

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA

INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA MONOGRAFIA DE GRADUAÇÃO

CONTRIBUIÇÃO À GEOLOGIA DA MINERALIZAÇÃO AURÍFERA SÃO SEBASTIÃO DA JAGUARA, MUNICÍPIO DE ONÇA DE PITANGUI (MG)

VITOR CAPUTO NETO

ORIENTADOR: Prof. Dr. Atlas Vasconcelos Corrêa Neto

> JANEIRO DE 2014 RIO DE JANEIRO - RJ - BRASIL

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA

INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA MONOGRAFIA DE GRADUAÇÃO

CONTRIBUIÇÃO À GEOLOGIA DA MINERALIZAÇÃO AURÍFERA SÃO SEBASTIÃO DA JAGUARA, MUNICÍPIO DE ONÇA DE PITANGUI (MG)

VITOR CAPUTO NETO

Trabalho Final de Curso de Graduação em Geologia do Instituto de Geociências, Universidade Federal do Rio de Janeiro – UFRJ, apresentado como requisito necessário para obtenção do grau de Geólogo.

Orientador: Prof. Dr. Atlas Vasconcelos Corrêa Neto

Aprovada em_____de _____de 2014.

Por:

Orientador: Prof. Dr. Atlas Vasconcelos Corrêa Neto

Prof. Dr. Everton Marques Bongiolo

Prof. Dr. José Carlos Sícoli Seoane

JANEIRO DE 2014 RIO DE JANEIRO - RJ - BRASIL

AGRADECIMENTOS

Agradeço primeiramente a toda minha família, principalmentes aos meus pais, que me apoiaram e incentivaram da melhor forma possível para que eu conquistasse minha formação profissional.

À IAMGOLD Corporation, especialmente ao geólogo Milton G. B. Prado (*Country Manager, Brazil*), pelo incentivo, financiamento e permissão para utilização dos dados utilizados neste trabalho.

Ao meu orientador por todos os ensinamentos recebidos e pelo apoio recebido durante todos esses anos. Agradeço também aos demais professores do curso de graduação de Geologia da UFRJ pela contribuição ao meu crescimento acadêmico e formação profissional, em especial aos profs. André Ribeiro e Julio C. Mendes.

A toda equipe do LABSONDA do DEGEO - UFRJ, que disponibilizaram o laboratório sempre que foi solicitado para realização das análises microscópicas, especialmente a professora Isabel Ludka.

Aos amigos que fiz ao longo desta caminhada, que me acompanharam durante meu crescimento profissional e pessoal e tornaram essa conquista muito mais prazerosa. Agradeço especialmente à Maria Taryn R. Campos pelo tempo que esteve ao meu lado e por toda paciência e compreensão que teve nos momentos mais difíceis.

SUMÁRIO

AGRADECIMENTOS	iii
SUMÁRIO	iv
RESUMO	vi
LISTA DE FIGURAS	vii
LISTA DE TABELAS	xiii
1. INTRODUÇÃO	1
1.1 Objetivo	1
1.2 Localização e vias de acesso	1
1.3 Materiais e métodos	3
1.4 Terminologia	5
2. CONTEXTO GEOLÓGICO REGIONAL	6
2.1 Cráton São Francisco	6
2.2 Quadrilátero Ferrífero	7
2.3 Greenstone belt Pitangui	10
3. GEOLOGIA DA ÁREA DE ESTUDO	14
3.1 Rochas metamáficas	14
3.2 Rochas metaultramáficas	21
3.3 Formações ferríferas bandadas	25
3.4 Rochas metassedimentares clásticas	34
3.5 Turmalinito (hidrotermalito)	41
4. GEOLOGIA ESTRUTURAL E MICROTECTÔNICA	44
5. METAMORFISMO	49
6. MINERALIZAÇÃO AURÍFERA	52

7. CONCLUSÕES

8. BIBLIOGRAFIA

60

RESUMO

CAPUTO NETO, V. **Contribuição à geologia da mineralização aurífera São Sebastião da Jaguara, município de Onça de Pitangui (MG)**. 2014. 63p. Trabalho de Conclusão de Curso (Bacharelado em Geologia) - Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

A mineralização aurífera São Sebastião da Jaguara está inserida no contexto das rochas constituintes de um cinturão metavulcânico e metassedimentar que ocorre em uma faixa aflorante de direção NW-SE entre as cidades de Pitangui e Pará de Minas, extremo noroeste do Quadrilátero Ferrífero. Este cinturão metamórfico, denominado Greenstone belt Pitangui, é tido como cronocorrelato ao Greenstone belt Rio das Velhas, sendo adaptada para esta região a litoestratigrafia já consagrada para a porção central do Quadrilátero Ferrífero. Na área estudada, ocorrem, em subsuperfície, sucessões rochosas caracterizadas pela intercalação de formações ferríferas bandadas, rochas metamáficas, metaultramáficas e metassedimentares clásticas. A principal estrutura presente é uma foliação que se apresenta paralela/subparalela ao acamamento, orientada segundo um strike NW-SE com mergulhos para NE. Esta foliação encontra-se dobrada em dobras abertas de planos axiais NW-SE e eixos sub-horizontais. Uma foliação ardosiana/filítica pretérita, transposta pela foliação principal, é caracterizada pela presença de relictos de dobras e arcos poligonais constituídos por micas, clorita e anfibólios. O metamorfismo máximo atingido ocorre em fácies xisto verde, zona da biotita. Além da ocorrência de biotita, clorita e tremolita-actinolita, a presença de grunerita-cummingtonita nas formações ferríferas ratifica que o grau metamórfico tenha ocorrido nessas condições de pressão e temperatura. As maiores concentrações de ouro estão presentes onde aparecem formações ferríferas bandadas, preferencialmente onde estas ocorrem com intercalações de níveis de bandas-S. O ouro ocorre diretamente associado aos sulfetos, provavelmente constituindo liga metálica junto ao bismuto e a prata. A mineralização é, possivelmente, contemporânea à deformação que gerou a foliação principal.

Palavras chave: mineralização aurífera, cinturão metavulcânico e metassedimentar, *Greenstone belt* Pitangui

LISTA DE FIGURAS

Figura 1 - Localização da folha topográfica 1:100.000 Pará de Minas no estado de Minas Gerais e sua articulação geográfica em relação a outras folhas 1:100.000 do IBGE.	2
Figura 2 - Imagem modificada do <i>Google Earth</i> indicando em roxo a rodovia BR- 352, que liga os municípios de Pará de Minas e Onça de Pitangui, e a posição do distrito de São Sebastião da Jaguara em relação a estes municípios (imagem do satélite <i>Landsat</i> - bandas RGB 321/data de aquisição: 04/09/2013 - Coordenadas UTM/Datum Córrego Alegre).	2
Figura 3 - Mapa geológico simplificado do CSF e seus limites definidos por faixas móveis Panafricanas-Brasilianas (modificado de Alkmim <i>et al.</i> , 1993).	6
Figura 4 - Mapa geológico simplificado da porção sul do CSF com destaque ao Quadrilátero Ferrífero (modificado de Lobato <i>et al.</i> , 2001a).	8
Figura 5 - Coluna estratigráfica do Quadrilátero Ferrífero (modificado de Alkmim & Marshak, 1998).	9
Figura 6 - Localização do <i>Greenstone belt</i> Pitangui em relação ao Quadrilátero Ferrífero e do Lineamento Pitangui, que representa a principal feição tectônica da região (modificado de Corrêa Neto <i>et al.</i> , 2012).	10
Figura 7 - Coluna litoestratigráfica para a faixa de afloramentos do <i>Greenstone</i> <i>belt</i> Pitangui (Folha Pará de Minas) e em suas adjacências (modificado de Romano, 2007).	12
Figura 8 - Xisto verde fino apresentando fenocristais centimétricos de feldspato (destacados por setas vermelhas). Amostra FJG20 305 m.	14
Figura 9 - Fotomicrografia de xisto verde mostrando tremolita-actinolita (tr-act) orientada segundo a foliação. Amostra FJG21 131,20 m. Luz transmitida, nicóis cruzados.	16
Figura 10 - Fotomicrografia de metabasito mostrando hornblenda (hbl) substituída por clorita (chl), que apresenta cor de interferência indicativa de composição rica em magnésio. Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.	16
Figura 11 - Fotomicrografia de metabasito mostrando plagioclásio intensamente substituído por epidoto (ep). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.	17
Figura 12 - Fotomicrografia de metabasito mostrando calcopirita (cpy) disseminada e inclusa em cristal de pirita (py). Amostra FJG23 375,07 m. Luz refletida, nicóis paralelos.	18
Figura 13 - Fotomicrografias de metabasito mostrando calcopirita (cpy) e pirita (py) ao longo do plano de clivagem de tremolita-actinolita (tr-act). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).	18

vii

Figura 14 - Fotomicrografias de metabasito mostrando ilmenita (ilm) substituída por titanita (ttn). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).	19
Figura 15 - Fotomicrografia de metabasito mostrando textura granofírica (destacada por seta vermelha) representada pelo intercrescimento entre k-feldspato e quartzo. Feição de origem ígnea típica de rochas subvulcânicas a vulcânicas. Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.	19
Figura 16 - Diagrama TAS (Middlemost, 1994) indicando as rochas metamáficas como derivadas de rochas ígneas de composição basáltica a andesito basáltica. Na ₂ +K ₂ O - total de álcalis; SiO ₂ - total de sílica.	20
Figura 17 - Clorita-tremolita-actinolita xisto fino de cor acinzentada. Amostra FJG22 113,52 m.	21
Figura 18 - Fotomicrografia de rocha metaultramáfica mostrando foliação definida por clorita (chl) e tremolita-actinolita (tr-act). Amostra FJG22 77 m. Luz transmitida, nicóis cruzados.	22
Figura 19 - Fotomicrografia de rocha metaultramáfica mostrando tremolita- actinolita com bordas corroídas inclusa em blasto de carbonato. Amostra FJG 113,52 m. Luz transmitida, nicóis cruzados.	23
Figura 20 - Fotomicrografias de rocha metaultramáfica mostrando clorita (chl), biotita (bt) e tremolita actinolita (tr-act) em associação. Amostra FJG22 113,52 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).	23
Figura 21 - Fotomicrografia de rocha metaultramáfica mostrando mineral opaco (op) associado a cristal de anatásio/rutilo (ant/rt). Amostra FJG22 113,52 m. Luz transmitida, nicóis paralelos.	24
Figura 22 - Diagrama ternário de Jensen (1976), apontando as amostras analisadas no campo dos basaltos komatiíticos. FeT - ferro total; Ti - titânito; Al - alumínio; Mg - magnésio.	24
Figura 23 - Fotomicrografia de formação ferrífera caracterizada pela intercalação de lâminas claras e escuras. Tal bandamento é interpretado como sedimentar. Amostras FJG22 218,24 m (esquerda) e FJG22 181,42 m (direita).	25
Figura 24 - Fotomicrografia de formação ferrífera mostrando falhas (brechas cataclásticas ao longo dos planos de falha) deslocando o acamamento. Amostra FJG22 98,56 m.	26
Figura 25 - Fotomicrografias de formação ferrífera mostrando banda escura composta majoritariamente por magnetita maciça. Amostra FJG22 98,56 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).	27

- Figura 26 Fotomicrografias de formação ferrífera mostrando magnetita (mag) euédrica sobrecrescendo e a foliação definida pelos filossilicatos (biotita-bt; clorita-chl) e apresentando inclusão de pirrotita (po). Amostra FJG22 98,56 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).
- Figura 27 Fotomicrografia de formação ferrífera mostrando pirrotita (po) e calcopirita (cpy) formadas por substituição da magnetita (mag). Amostra FJG22 218,24 m. Luz refletida, nicóis paralelos.
- Figura 28 Fotomicrografia de formação ferrífera mostrando gruneritacummingtonita (gru-cum; série ferromagnesiana) bem formada, anfibólio típico de formações ferríferas. Amostra FJG22 218,24 m. Luz transmitida, nicóis cruzados.
- Figura 29 Fotomicrografia de formação ferrífera mostrando clorita (chl)
substituindo tremolita-actinolita (tr-act). Amostra FJG22 181,42 m.
Luz transmitida, nicóis cruzados.29
- Figura 30 Fotomicrografia de banda-S mostrando paletas de biotita (bt) e
clorita (chl) inclusas em pirrotita (po). Amostra FJG22 444 m. Luz
transmitida (a) e luz refletida (b), nicóis paralelos.30
- Figura 31 Fotomicrografia de banda-S mostrando pirrotita (po) e calcopirita (cpy) inclusas em cristal de arsenopirita. Amostra FJG23 444,84 m. Luz refletida, nicóis paralelos. 31
- Figura 32 Fotomicrografias de banda-S mostrando magnetita (mag) inclusa em pirrotita (po), a qual já se estava inclusa em um cristal de arsenopirita (apy). Pirrotita destacada por círculo vermelho na figura a. Amostra FJG23 444 m. Luz refletida, nicóis paralelos.
 32
- Figura33 Fotomicrografiasde banda-Smostrandoturmalina(tur)sobrecrescida em cristaisde biotita (bt) e clorita (chl).Amostra FJG23445,63 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).32
- Figura 34 Fotomicrografias de banda-S mostrando magnetita euédrica sobrecrescida na foliação metamórfica. Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).
- Figura 35 Fotomicrografia de banda-S mostrando associação entre tremolita actinolita e grunerita-cummingtonita. Amostra FJG22 197,46 m. Luz transmitida, nicóis cruzados.
- Figura 36 Fotomicrografia de biotita xisto feldspático mostrando textura heterogênea presente nestas rochas. Cristais maiores de quartzo (qtz) e feldspato (fsp) ocorrem em uma matriz fina composta por micas, quartzo, feldspato e carbonato. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.
- Figura 37 Fotomicrografia de biotita xisto feldspático mostrando cristal maior de quartzo (qtz) com extinção ondulante e cristal de plagioclásio (pl) apresentando geminação polissintética. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.

36

35

33

33

28

28

- Figura 38 -Fotomicrografia de biotita xisto feldspático mostrando pirita (py) bem formada sobrecrescida em cristal de pirrotita (po). Amostra FJG23 460,40 m. Luz refletida, nicóis paralelos.
- Figura 39 Fotomicrografia de quartzo xisto feldspático de textura heterogênea caracterizada por cristais maiores de quartzo em matriz fina composta por quartzo, feldspato, carbonato e micas. Amostra FJG20 196,70 m. Luz transmitida, nicóis cruzados.
- Figura 40 Fotomicrografias de quartzo xisto feldspático mostrando cristais de turmalina (tur) sobrecrescidos na foliação definida pelas micas. Amostra FJG20 150,84 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).
- Figura 41 Fotomicrografias de turmalina quartzito mostrando arsenopirita (apy) com inclusões de turmalina (tur) e anatásio/rutilo (ant/rt). Amostra FJG23 453,81 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b). 39
- Figura 42 Fotomicrografia de filito carbonoso mostrando a foliação bem definida sobrecrescida por cristais de turmalina (tur). Amostra FJG23 449,46 m. Luz transmitida, nicóis paralelos. **40**
- Figura 43 Fotomicrografias de filito carbonoso mostrando anatásio/rutilo (ant/rt), pirrotita (po) e arsenopirita (apy) em associação. Amostra FJG23 449,46 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).
- Figura 44 Fotomicrografias de turmalinito mostrando cristais de turmalina (tur) definindo a orientação preferencial da rocha. Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos (a) e cruzados (b). 41
- Figura 45 Fotomicrografia de turmalinito mostrando cristais zonados de turmalina (tur). Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos.
- Figura 46 Fotomicrografia de turmalinito mostrando turmalina (tur) com frequentes inclusões de quartzo (qtz). Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos (a) e cruzados (b).
- Figura 47 Fotomicrografias de turmalinito mostrando arsenopirita (apy) sobrecrescida em cristal de turmalina (tur). Amostra FJG23 431,58 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b). 43
- Figura 48 Fotomicrografias de turmalinito mostrando cristais de clorita e turmalina inclusos em arsenopirita. Amostra FJG23 431,58 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b). 43
- Figura 49 Fotomicrografias de banda-S mostrando a foliação principal bem definida por clorita (chl) e tremolita-actinolita (tr-act). Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados (a) e nicóis paralelos (b). 44

Х

36

38

38

40

42

- Figura 50 Fotomicrografia de xisto feldspático mostrando a foliação principal definida por micas. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.
- Figura 51 Fotomicrografia de filito carbonoso mostrando foliação espaçada (S₂) preservada. Amostra FJG23 449,46 m. Luz transmitida, nicóis paralelos.
- Figura 52 Estereogramas cedidos pela IAMGOLD referentes à foliação principal, que se encontra orientada segundo o *strike* NW-SE, com mergulhos para NE (a), e está relacionada a dobras com eixos subhorizontais (b; caimentos suaves para NW e SE).
- Figura 53 Fotomicrografias de xisto feldspático mostrando microdobra D_2 relicta, evidenciando a transposição de uma foliação/clivagem pretérita pela foliação principal. Amostra FJG20 196,70 m. Luz transmitida, nicóis cruzados.
- Figura 54 Fotomicrografias de banda-S mostrando cristal de tremolitaactinolita (tr-act) preservando microdobra D₂ em relação à foliação S₂. Na figura 54a, o cristal ocorre praticamente com extinção total, girando a platina em aproximadamente 50°, é possível observar a microdobra bem definida (b). Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados.47
- Figura 55 Fotomicrografias de rocha metaultramáfica mostrando arcos poligonais compostos por tremolita-actinolita e biotita. Destaque ao cristal de tremolita-actinolita (tr-act) preservando microdobra D₂. Amostra FJG22 113,52 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).
- Figura 56 Fotomicrografia de banda-S mostrando a foliação principal dobrada por microdobras D₃. Amostra FJG23 156,57 m. Luz transmitida, nicóis cruzados.
- Figura 57 Fotomicrografia de formação ferrífera bandada mostrando a foliação principal dobrada por microdobras D₃. É possível observar que esta foliação ocorre paralela/subparalela ao acamamento, que também é dobrado por D₃. Amostra FJG22 218,24 m. Luz transmitida, nicóis cruzados.
- Figura 58 Diagrama de estabilidade relativa para minerais típicos de formações ferríferas bandadas em função do grau metamórfico em que estes ocorrem (modificado de Klein, 1983). Em cinza estão destacados os principais minerais metamórficos reconhecidos nas formações ferríferas estudadas.
- Figura 59 Diagrama com as associações metamórficas mais importantes para os litotipos nos quais estas ocorrem.
- Figura 60 Campo metamórfico de pressão e temperatura em diagrama baseado em Yardley (1989) e Trouw (não publicado). Biotita e actinolita são os minerais que restringem o campo metamórfico à fácies xisto verde (cor laranja).

45

46

45

46

48

47

48

50

Figura 61 - Gráfico de concentração (ppb) de ouro (Au) em função da metragem do furo FJG23.	52
Figura 62 - Gráfico de concentração (ppm) de enxofre (S) em função da metragem do furo FJG23.	53
Figura 63 - Gráfico de concentração (ppm) de arsênio (As) em função da metragem do furo FJG23.	54
Figura 64 - Gráfico de concentração (ppm) de bismuto (Bi) em função da metragem do furo FJG23.	55
Figura 65 - Gráfico de concentração (ppm) de cobre (Cu) em função da metragem do furo FJG23.	56
Figura 66 - Gráfico de concentração (ppm) de chumbo (Pb) em função da metragem do furo FJG23.	56
Figura 67 - Gráfico de concentração (ppm) de zinco (Zn) em função da metragem do furo FJG23.	57

LISTA DE TABELAS

Tabela 1 - Listagem das amostras coletadas para confecção de lâminas delgadas.Nesta tabela, estão indicadas as amostras cujas lâminas delgadas foram confeccionadas em seção polida para o estudo em luz refletida	4
Tabela 2 - Composição modal média para as rochas metamáficas	15
Tabela 3 - Composição modal média para as rochas metultramáficas	22
Tabela 4 - Composição modal média para as formações ferríferas bandadas	26
Tabela 5 - Divisão de amostras de níveis de bandas-S em função da composição mineralógica	30
Tabela 6 - Composição modal média para os biotita xistos feldspáticos	34
Tabela 7 - Composição modal média para os quartzo xistos feldspáticos	37
Tabela 8 - Composição modal média para os filitos carbonosos	39
Tabela 9 Composição modal para a amostra de turmalinito	41
Tabela 10 - Relação entre o crescimento dos principais minerais metamórficos e as distintas fases deformacionais reconhecidas	51
Tabela 11 - Relação entre o crescimento de sulfetos e os eventos deformacionais definidos. O ouro apresenta-se, provavelmente, em ligas de Au-Bi-Ag inclusas na estrutura dos sulfetos. Assim, é provável que a formação da mineralização tenha ocorrido durante a geração dos sulfetos, ou seja, contemporânea/tardia ao evento compressivo D ₂	59

1. INTRODUÇÃO

1.1 Objetivo

O presente trabalho possui como objetivo contribuir ao entendimento da geologia da mineralização aurífera São Sebastião da Jaguara. Esta mineralização está inserida no contexto das rochas que caracterizam o *Greenstone belt* Pitangui, cinturão metavulcânico e metassedimentar tido como cronocorrelato ao *Greenstone belt* Rio das Velhas.

Para alcançar a proposta inicial, foram definidas as seguintes metas:

- Caracterização petrográfica dos diferentes litotipos coletados através de descrições de amostras de mão e de lâminas delgadas. O estudo de lâminas delgadas foi realizado em luz transmitida e refletida, onde procurou-se reconhecer minerais possivelmente relacionados à mineralização aurífera.
- Entender o posicionamento das rochas em subsuperfície através de seções geológicas confeccionadas a partir da análise de dados de furos de sondagem.

• Tratar e interpretar dados de análises químicas dos litotipos estudados, reconhecendo possíveis elementos que estejam associados à mineralização aurífera.

1.2 Localização e vias de acesso

A área de estudo encontra-se na parte centro-sul do estado de Minas Gerais (sudeste do Brasil), localizada na porção central da folha topográfica 1:100.000 Pará de Minas (SE-23-Z-C-IV) do IBGE (**Figura 1**), situada mais precisamente no distrito de São Sebastião da Jaguara, entre os municípios de Pará de Minas e Onça de Pitangui (**Figura 2**), 100 km a noroeste de Belo Horizonte.

O acesso à área, a partir do Rio de Janeiro, se dá pela rodovia BR-040, que passa por municípios como Juiz de Fora, Conselheiro Lafaiete e Barbacena, até chegar a Belo Horizonte. Na capital mineira, deve-se seguir pela BR-262 em direção a Pará de Minas, que corresponde a maior cidade nas proximidades da área de estudo. Próximo a Pará de Minas, é necessário seguir pela rodovia BR-352 (**Figura 2**) em direção a Onça de Pitangui. A partir daí, deve-se utilizar estradas secundárias e trilhas.

Figura 1 - Localização da folha topográfica 1:100.000 Pará de Minas no estado de Minas Gerais e sua articulação geográfica em relação a outras folhas 1:100.000 do IBGE.

Figura 2 - Imagem modificada do *Google Earth* indicando em roxo a rodovia BR-352, que liga os municípios de Pará de Minas e Onça de Pitangui, e a posição do distrito de São Sebastião da Jaguara em relação a estes municípios (imagem do satélite *Landsat* - bandas RGB 321/data de aquisição: 04/09/2013 - Coordenadas UTM/Datum Córrego Alegre).

1.3 Materiais e métodos

A realização do presente trabalho contou com o apoio da empresa IAMGOLD BRASIL, que cedeu as amostras estudadas, financiou a confecção de lâminas delgadas e as análises químicas realizadas, além de fornecer um mapa geológico e dados de testemunhos de sondagem.

O trabalho englobou as seguintes etapas: pesquisa bibliográfica, coleta de amostras, etapa de laboratório e etapa de escritório.

A pesquisa bibliográfica foi realizada com o intuito de se obter um embasamento teórico sobre a área do *Greenstone belt* Pitangui. A principal finalidade foi obter informações sobre a relação entre este cinturão metamórfico e entidades maiores, como o Quadrilátero Ferrífero e o Cráton São Francisco.

Posteriormente, foram coletadas as amostras com a finalidade de confeccionar lâminas delgadas e prepará-las para as análises químicas. Para a confecção de seções delgadas, foram coletadas 40 amostras de diferentes litotipos, sendo que 17 lâminas delgadas foram confeccionadas em seção polida para o estudo microscópico não só em luz transmitida, mas também em luz refletida (**Tabela 1**). Para as análises de rocha total foram coletadas 12 amostras de rochas metamáficas e metaultramáficas (**ANEXO I**). Foram ainda coletadas 245 amostras sequenciais (mesmo furo de sondagem - FJG23) para análises químicas de 33 elementos, utilizadas na interpretação de dados relacionados à mineralização aurífera (**ANEXO II**).

A etapa de laboratório pode ser dividida em dois itens, descritos a seguir:

Petrografia - as amostras selecionadas foram lavadas, identificadas, numeradas e enviadas para o Laboratório de Laminação M3GL, na cidade de Mariana, Minas Gerais. Lá, foram confeccionadas as lâminas delgadas de acordo com as seções de interesse, previamente selecionadas. As descrições de tais lâminas foram realizadas nos microscópios Carl Zeiss® Axioplan e Nikon® Eclipse E200, em luz transmitida e refletida, nos laboratórios de Microssonda Eletrônica (LABSONDA) e de petrografia do Departamento de Geologia da UFRJ. Esse estudo permitiu a identificação das principais características das amostras, como mineralogia, granulação, estruturas e texturas. Durante estas descrições, foram tiradas fotomicrografias dos litotipos estudados com o auxílio da câmera AxioCam do Laboratório de Microssonda Eletrônica (LABSONDA) da UFRJ.

 Geoquímica - as amostras selecionadas para as análises geoquímicas foram enviadas para o laboratório Acme Labs, na cidade de Itaituba, SãoPaulo. Para se obter dados de rocha total, foram realizadas 12 análises pelo método ICP-ES para elementos maiores e menores (ANEXO I). O mesmo número de análises foi feito pelo método ICP-MS para elementos traços. Para adquirir dados sobre a mineralização, foram realizadas ainda 245 análises pelo método ICP-ES de 33 elementos (ANEXO II).

	* • , ,•		T • •
Amostra	Litotipo	Amostra	Litotipo
FJG20 94.25	filito carbonoso	FJG22 252	metamáfica
FJG20 150.84	xisto feldspático (metassedimento)	FJG22 264	metamáfica
FJG20 191.21	xisto feldspático (metassedimento)	FJG23 293.39 (polida)	xisto feldspático (metassedimento)
FJG20 196.70	xisto feldspático (metassedimento)	FJG23 332	xisto feldspático (metassedimento)
FJG20 305	metamáfica	FJG23 375.07 (polida)	metamáfica
FJG20 307.82	metamáfica	FJG23 398.56	metamáfica
FJG 21 142,37	xisto feldspático (metassedimento)	FJG23 427.29 (polida)	formação ferrífera
FJG21 156.57 (polida)	banda-S	FJG23 431.58 (polida)	turmalinito
FJG21 176.13	metamáfica	FJG23 433.77	xisto feldspático (metassedimento)
FJG21 245.80	xisto feldspático (metassedimento)	FJG23 438.23	xisto feldspático (metassedimento)
FJG21 286.04	metamáfica	FJG23 444 (polida)	banda-S
FJG22 77	metaultramáfica	FJG23 444.84 (polida)	banda-S
FJG22 92.80	xisto feldspático (metassedimento)	FJG23 445.63 (polida)	banda-S
FJG22 98.56 (polida)	formação ferrífera	FJG23 446.37	xisto feldspático (metassedimento)
FJG22 113.52	metaultramáfica	FJG23 449.46 (polida)	filito carbonoso
FJG22 131.10	metamáfica	FJG23 453.81 (polida)	turmalina quartzito
FJG22 161.56	metamáfica	FJG23 458.19 (polida)	banda-S
FJG22 181.42 (polida)	formação ferrífera	FJG23 459.76 (polida)	xisto feldspático (metassedimento)
FJG22 197.46 (polida)	banda-S	FJG23 460.40 (polida)	xisto feldspático (metassedimento)
FJG22 218.24 (polida)	formação ferrífera	FJG23 464.50	metamáfica

Tabela 1 - Listagem das amostras coletadas para confecção de lâminas delgadas. Nesta tabela,estão indicadas as amostras cujas lâminas delgadas foram confeccionadas em seção polida para oestudo em luz refletida

A etapa de escritório iniciou-se com a confecção e interpretação de gráficos geoquímicos. Os gráficos de rocha total foram confeccionados no *software GcdKit 2.3* (Janousek *et al.*, 2006), já os gráficos relacionados à mineralização foram produzidos no *software Microsoft Excel 201*0. Este software foi utilizado ainda na confecção das tabelas apresentas neste trabalho. Posteriormente, a partir de dados de testemunhos de sondagem, foram confeccionadas as seções geológicas utilizadas na interpretação do comportamento das rochas em subsuperfície. Isso se deu através do *software CorelDRAW Graphics Suite X6*. Finalmente, esta monografia foi produzida através do *software Microsoft Office Word* 2010. As referências bibliográficas estão organizadas de acordo com as normas da Revista Brasileira de Geociências, tendo como base o volume 40, número 1 de março de 2010.

1.4 Terminologia

A nomenclatura adotada para identificar as amostras retiradas dos furos de sondagem é a mesma utilizada pela IAMGOLD. Nesta nomenclatura, primeiro aparece a sigla do furo de sondagem de onde a amostra foi retirada. Esta sigla é seguida de uma numeração correspondente à metragem ao longo dos testemunhos, iniciada na "boca" do furo de sondagem. Exemplo: amostra FJG23 293,39 m - esta amostra foi retirada do furo Jaguara 23 (FJG23) na metragem 293,39.

Com relação à proporção dos minerais que constituintes das rochas descritas, foram utilizadas a seguintes denominações:

• Minerais essenciais - são os minerais que ocorrem em maior quantidade, correspondendo a mais que 5% de toda composição da rocha.

• Minerais acessórios - minerais que se apresentam em quantidades pequenas, variando de 1 a 5%.

• Mineral traço - minerais que aparecem em quantidades muito restritas, abaixo de 1%.

2. CONTEXTO GEOLÓGICO REGIONAL

2.1 Cráton São Francisco

O cráton São Francisco (Almeida, 1977) está localizado na porção centro-leste do Brasil e corresponde ao resultado de diversas amalgamações de blocos crustais de distintas idades (Arqueano ao Paleoproterozóico) tendo seus limites definidos por faixas móveis geradas durante o evento orogenético Panafricano-Brasiliano (fim do Neoproterozóico) devido a diversas colisões diacrônicas. Os limites do CSF (**Figura 3**) equivalem às faixas móveis neoproterozóicas Brasília, a sul e a oeste, Rio Preto, a noroeste, Riacho do Pontal e Sergipana, a norte, Araçuaí, a sudeste, e Ribeira, a sul (Almeida, 1977; Alkmim, 2004; Tupinambá *et al.*, 2007).

Figura 3 - Mapa geológico simplificado do CSF e seus limites definidos por faixas móveis Panafricanas-Brasilianas (modificado de Alkmim et al., 1993).

Almeida (1981) postula que o CSF possuíra um antecessor, por ele denominado como cráton Paramirim. Este cráton teria sido o resultado de diversas amalgamações de blocos mesoarqueanos, alcançando sua estabilidade ao final do ciclo Rio das Velhas (~2,8-2,65 Ga). Posteriormente, durante a transição do Neoarqueano para o Sideriano (Paleoproterozóico), a região cratônica foi submetida a um regime extensional, o que resultou em sua fragmentação e no desenvolvimento de bacias plataformais de margem passiva (Alkmim & Marshak, 1998). Ao longo do período Riaciano (~2,2-2,1 Ga), houve uma inversão tectônica imposta por um novo ciclo orogenético, transformando as bacias de margem passiva em bacias *foreland* e sendo responsável pela formação dos cinturões Mineiro e Bahia Oriental (Teixeira *et al.*, 2000; Noce *et al.*, 2007).

O CSF é recoberto, em sua maior parte, por rochas metassedimentares proterozóicas e fanerozóicas, de modo que seu substrato ocorre exposto somente em duas regiões, no extremo sul e na porção leste. Neste cenário, o Quadrilátero Ferrífero está inserido na extremidade meridional do CSF, representando uma porção aflorante de seu embasamento.

2.2 Quadrilátero Ferrífero

O Quadrilátero Ferrífero cobre uma área de aproximadamente 700 km² no extremo sul do CSF (região centro-sul do estado de Minas Gerais; **Figura 4**) e é representado por três unidades principais (Dorr II, 1969; Baltazar & Zucchetti, 2007): terrenos granitognáissicos arqueanos, rochas metavulcânicas e metassedimentares de idade arqueana representadas pelo Supergrupo Rio das Velhas, e rochas metassedimentares e metavulcânicas paleoproterozóicas correspondentes ao Supergrupo Minas e ao Grupo Itacolomi (**Figura 5**).

Os terrenos granito-gnáissicos arqueanos (~3,2-2,9 Ga) são caracterizados por complexos metamórficos e correspondem predominantemente a gnaisses e migmatitos pertencentes às suítes TTG's (trondhjemito-tonalito-granodiorito), sendo representados por diversos domos (*e.g.*, Belo Horizonte, Bonfim, Caeté, Bação e Santa Bárbara) e compondo o embasamento do Quadrilátero Ferrífero.

Figura 4 - Mapa geológico simplificado da porção sul do CSF com destaque ao Quadrilátero Ferrífero (modificado de Lobato et al., 2001a).

O Supergrupo Rio das Velhas ocorre como unidade sobreposta aos complexos TTG's arqueanos, representado por um cinturão metamórfico tipo *greenstone belt* composto por rochas metavulcânicas (basáltica, komatiítica, riolítica), formações ferríferas bandadas (tipo Algoma) e metassedimentos terrígenos e químicos (Dorr II, 1969; Alkmim, 2004). Sua formação e sua evolução estão vinculadas ao ciclo orogenético Rio das Velhas (~2,8-2,65 Ga).

Sobrejacente ao *Greenstone belt* Rio das Velhas, encontra-se a unidade paleoproterozóica correspondente ao Supergrupo Minas, que engloba rochas metamórficas derivadas de sedimentos plataformais de margem passiva depositados em consequência da tafrogênese Sideriana (~2,4 Ga). O Grupo Sabará (topo do Supergrupo Minas) e o Grupo Itacolomi (metassedimentos clásticos sobrepostos ao Grupo Sabará) representam unidades

vinculadas à inversão tectônica gerada pelo orógeno Riaciano (~2,1 Ga) que transformou a bacia Minas em uma bacia de margem ativa, sendo interpretados por Alkmim & Marshak (1998), respectivamente, como depósitos sin e póstectônicos em relação a este evento orogenético.

Figura 5 - Coluna estratigráfica do Quadrilátero Ferrífero (modificado de Alkmim & Marshak, 1998).

2.3 Greenstone belt Pitangui

Segundo Romano (1993; 2007), a porção mais ocidental do Supergrupo Rio das Velhas corresponde a uma faixa aflorante de direção NW-SE, que se estende entre as cidades de Pitangui e Pará de Minas (extremo noroeste do Quadrilátero Ferrífero), representada por um cinturão de rochas metavulcânicas e metassedimentares tipo *greenstone belt*. Para este cinturão, denominado *Greenstone belt* Pitangui (*e.g.* Corrêa Neto *et al.*, 2012; **Figura 6**), foi adotada a divisão litoestratigráfica proposta por Romano (2007) em Grupos Nova Lima e Maquiné, tal como ocorre para o *Greenstone belt* Rio das Velhas na porção central do Quadrilátero Ferrífero.

Figura 6 - Localização do Greenstone belt Pitangui em relação ao Quadrilátero Ferrífero e do Lineamento Pitangui, que representa a principal feição tectônica da região (modificado de Corrêa Neto et al., 2012).

2.3.1 Contexto Geotectônico

A principal feição tectônica presente na região refere-se ao Lineamento Pitangui (**Figura 6**), citado inicialmente por Romano & Noce (1995) e posteriormente redefinido por Romano & Paiva (1997). O Lineamento Pitangui corresponde a um sistema de zonas de cisalhamento transcorrente de movimentação oblíqua (sinistral) e direção NW-SE, com largura de até 20 km, gerado durante a colisão de dois blocos crustais arqueanos representados pelos complexos metamórficos Divinópolis, a sul, e Belo Horizonte, a

nordeste. Tal idéia é ratificada pela presença de granitóides intrusivos, interpretados como sin a tarditectônicos, de assinatura geoquímica típica de ambientes colisionais continentais ao longo do lineamento (Romano *et al.*, 1995). O cinturão metamórfico correspondente ao *Greenstone belt* Pitangui é tido por Romano (2007) como uma bacia oceânica desenvolvida na zona colisional entre os dois núcleos crustais, e segundo o mesmo autor, esta colisão possui idade neoarqueana, de acordo com a granitogênese regional mais antiga (~2,7 Ga).

De acordo com Romano (2007), o evento orogenético Riaciano (~2,1 Ga) teria atuado nesta região de forma pouco intensa, produzindo feições tectônicas de menor amplitude e reativando antigas estruturas de idade arqueana referentes ao ciclo Rio das Velhas. A orogênese riaciana apresenta para esta região caráter transcorrente, com direção NW-SE, e ocorre em nível crustal bem menos profundo, comparado à sua atuação na porção central do Quadrilátero Ferrífero.

2.3.2 Litoestratigrafia

Romano (2007) considera a faixa aflorante correspondente ao *Greenstone belt* Pitangui como cronocorrelata ao *Greenstone belt* Rio das Velhas (idade neoarqueana) e propõe uma coluna litoestratigráfica para esta região e suas adjacências (**Figura 7**), adaptando a nomenclatura já consagrada para a porção central do Quadrilátero Ferrífero. A coluna litoestratigráfica formulada por Romano (2007) leva em consideração os complexos metamórficos (terrenos granito-gnáissicos meso a neoarqueanos que constituem o embasamento), o cinturão de rochas metavulcânicas e metassedimentares neoarqueano e os granitóides intrusivos de idade neoarquena.

O embasamento corresponde aos complexos metamórficos Divinópolis e Belo Horizonte, sendo representados por gnaisses, migmatitos e corpos granitóides intrusivos. O primeiro aflora numa extensa faixa a sudoeste do *Greenstone belt* Pitangui, já o segundo ocorre a nordeste do mesmo cinturão metamórfico.

O registro estratigráfico do *Greenstone belt* Pitangui inicia-se com o Grupo Nova Lima, que ocorre sobreposto aos complexos metamórficos do embasamento e representa a maior parte aflorante do Supergrupo Rio das Velhas na região. Para esta área, Romano (2007) dividiu o Grupo Nova Lima da seguinte forma:

- Sequência metaígnea e metassedimentar;
- Sequência metassedimentar e metavulcanossedimentar.

COLUNA LITOESTRATIGRÁFICA

Figura 7 - Coluna litoestratigráfica para a faixa de afloramentos do Greenstone belt Pitangui (Folha Pará de Minas) e em suas adjacências (modificado de Romano, 2007).

A sequência metaígnea e metassedimentar situa-se na base do Grupo Nova Lima e é subdividida por Romano (2007) em três unidades. A unidade basal engloba rochas metaultramáficas e metamáficas tais como talco-xistos, clorita-xistos, serpentinitos, clorita-anfibólio xistos, além de raros níveis anfibolíticos. Sobrejacente a estas rochas ocorre a unidade metassedimentar correspondente a filitos carbonosos, metacherts (ferruginosos ou puros), formações ferríferas bandadas, magnetititos e xistos/filitos compostos, em variadas proporções, por quartzo, muscovita, biotita e clorita. No topo dessa sequência está presente a unidade metamáfica/metaintermediária, representada por xistos com mineralogia correspondente a biotita, epidoto, clorita, carbonato, plagioclásio e quartzo.

O topo do Grupo Nova Lima é caracterizado pela sequência metassedimentar e metavulcanossedimentar, sendo esta subdividida por Romano (2007) em duas unidades. A base da sequência é representada pela unidade metavulcanossedimentar, que corresponde a rochas de origem vulcanoclástica e piroclástica, bem como a rochas sedimentares formadas pelo retrabalhamento dos nivéis piroclásticos. Acima destas rochas encontra-se a unidade metassedimentar, caracterizada por certa variedade litológica englobando metaturbiditos, quartzitos, metacherts puros a ferruginosos, filitos carbonosos e raros níveis

vulcanoclásticos. Romano (2007) ainda definiu um nível, denominado por ele como unidade de rochas hidrotermalmente alteradas, posicionado estratigraficamente entre as unidades metavulcanossedimentar e metassedimentar. Este nível é caracterizado por litotipos interpretados por Romano (2007) como hidrotermalitos formados pela alteração de rochas metassedimentares e metavulcanossedimentares.

A unidade que caracteriza o topo do Supergrupo Rio das Velhas para a região do *Greenstone belt* Pitangui é o Grupo Maquiné, e, de acordo com Romano (2007), equivale a uma sequência molássica com espessura máxima de 1000 metros que pode ser perfeitamente correlacionada à sequência metassedimentar de mesmo nome presente na parte central do Quadrilátero Ferrífero. As rochas que representam esta unidade correspondem a quartzitos puros a micáceos, níveis finos e descontínuos de conglomerados oligomíticos e polimíticos e finas camadas de micaxistos e filitos.

As unidades que englobam os corpos granitóides intrusivos correspondem à Suíte Intrusiva de Mato Dentro (~2,7 Ga) e ao Maciço Granitóide de Florestal (~2,59 Ga), datados, respectivamente, por Romano (1989) e Romano *et al.* (1991). Tais granitóides apresentam-se alinhados na direção NW-SE dispostos ao longo do sistema de zonas de cisalhamento do Lineamento Pitangui e alojados nas rochas que caracterizam o embasamento e o cinturão metamórfico.

3. GEOLOGIA DA ÁREA DE ESTUDO

Este capítulo possui o objetivo de caracterizar as amostras de rochas coletadas a partir de descrições petrográficas realizadas em mega e microscopia e, quando houver, por análises liogeoquímicas.

3.1 Rochas metamáficas

As amostras de rochas metamáficas foram coletadas de quatro furos de sondagem distintos. Duas amostras são do furo FJG20 (305 m e 307,82 m), duas do FJG21 (176,13 m e 286,04 m), quatro do FJG22 (131,20 m; 161,56 m; 252 m e 264 m) e três do FJG23 (375,07 m; 398,56 m e 464,50 m).

As rochas metamáficas estudadas são metabasitos maciços e xistos verdes finos a médios (**Figura 8**). Ao exame megascópico é possível o reconhecimento de anfibólio, quartzo, epidoto e feldspato, além de pirita, calcopirita e pirrotita. Localmente, os xistos verdes apresentam fenocristais de feldspato epidotizados (**Figura 8**). Pirita, pirrotita e calcopirita apresentam-se na forma de agregados de até 1 mm. Microvênulas de até 1 mm de espessura, compostas por quartzo, ocorrem nestas rochas, subparalelas à foliação.

Figura 8 - Xisto verde fino apresentando fenocristais centimétricos de feldspato (destacados por setas vermelhas). Amostra FJG20 305 m.

O estudo de seções delgadas revelou que as rochas metamáficas são compostas por tremolita-actinolita, plagioclásio, clorita e epidoto. Os minerais acessórios observados são hornblenda, quartzo, carbonato, biotita, titanita, clinozoisita e minerais opacos. K-feldspato ocorre como traço. Os minerais opacos reconhecidos são ilmenita (?), magnetita, calcopirita, pirita e pirrotita (**Tabela 2**).

Mineral	%
tremolita-actinolita	37
plagioclásio	20
clorita	15
epidoto	7
carbonato	5
quartzo	4,5
hornblenda	4
biotita	3
clinozoisita	2
minerais opacos	1,5
titanita	1
k-feldspato	tr

Tabela 2 - Composição modal média para as rochas metamáficas

A tremolita-actinolita, junto com a clorita, define a foliação presente nos xistos verdes (**Figura 9**). Este mineral varia de 0,1 a 2 mm e apresenta-se associado à hornblenda, que pode chegar a 1,4 mm.

A clorita apresenta-se com até 0,2 mm, chegando, por vezes, a 1 mm, com cores de interferência (verde escuro/marrom) indicativas de composição rica em Mg. Este mineral, que define a foliação presente nas rochas metamáficas, foi observado substituindo cristais de tremolita-actinolita e hornblenda (**Figura 10**).

O plagioclásio é um mineral primário (origem ígnea) e apresenta intensa substituição por epidoto, clinozoisita e carbonato, indicando albitização (**Figura 11**). Apresenta-se comumente com até 0,6 mm, porém também ocorre em cristais que chegam a 12 mm.

Figura 9 - Fotomicrografia de xisto verde mostrando tremolita-actinolita (tr-act) orientada segundo a foliação. Amostra FJG21 131,20 m. Luz transmitida, nicóis cruzados.

Figura 10 - Fotomicrografia de metabasito mostrando hornblenda (hbl) substituída por clorita (chl), que apresenta cor de interferência indicativa de composição rica em magnésio. Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.

Epidoto e clinozoisita configuram constante associação. A clinozoisita ocorre ainda comumente associada a cristais de carbonato. A biotita chega a 0,3 mm e ocorre substituindo a tremolita-actinolita e a hornblenda.

Figura 11 - Fotomicrografia de metabasito mostrando plagioclásio intensamente substituído por epidoto (ep). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.

A calcopirita ocorre disseminada ou inclusa na pirita (Figura 12). Estes sulfetos foram vistos formando-se ao longo de planos de clivagem da tremolita-actinolita, indicando serem posteriores a este anfibólio (Figura 13). Pirrotita é uma fase rara associada à pirita e calcopirita.

A ilmenita (?) varia de 0,1 a 0,6 mm e apresenta-se substituída por titanita (**Figura 14**). Este mineral foi diferenciado da magnetita, que ocorre em fase rara, devido a sua anisotropia.

O reconhecimento do k-feldspato somente foi possível devido à presença de textura granofírica (**Figura 15**). Tal textura possui origem ígnea, formada em rochas subvulcânicas a vulcânicas, e corresponde ao intercrescimento entre k-feldspato e quartzo (MacKenzie *et al.*, 1982).

Figura 12 - Fotomicrografia de metabasito mostrando calcopirita (cpy) disseminada e inclusa em cristal de pirita (py). Amostra FJG23 375,07 m. Luz refletida, nicóis paralelos.

Figura 13 - Fotomicrografias de metabasito mostrando calcopirita (cpy) e pirita (py) ao longo do plano de clivagem de tremolita-actinolita (tr-act). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

Figura 14 - Fotomicrografias de metabasito mostrando ilmenita (ilm) substituída por titanita (ttn). Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

Figura 15 - Fotomicrografia de metabasito mostrando textura granofírica (destacada por seta vermelha) representada pelo intercrescimento entre k-feldspato e quartzo. Feição de origem ígnea típica de rochas subvulcânicas a vulcânicas. Amostra FJG23 375,07 m. Luz transmitida, nicóis cruzados.

Para uma melhor caracterização das rochas metamáficas, foi produzido o diagrama TAS (Middlemost, 1994; **Figura 16**) com base em análises químicas de elementos maiores de todas as amostras apresentadas (**ANEXO I**), exceto da FJG23 464,50 m (amostra não selecionada para as análises). Para evitar possíveis alterações nos resultados das análises químicas devido ao hidrotermalismo, todas as amostras foram coletadas em zonas distais a núcleos de alteração hidrotermal. De acordo com o diagrama confeccionado diagrama, é

possível classificar as rochas metamáficas como derivadas de basaltos a andesitos basálticos.

 SiO_2 Figura 16 - Diagrama TAS (Middlemost, 1994) indicando as rochas metamáficas como derivadas de rochas ígneas de composição basáltica a andesito basáltica. Na2+K2O - total de álcalis; SiO2 - total de sílica.

3.2 Rochas metaultramáficas

As duas amostras de rochas metaultramáficas estudadas foram coletadas do furo de sondagem FJG22 (77 m e 113,52 m). Estas rochas são clorita-tremolita-actinolita xistos, finos a médios, de cor acinzentada a esverdeada (**Figura 17**). A análise megascópica evidenciou a presença de anfibólio, clorita, carbonato, quartzo, pirrotita e calcopirita. Microvênulas com espessura menor que 1 mm, compostas por pirrotita e calcopirita, foram observadas cortando a foliação na amostra FJG22 113,52 m.

Figura 17 - Clorita-tremolita-actinolita xisto fino de cor acinzentada. Amostra FJG22 113,52 m.

Ao exame microscópico observou-se que as rochas metaultramáficas são compostas por clorita, carbonato, tremolita-actinolita, quartzo e biotita. Os minerais acessórios são anatásio/rutilo e minerais opacos (**Tabela 3**). Nestas rochas não foi realizado o estudo microscópico em luz refletida.

A tremolita-actinolita chega a 0,8 mm e ocorre orientada segundo a foliação definida pelos filossilicatos presentes nestas rochas (**Figura 18**). Este mineral ocorre incluso em blastos de carbonato, que chegam a 4 mm. Nestes casos, o anfibólio apresenta suas bordas corroídas, substituído pelo carbonato (**Figura 19**).

Mineral	%
clorita	32
carbonato	28
tremolita-actinolita	18
quartzo	10
biotita	8
anatásio	2
minerais opacos	2

 Tabela 3 - Composição modal média para as rochas metultramáficas

Figura 18 - Fotomicrografia de rocha metaultramáfica mostrando foliação definida por clorita (chl) e tremolita-actinolita (tr-act). Amostra FJG22 77 m. Luz transmitida, nicóis cruzados.

Clorita e biotita chegam a 1 mm e podem ocorrer associadas a tremolita-actinolita (Figura 20) e/ou como inclusões nos carbonatos. A biotita foi ainda observada sobrecrescendo a foliação. Anatásio/rutilo e minerais opacos apresentam-se comumente associados (Figura 21).

Figura 19 - Fotomicrografia de rocha metaultramáfica mostrando tremolita-actinolita com bordas corroídas inclusa em blasto de carbonato. Amostra FJG 113,52 m. Luz transmitida, nicóis cruzados.

Figura 20 - Fotomicrografias de rocha metaultramáfica mostrando clorita (chl), biotita (bt) e tremolita actinolita (tr-act) em associação. Amostra FJG22 113,52 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).

A identificação das rochas metaultramáficas foi possível, não só pelo reconhecimento de seus minerais constituintes, mas também graças às análises químicas realizadas (**ANEXO I**). Assim como para as rochas metamáficas, as amostras de rochas metaultramáficas foram coletadas em zonas distais a núcleos de alteração hidrotermal, evitando-se interferências nos resultados das análises químicas. Estas análises permitiram a
confecção do diagrama ternário de Jensen (1976), revelando que estas rochas possuem protólitos correspondentes a basaltos komatiíticos (Figura 22).

Figura 21 - Fotomicrografia de rocha metaultramáfica mostrando mineral opaco (op) associado a cristal de anatásio/rutilo (ant/rt). Amostra FJG22 113,52 m. Luz transmitida, nicóis paralelos.

Figura 22 - Diagrama ternário de Jensen (1976), apontando as amostras analisadas no campo dos basaltos komatiíticos. FeT - ferro total; Ti - titânito; Al - alumínio; Mg - magnésio.

3.3 Formações ferríferas bandadas

As amostras de formações ferríferas bandadas analisadas foram coletadas de dois diferentes furos de sondagem. Três são do furo FJG22 (98,56 m; 181,42 m e 218,24 m) e uma do FJG23 (427,19 m). Tais amostras foram retiradas de zonas com fraca/sem alteração hidrotermal. Ao exame megascópico, pode-se observar que as formações ferríferas são constituídas por intercalações de lâminas claras e escuras com espessura máxima de poucos centímetros (**Figura 23**). Estas laminações apresentam nítida ciclicidade, o que permite serem interpretadas como de origem sedimentar. Foram ainda observadas microfalhas e pequenas zonas de brechas que deslocam o acamamento (**Figura 24**).

Figura 23 - Fotomicrografia de formação ferrífera caracterizada pela intercalação de lâminas claras e escuras. Tal bandamento é interpretado como sedimentar. Amostras FJG22 218,24 m (esquerda) e FJG22 181,42 m (direita).

A análise microscópica revelou que estas rochas ocorrem com granulação fina a média, compostas por quartzo, minerais opacos, carbonato, tremolita-actinolita e gruneritacummingtonita. Os minerais acessórios são clorita e biotita. Os minerais opacos correspondem majoritariamente a magnetita. Pirrotita, calcopirita e pirita aparecem como traços (**Tabela 4**).

Figura 24 - Fotomicrografia de formação ferrífera mostrando falhas (brechas cataclásticas ao longo dos planos de falha) deslocando o acamamento. Amostra FJG22 98,56 m.

Mineral	%
magnetita	37
quartzo	27
carbonato	12
tremolita-actinolita	10
grunerita-cummingtonita	8
clorita	4
biotita	2
pirrotita	tr
calcopirita	tr
pirita	tr

Tabela 4 - Composição modal média para as formações ferríferas bandadas

As bandas claras são constituídas por quartzo, anfibólios, filossilicatos e carbonato, subordinadamente ocorre magnetita. As escuras são compostas predominantemente por magnetita. Carbonato, filossilicatos, quartzo e anfibólios apresentam-se também em bandas escuras, porém em quantidades restritas. Através da microscopia foi ainda reconhecida uma foliação, subparalela/paralela ao acamamento, definida pelos filossilicatos.

A magnetita apresenta-se de maneiras distintas, sendo possível descrevê-la em duas gerações. Em sua maior parte ocorre anédrica, menor que 0,3 mm, ou com textura maciça compondo as bandas escuras (1° geração; **Figura 25**). A 2° geração é caracterizada por cristais bem formados que chegam a 0,6 mm e sobrecrescem a foliação (**Figura 26**). Foi observado que a 1° geração de magnetita é substituída por sulfetos, pirrotita, calcopirita e pirita (**Figura 27**), que ocorrem comumente associados, chegando a 0,1 mm. Já a 2° geração, foi interpretada como posterior a estes sulfetos, visto que foram observadas inclusões de pirrotita e calcopirita nesta magnetita euédrica (**Figura 26**).

O carbonato apresenta-se em agregados de cristais de até 0,4 mm que ocorrem intertirsciais ao quartzo e à magnetita. Este mineral ocorre também, junto com quartzo, clorita e biotita, cimentando as zonas brechadas. O carbonato, assim como quartzo, preenche ainda as microfalhas que deslocam o acamamento.

Figura 25 - Fotomicrografias de formação ferrífera mostrando banda escura composta majoritariamente por magnetita maciça. Amostra FJG22 98,56 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).

A tremolita-actinolita chega a 1 mm e apresenta-se associada à gruneritacummingtonita, anfibólio típico de formações ferríferas (série ferromagnesiana; **Figura 28**). Estes anfibólios exibem crescimento radial e/ou ocorrem orientados segundo a foliação definida pelos filossilicatos.

A clorita chega a 0,7 mm e ocorre constantemente substituindo cristais de tremolitaactinolita e grunerita-cummingtonita (**Figura 29**). Este mineral possui cores de interferência que indicam composição rica em Fe.

A biotita ocorre com até 0,4 mm, sobrecresce a foliação, apresentando extinção ondulante, e ocorre constantemente associada à clorita.

Figura 26 - Fotomicrografias de formação ferrífera mostrando magnetita (mag) euédrica sobrecrescendo e a foliação definida pelos filossilicatos (biotita-bt; clorita-chl) e apresentando inclusão de pirrotita (po). Amostra FJG22 98,56 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

Figura 27 - Fotomicrografia de formação ferrífera mostrando pirrotita (po) e calcopirita (cpy) formadas por substituição da magnetita (mag). Amostra FJG22 218,24 m. Luz refletida, nicóis paralelos.

Figura 28 - Fotomicrografia de formação ferrífera mostrando grunerita-cummingtonita (gru-cum; série ferromagnesiana) bem formada, anfibólio típico de formações ferríferas. Amostra FJG22 218,24 m. Luz transmitida, nicóis cruzados.

Figura 29 - Fotomicrografia de formação ferrífera mostrando clorita (chl) substituindo tremolitaactinolita (tr-act). Amostra FJG22 181,42 m. Luz transmitida, nicóis cruzados.

3.3.1 Bandas-S

As bandas-S são sedimentos pelíticos/tufáceos depositados e metamorfisados em meio a bandas de origem química que compõe as formações ferríferas (Trendall & Blockley, 1970). Neste trabalho foram coletadas seis amostras de níveis de bandas-S que ocorrem intercalados às formações ferríferas bandadas. Uma das amostras é do furo FJG21 (156,57 m), uma do FJG22 (197,46 m) e quatro do FJG23 (444 m; 444,84 m; 445,63 m e 458,19 m). Elas foram dividas em dois grupos de acordo com suas diferenças mineralógicas (**Tabela 5**).

Tabela 5 - Divisão de amostras de níveis de bandas-S em função da composiçãomineralógica

Bandas-S			
Grupo	Amostras		
1	FJG23 444 m; FJG23 444,84 m; FJG23 445,63 m; FJG23 458,19		
2	FJG21 156,57 m; FJG22 197,46 m		

O estudo de seções delgadas das amostras do **Grupo 1** revelou que estas são compostas predominantemente por biotita, clorita e minerais opacos. Em quantidades restritas ocorrem zircão, anatásio/rutilo, turmalina, quartzo e carbonato. Os minerais opacos são pirrotita, arsenopirita, calcopirita, pirita e magnetita.

Biotita e clorita definem uma fraca foliação nessas amostras. Estes filossilicatos apresentam-se comumente na forma de inclusões em cristais de pirrotita, arsenopirita e pirita (Figura 30).

Figura 30 - Fotomicrografia de banda-S mostrando paletas de biotita (bt) e clorita (chl) inclusas em pirrotita (po). Amostra FJG22 444 m. Luz transmitida (**a**) e luz refletida (**b**), nicóis paralelos.

Arsenopirita ocorre disseminada, bem formada, chega a 10 mm e sobrecresce a foliação, além de apresentar constantemente inclusões de pirrotita e calcopirita (**Figura 31**).

A pirrotita foi observada com até 4 mm e ocorre disseminada ou compondo, junto com quartzo e carbonato, microvênulas com espessura de até 0,5 mm. Este sulfeto apresenta-se crescido em planos de clivagem da biotita e da clorita, indicando ser posterior a estes filossilicatos.

A pirita chega a 2 mm, ocorre bem formada e sobrecresce a foliação. Este mineral sobrecresce ainda a pirrotita e a calcopirita e apresenta inclusões de quartzo e carbonato.

Figura 31 - Fotomicrografia de banda-S mostrando pirrotita (po) e calcopirita (cpy) inclusas em cristal de arsenopirita. Amostra FJG23 444,84 m. Luz refletida, nicóis paralelos.

Uma inclusão de magnetita, provavelmente contemporânea a 1° geração de magnetita das formações ferríferas, foi reconhecida em uma pirrotita, a qual já se encontrava inclusa em um cristal de arsenopirita (Figura 32).

A turmalina sobrecresce a clorita e a biotita (**Figura 33**). Anatásio/rutilo exibe constantemente associação aos sulfetos. Inclusões de zircão apresentando halos metamíticos são comuns na biotita e na clorita.

Figura 32 - Fotomicrografias de banda-S mostrando magnetita (mag) inclusa em pirrotita (po), a qual já se estava inclusa em um cristal de arsenopirita (apy). Pirrotita destacada por círculo vermelho na figura **a**. Amostra FJG23 444 m. Luz refletida, nicóis paralelos.

Figura 33 - Fotomicrografias de banda-S mostrando turmalina (tur) sobrecrescida em cristais de biotita (bt) e clorita (chl). Amostra FJG23 445,63 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).

O exame microscópico das amostras de bandas-S do **Grupo 2** mostrou que estas são constituídas predominantemente por clorita, tremolita-actinolita, grunerita-cummingtonita e magnetita. Biotita, quartzo, zircão, carbonato, pirrotita e calcopirita apresentam-se em quantidades restritas. Tais amostras possuem foliação definida por clorita e biotita. Os anfibólios apresentam-se orientados segundo tal foliação.

A magnetita exibe granulação variável, chegando a 1,5 mm, e ocorre em blastos que sobrecrescem a foliação. Provavelmente está relacionada a 2° geração de magnetita presente nas formações ferríferas (**Figura 34**). Calcopirita e pirrotita ocorrem associadas.

A tremolita-actinolita foi frequentemente observada associada à gruneritacummingtonita (**Figura 35**). O carbonato ocorre comumente associado a estes anfibólios.

O zircão ocorre incluso nos filossilicatos, apresentando halos metamíticos, tanto para as amostras do **Grupo 1** quanto para as do **Grupo 2**.

Figura 34 - Fotomicrografias de banda-S mostrando magnetita euédrica sobrecrescida na foliação metamórfica. Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

Figura 35 - Fotomicrografia de banda-S mostrando associação entre tremolita actinolita e grunerita-cummingtonita. Amostra FJG22 197,46 m. Luz transmitida, nicóis cruzados.

3.4 Rochas metassedimentares clásticas

O estudo das amostras dos furos de sondagem e de suas correspondentes lâminas delgadas permitiu a identificação de sucessões metassedimentares clásticas compostas por biotita xistos feldspáticos, quartzo xistos feldspáticos e filitos carbonosos. Destas sucessões foi coletado um total de dezesseis amostras, descritas, em microscopia, a seguir.

3.4.1 Biotita xistos feldspáticos

As amostras de biotita xisto feldspático foram coletadas, em sua maioria, do furo FJG23 (293,39 m; 433,77 m; 446,37 m; 459,76 m e 460,40 m). Foi coletada também uma do furo FJG20 (191,21 m) e uma do FJG21 (245,80 m), totalizando sete amostras.

O estudos de seções delgadas mostrou que são xistos compostos essencialmente por quartzo, biotita e feldspatos, ocorrendo em menor proporção clorita, muscovita, anatásio/rutilo, turmalina, carbonato, titanita e minerais opacos (**Tabela 6**).

Mineral	%
quartzo	40
biotita	22
feldspato	18
muscovita	5
minerais opacos	4
carbonato	3,5
clorita	3
turmalina	2,5
rutio	2
titanita	tr

Tabela 6 - Composição modal média para os biotita xistos feldspáticos

A xistosidade é definida por micas, clorita e pela orientação de cristais maiores de quartzo. A textura é heterogênea, ocorrem cristais maiores de quartzo (mais abundantes) e feldspato, de cerca de 2,5 mm, em uma matriz de quartzo, felspato, carbonato e micas de menor granulação, em torno de 0,2 mm (**Figura 36**). Os cristais maiores, interpretados como relictos de clastos, apresentam intensa extinção ondulante, enquanto a matriz exibe recristalização e fraca extinção ondulante (**Figura 37**).

Figura 36 - Fotomicrografia de biotita xisto feldspático mostrando textura heterogênea presente nestas rochas. Cristais maiores de quartzo (qtz) e feldspato (fsp) ocorrem em uma matriz fina composta por micas, quartzo, feldspato e carbonato. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.

O feldspato é substituído por sericita e apresenta geminação polissintética (**Figura 37**), revelando a presença de plagioclásio. Este mineral apresenta-se ainda associado ao carbonato. Micas e clorita ocorrem comumente associadas. Biotita e turmalina foram observadas sobrecrescendo a foliação. A turmalina ocorre ainda orientada segundo a mesma foliação.

Três amostras, todas do furo FJG23 (293,39 m; 459,76 m; 460,40 m), apresentam altas concentrações de minerais opacos, correspondendo majoritariamente a pirrotita, que ocorre com até 2 mm, orientada segundo a foliação. Pirita e calcopirita aparecem em quantidades restritas. Os sulfetos ocorrem associados entre si e também ao anatásio/rutilo. A pirita ocorre bem formada, menor que 0,1 mm e sobrecresce a pirrotita (**Figura 38**).

Estas rochas têm sido denominadas de metavaques pela equipe da IAMGOLD (não publicado) e por Romano (2007). Entretanto, a textura, com cristais maiores em matriz de menor granulação, sugere serem metarenitos de tipo subarcóseo/arcóseo, pobre a moderadamente selecionados.

Figura 37 - Fotomicrografia de biotita xisto feldspático mostrando cristal maior de quartzo (qtz) com extinção ondulante e cristal de plagioclásio (pl) apresentando geminação polissintética. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.

Figura 38 - Fotomicrografia de biotita xisto feldspático mostrando pirita (py) bem formada sobrecrescida em cristal de pirrotita (po). Amostra FJG23 460,40 m. Luz refletida, nicóis paralelos.

3.4.2 Quartzo xistos feldspáticos

Foram coletadas e analisadas sete amostras de quartzo xistos feldspáticos de quatro furos de sondagem distintos. Duas são do furo FJG20 (150,84 m e 196,70 m), uma do FJG21 (142,37 m), uma do FJG22 (92,80 m) e três do FJG23 (332 m; 438,23 m e 453,81 m).

A análise microscópica permitiu observar que estas rochas são compostas essencialmente por quartzo e feldspato, com quantidades subordinadas de muscovita, clorita, biotita, turmalina, anatásio/rutilo, carbonato, titanita, zircão e minerais opacos (**Tabela 7**). Os minerais opacos são arsenopirita, pirrotita e calcopirita.

Estas rochas apresentam foliação definida por micas e clorita e, assim como os biotita xistos feldspáticos, exibem textura heterogênea, com cristais maiores de quartzo e feldspato em matriz fina com maior grau de recristalização, composta por quartzo, feldspato, carbonato e micas (**Figura 39**).

Mineral	%
quartzo	57
feldspato	21
biotita	5
clorita	5
muscovita	3,5
turmalina	3
carbonato	2
rutilo	2
minerais opacos	1,5
titanita	tr

Tabela 7 - Composição modal média para os quartzo xistos feldspáticos

Os cristais maiores de quartzo e feldspato ocorrem com até 3 mm e intensa extinção ondulante. Micas e clorita apresentam-se associadas e chegam a 1 mm. Micas e turmalina sobrecrescem a foliação (**Figura 40**). Na amostra **FJG23 453,81 m**, a turmalina, provavelmente de origem hidrotermal, é abundante, definindo um turmalina quartzito.

Arsenopirita é o mineral opaco que ocorre em maior quantidade, apresentando inclusões de quartzo, micas, anatásio/rutilo e turmalina (**Figura 41**). Anatásio/rutilo, pirrotita e calcopirita apresentam-se associados.

Figura 39 - Fotomicrografia de quartzo xisto feldspático de textura heterogênea caracterizada por cristais maiores de quartzo em matriz fina composta por quartzo, feldspato, carbonato e micas. Amostra FJG20 196,70 m. Luz transmitida, nicóis cruzados.

Figura 40 - Fotomicrografias de quartzo xisto feldspático mostrando cristais de turmalina (tur) sobrecrescidos na foliação definida pelas micas. Amostra FJG20 150,84 m. Luz transmitida, nicóis cruzados (a) e paralelos (b).

A interpretação feita para os biotita xistos feldspáticos pode ser usada pra estes quartzo xistos. Sendo assim, estas rochas podem ser interpretadas como metarenitos de tipo subarcóseo/arcóseo, pobre a moderadamente selecionados.

Figura 41 - Fotomicrografias de turmalina quartzito mostrando arsenopirita (apy) com inclusões de turmalina (tur) e anatásio/rutilo (ant/rt). Amostra FJG23 453,81 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).

3.4.3 Filitos carbonosos

As duas amostras estudadas de filitos carbonosos foram coletadas do furo FJG20 (94,25 m) e FJG23 (449,46 m). São filitos cinzentos compostos majoritariamente por quartzo e material opaco carbonoso. Ao exame de seções delgadas, observou-se que turmalina ocorre também em grande quantidade, provavelmente de origem hidrotermal. Biotita, muscovita (sericita?), clorita, anatásio/rutilo e minerais opacos ocorrem em quantidades subordinadas. Os minerais opacos são arsenopirita, calcopirita e pirrotita (**Tabela 8**).

Mineral	%
material opaco carbonoso	48
quartzo	25
turmalina	12
muscovita	5
biotita	4
clorita	3
minerais opacos	2
rutilo	1

Tabela 8 - Composição modal média para os filitos carbonosos

Estas rochas apresentam foliação espaçada bem preservada definida por micas e clorita. Biotita e muscovita (sericita?) ocorrem associadas. A turmalina apresenta-se sobrecrescida na foliação (**Figura 42**). Os filitos carbonosos exibem microvênulas compostas por quartzo e carbonato, algumas formando dobras apertadas com a foliação principal plano axial. Arsenopirita, pirrotita, calcopirita e anatásio/rutilo apresentam-se associados, ocorrendo de forma disseminada (**Figura 43**).

Figura 42 - Fotomicrografia de filito carbonoso mostrando a foliação bem definida sobrecrescida por cristais de turmalina (tur). Amostra FJG23 449,46 m. Luz transmitida, nicóis paralelos.

Figura 43 - Fotomicrografias de filito carbonoso mostrando anatásio/rutilo (ant/rt), pirrotita (po) e arsenopirita (apy) em associação. Amostra FJG23 449,46 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

3.5 Turmalinito (hidrotermalito)

A única amostra de turmalinito estudada foi coletada do furo de sondagem FJG23 (431,58 m). A amostra ocorre com granulação fina a média e cor acinzentada, além de apresentar uma orientação preferencial bem definida. Ao exame megascópico foram reconhecidos cristais de arsenopirita que chegam a 5 mm. Foram observadas também vênulas de espessura máxima de poucos centímetros, compostas por quartzo e carbonato, cortando a amostra.

Através do estudo microscópico, notou-se que a turmalina define a orientação preferencial da amostra (**Figura 44**), compondo-a majoritariamente. Quartzo é também um mineral essencial. Minerais opacos, clorita, biotita e carbonato são acessórios. Os minerais opacos correspondem predominantemente a arsenopirita. Pirrotita, pirita, calcopirita e magnetita apresentam-se como traços (**Tabela 9**).

Mineral	%
turmalina	60
quartzo	25
minerais opacos	5
carbonato	4
biotita	3
clorita	3

 Tabela 9 - Composição modal para a amostra de turmalinito

Figura 44 - Fotomicrografias de turmalinito mostrando cristais de turmalina (tur) definindo a orientação preferencial da rocha. Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos (**a**) e cruzados (**b**).

A turmalina chega a 1,2 mm, ocorre bem formada, apresenta zoneamento de cor, que, provavelmente, reflete um zoneamento composicional (**Figura 45**), e exibe constantes inclusões de quartzo (**Figura 46**), indicando ser posterior a ele. Biotita e clorita não ultrapassam 1 mm e apresentam-se associadas. Localmente, a clorita parece substituir a biotita. Cristais de zircão, exibindo halos metamíticos, aparecem inclusos nos filossilicatos.

Figura 45 - Fotomicrografia de turmalinito mostrando cristais zonados de turmalina (tur). Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos.

Figura 46 - Fotomicrografia de turmalinito mostrando turmalina (tur) com frequentes inclusões de quartzo (qtz). Amostra FJG23 431,58 m. Luz transmitida, nicóis paralelos (**a**) e cruzados (**b**).

A arsenopirita ocorre em cristais bem formados, chega a 1 mm e sobrecresce comumente a turmalina (**Figura 47**), que, junto com quartzo, biotita e clorita, apresenta-se também na forma de inclusões neste sulfeto (**Figura 48**). Pirrotita, calcopirita e pirita exibem constante associação, ocorrem disseminadas e compondo, junto com quartzo e carbonato, microvênulas subparalelas à orientação preferencial definida pela turmalina.

Figura 47 - Fotomicrografias de turmalinito mostrando arsenopirita (apy) sobrecrescida em cristal de turmalina (tur). Amostra FJG23 431,58 m. Luz transmitida, nicóis cruzados (**a**) e luz refletida, nicóis paralelos (**b**).

Figura 48 - Fotomicrografias de turmalinito mostrando cristais de clorita e turmalina inclusos em arsenopirita. Amostra FJG23 431,58 m. Luz transmitida, nicóis cruzados (a) e luz refletida, nicóis paralelos (b).

4. GEOLOGIA ESTRUTURAL E MICROTECTÔNICA

A partir do mapa (**ANEXO III**) cedido pela IAMGOLD e de dados levantados de testemunhos de sondagem, foram confeccionadas duas seções geológicas de direção N45°E, uma do furo FJG21 ao FJG23 (**ANEXO IV**), passando pelos furos 17, 18 e 19, e outra do furo FJG20 ao FJG22 (**ANEXO V**). As rochas estão orientadas segundo o *strike* NW-SE e o acamamento (S_0) mergulha predominantemente para NE. A interpretação das seções evidenciou, em subsuperfície, a presençade dobras suaves com planos axiais NW-SE.

O estudo de seções delgadas revelou que a principal microestrutura é uma foliação plano axial (S₂) definida por micas, clorita e anfibólios (**Figuras 49 e 50**), correspondendo, em setores menos deformados, a uma clivagem de crenulação espaçada. Os filitos carbonosos amostrados exibem esta clivagem espaçada bem preservada (**Figura 51**). Estereogramas cedidos pela IAMGOLD (**Figuras 52**) evidenciam que esta foliação (S₂) está orientada num *strike* NW-SE, com mergulhos para NE, encontrando-se paralela/subparalela ao acamamento (S₀), e está relacionada a dobras com eixos subhorizontais (caimentos suaves para NW e SE). É possível observar uma diferença entre os ângulos de mergulho plotados nas seções e os exibidos nos estereogramas. Isso se dá devido ao fato de que os estereogramas foram confeccionados a partir de dados estruturais de uma área mais ampla, porém, que engloba a área das seções.

Figura 49 - Fotomicrografias de banda-S mostrando a foliação principal bem definida por clorita (chl) e tremolita-actinolita (tr-act). Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados (a) e nicóis paralelos (b).

Figura 50 - Fotomicrografia de xisto feldspático mostrando a foliação principal definida por micas. Amostra FJG21 245,80 m. Luz transmitida, nicóis cruzados.

Figura 51 - Fotomicrografia de filito carbonoso mostrando foliação espaçada (S_2) preservada. Amostra FJG23 449,46 m. Luz transmitida, nicóis paralelos.

Figura 52 - Estereogramas cedidos pela IAMGOLD referentes à foliação principal, que se encontra orientada segundo o *strike* NW-SE, com mergulhos para NE (**a**), e está relacionada a dobras com eixos subhorizontais (**b**; caimentos suaves para NW e SE).

A análise microscópica mostrou ainda a foliação/clivagem ardosiana ou filítica pretérita S_1 , transposta pela foliação S_2 , identificada em relictos de dobras ou crenulações na forma de arcos poligonais constituídos por micas, clorita e/ou anfibólios (**Figuras 53**, **54 e 55**). Estes relictos estão presentes nas rochas metamáficas, metaultramáficas e também nos xistos feldspáticos.

Figura 53 - Fotomicrografias de xisto feldspático mostrando microdobra D_2 relicta, evidenciando a transposição de uma foliação/clivagem pretérita pela foliação principal. Amostra FJG20 196,70 m. Luz transmitida, nicóis cruzados.

Figura 54 - Fotomicrografias de banda-S mostrando cristal de tremolita-actinolita (tr-act) preservando microdobra D_2 em relação à foliação S_2 . Na figura **54a**, o cristal ocorre praticamente com extinção total, girando a platina em aproximadamente 50°, é possível observar a microdobra bem definida (**b**). Amostra FJG21 156,57 m. Luz transmitida, nicóis cruzados.

Figura 55 - Fotomicrografias de rocha metaultramáfica mostrando arcos poligonais compostos por tremolita-actinolita e biotita. Destaque ao cristal de tremolita-actinolita (tr-act) preservando microdobra D_2 . Amostra FJG22 113,52 m. Luz transmitida, nicóis cruzados (**a**) e paralelos (**b**).

Algumas amostras apresentam dobras abertas na foliação S_2 , com planos axiais quase perpendiculares a esta foliação, caracterizando um terceiro conjunto de planos tectônicos (D₃; **Figuras 56 e 57**). São crenulações abertas, por vezes sobrecrescidas por micas e, nos xistos feldspáticos e filitos carbonosos, também por turmalina. Nesse caso, as micas exibem extinção ondulante, sugerindo que seu crescimento tenha sido tardio, mas ainda durante, à deformação. Estas crenulações são interpretadas como correspondentes às dobras abertas exibidas nas seções. Estas dobras possuem eixos subhorizontais e planos axiais de direção NW-SE.

Figura 56 - Fotomicrografia de banda-S mostrando a foliação principal dobrada por microdobras D₃. Amostra FJG23 156,57 m. Luz transmitida, nicóis cruzados.

Figura 57 - Fotomicrografia de formação ferrífera bandada mostrando a foliação principal dobrada por microdobras D_3 . É possível observar que esta foliação ocorre paralela/subparalela ao acamamento, que também é dobrado por D_3 . Amostra FJG22 218,24 m. Luz transmitida, nicóis cruzados.

5. METAMORFISMO

Biotita e clorita são minerais metamórficos característicos, presentes em todos os litotipos. Nos xistos feldspáticos, muscovita é também um mineral metamórfico típico, já nas rochas metaultramáficas, tremolita-actinolita é recorrente. Nas rochas metamáficas, o metamorfismo é ainda caracterizado pela presença de tremolita-actinolita, epidoto e clinozoisita. Os minerais do grupo do epidoto são formados devido à perda de Ca pelo plagioclásio de origem ígnea já existente, indicando albitização, típico processo para condições de temperatura e pressão de fácies xisto verde.

Para as formações ferríferas bandadas os minerais metamórficos característicos são, além de biotita e clorita (Fe), tremolita-actinolita e grunerita-cummingtonita. Klein (1983) propôs um diagrama que mostra a estabilidade de minerais típicos de formações ferríferas em função do grau metamórfico em que estes aparecem (**Figura 58**). Comparando a mineralogia apresentada pelas amostras de formações ferríferas estudadas e o diagrama proposto por Klein (1983), foi possível classificar o grau metamórfico como fácies xisto verde, zona da biotita, para estas rochas.

Foi confeccionado ainda um diagrama que estabelece as associações minerais metamórficas mais importantes em função dos litotipos em que estas ocorrem (**Figura 59**). O campo metamórfico de pressão e temperatura registrado para estas rochas é apontado na **Figura 60**. A partir das feições minerais de substituição/sobrecrescimento identificadas e das estruturas mencionadas no **Capítulo 4**, foi produzida também uma tabela que mostra a relação entre o crescimento dos principais minerais metamórficos e as distintas fases deformacionais reconhecidas (**Tabela 10**).

	GRAU METAMÓRFICO				
	BAIXO	MÉ	DIO	AL	ТО
DIAG	ÊNESE	ZONA DA BIOTITA	ZONA DA GRANADA	ZONA DA ESTAUROLITA	ZONA DA SILLIMANITA
Cedo		uartzo		CIANITA	1
	P 4	uartzo			:
Fe ₃ O ₄	$H_2O \rightarrow$	magnetita			
Fe(OH	H) ₃ →	hematita	r (
ç	reenalita				
s	tilpnomela	no			
	anr	nita			
	talco	- minnesotail	ta		
	Fe-c	lorita (ripidol	- ita)		
	dolo	mita - ankeri	ta		
	cal	cita			
	sid	lerita - magn	esita		
	rie	ebequita			
		cummingtor	, hita - grunerit	a (antofilita)	1
		tremoli	ta - ferroactir	olita (hornblenda)	
			alma	Indina	
				ortopir	oxênio
				clinopir	oxênio
	;				faialita
		6.7			

Figura 58 - Diagrama de estabilidade relativa para minerais típicos de formações ferríferas bandadas em função do grau metamórfico em que estes ocorrem (modificado de Klein, 1983). Em cinza estão destacados os principais minerais metamórficos reconhecidos nas formações ferríferas estudadas.

Litotipos Minerais translúcidos	Metamáficas	Metaultramáficas	Formações ferríferas/Bandas-S	Xistos, quartzitos, filitos carbonosos
Tremolita-actinolita				
Epidoto/clinozoisita				
Clorita				
Biotita				
Grunerita-cummingtonita		 		
Muscovita				
Turmalina				
Minerais opacos				
Magnetita				
Pirrotita				
Calcopirita		1		
Arsenopirita				
Pirita				

Figura 59 - Diagrama com as associações metamórficas mais importantes para os litotipos nos quais estas ocorrem.

Figura 60 - Campo metamórfico de pressão e temperatura em diagrama baseado em Yardley (1989) e Trouw (não publicado). Biotita e actinolita são os minerais que restringem o campo metamórfico à fácies xisto verde (cor laranja).

 Tabela 10 - Relação entre o crescimento dos principais minerais metamórficos e as distintas fases deformacionais reconhecidas

Deformação Minerais Translúcidos	D ₁	D ₂	D ₃
Tremolita-actinolita			
Grunerita-cummingtonita		-	
Clorita			
Biotita/Muscovita			
Turmalina			
Minerais opacos			
Magnetita			· · ·
Pirrotita			
Calcopirita			
Arsenopirita			
Pirita			

6. MINERALIZAÇÃO AURÍFERA

A partir das análises químicas (**ANEXO II**) de amostras coletadas sequencialmente do furo FJG23, foram confeccionados gráficos que exibem a concentração de elementos químicos em função da metragem que a amostra foi retirada. Posteriormente foram selecionados gráficos de elementos químicos considerados como característicos dos possíveis tipos de mineralização aurífera (ouro orgênico, VHMS) presente na área estudada. Estes elementos são: Au (ouro), As (arsênio), S (enxofre), Bi (bismuto), Cu (cobre), Zn (zinco) e Pb (chumbo).

De acordo com o gráfico confeccionado para as concentrações de ouro (**Figura 61**), o ponto do furo FJG23 com os maiores teores desse elemento encontra-se em torno de 444,16 m (ao longo do testemunho, em relação à boca do furo). A petrografia (**Capítulo 4**) e a seção geológica (**ANEXO IV**) mostram que as rochas presentes nesse ponto são formações ferríferas bandadas com intercalações de bandas-S enriquecidas em sulfetos.

Figura 61 - Gráfico de concentração (ppb) de ouro (Au) em função da metragem do furo FJG23.

A maior anomalia de enxofre (**Figura 62**) coincide com o ponto de maiores teores de ouro, 444,16 m. Isso evidencia que o ouro está diretamente relacionado à ocorrência de sulfetos. Contudo, o campo de anomalias de enxofre é muito mais amplo que o campo anômalo de ouro, mostrando que existem diversos pontos em que, provavelmente, os sulfetos estão presentes em grande quantidade, porém não há ocorrência de teores elevados de ouro. Isso mostra que o ouro não ocorre sem a presença de sulfetos, porém existem zonas sulfetadas em que não há ocorrência de ouro.

Figura 62 - Gráfico de concentração (ppm) de enxofre (S) em função da metragem do furo FJG23.

O gráfico do arsênio (**Figura 63**) mostra que este elemento possui picos anômalos no ponto em que ocorrem as maiores concentrações de ouro (444,16 m). Isso indica que, provavelmente, o ouro está associado à arsenopirita, mineral rico em As observado nas amostras enriquecidas em sulfetos descritas em petrografia. Contudo, assim como o enxofre, o arsênio possui uma área de ocorrência mais extensa que a do ouro, englobando-a, mas também ocorrendo em pontos nos quais não há formações ferríferas. Este fato pode ser explicado pela presença de uma zona enriquecida hidrotermalmente em arsênio maior que (e englobando) a zona aurífera. Os teores de As são também mais elevados em pontos que ocorrem camadas de filitos carbonosos intercaladas nesta sucessão de rochas. Provavelmente, os sedimentos que originaram estes filitos, já possuíam uma composição com altos teores de arsênio, propiciando a formação de minerais ricos neste elemento (amostra FJG23 449,46 m - filito carbonoso com presença de arsenopitita). Isso pode também explicar o fato do campo anômalo do arsênio ser maior que o do ouro.

Figura 63 - Gráfico de concentração (ppm) de arsênio (As) em função da metragem do furo FJG23.

Os pontos de maior concentração de bismuto (**Figura 64**) apresentam boa coincidência com os picos de anomalias de ouro. O bismuto pode estar presente na estrutura dos sulfetos e/ou formando ligas metálicas com o Au (Corrêa Neto, informação verbal), estando diretamente associado à mineralização. No gráfico fica evidente um problema com o limite de detecção inferior. Este fato ocorre, pois as análises químicas não detectam valores de Bi inferiores a 0,3 ppm. Assim, para os pontos amostrados em que não foram reconhecidos teores de bismuto, utilizou-se o valor de 0,15 ppm para a confecção do gráfico. Isso não afeta a interpretação desses dados, pois estes valores não representam picos anômalos, logo podem ser entendidos como pontos sem/com baixos teores de bismuto.

Figura 64 - Gráfico de concentração (ppm) de bismuto (Bi) em função da metragem do furo FJG23.

A concentração de cobre em determinados pontos (**Figura 65**) é explicada pela presença de rochas metamáficas e metaultramáficas, litotipos tipicamente ricos neste elemento. Contudo, o ponto com as maiores taxas de cobre, em torno de 293,00 m, coincide com uma faixa de altas concentrações de enxofre, o que pode ser explicado pela presença de rochas com altos teores de sulfetos que contenham cobre. Esse é o caso da amostra FJG23 293,39 m, estudada em petrografia, que corresponde a um xisto feldspático com alta concentração de calcopirita.

Chumbo e zinco (**Figuras 66 e 67**) não apresentam valores de alta concentração coincidentes com as taxas anômalas de ouro. Isso indica que estes elementos não estão associados à mineralização aurífera. O fato de estes elementos apresentarem altas concentrações em determinados pontos pode ser explicado pela presença de rochas metassedimentares pelíticas.

Figura 65 - Gráfico de concentração (ppm) de cobre (Cu) em função da metragem do furo FJG23.

Figura 66 - Gráfico de concentração (ppm) de chumbo (Pb) em função da metragem do furo FJG23.

Figura 67 - Gráfico de concentração (ppm) de zinco (Zn) em função da metragem do furo FJG23.

7. CONCLUSÕES

Relacionando os litotipos analisados à litoestratigrafia (**Figura 7**) proposta por Romano (2007) para a área do *Greenstone belt* Pitangui, é possível atribuir as rochas estudadas à sequência metaígnea e metassedimentar por ele definida (localizada na base do Grupo Nova Lima). Como dito no **item 2.3.2**, esta sequência é dividida por Romano (2007) da seguinte forma: unidade metaultramáfica e metamáfica (base), unidade metassedimentar (intermediária) e unidade metamáfica e metaintermediária (topo). Contudo, as seções geológicas confeccionadas evidenciam que os litotipos descritos ocorrem de forma intercalada em subsuperfície, não sendo possível dividí-los em diferentes unidades, sendo todos constituintes da mesma sucessão rochosa.

A análise dos dados estruturais permitiu que fossem interpretadas três fases deformacionais coaxiais, todas de caráter compressivo. As fases deformacionais e as estruturas a elas relacionadas estão resumidas a seguir:

- D₁ gerou a foliação/clivagem ardosiana ou filítica pretérita (transposta por D₂), identificada nas amostras em relictos de dobras ou crenulações na forma de arcos poligonais constituídos por micas, clorita e anfibólios.
- D₂ gerou a foliação principal (plano axial) da área, caracterizada por micas, clorita e anfibólios. Nos filitos carbonosos amostrados, ocorre como foliação espaçada bem preservada. A foliação S₂ encontra-se subparalela/paralela ao acamamento (S₀) e está orientada segundo o *strike* NW-SE com mergulhos para NE. A fase D₂ está relacionada ainda a dobras com eixos subhorizontais de direção NW-SE.
- D₃ gerou dobras suaves de eixos subhorizontais e planos axiais de direção NW-SE na foliação S₂. Estas dobras estão bem representadas nas seções geológicas confeccionadas. O resultado da fase D₃, em seções delgadas, foi reconhecido na forma de microdobras com planos axiais quase perpendiculares a foliação S₂.

Romano (2007) afirma que, para a área do *Greenstone belt* Pitangui, o grau metamórfico máximo atingido ocorreu em fácies anfibolito baixo a médio. Porém, de acordo com os principais minerais metamórficos observados, tremolita-actinolita e biotita, fica claro que o metamorfismo máximo atingido pelas rochas deste cinturão metamórfico no setor estudado foi fácies xisto verde, zona da biotita. Isso é ratificado pela associação mineral metamórfica apresentada pelas formações ferríferas (**Figura 58**).

A mineralização aurífera estudada pode ser classificada como do tipo ouro orogênico (Groves *et al.*, 1998; Groves *et al.*, 2003), hospedada nas formações ferríferas bandadas, preferencialmente onde ocorrem níveis de bandas-S intercalados. Finas camadas de xistos feldspáticos intercaladas às formações ferríferas podem também ocorrer como rochas hospedeiras. Segundo Corrêa Neto (informação verbal), o ouro constitui liga metálica junto com bismuto e prata (Ag). A associação do ouro ao bismuto foi reconhecida nas interpretações dos gráficos de concentração de elementos químicos. O ouro ocorre, provavelmente, incluso na estrutura dos sulfetos, que se apresentam de forma disseminada. Considerando as relações de sobrecrescimento/substituição mineral, foi possível determinar o crescimento dos sulfetos em função das fases deformacionais definidas. Assim, é provável que a mineralização, contemporânea a formação dos sulfetos, tenha ocorrido de forma sincrônica a tardia ao evento compressivo D_2 (**Tabela 11**).

Tabela 11 - Relação entre o crescimento de sulfetos e os eventos deformacionais definidos.O ouro apresenta-se, provavelmente, em ligas de Au-Bi-Ag inclusas na estrutura dos sulfetos.Assim, é provável que a formação da mineralização tenha ocorrido durante a geração dos sulfetos,
ou seja, contemporânea/tardia ao evento compressivo D2

Deformação Sulfetos	D	D ₂	D ₃
Pirrotita Calcopirita Arsenopirita Pirita		 	
8. BIBLIOGRAFIA

- Alkmim, F. F. 2004. O que faz de cráton um cráton? O Cráton do São Francisco e as revelações Almeidianas ao delimitá-lo. In: V. Mantesso Neto, A. Bartorelli, C. Dal Ré Carneiro e B. Brito Neves (orgs.). Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques Almeida. São Paulo; Editora Beca, 17-35.
- Alkmim, F.F. & Marshak, S. 1998. The Transamazonian orogeny in the Quadrilátero Ferrífero, Minas Gerais, Brazil: Paleoproterozoic collision and collapse in the Southern São Francisco Craton region. Precambrian Research, 90: 29-58.
- Alkmim, F. F., Brito Neves, B. B. & Castro, J. A. 1993. Arcabouço tectônico do Cráton do São Francisco – Uma revisão. In: J.M.L. Domingues, e A.Misi (eds.). O Cráton do São Franciso. Reunião Preparatória do II Simp. Sobre o Cráton do São Francisco. Soc. Bras. Geol. Minas e Energia. CNPq.Salvador, 45-62.
- Almeida, F. F. M. 1977. O Cráton do São Francisco. Revista Brasileira de Geociências. 7(4):349-364.
- Almeida, F. F. M. 1981. O Craton do Paramirim e suas relações com o do São Francisco.
 In: Simpósio Sobre o Cratondo São Francisco e suas Faixas Marginais, 1:1-10.
 Salvador, BA, 1981. Anais. Salvador, SBG.
- Baltazar, O. F., Zucchetti, M.; 2007. Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the setting of gold deposits Ore Geology Reviews. p.63-103.
- Corrêa Neto, A. V., Almeida, A. M., Caputo Neto, V., Guerrero, J. C. 2012. Alteração hidrotermal em zona de cisalhamento associada ao Lineamento Congonhas, sul do Quadrilátero Ferrífero, Minas Gerais.
- Dorr II, J.V., 1969. Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. United States Geological Survey Professional Paper 614-A. 110 pp.
- Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F. 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7 – 27.
- Groves, D.I., Goldfarb, R.J., Robert, F., Hart, G.J.R. 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology, 98: 1 – 29.

- Janousek V., Farrow C. M., Erban V. 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology., 47(6): 1255-1259.
- Jensen, L. S. 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks.Ontario Geological Survey Miscellaneous Paper 66.
- Klein C., 1983, 'Diagenesis and metamorphism of Precambrian banded iron-formation', In: Trendall A.F., Morris R.C. (eds.), 'Iron-formation: facts and problems', Elsevier, Amsterdam, pp. 417-460.
- Lobato, L.M., Ribeiro-Rodrigues, L.C., Zucchetti, M., Noce, C. M., Baltasar, O., da Silva,
 L. C. & Pinto, C. P. 2001. Brazil's premier goldprovince. Part I: The tectonic, Magmatic, and structural setting of the Archean Riodas Velhas greenstone belt, QuadriláteroFerrífero. Mineralium Deposita, 36: 228 248.
- MacKenzie W.S., Donaldson C., Guilford C. (eds.) 1982. Atlas of Igneous Rocks and their Textures. New York, John Wiley and Sons, 148 p.
- Middlemost, E. A. K. 1994. Naming materials inmagma/igneous rock system. Earth Sci. Rev. 37, 215–224.
- Noce, C.M., Tassinari, C.G., Lobato, L.M., 2007. Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. Ore Geology Reviews 32, 500–510.
- Romano, A.W. 1989. Evolution tectonique de la règion NW du Quadrilatère Ferrifère Minas Gerais, Brésil. Université de NancyI, Nancy, Thèse Docteur, 259p.
- Romano, A. W. 1993. O Supergrupo Rio das Velhas da Faixa Mateus Leme-Pitangui parte meridional do Cráton de São Francisco, MG - e seu sistema de alteração hidrotermal. Geonomos, Belo Horizonte, v. 1, n.1, p. 16-32.
- Romano A. W. 2007. Nota explicativa da Folha Pará de Minas (SE-23-Z-C-IV) 1:100.000. Convênio CPRM-UFMG, 65p.
- Romano, A. W. & Noce, C. M. 1995. Feições estruturais do Lineamento Pitangui-Congonhas. In: SNET 5, Gramado. Anais, 1995. p. 76-77.
- Romano, A. W. & Paiva, C. T. 1997. Evolução de eventos tectônicos, metamórficos e de alteração hidrotermal ao longo de uma zona de cisalhamento: exemplo do Lineamento Pitangui. In: SNET 6, Pirenópolis. Anais, v. 1. p. 21-22.

- Romano, W.A., Bertrand, J.M., Michard, A., Zimmermann, J. L. 1991. .Tectonique tangentielle et décrochements d'âge Protérozoïque inférieur (orogenèse transmazonienne, environ 2000Ma) au Nord du "Quadrilatère Ferrifère" (Minas Gerais, Brésil). C.R.Acad.Sci., Paris, 313, (II), 1195-1200.
- Romano, A. W., Bilal, E., Neves, J. M. C., Giret, A., Moutte, J. 1995. O Complexo Granítico de Florestal, parte meridional do Cráton de São Francisco e sue sistema de alteração hidrotermal. In: 8 Simpósio de Geologia de Minas Gerais, Diamantina. Anais, v. 13. p. 86-88.
- Teixeira W., Sabaté P., Barbosa J., Noce C. M., Carneiro M. A. 2000. Archean and Paleoproterozoic tectonic evolution of the São Francisco Craton, Brazil. In: Tectonic Evolution of South America - International Geological Congress, 31, Rio de Janeiro. Anais: Sociedade Brasileira de Geologia, p.101-137.
- Trendall, A.F. & Blockley, J.G. 1970. The Iron-Formations of the Precambrian Hamersley Group, Western Australia.GeologicalSurvey Western AustraliaBulletin 119, 366 p.
- Tupinambá, M., Heilbron, M., Duarte, B. P., Nogueira, J. R., Valladares, C. S., Almeida, J. C., Eirado, L. G., Medeiros, S. R., Almeida, C. G., Miranda, A., Ragatky, C. D., Mendes, J., Ludka, I. 2007. Geologia da Faixa Ribeira Setentrional: estado da arte e conexões com a Faixa Araçuaí. Geonomos, v. 15, p. 67-79, 2007.
- Yardley, B.W.D. 1989. An introduction to metamorphic petrology. Essex, Longman Scientif & Techical. 248 pp.

	Amostra	FJG20 305	FJG20 307.82	FJG21 176.13	FJG21 286.04	FJG22 77	FJG22 113.52	FJG22 131.20	FJG22 161.56	FJG22 252	FJG22 264	FJG23 375.07	FJG23 398.56
%	Al2O3	13,70	15,96	10,28	13,31	8,46	7,91	13,94	14,77	15,16	13,29	13,19	14,48
PPM	Ba	65	77	8	249	6	92	149	63	31	34	72	60
PPM	Be	<1	<1	<1	4	<1	<1	<1	<1	<1	<1	<1	1
%	CaO	9,68	10,36	9,30	9,59	7,91	8,21	9,52	9,80	10,42	7,76	8,58	9,61
PPM	Ce	17,9	15,3	12,6	20,9	8,7	7,5	17,0	16,0	14,7	14,7	22,1	13,8
PPM	Со	52,6	47,5	53,0	41,6	68,6	71,8	46,3	40,5	46,0	65,1	44,5	43,3
%	Cr2O3	0,020	0,020	0,135	0,052	0,157	0,246	0,019	0,065	0,075	0,058	0,058	0,040
PPM	Cs	0,4	1,3	< 0.1	1,1	< 0.1	17,4	1,5	0,3	0,4	0,4	0,5	0,7
PPM	Dy	4,64	4,18	2,80	4,79	1,61	2,40	4,84	3,47	3,15	3,09	4,21	2,83
PPM	Er	2,92	2,75	1,58	2,66	1,14	1,66	2,91	2,26	2,10	2,09	2,66	1,85
PPM	Eu	1,11	0,97	0,57	1,11	0,44	0,57	1,22	0,83	0,83	0,85	1,00	0,86
%	Fe2O3	14,42	12,39	10,45	11,83	10,84	10,09	14,47	9,91	9,87	12,27	12,60	9,77
PPM	Ga	16,2	15,7	8,9	14,1	6,3	9,1	17,6	15,0	14,5	13,2	13,9	13,8
PPM	Gd	4,20	3,54	2,37	4,24	1,60	2,05	4,20	3,15	3,04	3,06	3,86	2,62
PPM	Hf	2,6	2,2	1,2	2,4	0,7	1,1	2,1	1,8	1,6	2,0	2,5	1,7
PPM	Но	1,03	0,87	0,53	0,94	0,40	0,53	0,97	0,73	0,70	0,74	0,91	0,58
%	K2O	0,48	0,61	0,08	0,81	< 0.01	1,15	0,58	0,42	0,26	0,13	0,44	0,39
PPM	La	8,2	6,5	5,6	9,5	4,1	2,9	6,7	7,2	6,3	6,1	9,2	6,2
%	LOI	2,0	2,8	8,2	2,0	16,6	14,0	2,0	2,4	4,1	3,7	2,2	10,8
PPM	Lu	0,42	0,38	0,22	0,43	0,16	0,25	0,45	0,33	0,28	0,32	0,37	0,27
%	MgO	6,43	5,91	11,45	7,97	13,94	16,14	6,69	8,03	8,97	11,72	7,86	7,83
%	MnO	0,22	0,19	0,16	0,20	0,19	0,17	0,21	0,15	0,14	0,17	0,16	0,14
%	Na2O	2,42	2,08	1,15	1,94	0,01	0,02	2,14	3,24	2,47	2,74	2,31	2,02
PPM	Nb	5,2	4,6	3,5	5,9	1,6	3,0	5,1	4,5	4,4	4,7	5,7	3,1
PPM	Nd	11,8	10,7	7,3	12,2	5,5	5,2	11,8	8,9	8,6	8,6	11,4	8,5
PPM	Ni	58	62	132	71	268	744	60	97	186	350	120	141
%	P2O5	0,10	0,09	0,09	0,14	0,05	0,09	0,11	0,12	0,12	0,12	0,14	0,08
PPM	Pr	2,44	2,15	1,62	2,91	1,17	1,05	2,27	2,19	1,91	1,98	2,60	1,79
PPM	Rb	9,5	21,4	1,2	21,3	0,2	47,0	11,5	12,1	9,8	3,7	13,8	18,7
PPM	Sc	45	37	31	33	24	24	45	32	27	26	32	29
%	SiO2	49,12	48,36	47,85	50,70	41,12	40,92	48,86	49,93	47,36	46,82	51,18	43,76
PPM	Sm	3,27	3,17	1,96	3,43	1,27	1,50	3,14	2,64	2,39	2,35	3,26	2,05
PPM	Sn	1	<1	<1	<1	<1	1	1	1	<1	1	2	1
PPM	Sr	119,6	180,4	52,8	169,1	47,0	100,4	120,0	271,3	196,5	120,5	170,3	123,8
%	Sum	99,79	99,80	99,76	99,55	99,73	99,65	99,78	99,77	99,77	99,72	99,77	99,79
PPM	Та	0,2	0,2	0,3	0,3	< 0.1	0,2	0,3	0,4	0,3	0,3	0,4	0,2
PPM	Tb	0,74	0,66	0,43	0,71	0,29	0,38	0,74	0,58	0,52	0,54	0,69	0,48
PPM	Th	1,6	1,6	0,9	1,5	0,5	0,5	1,5	1,3	1,0	1,1	1,8	1,5
%	TiO2	1,23	1,06	0,63	1,01	0,45	0,57	1,27	0,89	0,82	0,91	1,08	0,88
PPM	Tm	0,44	0,38	0,25	0,39	0,16	0,24	0,44	0,35	0,29	0,31	0,41	0,27

ANEXO I - Análises geoquímicas de rocha total para as amostras de rochas metamáficas e metaultramáficas. Elementos maiores e menores - método ICP-ES, elementos traço - método ICP-MS.

	Amostra	FJG20 305	FJG20 307.82	FJG21 176.13	FJG21 286.04	FJG22 77	FJG22 113.52	FJG22 131.20	FJG22 161.56	FJG22 252	FJG22 264	FJG23 375.07	FJG23 398.56
PPM	U	0,6	0,5	0,2	0,6	0,2	0,2	0,4	0,4	0,2	0,3	0,5	0,4
PPM	V	273	229	166	218	125	160	288	218	193	205	239	189
PPM	W	< 0.5	0,7	< 0.5	0,6	< 0.5	0,7	< 0.5	0,6	< 0.5	< 0.5	< 0.5	0,8
PPM	Y	27,4	24,7	15,5	24,5	10,4	14,1	26,9	19,5	17,5	18,4	22,8	16,0
PPM	Yb	3,17	2,59	1,50	2,59	1,35	1,39	3,06	2,19	1,90	1,91	2,72	1,80
PPM	Zr	82,7	74,1	56,8	92,7	32,7	41,7	74,9	67,2	57,2	62,8	85,8	63,8
%	TOT/C	0,30	0,34	1,16	0,03	3,32	2,76	0,14	0,15	0,42	0,26	0,10	1,90
%	TOT/S	0,09	0,09	< 0.02	0,08	< 0.02	0,02	0,03	< 0.02	0,05	< 0.02	0,05	0,05
PPM	Ag	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0,1	< 0.1	< 0.1
PPM	As	5,0	4,4	8,4	1,8	61,7	220,5	1,6	2,6	2,9	1,6	4,5	1,1
PPB	Au	0,6	0,6	< 0.5	4,5	1,5	1,7	1,1	0,6	0,7	1,6	0,9	0,7
PPM	Bi	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PPM	Cd	< 0.1	< 0.1	< 0.1	< 0.1	0,1	0,1	< 0.1	< 0.1	< 0.1	0,1	< 0.1	< 0.1
PPM	Cu	89,9	88,8	28,4	85,1	1,3	91,7	72,9	21,1	46,3	87,1	86,4	30,4
PPM	Hg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PPM	Mo	0,8	0,6	0,5	0,6	0,3	0,1	0,6	0,5	0,2	0,3	0,5	0,3
PPM	Ni	23,9	31,4	74,2	36,7	194,8	407,8	21,1	33,3	99,2	150,2	58,8	116,8
PPM	Pb	2,5	3,2	1,3	1,9	1,5	2,5	1,1	0,9	1,1	2,7	1,1	4,4
PPM	Sb	< 0.1	< 0.1	< 0.1	0,1	< 0.1	< 0.1	< 0.1	0,1	< 0.1	< 0.1	0,2	< 0.1
PPM	Se	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PPM	T1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0,4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
PPM	Zn	26	31	34	39	52	33	32	19	38	58	36	47

ANEXO I - Análises geoquímicas de rocha total para as amostras de rochas metamáficas e metaultramáficas. Elementos maiores e menores - método ICP-ES, elementos traço - método ICP-MS.

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Método ICP-ES para todos os elementos.

a m o s t ra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/138	289,95	290,78	2,5	0,15	1	1,5	34	152	103	<1000	43	1,5	158	3,91	<20	3	0,6	6,45	3,31	0,1016
FJG23/139	290,78	291,32	2,5	0,15	2	1,5	35	154	65	<1000	44	4	157	3,64	<20	3	0,5	6,31	3,06	0,1075
FJG23/141	291,32	292,09	2,5	0,15	2	1,5	35	125	89	<1000	47	5	159	3,56	<20	2	< 0.5	6,25	2,85	0,1021
FJG23/143	292,09	292,67	2,5	0,15	3	1,5	25	73	48	<1000	51	7	130	2,62	<20	6	< 0.5	4,79	1,86	0,0699
FJG23/144	292,67	293,08	114	4,5	10	1,5	51	106	3958	1000	51	146	545	3,49	<20	6	3,1	7,89	2,35	0,1098
FJG23/145	293,08	293,70	498	17,8	1	1,5	257	176	10000	<1000	85	13	917	3,55	<20	74	5,9	21,29	2,65	0,1026
FJG23/146	293,70	294,30	54	1,1	2	1,5	82	234	1331	<1000	81	1,5	283	4,34	<20	10	1,2	10,37	3,99	0,0784
FJG23/147	294,30	295,02	165	0,15	48	1,5	46	440	157	<1000	157	1,5	108	3,66	<20	3	0,5	6,33	5,11	0,0934
FJG23/148	295,02	295,60	420	0,15	8	1,5	48	82	696	<1000	43	1,5	36	1,07	<20	7	< 0.5	7,36	1,16	0,046
FJG23/149	295,60	296,30	91	0,15	42	1,5	34	488	89	<1000	156	1,5	95	4,51	<20	5	0,6	7,2	5,75	0,1011
FJG23/150	296,30	296,75	107	0,3	17	1,5	48	292	215	<1000	123	1,5	60	2,67	<20	3	1,1	10,35	2,29	0,1075
FJG23/151	296,75	297,39	79	0,15	80	1,5	22	248	153	<1000	89	1,5	102	4,44	<20	2	< 0.5	11,35	2,79	0,0788
FJG23/152	297,39	297,94	37	0,15	35	1,5	15	209	15	<1000	114	1,5	93	3,79	<20	2	< 0.5	9,05	2,22	0,0476
FJG23/153	297,94	298,55	27	0,15	86	1,5	23	318	0,5	<1000	184	1,5	118	4,72	<20	24	< 0.5	11,14	2,91	0,0615
FJG23/154	298,55	299,33	14	0,15	405	1,5	26	200	23	<1000	152	3	49	2,71	<20	23	< 0.5	5	1,85	0,0516
FJG23/155	311,67	312,21	60	0,15	200	1,5	37	162	222	<1000	109	1,5	58	3,64	<20	9	0,6	6,82	2,49	0,0665
FJG23/156	312,21	312,79	24	0,15	452	1,5	34	242	124	<1000	169	1,5	77	4,48	<20	10	< 0.5	8,92	3,06	0,0475
FJG23/157	312,79	313,37	7	0,15	34	1,5	34	168	31	<1000	61	1,5	73	4,18	<20	17	< 0.5	7,03	3,2	0,0818
FJG23/158	313,37	313,78	442	0,15	328	1,5	39	129	367	<1000	90	1,5	63	2,94	<20	11	1,3	11,18	1,77	0,0666
FJG23/159	313,78	314,55	36	0,15	27	1,5	3	35	14	<1000	18	1,5	16	0,85	<20	6	1	16,97	0,47	0,065
FJG23/161	314,55	315,14	16	0,15	4	1,5	29	125	78	<1000	98	1,5	64	4,43	<20	24	< 0.5	9,37	3,05	0,0659
FJG23/162	315,14	315,96	6	0,15	11	1,5	55	408	90	<1000	217	1,5	72	5,41	<20	16	< 0.5	8,31	5,55	0,1093
FJG23/163	315,96	316,73	2,5	0,15	6	1,5	34	178	72	<1000	56	1,5	58	3,85	<20	13	0,7	6,33	3,55	0,088
FJG23/164	316,73	317,39	10	0,15	2	1,5	33	161	131	<1000	70	1,5	72	4,05	<20	5	< 0.5	7,09	3,55	0,0764
FJG23/165	317,39	317,94	2,5	0,15	3	1,5	14	55	5	<1000	40	1,5	39	2,39	<20	3	< 0.5	4,5	1,82	0,0686
FJG23/166	317,94	318,85	7	0,15	6	1,5	32	172	224	<1000	71	1,5	56	5,31	<20	28	< 0.5	14,02	4,44	0,0951
FJG23/167	318,85	319,30	2,5	0,15	1	1,5	37	541	73	<1000	174	1,5	50	4,62	<20	4	< 0.5	7,55	4,29	0,1144
FJG23/168	319,30	319,89	2,5	0,15	3	1,5	30	116	65	<1000	44	4	50	3,97	<20	17	< 0.5	7,16	3,24	0,0929
FJG23/169	319,89	320,56	2,5	0,15	1	1,5	34	130	49	<1000	75	5	66	3,83	<20	16	0,5	7,4	3,07	0,0854
FJG23/171	320,56	321,00	13	0,15	4	1,5	25	158	277	<1000	88	20	36	1,9	<20	13	< 0.5	3,72	1,52	0,0449
FJG23/172	321,00	321,65	2,5	0,15	1	1,5	22	215	42	<1000	109	5	38	1,89	<20	19	< 0.5	3,97	1,73	0,0401
FJG23/173	321,65	322,36	2,5	0,15	1	1,5	23	225	44	<1000	113	5	46	2,03	<20	28	< 0.5	4,42	1,76	0,0453
FJG23/174	322,36	323,07	2,5	0,15	1	1,5	21	201	28	<1000	102	1,5	51	1,99	<20	27	< 0.5	4,51	1,69	0,0482
FJG23/175	323,07	323,72	2,5	0,15	1	1,5	23	186	48	<1000	102	4	53	2,33	<20	13	< 0.5	4,68	1,83	0,0503
FJG23/176	323,72	324,41	2,5	0,15	1	1,5	32	181	53	<1000	55	4	67	3,93	<20	3	< 0.5	6,49	3,19	0,0886
FJG23/177	324,41	324,85	2,5	0,4	9	1,5	29	160	359	<1000	81	7	78	3,91	<20	71	< 0.5	15,03	2,84	0,09
FJG23/178	324,85	325,46	2,5	0,15	2	1,5	24	160	0,5	<1000	63	1,5	64	3,9	<20	35	< 0.5	7,85	2,73	0,0936
FJG23/179	325,46	326,15	2,5	0,15	2	1,5	16	109	2	<1000	38	1,5	46	2,44	<20	2	< 0.5	4,88	1,82	0,0421
FJG23/181	326,15	326,88	2,5	0,15	1	1,5	24	159	0,5	<1000	55	4	67	3,75	<20	4	< 0.5	7,61	2,73	0,0874

a m o s tra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/182	326,88	327,51	2,5	0,15	5	1,5	34	185	1	<1000	47	4	75	4,07	<20	8	0,8	7,59	3,37	0,0934
FJG23/183	327,51	328,09	15	0,15	14	1,5	20	369	49	<1000	122	4	74	5,21	<20	2	< 0.5	11,88	2,9	0,1429
FJG23/184	328,09	328,65	14	0,15	33	1,5	27	318	181	<1000	148	1,5	80	4,93	<20	30	< 0.5	12,19	2,02	0,1121
FJG23/185	328,65	329,41	9	0,15	59	1,5	35	382	5	<1000	180	4	96	4,94	<20	24	< 0.5	9,41	2,96	0,0891
FJG23/186	329,41	330,06	6	0,15	41	1,5	34	399	79	1000	162	6	81	4,37	<20	22	< 0.5	9,5	3,2	0,1066
FJG23/187	333,66	334,52	28	0,15	37	1,5	47	470	211	<1000	177	15	85	4,38	<20	8	0,8	7,27	4,24	0,1204
FJG23/188	334,52	335,12	2,5	0,15	34	1,5	37	413	26	<1000	164	5	73	3,83	<20	8	0,5	6,1	3,66	0,0972
FJG23/189	335,12	335,90	2,5	0,15	42	1,5	36	411	17	<1000	162	3	83	4,07	<20	17	< 0.5	6,69	3,35	0,0946
FJG23/190	335,90	336,42	8	0,15	49	1,5	23	298	55	<1000	141	6	61	3,12	<20	120	0,5	8,2	1,56	0,1073
FJG23/191	336,42	336,96	8	0,15	51	1,5	24	305	38	<1000	152	5	47	2,58	<20	47	< 0.5	5,1	1,89	0,0598
FJG23/192	344,41	345,16	2,5	0,15	63	1,5	43	446	35	<1000	157	1,5	65	3,77	<20	97	0,6	5,53	3,26	0,1041
FJG23/193	345,16	345,74	2,5	0,15	51	1,5	42	449	48	<1000	146	1,5	68	3,69	<20	38	0,6	5,59	3,24	0,1153
FJG23/194	345,74	346,15	5	0,15	17	1,5	54	295	267	<1000	190	4	76	4	<20	217	< 0.5	9,34	2,07	0,0868
FJG23/195	346,15	346,55	2,5	0,15	8	1,5	13	194	41	<1000	91	5	43	1,82	<20	135	< 0.5	4,15	0,99	0,0555
FJG23/196	346,55	347,31	2,5	0,7	36	1,5	25	345	42	<1000	176	6	71	2,57	<20	149	< 0.5	5,5	1,69	0,0644
FJG23/197	355,60	356,43	2,5	0,15	2	1,5	36	222	116	<1000	55	6	85	3,81	<20	137	0,8	6,68	3,29	0,0892
FJG23/198	356,43	357,17	2,5	0,15	2	1,5	21	263	27	<1000	100	4	48	1,93	<20	115	< 0.5	3,6	1,58	0,0571
FJG23/199	357,17	357,59	2,5	0,15	26	1,5	35	409	73	<1000	259	4	63	2,42	<20	248	< 0.5	4,58	1,82	0,0572
FJG23/201	357,59	358,39	2,5	0,15	5	1,5	31	282	43	<1000	142	22	102	3,26	<20	203	0,6	6,19	2,47	0,0695
FJG23/202	358,39	359,18	2,5	0,15	3	1,5	25	150	47	<1000	95	6	63	2,46	<20	221	< 0.5	4,75	1,79	0,0539
FJG23/203	359,18	360,00	2,5	0,15	2	1,5	25	162	57	<1000	104	3	67	2,38	<20	167	0,6	4,64	1,79	0,0506
FJG23/204	360,00	360,72	2,5	0,15	1	1,5	28	228	14	<1000	125	1,5	51	3,07	<20	49	< 0.5	5,93	2,4	0,0616
FJG23/205	360,72	361,39	2,5	0,15	1	1,5	18	301	10	<1000	156	1,5	36	2,79	<20	67	< 0.5	5,95	2,04	0,0503
FJG23/206	361,39	362,04	2,5	0,15	3	1,5	23	178	9	<1000	71	1,5	44	2,76	<20	4	< 0.5	5,42	2,25	0,0721
FJG23/207	362,04	362,87	2,5	0,15	1	1,5	28	183	4	<1000	62	1,5	60	3,06	<20	3	0,7	5,19	2,67	0,0651
FJG23/208	362,87	363,33	7	0,6	35	1,5	58	180	760	<1000	118	6	86	3,41	<20	10	0,9	10,03	2,24	0,0755
FJG23/209	363,33	363,89	2,5	0,15	4	1,5	27	158	24	<1000	103	3	83	3,34	<20	8	< 0.5	7,06	2,35	0,063
FJG23/211	363,89	364,50	2,5	0,15	1	1,5	8	45	4	<1000	27	3	20	0,94	<20	4	< 0.5	2,09	0,71	0,0196
FJG23/212	364,50	365,34	2,5	0,15	4	1,5	21	64	19	<1000	70	1,5	36	2,01	<20	5	< 0.5	4,26	1,61	0,0377
FJG23/213	401,86	402,64	8	0,15	4	1,5	33	374	40	<1000	152	3	35	2,82	<20	12	0,6	4,6	3,69	0,0989
FJG23/214	402,64	403,22	2,5	0,15	3	1,5	30	308	49	<1000	129	3	34	2,98	<20	8	0,7	5,02	3,57	0,0908
FJG23/215	403,22	403,75	2,5	1,3	3	1,5	16	238	34	<1000	81	1,5	26	2,56	<20	7	0,7	11,11	2,72	0,0701
FJG23/216	403,75	404,40	6	0,15	17	1,5	25	280	22	<1000	163	3	28	3,44	<20	58	< 0.5	7,17	2,64	0,0539
FJG23/217	404,40	404,97	2,5	0,3	46	1,5	35	301	73	<1000	178	1,5	32	3,46	<20	94	< 0.5	9,05	2,38	0,0384
FJG23/218	404,97	405,73	8	0,15	15	1,5	15	51	167	<1000	25	1,5	10	0,87	<20	22	3	19,88	0,49	0,0157
FJG23/219	405,73	406,35	36	0,5	79	1,5	40	280	227	<1000	219	5	44	3,91	<20	103	< 0.5	9,39	2,32	0,041
FJG23/221	406,35	406,93	7	0,3	3	1,5	9	32	155	<1000	13	1,5	11	0,57	<20	8	2,7	21,29	0,34	0,0162
FJG23/222	406,93	407,74	2,5	0,15	14	1,5	31	237	17	<1000	82	1,5	61	3,31	<20	28	< 0.5	5,7	3,22	0,1027
FJG23/223	407,74	408,15	28	0,15	13	1,5	29	237	56	<1000	95	1,5	74	3,64	<20	50	< 0.5	9,62	3,06	0,0962
FJG23/224	408,15	408,56	1478	0,15	491	1,5	17	204	125	<1000	68	3	132	3,69	<20	73	1,1	14,78	2,25	0,0628

a m o s t ra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/225	408,56	409,09	2184	0,6	1595	1,5	24	95	308	<1000	55	5	112	2,52	<20	46	1,6	15,38	1,16	0,0825
FJG23/226	409,09	409,83	24	0,15	62	1,5	19	237	13	<1000	118	1,5	84	2,79	<20	115	< 0.5	6,7	1,81	0,0356
FJG23/227	409,83	410,48	49	0,15	48	1,5	21	265	24	<1000	154	1,5	109	3,91	<20	153	< 0.5	10,85	2,17	0,0439
FJG23/228	410,48	411,18	187	0,15	88	1,5	9	56	178	<1000	35	1,5	41	1,1	<20	20	1,7	16,72	0,61	0,0467
FJG23/229	411,18	412,00	2,5	0,15	1	1,5	27	215	0,5	<1000	70	4	57	3,27	<20	2	0,5	5,76	2,94	0,0953
FJG23/230	412,00	412,92	2,5	0,15	3	1,5	29	225	87	<1000	94	1,5	48	2,9	<20	2	0,6	4,81	2,89	0,091
FJG23/231	412,92	413,88	2,5	0,15	6	1,5	35	255	78	<1000	106	4	51	3,13	<20	2	0,5	5,19	3,02	0,0885
FJG23/232	413,88	414,60	2,5	0,15	2	1,5	28	214	46	<1000	87	4	55	3,1	<20	2	0,7	5,76	2,87	0,0858
FJG23/233	414,60	415,00	2,5	0,15	1	1,5	17	163	21	<1000	53	3	52	3,13	<20	47	1,5	12,87	2,24	0,0806
FJG23/234	415,00	415,69	8	0,15	3	1,5	28	217	51	<1000	76	5	43	3,16	<20	4	0,7	5,91	2,87	0,0856
FJG23/235	415,69	416,39	7	0,15	7	1,5	29	219	0,5	<1000	86	6	66	3,42	<20	4	< 0.5	6,15	3,01	0,0896
FJG23/236	416,39	416,83	186	0,15	6	1,5	8	123	26	<1000	53	1,5	93	2,28	<20	7	< 0.5	16	1,09	0,0783
FJG23/237	416,83	417,37	48	0,15	16	1,5	9	133	39	<1000	62	1,5	89	2,66	<20	9	< 0.5	18,01	1,14	0,0552
FJG23/238	417,37	417,85	11	0,15	49	1,5	5	90	17	<1000	43	1,5	60	1,86	<20	11	< 0.5	17,27	0,76	0,0478
FJG23/239	417,85	418,70	16	0,15	6	1,5	14	236	0,5	<1000	101	8	93	3,6	<20	84	< 0.5	9,45	2,02	0,0391
FJG23/241	418,70	419,60	80	0,15	19	1,5	15	298	0,5	<1000	123	5	83	4,34	<20	97	< 0.5	11,77	2,25	0,0572
FJG23/242	419,60	420,04	430	0,15	818	1,5	7	105	21	<1000	35	1,5	38	1,56	<20	48	< 0.5	15,21	0,75	0,0785
FJG23/243	420,04	420,46	1660	0,15	1420	1,5	4	54	129	<1000	28	1,5	27	0,86	<20	13	< 0.5	19,35	0,3	0,0479
FJG23/244	420,46	420,89	704	0,15	18	1,5	4	94	48	<1000	37	1,5	37	1,2	<20	13	< 0.5	25,22	0,63	0,0646
FJG23/245	420,89	421,59	10	0,15	21	1,5	29	320	1	<1000	75	4	97	3,44	<20	22	0,7	6,14	2,97	0,0988
FJG23/246	421,59	422,37	116	0,15	8	1,5	26	313	7	<1000	70	10	95	3,7	<20	36	1	6,54	3,21	0,0915
FJG23/247	422,37	422,96	9	0,15	167	1,5	53	498	18	<1000	192	6	69	2,68	<20	21	0,6	4,61	3,58	0,1044
FJG23/248	422,96	423,84	10	0,15	335	1,5	79	679	2	<1000	307	4	59	2,65	<20	3	0,6	4,7	5	0,1414
FJG23/249	423,84	424,49	10	0,15	83	1,5	45	465	4	<1000	171	1,5	46	2,74	<20	3	< 0.5	4,2	3,79	0,1034
FJG23/251	424,49	425,09	5	0,15	38	1,5	36	419	6	<1000	147	1,5	38	2,73	<20	4	0,6	4,32	3,98	0,0957
FJG23/252	425,09	425,69	6	0,15	29	1,5	36	446	0,5	<1000	146	1,5	44	3,41	<20	6	0,6	5,43	3,39	0,0853
FJG23/253	425,69	426,30	2,5	0,15	3	1,5	2	73	3	<1000	21	1,5	13	0,8	<20	14	< 0.5	19,26	0,55	0,0298
FJG23/254	426,30	427,00	2,5	0,15	1	1,5	<1	34	6	<1000	13	1,5	12	0,69	<20	42	< 0.5	19,45	0,32	0,0283
FJG23/255	427,00	427,61	5	0,15	1	1,5	<1	22	10	<1000	7	1,5	8	0,45	<20	34	< 0.5	17,07	0,19	0,0283
FJG23/256	427,61	428,38	35	0,15	2	1,5	<1	22	10	<1000	7	1,5	16	0,49	<20	33	< 0.5	13,94	0,19	0,0236
FJG23/257	428,38	429,08	42	0,15	6	1,5	<1	26	2	<1000	8	1,5	20	0,6	<20	32	< 0.5	15,33	0,2	0,021
FJG23/258	429,08	429,77	29	0,15	10	1,5	<1	35	4	<1000	14	1,5	16	0,85	<20	62	< 0.5	16,53	0,27	0,0158
FJG23/259	429,77	430,37	23	0,15	28	1,5	<1	35	5	<1000	12	1,5	16	0,73	<20	43	< 0.5	15,82	0,23	0,027
FJG23/261	430,37	430,80	1373	0,15	8374	1,5	12	85	219	<1000	64	1,5	50	1,6	<20	57	<0.5	13,45	0,74	0,0508
FJG23/262	430,80	431,28	352	0,15	4136	1,5	15	286	102	<1000	137	3	188	4,47	<20	80	1	15,03	2,26	0,0438
FJG23/263	431,28	431,80	39	0,15	10000	1,5	33	201	20	<1000	196	1,5	102	2,76	<20	69	< 0.5	8,76	1,5	0,0436
FJG23/264	431,80	432,43	26	0,15	5668	1,5	36	280	13	<1000	239	4	112	3,4	<20	107	0,6	8,82	1,89	0,0539
FJG23/265	432,43	433,00	10	0,15	542	1,5	32	333	29	<1000	220	5	172	3,68	<20	109	<0.5	8,68	2,31	0,0538
FJG23/266	433,00	433,70	9	0,15	157	1,5	22	263	0,5	<1000	147	3	105	2,18	<20	91	< 0.5	4,11	1,38	0,04
FJG23/267	433,70	434,21	2,5	0,15	172	1,5	24	246	5	<1000	132	6	67	1,57	<20	60	< 0.5	3,08	1,1	0,0499

a m o s tra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/268	434,21	434,80	2,5	0,15	131	1,5	27	290	1	<1000	152	7	115	2,33	<20	76	< 0.5	4,65	1,74	0,036
FJG23/269	434,80	435,53	2,5	0,15	41	1,5	34	62	32	<1000	37	7	127	3,69	<20	17	< 0.5	8,38	3,07	0,0555
FJG23/270	435,53	436,07	6	0,15	42	1,5	41	37	21	<1000	32	5	207	4,86	<20	12	< 0.5	11,32	4,24	0,0727
FJG23/271	436,07	436,58	2,5	0,15	54	1,5	35	94	25	<1000	67	7	154	3,47	<20	17	< 0.5	7,57	3,26	0,0528
FJG23/272	436,58	437,13	2,5	0,15	155	1,5	28	300	5	<1000	171	4	99	2,29	<20	12	< 0.5	5,25	2,18	0,04
FJG23/273	437,13	437,94	2,5	0,15	172	1,5	33	308	1	<1000	203	7	112	2,66	<20	10	< 0.5	6,13	2,47	0,0476
FJG23/274	437,94	438,46	2,5	0,15	175	1,5	36	361	0,5	<1000	267	5	152	3,06	<20	24	< 0.5	6,02	2,8	0,055
FJG23/275	438,46	439,00	2,5	0,15	159	1,5	27	338	2	<1000	181	4	134	2,47	<20	23	< 0.5	5,46	2,23	0,0488
FJG23/276	439,00	439,77	2,5	0,15	91	1,5	20	354	0,5	<1000	152	4	123	2,68	<20	22	< 0.5	6,07	2,23	0,0484
FJG23/277	439,77	440,29	8	0,15	104	1,5	25	383	0,5	<1000	182	1,5	148	4,06	<20	72	< 0.5	9	2,96	0,0588
FJG23/278	440,29	441,07	1061	0,3	1834	1,5	6	84	47	<1000	43	18	141	1,13	<20	21	< 0.5	12,2	0,7	0,0919
FJG23/279	441,07	441,58	147	0,15	1694	1,5	8	44	18	<1000	37	1,5	142	0,68	<20	27	< 0.5	9,57	0,4	0,1423
FJG23/281	441,58	442,07	117	0,15	298	4	<1	33	34	<1000	16	1,5	57	0,44	<20	20	1,7	18,43	0,31	0,0667
FJG23/282	442,07	442,77	19	0,15	8	4	<1	18	3	<1000	9	1,5	85	0,3	<20	11	< 0.5	22,1	0,27	0,0575
FJG23/283	442,77	443,27	59	0,15	98	1,5	20	68	0,5	<1000	50	1,5	359	4,77	<20	118	< 0.5	22,42	3,47	0,1107
FJG23/284	443,27	443,76	1303	0,15	2149	4	4	51	43	<1000	35	1,5	207	1,11	<20	17	1,8	19,46	0,53	0,1079
FJG23/285	443,76	444,16	13600	2,8	8402	23	8	38	359	<1000	51	6	92	1,01	<20	17	< 0.5	23,9	0,67	0,1095
FJG23/286	444,16	444,77	63	0,15	33	5	<1	21	9	<1000	15	1,5	51	0,47	<20	6	< 0.5	23,78	0,28	0,0906
FJG23/287	444,77	445,36	10800	2,6	10000	21	13	61	379	<1000	59	4	56	1,09	<20	16	< 0.5	24,22	0,51	0,0908
FJG23/288	445,36	445,89	6329	1,9	2267	10	13	71	409	<1000	74	5	60	1,3	<20	19	< 0.5	25	0,82	0,0768
FJG23/289	445,89	446,63	32	0,15	155	1,5	35	344	27	<1000	242	7	117	3,91	<20	69	< 0.5	7,74	2,16	0,0334
FJG23/291	446,63	447,38	2,5	0,15	158	1,5	34	312	57	<1000	249	12	91	2,66	<20	77	< 0.5	4,5	1,89	0,0408
FJG23/292	447,38	448,39	11	0,15	342	1,5	46	365	56	<1000	373	13	177	3,46	<20	82	< 0.5	5,1	2,51	0,0547
FJG23/293	448,39	449,20	8	0,15	391	1,5	47	235	27	<1000	339	12	155	2,8	<20	40	< 0.5	4,35	2,12	0,0312
FJG23/294	449,20	449,70	178	1,1	5052	1,5	137	328	741	<1000	1061	23	9168	2,27	<20	106	22	4,21	1,7	0,0417
FJG23/295	449,70	450,33	11	0,15	1486	1,5	128	1872	108	<1000	1376	20	169	3,77	<20	66	< 0.5	4,78	4,3	0,1651
FJG23/296	450,33	451,33	2,5	0,15	409	1,5	64	810	64	<1000	478	3	31	1,88	<20	2	< 0.5	3,64	4,9	0,0895
FJG23/297	451,33	452,05	2,5	0,15	374	1,5	59	720	47	<1000	417	4	17	1,72	<20	1	< 0.5	3,6	5,23	0,1142
FJG23/298	452,05	452,61	2,5	0,15	405	1,5	57	689	32	<1000	404	4	17	1,71	<20	1	< 0.5	3,46	5,21	0,1145
FJG23/299	452,61	453,15	2,5	0,15	733	1,5	67	858	37	<1000	583	4	69	1,83	<20	3	< 0.5	3,67	5,33	0,1099
FJG23/301	453,15	453,63	189	0,15	1420	1,5	76	1178	152	<1000	860	6	285	2,54	<20	14	< 0.5	4,44	5,94	0,1237
FJG23/302	453,63	454,05	62	0,15	10000	1,5	198	195	133	<1000	1121	9	10000	0,65	35	18	62,6	4,97	0,82	0,0252
FJG23/303	454,05	454,50	48	0,15	10000	1,5	161	168	347	<1000	1011	15	8749	0,99	<20	51	30,6	5,28	0,81	0,0336
FJG23/304	454,50	454,95	40	0,8	6284	1,5	131	1770	1121	<1000	1192	21	3253	3,66	<20	108	11,5	11,36	3	0,1352
FJG23/305	454,95	455,46	181	0,6	9985	1,5	145	1355	886	<1000	1001	13	5781	3,08	<20	73	42,7	10,44	2,17	0,1202
FJG23/306	455,46	455,97	201	0,7	7335	1,5	89	212	649	<1000	608	10	2400	2,5	<20	39	20,6	14,88	1,51	0,1043
FJG23/307	455,97	456,58	130	0,4	2532	1,5	34	168	319	<1000	253	6	1198	2,26	<20	22	6,2	10,38	1,15	0,1588
FJG23/308	456,58	457,06	555	0,5	1971	1,5	32	138	328	<1000	301	1,5	356	1,9	<20	9	< 0.5	12,25	0,79	0,0646
FJG23/309	457,06	457,49	155	0,3	88	1,5	7	42	239	<1000	120	6	341	1,25	<20	9	0,8	8,2	0,59	0,3181
FJG23/310	457,49	457,93	526	0,4	1130	1,5	17	47	399	<1000	283	5	195	0,8	<20	8	< 0.5	9,76	0,46	0,2314

a mostra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/312	457,93	458,51	714	1,1	10000	1,5	268	246	998	<1000	781	14	489	4,18	<20	64	< 0.5	30,97	1,59	0,0763
FJG23/313	458,51	459,14	444	0,6	6625	1,5	76	106	353	<1000	466	7	1107	1,76	<20	21	4,6	14,44	0,78	0,163
FJG23/314	459,14	459,62	993	1,2	1060	1,5	87	1356	552	<1000	827	80	1701	2,33	<20	78	5,4	11,97	1,79	0,1274
FJG23/315	459,62	460,02	11	0,9	22	1,5	152	2011	439	<1000	1481	138	1962	2,36	<20	105	6	12,58	2,45	0,0811
FJG23/316	460,02	460,75	10	0,7	14	1,5	119	2075	192	<1000	1221	236	2038	2,35	<20	104	7,4	9,09	2,12	0,0713
FJG23/317	460,75	461,17	2,5	0,15	6	1,5	120	2129	145	<1000	1273	9	232	2,5	<20	180	0,6	7,49	2,26	0,079
FJG23/318	461,17	461,77	2,5	0,15	13	1,5	107	1361	92	<1000	1240	6	156	1,9	<20	29	0,6	4,24	1,81	0,0619
FJG23/319	461,77	462,47	2,5	0,15	77	1,5	95	439	96	<1000	1034	1,5	39	0,69	<20	6	< 0.5	2,11	0,58	0,0223
FJG23/321	483,03	483,78	2,5	0,15	136	1,5	59	1184	5	<1000	423	1,5	81	2,8	<20	4	< 0.5	3,37	3,57	0,0301
FJG23/322	483,78	484,18	2,5	0,15	52	1,5	90	749	1025	<1000	676	4	452	4,7	<20	38	< 0.5	16,04	4,43	0,05
FJG23/323	484,18	484,71	8	0,4	2	1,5	107	313	1555	<1000	707	6	651	4,09	<20	16	0,6	20,46	2,86	0,0659
FJG23/324	484,71	485,11	2,5	0,15	32	1,5	75	345	900	<1000	457	7	1497	4,8	<20	22	5,2	16,38	3,31	0,085
FJG23/325	485,11	485,64	7	0,15	224	1,5	72	258	383	<1000	441	4	4280	2,5	<20	7	16,3	6,33	2,48	0,0722
FJG23/326	485,64	486,30	2,5	0,15	305	1,5	60	1150	28	<1000	474	1,5	128	2,85	<20	3	0,7	3,76	4,18	0,0909
FJG23/327	486,30	487,06	5	0,15	462	1,5	73	1172	58	<1000	574	1,5	89	2,82	<20	3	0,7	3,91	4,67	0,1096
FJG23/328	487,06	487,72	2,5	0,15	335	1,5	65	1190	54	<1000	499	1,5	34	2,66	<20	2	< 0.5	3,2	3,51	0,0473
FJG23/329	528,40	529,26	2,5	0,15	34	1,5	38	1316	6	<1000	430	1,5	23	2,6	<20	5	< 0.5	3,27	4,35	0,0953
FJG23/331	529,26	530,00	2,5	0,15	173	1,5	55	1389	54	<1000	516	4	41	2,62	<20	33	< 0.5	4,26	5,88	0,1177
FJG23/332	530,00	530,52	11	0,15	13	1,5	41	1010	57	<1000	367	1,5	102	5,68	<20	106	< 0.5	12,7	5,28	0,0992
FJG23/333	530,52	531,17	7	0,15	1	9	<1	47	164	<1000	21	1,5	15	0,72	<20	28	< 0.5	33,11	0,41	0,0634
FJG23/334	531,17	531,58	34	0,15	1	1,5	23	370	454	<1000	158	1,5	49	5,33	<20	64	< 0.5	13,68	3,11	0,0624
FJG23/335	531,58	532,38	8	0,15	16	1,5	31	426	83	<1000	197	3	39	4,23	<20	76	< 0.5	9,11	2,89	0,0416
FJG23/336	532,38	533,11	23	0,3	56	1,5	41	425	319	<1000	248	1,5	31	3,49	<20	103	< 0.5	6,39	2,59	0,0247
FJG23/337	533,11	533,76	2,5	0,15	35	1,5	40	381	52	<1000	287	3	65	4,48	<20	94	< 0.5	8,46	3,21	0,0358
FJG23/338	533,76	534,19	2,5	0,15	13	1,5	49	348	179	<1000	178	5	48	3,42	25	144	< 0.5	7,59	2,07	0,0278
FJG23/339	534,19	534,80	6	0,15	22	1,5	37	399	49	<1000	274	1,5	44	4,46	<20	81	< 0.5	8,93	3,08	0,0354
FJG23/341	534,80	535,51	5	0,15	17	1,5	34	372	150	<1000	242	1,5	26	3,77	<20	84	< 0.5	7,64	2,48	0,0305
FJG23/342	535,51	536,11	2,5	0,15	33	1,5	50	612	119	<1000	342	1,5	49	4,91	<20	55	< 0.5	9,44	3,64	0,0361
FJG23/343	536,11	536,64	2,5	0,15	13	1,5	49	581	118	<1000	346	1,5	51	4,91	<20	38	< 0.5	9,03	4,02	0,0345
FJG23/344	536,64	537,09	2,5	0,15	26	1,5	48	590	118	<1000	342	4	41	4,51	<20	10	< 0.5	8,95	3,3	0,0341
FJG23/345	537,09	537,74	2,5	0,15	10	1,5	39	493	47	1000	302	1,5	44	4,54	<20	35	< 0.5	8,56	3,34	0,0337
FJG23/346	537,74	538,56	6	0,15	14	1,5	42	476	65	<1000	298	4	65	4,6	<20	78	< 0.5	9,07	3,13	0,0378
FJG23/347	538,56	539,48	12	0,15	26	1,5	45	436	67	<1000	299	4	56	4,79	<20	44	< 0.5	9,49	3,29	0,0434
FJG23/348	539,48	540,26	6	0,3	16	1,5	39	392	186	<1000	246	4	29	4,13	<20	69	< 0.5	8,39	2,74	0,0387
FJG23/349	540,26	540,81	10	0,15	3	1,5	87	372	165	<1000	197	5	50	5,38	<20	88	< 0.5	13,72	3,63	0,0489
FJG23/350	540,81	541,25	7	0,15	1	1,5	91	351	119	1000	216	3	50	5,58	<20	131	< 0.5	13,54	3,7	0,0487
FJG23/351	541,25	541,80	22	0,3	1	1,5	120	364	158	<1000	264	4	51	6,61	<20	128	< 0.5	16,14	4,55	0,0592
FJG23/352	541,80	542,35	32	0,4	1	1,5	125	342	323	<1000	229	1,5	39	5,54	<20	90	< 0.5	14,91	3,87	0,053
FJG23/353	542,35	542,95	2,5	0,15	1	1,5	23	385	6	<1000	172	1,5	33	4,88	<20	61	< 0.5	10,26	3,42	0,0496
FJG23/354	542,95	543,38	8	0,15	2	1,5	218	354	399	<1000	334	1,5	41	6,43	<20	15	< 0.5	20,25	4,92	0,0619

a m o s tra	de (m)	até (m)	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Co_ppm	Cr_ppm	Cu_ppm	Hg_ppb	Ni_ppm	P b_ppm	Zn_ppm	Al_pct	B_ppm	Ba_ppm	Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/355	543,38	543,79	2,5	0,15	1	1,5	42	352	36	1000	150	1,5	30	4,38	<20	69	< 0.5	9,79	2,97	0,0457
FJG23/356	543,79	544,19	6	0,4	1	1,5	155	345	218	2000	279	1,5	38	5,88	<20	54	< 0.5	16,57	4,28	0,0561
FJG23/357	544,19	544,79	2,5	0,15	1	1,5	21	323	9	<1000	131	4	28	3,55	<20	28	< 0.5	7,58	2,38	0,0371
FJG23/358	544,79	545,53	2,5	0,15	2	1,5	42	373	47	<1000	168	1,5	33	4,48	<20	20	< 0.5	10,17	3,1	0,0479
FJG23/359	545,53	546,13	2,5	0,15	1	1,5	70	525	69	<1000	240	1,5	69	8,13	<20	83	< 0.5	20,38	5,55	0,0757
FJG23/361	546,13	546,88	2,5	0,15	1	1,5	24	319	0,5	<1000	129	1,5	31	3,33	<20	14	< 0.5	7,27	2,26	0,0339
FJG23/362	546,88	547,59	2,5	0,15	1	1,5	24	384	10	<1000	164	1,5	36	4,64	<20	59	< 0.5	10,02	3,15	0,0484
FJG23/363	547,59	548,39	2,5	0,15	1	1,5	16	312	6	<1000	117	1,5	27	3,5	<20	45	< 0.5	7,48	2,38	0,0368
FJG23/364	558,90	559,38	2,5	0,15	5	1,5	38	473	57	1000	253	1,5	43	5,67	<20	31	< 0.5	12,4	3,9	0,0593
FJG23/365	559,38	559,93	6	0,15	1	1,5	16	305	0,5	<1000	110	4	28	3,48	<20	105	< 0.5	9,37	1,74	0,0449
FJG23/366	559,93	560,64	54	0,15	1	1,5	10	73	97	<1000	27	1,5	18	1,04	<20	63	< 0.5	21,34	0,61	0,0468
FJG23/367	560,64	561,06	10	0,15	1	1,5	25	312	185	<1000	133	1,5	80	2,7	<20	62	0,8	10,91	1,51	0,0595
FJG23/368	561,06	561,66	12	0,15	133	1,5	54	976	131	<1000	483	1,5	358	3,83	<20	8	1,5	8,74	4,26	0,0831
FJG23/369	561,66	562,41	12	0,15	136	1,5	61	743	251	<1000	489	1,5	532	3,23	<20	8	3,8	6,78	3,59	0,1044
FJG23/371	568,72	569,41	2,5	0,15	175	1,5	58	1016	9	<1000	445	5	71	2,64	<20	9	<0.5	4,72	6,9	0,1336
FJG23/372	569,41	569,84	12	0,15	9	1,5	27	418	187	<1000	237	7	133	2,75	<20	72	<0.5	11,08	2,38	0,1005
FJG23/373	569,84	570,28	20	0,15	71	1,5	48	847	85	<1000	299	4	72	2,98	<20	13	<0.5	7,61	4,98	0,0973
FJG23/374	570,28	570,81	5	0,15	1	1,5	9	160	0,5	<1000	72	1,5	28	1,32	<20	7	< 0.5	3,16	0,96	0,0182
FJG23/375	570,81	571,35	13	0,15	1	1,5	16	287	0,5	<1000	128	1,5	54	3,23	<20	26	< 0.5	6,97	2,08	0,0301
FJG23/376	571,35	571,92	16	0,15	33	1,5	39	459	85	<1000	242	1,5	46	4,62	<20	26	< 0.5	8,7	3,14	0,0412
FJG23/377	571,92	572,47	2,5	0,15	12	1,5	29	335	71	<1000	146	5	27	3,54	<20	51	< 0.5	7,02	2,35	0,0378
FJG23/378	572,47	573,25	2,5	0,15	1	1,5	28	363	47	<1000	147	5	31	4,08	<20	22	< 0.5	8,43	2,84	0,0445
FJG23/379	573,25	573,87	2,5	0,15	1	1,5	34	429	12	<1000	198	5	49	5,64	<20	18	< 0.5	11,44	4,23	0,0611
FJG23/381	573,87	574,32	16	0,15	2	1,5	26	470	4	<1000	144	1,5	47	6,33	<20	292	< 0.5	17,39	3,69	0,101
FJG23/382	574,32	574,80	14	0,15	1	10	39	161	158	<1000	62	1,5	33	2,32	<20	171	< 0.5	36,17	1,37	0,091
FJG23/383	574,80	575,23	2,5	0,15	10	1,5	43	705	29	<1000	188	5	83	5,45	<20	97	< 0.5	9,27	6,05	0,1094
FJG23/384	575,23	576,00	2,5	0,15	28	1,5	44	1112	17	<1000	316	1,5	44	3,18	<20	6	< 0.5	4,27	4,11	0,048
FJG23/385	576,00	576,80	11	0,15	9	1,5	39	933	73	<1000	294	1,5	41	3,03	<20	3	< 0.5	3,72	3,82	0,053
FJG23/386	576,80	577,52	2,5	0,15	10	1,5	40	964	48	<1000	292	1,5	37	3,12	<20	3	<0.5	3,95	3,95	0,0559
FJG23/387	577,52	578,22	2,5	0,15	1	1,5	38	669	47	<1000	227	5	84	3,92	<20	3	<0.5	5,2	4,82	0,1064
FJG23/388	578,22	578,71	41	0,15	1	3	1	90	27	<1000	44	1,5	65	1,07	<20	50	<0.5	14,35	0,68	0,0265
FJG23/389	578,71	579,15	9	0,15	1	6	<1	25	25	<1000	12	1,5	50	0,46	<20	45	< 0.5	30,66	0,23	0,0214
FJG23/390	579,15	579,67	41	0,15	1	6	<1	27	24	<1000	34	1,5	133	0,54	<20	57	<0.5	23,68	0,19	0,0588
FJG23/391	579,67	580,21	133	0,4	1	7	17	32	884	<1000	111	1,5	75	0,57	<20	60	<0.5	27,98	0,25	0,0382
FJG23/392	580,21	580,73	53	0,15	1	4	<1	84	27	<1000	46	1,5	138	1,33	<20	113	< 0.5	14,75	0,41	0,0385
FJG23/393	580,73	581,19	619	0,15	1	7	3	46	201	<1000	57	1,5	189	0,77	<20	83	<0.5	25,73	0,29	0,0497
FJG23/394	581,19	581,84	41	0,15	1	7	<1	38	13	<1000	31	1,5	124	0,61	<20	66	< 0.5	28,22	0,21	0,0447
FJG23/395	581,84	582,26	82	0,15	1	1,5	<1	65	53	<1000	42	1,5	163	1,05	<20	56	< 0.5	13,08	0,38	0,0494
FJG23/396	582,26	582,69	66	0,15	4	1,5	17	385	0,5	<1000	258	1,5	411	8,26	<20	219	< 0.5	28,48	2,34	0,0712
FJG23/397	582,69	583,36	33	0,15	1	5	1	51	59	<1000	47	1,5	116	0,8	<20	40	< 0.5	18,57	0,28	0,0546

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Método ICP-ES para todos os elementos.

			1	-	1		1	T	-									1	1		1	T 7
a mostra	de (m)	até (m)	Au_ppl	Ag_ppn	As_ppn	Bi_ppm	Co_ppm	Cr_pj	pm Cu_	ppm H	g_ppb	Ni_ppn	n Pb_	ppm Z1	n_ppm	Al_pct	B_ppm	Ba_pp	n Cd_ppm	Fe_pct	Mg_pct	Mn_pct
FJG23/398	583,36	583,93	59	0,15	1	6	<1	51	6	9 <	<1000	41	1	,5	114	1,06	<20	50	< 0.5	26,07	0,34	0,0744
FJG23/399	583,93	584,55	2,5	0,15	1	9	<1	27	8	3 <	<1000	21	1	,5	80	0,71	<20	11	< 0.5	32,64	0,3	0,0511
FJG23/401	584,55	585,10	2,5	0,15	66	1,5	42	403	3 3	1 <	<1000	328		8	159	4,94	<20	47	< 0.5	9,43	3,11	0,0497
FJG23/402	585,10	585,68	2,5	0,15	65	1,5	41	320) 2	5 <	<1000	315	1	,5	96	4,33	<20	25	< 0.5	7,97	2,85	0,0355
FJG23/403	585,68	586,08	19	0,15	2	7	<1	68	4	7 <	<1000	52	1	,5	109	1,14	<20	21	< 0.5	24,56	0,49	0,0613
FJG23/404	586,08	586,49	24	0,15	1	6	<1	24	9	9 <	<1000	31	1	,5	75	0,75	<20	26	< 0.5	25,36	0,38	0,0807
	amost	ra de	(m) ate	(m) Mo	_ppm S_	ppm Sb_	ppm Sc_	ppm '	Ti_pct	V_ppn	n Ca_	pct K	L_pct	La_pp:	m Na_	pct P_	pct Sr_	ppm Th	_ppm Tl_	ppm W_	ppm	
	FJG23/1	38 289	,95 29	0,78	<1 6	00 <	3 2	.4	0,039	191	4,7	77 <	:0.01	15	0,0	0,0)63	24	9 <	:5	<2	
	FJG23/1	39 290	,78 29	1,32 ·	<1 10	> 000	3 2	2	0,04	194	5,2	28 <	:0.01	15	0,0	0,0)64	32	9 <	5	<2	
	FJG23/1	41 291	,32 29	2,09	<1 13	300 <	3 2	.4	0,031	200	5,1	18 <	:0.01	16	0,0	0,0)65 4	40	9 <	5	<2	
	FJG23/1	.43 292	,09 29	2,67	<1 6	< 00 <	3 1	7	0,026	136	3,3	34 (0,04	12	0,0	0,0	048 2	28	7 <	:5	<2	
	FJG23/1	44 292	,67 29	3,08	2 10	600 <	3 1	6	0,019	138	6,1	12 (0,02	23	0,0	0,0)39	40	10 <	:5	<2	
	FJG23/1	45 293	,08 29	3,70	<1 53	600 <	3 1	7	0,096	126	4,8	33 (0,54	9	0,0	02 0,0)28	43	8 <	:5	<2	
	FJG23/1	46 293	,70 29	4,30	<1 16	900 <	3 2	20	0,032	147	3,1	11 (0,07	6	<0.	01 0,0	049 2	27	5 <	:5	<2	
	FJG23/1	.47 294	,30 29	5,02	2 19	> 000 <	3 1	8	0,016	119	4,7	72 <	:0.01	13	<0.	01 0,0)49 4	41	10 <	:5	<2	
	FJG23/1	48 295	,02 29	5,60	<1 24	900 <	3 <	5	0,01	25	3,5	54 (0,03	10	0,0	01 0,0)52	27	7 <	:5	<2	
	FJG23/1	.49 295	,60 29	6,30	<1 2	50 <	3 2	3	0,025	149	5,1	18 <	:0.01	14	<0.	01 0,0)45	50	8 <	:5	<2	
	FJG23/1	50 296	,30 29	6,75	<1 31	< 000 <	3 1	1	0,012	74	6,6	52 <	:0.01	5	<0.	01 0,0)32	32	3 <	:5	<2	
	FJG23/1	51 296	,75 29	7,39	2 82	< 200 <	3 1	1	0,018	80	2,5	54 <	:0.01	12	<0.	01 0,0)34	11	10 <	:5	<2	
	FJG23/1	52 297	,39 29	7,94	3 2	50 <	3 1	0	0,015	72	0,1	14 <	:0.01	9	<0.	01 0,0)26	2	4 <	:5	<2	
	FJG23/1	53 297	,94 29	8,55	2 2	50 <	3 1	0	0,039	75	0,1	13 (0,13	14	<0.	01 0,0)39	2	14 <	:5	<2	
	FJG23/1	54 298	,55 29	9,33	2 1	< 00 <	3	6	0,034	40	1,1	14 (0,16	14	0,0	0,0)33	7	14 <	:5	<2	
	FJG23/1	55 311	,67 31	2,21	2 13	300 <	3	8	0,026	83	3,8	38 (0,05	10	<0.	01 0,0)43	22	8 <	:5	<2	
	FJG23/1	56 312	,21 31	2,79	2 14	< 00	3 1	0	0,028	65	0,9	99 (0,06	7	<0.	01 0,0)33	5	8 <	:5	<2	
	FJG23/1	57 312	,79 31	3,37 ·	<1 2	50 <	3 1	3	0,058	131	5,3	34	0,1	15	0,0	0,0)63	28	10 <	5	<2	
	FJG23/1	58 313	,37 31	3,78	<1 22	400 <	3 1	1	0,028	74	5,5	51 (0,06	7	<0.	01 0,0	048 3	33	4 <	5	<2	
	FJG23/1	59 313	,78 31	4,55	<1 18	300 <	3	5	0,008	18	5,1	18 (0,03	4	0,0	0,0)62	37	3 <	5	<2	
	FJG23/1	61 314	,55 31	5,14	<1 2	50 <	3 2	1	0,071	168	1,8	36 (0,15	8	0,0	0,0)52	10	7 <	5	<2	
	FJG23/1	62 315	,14 31	5,96	<1 2	50 <	3 2	.6	0,181	207	4,	7 (0,19	16	0,0	03 0,	06	30	11 <	5	<2	
	FJG23/1	63 315	,96 31	6,73	<1 9	< 00 <	3 2	1	0,089	188	4,2	27 (0,15	10	0,0	0,0)63	32	5 <	5	<2	
	FJG23/1	64 316	,73 31	7,39	<1 6	< 00 <	3 1	9	0,07	182	2,8	36 (0,04	11	0,0	0,0)63	17	6 <	:5	<2	
	FJG23/1	65 317	,39 31	7,94	<1 2	50 <	3	5	0,026	54	3,	5 <	0.01	7	0,0	0,0	007	18	5 <	:5	<2	
	FJG23/1	66 317	,94 31	8,85	<1 6	500 <	3 1	8	0,087	144	3,4	46	0,2	3	0,0	0,0)53	26	11 <	:5	<2	
	FJG23/1	67 318	,85 31	9,30	<1 8	< 00 <	3 1	6	0,064	137	7,1	13 (0,02	4	0,0	0,0)38	44	13 <	:5	<2	
	FJG23/1	68 319	,30 31	9,89	<1 2	50 <	3 2	1	0,089	187	4,3	32 (0,14	2	0,0	0,0)65	23	11 <	:5	<2	
	FJG23/1	69 319	,89 32	0,56	<1 2	50 <	3 2	1	0,093	187	2,8	39 (0,09	16	0,0)5 0,0)63	20	11 <	5	<2	

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Métoc	lo
ICP-ES para todos os elementos.	

a m o s tra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pc t	V_ppm	Ca_pct	K_pct	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/171	320,56	321,00	<1	250	<3	10	0,08	75	1,57	0,06	14	0,06	0,029	13	12	<5	<2
FJG23/172	321,00	321,65	<1	250	<3	9	0,097	76	0,68	0,08	18	0,07	0,029	11	11	<5	<2
FJG23/173	321,65	322,36	1	250	<3	10	0,114	77	0,59	0,11	19	0,06	0,029	13	11	<5	<2
FJG23/174	322,36	323,07	<1	250	<3	9	0,107	86	0,66	0,11	18	0,05	0,028	12	11	<5	<2
FJG23/175	323,07	323,72	<1	250	<3	11	0,075	91	1,23	0,05	15	0,05	0,037	13	11	<5	<2
FJG23/176	323,72	324,41	<1	250	<3	19	0,057	177	4,47	0,01	5	0,02	0,062	24	11	<5	<2
FJG23/177	324,41	324,85	<1	11200	<3	12	0,111	105	2,37	0,52	9	0,04	0,073	23	10	<5	<2
FJG23/178	324,85	325,46	<1	250	<3	16	0,081	139	4,21	0,24	4	0,02	0,042	31	11	<5	<2
FJG23/179	325,46	326,15	<1	250	<3	12	0,027	88	1,02	< 0.01	4	0,02	0,035	7	5	<5	<2
FJG23/181	326,15	326,88	2	250	<3	28	0,041	143	4,03	0,01	22	0,02	0,078	36	9	<5	<2
FJG23/182	326,88	327,51	<1	250	<3	21	0,052	187	4,19	0,04	14	0,02	0,062	29	9	<5	<2
FJG23/183	327,51	328,09	<1	1400	<3	14	0,021	107	8,03	< 0.01	7	< 0.01	0,041	41	16	<5	<2
FJG23/184	328,09	328,65	<1	5300	<3	14	0,038	97	4,64	0,11	8	< 0.01	0,043	25	14	<5	<2
FJG23/185	328,65	329,41	1	250	<3	15	0,04	109	1,38	0,09	5	< 0.01	0,044	9	11	<5	<2
FJG23/186	329,41	330,06	1	1700	<3	14	0,063	115	2,8	0,11	15	0,01	0,048	15	12	<5	<2
FJG23/187	333,66	334,52	1	1000	<3	15	0,082	135	3,25	0,05	15	0,02	0,048	17	13	<5	<2
FJG23/188	334,52	335,12	<1	250	<3	14	0,082	116	2,82	0,05	15	0,03	0,038	16	14	<5	<2
FJG23/189	335,12	335,90	<1	250	<3	15	0,065	119	2,42	0,11	8	0,02	0,042	13	13	<5	<2
FJG23/190	335,90	336,42	2	3200	<3	10	0,147	82	3,15	0,66	20	0,05	0,031	24	15	<5	<2
FJG23/191	336,42	336,96	1	250	<3	9	0,09	73	0,95	0,26	12	0,04	0,027	7	13	<5	<2
FJG23/192	344,41	345,16	<1	250	<3	19	0,111	145	4,92	0,52	17	0,03	0,05	26	11	<5	<2
FJG23/193	345,16	345,74	<1	250	<3	18	0,068	142	6,52	0,21	15	0,01	0,048	30	7	<5	<2
FJG23/194	345,74	346,15	<1	12100	<3	11	0,184	111	2,54	1,15	8	0,02	0,039	16	14	<5	<2
FJG23/195	346,15	346,55	1	1600	<3	6	0,109	52	1,31	0,62	9	0,03	0,018	11	12	<5	3
FJG23/196	346,55	347,31	1	1000	<3	9	0,124	74	0,42	0,57	14	0,03	0,028	9	11	<5	4
FJG23/197	355,60	356,43	<1	500	<3	22	0,16	200	4,38	0,81	14	0,04	0,067	30	10	<5	<2
FJG23/198	356,43	357,17	1	500	<3	8	0,113	76	1,94	0,66	10	0,03	0,027	15	16	<5	<2
FJG23/199	357,17	357,59	1	1900	<3	8	0,135	96	0,41	0,81	14	0,04	0,031	12	11	<5	<2
FJG23/201	357,59	358,39	<1	600	<3	15	0,135	127	1,46	0,8	17	0,02	0,046	15	10	<5	<2
FJG23/202	358,39	359,18	1	250	<3	11	0,161	93	1,42	0,94	19	0,03	0,037	18	8	<5	<2
FJG23/203	359,18	360,00	<1	250	<3	10	0,131	89	1,02	0,69	20	0,03	0,037	16	9	<5	<2
FJG23/204	360,00	360,72	<1	250	<3	15	0,078	120	2,09	0,23	19	0,02	0,043	15	8	<5	<2
FJG23/205	360,72	361,39	<1	250	<3	10	0,083	65	1,36	0,31	18	0,02	0,021	10	10	<5	<2
FJG23/206	361,39	362,04	<1	250	<3	15	0,045	112	4,46	0,02	19	0,02	0,049	22	10	<5	<2
FJG23/207	362,04	362,87	<1	250	<3	18	0,042	144	4,31	< 0.01	16	0,02	0,059	16	8	<5	<2
FJG23/208	362,87	363,33	1	20500	<3	10	0,035	73	2,29	0,04	14	0,02	0,041	12	7	<5	<2
FJG23/209	363,33	363,89	1	800	<3	16	0,058	128	2,25	0,03	19	0,03	0,05	10	10	<5	<2
FJG23/211	363,89	364,50	1	250	<3	6	0,037	48	0,7	0,02	12	0,04	0,024	6	6	<5	<2
FJG23/212	364,50	365,34	<1	250	<3	10	0,071	91	1,52	0,03	24	0,04	0,039	11	11	<5	<2
FJG23/213	401,86	402,64	<1	250	<3	16	0,025	107	6,32	0,07	15	0,01	0,043	57	8	<5	<2

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Métod	do
ICP-ES para todos os elementos.	

a mostra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pct	V_ppm	Ca_pct	K_pct	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/214	402,64	403,22	<1	250	<3	17	0,021	121	6,17	0,03	15	0,02	0,051	55	9	<5	<2
FJG23/215	403,22	403,75	<1	700	<3	12	0,014	75	5	0,02	2	0,02	0,063	51	4	<5	<2
FJG23/216	403,75	404,40	<1	250	<3	14	0,063	90	2,61	0,38	20	0,03	0,039	21	11	<5	<2
FJG23/217	404,40	404,97	1	2400	<3	14	0,082	88	1,06	0,5	13	0,02	0,038	9	7	<5	<2
FJG23/218	404,97	405,73	<1	1800	3	<5	0,032	17	0,79	0,17	<1	< 0.01	0,046	6	4	<5	<2
FJG23/219	405,73	406,35	2	500	<3	13	0,116	89	0,59	0,76	13	0,02	0,031	6	8	<5	<2
FJG23/221	406,35	406,93	<1	2000	5	<5	0,014	9	0,84	0,05	<1	< 0.01	0,043	7	4	<5	<2
FJG23/222	406,93	407,74	<1	250	<3	22	0,072	156	5,54	0,46	16	0,02	0,054	44	8	<5	<2
FJG23/223	407,74	408,15	<1	1500	<3	18	0,108	125	4,98	0,72	17	0,02	0,053	37	9	<5	<2
FJG23/224	408,15	408,56	<1	9000	<3	13	0,127	86	2,03	0,95	5	0,02	0,04	19	6	<5	<2
FJG23/225	408,56	409,09	<1	23500	<3	<5	0,065	24	2,33	0,45	3	0,02	0,037	22	6	<5	<2
FJG23/226	409,09	409,83	2	250	<3	8	0,107	48	0,08	0,62	10	0,01	0,023	2	15	<5	<2
FJG23/227	409,83	410,48	<1	1000	<3	11	0,188	72	0,66	1,46	13	0,02	0,03	9	10	<5	2
FJG23/228	410,48	411,18	<1	9800	3	<5	0,032	23	2,5	0,24	1	0,02	0,04	21	4	<5	<2
FJG23/229	411,18	412,00	<1	250	<3	20	0,018	143	5,14	< 0.01	17	0,02	0,052	43	9	<5	<2
FJG23/230	412,00	412,92	<1	250	<3	17	0,016	126	5,37	< 0.01	18	0,01	0,052	49	9	<5	<2
FJG23/231	412,92	413,88	<1	250	<3	18	0,015	133	5,52	< 0.01	17	0,02	0,05	44	9	<5	<2
FJG23/232	413,88	414,60	<1	250	<3	17	0,016	128	5,77	< 0.01	16	0,02	0,047	46	9	<5	<2
FJG23/233	414,60	415,00	<1	900	<3	14	0,084	108	3,82	0,46	1	0,02	0,054	38	4	<5	<2
FJG23/234	415,00	415,69	<1	250	<3	20	0,022	155	4,59	0,02	16	0,02	0,055	30	8	<5	<2
FJG23/235	415,69	416,39	<1	250	<3	18	0,018	139	4,16	0,02	16	0,01	0,054	28	9	<5	<2
FJG23/236	416,39	416,83	<1	4600	<3	8	0,014	43	3,91	0,04	16	0,02	0,034	28	9	<5	<2
FJG23/237	416,83	417,37	<1	5000	<3	7	0,016	33	2,07	0,05	14	0,02	0,032	18	9	<5	<2
FJG23/238	417,37	417,85	<1	2000	<3	5	0,015	25	1,99	0,05	11	0,02	0,032	16	8	<5	<2
FJG23/239	417,85	418,70	2	250	<3	8	0,07	52	0,07	0,37	9	0,01	0,021	3	11	<5	<2
FJG23/241	418,70	419,60	2	250	<3	9	0,08	66	0,07	0,45	9	0,01	0,025	5	16	<5	<2
FJG23/242	419,60	420,04	<1	3400	<3	6	0,05	22	4,1	0,36	15	0,03	0,026	28	10	<5	<2
FJG23/243	420,04	420,46	<1	12700	<3	<5	0,014	13	2,07	0,09	8	0,03	0,03	18	6	<5	<2
FJG23/244	420,46	420,89	<1	3800	<3	7	0,014	29	2,96	0,07	11	0,04	0,03	31	8	<5	<2
FJG23/245	420,89	421,59	<1	250	<3	20	0,049	135	5,12	0,25	8	0,02	0,045	53	4	<5	<2
FJG23/246	421,59	422,37	<1	250	<3	18	0,079	129	4,15	0,5	9	0,02	0,046	35	5	<5	<2
FJG23/247	422,37	422,96	<1	250	<3	17	0,045	111	6	0,26	16	0,01	0,037	69	9	<5	<2
FJG23/248	422,96	423,84	<1	250	<3	15	0,012	82	6,61	< 0.01	16	< 0.01	0,033	87	10	<5	<2
FJG23/249	423,84	424,49	<1	250	<3	15	0,015	87	5,4	0,02	17	< 0.01	0,038	60	9	<5	<2
FJG23/251	424,49	425,09	<1	250	<3	16	0,013	86	5,47	0,02	16	< 0.01	0,04	64	9	<5	<2
FJG23/252	425,09	425,69	<1	250	<3	16	0,02	106	4,95	0,04	9	< 0.01	0,04	53	4	<5	<2
FJG23/253	425,69	426,30	<1	250	<3	<5	0,011	22	1,96	0,07	9	0,03	0,034	22	6	<5	<2
FJG23/254	426,30	427,00	<1	250	<3	<5	0,018	12	1,64	0,16	8	0,02	0,03	17	6	<5	<2
FJG23/255	427,00	427,61	<1	800	<3	<5	0,014	6	1,82	0,12	9	0,01	0,026	15	6	<5	<2
FJG23/256	427,61	428,38	<1	1000	<3	<5	0,015	6	1,54	0,13	12	< 0.01	0,031	12	7	<5	<2

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Méto	do
ICP-ES para todos os elementos.	

a mostra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pct	V_ppm	Ca_pct	K_pct	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/257	428,38	429,08	<1	250	<3	<5	0,016	7	1,23	0,11	7	< 0.01	0,03	10	5	<5	<2
FJG23/258	429,08	429,77	<1	500	<3	<5	0,026	11	0,85	0,21	9	< 0.01	0,031	11	5	<5	<2
FJG23/259	429,77	430,37	<1	800	<3	<5	0,02	10	1,31	0,16	8	< 0.01	0,03	13	5	<5	<2
FJG23/261	430,37	430,80	<1	24900	<3	6	0,056	23	2,73	0,61	14	0,02	0,025	26	8	<5	<2
FJG23/262	430,80	431,28	<1	12000	<3	10	0,167	74	0,56	1,57	6	0,02	0,025	8	8	<5	<2
FJG23/263	431,28	431,80	<1	7000	<3	9	0,151	49	1,05	1,15	11	0,01	0,021	9	8	<5	<2
FJG23/264	431,80	432,43	<1	3900	<3	10	0,231	63	1,55	1,93	12	0,01	0,03	16	11	<5	<2
FJG23/265	432,43	433,00	2	1300	<3	12	0,207	77	0,72	1,7	11	0,02	0,032	9	11	<5	5
FJG23/266	433,00	433,70	1	250	<3	7	0,169	46	1,07	1,35	21	0,02	0,021	8	11	<5	<2
FJG23/267	433,70	434,21	2	250	<3	6	0,111	37	2,26	0,81	24	0,02	0,019	15	14	<5	<2
FJG23/268	434,21	434,80	2	250	<3	8	0,138	51	0,22	0,96	12	0,02	0,022	4	9	<5	2
FJG23/269	434,80	435,53	<1	1400	<3	11	0,148	122	0,68	0,14	15	0,02	0,229	22	4	<5	2
FJG23/270	435,53	436,07	<1	1800	<3	17	0,089	147	0,64	0,08	14	0,03	0,253	31	4	<5	<2
FJG23/271	436,07	436,58	<1	1200	<3	13	0,215	124	0,67	0,1	30	0,03	0,206	26	5	<5	3
FJG23/272	436,58	437,13	1	250	<3	7	0,061	62	0,14	0,08	6	0,02	0,025	7	9	<5	<2
FJG23/273	437,13	437,94	1	250	<3	9	0,059	66	0,22	0,09	8	0,02	0,025	8	11	<5	<2
FJG23/274	437,94	438,46	2	250	<3	7	0,091	76	0,25	0,24	15	0,02	0,03	7	11	<5	<2
FJG23/275	438,46	439,00	1	250	<3	7	0,065	59	0,18	0,26	10	0,02	0,023	6	9	<5	<2
FJG23/276	439,00	439,77	1	250	<3	8	0,067	62	0,09	0,24	9	0,02	0,023	4	10	<5	<2
FJG23/277	439,77	440,29	1	250	<3	12	0,135	82	0,08	0,73	9	0,03	0,025	4	9	<5	<2
FJG23/278	440,29	441,07	<1	10000	<3	<5	0,024	18	5,47	0,17	6	0,04	0,03	35	13	<5	<2
FJG23/279	441,07	441,58	<1	4200	<3	<5	0,009	9	9,07	0,21	4	0,11	0,04	77	14	<5	<2
FJG23/281	441,58	442,07	<1	8900	<3	<5	0,009	6	3,91	0,15	4	0,07	0,034	38	12	<5	<2
FJG23/282	442,07	442,77	<1	1300	<3	<5	0,007	4	3,55	0,14	3	0,07	0,033	34	12	<5	<2
FJG23/283	442,77	443,27	<1	900	<3	15	0,04	84	1,18	0,6	9	0,28	0,13	42	8	<5	<2
FJG23/284	443,27	443,76	<1	12400	<3	<5	0,032	16	4,55	0,38	6	0,05	0,032	46	14	<5	<2
FJG23/285	443,76	444,16	<1	58400	<3	<5	0,038	11	3,59	0,49	2	0,04	0,032	42	12	<5	<2
FJG23/286	444,16	444,77	<1	1500	<3	<5	0,011	6	4,25	0,08	2	0,02	0,031	32	13	<5	<2
FJG23/287	444,77	445,36	<1	59800	<3	5	0,049	18	3,95	0,59	3	0,03	0,035	37	12	<5	69
FJG23/288	445,36	445,89	<1	66600	<3	6	0,047	19	2,93	0,47	5	0,02	0,042	38	12	<5	100
FJG23/289	445,89	446,63	1	900	<3	9	0,147	71	0,19	1,04	11	0,01	0,027	3	9	<5	8
FJG23/291	446,63	447,38	1	1700	<3	8	0,156	61	0,34	1,25	11	0,02	0,025	5	9	<5	<2
FJG23/292	447,38	448,39	2	1400	<3	9	0,226	78	0,52	1,7	18	0,02	0,031	7	11	<5	9
FJG23/293	448,39	449,20	1	800	<3	<5	0,113	49	0,28	0,94	14	0,01	0,03	5	9	<5	<2
FJG23/294	449,20	449,70	7	11100	<3	8	0,146	77	1,05	1,26	16	0,02	0,033	8	12	<5	<2
FJG23/295	449,70	450,33	<1	2800	8	25	0,154	170	7,28	1,18	4	0,01	0,061	60	16	18	100
FJG23/296	450,33	451,33	<1	1200	<3	13	0,012	77	4,93	0,01	2	< 0.01	0,036	52	11	<5	29
FJG23/297	451,33	452,05	<1	800	<3	12	0,01	68	6,2	< 0.01	2	< 0.01	0,031	66	11	<5	4
FJG23/298	452,05	452,61	<1	600	<3	12	0,01	67	6,28	< 0.01	2	< 0.01	0,03	65	10	<5	2
FJG23/299	452,61	453,15	<1	1100	3	13	0,009	73	5,93	< 0.01	1	< 0.01	0,033	56	12	<5	<2

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Métoc	lo
ICP-ES para todos os elementos.	

a m o s t ra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pc t	V_ppm	Ca_pct	K_pc t	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/301	453,15	453,63	<1	1300	4	16	0,042	102	6,9	0,26	1	< 0.01	0,035	65	12	<5	<2
FJG23/302	453,63	454,05	7	24700	5	5	0,032	20	0,96	0,24	9	0,01	0,03	10	10	<5	32
FJG23/303	454,05	454,50	7	24300	5	7	0,048	36	1,32	0,44	13	0,02	0,032	9	13	<5	66
FJG23/304	454,50	454,95	<1	37700	5	18	0,261	167	5,62	2,07	<1	0,01	0,035	31	14	<5	18
FJG23/305	454,95	455,46	3	34000	3	14	0,226	123	3,31	1,67	9	0,01	0,044	19	13	<5	20
FJG23/306	455,46	455,97	1	42500	<3	8	0,123	50	2,22	1,38	10	0,02	0,031	19	9	<5	28
FJG23/307	455,97	456,58	<1	26300	<3	10	0,097	44	3,21	0,98	18	0,01	0,018	26	9	<5	<2
FJG23/308	456,58	457,06	2	30300	<3	7	0,052	32	0,54	0,35	5	< 0.01	0,008	4	4	<5	<2
FJG23/309	457,06	457,49	<1	18600	<3	5	0,032	14	7,67	0,29	20	0,02	0,045	64	10	<5	<2
FJG23/310	457,49	457,93	<1	31700	<3	<5	0,026	10	5,08	0,27	16	0,01	0,033	53	9	<5	<2
FJG23/312	457,93	458,51	2	45600	<3	11	0,221	69	0,51	2,75	11	0,01	0,013	7	11	<5	18
FJG23/313	458,51	459,14	<1	40100	<3	6	0,064	24	3,75	0,68	16	< 0.01	0,029	38	10	<5	7
FJG23/314	459,14	459,62	2	36900	<3	16	0,109	120	3,33	1,06	8	0,04	0,023	28	6	<5	<2
FJG23/315	459,62	460,02	<1	44900	<3	24	0,116	172	2,96	1,29	13	0,03	0,04	11	8	<5	<2
FJG23/316	460,02	460,75	<1	30400	<3	21	0,132	175	2,52	0,96	14	0,03	0,043	12	7	<5	<2
FJG23/317	460,75	461,17	<1	21700	<3	15	0,114	163	2,95	0,58	14	0,03	0,047	17	8	<5	<2
FJG23/318	461,17	461,77	<1	9700	<3	6	0,069	80	2,41	0,08	11	0,03	0,047	18	6	<5	<2
FJG23/319	461,77	462,47	<1	5300	<3	5	0,062	22	0,75	0,03	5	0,05	0,045	10	3	<5	<2
FJG23/321	483,03	483,78	<1	250	<3	<5	0,022	79	0,86	0,03	5	0,02	0,039	19	4	<5	<2
FJG23/322	483,78	484,18	<1	31100	<3	21	0,068	145	1,1	0,47	6	0,02	0,091	33	8	<5	<2
FJG23/323	484,18	484,71	2	42800	<3	23	0,026	131	2,38	0,11	11	0,02	0,056	68	12	<5	<2
FJG23/324	484,71	485,11	<1	23000	<3	24	0,042	150	2,98	0,2	12	0,02	0,057	78	11	<5	<2
FJG23/325	485,11	485,64	3	12900	<3	16	0,019	94	3,07	0,05	23	0,04	0,026	86	16	<5	<2
FJG23/326	485,64	486,30	<1	250	<3	<5	0,014	74	3,48	0,02	7	0,01	0,039	93	5	<5	<2
FJG23/327	486,30	487,06	<1	250	<3	8	0,013	79	4,03	0,01	8	0,01	0,037	88	5	<5	<2
FJG23/328	487,06	487,72	<1	250	<3	<5	0,012	67	1,33	0,02	6	0,01	0,037	29	4	<5	<2
FJG23/329	528,40	529,26	<1	250	6	7	0,015	79	4,43	0,04	8	0,01	0,019	65	9	<5	<2
FJG23/331	529,26	530,00	<1	250	9	15	0,047	101	5,58	0,28	6	0,01	0,02	76	10	<5	<2
FJG23/332	530,00	530,52	<1	1800	4	17	0,084	142	4,75	0,56	18	0,01	0,045	71	11	<5	<2
FJG23/333	530,52	531,17	<1	3500	4	<5	0,029	12	4,17	0,18	13	0,01	0,039	63	13	<5	3
FJG23/334	531,17	531,58	1	5500	<3	11	0,074	70	0,16	0,34	10	< 0.01	0,015	2	12	<5	<2
FJG23/335	531,58	532,38	1	250	<3	14	0,073	94	0,11	0,36	13	0,03	0,027	2	10	<5	3
FJG23/336	532,38	533,11	1	900	<3	13	0,083	96	0,07	0,5	16	0,03	0,026	2	10	<5	<2
FJG23/337	533,11	533,76	2	250	<3	10	0,093	82	0,08	0,65	17	0,03	0,03	2	10	<5	<2
FJG23/338	533,76	534,19	2	4800	<3	8	0,193	63	0,1	1,37	13	0,03	0,026	2	9	<5	<2
FJG23/339	534,19	534,80	1	250	<3	10	0,112	83	0,07	0,81	13	0,03	0,028	2	9	<5	<2
FJG23/341	534,80	535,51	1	1100	<3	9	0,111	69	0,06	0,76	15	0,03	0,028	2	10	<5	<2
FJG23/342	535,51	536,11	2	1000	<3	18	0,072	138	0,14	0,4	20	0,04	0,035	2	10	<5	<2
FJG23/343	536,11	536,64	2	1200	<3	18	0,057	129	0,08	0,27	13	0,03	0,038	2	10	<5	<2
FJG23/344	536,64	537,09	2	1300	<3	20	0,028	143	0,08	0,06	14	0,04	0,036	2	9	<5	<2

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Métode
ICP-ES para todos os elementos.

a m o s tra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pc t	V_ppm	Ca_pct	K_pc t	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/345	537,09	537,74	2	250	<3	14	0,045	111	0,06	0,21	15	0,03	0,029	2	7	<5	<2
FJG23/346	537,74	538,56	1	250	<3	11	0,087	91	0,08	0,59	15	0,03	0,035	2	10	<5	<2
FJG23/347	538,56	539,48	2	250	<3	11	0,051	93	0,08	0,31	16	0,02	0,035	2	9	<5	<2
FJG23/348	539,48	540,26	3	900	<3	10	0,062	78	0,06	0,4	15	0,03	0,027	2	10	<5	<2
FJG23/349	540,26	540,81	<1	6700	<3	13	0,113	93	0,07	0,65	6	0,01	0,025	1	12	<5	<2
FJG23/350	540,81	541,25	<1	6100	<3	12	0,142	84	0,05	0,9	8	0,02	0,021	1	11	<5	3
FJG23/351	541,25	541,80	1	8500	<3	14	0,132	102	0,06	0,85	4	0,02	0,024	1	8	<5	<2
FJG23/352	541,80	542,35	1	14500	<3	12	0,094	84	0,07	0,57	3	0,01	0,032	1	9	<5	2
FJG23/353	542,35	542,95	2	250	<3	11	0,072	78	0,05	0,37	12	0,02	0,024	1	11	<5	<2
FJG23/354	542,95	543,38	<1	26300	<3	14	0,033	97	0,07	0,09	5	< 0.01	0,033	1	8	<5	<2
FJG23/355	543,38	543,79	1	3600	<3	10	0,076	70	0,05	0,41	9	0,02	0,02	1	12	<5	<2
FJG23/356	543,79	544,19	<1	19500	<3	13	0,067	90	0,06	0,34	4	0,01	0,026	1	9	<5	<2
FJG23/357	544,19	544,79	2	600	<3	8	0,044	52	0,04	0,16	12	0,02	0,017	1	15	<5	<2
FJG23/358	544,79	545,53	2	1900	<3	10	0,044	66	0,06	0,14	13	0,01	0,027	1	15	<5	<2
FJG23/359	545,53	546,13	<1	3600	<3	17	0,118	123	0,27	0,73	14	0,01	0,047	3	16	<5	<2
FJG23/361	546,13	546,88	2	250	<3	9	0,033	54	0,04	0,09	14	0,02	0,018	1	14	<5	<2
FJG23/362	546,88	547,59	1	1000	<3	10	0,073	69	0,05	0,35	12	0,02	0,021	1	14	<5	<2
FJG23/363	547,59	548,39	2	700	<3	7	0,058	46	0,04	0,27	14	0,01	0,016	<1	15	<5	<2
FJG23/364	558,90	559,38	2	1600	<3	17	0,045	108	0,06	0,14	12	0,02	0,025	1	10	<5	3
FJG23/365	559,38	559,93	1	250	<3	7	0,097	46	0,06	0,55	17	0,01	0,014	1	14	<5	<2
FJG23/366	559,93	560,64	<1	4700	<3	<5	0,048	19	2,73	0,42	<1	0,03	0,031	27	8	<5	<2
FJG23/367	560,64	561,06	<1	10000	<3	6	0,058	45	3,42	0,37	12	0,03	0,028	43	12	<5	<2
FJG23/368	561,06	561,66	<1	5100	<3	13	0,019	109	5,03	0,04	12	0,02	0,03	49	9	<5	<2
FJG23/369	561,66	562,41	1	4300	<3	12	0,017	89	7,62	0,04	13	0,02	0,029	57	8	<5	<2
FJG23/371	568,72	569,41	<1	250	4	15	0,022	94	7,16	0,08	7	0,01	0,026	106	11	<5	<2
FJG23/372	569,41	569,84	<1	6500	<3	8	0,066	65	6,31	0,49	8	0,03	0,033	82	12	<5	<2
FJG23/373	569,84	570,28	<1	4700	5	12	0,021	91	5,89	0,06	8	0,02	0,044	66	11	<5	<2
FJG23/374	570,28	570,81	2	250	<3	5	0,012	30	0,08	0,03	6	0,02	0,008	2	3	<5	<2
FJG23/375	570,81	571,35	1	250	<3	9	0,037	62	0,26	0,12	11	0,02	0,015	3	8	<5	<2
FJG23/376	571,35	571,92	2	250	<3	15	0,032	108	0,07	0,07	19	0,03	0,026	2	9	<5	<2
FJG23/377	571,92	572,47	1	1500	<3	8	0,034	58	0,05	0,1	11	0,02	0,018	1	12	<5	<2
FJG23/378	572,47	573,25	2	2000	<3	8	0,033	54	0,09	0,08	12	0,01	0,017	1	17	<5	3
FJG23/379	573,25	573,87	1	1100	<3	11	0,042	74	0,33	0,11	16	0,01	0,022	3	19	<5	<2
FJG23/381	573,87	574,32	<1	1200	<3	18	0,231	153	2,87	1,64	13	0,02	0,051	41	11	<5	<2
FJG23/382	574,32	574,80	<1	9900	7	9	0,157	67	3,49	1,08	7	0,03	0,058	51	12	<5	2
FJG23/383	574,80	575,23	<1	250	3	21	0,133	161	3,38	0,9	15	0,01	0,043	47	10	<5	<2
FJG23/384	575,23	576,00	<1	250	7	<5	0,026	67	1,59	0,05	6	0,01	0,036	21	7	<5	<2
FJG23/385	576,00	576,80	<1	250	4	<5	0,026	63	2,18	0,03	7	0,01	0,036	18	7	<5	<2
FJG23/386	576,80	577,52	<1	250	5	6	0,025	74	2,4	0,03	8	0,01	0,036	29	8	<5	<2
FJG23/387	577,52	578,22	<1	250	4	17	0,026	118	5,72	0,03	9	0,01	0,04	70	11	<5	<2

ANEXO II - Análises químicas de amostras do furo FJG23 utilizadas na interpretação de dados de mineralização. Método ICP-ES para todos os elementos.

a mostra	de (m)	até (m)	Mo_ppm	S_ppm	Sb_ppm	Sc_ppm	Ti_pc t	V_ppm	Ca_pct	K_pc t	La_ppm	Na_pct	P_pct	Sr_ppm	Th_ppm	Tl_ppm	W_ppm
FJG23/388	578,22	578,71	1	1000	<3	<5	0,029	25	1,4	0,15	7	0,03	0,028	17	7	<5	<2
FJG23/389	578,71	579,15	<1	250	4	<5	0,021	11	1,96	0,1	7	0,03	0,026	25	10	<5	<2
FJG23/390	579,15	579,67	<1	2900	<3	<5	0,025	13	3,6	0,18	13	0,06	0,024	31	12	<5	<2
FJG23/391	579,67	580,21	<1	59800	<3	<5	0,039	15	2,47	0,24	9	0,04	0,025	25	11	<5	<2
FJG23/392	580,21	580,73	<1	2900	<3	<5	0,058	23	1,99	0,39	7	0,06	0,031	15	9	<5	<2
FJG23/393	580,73	581,19	<1	29900	4	<5	0,038	22	2,4	0,29	8	0,06	0,03	17	10	<5	<2
FJG23/394	581,19	581,84	<1	2000	<3	<5	0,033	17	2,49	0,21	9	0,05	0,026	17	10	<5	3
FJG23/395	581,84	582,26	1	5300	<3	<5	0,031	16	2,53	0,26	10	0,08	0,027	19	10	<5	<2
FJG23/396	582,26	582,69	3	250	5	13	0,139	111	0,41	0,78	13	0,05	0,011	5	10	<5	<2
FJG23/397	582,69	583,36	<1	5400	<3	<5	0,024	17	2,85	0,19	8	0,07	0,035	19	10	<5	<2
FJG23/398	583,36	583,93	<1	4200	3	<5	0,033	17	3,15	0,22	10	0,06	0,026	21	11	<5	<2
FJG23/399	583,93	584,55	<1	600	<3	<5	0,015	11	2,7	0,1	9	0,04	0,019	19	11	<5	<2
FJG23/401	584,55	585,10	1	250	<3	12	0,099	93	0,18	0,52	17	0,02	0,033	2	9	<5	<2
FJG23/402	585,10	585,68	1	250	<3	8	0,062	64	0,14	0,37	14	0,02	0,032	2	8	<5	<2
FJG23/403	585,68	586,08	<1	2500	4	<5	0,031	22	3,46	0,16	11	0,06	0,03	29	12	<5	<2
FJG23/404	586,08	586,49	<1	2100	4	<5	0,018	21	4,32	0,19	10	0,07	0,034	48	12	<5	<2

UTM - 23°S Datum: Córrego Alegre

