORELLI, A.; CARNEIRO, C.D.R.; BRITO-NEVES, B. B. Geologia do Continente Sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo: BECA, 2004. Cap XIII, p. 203-235.

HEILBRON, M.; VALERIANO, C. M.; TASSINARI, C. C. G.; ALMEIDA, J. C. H.; TUPINAMBÁ, M.; SIGA JR. O.; TROUW R. A. J. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt. SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: PANKHURST, R. J.; TROUW R. A. J.; BRITO NEVES, B.B.; DE WIT M.J. (eds.), West Gondwana Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications, 294, 279-296.

LE MAITRE, R. W.; STRECKEISEN, A.; ZANETTIN, B.; LE BAS, M. J.; BONIN, B.; BATEMAN, P.; BELLIENI, G.; DUDEK, A.; EFREMOVA, S.; KELLER, J.; LAMEYRE, J.; SABINE, P.A.; SCHMID, R.; SØRENSEN, H.; WOOLLEY, A.R. **Igneous Rocks**: A classification and glossary terms. 2nd ed. Cambridge University Press: New York. 2002. 236p.

CORRÊA-GOMES, L. C.; LEAL, A. B. M.; GUIMARAES, J. T. Diques Máficos. Vol. 2. In: BARBOSA., J. S. F.; CORRÊA-GOMES, L. C.; MASCARENHAS, J. F.; DOMINGUEZ, J. M. L. (Org.). **Geologia da Bahia**. 1ed. Salvador: Companhia Baiana de Pesquisa Mineral, 2012, v. 2, cap 12, p. 199-232.

MCCLAY, K. R. 2000. Advanced structural geology for petroleum exploration. Short course. Royal Holloway University of London. 503p.

MONTEIRO, H. L. J. & VALENTE, S. C. 2003. Estudo Petrológico comparativo das suítes de baixo-TiO2 do Enxame de Diques da Serra do Mar. Jornada de Iniciação Científica, UFRuralRJ, Seropédica, p. 54-55.

MOTOKI, A.; VARGAS, T.; IWANUCH, W.; SICHEL, S. E.; BALMANT, A.; AIRES, J. R. Brecha tectônica da área de Cabo Frio – RJ, intrudida por dique máfico do Eocretáceo: evidência do tectonismo rúptil do Pan-Africano? **Revista Escola de Minas**. 64(1): 26-36.

PASCHIER, W. C. & TROUW, R. A. J. Microtectonics. 2nd ed. Springer Verlag: Heidelberg. 2005. 230p.

RAMOS, Alex dos Santos. **Mapeamento geológico-estrutural 1:10.000 do parque da Boca da Barra e correlação geológica com a Ilha dos Papagaios – Cabo Frio – RJ**. 2009. 80p. Trabalho de Conclusão de Curso. Bacharelado em Geologia. Instituto de Geociências. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

SAVASTANO, V. L. M.; SCHMITT, R. S.; ARAÚJO, M. N. C.; INOCÊNCIO, L. C. 2017. Rift brittle deformation of SE-Brazilian continental margin: Kinematic analysis of onshore structures relative to the transfer and accommodation zones of southern Campos Basin. Journal of Structural Geology. 94: 136-153.

SCHMITT, R.S., TROUW, R.A.J., VANSCHMUS, W.R. e PIMENTEL, M.M. 2004. Late amalgamation in the central part of West Gondwana: the characterization of a Cambrian collisional orogeny in the Ribeira belt (SE Brazil) – new geochronological data. **Precambrian Research**, 133 (1-2): 29-61.

SCHMITT, R.S. 2011. Folhas Cabo Frio e Rio das Ostras, SF.23-Z-B-VI e SF.24-Y-A-IV: texto e mapas. Programa Geologia do Brasil – PGB. Belo Horizonte: CPRM/UERJ. 1 CD-ROM.

SCHMITT, R. S.; TROUW, R. A. J.; VAN SCHMUS, W. R.; ARMSTRONG, R.; STANTON, N. S. G. 2016. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin. **Brasilian Journal of Geology**. 46(1): 37-66.

SOUZA, Priscilla Camões Martins de. Análise cinemática e dinâmica do sistema de falhas cenozoicas ENE-WSW do entorno da Lagoa de Araruama (RJ). 2011. 139p. Dissertação de Mestrado. Programa de Pós-Graduação em Geologia. Instituto de Geociências. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

SOUZA, P. C. M; SCHMITT, R. S.; STANTON, N. 2017. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System. Journal of Structural Geology. 102: 37-57.

STANTON, N.; KUSZNIR, N.; GORDON, A.; SCHMITT, R. S. 2019. Architecture and Tectono-magmatic evolution of the Campos Rifted Margin: Control of OCT structure by basement inheritance. **Marine and Petroleum Geology**. 100: 43-59.

TOMBA, Carlos Libório de Barros. **Análise estrutural dos enxames de diques máficos eocretáceos do Sul-Sudeste do Brasil**. 2012. 133p. Dissertação de Mestrado. Programa de Pós-Graduação em Geoquímica e Geotectônica. Instituto de Geociências. Universidade de São Paulo. São Paulo.

TROUW, R. A. J.; HEILBRON, M.; RIBEIRO, A.; PACIULLO, F.; VALERIANO, C. M.; ALMEIDA, J. C. H.; TUPINAMBÁ, M.; ANDREIS, R. R. 2000. The Central Segment of

the Ribeira Belt. In: CORDANI, U. G.; MILANI, E. J.; THOMAZ FILHO, A.; CAMPOS, D. A. **Tectonics Evolution of South America**, p. 287-310.

TWISS R. J. & MOORES E. M. 1992. Structural Geology. New York, W. H. Freeman and Company, 1 ed. 532p.

TWISS R.J. & MOORES E.M. 2007. **Structural Geology**. New York, W. H. Freeman and Company, 2 ed. 736p.

VALENTE, S.C. 1997 Geochemical and isotopic constraints on the petrogenesis of the Cretaceous dykes of Rio de Janeiro, Brazil. Tese de Doutorado, The Queen's University of Belfast, 366p.

VALENTE, S. C.; ELLAM, R. L.; MEIGHAN, I. G.; FALLICK, A. E. 1998. Geoquímica isotópica, modelo geodinâmico e petrogênese dos diabásios do Cretácio Inferior no Enxame de Diques Máficos da Serra do Mar (EDSM) na área do Rio de Janeiro, RJ. Boletim de Resumos do 40° Congresso Brasileiro de Geologia, Belo Horizonte, SBG, 1998, p. 471.

VALENTE, S. C.; DUARTE, B. P.; HEILBRON, M.; ALMEIDA, J. C. H.; VALLADARES, C. S.; GUEDES, E.; TETZNER, W.; LOBO, J.; CORVAL, A.; DUTRA, T.; SOARES, L. H.; SOUZA, F. M.; VINHA, J.; FAMELLI, N. 2005a. Mapa do Enxame de Diques da Serra do Mar. 3° Simpósio de Vulcanismo e Ambientes Associados. SBG-RJ, Rio de Janeiro-RJ, Brasil, p. 207-211.

VALENTE, S. C.; DUARTE, B. P.; HEILBRON, M.; CORVAL, A.; VALLADARES, C.; ALMEIDA, J. C. H.; GUEDES, E. 2005b. Provincialidade geoquímica do Enxame de Diques da Serra do Mar e domínios tectônicos do Orógeno Ribeira: o Cretáceo como uma janela para o Proterozóico. In: SBG-PR, 10° Simpósio Nacional de Estudos Tectônicos e 7° International Symposium on Tectonics, Boletim de Resumos p. 283-285.

VALENTE, S. C.; CORVAL, A.; DUARTE, B. P.; ELLAM, R. B.; FALLICK, A. E.; DUTRA, T. (007. Tectonic boundaries, crustal weakness zones and plume-subcontinental lithospheric mantle interactions in the Serra do Mar Dyke Swarm, SE Brazil. **Revista Brasileira de Geociências**, 37: 194-201.

7 Anexos

ANEXO 1 – Mapa regional do Domínio Tectônico de Cabo Frio, localização dos pontos de amostras em áreas vizinhas e localização da área de estudo.

ANEXO 2 – Mapa geológico da área de estudo contendo local do Anexo 4.

ANEXO 3 – Mapa geológico da área visitada contendo pontos e medidas obtidas em campo.

ANEXO 4 – Mapa geológico dos pontos TH-35 ao TH-33, contendo interpretação de falhas e fraturas mapeadas e medidas em campanhas de campo,

ANEXO 5 ao 12 – Fichas Petrográficas das lâminas de rochas cataclásticas amostradas na área de estudo.

ANEXO 13 ao 19 – Fichas Petrográficas das lâminas de diabásio amostradas na área de estudo.

ANEXO 20 ao 33 – Fichas Petrográficas das lâminas de diabásio de amostras de regiões vizinhas (vide Anexo 1).

Anexos

808500

Legenda Simbólica

- Pontos
- Curva de Nível (20m)
- - Contato Inferido
- Foliação do Embasamento
- Foliação Horizontal
- Foliação Vertical

Legenda Litológica

Cobertura Quaternária
 Dique de Diabásio
 Sill-Bio Gnaisse
 Ky-Sill-Grt-Bio Gnaisse
 Anfibolito Ponta do Chapeu
 Anfibolito Praia Brava
 Anfibolito Forte de São Mateus
 Paragnaisse do Embasamento
 Ortognaisse Granítico
 Ortognaisse Diorítico

Descrição Petrográfica de Rocha Ígnea

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

Amostra: BK-1A Coord. UTM: () Orientada Coord. Geo: Dominio Geológico: Domínio Tectônico de Cabo Frio ASPECTOS TEXTURAIS/COLORAÇÃO Índice de Cor: Leucocrático Granulação: Fino (não passa de 5mm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Granulação: Fino (não passa de 5mm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Granulação: Fino (não passa de 5mm) quanto aos cristais e derbonatos de de quarto microcristalino. Dem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonatos e de quarto microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porêm não temos tal presença pel grãos horam quebrados e plandars carbonatos fraturados e falhados com preenchimento carbonático posterior, rudo iso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com silica que formou quarto microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica () Hipointala () Hipointala () Holocristalina () Hipointala () Hipointala () Holocristalina () Hipointala <th>DADOS GERAIS</th> <th>Localidade: TH-34 Falha no Embasamento</th>	DADOS GERAIS	Localidade: TH-34 Falha no Embasamento	
 () Orientada Coord. Geo: Domínio Geológico: Domínio Tectônico de Cabo Frio ASPECTOS TEXTURAIS/COLORAÇÃO (fndice de Cor: Leucorrático Granulação: Fino (não passa de 5mm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior. Jálém de carbonatos fraturados e falhados com preenchimento também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com silica que formou quarto microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocilina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Escenciair: Deglicidásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALÓGICA Plagicidásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polisintética na maiori	Amostra: BK-1A	Coord. UTM:	
Domínio Geológico: Domínio Tectónico de Cabo Frio ASPECTOS TEXTURAIS/COLORAÇÃO Indíce de Cor: Leucocrático Granulação: Fino (não passa de Smm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudoi siso indica que houve reativação de falha onde os grãos foram quebraous e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. DBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica () Hipoialina () Hipoialina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALS PIAgioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polisintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, mui	() Orientada	Coord. Geo:	
ASPECTOS TEXTURALS/COLORAÇÃO Índice de Cor: Leucorático Granulação: Eino (não passa de 5mm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lámina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de ferro. Minerai	Domínio Geológico: Domínio Tectônico de Cabo Frio		
Índice de Cor: Leucorático Granulação: Fino (não passa de Smm) quanto aos cristais e Médio (2 à 20mn) quanto aos grãos Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnálssico, porem não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático poterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com silica que formou quartzo microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (M) Holocristalina () Hipocristalina () Hipocristalina () Hipocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALÓSICA Minerais Go polsintética na maioria dos cristais fão foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 a té 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. R-Feldspato: Anédricos, baixo relevo, incolor, co	ASPECTOS TEXTURAIS/COLORAÇÃO		
Granulação: Fino (não passa de 5mm) quanto aos cristais e Médio (2 à 20mm) quanto aos grãos Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com prenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocristalina COMPOSIÇÃO MINERALÓGICA Minerais Acessórios: Óxidos de Ferro. DESCRIÇÃO DOS MINERALÓGICA Minerais Scesorios: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALÓ Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção, sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito frat	Índice de Cor: Leucocrático		
Microtextura: A Rocha apresenta grãos de Cataclasito de aproximadamente 2 à 20mm de comprimento cuja face é bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturados cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocristalina () Holocristalina () Hipocristalina () Hipocristalina () Micrais Secsórios: Óxidos de Ferro. Minerais Secsórios: Óxidos de Ferro. DESCNIÇÃO DOS MINERALÓGICA Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ángulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferênci	Granulação: Fino (não passa de 5mm) quanto aos cristais e Médi	io (2 à 20mm) quanto aos grãos	
bem marcada por óxido de ferro. A matriz da rocha é composta de cristais de carbonato e de quartzo microcristalino. Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lámina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchimento por carbonato, essa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 dté 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de varde a grados são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm	Microtextura: A Rocha apresenta grãos de Cataclasito de aproxir	nadamente 2 à 20mm de comprimento cuja face é	
Dentro dos grãos de cataclasito, é possível identificar percolação de óxido de ferro entre os contatos e fraturas dos cristais do embasamento gnáissico, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento a guartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipoclania () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturade e falhada as quais são preenchidas por óxido de ferro. Cuartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturade e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito	bem marcada por óxido de ferro. A matriz da rocha é composta	de cristais de carbonato e de quartzo microcristalino.	
cristais do embasamento gnáiscio, porém não temos tal presença pela matriz carbonática. A lâmina também evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. (X) Holocristalina () Hipodrifica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipolalina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Quartzo. DESCRIÇÃO DOS MINERAL Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética o falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro requente. Óxi	Dentro dos grãos de cataclasito, é possível identificar percolação	de óxido de ferro entre os contatos e fraturas dos	
evidencia a presença de grãos fraturados e falhados com preenchimento carbonático posterior, além de carbonatos fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhada, com pueca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferênci	cristais do embasamento gnáissico, porém não temos tal presen	ça pela matriz carbonática. A lâmina também	
fraturados e falhados com preenchimento de quartzo microcristalino também posterior. Tudo isso indica que houve reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacuas com sílica que formou quartzo microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocristalina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Acessórios: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERALS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada, com pouca alteração. Quantao duartos micros de vide de faro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada, com pouca alteração. Quanto omicrocristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada a quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de narelo de 1ª ordem, sem estruturas, variando ce 0,5 até 3mm, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolo	evidencia a presença de grãos fraturados e falhados com preenc	himento carbonático posterior, além de carbonatos	
reativação de falha onde os grãos foram quebrados e pelas fraturas e entre os grãos houve preenchimento por carbonato e, por último, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica () Holocristalina () Holocristalina () Holocristalina () Hipozistalina () Hipoialina () Holocristalina () Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundáricos: Óxidos de Ferro. Minerais Secundáricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polisintética na maioria dos cristais (não foi possível analisar ângulo de etiroção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada, com pouca alteração	fraturados e falhados com preenchimento de quartzo microcrist	alino também posterior. Tudo isso indica que houve	
carbonato e, por ultimo, outra reativação quebrou não só os grãos como a matriz carbonática, preenchendo as lacunas com sílica que formou quartzo microcristalino. OBS : Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipoalina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro. DESCRIÇÃO DOS MINERALS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, gem iliação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, haixo relevo, cor om pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vez	reativação de falha onde os grãos foram quebrados e pelas fratu	ras e entre os grãos houve preenchimento por	
com silica que formou quartzo microcristalino. OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica () Hipociristalina () Hipocristalina () Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem quereta e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de naraelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e f	carbonato e, por último, outra reativação quebrou não só os grã	os como a matriz carbonática, preenchendo as lacunas	
OBS: Parte da laminação foi feita de forma pouco precisa e acabou ficando parcialmente mais grossa que a lâmina habitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica Xenomórfica (X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de neortrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm,	com silica que formou quartzo microcristalino.		
nabitual, portanto, nessa porção mais espessa, alguns cristais estão com cores de interferência maiores do que deveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Essenciais: Oxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em uma direção, hábito prismático e fibroso, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismáticos e fibroso, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismáticos e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro	OBS : Parte da laminação toi teita de forma pouco precisa e acab	ou ficando parcialmente mais grossa que a lâmina	
aceveriam. () Idiomórfica (X) Hipidiomórfica () Xenomórfica (X) Holocristalina () Hipocristalina () Hipocristalina (X) Holocristalina () Hipocristalina () Hipocristalina () Holocristalina () Hipocristalina () Holocristalina () Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. <	nabitual, portanto, nessa porção mais espessa, alguns cristais es	tao com cores de interferencia maiores do que	
 I jidomorrica (X) Hipidomorrica () Xenomorrica (X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polisintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polisintética na maioria das a quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro. Biotita: Subédricos, alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, inc			
 (X) Holocristalina () Hipocristalina () Hipolalina () Holocristalina COMPOSIÇÃO MINERALÓGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Secundários: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de necontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso. cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferên	() Idiomórfica (X) Hipidiomórfica () Xenomórfica		
COMPOSIÇÃO MINERALOGICA Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Acessórios: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, necontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente.	(X) Holocristalina () Hipocristalina () Hipoialina () H	Holocristalina	
Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita. Minerais Accessórios: Óxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. ORDEM DE CRISTA UZACÃO			
Minerais Acessórios: Oxidos de Ferro. Minerais Secundários: Óxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílic	Minerais Essenciais: Plagioclásio, Quartzo, K-Feldspato e Biotita.		
Minerais Secundários: Oxidos de Ferro, Carbonato e Quartzo. DESCRIÇÃO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturada e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Minerais Acessórios: Oxidos de Ferro.		
DESCRIÇAO DOS MINERAIS Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Minerais Secundários: Oxidos de Ferro, Carbonato e Quartzo.		
 Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. 	DESCRIÇÃO DOS MINERAIS		
até 3mm, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferênci	a cinza de 1ª ordem, sem estruturas, variando de 0,5	
presente, muito traturada e talhada as quais são preenchidas por óxido de ferro. K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	até 3mm, geminação polissintética na maioria dos cristais (não f	oi possível analisar ângulo de extinção), sem clivagem	
 K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. 	presente, muito fraturada e falhada as quais são preenchidas por óxido de ferro.		
ate 3mm, sem clivagem, muito traturada e falhada as quais são preenchidas por óxido de ferro. Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. ORDEM DE CRISTALIZACÃO	K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferênci	a cinza de 1ª ordem, sem estruturas, variando de 0,5	
Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	até 3mm, sem clivagem, muito fraturada e falhada as quais são preenchidas por óxido de ferro.		
de 0,5 ate 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta ser incolor, cor de interferência cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Quartzo: Anédricos, baixo relevo, incolor, cor de interferência cinza e amarelo de 1ª ordem, sem estruturas, variando		
 ser incolor, cor de interferencia cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com carbonato e óxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. 	de 0,5 até 3mm, muito fraturado e falhado, com pouca alteração. Quando quartzo microcristalino também apresenta		
Carbonato e oxido de ferro. Biotita: Subédricos, alto relevo, cor amarronzada com pleocroísmo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	ser incolor, cor de interferencia cinza de 1ª ordem, encontrada preenchendo fraturas e geralmente em contato com		
 Biotita: Subédricos, alto relevo, cor amarronzada com pleocroismo para cor bege, clivagem aparente em uma direção, hábito prismático e fibroso, cor de interferência de verde e rosa de 3ª ordem, variando de 0,1 à 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. 	Carbonato e oxido de terro. Distita Subédriase alte releve, cor emercenzado com placera (eno para con base aliverante enconte enconte disc		
 nabito prismatico e fibroso, cor de interrerencia de verde e rosa de 3ª ordem, variando de 0,1 a 0,5mm, algumas poucas vezes fraturados. Alteração de óxido de ferro frequente. Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração. 	Biotita: Subedricos, alto relevo, cor amarronzada com pleocroismo para cor bege, clivagem aparente em uma direção,		
Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	nabito prismatico e fibroso, cor de interferencia de verde e rosa de 3ª ordem, variando de 0,1 a 0,5mm, algumas		
Contato de Ferro: Anedricos, opacos, muitas vezes encontram-se de cor avermeinada ou pretos. Marcam a face e contato dos grãos brechados, além de preencherem falhas e fraturas dos cristais dentro desses grãos. Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	poucas vezes indurados. Alteração de oxido de terro frequente. Óxido do Eorro: Anódricos, anaços, muitas vozos ancontram se do cor avermelhada ou protos. Marcom o foso o		
Carbonato: Anédricos à Subédricos, compõe a matriz com cristais de 0,1 à 3mm, incolor, cor de interferência verde e rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Oxido de Ferro: Anedricos, opacos, muitas vezes encontram-se de cor avermeinada ou pretos. Marcam a face e		
rosa de 3ª ordem até fora do espectro visível, clivagem muito bem marcada também com altas cores de interferência, ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Contato dos graos prechados, alem de preencherem falhas e frat	uras dos cristais dentro desses graos.	
ocasionalmente fraturado e falhado com preenchimento de sílica. Não apresenta alteração.	Carbonato: Aneoricos a Subeoricos, compoe a matriz com cristal	s de U,1 a Smm, incolor, cor de interferencia verde e	
	rosa de 5º ordem ate fora do espectro visivel, clivagem muito be	em marcada tampem com altas cores de interferencia,	
		a. Nau apresenta alteração.	

Aproximação da lâmina para ressaltar os cristais de carbonato da matriz e as falhas e fraturas da matriz e dos grãos do arcabouço preenchidos por sílica.

Descrição Petrográfica de Rocha Ígnea

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

DADOS GERAIS		Localidade: TH-33 Falha no Embasamento
Amostra: BK-2D		Coord. UTM:
(X) Orientada		Coord. Geo:
Domínio Geológico: Domínio	Tectônico de Cabo Frio	
ASPECTOS TEXTURAIS/CO	OLORAÇÃO	
Índice de Cor: Leucocrático		
Granulação: Fino (não passa d	le 5mm)	
Microtextura: A lâmina apre	senta uma rocha típica do embasa	mento do Complexo Região dos Lagos, contendo K-
Feldspato, Plagioclásio e Qu	artzo em abundância. Inicialmente	também havia presente Biotita, esta substituída para
Clorita em totalidade, manten	do o hábito da mesma, também reg	istrando deformação em alguns cristais foliados. Partes
dos minerais também se enco	ntram alterados por óxido de ferro.	Posterior a essa cristalização, ocorrem falhas e fraturas
entre os contatos e através	dos cristais em uma direção pre	ferencial, com preenchimento de carbonato e, ainda
posteriormente, sílica. Alguns	s grãos de 1 à 4mm são formados	nas porções mais espessas das falhas com carbonato,
formando uma cimentação po	sterior.	
() Idiomórfica () Hipi	idiomórfica (X) Xenomórfica	
(X) Holocristalina () Hipo	ocristalina () Hipoialina () Holocristalina
COMPOSIÇÃO MINERALÓ	OGICA)
Minerais Essenciais: Plagiocl	ásio. Quartzo e K-Feldspato	
Minerais Acessórios: Zircão		
Minerais Secundários: Clorita	Carbonato e Óxido de Ferro	
DESCRIÇÃO DOS MINERA		
Plagioglásio: Anádricos baix	o releva incolor, cor de interferên	pia cinza de 1ª ordem, sem estruturos, variando de 0.1
até 3mm geminação polissint	tática na majoria dos cristais (não f	cia chiza de 1'ordeni, seni estruturas, variando de 0,1
presente muito fraturada e f	albada as quais são preenchidas p	or possiver analisar angulo de extinção), sem envagem
clorita e mica branca	aniada as quais são preciendas p	si sinca e carbonato. Anteração localizada de seriena,
K-Feldspate: Anédricos baix	o relevo incolor cor de interferên	cia cinza de 1ª ordem, sem estruturas, variando de 0.1
até 3mm sem clivagem m	uito fraturada e falhada as quais	são preenchidas por carbonato e silica. Cristais de
Microclina são identificáveis	nor geminação Tartan marcante Al	teração localizada de mica brança, clorita e sericita
Quartzo: Anédricos baixo rel	evo incolor cor de interferência ci	nza e amarelo de la ordem sem estruturas variando de
0.1 até 4mm muito fraturado	e falhado com preenchimento de si	lica e carbonato. Pouca alteração presente. Também se
encontra como fluído micros	ristalino preenchendo falhas e fratu	ras e cortando todos os outros cristais, inclusive os de
quartzo primário	fistalino preciencido famas e fratu	ras e contando todos os ourios cristais, inclusive os de
Zircão: Anédricos alto relevo	o incolor cor de interferência azul	e rosa de la ordem sem estruturas, tamanho de 0,1 à
0.3mm com pequeno alo de a	lteração ao redor incluso nos crista	is primários (K-Feldspato Plagioclásio e Ouartzo)
Clorita: Anédrica alto releve	o coloração verde escura com ple	eocroísmo para verde claro, cor de interferência azul
anômalo levemente foliado preenchendo fraturas pretéritas ao carbonato e levemente deformadas. Substitui totalmente		
a biotita presente anteriormen	te no sistema	aroonato e revemente deformadas. Substitui totamiente
Óxido de Ferro: Anédricos or	nacos muitas vezes encontram-se d	e cor avermelhada ou pretos. Encontram-se associados
aos cristais primários e substituindo-os, sem manter hábito específico. Também se encontra microcristalino pela		
cimentação de enidoto inclus	o no mesmo momento de cristalizad	ão do mesmo
Carbonato: Anédricos à Subé	dricos com cristais de 0,1 à 3mm ju	acolor, cor de interferência verde e rosa de 3ª ordem até
fora do espectro visível cliva	gem muito bem marcada também c	om cores de interferência de 3ª ordem ocasionalmente
fraturado e falhado com preen	chimento de sílica e reação de cont	ato com sílica posterior. Não apresenta alteração
ORDEM DE CRISTALIZAC	ÃO	
Plagioclásio		
K-Feldsnato		
Quartzo		
Liicao		

Clorita			
Óxido de Ferro			
Carbonato			
COMPOSIÇÃO MODAL			
Plagioclásio	Plagioclásio		
K-Feldspato			
Quartzo			
Biotita			
CLASSIFICAÇÃO/NOMENCLATURA			
Protocataclasito			
MICROFOTOGRAFIAS			

Foto Mosaico da lâmina BK-2D com lente de nicóis descruzados. É possível observar a direção preferencial de falha e fratura.

Aproximação da lâmina para ressaltar os cristais do embasamento fraturados e preenchidos por cimentação de carbonato. Também é possível observar a reação de contato de sílica no carbonato.

Aproximação da lâmina com nicóis cruzados para ressaltar plagioclásios microfalhados e o preenchimento de falhas/fraturas com sílica.

Descrição Petrográfica de Rocha Ígnea

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

DADOS GERAIS		Localidade: TH-33 Falha no Embasamento	
Amostra: BK-2E		Coord. UTM:	
(X) Orientada		Coord. Geo:	
Domínio Geológico: Domínio	Tectônico de Cabo Frio		
ASPECTOS TEXTURAIS/CO	DLORAÇÃO		
Índice de Cor: Leucocrático			
Granulação: Fino (não passa d	le 5mm)		
Microtextura: A lâmina englo	ba uma falha cataclástica principal	por cima de uma rocha diorítica de base. Esse dio	orito
apresenta textura de protólito	ígneo, com quartzos e plagioclásio	s compondo os minerais essenciais e pequenos cris	stais
de zircão presentes. É possív	vel identificar duas fases de falha	na lâmina: A primeira, menos evidente, encontra	a-se
formando um cataclasito de g	rãos de 0,05mm até 0,2mm de Qua	rtzo e Plagioclásio, com cimentação de óxido de fe	erro.
Microfalhas evidenciadas por	rejeitos em plagioclásios com gem	inação polissintética estão presentes nas proximida	ades
desse primeiro cataclasito. O s	segundo cataclasito e principal enco	ntra-se sobrepondo tanto o arcabouço diorítico con	no a
primeira falha (e de orientação	o ortogonal a essa), bem destacado	pelo seu tamanho, cimentação predominante de óx	xido
de ferro e com grãos de 0,0	5mm até 2mm. Algumas microfra	lhas também encontram-se na proximidade, além	1 de
preenchimentos localizados de	e carbonato tanto dentro do cataclas	ito (sobrepondo a cimentação de óxido de ferro), co	omo
fora do cataclasito, com a dire	ção paralela a da falha principal.		
() Idiomórfica () Hipi	diomórfica (X) Xenomórfica		
(X) Holocristalina () Hipo	ocristalina () Hipoialina () Holocristalina	
COMPOSIÇÃO MINERALÓ	GICA		
Minerais Essenciais: Plagioclá	isio e Quartzo.		
Minerais Acessórios: Zircão.			
Minerais Secundários: Carbon	ato e Óxido de Ferro.		
DESCRIÇÃO DOS MINERA	IS		
Plagioclásio: Anédricos, baixo	o relevo, incolor, cor de interferêne	cia cinza de 1ª ordem, sem estruturas, variando de	0,1
até 2mm, geminação polissint	ética na maioria dos cristais (não f	pi possível analisar ângulo de extinção), sem clivaş	gem
presente, muito fraturada e fa	alhada as quais são preenchidas po	r óxido de ferro e carbonato. Alteração localizada	a de
sericita, clorita e mica branca.			
Quartzo: Anédricos, baixo rele	evo, incolor, cor de interferência ci	nza e amarelo de 1ª ordem, sem estruturas, variando	o de
0,1 até 2mm, muito fraturado	e falhado com preenchimento de óx	ido de ferro e carbonato. Pouca alteração presente.	
Zircão: Anédricos, alto relevo	, incolor, cor de interferência azul e	e rosa de 1ª ordem, sem estruturas, tamanho de 0,1r	nm,
incluso nos cristais primários	(K-Feldspato, Plagioclásio e Quartz	0).	
Oxido de Ferro: Anédricos, op	pacos, muitas vezes encontram-se d	e cor avermelhada ou pretos. Encontram-se associa	ıdos
aos cristais primários e substituindo-os, sem manter hábito específico. Também se encontra microcristalino pela			
cimentação de epidoto, incluso no mesmo momento de cristalização do mesmo.			
Carbonato: Anédricos à Subéc	Carbonato: Anedricos a Subedricos, com cristais de 0,1 a 3mm, incolor, cor de interferencia verde e rosa de 3" ordem ate		
fora do espectro visível, cliva	gem muito bem marcada também c	om cores de interferência de 3ª ordem, ocasionalmo	ente
fraturado e falhado com preen	chimento de sílica e reação de conta ~	nto com sílica posterior. Não apresenta alteração.	
ORDEM DE CRISTALIZAÇ	AO		
Plagioclásio			
Quartzo			
<u></u>			
Uxido de Ferro			
Carbonato			
COMPOSIÇAO MODAL			
Plagioclásio			
Quartzo	Quartzo		
Zircão			

Descrição Petrográfica de Rocha Ígnea

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

DADOS GERAIS		Localidade: TH-33 Falha no Embasamento
Amostra: BK-2F		Coord. UTM:
(X) Orientada		Coord. Geo:
Domínio Geológico: Domínio Tecto	ônico de Cabo Frio	
ASPECTOS TEXTURAIS/COLOR	RAÇÃO	
Índice de Cor: Leucocrático	*	
Granulação: Fino (não passa de 5m	m) e grãos de tamanho Fino a	Médio (0,1mm até 7mm)
Microtextura: A lâmina engloba	uma série de ativações de fa	alhas cataclásticas dentro de uma rocha de protólito
diorítico. Os minerais essenciais de	esse protólito são Quartzo e Pl	agioclásio com textura ígnea, estes com microfalhas e
fraturamento bem marcados. Na pr	rimeira ativação de falha há f	formação de grãos de submilimétricos cimentados em
grande quantidade por óxido de fer	ro. Em seguida, grãos maiores	compostos pelo primeiro cataclasito e pelo diorito são
formados numa segunda ativação, r	nessa vez com cimentação carb	ponática predominante, mas também com leve presença
de óxido de ferro bordeando o carb	oonato. É possível identificar d	liferentes ativações posteriores a primeira: o carbonato
encontra-se cortando outras partes	do carbonato numa terceira a	ativação, formando grãos ainda maiores; depoios uma
quarta ativação marcada por pree	enchimento carbonático corta	ndo os grãos formados nas ativações pretéritas; e,
finalmente, quinta e última ativação	o falhando todos os cristais pre	sentes, com percolação de óxido de ferro.
() Idiomórfica () Hipidiom	órfica (X) Xenomórfica	
(X) Holocristalina () Hipocrista	alina () Hipoialina () Holocristalina
COMPOSIÇÃO MINERALÓGICA	A	
Minerais Essenciais: Plagioclásio e	Quartzo.	
Minerais Acessórios: Zircão.		
Minerais Secundários: Carbonato e	Óxido de Ferro.	
DESCRIÇÃO DOS MINERAIS		
Plagioclásio: Anédricos, baixo rele	evo, incolor, cor de interferênc	cia cinza de 1ª ordem, sem estruturas, variando de 0,1
até 3mm, geminação polissintética	na maioria dos cristais (não fe	oi possível analisar ângulo de extinção), sem clivagem
presente, muito fraturada e falhada	a as quais são preenchidas po	r óxido de ferro e carbonato. Alteração localizada de
sericita, clorita e mica branca.		
Quartzo: Anédricos, baixo relevo, i	incolor, cor de interferência cu	nza e amarelo de la ordem, sem estruturas, variando de
0,1 até 3mm, muito fraturado e falh	ado com preenchimento de ox	ido de ferro e carbonato. Pouca alteração presente.
Zircão: Anedricos, alto relevo, inco	olor, cor de interferência azul e	e rosa de 1ª ordem, sem estruturas, tamanho de 0,1mm,
incluso nos cristais primarios (K-Fe	eldspato, Plagioclasio e Quartz	0).
Oxido de Ferro: Anedricos, opacos	s, muitas vezes encontram-se	de cor avermeinada ou pretos e cimentando graos de
cristais primarios (Quarizo e Plagio	lo astar prosente em ativações a	ação cataciastica, alem de estar presente em bordas de
Carbonato. Anódricos à Subódricos, com aristeis de 0.1 à 1mm inceler, con de interferêncie verde e rece de 2ª ordem eté.		
fora do espectro visível, clivagem muito bem marcada também com cores de interferência de 3ª ordem. Encontram se		
cimentando o cataclasito, até mesmo em falhamento e fraturamento dos grãos cataclásticos, indicando uma segunda		
ativação. Também é possível observar bordas de óxido de ferro em contato com algumas faixas de carbonato, indicando		
novas ativações com presenca de ferro em conjunto com a cristalização de carbonato. Em sua major parte, os cristais		
apresentam extinção ondulante. Não	o apresenta alteração.	anzação de carbonado. Em sua maior parte, os enstais
ORDEM DE CRISTALIZAÇÃO		
Plagioclásio		
Ouartzo		
Zircão		
Óxido de Ferro		
Carbonato		
COMPOSIÇÃO MODAL		
Plagioclásio		

Aproximação da lâmina para ressaltar o preenchimento de carbonato como cimentação de cataclasito. É possível observar diferentes gerações de carbonato cimentando a rocha.

Aproximação da lâmina para ressaltar os grãos de cataclasito compostos de grãos do diorito cimentados por óxido de ferro, além da última ativação presente que falha todos os cristais na rocha, com pouca percolação de óxido de ferro.
	Descrição Petrográfica de Rocha Ignea	
	Responsável: Bernardo Barbagelata Khater Data: 28/01/2019	
DADOS GERAIS	Localidade: TH-35 Falha no Embasamento	
Amostra: BK-3A	Coord. UTM:	
(X) Orientada -> Seção Horizontal	Coord. Geo:	
Dominio Geológico: Dominio Tectónico de Cabo Frio		
ASPECTOS TEXTURAIS/COLORAÇÃO		
Indice de Cor: Holoeucocrático		
Granulação: Fino a Medio (Cristais variando de 0,1 a 15mm)		
Feldspato e Plagioclásio. As porções falhadas estão bem delimita outras micas de maneira alinhada, também mostrando cristais fra	das pela presença de Clorita, Óxidos de Ferro, Biotita e turados e brechados próximo à parede da falha.	
() Idiomórfica () Hipidiomórfica (X) Xenomórfica		
() Holocristalina (X) Hipocristalina () Hipoialina () Holocristalina	
COMPOSIÇÃO MINERALÓGICA		
Minerais Essenciais: K-Feldspato, Plagioclásio, Quartzo.		
Minerais Acessórios: Zircão.		
Minerais Secundários: Clorita, Óxido de Ferro e Biotita.		
DESCRIÇÃO DOS MINERAIS		
Plagioclásio: Anédricos, baixo relevo, incolor, cor de interferên	cia cinza de 1ª ordem, sem estruturas, variando de 0,5	
até 10mm, geminação polissintética na maioria dos cristais (não	foi possível analisar ângulo de extinção), sem clivagem	
presente, Pouco Fraturada. Alteração localizada de Sericita.		
K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferên	cia cinza de l ^a ordem, sem estruturas, variando de 0,5	
ate 20mm, sem clivagem, muito fraturada, microclina apresen	ntando geminação tartan em quase todos os cristais.	
Alteração local de mica branca e sericita.	nzo o emenalo de 1ª endem, com estruturos veriendo de	
Quarizo: Anedricos, baixo relevo, incolor, cor de interferencia ci	nza e amareio de 1º ordem, sem estruturas, variando de	
0,5 ale 2011111, muito fraturado, com pouca afteração.	de a raça de 2ª ardam, com actruturas, pouças fraturas	
com tamanho máximo de 0.3mm sem halo de alteração en	acontrada em contato com Quartzo K-Feldspato ou	
Plagioclásio.	icontrada em contato com Quartzo, R-1 cluspato ou	
Clorita: Subédricos, médio relevo, incolor com pleocroísmo o	casional para verde claro, clivagem aparente em uma	
direção, hábito prismático e fibroso, cor de interferência de a Constante alteração para Óxido de Ferro e inclusões de biotita e o	zul anômalo, tamanho variando de 0,1mm até 1mm. putras micas.	
Biotita: Subédricos, médio relevo, cor amarronzada ou incolor	com pleocroísmo para cor bege, clivagem aparente em	
uma direção, hábito prismático e fibroso, cor de interferência de	verde e rosa de 3ª ordem, tamanho máximo de 0,1mm.	
Alteração de óxido de ferro frequente.		
Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-s	se de cor amarronzado e algumas vezes preenchendo	
carbonato em formatos de losangos. Pode estar alterando os min	erais, preenchendo fraturas ou preenchendo os contatos	
de cristais.		
ORDEM DE CRISTALIZAÇÃO		
Zircão		
Plagioclásio		
K-Feldspato		
Quartzo		
COMPOSIÇÃO MODAL		
Zircão		
Plagioclásio		
K-Feldspato		
Quartzo		
UFR.I		

ANEXO 9

CLASSIFICAÇÃO/NOMENCLATURA Gnaisse Hololeucocrático / Meta Granito / Cataclasito MICROFOTOGRAFIAS

Foto Mosaico da lâmina BK-3A com lente de nicóis cruzados. Duas zonas de falha encontram-se na porção norte e sul do mosaico, seguindo de NW para SE.

Aproximação da lâmina para ressaltar a microfalha na porção sul do mosaico. Presença de clorita e vidro vulcânico são predominantes na lâmina.

Coologies Sedemontor

Descrição Petrográfica de Rocha Ígnea

DADOS GERAIS	Localidade: TH-35 Falha no Embasamento		
Amostra: BK-3D	Coord. UTM:		
(X) Orientada -> Seção Ortogonal	Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cabo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Hololeucocrático			
Granulação: Fino à Médio (Cristais variando de 0,1 à 8mm)			
Microtextura: A rocha apresentam minerais típicos de um granite	oide metamorfizado, como K-Feldspato, Plagioclásio e		
Quartzo, porém com grande presença de microfalhas e percolação	o de carbonato, óxido de ferro e minoritariamente vidro		
vulcânico. Uma grande falha principal separa a lâmina em dois	s, não sendo possível dimensionar o rejeito, visto que		
provavelmente era macroscópico e não há indicadores cinem	áticos preservados. Outras falhas estão associadas à		
principal, com rejeitos visíveis através dos cristais primári	os. Há maior concentração de carbonato, quartzo		
microcristalino e oxido de ferro quanto mais proximo a falha prin	cipal e preenchendo as fraturas.		
() Idiomorfica () Hipidiomorfica (X) Xenomorfica) II-1		
() Holocristalina (X) Hipocristalina () Hipolalina () Holocristalina		
COMPOSIÇÃO MINERALOGICA			
Minerais Essenciais: K-Feldspato, Plagioclasio e Quartzo			
Minerais Acessorios: Zircao			
Minerais Secundarios: Carbonato, Oxido de Ferro e Quartzo			
DESCRIÇÃO DOS MINERAIS	· · 1 12 1 · · · · · 1 1 0.5		
Plagioclasio: Anedricos, baixo relevo, incolor, cor de interferen	cia cinza de la ordem, sem estruturas, variando de 0.5		
ate 8mm, geminação polissintetica na maioria dos cristais (não f	oi possivel analisar angulo de extinção), sem clivagem		
presente, muito fraturada e fainada. As alterações presentes são d	e Oxido de Ferro e Carbonalo.		
até 8mm sem clivagem muito fraturada e falhada microclin	a apresentando geminação tartan em quase todos os		
cristais Alteração pouco frequente de Óvido de Ferro e Carbonat	a apresentando genniação tartan em quase todos os		
Quartzo: Anédricos baixo relevo incolor cor de interferência ci	o. nza à amarelo de la ordem, sem estruturas, variando de		
0.5 até 8mm muito fraturado e falhado, com pouca alteração	Quando quartzo microcristalino também apresenta ser		
incolor, cor de interferência cinza de 1 ^a ordem, encontra-se	preenchendo fraturas e geralmente em contato com		
carbonato e óxido de ferro.	······································		
Zircão: Subédricos, alto relevo, incolor, cor de interferência ver	de e rosa de 2 ^a ordem, sem estruturas, poucas fraturas,		
com tamanho máximo de 0,1mm, sem halo de alteração, en	contra-se em contato com Quartzo, K-Feldspato ou		
Plagioclásio.			
Carbonato: Anédricos, normalmente apresentam-se como acúmu	llo de micro cristais preenchendo fraturas, comumente		
em conjunto com óxido de ferro, incolor, cor de interferência ver	de e rosa de 3ª ordem até fora do espectro visível, sem		
clivagem, raramente fraturado e sem alteração. Outra ocorrência	muito comum é de crescimento em hábito de losangos		
de tamanho máximo de 0,5mm com preenchimento interno de d	oxido de ferro (também em losango), sendo um hábito		
típico de dolomita.			
Oxido de Ferro: Anédricos, opacos, muitas vezes encontram-s	e de cor amarronzado e algumas vezes preenchendo		
carbonato em formatos de losangos. Pode estar alterando os minerais, preenchendo fraturas ou preenchendo os contatos			
de cristais.			
ORDEM DE CRISTALIZAÇÃO			
Plagioclasio			
K-Feldspato			
Quartzo			
COMPOSIÇAO MODAL			

Zircão	
Plagioclásio	
K-Feldspato	
Quartzo	
CLASSIFICAÇÃO/NOMENCLATURA	-
Gnaisse Hololeucocrático / Meta Granito / Cataclasito	
MICROFOTOGRAFIAS	

Foto Mosaico da lâmina BK-3D com lente de nicóis cruzados. É possível distinguir nitidamente a falha principal na

parte central da lâmina.

Aproximação da lâmina para ressaltar as microfalhas marcadas pelo plagioclásio geminado e os preenchimentos de carbonato, quartzo microcristalino e óxido de ferro (estes com os formatos losangulares).

Aproximação da lâmina para ressaltar os crescimentos de carbonato (dolomita, provavelmente) em hábito de losango, com preenchimento de óxido de ferro interno seguindo o mesmo hábito.

DADOS GERAIS	Localidade: TH-35 Falha no Embasamento			
Amostra: BK-3E	Coord. UTM:			
(X) Orientada -> Seção Ortogonal	Coord. Geo:			
Domínio Geológico: Domínio Tectônico de Cabo Frio				
ASPECTOS TEXTURAIS/COLORAÇÃO				
Índice de Cor: Hololeucocrático				
Granulação: Fino à Médio (Cristais variando de 2 à 8mm)				
Microtextura: A lâmina pode ser dividida em duas partes: a r	naior parte apresenta minerais do embasam	ento, com		
cristais de feldspato diversos como Plagioclásio, Microclina e ou	tros K-Feldspatos, além de Quartzo, todos c	om textura		
primária (protólito ígneo) e sem hábito comum. Esta porção aind	a apresenta alguns cristais de Zircão e Turma	alina, além		
de percolações posteriores de carbonato e vidro vulcânico (atrav	és da falha), provenientes de algum evento s	sin ou pós-		
cinemático. A segunda parte encontra-se completamente preencl	nda por vidro vulcânico, marcado por grand	e presença		
de bolhas de gas, com poucos cristais cercados pelo vidro. Quant	o mais proximo os cristais do embasamento e	encontram-		
se dessa porção de vidro, maior a presença de vidro e carbonato.				
() Idiomorfica () Hipidiomorfica (X) Xenomorfica				
() Holocristalina () Hipocristalina (X) Hipolalina () Holocristalina			
COMPOSIÇÃO MINERALOGICA				
Minerals Essencials: K-Feldspato, Plaglociasio e Quarizo				
Minerais Accessonos. Zincao e Turmanna Minerais Secundérics: Mice Sericite Carbonate				
DESCRIÇÃO DOS MINERAIS				
Descrição Dos Minerais	ia cinza de 1ª ordem sem estruturas varian	la de 2 stá		
8 agiociasio. Alleuricos, baixo relevo, incolor, cor de interference 8 mm, geminação polissintética na majoria dos cristais (não foi	i possível analisar ângulo de extinção) sem	lo ue 2 ale		
presente fraturada seritização localizada. As alterações presente	s são de Sericita Mica e Carbonato	renvageni		
K-Feldspato: Anédricos, baixo relevo, incolor, cor de interferênc	ia cinza de l ^a ordem, sem estruturas, variand	lo de 2 até		
8mm, sem clivagem, frequentemente fraturada, microclima apre	esentando geminação tartan em quase todos	os cristais.		
Pouca alteração presente, mas quando há apresenta mica branca.	······································			
Quartzo: Anédricos, baixo relevo, incolor, cor de interferência ci	nza à amarelo de 1 ^a ordem, sem estruturas, v	ariando de		
0,1 até 8mm, quase nunca fraturado ou alterado de alguma forma				
Zircão: Subédricos, alto relevo, incolor, cor de interferência ver	de e rosa de 2ª ordem, sem estruturas, pouca	as fraturas,		
com tamanho máximo de 0,1mm, sem halo de alteração, en	contra-se em contato com Quartzo, K-Fel	dspato ou		
Plagioclásio.				
Turmalina: Subédricos, baixo relevo, incolor, cor de interferên	ncia verde e rosa de 3ª ordem, sem estrutur	ras, hábito		
prismático, bem fraturado, com tamanho máximo de 0,5mm,	geralmente em contato com Quartzo, K-Fe	ldspato ou		
Plagioclásio				
Carbonato: Anédricos, normalmente apresentam-se como acúm	ulo de micro cristais alterando cristais, inco	lor, cor de		
interferência verde e rosa de 3 ^a ordem até fora do espectro visív	el, sem clivagem, raramente fraturado e sem	interferência verde e rosa de 3ª ordem até fora do espectro visível, sem clivagem, raramente fraturado e sem alteração.		
Também costuma apresentar hábito fibroso.				
ORDEM DE CRISTALIZAÇÃO				
Zircão				
Zircão Turmalina				
Zircão Turmalina Plagioclásio				
Zircão Turmalina Plagioclásio K-Feldspato				
Zircão Turmalina Plagioclásio K-Feldspato Quartzo				
Zircão Turmalina Plagioclásio K-Feldspato Quartzo COMPOSIÇÃO MODAL				
Zircão Turmalina Plagioclásio K-Feldspato Quartzo COMPOSIÇÃO MODAL Zircão				
Zircão Turmalina Plagioclásio K-Feldspato Quartzo COMPOSIÇÃO MODAL Zircão Turmalina				

Aproximação da lâmina para ressaltar a aparência do vidro vulcânico e presença de bolhas de gás, tão bem como o contato deste com o embasamento hololeucocrático.

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

Descrição Petrográfica de Rocha Ígnea

DADOS GERAIS		Localidade: TH-34 Falha no Embasamento	
Amostra: BK-4E		Coord. UTM:	
() Orientada		Coord. Geo:	
Domínio Geológico: Domínio	Tectônico de Cabo Frio		
ASPECTOS TEXTURAIS/CO	JLORAÇÃO		
Índice de Cor: Leucocrático			
Granulação: Fino (não passa d	le 5mm) com fenocristais ocasionai	s de 7 à 12mm e Médio (2 à 10mm) quanto aos grãos	
Microtextura: A Rocha se apr	esenta como um leucognaisse com	textura ígnea nos cristais félsicos e com biotita foliada.	
É possível observar leves faix	tas intercaladas de embasamento co	om biotita foliada e embasamento somente com textura	
do protólito ígneo. Em grande	e parte da lâmina a rocha foi fratur:	ada e falhada, onde grãos com cristais primários foram	
cimentados por fluido de epi	doto com pequenos cristais de óxi	do de ferro. As falhas e fraturas passam por entre os	
contatos dos cristais e tambén	n através dos cristais, provavelment	te com mais de uma ativação, na primeira separando os	
grãos e na(s) seguinte(s) fratur	rando os cristais seguido(s) de preei	nchimento por epidoto.	
() Idiomórfica () Hipi	idiomórfica (X) Xenomórfica		
(X) Holocristalina () Hipo	ocristalina () Hipoialina () Holocristalina	
COMPOSIÇÃO MINERALÓ	GICA		
Minerais Essenciais: Plagiocla	ásio, Quartzo, K-Feldspato e Biotita		
Minerais Acessórios: Zircão.			
Minerais Secundários: Óxidos	de Ferro e Epidoto.		
DESCRIÇÃO DOS MINERA	IS		
Plagioclásio: Anédricos, baix	o relevo, incolor, cor de interferên	cia cinza de 1ª ordem, sem estruturas, variando de 0,5	
até 8mm, geminação polissint	tética na maioria dos cristais (não f	oi possível analisar ângulo de extinção), sem clivagem	
presente, muito fraturada e fa	lhada as quais são preenchidas por	óxido de ferro e epidoto. Leve alteração localizada de	
mica branca.	1 1 1	1 3	
K-Feldspato: Anédricos, baix	o relevo, incolor, cor de interferên	cia cinza de 1ª ordem, sem estruturas, variando de 0,5	
até 12mm, sem clivagem, mu	iito fraturada e falhada as quais são	preenchidas por óxido de ferro e epidoto. Cristais de	
Microclina são identificáveis	por geminação Tartan marcante. Le	ve alteração localizada de mica branca.	
Quartzo: Anédricos, baixo rel	evo, incolor, cor de interferência ci	nza e amarelo de 1ª ordem, sem estruturas, variando de	
0,5 até 12mm, muito fraturado	o e falhado, com pouca alteração.		
Biotita: Subédricos, alto relev	vo, coloração marrom ou verde clar	o, com pleocroísmo para marrom claro ou incolor, cor	
de interferência de 3ª orden	n, hábito fitado, orientação minera	al bem marcada, variando de 0,2 até 2mm, alterada	
localmente para óxido de ferro	ס.		
Epidoto: Anédricos, médio re	levo, verde musgo com leve pleocre	oísmo para verde claro, cor de interferência amarelo de	
2ª ordem até azul de 3ª ordem, variação de submilimétrico até 0,5mm máximo, sem estruturas, hábito prismático.			
Preenchem fraturas e falhas nos cristais, cimentando o cataclasito e separando os grãos.			
Óxido de Ferro: Anédricos, opacos, muitas vezes encontram-se de cor avermelhada ou pretos. Encontram-se associados			
aos cristais primários e substituindo-os, mantendo hábito quadrático ou nenhum hábito específico. Também se encontra			
microcristalino pela cimentação de epidoto, incluso no mesmo momento de cristalização do mesmo.			
Zircão: Anédricos, alto relevo, incolor, cor de interferência azul e rosa de 1ª ordem, sem estruturas, tamanho de 0,2mm,			
com pequeno alo de alteração ao redor, incluso nos cristais primários (K-Feldspato, Plagioclásio e Quartzo).			
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			
K-Feldspato			
Quartzo	Quartzo		
Biotita			
Zircão	Zircão		
Epidoto			
Óxido de Ferro			

DADOS GERAIS	Localidade: TH-33 Dique		
Amostra: BK-2A	Coord. UTM:		
() Orientada	Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cabo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Melanocrático			
Granulação: Fino (não passa de 5mm)			
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos	s com os cristais de Clinopiroxênio, inec	quigranular	
porfiritico com matriz micrométrica pouco variante e duas clas	ses de tamanho de fenocristais, uma submi	limétrica e	
outra na ordem de 2mm. Grande presença de oxídos de ferro div	ersos substituíndo a matriz de clinopiroxenio	e tambem	
oxidos primarios.			
(X) Idiomórfica () Hinidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipocristalina ()) Holocristalina		
COMPOSIÇÃO MINERALÓGICA) Holdenstanna		
Minerais Essenciais: Plagioclásio e Clinopiroxênio			
Minerais Acessórios: Ilmenita e Magnetita			
Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita e Inc	lignita		
DESCRIÇÃO DOS MINERAIS	8		
Plagioclásio: Euédricos, prismático, baixo relevo, incolor, cor	de interferência cinza de 1ª ordem, sem	estruturas,	
variando de 0,01 até 2,5mm, com textura subofítica e ofítica em	contato com o clinopiroxênio, geminação po	lissintética	
na maioria dos cristais (não foi possível analisar ângulo de ex	tinção), sem clivagem presente, fraturada,	seritização	
localizada. Há três tipos de tamanho diferentes: o primeir	ro seria submilimétrico, com ripas de p	lagioclásio	
micrométricos, depois fenocristais submilimétricos em ripas, por	vezes alterado por carbonatos e sericita e po	r último os	
fenocristais de 1mm até 2,5mm com forma prismática ou c	quadrática, estes encontram-se quase todos	s alterados	
completamente por carbonato e sericita.			
clinopiroxenio: Anedricos a Subedricos, alto relevo, incolor, co	r de interferencia de azul de l ⁻ ordem ale la	ranja de 2^{-1}	
substituição localizada para clorita e óxidos de ferro como ilme	nita e magnetita. Alguns noucos fenocristai	s presentes	
variando de 1 a 2mm, por vezes muito alterado por óxidos de fer	ro e carbonatos. Tipo de clinopiroxênio prov	vavelmente	
é Augita.			
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou s	secundários. Como acessórios costumam ser	Euédricos,	
hábito de losangos com cerca de 0,1mm com pouca variação do	tamanho. Como secundários são Anédricos	, tamanhos	
variando de 0,2 até 2,5mm, presente substituindo clinopiroxênio	o algumas vezes preservando o hábito origin	al e outras	
com formato de face esquelética. Os minerais prováveis são Mag	netita e Ilmenita.		
Clorita: Ocorre substituindo o clinopiroxênio mantendo o há	bito original, coloração verde, médio rele	vo, cor de	
interferência verde e rosa de 3ª ordem, sem estruturas, sem cl	ivagem, muito fraturado, tamanho de 0.5 a	até 2,5mm.	
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.			
Carbonatos: Ocorrem substituindo os plagioclasios, principalmente os fenocristais, e os cristais de clinopiroxenio, os			
relevo, tamanho menor do que 0,1 porém com aglomerados de até 1mm			
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			
Clinopiroxênio			
Ilmenita			
Magnetita			
	Ŭ T		
COMPOSIÇÃO MODAL			
com osição mobili			

Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	

CLASSIFICAÇÃO/NOMENCLATURA Diabásio (Basalto)

MICROFOTOGRAFIAS

Foto Mosaico da lâmina BK-2A com lente de nicóis descruzados, sendo possível observar a predominância de plagioclásios xenomórficos como fenocristais da rocha.

	Lagesed
100	Geologia Sedimentor UFRJ

DADOS GERAIS Amostra: **BK-3B** () Orientada

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019
Localidade: TH-35 Dique Principal - Núcleo.
Coord. UTM:
Coord. Geo:

Domínio Geológico: Domínio Tectônico de Cabo Frio ASPECTOS TEXTURAIS/COLORAÇÃO

Índice de Cor: Melanocrático

Granulação: Fino (não passa de 5mm)

Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos com os cristais de Clinopiroxênio, inequigranular porfirítico com pouca variação. A matriz tem um tamanho submilimétrico a 1mm com fenocristais um pouco maiores na ordem de 1 até 4mm. Quando comparado com a borda do dique amostrado, ocorre matriz de granulação bem maior e ocorre bem menos alteração.

(X) Idiomórfica () Hipidiomórfica () Xenomórfica

(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina

COMPOSIÇÃO MINERALÓGICA

Minerais Essenciais: Plagioclásio e Clinopiroxênio

Minerais Acessórios: Ilmenita e Magnetita

Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita e Indignita

DESCRIÇÃO DOS MINERAIS

Plagioclásio: Euédricos, prismático, baixo relevo, incolor, cor de interferência cinza de l^a ordem, sem estruturas, variando de 0,1 até 4mm, com textura subofítica e ofítica em contato com o clinopiroxênio, geminação polissintética na maioria dos cristais (25-30°) (Andesina/Labradorita) (ou 10-15° em alguns fenocristais), sem clivagem presente, fraturada, seritização localizada. Os fenocristais costumam diferenciar-se pela cor de interferência chegando até azul de l^a ordem, formato variando entre prismático e quadrático e tamanho variando de 2 até 4mm.

Clinopiroxênio: Anédricos, alto relevo, incolor, cor de interferência de azul de 1^a ordem até laranja de 2^a ordem, sem estruturas, variando de 0,1 até 2mm, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição localizada para clorita e óxidos de ferro como ilmenita e magnetita. Tipo de clinopiroxênio provavelmente é Augita.

Óxidos de Ferro: Ocorrem de forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos, hábito de losangos com cerca de 0,1mm com pouca variação do tamanho. Como secundários são Anédricos, tamanhos variando de 0,2 até 2,5mm, presente substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face esquelética. Os minerais prováveis são Magnetita e Ilmenita.

Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde, médio relevo, cor de interferência verde e rosa de 3ª ordem, sem estruturas, sem clivagem, muito fraturado, tamanho de 0,5 até 2,5mm. Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.

Carbonatos: Ocorrem substituindo os plagioclásios, principalmente os fenocristais, e os cristais de clinopiroxênio, os dois de maneira concentrada. Cor de interferência de verde e rosa de 3ª ordem para além do espectro visível, baixo relevo, tamanho menor do que 0,1 porém com aglomerados de até 1mm.

ORDEM DE CRISTALIZAÇÃO	
Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	
COMPOSIÇÃO MODAL	
Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	

CLASSIFICAÇÃO/NOMENCLATURA Diabásio (Basalto)

MICROFOTOGRAFIAS

Foto Mosaico da lâmina BK-3B em lente descruzada

Aproximação da lâmina para ressaltar a cloritização dos cristais de clinopiroxênio e o óxido de ferro de alteração em forma de face esquelética

DADOS GERAIS	Localidade: TH-35 Dique Principal - Borda.	
Amostra: BK-3 C	Coord. UTM:	
() Orientada	Coord. Geo:	
Domínio Geológico: Domínio Tectônico de Cabo Frio	•	
ASPECTOS TEXTURAIS/COLORAÇÃO		
Índice de Cor: Melanocrático		
Granulação: Fino (não passa de 5mm)		
Microtextura: Cristais de Plagioclásio Subofíticos e Ofítico	s com os cristais de Clinopiroxênio, inequigranular	
portiritico com matriz micrometrica pouco variante e duas cla	sses de tamanho de fenocristais, uma submilimetrica e	
outra na ordem de 2mm. Grande presença de oxídos de ferro div	dique amostrado, a matriz tem cristais hem menores e a	
rocha encontra-se bem mais alterada	anque amostrado, a matriz tem cristais dem menores e a	
(X) Idiomórfica () Hipidiomórfica () Xenomórfica		
(X) Holocristalina () Hipocristalina () Hipoialina	() Holocristalina	
COMPOSIÇÃO MINERALÓGICA	× /	
Minerais Essenciais: Plagioclásio e Clinopiroxênio		
Minerais Acessórios: Ilmenita e Magnetita		
Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita e In	dignita	
DESCRIÇÃO DOS MINERAIS		
Plagioclásio: Euédricos, prismático, baixo relevo, incolor, co	r de interferência cinza de 1ª ordem, sem estruturas,	
variando de 0,01 até 2,5mm, com textura subofítica e ofítica em	contato com o clinopiroxênio, geminação polissintética	
na maioria dos cristais (não foi possível analisar ângulo de e	xtinção), sem clivagem presente, fraturada, seritização	
localizada. Há três tipos de tamanho diferentes: o primer	iro seria submilimétrico, com ripas de plagioclásio	
micrométricos, depois fenocristais submilimétricos em ripas, por	r vezes alterado por carbonatos e sericita e por último os	
fenocristais de Imm até 2,5mm com forma prismatica ou	quadratica, estes encontram-se quase todos alterados	
Clinenirovânie: Anádrices a Subádrices, alte releve, inceler, et	ar de interferêncie de ezul de 1ª ordem eté lerenie de 7ª	
ordem sem estruturas tamanho micrométrico clivagem b	idirecional ortogonal frequentemente fraturada com	
substituição localizada para clorita e óxidos de ferro como ilm	enita e magnetita. Alguns poucos fenocristais presentes	
variando de 1 a 2mm, por vezes muito alterado por óxidos de fe	erro e carbonatos. Tipo de clinopiroxênio provavelmente	
é Augita.		
Óxidos de Ferro: Ocorrem de forma de minerais acessórios ou	secundários. Como acessórios costumam ser Euédricos,	
hábito de losangos com cerca de 0,1mm com pouca variação de	o tamanho. Como secundários são Anédricos, tamanhos	
variando de 0,2 até 2,5mm, presente substituindo clinopiroxênio algumas vezes preservando o hábito original e outras		
com formato de face esquelética. Os minerais prováveis são Magnetita e Ilmenita.		
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde, médio relevo, cor de		
interferência verde e rosa de 3ª ordem, sem estruturas, sem clivagem, muito fraturado, tamanho de 0,5 até 2,5mm.		
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.		
Cardonauos: Ocorrem substituindo os plagiociasios, principalmente os renocristais, e os cristais de clinopiroxenio, os dois de maneira concentrada. Cor de interferência de verde e rosa de 3ª ordem para além do espectro visível, baixo		
relevo, tamanho menor do que 0,1 porém com aglomerados de até 1mm.		
ORDEM DE CRISTALIZAÇÃO		
Plagioclásio		
Clinopiroxênio		
Ilmenita		
Magnetita		

COMPOSIÇÃO MODAL

Plagioclásio

Clinopiroxênio Ilmenita

Magnetita

CLASSIFICAÇÃO/NOMENCLATURA Diabásio (Basalto)

MICROFOTOGRAFIAS

DADOS GERAIS	Localidade: TH-10 -	Dique mais perto da	
	praia – Núcleo		
Amostra: BK-4 A	Coord. UTM:		
(X) Orientada	Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cabo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Melanocrático			
Granulação: Fino (não passa de 5mm)			
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos com	os cristais de Clinopi	roxênio, inequigranular	
porfirítico de matriz fina variando desde 0,5 até 5mm, composto de j	plagioclásio e clinopiro	oxênio principalmente e	
óxidos de ferro submilimétricos como mineral acessório, e fenocristais o	de clinopiroxênio e plag	gioclásio variando desde	
3 até 5mm. Grande porcentagem de alteração em destaque ao clino	piroxênio, alterando-se	e para clorita, ilmenita,	
magnetita, biotita e indigcita, além de sericitização de plagioclásio.			
OBS: Tem duas lâminas dessa amostra, 4Aa (seção horizontal do dique)	e 4Ab (seção vertical or	togonal à parede).	
(X) Idiomórfica () Hipidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipoialina () Holo	ocristalina		
COMPOSIÇÃO MINERALÓGICA			
Minerais Essenciais: Plagioclásio e Clinopiroxênio			
Minerais Acessórios: Ilmenita e Magnetita			
Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita, Biotita e Inc	ligcita.		
DESCRIÇÃO DOS MINERAIS			
Plagioclásio: Euédrico à subédrico, baixo relevo, incolor, cor de inte	erferência cinza de 1ª	ordem, sem estruturas.	
geminação polissintética na maioria dos cristais (não foi possível analis	ar ângulo de extinção),	sem clivagem presente,	
fraturada, seritização muito presente em alguns cristais, textura subofítica	a e ofítica em contato c	om o clinopiroxênio. Na	
matriz, hábito ripado e tamanho variando de 1mm até 5mm, e como) fenocristais, hábito p	rismático com tamanho	
variando de 3 à 5mm	· 1		
Clinopiroxênio: Euédrico à subédrico, alto relevo, incolor, cor de inter	ferência de azul de 1ª	ordem até laranja de 2ª	
ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente	fraturada, com substitu	ição frequente completa	
ou quase completa para óxidos de ferro como ilmenita, indigcita e magne	etita ou para biotita e clo	orita. Matriz variando de	
0,5 até 4mm e com textura ofítica ou subofítica. Já os fenocristais s	ão de 3 à 4mm e háb	oito octaédrico. Tipo de	
clinopiroxênio provavelmente é Augita.			
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundán	rios. Como acessórios c	ostumam ser Euédricos,	
hábito de losango e tamanho submilimétrico. Como secundários são A	Anédricos, tamanhos va	riando de 0,5 até 2mm,	
presentes substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face			
esquelética, alguma outras vezes ainda preenchendo fraturas. Os minerais prováveis são Magnetita e Ilmenita nos			
acessórios e Magnetita, Ilmenita e Indigcita como secundários.			
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio			
relevo, cor de interferência azul anômalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 0,3 até 2mm.			
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.			
Biotita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração alaranjada, médio relevo, cor de			
interferência verde e rosa de 3ª ordem ou fora do espectro visível, sem estruturas, clivagem unidirecional bem marcada,			
muito fraturado, tamanho variando de 0,3 até 2mm.			
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			
Clinopiroxênio			
Ilmenita			
Magnetita			
· · ·			

~	
COMPOSIÇÃO MODAL	
Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	
CLASSIFICAÇÃO/NOMENCLATURA	
Diabásio (Basalto)	
MICROFOTOGRAFIAS	
Foto Mosaico da lâmina BK-4A em lente descruzada, nota-se a grande diferença de tar	nanho entre matrizes e
quantidade bem maior de fenocristais quando comparada com as lâminas BK-4C e BK-4D .	

-	Lagesed
	UFRJ

DADOS GERAIS	Localidade: TH-10 - Dique mais perto da praia		
	– Borda SE		
Amostra: BK-4B	Coord. UTM:		
(X) Orientada	Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cabo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Melanocrático			
Granulação: Fino (não passa de 5mm)			
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos com porfirítico com pouca variação dos fenocristais. A matriz é composta com granulação muito fina variando desde submilimétrico a 0,3mm	os cristais de Clinopiroxênio, inequigranular de plagioclásio, clinopiroxênio e óxido de ferro, e os fenocristais, compostos de plagioclásio e		
clinopiroxenio, tem granulação um pouco maior na ordem de 0,5 principalmente do clinopiroxênio, alterando-se para clorita, ilmenita sericitização de	ate 2mm. Grande porcentagem de alteração , magnetita e principalmente biotita, além de plagioclásio.		
E possível observar, na lâmina, orientada com o código 4Bb na direi quanto dos fenocristais.	ta, uma variação da granulação tanto da matriz		
direção N-S. Reconstruindo a orientação original das lâminas com a ori a orientação de ripas horizontais e ortogonais em relação às paredes vert	entação dos plagioclásios ripados, foi observado ticais do dique.		
OBS: Tem duas lâminas dessa amostra, 4Ba e 4Bb (seção vertical ortog	onal à parede).		
(X) Idiomórfica () Hipidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipoialina () Hol	locristalina		
COMPOSIÇÃO MINERALÓGICA			
Minerais Essenciais: Plagioclásio e Clinopiroxênio			
Minerais Acessórios: Ilmenita e Magnetita			
Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita e Biotita.			
DESCRIÇÃO DOS MINERAIS			
Plagioclásio: Euédrico à Subédrico, prismático, baixo relevo, incolor	r, cor de interferência cinza de 1ª ordem, sem		
estruturas, variando de submilimétrico até 0,3mm, com textura subofí	tica e ofítica em contato com o clinopiroxênio,		
geminação polissintética na maioria dos cristais (não foi possível o	leterminar ângulo de extinção), sem clivagem		
presente, fraturada, seritização localizada. Os fenocristais costumam diferenciar-se pela cor de interferência chegando			
até azul de 1ª ordem, formato variando entre prismático e quadrático e ta	amanho variando de 0,5 até 2mm.		
Clinopiroxênio: Anédrico, alto relevo, incolor, cor de interferência de	azul de 1 ^a ordem até laranja de 2 ^a ordem, sem		
estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, o	com substituição localizada para clorita e óxidos		
de ferro como ilmenita e magnetita, matriz variando de tamanho de sub	milimétrico até 0,2mm e fenocristais variando de		
0,5 até 2mm. Tipo de clinopiroxênio provavelmente é Augita.			
Oxidos de Ferro: Ocorrem de forma de minerais acessórios ou secundá	rios. Como acessórios costumam ser Euédricos,		
hábito de losangos submilimétricos sem variação do tamanho. Como se	ecundários são Anédricos, tamanhos variando de		
0,1 ate 2mm, presente substituindo clinopiroxênio algumas vezes presen	vando o hábito original e outras com formato de		
face esquelética. Os minerais prováveis são Magnetita e Ilmenita.			
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde, médio relevo, cor de			
interferência verde e rosa de 3ª ordem, sem estruturas, sem clivagem, muito fraturado, tamanho submilimétrico até			
2mm. Muitas vezes encontra-se preenchendo as fraturas de cristais de cl	inopiroxenio.		
Biotita: Ocorre substituindo o clinopiroxênio mantendo o hábito origi	nal, coloração alaranjada, médio relevo, cor de		
interferência verde e rosa de 3ª ordem ou fora do espectro visível, sem estruturas, clivagem unidirecional bem marcada,			
muito traturado, tamanho variando de submilimétrico até 2mm.			
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			

Clinopiroxênio	
Ilmenita	
Magnetita	
COMPOSIÇÃO MODAL	-
Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	
CLASSIFICAÇÃO/NOMENCLATURA	
Diabásio (Basalto)	

MICROFOTOGRAFIAS

Foto Mosaico da lâmina BK-4Bb em lente descruzada. Nota-se a variação da borda direita (zona de contato) para a borda esquerda.

Lagesed Geologic Sedimenter U F R J Descrição Petrográfica de Rocha Ígnea

DADOS GERAIS	Localidade: TH-10	- Dique mais perto da
Amostro: DK AC	praia – Borda NW	
Allosua. DN-40	Coord Geo:	
Domínio Geológico: Domínio Testônico de Cabo Erio	Coolu. 000:	
Índice de Cor: Melanocrático		
Granulação: Fino (não passa de 5mm)		
Microtextura: Cristais de Plagioclósio Subofíticos e Ofíticos com os	cristais de Clinoniro	vânio equigranular fina
variando desde 0.5 até 4.5mm composto de plagioclásio e clino	nirovênio principalme	ente e óxidos de ferro
submilimétricos como mineral acessório. Grande norcentagem de alterad	cão em destaque ao clir	noniroxênio, alterando-se
para clorita, ilmenita, magnetita e principalmente biotita, além de sericiti	zação de plagioclásio	opnonenio, anorando se
OBS: Tem duas lâminas dessa amostra. 4Cb (secão horizontal do dique)	e 4Ca (secão vertical o	rtogonal à parede).
(X) Idiomórfica () Hipidiomórfica () Xenomórfica		0 F
(X) Holocristalina () Hipocristalina () Hipoialina () Holo	ocristalina	
COMPOSIÇÃO MINERALÓGICA		
Minerais Essenciais: Plagioclásio e Clinopiroxênio		
Minerais Acessórios: Ilmenita e Magnetita		
Minerais Secundários: Sericita, Clorita, Ilmenita, Magnetita e Biotita.		
DESCRIÇÃO DOS MINERAIS		
Plagioclásio: Euédrico, baixo relevo, incolor, cor de interferência cinza	de 1 ^a ordem. sem estru	ituras, tamanho variando
de 0,5 até 4,5mm, hábito ripado ou prismático, geminação polissintética	na maioria dos cristais	(não foi possível analisar
ângulo de extinção), sem clivagem presente, fraturada, seritização muito	presente em alguns cri	stais, textura subofítica e
ofítica em contato com o clinopiroxênio.		
Clinopiroxênio: Euédrico à subédrico, alto relevo, incolor, cor de inter	ferência de azul de 1ª	ordem até laranja de 2ª
ordem, tamanho variando de 0,5 até 4mm, sem estruturas, clivagem bi	direcional ortogonal, fi	requentemente fraturada,
com substituição frequente completa ou quase completa para óxidos	de ferro como ilmeni	ta e magnetita. Tipo de
clinopiroxênio provavelmente é Augita.		
Oxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundá	rios. Como acessórios	costumam ser Euédricos,
hábito de losango e tamanho submilimétrico. Como secundários são A	nédricos, tamanhos va	ariando de 0,5 até 2mm,
presentes substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face		
esquelética. Os minerais prováveis são Magnetita e Ilmenita.		
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio		
relevo, cor de interferencia azul anomalo, sem estruturas, sem clivage	m, pouco traturado, ta	manno de 0,3 ate 1mm.
Piotital Ocorre substituindo o alinguiravênia montando a hébita substituindo o alinguiravênia montando a hébita	ACIIIO.	da módia valorra son do
Biotita: Ocorre substituindo o clinopiroxenio mantendo o habito original, coloração alaranjada, médio relevo, cor de		
interierencia verde e rosa de 3" ordem ou fora do espectro visível, sem estruturas, clivagem unidirecional bem marcada,		
OPDEM DE CRISTALIZAÇÃO		
Plagioclásio		
Clinopirovênio		
Ilmenita		
Magnetita		
iviagnuna		
COMPOSIÇÃO MODAL		
Plagioclásio		
Clinopiroxênio		
Ilmenita		

Foto Mosaico da lâmina BK-4C em lente descruzada. Representa toda a zona de contato e com matriz muito fina e afanítica além de fenocristais em menor quantidade que o núcleo.

DADOS GERAIS	Localidade: TH-31 Dique Principal - Borda		
Amostra: TH-31A	Test. Caixa Prof/Cota		
() Orientada	Unidade Afloramento		
Domínio Geológico: Domínio Tectônico de Cabo Frid	0		
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Melanocrático			
Granulação: Fino, fenocristais com tamanho máximo	de 5mm e matriz com cristais submicrométricos até 1mm		
Microtextura: Cristais de Plagioclásio Subofíticos	e Ofíticos com os cristais de Clinopiroxênio, inequigranular		
porfirítico com pouca variação. Ocorrência de Fenocr	istais em pouca quantidade, predominantemente Plagioclásio.		
(X) Idiomórfica () Hipidiomórfica () Xen	omórfica		
(X) Holocristalina () Hipocristalina () Hipo	oialina () Holocristalina		
COMPOSIÇÃO MINERALÓGICA			
Minerais Essenciais: Plagioclásio e Clinopiroxênio			
Minerais Acessórios: Ilmenita e Magnetita			
Minerais Secundários: Sericita, Clorita, Ilmenita, Mag	gnetita e Indignita		
DESCRIÇÃO DOS MINERAIS			
Plagioclásio: Euédricos, prismático, baixo relevo, i	incolor, cor de interferência cinza de 1ª ordem, sem estruturas,		
variando de 0,1 até 1mm, com textura subofítica e of	itica em contato com o clinopiroxênio, geminação polissintética na		
maioria dos cristais com variação de (30-35°) (Labra	adorita), sem clivagem presente, fraturada, seritização localizada.		
Os fenocristais costumam diferenciar-se pela cor de in	nterferência chegando até azul de 1ª ordem, formato variando entre		
prismático e quadrático e tamanho variando de 2 até 4	4mm.		
Clinopiroxênio: Anédricos, alto relevo, incolor, cor	de interferência de azul de la ordem até laranja de 2ª ordem, sem		
estruturas, variando de 0,1 ate 2mm, clivagem bio	direcional ortogonal, frequentemente fraturada, com substituição		
localizada para ciorita e oxidos de ferro como ilmenita	a e magnetita. Tipo de clinopiroxenio provavelmente e Augita.		
bábito de losangos com carca de 0 1mm com pouca a	ssorios ou secundarios. Como acessorios costumam ser Eucoricos,		
variando de 0.2 até 2 5mm presente substituindo cli	nonirovênio algumas vezes preservando o hábito original e outras		
com formato de face esquelética. Os minerais prováve	eis são Magnetita e Ilmenita		
Clorita: Ocorre substituindo o clinopiroxênio mantene	do o hábito original, coloração verde ou azul anômalo, médio a alto		
relevo, cor de interferência verde e rosa de 3ª ordem	n ou azul anômalo, sem estruturas, sem clivagem, muito fraturado.		
tamanho de 0,5 até 2,5mm. Muitas vezes encontra-se	preenchendo as fraturas de cristais de clinopiroxênio.		
Carbonatos: Ocorrem substituindo os plagioclásios, principalmente os fenocristais, e os cristais de clinopiroxênio, os			
dois de maneira concentrada. Cor de interferência d	le verde e rosa de 3ª ordem para além do espectro visível, baixo		
relevo, tamanho menor do que 0,1 porém com aglome	erados de até 1mm.		
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			
Clinopiroxênio			
Ilmenita			
Magnetita			
COMPOSIÇÃO MODAL			
Plagioclásio			
Clinopiroxênio			
Ilmenita			
Magnetita			
CLASSIFICAÇÃO/NOMENCLATURA			
Diabásio (Basalto)			

DADOS GERAIS	Localidade: Ilha Comprida			
Amostra: IC-1A Coord. UTM:				
() Orientada Coord. Geo:				
Domínio Geológico: Domínio Tectônico de Cabo Frio	•			
ASPECTOS TEXTURAIS/COLORAÇÃO				
Índice de Cor: Melanocrático				
Granulação: Fino (não passa de 5mm)				
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos	s com os cristais de Clinopiroxênio, inec	quigranular		
porfirítico com matriz muito fina de plagioclásio, óxido de fer	ro e clinopiroxênio e fenocristais de plagio	clásio com		
tamanho variando de 2 à 5mm. Alguns cristais de plagioclás	io encontram-se zonados. Não há nenhum	a estrutura		
presente. Há muita alteração para óxidos de ferro tanto do p	lagioclásio quanto do clinopiroxênio. Algu	ins cristais		
apresentam extinção ondulante. Também encontra-se uma zona d	le falha com rejeito inexpressivo quase todo	preenchido		
por clorita e óxido de ferro.				
(X) Idiomórfica () Hipidiomórfica () Xenomórfica				
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina			
COMPOSIÇÃO MINERALÓGICA				
Minerais Essenciais: Plagioclásio e Clinopiroxênio				
Minerais Acessórios: Ilmenita e Magnetita				
Minerais Secundários: Sericita, Clorita, Ilmenita e Magnetita.				
DESCRIÇÃO DOS MINERAIS				
Plagioclásio: Euédricos à subédricos, baixo relevo, incolor, co	or de interferência cinza de 1ª ordem, sem	estruturas,		
geminação polissintética na maioria dos cristais (não foi possíve	el analisar ângulo de extinção), sem clivager	n presente,		
fraturada, com matriz variando de 0,1 até 1mm, hábito em ripas	por vezes alterado por óxido de ferro e seri	cita. Como		
fenocristais, variam de 2 à 5mm, hábito prismático ou hexagonal	l, alguns dos cristais apresentando zoneamen	to e alguns		
tambem sendo sericitizados localmente. Alguns cristais apresenta	im extinção ondulante.	· 1 03		
Clinopiroxenio: Euedricos a subedricos, alto relevo, incolor, con	r de interferencia de azul de la ordem ate la	ranja de 2ª		
ordem, sem estruturas, tamanno variando de 0,1 ate 1,5mm, cliv	agem bidirecional ortogonal, frequentemento	e fraturada,		
com substituição frequente completa ou quase completa por oxid	nos de lerro como innentia e magnetita. Alg	uns cristais		
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou s	nente e Augita.	Fuédricos		
hábito de losango e tamanho submilimétrico. Como secundários	s são Anédricos, tamanhos variando de 0.2 s	té 2 5mm		
presente substituindo clinopirovênio e plagioclásio algumas vez	es preservando o hábito original e outras co	m formato		
de face esquelética. Os minerais prováveis são Magnetita e Ilmen	ita			
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito	original coloração verde ou alaraniado mé	dio relevo		
cor de interferência verde e rosa de 3ª ordem ou azul anômalo, sem estruturas, sem clivagem, muito fraturado, tamanho				
de 0.1 até 1mm. Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.				
ORDEM DE CRISTALIZAÇÃO				
Plagioclásio				
Clinopiroxênio				
Ilmenita				
Magnetita				
COMPOSIÇÃO MODAL				
Plagioclásio				
Clinopiroxênio				
Ilmenita				
Magnetita				
0				

CLASSIFICAÇÃO/NOMENCLATURA Diabásio (Basalto)

ANEXO 21

	Descrição Petrográfica de Rocha Ígnea		
Lagesed Geslagia Sedimentar	Responsável: Bernardo Barbagelata Khater Data: 28/01/2019		
DADOS GERAIS	Localidade: Ilha Comprida		
Amostra: IC-1D	Coord. UTM:		
() Orientada	Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cabo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO			
Índice de Cor: Melanocrático			
Granulação: Fino (não passa de 3mm)			
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos con nenhuma estrutura presente. Os clinopiroxênios encontram-se plagioclásios para sericita. Também encontra-se uma zona de fa clorita e óxido de ferro.	m os cristais de Clinopiroxênio e equigranular. Não há muito alterados para clorita ou óxidos de ferro e os lha com rejeito inexpressivo quase todo preenchido por		
(\mathbf{V}) \mathbf{I} \mathbf{I} (\mathbf{v}) \mathbf{I} \mathbf{I} (\mathbf{v}) \mathbf{I} (\mathbf{v}) \mathbf{I} (\mathbf{v}) \mathbf{V} (\mathbf{v}) \mathbf{V} (\mathbf{v}) \mathbf{V} (\mathbf{v}) (\mathbf{v}) \mathbf{V} $(\mathbf{v}$			
(X) Idiomorfica () Hipidiomorfica () Xenomorfica	() Hele misteline		
(A) Holocristalina () Hipocristalina () Hipolalina () Holocristalina		
CONFOSIÇÃO MINERALOUICA			
Minerais Assessários: Ilmanita e Magnetita			
Minerais Accessorios. Innenita e Magnetita			
DESCRIÇÃO DOS MINERAIS			
Plagioclásio: Euédricos à subédricos baixo relevo incolor co	or de interferência cinza de 1ª ordem sem estruturas		
variando de 0,5 até 2mm, hábito em ripas, com textura subofítica	a e ofítica em contato com o clinopiroxênio, geminação		
polissintética na maioria dos cristais (não foi possível analisar	ângulo de extinção), sem clivagem presente, fraturada,		
seritização muito presente na maioria dos cristais.			
Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1 ^a ordem até laranja de 2 ^a ordem, sem estruturas, tamanho variando de 0,5 até 2,5mm, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa ou quase completa para clorita e óxidos de ferro como ilmenita e magnetita. Tipo			
de clinopiroxênio provavelmente é Augita.			
Oxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos, hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanhos variando de 0,2 até 2,5mm, presente substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face esquelética. Os minerais prováveis são Magnetita e Ilmenita.			
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde, médio relevo, cor de			
interferência verde e rosa de 3ª ordem, sem estruturas, sem clivagem, muito fraturado, tamanho de 0,5 até 2,5mm.			
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.			
ORDEM DE CRISTALIZAÇÃO			
Plagioclásio			
Clinopiroxênio			
Ilmenita			
Magnetita			
COMPOSIÇÃO MODAL			
Plagioclásio			
Clinopiroxênio			

Ilmenita					
Magnetita					
CLASSIFICACÃO/NOMENCLATURA					
Diabásio (Basalto)					
P					
	De	escrição Petrográfica de Rocha Ígnea			
		eserição i en ogranica de recena ignea			
	Re	esponsável: Bernardo Barbagelata Khater			
Geologia Sedimentor	Da	ata: 28/01/2019			
U F R J					
DADOS GEDAIS	L	agalidada: Ilha Comprida			
Amostra: IC 2K		pord UTM:			
() Orientada		pord Geo:			
Domínio Geológico: Domínio Tectônico de Cabo	Frio	561d. Geo.			
A SPECTOS TEXTUPAIS/COLOPACÃO	1110				
Índiaa da Care Malanaarótica					
Granulação: Fino (não nosso do 5mm)					
Migrotevture: Cristais de Plagioclásio Subofiti	oos a Ofitioos or	om os cristais de Clinopirovânio, ineg	uigropulor		
porfirítico com matriz fina à muito fina de plagio	clásio óxido de fe	rro e clinopirovênio e fenocristais de plac	uigranuiai rioclásio e		
clinopirovênio com tamanho variando de 1 à	2mm Não há	nenhuma estrutura presente Muita alt	eração de		
clinopiroxênio para óxido de ferro		nemuna estrutura presente. Mata at	cração de		
(X) Idiomórfica () Hinidiomórfica ()	Xenomórfica				
(X) Holocristalina () Hipocristalina ()	Hinoialina ()]	Holocristalina			
COMPOSIÇÃO MINERALÓGIÇA		lioioensuinu			
Minerais Essenciais: Plagioclásio e Clinopirovêni)				
Minerais Acessórios: Ilmenita e Magnetita)				
Minerais Secundários: Sericita Clorita Ilmenita e	Magnetita				
DESCRIÇÃO DOS MINERAIS	Minerais Secundarios: Sericita, Ciorita, limenita e Magnetita.				
Plagioclásio: Euédricos baixo relevo incolor	or de interferênc	ia cinza de 1ª ordem sem estruturas (reminação		
polissintética na majoria dos cristais (não foi po	sível analisar ângu	ulo de extinção) sem clivagem presente	fraturada		
com matriz variando de 0.1 até 0.3mm e hábito	em rinas. Como fe	enocristais variam de 1 à 2mm hábito r	rismático		
Apresentam pouca alteração.	eni ripus. como r	enoensuis, vuruin de 1 a 2min, nuorto p	institucieo.		
Apresentam pouca ancração. Clinopirovênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até larania de 2					
ordem sem estruturas tamanho variando de 01 até 02mm na matriz e 05 à 1mm como fenocristal sem clivagem					
aparente, frequentemente fraturada, com substituição frequente completa ou quase completa por óxidos de ferro como					
ilmenita e magnetita. Tipo de clinopiroxênio prov	avelmente é Augita	a.			
Óxidos de Ferro: Ocorrem em forma de minerais	acessórios ou secu	indários. Como acessórios costumam ser 1	Euédricos,		
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanho variando de 0,1 até 0,2mm,					
presente substituindo clinopiroxênio preservando	o hábito original. C	Os minerais prováveis são Magnetita e Ilm	enita.		
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde, médio relevo, cor de					
interferência azul anômalo, sem estruturas, sem c	ivagem, muito frat	turado, tamanho de 0,5m ou submilimétrie	co. Muitas		
vezes encontra-se preenchendo as fraturas de crist	ais de clinopiroxên	nio.			
ORDEM DE CRISTALIZAÇÃO					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
COMPOSIÇÃO MODAL					
Plagioclásio					
UFRJ					
Dia	do lonairo				
RIC					
	2020				

Clinopiroxênio				
Ilmenita				
Magnetita				
mughtmu				
CLASSIFICAÇAO/NOMENCLATOKA				
Diadasio (Basalio)				
ANEXO 2	3			
	Descrição Petrográfica de Rocha Ignea			
hasapplaced				
Contractor Sectionautor	Responsavel: Bernardo Barbagelata Knater			
UFRJ	Data: 28/01/2019			
DADOS GERAIS	Localidade: Ilha Comprida			
Amostra: IC-4A	Coord. UTM:			
() Orientada	Coord. Geo:			
Domínio Geológico: Domínio Tectônico de Cabo Frio				
ASPECTOS TEXTURAIS/COLORAÇÃO				
Índice de Cor: Melanocrático				
Granulação: Fino (não passa de 5mm)				
Microtextura: Cristais de Plagioclásio Subofíticos e Ofítico	s com os cristais de Clinopiroxênio, inequigranul			
porfirítico com pouca porcentagem de matriz muito fina de plag	ioclásio, clinopiroxênio e óxido de ferro. Fenocristais o			
plagioclásio e clinopiroxênio com tamanho variando de 1 à 2mi	n. Muita alteração de clinopiroxênio para óxido de fer-			
e clorita e de plagioclásio para sericita. Há presente uma z	cona de cisalhamento preenchida de sericita e clori			
atravessando a lâmina com espessura de 0,5mm e com rejeito ap	arente de 1mm e sentido destral.			
(X) Idiomórfica () Hipidiomórfica () Xenomórfica	(X) Idiomórfica () Hipidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina				
COMPOSIÇÃO MINERALÓGICA				
Minerais Essenciais: Plagioclásio e Clinopiroxênio				
Minerais Acessórios: Ilmenita e Magnetita				
Minerais Secundários: Sericita, Clorita, Ilmenita e Magnetita.				
DESCRIÇÃO DOS MINERAIS				
Plagioclásio: Euédricos à subédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas,				
geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente,				
fraturada, com matriz variando de 0,1 até 0,3mm e hábito em ripas. Como fenocristais, variam de 1 à 2mm, hábito				
prismático. Apresentam muita alteração completa ou quase completa para sericita.				
Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até laranja de 2ª				
ordem, sem estruturas, tamanho variando de 0,1 até 0,2mm na matriz e 1 até 1,5mm como fenocristal, sem clivagem				
aparente, frequentemente fraturada, com substituição ocasional completa ou quase completa por óxidos de ferro como				
ilmenita e magnetita. Tipo de clinopiroxênio provavelmente é Augita.				
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos,				
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanho variando de 0,1 até 0,2mm,				
presente substituindo clinopiroxênio preservando o hábito original ou com hábito de face esquelética. Os minerais				
prováveis são Magnetita e Ilmenita.				
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro, médio relevo, cor de				
interferencia azul anomalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 1m ou submilimétrico. Muitas				
vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.				
ORDEM DE CRISTALIZAÇÃO				
Plagioclásio				
Clinopiroxênio				
Ilmenita				
Magnetita				

Plagioglásio				
Clinonirovânio				
Ilmonita				
Magnetita				
Magnetita				
~				
CLASSIFICAÇAO/NOMENCLATURA				
Diabásio (Basalto)				
	ANEXO 24			
		Descrição Petrográfica de Rocha Ígnea		
hand				
Lugeseu		Responsável: Bernardo Barbagelata Khater		
UFRJ		Data: 28/01/2019		
C CROCCIAL MUNICIPAL				
DADOS GERAIS		Localidade: Ilha Comprida		
Amostra: IC-4B		Coord. UTM:		
() Orientada		Coord. Geo:		
Domínio Geológico: Domínio Tectônico de Cab	o Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO				
Índice de Cor: Melanocrático				
Granulação: Fino (não passa de 5mm)				
Microtextura: Cristais de Plagioclásio Subof	íticos e Ofíticos	com os cristais de Clinopiroxênio, inequigranula		
porfirítico com pouca porcentagem de matriz m	uito fina de plagio	clásio, clinopiroxênio e óxido de ferro. Fenocristais d		
plagioclásio e clinopiroxênio com tamanho var	riando de 0,5 à 1n	nm. Muita alteração de clinopiroxênio para óxido d		
ferro e clorita e de plagioclásio para sericita.				
· · · ·				
(X) Idiomórfica () Hipidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina		
COMPOSIÇÃO MINERALÓGICA		,		
Minerais Essenciais: Plagioclásio e Clinopiroxê	nio			
Minerais Acessórios: Ilmenita e Magnetita				
Minerais Secundários: Sericita, Clorita, Ilmenita	e Magnetita.			
DESCRIÇÃO DOS MINERAIS	0			
Plagioclásio: Euédricos à subédricos baixo re	levo incolor cor	de interferência cinza de 1ª ordem sem estrutura		
geminação polissintética na majoria dos cristais	(não foi possível	analisar ângulo de extinção) sem clivagem presente		
fraturada, com matriz variando de 0.1 até 0.3mm e hábito em rinas. Como fenocristais, variam de 0.5 à 1mm hábito				
prismático. Apresentam muita alteração complet	ta ou quase comple	eta para sericita.		
Clinopiroxênio: Euédricos à subédricos, alto re	levo, incolor, cor	de interferência de azul de 1ª ordem até larania de 2		
ordem, sem estruturas, tamanho variando de 0.	1 até 0.2mm na m	natriz e 0.5 até 1mm como fenocristal, sem clivage		
aparente, frequentemente fraturada, com substituição ocasional completa ou quase completa por óxidos de ferro como				
ilmenita e magnetita. Tipo de clinopiroxênio provavelmente é Augita.				
Óxidos de Ferro: Ocorrem em forma de minera	is acessórios ou se	cundários. Como acessórios costumam ser Euédrico		
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanho variando de 0.1 até 1mm.				
presentes substituindo clinopiroxênio preservando o hábito original ou com hábito de face esquelética. Os minerais				
prováveis são Magnetita e Ilmenita.	U	1		
Clorita: Ocorre substituindo o clinopiroxênio n	nantendo o hábito	original, coloração verde claro, médio relevo, cor d		
interferência azul anômalo, sem estruturas, se	m clivagem, pouc	o fraturado, tamanho de 0,5mm ou submilimétrico		
Muitas vezes encontra-se preenchendo as fratura	as de cristais de cli	nopiroxênio.		
ORDEM DE CRISTALIZAÇÃO				
Plagioclásio				
Clinopiroxênio				
		I		
	UFKJ			

				•
Ilmenita				
Magnetita				
COMPOSIÇÃO MODAL				-
Plagioclásio				
Clinopiroxênio				
Ilmenita				
Magnetita				
Indenotia				
CLASSIFICAÇÃO/NOMENCLATURA				
Diabasio (Basalio)		-		
	ANEXO 25	-		
		_		
		De	escrição Petrográfica de Rocha Ignea	
besept				
Lugeseu		Re	sponsável: Bernardo Barbagelata Khater	r
UFRJ		Da	ita: 28/01/2019	
DADOS GERAIS		Lc	calidade: Ilha dos Papagaios	
Amostra: IP-1F		Сс	oord. UTM:	
() Orientada		Сс	oord. Geo:	
Domínio Geológico: Domínio Tectônico de Cal	bo Frio			
ASPECTOS TEXTURAIS/COLORAÇÃO				
Índice de Cor: Melanocrático				
Granulação: Fino (não passa de 3mm)				
Microtextura: Cristais de Plagioclásio Subof	íticos e Ofíticos	cor	n os cristais de Clinopiroxênio e ine	anioranular
porfirítico com matriz muito fina de plagioc	lásio clinoniroxê	nio	e óxidos de ferro e fenocristais de pla	gioclásio e
clinopiroxênio variando de 0.5 à 2.5mm Não	há nenhuma estru	itur	a presente. Os clinopiroxênios encontra	m-se muito
alterados para clorita ou óxidos de ferro e os pla	agioclásios para se	erici	ta	in se mano
	agreetableb para be			
(X) Idiomórfica () Hinidiomórfica () Xenomórfica			
(X) Holocristalina () Hipocristalina () Hipoialina (Holocristalina	
COMPOSIÇÃO MINERALÓGIÇA) Inpolainia (
Minerais Essenciais: Plagioclásio e Clinopirová	nio			
Minerais Acessórios: Ilmenita e Magnetita				
Minerais Acessorios: limenita e Magnetita				
DESCRIÇÃO DOS MINERAIS	a e Magnetita.			
DESCRIÇÃO DOS MINERAIS	-1 :1		· · · · · · · · · · · · · · · · · · ·	4 4
Plagiociasio: Eucoricos a subcoricos, baixo relevo, incolor, cor de interferencia cinza de la ordem, sem estruturas,				
geminação polissintetica na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente,				
iraturada, sertuzação muito presente na matoria dos cristais. A matriz tem granulação variando de 0,1 ate 0,5mm, habito				
até 2 5mm, com bábito prismático ou quadrátic		UACI	no. Como renocristais, granulação varia	
Clinopirovânio: Euddrigos à subádrigos, alto re	u. Navo incolor cor	· da	interferência de azul de 1ª ordem até la	rania da 2ª
ordem sem estrutures alivagem hidiracional o	rtaganal frequent	tom	interferencia de azur de 1 ordeni ate la	ta complete
ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa				
ou quase completa para clorita e oxidos de ferro como ilmenita e magnetit, matriz de granulação variando de 0,1 ate 0,3				
é e renocristais variando de 0,5 até imm. Tipo de cinopiroxenio provaveimente e Augita.				
bálita de lasanza a tamanha submilimátrica	Como acoundário	secu	indarios. Como acessorios costumam ser	Eucoricos,
nabito de losaligo e tamanno subminimetrico.		15 52 do	a hépita ariginal a autras com forma	to do foco
presente substituindo enhopitoxento algunas vezes preservando o nabito originar e outras com formato de face				
Clorita: Ocorre substituindo a clinoninguêri	$a \in 1111 \in 1111$	hit-	original coloração varda módia1-	vo or J-
interferência verde a rosa de ^{2ª} ordem, som act	ruturas sem aliva	0110	muito fraturado, tamonho do 0,1 eté 1	nm Muites
necrorencia verde e rosa de 5 ordeni, sem estruturas, sem envageni, muno naturado, tamanno de 0,1 até mini. Multa				min. iviultas
vezes encontra-se preenchendo as traturas de cr		ACII	10.	
	UFRJ			
Rio de Janeiro				

ORDEM DE CRISTALIZAÇÃO					
Plagioclásio					
Clinaminovânia					
	Clinopiroxênio				
limenita					
Magnetita					
~					
COMPOSIÇÃO MODAL					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
CLASSIFICAÇÃO/NOMENCLATURA					
Diabásio (Basalto)					
Diabasio (Dasano)					
	ANEXU 20				
		Descrição Petrográfica de Rocha Ignea			
horsed					
Lugesed		Responsável: Bernardo Barbagelata Khater			
		Data: 28/01/2019			
DADOS GERAIS		Localidade: Ilha dos Papagaios			
Amostra: IP-13A		Coord, UTM:			
() Orientada		Coord Geo.			
Domínio Geológico: Domínio Tectônico de C	abo Frio	00014. 000.			
ASPECTOS TEXTUPAIS/COLOPACÃO	100 1 110				
ÁSFECTOS TEXTORAIS/COLORAÇÃO					
Indice de Cor: Melanocratico					
Granulação: Fino (não passa de 5mm)	<u> </u>		• 1		
Microtextura: Cristais de Plagioclasio Subo	fiticos e Ofiticos	com os cristais de Clinopiroxenio e inec	quigranular		
porfiritico, com matriz muito fina a fina de pla	igioclasio, clinopir	oxenio e oxidos de ferro e fenocristais de pla	igioclasio e		
clinopiroxenio variando de 1 a 5mm. Não ha	nenhuma estrutura	presente. Alguns cristais de clinopiroxenio	encontram-		
se muito alterados para clorita ou oxidos de fei	rro e alguns de plag	gioclasio para sericita.			
(X) Idiomórfica () Hipidiomórfica () Xenomórfica				
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina			
COMPOSIÇÃO MINERALÓGICA					
Minerais Essenciais: Plagioclásio e Clinopirox	ênio				
Minerais Acessórios: Ilmenita e Magnetita					
Minerais Secundários: Sericita, Clorita, Ilmeni	ta e Magnetita.				
DESCRIÇÃO DOS MINERAIS					
Plagioclásio: Euédricos à subédricos baixo relevo incolor cor de interferência cinza de 1ª ordem sem estruturas					
geminação polissintética na majoria dos cristais (não foi possível analisar ângulo de extinção) sem clivagem presente					
fraturada, seritização muito presente em alguns cristais. A matriz tem granulação variando de 0.1 até 0.5mm hábito em					
ripas textura subofítica e ofítica em contato com o clinonirovênio. Como fenoristais oranulação varia de 0.5mm até					
4mm, com hábito prismático, quadrático ou em ripas					
Clinopiroxênio: Fuédricos à subédricos alto relevo, incolor, cor de interferência de azul de 1ª ordem até larania de 2ª					
ordem sem estruturas clivagem hidirecional ortogonal frequentemente fraturada com substituição frequente completa					
ou quase completa para clorita e óxidos de ferro como ilmenita e magnetit matriz de granulação variando de 0.1 até 0.5					
e e fenocristais variando de 1 até 5mm. Tipo de clinopirovênio provavelmente é Augita					
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos					
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanhos variando de 0.1 até 0.5mm					
naono de losango e lamanno suominimento. Como secundanos sao Aneuncos, lamannos variando de 0,1 ale 0,511111, presente substituindo clinopirovênio algumas vezes preservando o hábito original e outras com formato de face					
esquelética. Os minerais prováveis são Magnetita e Ilmenita					
	UFKJ				

Ciorita: Ocorre substituindo o clinopiroxenio mantendo o nabito original, coloração verde musgo, medio relevo, cor de						
interferencia verde e rosa de 3 ^e ordem, sem estruturas, sem c	livagem, muito fraturado, tamanno de 0,1 ate 0,5mm.					
Muitas vezes encontra-se preenchendo as fraturas de cristais de c	linopiroxenio.					
ORDEM DE CRISTALIZAÇÃO						
Plagioclásio						
Clinopiroxênio						
Ilmenita						
Magnetita						
COMPOSIÇÃO MODAL						
Plagioclásio						
Clinopiroxênio						
Ilmenita						
Magnetita						
CLASSIFICAÇÃO/NOMENCLATURA						
Diabásio (Basalto)						
ANEXU 27						
	Descrição Petrografica de Rocha Ignea					
hesen	Desmansával, Demande Demagaleta Khaten					
Contracto Fortementer	Deter 28/01/2010					
UFRJ	Data: 28/01/2019					
DADOS GERAIS	Localidade: Ilha dos Papagaios					
Amostra: IP-13B	Coord. UTM:					
() Orientada	Coord. Geo:					
Domínio Geológico: Domínio Tectônico de Cabo Frio						
ASPECTOS TEXTURAIS/COLORAÇÃO						
Índice de Cor: Melanocrático						
Granulação: Fino (não passa de 5mm)						
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos	com os cristais de Clinopiroxênio e inequigranular					
porfirítico, com matriz fina de plagioclásio, clinopiroxênio	e óxidos de ferro e fenocristais de plagioclásio e					
clinopiroxênio variando de 1 à 5mm. Não há nenhuma estrutura	presente. Alguns cristais de clinopiroxênio encontram-					
se muito alterados para óxido de ferro e alguns de plagioclásio pa	ara sericita.					
se mano anerados para oxído de ferro e arguns de pragiociasio para serienta.						
(X) Idiomórfica () Hipidiomórfica () Xenomórfica						
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina					
COMPOSIÇÃO MINERALÓGICA) Holoelisullilu					
Minerais Essenciais: Plagioclásio e Clinopirovênio						
Minerais Assessários: Ilmonita a Magnetita						
Minerais Acessonos, finienta e Magnetita						
Minerais Secundarios: Sericita, limenita e Magnetita.						
DESCRIÇÃO DOS MINERAIS						
Plagioclásio: Euédricos à subédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas,						
geminação polissintetica na maioria dos cristais (não foi possive	el analisar angulo de extinção), sem clivagem presente,					
traturada, seritização muito presente em alguns cristais. A matriz tem granulação variando de 0,1 até 0,5mm, hábito em						
ripas, textura subotitica e otitica em contato com o clinopiroxênio. Como fenocristais, granulação varia de 1 até 5mm,						
com nabito prismatico ou quadratico.						
Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até laranja de 2ª						
ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa						
ou quase completa para óxidos de ferro como ilmenita e magnetita, matriz de granulação variando de 0,1 até 0,5 e						
fenocristais variando de 1 até 5mm. Tipo de clinopiroxênio provavelmente é Augita.						
Oxidos de Ferro: Ocorrem em forma de minerais acessórios ou s	secundários. Como acessórios costumam ser Euédricos,					
UFRJ						
Rio de Janeiro						

héhita da lacanga a tamanha suhmilimátrica. Como socundárica são Anádricas, tamanhas variando da 0.1 atá 0.5mm						
nabito de losango e tamanno subminimetrico. Como secundarios são Anedricos, tamannos variando de 0,1 ate 0,5mm,						
presente substituindo cimopiroxenio algun	as vezes preservar	ido o nabilo original e outras com formato de fac				
esqueletica. Os minerais provaveis são Magn	etita e fimenita.					
ORDEM DE CRISTALIZAÇÃO						
Plagioclásio						
Clinopiroxênio						
Ilmenita						
Magnetita						
COMPOSIÇÃO MODAL						
Plagioclásio						
Clinopirovênio						
Ilmenita						
Magnetite						
Magnetita						
~ .						
CLASSIFICAÇAO/NOMENCLATURA						
Diabásio (Basalto)	_	7				
	ANEXO 28					
		Descrição Petrográfica de Rocha Ígnea				
		, 6 6				
		Responsável: Bernardo Barbagelata Khater				
Geologia Sedimentar		Data: 28/01/2019				
UFRJ						
DADOG CEDAIG						
DADOS GERAIS		Localidade: Ilha dos Papagaios				
Amostra: IP-15B		Coord. UTM:				
() Orientada		Coord. Geo:				
Domínio Geológico: Domínio Tectônico de O	Cabo Frio					
ASPECTOS TEXTURAIS/COLORAÇÃO						
Índice de Cor: Melanocrático						
Granulação: Fino (não passa de 5mm)						
Microtextura: Cristais de Plagioclásio Sub	ofíticos e Ofíticos	com os cristais de Clinopiroxênio e inequigranula				
porfirítico, com matriz fina de plagioclás	sio, clinopiroxênio	e óxidos de ferro e fenocristais de plagioclásio				
clinopiroxênio variando de 1 à 5mm. Não há	i nenhuma estrutura	presente. Alguns cristais de clinopiroxênio encontram				
se muito alterados para óxido de ferro e algur	ns de plagioclásio pa	ara sericita.				
	F8 F-					
(X) Idiomórfica () Hipidiomórfica (() Xenomórfica					
(X) Holocristalina () Hipocristalina (() Hipojalina	() Holocristalina				
) inpotantia					
Mineraia Economia Di Collina Cilina I						
Ninerais Essenciais: Plagioclasio e Clinopiro	oxenio					
Minerais Acessorios: Ilmenita e Magnetita						
Minerais Secundários: Sericita, Ilmenita e Ma	agnetita.					
DESCRIÇÃO DOS MINERAIS						
Plagioclásio: Euédricos à subédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas,						
geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente,						
fraturada, seritização muito presente em alguns cristais. A matriz tem granulação variando de 0,1 até 0,5mm, hábito em						
ripas, textura subofítica e ofítica em contato com o clinopiroxênio. Como fenocristais, granulação varia de 1 até 5mm,						
com hábito prismático ou quadrático.						
Clinopiroxênio: Euédricos à subédricos. alto	Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até larania de 2ª					
ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa						
ou quase completa para óxidos de ferro como ilmenita e magnetita, matriz de granulação variando de 0.1 até 0.5mm e						
fenocristais variando de 1 até 5mm. Tipo de clinopiroxênio provavelmente é Augita.						
Óxidos de Ferro: Ocorrem em forma de min	erais acessórios ou	secundários. Como acessórios costumam ser Euédrico				
omacs de l'ente, ocorrent en forma de linit		securementos. Como acessonos costamam ser Euclineo.				

hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanhos variando de 0,1 até 0,5mm, presentes substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face esquelética. Os minerais prováveis são Magnetita e Ilmenita.

Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio relevo, cor de interferência azul anômalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 0,1 até 0,5mm. Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.

ORDEM DE CRISTALIZAÇÃO

Plagioclásio

Clinopiroxênio

Ilmenita Magnetita

COMPOSIÇÃO MODAL

Plagioclásio

Clinopiroxênio

Ilmenita

Magnetita

CLASSIFICAÇÃO/NOMENCLATURA

Diabásio (Basalto)

DADOS GERAIS	Localidade: Ilha dos Papagaios				
Amostra: IP-15D	Coord. UTM:				
() Orientada	Coord. Geo:				
Domínio Geológico: Domínio Tectônico de Cabo Frio					
ASPECTOS TEXTURAIS/COLORAÇÃO					
Índice de Cor: Melanocrático					
Granulação: Fino (não passa de 5mm)					
Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos	com os cristais de Clinopiroxênio e inec	quigranular			
porfirítico, com matriz fina de plagioclásio, clinopiroxênio	e óxidos de ferro e fenocristais de plag	gioclásio e			
clinopiroxênio variando de 1 à 3mm. Não há nenhuma estrutura	presente. Alguns cristais de clinopiroxênio e	encontram-			
se muito alterados para óxido de ferro ou clorita e alguns de plag	ioclásio para sericita.				
(X) Idiomórfica () Hipidiomórfica () Xenomórfica					
(X) Holocristalina () Hipocristalina () Hipoialina () Holocristalina				
COMPOSIÇÃO MINERALÓGICA					
Minerais Essenciais: Plagioclásio e Clinopiroxênio					
Minerais Acessórios: Ilmenita e Magnetita					
Minerais Secundários: Sericita, Clorita, Ilmenita e Magnetita.					
DESCRIÇÃO DOS MINERAIS					
Plagioclásio: Euédricos, baixo relevo, incolor, cor de interfer	ência cinza de 1ª ordem, sem estruturas,	geminação			
polissintética na maioria dos cristais (não foi possível analisar à	ângulo de extinção), sem clivagem presente	, fraturada,			
seritização muito presente em alguns cristais. A matriz tem gra	anulação variando de 0,2 até 0,5mm, hábito	em ripas,			
textura subofítica e ofítica em contato com o clinopiroxênio. Co	omo fenocristais, granulação varia de 1 até	3mm, com			
hábito prismático ou quadrático.					
Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, con	de interferência de azul de la ordem até la	ranja de 2ª			
ordem, sem estruturas, clivagem bidirecional ortogonal, frequent	temente fraturada, com substituição frequent	e completa			
ou quase completa para oxidos de ferro como ilmenita e magne	tita, matriz de granulação variando de 0,1 at	e 0,5mm e			
fenocristais variando de 1 ate 3mm. Tipo de clinopiroxenio prova	ivelmente e Augita.	D (1)			
Oxidos de Ferro: Ocorrem em forma de minerais acessorios ou s	secundarios. Como acessorios costumam ser	Euedricos,			
naono de losango e tamanno subminimetrico. Como secundarios	ado o hépito original e outras com forma	to de face			
esquelética. Os minerais provéveis são Magnetita e Ilmenita	ido o naono originar e outras com forma	to de lace			
Clorita: Ocorre substituindo o clinonirovênio mantendo o hábito	original coloração verde claro à verde mu	sao médio			
relevo, cor de interferência azul anômalo, sem estruturas, sem o	vivagem pouco fraturado tamanho de 0.1 a	até 0 5mm			
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio					
ORDEM DE CRISTALIZAÇÃO					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
- Tughena		1			
COMPOSIÇÃO MODAL					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
<u>ΟΙ ΑSSIFICAÇÃO/NOMENCI ΑΤΗ</u> ΡΑ					

Diabásio (Basalto) **ANEXO 30** Descrição Petrográfica de Rocha Ígnea Lagesed Responsável: Bernardo Barbagelata Khater Data: 28/01/2019 DADOS GERAIS Localidade: Ilha dos Papagaios Amostra: IP-15E Coord. UTM: Coord. Geo: () Orientada Domínio Geológico: Domínio Tectônico de Cabo Frio ASPECTOS TEXTURAIS/COLORAÇÃO Índice de Cor: Melanocrático Granulação: Fino (não passa de 5mm) Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos com os cristais de Clinopiroxênio e inequigranular porfirítico, com matriz fina de plagioclásio, clinopiroxênio e óxidos de ferro e fenocristais de plagioclásio e clinopiroxênio variando de 1 à 5mm. Não há nenhuma estrutura presente. Alguns fenocristais de plagioclásio apresentam zoneamento. Alguns cristais de clinopiroxênio encontram-se muito alterados para óxido de ferro ou clorita e alguns de plagioclásio para sericita. (X) Idiomórfica () Hipidiomórfica) Xenomórfica (X) Holocristalina () Hipocristalina) Hipoialina) Holocristalina COMPOSICÃO MINERALÓGICA Minerais Essenciais: Plagioclásio e Clinopiroxênio Minerais Acessórios: Ilmenita e Magnetita Minerais Secundários: Sericita, Clorita, Ilmenita e Magnetita. DESCRIÇÃO DOS MINERAIS Plagioclásio: Euédricos, baixo relevo, incolor, cor de interferência cinza de 1ª ordem, sem estruturas, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, fraturada, seritização muito presente em alguns cristais. A matriz tem granulação variando de 0,2 até 0,5mm, hábito em ripas, textura subofítica e ofítica em contato com o clinopiroxênio. Como fenocristais, granulação varia de 1 até 5mm, com hábito prismático ou quadrático. Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até laranja de 2ª ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa ou quase completa para óxidos de ferro como ilmenita e magnetita, matriz de granulação variando de 0,1 até 0,5mm e fenocristais variando de 1 até 3mm. Tipo de clinopiroxênio provavelmente é Augita. Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos, hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanhos variando de 0,1 até 0,5mm, presentes substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face esquelética. Os minerais prováveis são Magnetita e Ilmenita. Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio relevo, cor de interferência azul anômalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 0,1 até 0,5mm. Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio. ORDEM DE CRISTALIZAÇÃO Plagioclásio Clinopiroxênio Ilmenita Magnetita COMPOSIÇÃO MODAL Plagioclásio Clinopiroxênio
Ilmenita					
Magnetita					
CLASSIFICACÃO/NOMENCLATURA					
Diabásio (Basalto)					
	ANEXO 31				
		Descrição Petrográfica de Rocha Ígnea			
		Responsável: Bernardo Barbagelata Khater			
Geologia Sedimentor		Data: 28/01/2019			
U P R J					
DADOS GERAIS		Localidade: Ilha dos Papagaios			
Amostra: IP-164		Coord UTM:			
Alliosula. II-IUA		Coord Geo:			
Domínio Geológico: Domínio Tectônico de (abo Frio				
A SPECTOS TEXTURAIS/COLORAÇÃO	2000 1 110				
Índice de Cor: Melanocrático					
Granulação: Fino (não passa de 5mm)					
Microtextura: Cristais de Plagioclásio Sub	ofíticos e Ofíticos	com os cristais de Clinopirovênio e ineq	uioranular		
porfirítico com matriz fina de plagioclás	io clinopiroxênio	e óxidos de ferro e fenocristais de plag	ioclásio e		
clinopiroxênio variando de 1 à 3mm Nã	io há nenhuma es	strutura presente. Alguns fenocristais de plag	lagioclásio		
apresentam zoneamento. Alguns cristais de c	linopiroxênio enco	ntram-se muito alterados para óxido de ferro o	ou clorita e		
alguns de plagioclásio para sericita.					
(X) Idiomórfica () Hipidiomórfica) Xenomórfica				
(X) Holocristalina () Hipocristalina () Hipoialina	() Holocristalina			
COMPOSIÇÃO MINERALÓGICA)	()			
Minerais Essenciais: Plagioclásio e Clinopiro	xênio				
Minerais Acessórios: Ilmenita e Magnetita					
Minerais Secundários: Sericita, Clorita, Ilmer	nita. Magnetita e In	digzita			
DESCRIÇÃO DOS MINERAIS		wightwo			
Plagioclásio: Euédricos baixo relevo inco	lor cor de interfe	rência cinza de 1ª ordem sem estruturas	geminação		
polissintética na maioria dos cristais (não fo	i possível analisar	ângulo de extinção), sem clivagem presente.	fraturada.		
seritização muito presente em alguns cristai	s. A matriz tem g	ranulação variando de 0.2 até 0.5mm, hábito	em ripas.		
textura subofítica e ofítica em contato com o clinopiroxênio. Como fenocristais, granulação varia de 1 até 3mm. com					
hábito prismático ou quadrático.					
Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1ª ordem até larania de 2ª					
ordem, sem estruturas, clivagem bidirecional ortogonal, frequentemente fraturada, com substituição frequente completa					
ou quase completa para óxidos de ferro como ilmenita e magnetita, matriz de granulação variando de 0,1 até 0,5mm e					
fenocristais variando de 1 até 3mm. Tipo de clinopiroxênio provavelmente é Augita.					
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos,					
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanhos variando de 0,1 até 0,5mm,					
presentes substituindo clinopiroxênio algumas vezes preservando o hábito original e outras com formato de face					
esquelética. Os minerais prováveis são Magnetita e Ilmenita.					
Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio					
relevo, cor de interferência azul anômalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 0,1 até 0,5mm.					
Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.					
ORDEM DE CRISTALIZAÇÃO					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
UFRJ					

UFRJ Rio de Janeiro 2020

COMPOSIÇÃO MODAL Plagioclásio Clinopiroxênio Ilmenita Magnetita CLASSIFICAÇÃO/NOMENCLATURA Diabásio (Basalto) ANEXO 32

Descrição Petrográfica de Rocha Ígnea

Responsável: Bernardo Barbagelata Khater Data: 28/01/2019

DADOS GERAIS	Localidade: Ilha de Pargos
Amostra: IPG-6B	Coord. UTM:
() Orientada	Coord. Geo:

Domínio Geológico: Domínio Tectônico de Cabo Frio

ASPECTOS TEXTURAIS/COLORAÇÃO

Índice de Cor: Melanocrático

Granulação: Fino (não passa de 3mm)

Microtextura: Cristais de Plagioclásio Subofíticos e Ofíticos com os cristais de Clinopiroxênio, inequigranular porfirítico com matriz fina de plagioclásio, clinopiroxênio e óxido de ferro. Fenocristais de plagioclásio e clinopiroxênio com tamanho variando de 0,5 à 1mm. Muita alteração de clinopiroxênio para óxido de ferro e clorita e de plagioclásio para sericita. Alguns minerais apresentam extinção ondulante.

(X) Idiomórfica	() Hipidiomórfica	() Xenomórfica	
(X) Holocristalina	() Hipocristalina	() Hipoialina	() Holocristalina

COMPOSIÇÃO MINERALÓGICA

Minerais Essenciais: Plagioclásio e Clinopiroxênio

Minerais Acessórios: Ilmenita e Magnetita

Minerais Secundários: Sericita, Clorita, Ilmenita e Magnetita.

DESCRIÇÃO DOS MINERAIS

Plagioclásio: Euédricos, baixo relevo, incolor, cor de interferência cinza de 1^a ordem, sem estruturas, geminação polissintética na maioria dos cristais (não foi possível analisar ângulo de extinção), sem clivagem presente, fraturada, com matriz variando de 0,2 até 0,5mm e hábito em ripas. Como fenocristais, variam de 0,5 à 1mm, hábito prismático. Apresentam alteração localizada de sericita.

Clinopiroxênio: Euédricos à subédricos, alto relevo, incolor, cor de interferência de azul de 1^a ordem até laranja de 2^a ordem, sem estruturas, tamanho variando de 0,2 até 0,5mm na matriz e 0,5 até 1mm como fenocristal, sem clivagem aparente, frequentemente fraturada, com substituição ocasional completa ou quase completa por clorita ou óxidos de ferro como ilmenita e magnetita. Tipo de clinopiroxênio provavelmente é Augita.

Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euédricos, hábito de losango e tamanho submilimétrico. Como secundários são Anédricos, tamanho variando de 0,1 até 1mm, presentes substituindo clinopiroxênio preservando o hábito original ou com hábito de face esquelética. Os minerais prováveis são Magnetita e Ilmenita.

Clorita: Ocorre substituindo o clinopiroxênio mantendo o hábito original, coloração verde claro à verde musgo, médio relevo, cor de interferência azul anômalo, sem estruturas, sem clivagem, pouco fraturado, tamanho de 0,5mm ou submilimétrico. Muitas vezes encontra-se preenchendo as fraturas de cristais de clinopiroxênio.

ORDEM DE CRISTALIZAÇÃO

Plagioclásio

Clinopiroxênio

UFRJ Rio de Janeiro 2020

			T		
Ilmenita					
Magnetita					
COMPOSIÇÃO MODAL					
Plagioclásio					
Clinopiroxênio					
Ilmenita					
Magnetita					
CLASSIFICACÃO/NOMENCLATURA					
Diabásio (Basalto)					
	ANEXO 33				
	1	Jescrição Petrografica de Rocha Ignea			
here la constant l	T	Desnonsával: Demarda Derhagalete Vhote	-		
Geniadia Sedimentar	I I	Neter 28/01/2010			
UFRJ	1	Jata: 28/01/2019			
DADOS GERAIS	I	Localidade: Ilha de Pargos			
Amostra: IPG-7A	(Coord. UTM:			
() Orientada	(Coord. Geo:			
Domínio Geológico: Domínio Tectônico de Cabo	o Frio				
ASPECTOS TEXTURAIS/COLORAÇÃO					
Índice de Cor: Melanocrático					
Granulação: Fino (não passa de 3mm)					
Microtextura: Cristais de Plagioclásio Subofít	ticos e Ofíticos	com os cristais de Clinopiroxênio, ine	quigranular		
porfirítico com matriz fina de plagioclásio, clino	piroxênio e óxido	de ferro. Fenocristais de plagioclásio e clir	opiroxênio		
com tamanho variando de 0,5 à 2mm. Muita a	Îteração de clinop	iroxênio para óxido de ferro e de plagio	clásio para		
sericita. Alguns plagioclásios apresentam zonean	nento.		-		
(X) Idiomórfica () Hipidiomórfica ()	Xenomórfica				
(X) Holocristalina () Hipocristalina ()	Hipoialina () Holocristalina			
COMPOSIÇÃO MINERALÓGICA					
Minerais Essenciais: Plagioclásio e Clinopiroxên	io				
Minerais Acessórios: Ilmenita e Magnetita					
Minerais Secundários: Sericita, Ilmenita e Magne	etita.				
DESCRIÇÃO DOS MINERAIS					
Plagioclásio: Fuédricos à subédricos baixo rel	evo incolor cor	de interferência cinza de 1ª ordem sem	estruturas		
geminação polissintética na maioria dos cristais	(não foi possível :	analisar ângulo de extinção) sem clivage	m presente		
fraturada com matriz variando de 0.2 até 0.5m	m e hábito em rin	as Como fenocristais variam de 0.5 à 21	mm hábito		
prismático. Apresentam alteração localizada de s	ericita		iiii, iiuoite		
Clinopiroxênio: Subédricos alto relevo incolor	cor de interferên	ria de azul de 1ª ordem até larania de 2ª o	ordem sem		
estruturas tamanho variando de 0.2 até 0.5mm na matriz e 0.5 até 2mm como fenocristal sem clivagem anarente					
frequentemente fraturada, com substituição ocasional completa ou quase completa de óxidos de ferro como ilmenita e					
magnetita. Tino de clinopirovênio provavelmente é Augita					
Óxidos de Ferro: Ocorrem em forma de minerais acessórios ou secundários. Como acessórios costumam ser Euádricos					
hábito de losango e tamanho submilimétrico. Como secundários são Anédricos tamanho variando de 0.1 até 1mm					
presentes substituindo clinopiroxênio preservando o hábito original ou com hábito de face esquelética. Os minerais					
prováveis são Magnetita e Ilmenita.					
ORDEM DE CRISTALIZAÇÃO					
Disgioglésia					
r lagiociasio					
			ļ		
Ilmenita					

Magnetita	
COMPOSIÇÃO MODAL	
Plagioclásio	
Clinopiroxênio	
Ilmenita	
Magnetita	
CLASSIFICAÇÃO/NOMENCLATURA	
Diabásio (Basalto)	

UFRJ Rio de Janeiro 2020