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a b s t r a c t

The present work extends Kolmogorov’s micro-scales to a large family of viscoplastic fluids. The new
micro-scales, combined with Gioia and Chakaborty’s (2006) friction phenomenology theory, lead to a
unified framework for the description of the friction coefficient in turbulent flows. A resulting Blasius-
type friction equation is tested against some available experimental data and shows good agreement
over a significant range of Hedstrom and Reynolds numbers. The work also comments on the role of the
new expression as a possible benchmark test for the convergence of DNS simulations. The formula also
provides limits for the maximum drag reduction of viscoplastic flows.
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1. Introduction

The description of complex fluids and their rheological behavior
in a simple and universal mathematical framework is an elusive
task. The classical attempt at classifying the known fluids into
two different groups, Newtonian or non-Newtonian, has proven
to be ineffective, since the term ‘‘non-Newtonian’’ encompasses a
wide family of fluidswith unrelated physical behavior. Despite this
shortcoming, the scientific community has commonly classified
complex fluids into three essential groups: purely-viscous, vis-
coplastic, and viscoelastic (linear and nonlinear). In this work, the
scales of Kolmogorov and their relations to the friction coefficient
of a large family of turbulent purely-viscous and viscoplastic fluid
flows are described. Although these formulations canbe seen as the
simplest models to describe the behavior of non-Newtonian fluids,
they have been commonly used by engineers to describe several
processes in the polymer industry, including injection molding,
extrusion and pipe flow with heat transfer (see, e.g., [1]).
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For the incompressible flow of a Newtonian fluid, the stress
tensor is defined as

τ = −µ
(
∇u + (∇u)T

)
≡ µS,

where S = ∇u+(∇u)T is the rate-of-strain tensor. There are several
models concerning viscoplastic fluid flows. A large family of such
models is described by a simple generalization of the Newtonian
model, by simply replacing the constant viscosityµ, by a shear-rate
dependent viscosity, µ ≡ µ(γ̇ ), where γ̇ ≡

√
2S : S is the second

invariant of the rate-of-strain tensor. One important example of
this family is the Herschel–Bulkley model, described by

τ = µ(γ̇ )S,

with{
µ(γ̇ ) = τyγ̇

−1
+ K γ̇ n−1, τ ≥ τy.

γ̇ = 0 τ < τy.
(1)

The constant K is the proportionality consistency parameter, and
n is the flow index, which measures the degree to which a fluid is
shear-thickening (n > 1), or shear-thinning (n < 1). The param-
eter τy stands for the yield stress, such that for an instantaneous
shear stress τ < τy, the local deformation rate γ̇ is null.
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Note that different choices of the above parameters reduce Eq.
(1) to other known particular rheologies. For example, as τy = 0,
we obtain the purely-viscous model known as power-law fluids.
For n = 1, and τy > 0, the viscoplastic model known as Bingham
plastic is obtained. Viscoplastic fluids exhibit a dual response to
shear stresses: at low stresses their behavior resembles that of a
rigid solid (i.e. γ̇ = 0); at high stresses they flow like a fluid.
This is in contrast to the power-law model, which, despite its
variable effective viscosity, does not present a sharp dual behavior
at slightly different stresses.

Another well-known viscoplastic model is the Cason model,
commonly used to model blood behavior (see [2]). This model can
be defined as{√

τ =
√

τy +

√
K γ̇ , τ ≥ τy

γ̇ = 0 τ < τy.
(2)

The conjugate effects of shear-thinning and viscoplastic yield
stress naturally introduce difficulties in the definition of an appro-
priate expression for the ratio between inertial and viscous forces,
the so-called Reynolds number. For power-law flows, Metzner and
Reed [3] proposed a Reynolds number (Re) formulation that is
capable of combining all the non-Newtonian parameters into one
single expression. In the presence of yielding stresses, the dual
nature of the fluid gives rise to an additional non-dimensional
parameter, the Hedstrom number (He), which is a measure of
the magnitude of the yield stress effects relative to the dynamic
Bingham viscosity.

Another difficulty that arises from the complex nature of vis-
coplastic flows is the description of the near wall viscous effects
on the mean axial momentum. The near wall effects are normally
encapsulated into a single non-dimensional number, the friction
coefficient (or friction factor): f =

2τw
ρU2 , where U is a characteristic

velocity of the flow (usually the mean velocity), ρ is the density of
the fluid and τw is the wall shear stress, a measure of the force per
unit area exerted by the fluid on the wall.

Since the pioneering works of Prandtl and Blasius in the early
1900s, the physics and engineering communities have established
deep connections between the friction factor and other important
physical quantities for Newtonian flows, such as the kinetic energy
loss and pressure drop in the transportation of fluids in pipes
and channels. These relations lead to several formulations of the
friction factor as a function of Re. For example, in [4], Blasius
established the empirical law f ∼ 1/Re1/4 to relate the friction
factor to the Reynolds number in an interval of validity limited by
the onset of turbulence and Re of a few hundred thousand. In [5],
Nikuradse extended Blasius’ results to included the effects of the
roughness on the wall.

Friction formulas have been empirically obtained for several
purely-viscous and viscoplastic flows. For example, in [6], Darby
and Melson proposed a semi-empirical expression for the Fanning
friction factor of fully developed turbulent flow of Bingham fluid,
which reads as follows:

f = 10aRe−0.193
b , (3)

where a = −1.47[1 + 0.146 exp(−2.9 × 10−5He)], and

Reb =
ρUD
µb

, He =
ρτyD2

µ2
b

. (4)

In [7], Dodge and Metzner published an empirical analysis for
the friction factor of fully developed turbulent power-law fluid
flows based on ReMR = 8ρU2−nDn/K (6 + 2/n)n. They obtained the
following relation:

1
√
f

=
4

n0.75 log

(
Re

f
n−2
2

)
−

0.4
n1/2 . (5)

For n = 1, Eq. (5) reduces to the celebrated Prandtl’s equation
for Newtonian flows. Indeed, the form of DM’s equation can be
obtained through a Prandtl–Nikuradse scaling of the friction factor,
which considers that dissipative mechanisms are the dominant
effects in the logarithmic layer, see [8]. In applications, Eq. (5) is
the most commonly used friction factor formula for power-law
fluids. Many explicit formulas are available in the literature, see,
e.g., [9] for a statistical comparison of different formulations. These
formulas are mostly empirical models; as such, they lack solid
physical foundations.

In [10], Gioia and Chakaborty introduced a phenomenological
framework tomodel Nikuradse’s experiments on turbulent friction
in rough pipes for Newtonian flows. This work established a phe-
nomenological closure model for the Reynolds’ stresses on a wet
surface W in the vicinity of the roughness elements, relating it to
the wall shear stress. The main argument in their closure approxi-
mation connects the vertical velocity fluctuation component to the
Kolmogorov micro-scale velocity.

In [11,12], the present authors have proposed a phenomeno-
logical friction coefficient to power-law and Bingham fluid flows,
respectively. The theories are valid for smooth pipe and are based
on arguments similar to those established in [10]. In those works,
the authors have also proposed limits of validity for the friction
formulas, which were successfully tested against some available
experimental data.

In the present work, the arguments first advanced in [10] are
further generalized so as to derive the Kolmogorov micro-scales
for general viscoplastic fluid flows. Once the micro-scales are es-
tablished, the same analysis introduced in [11,12] is used to relate
the Kolmogorov micro-scale velocities to the friction formula. The
general analysis is validated comparing results obtained through
the advanced friction factor formula with some independent ex-
perimental data and new DNS data.

We also discuss the limit as the flow index n approaches 0. As
n decreases, the more pronounced is its shear-thinning behavior.
We show that as n approaches 0, the friction formula approaches
an asymptote similar to Virk’s asymptote which describes the
maximum drag reduction for viscoelastic flows.

2. Extended Kolmogorov theory

Kolmogorov’s K41 theory of fully developed turbulent New-
tonian fluid flow was originally formulated on analytical and di-
mensional grounds and is based on Richardson’s energy cascade
scenario. The assumption is that energy is injected at large scales,
cascades down through intermediate scales, the so called inertial
range, and dissipates at the small scales. The cascade hypothesis
states that in the inertial range, the average energy flux is constant,
independent of the kinematic viscosity, and equals the mean en-
ergy dissipation rate, ϵ, see [8,13].Within this phenomenology, the
theory is capable of describing how much energy is contained and
how much energy is dissipated by eddies of a given size.

Kolmogorov’s phenomenology also implies the existence of
a transitional scale, η, called Kolmogorov’s dissipative scale or
Kolmogorov’s micro-scale, between the inertial and dissipative
ranges, where both viscous and inertial effects are important,
meaning that the eddy turnover time equals the characteristic time
that diffusion takes to dissipate energy at the scale η. Also, the
characteristic velocity at this scale, uη , is known as Kolmogorov’s
velocity scale.

Experimental [14–16] and numerical evidences [17,18] suggest
that Richardson’s cascade remains valid for viscoplastic fluids. In
this section, we describe the physical arguments that result in
Kolmogorov’s micro-scales for turbulent viscoplastic fluid flows.

As pointed out in [13], K41 theory is based on three important
hypotheses, which must be realized through dimensional argu-
ments and experimental observations. It is clear that the first
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similarity hypothesis (local isotropy of turbulence) is still valid
for turbulent flow of viscoplastic fluids. However, the first simi-
larity hypothesis, as stated in [13], should be modified to in every
turbulent flow at sufficiently high Reynolds number, the statistics of
the small scale motions (micro-scales) have a universal form that
is uniquely determined by ε (mean energy dissipation rate) and the
rheology of the fluid. In the Herschel–Bulkley model, the rheology
is defined by the set of parameters (τy, K , n) in contrast to the
constant viscosity of the established Newtonian model.

The second similarity hypothesis states that in every turbulent
flow at sufficiently high Reynolds number, the statistics of the
motions of scale l in the range l0 ≫ l ≫ η have a universal form
that is uniquely determined by ε and is independent of viscosity.
Here η represents the Kolmogorov length (micro) scale.

The extension of the second hypothesis for viscoplastic fluid
flows is not straightforward, since the inertial range statistics could
be, in principle, affected by the formation of micro-plugs in this
region. Indeed, the main distinct feature of viscoplastic fluids is
the solid-like behavior in unyielded regions of the flow, where the
stress is lower than the yielding stress (τy). For example, in the
laminar regime, this unyielded region appears as a central plug in
the flow.

The central plug is reported to disappear at the end of the lami-
nar to turbulent transition in yielding fluids [14–16,19]. Due to the
lack of observation of any micro-plug region in turbulent flow, it is
argued that the local stress is always higher than the yielding limit
of the fluid in this regime [16,19]. Amore fundamental explanation
is also offered by Frigaard et al. [20] based on the interaction be-
tween the flow turbulence and the internal structure of viscoplastic
fluids; in this work, the authors argue that the process of cross-
link formation and destruction is not instantaneous and yielding
fluids show extensive thixotropic properties. The instantaneous
zero shear regions do not act like a solid immediately, but, instead,
need time to relax to a solid behavior. However, the turbulent
time scales are shorter than the relaxation time, so that micro-
plug regions cannot form in turbulent flows [20]. Because of these
empirical considerations, we consider that the effective viscosity
displayed in the constitutive Eq. (1) simplifies to µ(γ̇ ) = τyγ̇

−1
+

K γ̇ n−1 in the turbulent regime.
Because of the independence on viscosity, and the hypothesis

that the presence of eventual micro-plugs can be neglected, K41’s
second hypothesis remains unchanged for viscoplastic fluids. As
an immediate and crucial consequence, the (−5/3)-law must still
hold.

Point-correlations and generalized local Reynolds. We now derive
the Kolmogorovmicro-scales for general purely viscous fluids. The
starting point is the continuity and Navier–Stokes equations (Eq.
(6)) with the generalized stress tensor (τij),

∂Ui

∂xi
= 0 ;

∂Ui

∂t
+ Uk

∂Ui

xk
= −

1
ρ

∂P
∂xi

+
1
ρ

∂τik

xk
. (6)

For a general purely viscous fluid, the stress tensor is defined as

τij = η(γ̇ )Sij, (7)

where Sij stands for strain tensor, µ(γ̇ ) = 2 |τ |(γ̇ )
γ̇

is the effective
viscosity, and γ̇ =

√
2S : S is the second invariant of strain rate

tensor.
Considering the usual Reynolds decomposition of U , P and τ

into U + u′, P + p′ and τ + τ ′, one can easily obtain the following
equation for the turbulent kinetic energy of homogeneous and
isotropic turbulence:

ρ
d
dt

(Kt) = −τ ′

ik
∂u′

i

∂xk
= ρε. (8)

Here, the overline represents time averaging and Kt = u′2
i . The

righthand side of Eq. (8) is the definition of the dissipation rate
(ε) for purely viscous non-Newtonian fluids. Considering frame
invariance, it is easy to show that ε ⩾ 0.

The aim now is to provide an extended version of the local
Reynolds number for general viscoplastic fluid flows, based on
a spectral analysis of the equations of motion. In the following,
the analysis clarifies the terms that remain unchanged, and those
which need changes when switching from the analysis of a New-
tonian to a non-Newtonian fluid. Once the analysis is established,
a locality hypothesis yields an expression for Kolmogorov’s micro-
scale. An extension of Lin’s equation, see [21], to a viscoplastic fluid
follows next.

Multiplying the fluctuating part of the momentum equation at
point A with the fluctuating velocity at point B results in

u′

Bj
∂u′

Ai

∂t
+

∂u′

Aiu
′

Aku
′

Bj

∂xAk
= −

1
ρ

∂p′

Au
′

Bj

∂xAi
+

1
ρ

∂τ ′

Ai,Aku
′

Bj

∂xAk
. (9)

Proceeding similarly for the point B, adding the resulting two
equations, and also noting that for isotropic turbulence the
velocity–pressure correlations at two points are equal to zero, one
obtains

∂u′

Aiu
′

Bj

∂t
+

∂

∂rk

(
−u′

Aiu
′

Aku
′

Bj + u′

Bju
′

Bku
′

Ai

)
= +

1
ρ

∂

∂rk

(
−τ ′

Ai,Aku
′

Bj + τ ′

Bj,Bku
′

Ai

)
,

(10)

where we have used that ∂
∂xBk

=
∂

∂rk
, and ∂

∂xAk
= −

∂
∂rk

. To derive
Lin’s extended equation, one casts Eq. (10) as
∂Rij

∂t
=

∂

∂rk

(
Tik,j + Tjk,i

)
− Hikj, (11)

where R, T and H stand for the double, triple and triple-nonlinear
velocity correlations. For theNewtonian case, it is easy to show that

Hikj = 2ν
∂2Rij

∂rk∂rk
. (12)

By applying the Fourier transform and making i = j, one obtains
∂Φii

∂t
= 2kkΨiki − F (Hiki), (13)

where

Rij(r, t) =

∫
Φij(k, t)eik.rdk ;

Tik,j(r, t) = −i
∫

Ψij(k, t)eik.rdk,
(14)

and F (H) stands for the Fourier transform of H . Using the well-
known relation Φii(k) = E(k)/2πk2, the Lin extended equation
results as
∂E(k, t)

∂t
= T (k, t) − 2πk2F (H) (15)

for a general purely viscous non-Newtonian fluid, where T (k, t) =

4πk2kkΨiki(k, t). We remark that, unlike the case for Newtonian
flows, for general viscoplastic flows, the termHikj cannot be simpli-
fied as in Eq. (12), implying that non-linearity results in a challeng-
ing convolution in Fourier space. This fact further complicates the
choice of the correct mesh size in DNS simulations of viscoplastic
flows.

By integrating Eq. (15), it is possible to show that

dKt

dt
=

∫
∞

0

1
2πk2

∂E(k, t)
∂t

dk

=

∫
∞

0

1
2πk2

T (k, t)dk +

∫
∞

0
F (H)dk =

∫
∞

0
F (H)dk. (16)
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By comparing Eqs. (16) and (8) one can conclude that F (H) =

F (ε) = εk.
The Kolmogorov micro-scale can be defined as the scale kη

where both T (kη, t) and εk(kη, t) have the sameorder ofmagnitude.
This also means that the Local Reynolds number at kη is approx-
imately 1. Therefore, at this scale, the following approximation
holds:

Reη ≡
T (kη)

2πk2εk(kη)
≈ 1. (17)

Generalized Kolmogorov’s micro-scale and localness of interactions.
We now obtain an approximation for Kolmogorov’s micro-scale by
considering a localness hypothesis concerning the interaction of
different scales in the inertial range. More specifically, we consider
that the energy transfer term represented by T (k, t), after averag-
ing, satisfies T (k) ∼ u3

kk
3. We also assume that in this transitional

scale, the local energy dissipation rate satisfies εk(kη) = ε. From
Eq. (17), one, therefore, obtains

u3
η kη ≈ ε. (18)

Considering a localness hypothesis for the dissipation term, we
obtain by the energy balance, ρu2

η ≈ τkη , the following equation:

ρε ≈ ρu2
η · (kηuη) ≈ τkη · (kηuη). (19)

Combining Eqs. (18) and (19), leads to a general framework to
derive Kolmogorov’s micro-scales for any such type of rheology.

Herschel–Bulkley. As an example, let us apply this framework to
the Herschel–Bulkley model. This leads to

ρε =

(
τy + K

(
kηuη

)n) (kηuη

)
. (20)

Using Eq. (18) to eliminate kη , the Kolmogorov velocity scale can
be derived as

ρu2(n+1)
η − τyu2n

η − Kεn
= 0, (21)

and by considering the length scale (η) to be inversely proportional
to kη , the Kolmogorov length scale can be expressed as

ρ3ε2η2(n+1)
− τ 3

y η2n
− K 3εn

= 0. (22)

Eqs. (21) and (22) are central results in the present work. Their
solutions lead, respectively, to Kolmogorov’s velocity and length
micro-scales for any fluid flow described by the Herschel–Bulkley
model.

In particular, if we set τy = 0, we obtain the micro-scales
associated to the purely-viscous power-lawmodel, whichwas first
derived in [11]:

η ∼

(
K
ρ

) 3
2(n+1)

× ε
n−2

2(n+1) ;

uη ∼

(
K
ρ

) 1
2(n+1)

× ε
n

2(n+1) .

(23)

Another interesting example is provided by setting n = 1.
This leads to the micro-scales for the Bingham model, which was
developed in [12]:

η ∼

⎛⎝τy +

√
τ 2
y + 4ρεK

2ρε
3
2

⎞⎠
3
2

;

uη ∼

√τy +

√
τ 2
y + 4ρεK

2ρ
.

(24)

Note that by setting n = 1 and τy = 0,we recover Kolmogorov’s
micro-scales for Newtonian fluids.

The same procedure can be used for other rheologies. For ex-
ample, for the Casson model, we obtain

uη =

√
τy

4ρcε
+

√ τy

4ρcε
+

√
Kε

ρcε
. (25)

3. The relation between friction and Kolmogorov scales

In [11,12], we have proposed new friction expressions for
power-law and Bingham fluids, respectively. The formulas were
derived through a phenomenological closure model for the
Reynolds stress tensor inspired by the work of Gioia and Chak-
aborty in [10] in the context of Newtonian fluid flows over rough
walls. In this section, we extend the previous studies to model the
Reynolds stress tensor for general viscoplastic fluid flows bounded
by smooth walls.

The phenomenology states that for large Reynolds number,
there exists a viscous wet surface W of constant thickness and
parallel to the wall, such that, above it, the horizontal velocity of
the flow scales as ∼ U . In this upper region, the fluid flow carries
a high horizontal momentum per unit volume (ρ U). BelowW , the
velocity of the flow is small, and the fluid has a negligible horizontal
momentum per unit volume.

Another important assumption is that over the wet surface W ,
the stresses are mainly induced by vertical fluctuations of hori-
zontal momentum, so that the net turbulent stresses are dominant
overW . BelowW , the turbulent stress contribution decays fast, so
that in the immediate vicinity of the wall, the main contribution to
the stress is due to viscous forces.

The phenomenology proceeds with a pictorial description of
eddies that straddle the wet surface W . The eddies transport por-
tions of fluid of high horizontal momentum across W into the
wall direction, thus resulting in portions of fluid with negligible
horizontal momentum across W in the centerline direction. The
vortical contribution to the vertical momentum transport across
W is set by vN , eddy’s velocity normal to W . As in [11,10], the key
hypothesis is that vN ∼ uη .

Because viscous stresses are dominated by the inertial vortical
fluctuations over W , we consider τ |W ∼ ρUuη . This stress is then
balanced by the wall shear stress. The wall shear stress satisfies,
therefore, the following balance law:

τw ∼ τ|W ∼ ρUuη, (26)

so that, the following friction expression can be advanced:

f = 2
τw

ρU2 ∼ 2
ρUuη

ρU2 = cf
uη

U
, (27)

where cf is a constant, that needs to be estimated experimentally.
For statistically stationary turbulence, large eddies must feed

energy to the entire inertial range at a rate scaling as ε ∼ U3/D.
It is possible to combine this with the micro-scales developed in
the previous section to find uη/U . The results are provided in Ta-
ble 1, where the generalized Reynolds number (ReG) and Hedstrom
number (HedG) are defined as

ReG =
ρU2−nDn

K
, (28)

HedG = τy D
−2n
n−2 ρ

−n
n−2 K

2
n−2 . (29)

Also in Table 1, Re and Hed are the usual Reynolds and Hedstrom
numbers, obtained by letting n = 1 in the above definitions.
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Table 1
Kolmogorov velocity scales for different viscoplastic models.

Rheology Model y = uη/U

Newtonian τ = K γ̇ y = Re
−1
4

Power-law τ = K γ̇ n y = Re
−1

2(n+1)
G

Bingham τ = τy + K γ̇ y =

√
Hed
Re2

+

√
Hed2
Re4

+
4
Re

2

Herschel–Bulkley τ = τy + K γ̇ n 1 = y2
(
ReG y2 − Hed Re

n
n−2
G

) 1
n

Casson
√

τ =
√

τy +
√
K γ̇ y =

√
Hed
4 Re2

+

√
Hed
4 Re2

+
4

√
Re

Table 2
Comparison on the DNS results for turbulent pipe flow with predictions of the theory developed in current work.

Rheology ReG fDNS × 103 four × 103 ∆four (%) ∆femp(%) Ref.

Power-Law (n = 0.4) 1 400 5.94 5.944 0.07 5.0 [22]
Power-Law (n = 0.6) 2 615 6.70 6.755 0.80 0.9 [22]
Power-Law (n = 0.8) 5 125 7.34 7.346 0.08 0.6 [22]
Power-Law (n = 1.0) 10320 7.87 7.873 0.38 2.0 [22]
Power-Law (n = 1.2) 21245 8.21 8.206 0.04 4.0 [22]
Bingham (τy/τw = 0.1) 6 058 8.932 9.029 1.0 14.0 –
H.B. (n = 0.6; τy/τw = 0.1) 2 184 6.855 7.230 5.6 – [17]

Considering that the averaged energy fed into the system (ε)
should be geometry dependent, cf must be a function of both the
rheology and the geometry. However, a comparison with exten-
sive experimental and DNS data reveals that cf depends only on
the geometry. Because in the Newtonian limit, the current model
recovers the equation of Blasius for pipe flows, cf is considered
to be equal to the well-known Blasius coefficient for pipe flows
(0.079). For channel flows, the constant cf has been estimated via
DNS simulations as discussed in the next section. Therefore, the
final form of the general friction equation for pipe flows becomes

fpipe = cf ,pipe
uη

U
= 0.079

(uη

U

)
, (30)

fchannel = cf ,channel
uη

U
= 0.059

(uη

U

)
(31)

where uη/U is defined in Table 1 for different rheologies.

4. Comparison with simulations

We now compare the proposed friction equation, (Eqs. (30) and
(31)), with available DNS results. The determination of the physical
properties of any complex fluid is very difficult; in particular, it
is not easy to keep results free from contamination. For example,
to carry out rheological tests on viscoplastic slurries is naturally
cumbersome due to the presence of solid particles in the fluid. For
this reason, in many works, only the properties of the solvent are
determined. The deviation between the rheological (model) and
the real behavior of a fluid is one important source of discrepancy
between macro-scale flow predictions and experiments.

To avoid difficulties of the order above reported, the present
work resorts to DNS data for theory validation. DNS simulations
can be seen as fully controlled non-contaminated experiment. The
present comparisons are based on the results of Rudman and
Blackburn [17] and Singh et al. [22] for power-law and Herschel–
Bulkley fluids. We also compare the theoretical formulations with
our own simulations of Bingham fluid flow in pipes and power-
law and Herschel–Bulkley fluid flows in channels. The details of
the numerical method are described in [18]. In both sets of DNS
simulations, an infinite wall-bounded conduit is modeled, with
periodic boundary conditions applied stream-wise.

Results for estimation of the friction coefficient for pipe flows
throughDNS results (fDNS) and Eq. (30) (four ) are shown in Table 2. A

comparison with existing empirical friction equations (femp), when
permitted, is also presented.

For the power-law fluid, the present theory is compared with
the friction equation of Dodge–Metzner, Eq. (5), whereas for the
Bingham fluid, the equation of Darby–Melson, Eq. (3), is consid-
ered. To the best of our knowledge, no similar friction equation
exists for the model of Herschel–Bulkley.

The present theory predicts the power-law results with very
high accuracy (less than 1% error), even for the shear-thickening
case, whereas the Dodge–Metzner equation shows errors that can
be as high as 5%.

As reported in [18], a decrease in the flow index (n) in the
power-law model increases the length of the domain required to
obtain statistically converged results. Anbarlooei et al. [18] show
that a domain size twice as large as that usually used in DNS
simulations of Newtonian flows is sufficient for simulations of
power-law flows with indices of n = 0.5. The current study
has found that the domain size must be even larger for the DNS
simulation of Bingham and Herschel–Bulkley fluids. Define ξ =

τy/τw; the present study has found that by increasing ξ , the length
of the domain required to obtain statistically accurate results must
be greatly increased. (Here, the friction factor is considered the
indicator of a statistically converged solution). The length of the
domain in the simulations of power-law fluids of [18] is 5πD (D
is diameter of the pipe), which is twice the size usually used in
the simulation of a Newtonian fluid (with Reτ ≈ 180). It has
been here determined that for a Bingham fluid and ξ = 0.1, the
domain length must be much larger (20πD). The results for the
Bingham model, presented in Table 2, were obtained with this
domain length. Again, predictions of the present theorymatchwell
the DNS simulations, while the empirical equations are much less
accurate. For a Herschel–Bulkley fluid, the domain size must be
even larger, due to the effects of both ξ andn. TheHerschel–Bulkley
fluid results from [17] in Table 2 were obtained in a domain with
length of 5πD. In [17], the authors realized that a larger domain
should have been used to capture all energy carryingmodes. In any
case, the results obtained in the 5πD domain still match very well
the present theory. Note that no empirical adjustment (fitting) was
applied to the present theory.

Although most of the available simulations and experimental
data has been obtained for pipe flows, the present theory can be
easily extended to other wall-bounded flows, i.e. channel flow.
The only difference would be the coefficient cf in Eq. (27), which
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Table 3
Comparison on the DNS results for turbulent channel flow with predictions of the current theory.

Rheology ReG fDNS × 103 four × 103 ∆four (%) Ref.

Newtonian 2800 8.094 8.110 0.2 [24]
Newtonian 6882 6.497 6.477 0.3 [25]
Newtonian 10953 5.748 5.767 0.3 [25]
Newtonian 18518 5.088 5.058 0.6 [26]
Newtonian 43651 4.219 4.082 3.0 [27]
Power-Law(n = 0.75) 3 462 5.70 5.749 0.9 [18]
Power-Law(n = 0.50) 1 862 4.82 4.795 0.6 [18]

is geometry dependent. In the present work, cf ,channel is obtained
by comparing Eq. (27) with the results of the DNS simulation of
Newtonian fluid flow in the channel geometry of [23]. These results
were here considered due to their higher resolution, large domain
size and long statistical averaging. For these results, cf = 0.059
offers the best fitting to the data.

Table 3 shows a comparison of the predictions of the present
theory for channel flow with Newtonian and power-law DNS re-
sults. Much in the same way as pipe flow, for the Newtonian case,
as the Reynolds number becomes higher than 43651 (Reτ ∼ 2000)
a discrepancy between the present theory and the DNS results
starts to show. The Blasius friction equation (pipe geometry) is
known to be valid for Re < 105 or, equivalently, Reτ < 2400.
The mentioned discrepancy for channel flow, can be related to
the same phenomenon or just be a consequence of under-resolved
simulations at higher Reynolds.

5. Comparison with experiments

In this section, we compare the friction expression with exper-
imental results available in the literature. The following comment,
however, is in order in relation to some experimental problems
frequently noted in the flow of yielding fluids. A direct correla-
tion between pressure and velocity measurements and the rheol-
ogy of viscoplastic fluids cannot be established even for laminar
flows. Most researchers point thixotropy as the cause for this dif-
ficulty [14–16,19]. Recently, Dealy [28] argued that pressure is not
well-defined for some non-Newtonian fluid flows and questioned
the connection between pressure measurements and the state of
the stress inside the flow. Considering this fact, in [12] evidence
was provided that τw = ∆P/∆LD

4 + τy. Considering this argument
true, the present friction equation becomes

fP = 0.079
(uη

U

)
− 2HedG Re

−2
2−n
G , (32)

where fP stands for the friction factor obtained through pressure
measurements. In the rest of this section and in the comparison
with the experimental data, Eq. (32) is used.

Fig. 1 shows the results of the comparison of Eq. (32) with
the experimental data of [7,29,30] for the power-law model. For
power-law fluids a comparison is presented in [11]. Themaximum
error between predictions and experiments is below 3%, the same
error margin provided by the equation of Dodge and Metzner.
However, the present expression, in contrast to the expression of
Dodge and Metzner, Eq. (5), reduces to the Blasius equation in the
Newtonian limit.

A further comparison is carried out in Fig. 2, for the Bingham
model (experiments of [31,32]). Again, predictions furnished by
the present theory exhibit a maximum error of 10%; the empir-
ical equation of Darby and Melson, Eq. (3), shows errors as high
as 15%.

Fig. 3 contains the experimental results of [31,19] for the
Herschel–Bulkley model and predictions provided by the present
theory. To demonstrate the flexibility of the friction equation, the
experiments are chosen for polymer mixtures (0.1% Carbopol) and
solid particle slurries (10% and 14% Kaolin). As mentioned before,

Fig. 1. Comparison between the friction equation developed in the present work
with the experimental data of [7,29,30] and Dodge and Metzner’s friction equation
(Eq. (5)) for power-law fluids.

Fig. 2. Comparison between the proposed friction equation and the experimental
data of [31,32] and the friction equation of Darby and Melson, Eq. (3), for Bingham
fluids.

there exists no empirical friction equation for this model so that it
is not possible to compare the accuracy of the present predictions
with other equations. A comparison with the experimental results
shows that themaximumerror is below6% for all the cases. A larger
set of experimental data [14–16,19,31] has also been used to verify
the equation and the maximum error was below 10%.

As we compare the predictions for the Casson model with the
available experimental results from [31],we observe an error of the
same order as discussed before. Due to lack of enough experimen-
tal data on turbulent flow of Casson fluids, this limited comparison
is not shown here.
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Fig. 3. Comparison between the friction equation introduced in the present work
and the experimental data of [31,19] for the Herschel–Bulkley model.

The comparison presented in this section with different rhe-
ologies shows that the maximum error of the presently proposed
friction equation is under 10%, even for very complex fluids.

6. Remarkson thegeometrical scaling forDNSof complex flows

An important consequence of defining the appropriate Kol-
mogorov scales for a given rheology concerns the choice of the
appropriate geometrical parameters for the mesh generation of
Direct Numerical Simulations of complex fluid flows. Indeed, with-
out any estimate for the Kolmogorov length scaling, any choice
for the computational grid spacing is questionable. A review of
previous DNS simulations of non-Newtonian fluids, e.g. [17,18,22],
shows that grid spacing is obtained through a simple check of
grid independence for Newtonian fluids. Without any previous
knowledge on the appropriate order of magnitude of the relevant
length scales, this process may converge to a local extremum of
the turbulence statistics. Within the present framework, the order
of grid spacing (length scale) is provided.

The stream-wise domain length plays an important role in the
DNS simulation of turbulent flow in pipes (and channels). The
effect of the large scale structures is significant in turbulent shear
flows, since they contribute notably to the momentum transport
processes. An appropriate stream-wise domain length is required
to resolve these structures and also to converge to the correct
turbulence statistics.

This issue has been studied for Newtonian simulations [33].
For the power-law fluids, it is known that by decreasing the flow
index (n) the domain length must increase [17,18,22]. In Fig. 4, the
streamwise velocity contours from DNS simulation of power-law
fluids are shown for a wall distance of about y+

∼ 10. Here, the
flow indices are 2.0, 1.0, 0.75 and 0.5 from top to bottom. This
figure gives a good indication of the streamwise structures that
appear in pipe flow. A decrease in n elongates the structures (in
the streamwise direction) so that a large domain is required for
a correct representation. The same behavior has been reported
in [17]. Here, the size of the structures is connected to the Kol-
mogorov micro-scales, so that a natural conclusion is that for
shear-thickening flow (n = 1.2), the grid spacing can be shorter.
The simulations in [18], using a two-point correlation as an indi-
cator, suggest that to n = 0.5, domains twice as large as the ones
commonly used for Newtonian simulation are sufficient, while for
the shear-thickening case a shorter domain suffices.

Fig. 4. Contour of axial velocity at y+
≈ 10 for the power-law model. From top n is

2.0, 1.0, 0.75, and 0.5.

Fig. 5. Contour of axial velocity at y+
≈ 10 for the Herschel–Bulkley model. From

top ξ = τy/τw is 0.0, 0.1, 0.2, and 0.3.

In Fig. 5, snapshots of the axial velocity contours for simulations
of the Binghammodel are shown. The same elongated structures in
the stream-wise direction are observed, with the increase in ξ . The
proper size of the grip domain was found to be much larger than
the Newtonian counterpart. For example, for the case ξ = 0.1, it is
found that the domain length must be around 20πD (for the New-
tonian case, the length is 4πD). Such a large domain, prevented us
from carrying out simulations with higher ξ or higher Reynolds for
these models, due to restricted computational resources.

Because it is expected that, for sufficiently long domains, the ve-
locity fluctuations should be uncorrelated at the center of domain,
these correlations are commonly used as a guideline for choosing
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a suitable domain dimension. However, no benchmark result is
available on the computational length required to fully isolate the
effects of stream-wise periodicity [33]. Based on the present work,
it seems that the friction factor can be used as a good candidate for
this purpose. This is a potential topic for further research, and we
are currently working on this issue.

Another interesting aspect concerns shear-thickening fluid
flows. Based on the present theory, the Kolmogorov length scale
increases for shear-thickening fluids, in comparison with Newto-
nian fluids (for a same Reynolds). Also, it is also observed that
the stream-wise domain size can be shortened. The implication is
that representative DNS simulations of fully turbulent flow could
be performed over smaller domains with coarser meshes. The
strategy of proposing that a non-Newtonian fluid flow could be
simulated through ‘‘large-eddy simulation’’ to approximate some
of its features to those of a higher Reynolds number Newtonian
flow has been explored by Edriss S. Titi and his collaborators, see,
e.g., the references [34,35]

7. Bounds on the friction coefficient and maximum drag
reduction

An additional important result of the present analysis concerns
the bounds of the friction equation. In Fig. 6, the limiting case for
the power-law rheology is shown. For this model, the minimum
friction is attained as the flow index approaches zero:

lim
n→0

fPL = 0.079 Re−0.5. (33)

This can be considered as the maximum drag reduction due to the
shear-thinning effect. Note that the functional form of the limit is
very similar to the maximum drag reduction (MDR) in viscoelastic
fluids (see, e.g., the asymptote provided by Zakin et al. in [36],
which proposes f = 0.315 Re−0.55). The asymptote is also plotted
in Fig. 6.

With respect to the upper limit of the friction factor for the
power-law fluid, it is easy to see that a constant value (=0.079)
is obtained as n → ∞. For the Bingham and Casson models, the
lower limiting is provided by the Newtonian curve; the maximum
is obtained for ξ = 1.0, which is lower than the power-law.

For the Herschel–Bulkley model, the minimum and maximum
friction factors coincide with the power-law model. It seems that
Eq. (33) represents the maximum drag reduction or minimum
friction factor for all flows in the viscoplastic family.

The similarity between Eq. (33) and the empirical MDR asymp-
totes for viscoelastic fluids leads us to conjecture that theremay be
a rheology-independent limit for the minimum energy dissipation
rate of a turbulent flow. This resembles the famous Onsager’s
conjecture, which states that there exists an inviscid dissipation
mechanism provided by the low-regularity of the ‘‘physical solu-
tions’’ of the incompressible Euler equations, see [37–40]. We are
currently investigating those connections.

8. Conclusion

In the present work, we have proposed an extended version of
Kolmogorov’s K41 theory, by providing some suitable adjustments
in the similarity hypothesis. To obtain the extended Kolmogorov
micro-scales, we have first defined the local Reynolds number as
the ratio of the energy transfer term to the dissipation rate term
at a fixed wavenumber. Then, by assuming that in the transitional
Kolmogorov micro-scale, this local Reynolds number is of order
unity, and by a localness hypothesis, Kolmogorovmicroscaleswere
derived for the non-Newtonian viscoplastic fluids.

We have also presented an important connection between
these microscales and the friction in the wall-bounded flows for a

Fig. 6. Minimum andmaximum friction factor predicted by the present theory (for
power-law model) compared with maximum drag reduction asymptote.

large family of viscoplastic flows, including the Newtonian, power-
law, Bingham, Herschel–Bulkley and Casson models. This leads us
to propose a new friction factor for this family of fluids, which is
obtained with no empirical fitting.

We have compared the proposed friction equation with DNS
and experimental results. The accuracy of the new friction equa-
tion is very good. In particular, the friction equation outperforms
the available empirical friction equations. Also, for the Herschel–
Bulkley and Cassonmodels, where no empirical friction equation is
available, the present formula results in very accurate predictions.

In [11,12], based on comparisons with wall friction scales, we
have established limits of validity for the friction equation, Eq.
(30), for power-law and Bingham models, respectively. This was
possible due to the explicit expression for the term uη/U , available
for those models. Because for general Herschel–Bulkley models,
this ratio can only be obtained through numerical calculations,
the limits of validity cannot be explicitly stated. We are currently
studying those limits from a numerical point of view.

We have also discussed the importance of the correct defini-
tion of the Kolmogorov length scale for purposes of DNS of non-
Newtonian fluid flows, which seems to be lacking in the literature.
We have also proposed the use of the friction coefficient developed
in this work as the benchmark test for the proper setting of the
geometrical configuration of the mesh.

The friction expressions presented in this work also establish
bounds for the maximum drag reduction for the large family of
Herschel–Bulkley fluids, including ‘‘drag reducing’’ fluid flows, ob-
tained by setting τy = 0 and n < 1. The limiting asymptote resem-
bles that obtained for viscoelastic fluid flows, which is known as
Virk’s asymptote. To the best of our knowledge, there is currently
no available explanation for Virk’s asymptote; in particular, there
is no theory to directly relate this asymptote to Kolmogorov’s cas-
cade structure of turbulent flows. We are currently investigating
this connection for different rheologies, including viscoelastic fluid
flows. These results will be communicated soon.
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