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A B S T R A C T

An integral transforms analysis is undertaken for conjugated heat transfer in circular microchannels with la-
minar gaseous flow in the slip flow regime. The solution methodology is based on the Generalized Integral
Transform Technique applied to a single domain formulation that models the coupled heat transfer phenomena
at the fluid stream and at the channel wall. The single domain formulation results in just one partial differential
equation for the energy balance, making use of spatially variable coefficients with abrupt transitions, and ac-
counting for the temperature jump at the interface due to the Knudsen numbers within the slip flow regime. This
work extends the single domain formulation strategy, not a priori applicable to problems with discontinuities, by
considering a very thin fictitious layer at the fluid-wall interface region, so as to mathematically represent an
equivalence to the temperature jump. An integral balance technique for enhancing the convergence of the ei-
genfunctions is employed, so as to achieve more accurate results and improve convergence for the so derived
multiscale problem. The results obtained are critically compared against a dedicated finite difference numerical
solution for the original multi-region problem. Results for the Nusselt number are presented in order to in-
vestigate its behavior with respect to different Péclet and Knudsen numbers, and different wall thicknesses
values, confirming the importance of the combined effects of slip flow, axial conduction and heat transfer
conjugation in the analysis.

1. Introduction

Several earlier works in the analysis of thermal microsystems led to
the observation of discrepancies between the experimental results and
classical correlations or simulations for the associated heat transfer
coefficients, as reviewed in [1]. These discrepancies are mainly related
to the adoption of classical hypothesis employed in modeling macro-
scale problems, which may no longer be valid when dealing with heat
and fluid flow in microsystems [2]. In such cases, due to the very small
characteristic lengths involved, it is required to modify and extend the
flow and convective heat transfer modeling, in comparison to the usual
simplified macro-scale formulations [3].

A few analytically based solutions have been provided in the lit-
erature aiming at the analysis of micro-scale convective heat transfer,

such as for instance for heat transfer with slip flow in circular micro-
tubes [4,5], rectangular and parallel plates microchannels [6–8], and
the investigation of viscous heating and fluid property variation [9].
Nevertheless, the effects of axial diffusion due to the low Péclet num-
bers involved and the conduction-convection conjugation effect due to
the microsystem substrate, have been avoided in such analytical de-
velopments. In ref. [10] the conjugation effect was taken into con-
sideration for heat transfer in a parallel plates microchannel, employing
the Generalized Integral Transform Technique (GITT) [11,12] in com-
bination with a single domain formulation. This reformulation strategy
was proposed towards rewriting multi-region problems, such as those in
conjugated conduction-convection heat transfer, into single region
problems with space variable thermophysical properties and source
terms, allowing for a single integral transformation operation over the
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whole physical domain. This hybrid approach has also been demon-
strated quite successfully in dealing with axial diffusion effects [13],
complex configurations and irregular regions [14–16], as reviewed in
[3], automatically satisfying heat flux and temperature continuity
conditions at the interfaces, and without the need for domain decom-
position schemes. Nonetheless, rarefaction effects were not included in
those conjugated heat transfer studies [10,13–16].

Hence, the present work addresses an analytically based solution
extending the analysis performed in [10,13–16] in order to simulta-
neously handle all these typical micro-scale effects: (i) the slip
boundary condition in opposition to the classical no-slip boundary
condition, together with the interfacial temperature discontinuity
(temperature jump condition); (ii) the inclusion of the axial conduction
term in the fluid energy equation; and (iii) the consideration of the
conduction-convection conjugation effect. Despite the importance of
modeling and analytically handling these three extensions of the clas-
sical Graetz problem at the microscale, the analysis of their combined
effects has been somehow overlooked in the earlier literature, with a
few relevant exceptions that employed discrete numerical methods and
included simultaneously developing flow conditions [17,18].

Actually, in ref. [19] the combination of the single domain for-
mulation and the integral transforms approach was first extended to
solve the conjugated heat transfer problem within the slip flow regime,
when a fictitious very thin layer between the fluid region and the actual
channel wall was introduced, in order to impose the desired thermal
resistance between the fluid and the wall, and thus model the tem-
perature jump at the interface. This fictitious solid layer needs to be
kept much thinner than the characteristic length of the channel, so as to
minimize the perturbation to the original problem geometry. However,

such a solution based on the eigenfunction expansion of the tempera-
ture field, obtained through the integral transformation of the heat
transfer problem, ends up by involving the solution of an eigenvalue
problem with abrupt and multiscale variations on the governing space
variable coefficients in the single domain formulation, resulting in
undesirable slower convergence rates.

Therefore, based on a very recent development regarding the con-
vergence acceleration of eigenfunction expansions for Sturm-Liouville
problems [20,21], employing an integral balance analytical procedure
[11,12], the present work proposes the combination of the single do-
main formulation and the integral transforms method to accurately and
efficiently handle the conjugated heat transfer problem within circular
microchannels in the slip flow regime, including axial diffusion effects.
For verification purposes, a steady or quasi-steady state test problem
with hydrodynamically fully developed and thermally developing flow
is addressed. A dedicated finite difference simulation is also im-
plemented for the original multi-region problem [22], allowing for
critical comparisons. In order to investigate the influence of the mi-
croscale effects on convective heat transfer, the Nusselt number is
computed for different combinations of wall thicknesses, Péclet and
Knudsen numbers.

2. Problem formulation and solution methodology

Consider the incompressible gas flow within a circular micro-
channel with length Lz, cross-section with inner radius ri and outer
radius ro, as illustrated in Fig. 1, undergoing convective heat transfer
due to a prescribed temperature Tw at the external wall, different from
the inlet temperature Tin. The channel wall is considered to participate

Nomenclature

cp, f fluid specific heat at constant pressure
cv, f fluid specific heat at constant volume
hz local heat transfer coefficient
k thermal conductivity
K dimensionless thermal conductivity
Kn Knudsen number
Kfic dimensionless thermal conductivity of the fictitious layer
Lz microchannel length
Lfic dimensionless thickness of the fictitious layer
M truncation order of the eigenfunction expansion (eigen-

value problem solution)
N truncation order of the temperature eigenfunction expan-

sion
Nu Nusselt number
Nψ norm corresponding to temperature eigenfunction, ψ
NΩ norm corresponding to auxiliary eigenfunction, Ω
Pe Péclet number
Pr Prandtl number
qw wall heat flux
r radial position
R dimensionless radial position
Re Reynolds number
T temperature
Tw prescribed temperature at the external wall
Tin prescribed temperature at the inlet
u velocity field
z longitudinal position
Z dimensionless longitudinal position

Greek letters

αm tangential momentum accommodation coefficient
αt thermal accommodation coefficient
βt wall temperature jump coefficient
βv wall velocity slip coefficient
γ specific heat ratio
λ molecular mean free path
η eigenvalues corresponding to auxiliary eigenfunction, Ω
Ω auxiliary eigenfunctions
μ eigenvalues corresponding to temperature eigenfunction,

ψ
ψ temperature eigenfunctions
ρ specific mass
θ dimensionless temperature

Subscripts and superscripts

av average
f quantities related to the fluid region
fic quantities related to the fictitious layer
o quantities at the outer wall
s quantities related to the solid region
i quantities at the inner wall
j, l, m, n order of eigenquantitites
* domain including the fictitious layer
~ normalized eigenfunction
– integral transform
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on the heat transfer process through both radial and axial heat con-
duction. Besides, the Knudsen and Péclet numbers are such that the
problem falls within the region of validity of the first order slip flow
model and the axial diffusion effects in the fluid cannot be neglected.

The flow is here considered to be hydrodynamically fully developed,
in which the gas enters the microchannel with a fully developed velo-
city profile uf(r), while a thermally developing region is established.
The dimensionless formulation of the multi-region heat transfer pro-
blem, given by the coupled convection and conduction equations, is
written as:

Heat convection equation (fluid region):
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Heat conduction equation (microchannel wall):
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The temperature jump condition at the interface is modeled by Eq.
(1d,e) and the heat flux continuity is modeled by Eq. (2d,e). The fol-
lowing dimensionless groups have been employed in Eqs. (1a)–(1d,e)
and Eqs. (2a)–(2d,e):
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where the subscript f denotes quantities related to the fluid, s denotes
quantities related to the solid (microchannel wall), αt is the thermal
accommodation coefficient, γ = cp, f/cv, f is the specific heat ratio, and λ
is the molecular mean free path. The dimensionless velocity profile is
given by [5]:
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where βv is the wall velocity slip coefficient and αm is the tangential
momentum accommodation coefficient.

In order to write the conjugated problem given by Eqs. (1a)–(1d,e)
and Eqs. (2a)–(2d,e) in a single domain formulation, while still ac-
counting for the temperature jump interface condition, it is considered
a fictitious thin layer between the fluid stream and the channel wall, in
such a way that this fictitious layer can be chosen with dimensionless
thickness and thermal conductivity, Lfic and Kfic, respectively, so as to
impose the equivalent thermal resistance [19]. Considering that this
fictitious layer undergoes steady state heat conduction in the radial
direction only, and considering the boundary condition given by Eq.
(1d,e), a thermal resistance analysis yields the following relation:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

K
R L

R β
ln 1

2 Knfic
i fic

i t (5)

One should observe that even though any arbitrary value could be
set for Lfic in Eq. (5) yielding the adequate thermal conductivity for the
fictitious layer, according to the required thermal resistance, this
thickness should be ideally chosen with Lfic → 0, to interfere as
minimum as possible in the original geometry and on the overall heat
transfer process.

The conjugated problem simulating the temperature jump interface
condition can now be written as a single domain formulation with space
variable coefficients. However, instead of directly solving the re-
formulated steady state problem presented in Eqs. (1a)–(1d,e) and
(2a)–(2d,e), which upon integral transformation in the radial variable,

(a)

(b)

Fig. 1. (a) Schematic representation of the conjugated problem. (b) Microchannel cross-
section.
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would result in a boundary value problem for the transformed tem-
perature along the longitudinal coordinate, it is computationally more
convenient to employ the partial transformation scheme of the GITT
approach, as detailed in [23], after introducing a pseudo transient
parabolic formulation, with the convection term considered as a source
term [13]. The single domain formulation is then written as:
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where the initial condition f(R,Z) can be any feasible function, pre-
ferably any approximation to the steady state solution, since the in-
terest here is only in the steady state analysis, t →∞. Here, for the
computational implementation, the initial temperature for the pseudo
transient formulation was taken equal to the wall temperature, f(R,Z)
= 0. The space variable coefficients in the single domain formulation in
Eq. (6a), are defined as:
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It is worth noting that Kax(R) is introduced with zero thermal con-
ductivity at the fictitious layer, so that this layer participates through
heat conduction along the radial direction only, thus allowing for the
thermal resistance analysis performed in deriving Eq. (5).

After the problem given by Eqs. (6a)–(6g-i) is solved, the desired
temperature distribution can be readily obtained by considering the
steady state solution, with t sufficiently high, and removing the ficti-
tious layer from the solution:
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So, whereas θ∗ is defined for 0≤ R≤ 1 + Lfic, θ is defined for
0 ≤ R ≤ 1, the original problem domain before introducing the ficti-
tious layer. As demonstrated in a number of previous works [13,15],
the problem given by Eqs. (6a)–(6g-i) can be solved through the pro-
position of an eigenvalue problem containing the information regarding
the different domains in its governing coefficients. For the problem
addressed in this work, one may then choose the following eigenvalue
problem:
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which allows for the definition of the following transform-inverse
pair:
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Operating on Eq. (6a) with ∫ ⋅∼+
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boundary conditions, we obtain the following one-dimensional trans-
formed partial differential system:
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with the following transformed boundary and initial conditions, ob-

tained after operating on Eqs. (6b,c) and Eq. (6f) with ∫ ⋅∼+
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System (11), after truncation to an order N, can be numerically
solved to provide results for the transformed temperatures ∗θ Z t( , )l . The
Mathematica software [24], for instance, provides the routine NDSolve
which is able to solve this kind of partial differential system under
automatic absolute and relative errors control.

Hence, the main task in this procedure is related to the solution of
the eigenvalue problem given by Eqs. (8a)–(8b,c), which does not allow
for a closed-form solution. Although the GITT itself can be readily
employed to solve this eigenvalue problem [3,13,15], the convergence
rates can become fairly slow, due to the multiscale behavior of the
governing coefficients, requiring the implementation of a convergence
enhancement technique for computational savings, such as the Integral
Balance procedure [11,12], which can be employed to derive analytical
expressions to accelerate the eigenfunctions expansion convergence
[20,21].

Starting with the analytical double integration of the original ei-
genvalue problem from the two boundaries to any arbitrary point in the
domain, analytical expressions for the eigenfunction and its derivative
are obtained, with dependence on the boundary values of both the ei-
genfunction and the associated derivative, and explicitly accounting for
the space variable coefficients in the eigenfunction representation.
Making use of the available boundary conditions in the original ei-
genvalue problem, the boundary values are eliminated from the derived
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expressions for the eigenfunction and its derivative. Following this
procedure in solving the eigenvalue problem given by Eqs. (8a)–(8b,c),
as described in details for a general Sturm-Liouville problem in [20],
the following expressions with enhanced convergence are obtained for
the eigenfunctions ψ(R) and the derivatives dψ(R)/dR:
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Then, consider an expansion representation for the original eigen-
functions, ψl(R), appearing on the RHS of Eqs. (12a), (12b):
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which employs a simpler basis, such as provided by the following ei-
genvalue problem, with closed-form solution for the eigenfunctions
Ω(R), and the corresponding eigenvalues η:
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Substituting the expansion representation given by Eq. (13b) into
the RHS of Eqs. (12a), (12b) one obtains:
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The integral transformation of Eq. (8a) can be achieved by operating

on this equation with ∫ ⋅ ∼
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balance expressions given by Eqs. (16a), (16b) for ψl(R) and dψl(R)/dR
appearing in this expression, yields:
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where IAn(R) and IBn(R) are given by Eq. (16c,d). This algebraic ei-
genvalue problem can be numerically solved to provide results for the
eigenvalues μl and eigenvectors ψl, which can be readily employed back
in Eqs. (16a), (16b) to obtain analytical expressions for the

eigenfunctions and related derivatives, ψl(R) and dψl(R)/dR, respec-
tively.

Besides the GITT solution with integral balance for the single do-
main formulation just described, this work also reports some results
obtained without the convergence acceleration technique, for compar-
ison purposes. Moreover, a dedicated finite difference solution (second-
order accurate in R and first-order accurate in Z) is implemented for the
original multi-region problem given by Eqs. (1a)–(1d,e) and Eqs.
(2a)–(2d,e), in order to provide a comparative analysis against the
single domain integral transforms solution.

2.1. Nusselt number

The convective heat flux from the fluid to the wall is written as:

= −q h T z T z[ ( ) ( )]w z f b s i, , (19)

where hz is the local heat transfer coefficient, Tf, b(z) is the fluid bulk
temperature and Ts, i(z) is the inner wall temperature (interface with the
fluid stream). The heat flux can also be written using Fourier's law:
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and the local Nusselt number is readily determined as:
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The dimensionless fluid bulk temperature is given as:
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The derivative ∂θf(R,Z)/∂R|Ri
in Eq. (23a) is calculated combining

the inverse formula, Eq. (9b), with the enhanced convergence expres-
sion for the eigenfunctions derivative, Eq. (12b), yielding:

Table 1
Convergence behavior of the GITT solution for the first five eigenvalues in problem (8)
with Lfic = 10−3: (a) GITT with integral balance; (b) GITT without integral balance.

M μ1 μ2 μ3 μ4 μ5

(a)
10 2.544 4.305 6.910 9.776 11.665
20 2.544 4.297 6.909 9.639 11.444
30 2.544 4.296 6.909 9.627 11.436
40 2.543 4.296 6.909 9.623 11.433
50 2.543 4.295 6.909 9.620 11.431

(b)
500 2.566 4.589 6.923 10.015 11.737
1000 2.565 4.571 6.922 9.994 11.714
2000 2.557 4.455 6.916 9.841 11.577
4000 2.549 4.361 6.912 9.709 11.483
8000 2.546 4.324 6.910 9.656 11.450
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3. Results and discussion

As test case, the flow of air (kf = 0.0271 W/m°C, cp, f = 1.0049 kJ/
kgK, cv, f = 0.7178 kJ/kgK, νf = 1.568 × 10−5 m2/s and
ρf = 1.177 kg/m3) inside an acrylic microchannel (ks = 0.2 W/m°C) is
considered, resulting in Ks = ks/kf = 7.38. In the examples presented, it
has been adopted βv = 1.5, βt = 2.0 and Kn = 0.025, which are re-
presentative values for these parameters [25,26].

Results regarding the solution of the eigenvalue problem given by
Eqs. (8a)–(8b,c) are first reported, employing the GITT with integral
balance for convergence acceleration in comparison against the tradi-
tional solution, without the integral balance scheme. In both cases it has
been considered Lfic = 10−3, resulting in Kfic = 0.04988. Tables 1(a,b)
present the convergence behavior of the first five eigenvalues. It is
worth observing that in Table 1(a) the eigenvalues seem to be con-
verged with three to four significant digits for a truncation order as low
as M= 50, for the implementation employing the integral balance
approach, whereas in Table 1(b) a very high truncation order of
M = 8000 is needed in order to achieve an agreement of two to three
significant digits with Table 1(a), already demonstrating the remark-
able convergence acceleration effect obtained with the integral balance
approach. Fig. 2 depicts the comparison of the spatial behavior of the
first two calculated eigenfunctions, ψ1(R) and ψ2(R), with M = 50 in
both cases, where it can be noticed that the profiles calculated with the
integral balance technique present a clear abrupt transition at the in-
terface, R= Ri = 0.2, as result of the solution accurately capturing the
fictitious layer which is located from R= Ri to R= Ri + Lfic = 0.201 in
this case. On the other hand, this multiscale character of the problem
poses a significant difficulty for the solution without the convergence
acceleration technique, yielding smooth profiles at R= 0.2. In fact, in
order to accurately capture the thin fictitious layer without any kind of
convergence acceleration, auxiliary eigenfunctions with much higher
frequency would be needed, which would require a prohibitively large
truncation order M, as demonstrated in Table 1.

Table 2(a,b) present the convergence behavior of the calculated
temperature field via GITT with integral balance for Lfic = 10−2 and
Lfic = 10−3, respectively, considering the case with Pe = 10 with
truncation orders of N = 10 to N = 50 in Eq. (9b), employing M= 100
terms in the solution of the eigenvalue problem with space variable
coefficients. Although smaller values of Lfic should in principle lead to
better results comparing to the original multi-region problem, it should
be remembered that the lower this value, slower becomes the con-
vergence of the eigenvalue problem with multiscale variable coeffi-
cients.

In both tables the numerical solution of the original multi-region
problem is also presented, obtained via the Finite Difference Method
(FDM) [22], employing a second-order accurate scheme in R and first-
order accurate upwind scheme in Z. The FDM solution presented was
obtained with 1200 nodes in the longitudinal direction and 140 nodes
in the radial direction (70 in each region, fluid and solid), yielding

Fig. 2. First two eigenfunctions calculated via GITT with and
without convergence enhancement (integral balance approach)
employing Lfic = 10−3 and truncation order of M = 50 in both
solutions.

Table 2
(a) Convergence behavior for the GITT solution with integral balance (M = 100) with (a)
Lfic = 10−2; (b) Lfic = 10−3.

N θ(R,Z= 0.05) Pe = 10

R= 0.1 R= 0.2 (fluid) R= 0.2 (solid) R= 0.6

(a)
10 0.90548 0.77921 0.74928 0.62869
20 0.90612 0.77957 0.74997 0.62806
30 0.90611 0.77950 0.74995 0.62807
40 0.90611 0.77949 0.74995 0.62806
50 0.90611 0.77949 0.74995 0.62806
FDM 0.906 0.780 0.750 0.627

(b)
10 0.90627 0.77951 0.74962 0.62812
20 0.90681 0.77992 0.75035 0.62749
30 0.90681 0.77990 0.75035 0.62750
40 0.90681 0.77989 0.75035 0.62750
50 0.90681 0.77989 0.75034 0.62750
FDM 0.906 0.780 0.750 0.627
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convergence of the three digits shown, confirmed in a grid in-
dependence test.

In both cases, Lfic = 10−2 and Lfic = 10−3, the GITT solution is
converged to five significant digits for the truncation order N = 50,
thus verifying the FDM solution of the original multi-region problem.

Fig. 3(a,b) show temperature profiles calculated with Lfic = 10−3

and M= N = 20, at different longitudinal positions for Pe = 1 and
Pe = 10, respectively, confirming the good agreement between the
numerical finite differences results and the proposed hybrid solution,
while comparing the GITT solutions with and without convergence
acceleration of the eigenvalue problem solution. It is interesting to
confirm that the most impressive effect of the convergence acceleration
technique refers to the interface, allowing for the hybrid solution with
the single domain formulation to accurately capture the temperature
jump at fairly low truncation orders. Hence, even though the GITT
solution without convergence acceleration is still able to yield good
results at the solid region, it would require larger truncation orders to
accurately treat the interface and the fluid region. It can also be

observed that this effect is more pronounced for Pe = 10, when a more
significant temperature jump occurs.

Some results are now reported in order to investigate the influence
of the conjugation effects, Péclet and Knudsen numbers on the
asymptotic Nusselt number. In all cases the Nusselt number was cal-
culated employing a fictitious layer with thickness Lfic = 10−3 and
truncation orders M= N = 20. First, Fig. 4(a,b) and Fig. 5(a,b) depict
the calculated asymptotic Nusselt number for different Péclet and
Knudsen numbers for (a) ri/ro = 0.5 and (b) ri/ro = 1 (no conjugation).
In all graphs it is also presented the classical asymptotic Nusselt number
(no-slip) for the Graetz problem, if neither conjugation effects nor axial
conduction are considered, yielding Nu = 3.657. It can be noticed that
lower values of the Péclet number lead to slightly higher Nusselt, and
for Pe > 20 the influence of the axial conduction is already very small.
On the other hand, increasing the Knudsen number leads to lower
Nusselt numbers, in a practically linear behavior for Kn > 0.02. It can
also be readily observed that the conjugation effect (increasing wall
thickness, i.e. lower ri/ro ratios) leads to higher Nusselt numbers in this
problem, as it can be clearly observed in Figs. 4 and 5, where the curves
are shifted up for ri/ro = 0.5 in comparison with ri/ro = 1. In all cases,
it is worth noting that the Nusselt numbers can be significantly different
from the classical asymptotic value, if the effects of slip flow, wall
conjugation and fluid axial diffusion are not taken into account.

The influence of the conjugation effect can be observed with more
details in Figs. 6(a,b) for a fixed Knudsen number, Kn = 0.02, illus-
trating that the influence of the Péclet number on the Nusselt number is

(a)

(b)

Fig. 3. Comparison of temperature profiles at different longitudinal positions calculated
with Lfic = 10−3 and M = N = 20 for (a) Pe = 1 and (b) Pe = 10.

(a)

(b)

Fig. 4. Asymptotic Nusselt number for different values of Pe and Kn. (a) ri/ro = 0.5; (b)
ri/ro = 1 (no conjugation).
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more pronounced when conjugation effects are important, for lower ri/
ro ratios. These results confirm that marked differences are observed if
both the axial conduction and the conjugation effects are neglected,
being this conclusion especially important on the analysis of micro-
thermal devices, in which low Péclet numbers are typically observed.
Hence, neglecting the combined effects can lead to even more sig-
nificant error in microfluidics simulations, and should be carefully
considered whenever the governing parameters are within such ranges.

4. Conclusions

Conjugated convection-conduction heat transfer is analyzed in cir-
cular microchannels within the slip flow regime and for low Péclet
numbers, i.e. considering the axial conduction effect. The Generalized
Integral Transform Technique (GITT) is employed in obtaining a hybrid
numerical-analytical solution, in combination with a single domain
reformulation strategy. The original multi-region problem is rewritten
as a single domain with space variable coefficients with abrupt shifts,
including a fictitious layer to model the temperature jump at the in-
terface, leading to a multiscale problem. In order to obtain accurate
results within sufficiently low truncation orders, an integral balance
technique for enhancing the convergence of the eigenfunctions has
been employed, recently developed for the solution of eigenvalue pro-
blems with multiscale and abrupt transitions. Critical comparisons
against the traditional GITT solution (without convergence acceleration
of the eigenvalue problem solution) and a dedicated finite difference

implementation for the original multi-region problem, demonstrate the
enhanced convergence behavior and improved accuracy achieved by
the proposed methodology. This work also presented a brief analysis of
the influence of rarefaction, axial diffusion, and wall conjugation on the
estimation of the asymptotic Nusselt number, confirming that marked
deviations are observed if their combined effects are neglected, espe-
cially for those problems with lower Péclet numbers.
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