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a b s t r a c t

A hybrid numerical-analytical solution is proposed to analyze MHD (magnetohydrodynamic) natural
convection of an electrically-conducting fluid within a square cavity, differentially heated at the sidewalls
and subjected to an inclined external magnetic field. The first goal is to expand the spectrum of applica-
tion of the so called Generalized Integral Transform Technique (GITT), dealing with a multiphysics formu-
lation, while further demonstrating the relative merits of the proposed eigenfunction expansion approach
in handling highly nonlinear and coupled systems of partial differential equations. The second goal is to
provide a set of benchmark results in this important application for quantities of practical interest in
determining the heat transfer rates, such as the average Nusselt number. The two-dimensional steady
state equations are written in dimensionless form using the streamfunction-only formulation and are
subsequently solved with the GITT approach, under automatic relative error control. Critical comparisons
are performed against previous work reported in the literature, both computational and experimental,
together with the corresponding physical interpretations, for different values of the governing parame-
ters, such as Grashof number, Hartmann number, Prandtl number, and magnetic field inclination angle.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) deals with the motion of
electrically-conducting fluids under the influence of externally
applied electromagnetic fields. Examples of such fluids include ion-
ized gases (plasma), liquid metals, saline water, and electrolytes. A
quite comprehensive review on MHD may be found in the mono-
graph by Davidson [1]. MHD is currently viewed as a particular
case of a more general continuum mechanics-based theoretical
framework referred to as Unified Electro-Magneto-Fluid Dynamics
(EMFD) [2–5]. MHD natural convection inside closed cavities has
received considerable attention in the past few decades because
it occurs in numerous engineering applications such as in the
liquid metal cooling of nuclear reactors and electric equipment
[6–10], the manufacturing process of high-quality crystals [9,11–12],
and magnetic-levitation casting [13], to name just a few.

The literature on MHD natural convection inside closed cavities
is quite extensive and a detailed review is beyond the scope of the

current work. The vast majority of previous studies focuses on two-
dimensional laminar and incompressible flow of electrically-
conducting fluids inside cavities, differentially heated either from
the sidewalls or from its top and bottom walls, and subjected to
either transverse, parallel or inclined magnetic fields with respect
to the gravitational acceleration vector. Oreper and Szekely [12]
were the first to numerically investigate the effect of an externally
imposed magnetic field (transversal to gravity) on the natural con-
vection inside a square cavity differentially heated from the side-
walls. Ozoe and Okada [11] investigated the MHD natural
convection in three-dimensional cubic enclosures differentially
heated from two vertical walls and under magnetic fields oriented
along the principal axis of the cubic enclosure. Alchaar et al. [9]
investigated the MHD natural convection inside a shallow cavity
heated from below and cooled from the top, and subjected to an
inclined magnetic field. Al-Najem et al. [10] investigated the
MHD natural convection within a tilted square cavity differentially
heated from its vertical walls and permeated by an inclined exter-
nal magnetic field. Colaço et al. [14] revisited the MHD natural con-
vection problem investigated in [10] and solved the MHD
governing equations using a meshless method with radial basis
functions (RBF) [15]. Results for the velocity and temperature
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distributions as well as for the average Nusselt number at the solid
walls of the cavity have been reported in the literature, offering ref-
erence values for comparison and verification tasks. The effects of
the governing parameters, namely, the Grashof number, the Hart-
mann number, the inclination angle of either the cavity or the
magnetic field on the convective heat transfer rate, represented
by the average Nusselt number, are well documented. The reported
results mostly indicate that an external magnetic field, indepen-
dent of its orientation, contributes to reducing the convective heat
transfer through the cavity. The extent of heat transfer reduction
depends strongly upon the imposed magnetic field strength. Mag-
netic fields oriented perpendicular to the heat flow direction are
the most effective in suppressing convective heat transfer. For cav-
ities heated from the bottom and cooled from the top, the results
reported in [9] also indicate that the convection modes within
the cavity depend strongly upon both the strength and inclination
of the magnetic field.

From the literature review on MHD natural convection within
closed cavities, the following remarks should be summarized.
Firstly, the vast majority of the previous works relies on either
finite-difference or finite-volume schemes to solve the governing
equations. Such classical numerical schemes require spatial dis-
cretization of the domain and an approach to handle the
velocity-pressure coupling. A few authors avoided the velocity-
pressure coupling by rewriting the governing equations using the
streamfunction-vorticity formulation. However, the boundary con-
ditions adopted for the vorticity field at the solid walls are rarely
reported, with a noteworthy exception in [11]. Secondly, few
works have attempted to solve the governing equations using the
streamfunction-only formulation [14], which has the advantage
of not requiring boundary conditions for the vorticity field at the

solid walls, albeit it requires a special scheme to accurately approx-
imate fourth-order derivatives [14]. Thirdly, there are non-
negligible discrepancies amongst the numerical results reported
in the literature for the average Nusselt number, with relative devi-
ations ranging from 2.9% to 32% [14]. Fourth, the majority of previ-
ous works reports numerical results only for the special case in
which the magnetic field induced by fluid flow is negligible com-
pared to the imposed one (inductionless approximation), decou-
pling Maxwell’s equations from the Navier-Stokes equations for
fluid flow. The current work comprises a detailed derivation of
the conditions for this assumption to be valid.

Despite the extensive progress achieved by discrete numerical
methods, analytical-type approaches for diffusion and
convection-diffusion problems have been progressively advanced
and extended, in part motivated by offering benchmark results
for verification and calibration of the more flexible numerical
methods. Powerful hybrid analytical-numerical schemes have
emerged from the combination of classical analytical methods
with modern computational methods for ordinary differential
equations, benefiting as well from modern symbolic computation
platforms. The Generalized Integral Transform Technique (GITT)
is one such a hybrid method for solving linear or nonlinear diffu-
sion and convection-diffusion problems, which has been developed
for the last three decades, dealing with various classes of problems
in heat and fluid flow, as reviewed in different sources [16–24]. A
few contributions are here briefly mentioned, which have a closer
connection to the problem under consideration. Natural convec-
tion inside cavities was first dealt with the GITT in [25], for a
two-dimensional rectangular porous region with internal heat
generation. Transient analysis of natural convection in porous
cavities was then analyzed through the hybrid approach, both for

Nomenclature

Aij integral coefficient given by Eq. (42a)
B0
⁄, B⁄, B0⁄ induced magnetic fields

Bij integral coefficient given by Eq. (42b)
Cijk integral coefficient given by Eq. (42c)
Dijk integral coefficient given by Eq. (42d)
ex⁄, ey⁄ unit vectors along the x⁄ and y⁄ axes
E⁄ electric field strength
Eijk integral coefficient given by Eq. (42e)
�f i transformed boundary condition given by Eq. (42i)
Fij integral coefficient given by Eq. (42f)
g gravity acceleration
Gijk integral coefficient given by Eq. (42g)
Gr Grashof number
H0

⁄ magnetic field strength
Ha Hartmann number
Hijk integral coefficient given by Eq. (42h)
Iij integral coefficient given by Eq. (44c)
J⁄ electric current density
L cavity length
Nu, Nux¼0 local and average Nusselt numbers, respectively
NUi, NCi normalization integrals for eigenfunctions Ui(y) and

Ci(y), respectively
Nw, NT truncation orders for the streamfunction and tempera-

ture fields, respectively
p⁄(x⁄,y⁄) pressure field
Pr Prandtl number
Ra = GrPr Rayleigh number
Re Reynolds number
Rem magnetic Reynolds number
T⁄(x⁄,y⁄) temperature field
Tref
⁄ reference temperature

TC
⁄ temperature at the cold wall

TH
⁄ temperature at the hot wall

TiðxÞ transformed temperature
v⁄(x⁄,y⁄) velocity vector field
v0⁄ reference velocity
x⁄, y⁄ Cartesian coordinates

Greek letters
a fluid thermal diffusivity
ai eigenvalues for the streamfunction expansion
b coefficient of thermal expansion of fluid
bi eigenvalues for the temperature expansion
c magnetic field inclination angle with respect to x-axis
re fluid electric conductivity
le fluid magnetic permeability
m fluid kinematic viscosity
mm fluid magnetic diffusivity
q fluid density
Ui(y) eigenfunction for the streamfunction expansion
Ci(y) eigenfunction for the temperature expansion
�WiðxÞ transformed streamfunction
w⁄(x⁄,y⁄) streamfunction field

Subscripts and superscripts
i,j,k orders from eigenvalue problems
ref quantity evaluated at reference temperature Tref

*

� normalized eigenfunctions
⁄ dimensional quantities
__ transformed quantities
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two-dimensional [26] and three-dimensional [27] geometries. The
streamfunction only formulation was preferred in the two-
dimensional situations [25,26] and the vorticity-vector potential
formulation was adopted for the three-dimensional problem [27].
Leal et al. [28] examined the convergence characteristics of the
GITT solution for the steady laminar natural convection of a New-
tonian fluid inside rectangular void enclosures differentially heated
at the vertical walls. Further, Leal et al. [29] have extended the GITT
approach to transient laminar natural convection with variable
physical properties inside two-dimensional cavities. Recently, An
et al. [30] revisited the natural convection problem investigated
in Refs. [28,29], but including volumetric heat generation inside
differentially heated and isothermal cavity walls. Such contribu-
tions illustrate the accuracy and robustness of the GITT approach
in dealing with natural convection problems. In addition, Lima
and Rêgo [31] have applied the GITT approach to investigate the
MHD flow and heat transfer in the entrance region of a channel.
Also closely related to the eigenfunction expansion basis here
adopted, though not directly related to natural convection, the
GITT approach has been successfully employed in handling struc-
tural dynamics problems, such as the dynamic transient response
of axially moving beams [32,33], axially moving orthotropic plates
[34], damaged Euler-Bernoulli beams [35], cantilever beams with
eccentric tip mass [36], general one-dimensional slender struc-
tures with inertia, damping and stiffness elements at the bound-
aries [37], fluid-conveying pipes [38], and overhead transmission
lines [39].

The GITT approach is rooted in the Classical Integral Transform
Technique (CITT) for linear diffusion problems, extensively dis-
cussed in the treatise by Mikhailov and Özisik [40]. It was devel-
oped to overcome formulation complexities that were before
supposed to be solvable solely by discrete-type methods, including
nonlinear physical properties, moving boundaries, irregular
geometries and nonlinear convective terms [16–24]. The main idea
in the GITT is to eliminate all but one independent variable with an
appropriate choice of auxiliary eigenvalue problem and definition
of an inverse-transform pair. The auxiliary eigenvalue problem
provides the orthogonal eigenfunctions for the series expansions
of the unknown potentials. After integral transformation, the orig-
inal system of partial differential equations (PDEs) is transformed
into a system of coupled ordinary differential equations (ODEs).
With the inversion formula, a priori available, the dependence of
the unknown potentials on the eliminated independent variables
may be recovered in analytical form. Hence, the numerical task
comprises only the solution of a system of ordinary differential
equations, which nowadays may be readily accomplished with dif-
ferent highly accurate and robust ODE solvers. The numerical eval-
uation of coefficients appearing in the resulting system of ODEs
may deteriorate computational efficiency for nonlinear formula-
tions. However, accurate and computationally efficient implemen-
tations can be readily achieved through symbolic manipulation
platforms and semi-analytical integration schemes. The relative
merits of the GITT approach over purely numerical schemes com-
prises avoiding 2-D or 3-D spatial discretization, yielding auto-
matic global accuracy control, and offering mild increase in
computational cost with increasing number of independent
variables.

Here, MHD natural convection of an electrically-conducting
fluid within a square cavity is revisited [41], for heated and cooled
sidewalls, and subjected to an inclined external magnetic field. The
governing equations are written in dimensionless form using the
streamfunction-only formulation and subsequently solved with
the GITT approach. The first main goal is to expand the field of
application of the GITT approach to a complex multiphysics prob-
lem, and to further demonstrate the relative merits of the proposed
eigenfunction expansion approach in handling highly nonlinear

and coupled systems of partial differential equations. Another
equally important goal is to provide new benchmark results for rel-
evant quantities such as heat transfer rates, represented by the
average Nusselt number, with the corresponding physical behavior
interpretation.

The current work is organized as follows. Section 2 presents the
mathematical formulation of the physical problem. Section 3
describes the hybrid solution of the governing equations formu-
lated in Section 2 through the GITT approach. In Section 4, the
numerical results for velocity, temperature and average Nusselt
numbers are reported, discussed, and critically compared against
previous ones reported in the literature. Section 5 summarizes
the main conclusions and provides suggestions for future research
work.

2. Mathematical formulation

The physical problem here addressed stands for laminar, steady
and incompressible flow of an electrically-conducting fluid within a
differentially heated square cavity. The square cavity has length L in
the x⁄- and y⁄-directions, and is of infinite extent in the z⁄-direction,
as sketched in Fig. 1. The top and bottom walls of the cavity are
assumed to be thermally insulated, whereas the left and right ver-
tical walls are maintained at the prescribed uniform temperatures
TH
⁄ (hot wall) and TC

⁄ (cold wall), respectively. It is also assumed that
the cavity walls are electrically insulated. The entire system (fluid
and solid walls) is subjected to an external magnetic field of uni-
form strengths H0x

⁄ and H0y
⁄ acting in the x⁄- and y⁄-directions,

respectively. Let us denote by B0
⁄ the induced magnetic field due

to the externally applied magnetic field H⁄ = H0x
⁄ ex⁄ + H0x

⁄ ey⁄, where
ex⁄ and ey⁄ denote the unit vectors along the x⁄- and y⁄-directions.
Neglecting fluid magnetization, then B0

⁄ = leH0
⁄, where le stands

for the magnetic permeability of the fluid.
When an electrically-conducting fluid moves with velocity v⁄

through an imposed magnetic field, its positive and negative
charges are each accelerated such that their average motion gives
rise to an electric current density J⁄ given by Ohm’s law as
J⁄ = re(E⁄ + v⁄ � B⁄). The induced magnetic field B⁄ may be written
as B⁄ = B0

⁄ + B0⁄. The symbol re denotes the electric conductivity of
the fluid and the vector quantity B0⁄ is the induced magnetic field
due to the electric current J⁄ flowing through the fluid.1.

Fig. 1. MHD natural convection inside a differentially heated square cavity filled
with an electrically-conducting fluid.

1 The ideal MHD flow is a particular case for which one assumes that the fluid
behaves as a perfect electrical conductor (i.e., re ?1) such that in order to J⁄ remains
finite, Ohm’s law leads to E⁄ + v⁄ � B⁄ = 0.
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The following assumptions are made: (i) the fluid is Newtonian;
(ii) fluid properties are constant and evaluated at the reference
temperature Tref

⁄ ; the density dependence on temperature that pro-
motes the effect of buoyancy forces is treated according to Boussi-
nesq’s approximation, i.e., q(T ⁄) � qref + (oq/oT ⁄)|T* = Tref

* (T ⁄ � Tref
⁄ )

and qref = q(Tref⁄ ); (iii) viscous dissipation and Joule heating are
neglected. An assumption commonly adopted in the literature
and referred to as the inductionless approximation states that
the induced magnetic field B0⁄ is negligible in comparison with
B0
⁄, i.e., B⁄ � B0

⁄. However, the more general formulation without
the inductionless approximation will be here retained along the
derivations.

The governing equations to be solved are the conservation of
mass, momentum, and energy for the fluid flow, and the conserva-
tion of electric charges, Ohm’s law and Ampère-Maxwell’s equa-
tions in a moving medium for the electromagnetic field, which
may be written in (dimensional) vector form as follows [12,14]:

$� � v� ¼ 0 ð1Þ

v� � $�v� ¼ � 1
qref

$�p� þ m$2�v� þ gbðT� � T�
ref Þey� þ 1

qref
J� � B�

ð2Þ

v� � $�T� ¼ ar2�T� ð3Þ

$� � J� ¼ 0 ð4Þ

J� ¼ reðE� þ v� � B�Þ ð5Þ

$� � B� ¼ leJ
� ð6Þ

The symbols qref, m � l/qref, b � �q�1(oq/oT⁄)|T* = Tref
* and a

denote, respectively, the density, the kinematic viscosity, the volu-
metric coefficient of thermal expansion and the thermal diffusivity
of the conducting fluid (all evaluated at the reference temperature
Tref
⁄ ); and p⁄ and T⁄ denote the pressure and temperature fields. The

last two terms appearing in Eq. (2) account for the body forces due
to gravity and the induced magnetic field (Lorentz body force).
There is also one more equation to be satisfied, namely, the Fara-
day’s law that relates the electric field E⁄ to the induced magnetic
field B⁄

@B�

@t
þ $� � E� ¼ 0 ð7Þ

Faraday’s law imposes that the induced magnetic field is
divergence-free, i.e., $⁄ � B⁄=0, which is a mathematical expression
for the conservation of magnetic flux. Combining Eqs. (5) and (6)
one may rewrite Eq. (7) as

@B�

@t
þ 1
lere

$� � ð$� � B�Þ � $� � ðv� � B�Þ ¼ 0 ð8Þ

By using the vector calculus identity$⁄ � ($⁄ � B⁄) = $⁄($⁄ � B⁄)�
r2⁄B⁄ and the divergence-free constraint for the induced
magnetic field B⁄, one may finally rewrite Faraday’s law as:

@B�

@t
¼ 1
lere

r2�B� þ r� � v� � B�ð Þ ð9Þ

Notice that the governing partial differential equation for the
induced magnetic field comprises both diffusive and convective
terms and it is coupled to the momentum conservation equations
through the convective term $⁄ � (v⁄ � B⁄). For an externally
applied time-independent magnetic field, one may further simplify
Eq. (9) to:

r2�B� þ lere$
� � ðv� � B�Þ ¼ 0 ð10Þ

By combining Eqs. (4) and (5), one obtains

$� � E� þ $� � ðv� � B�Þ ¼ 0 ð11Þ
For a two-dimensional MHD flow, it is easy to verify that

$⁄�(v⁄ � B⁄) = 0; hence, the conservation of electric charges reduces
to $⁄�E⁄ = 0.

Faraday’s law for time-independent magnetic fields, $⁄ � E⁄ = 0,
implies that E⁄ = �$⁄/E where /E denotes the electric potential;
thence, the conservation of electric charges, $⁄�E⁄ = 0, reduces to
the Laplace equation r2⁄/E = 0. For electrically-insulating bound-
aries, on which the derivative of the electric potential along the
outward normal n is identically zero (i.e., @ /E/on = $⁄/E�n = 0),
the unique solution to r2⁄/E = 0 is simply $⁄/E = 0. It follows thus
that the electric field E⁄ vanishes everywhere. Finally, by further
inserting Eq. (5) with E⁄ = 0 into Eq. (2), one arrives at the modified
Navier-Stokes equations for natural convection flows of
electrically-conducting fluids subjected to a magnetic field

v� �$�v� ¼� 1
qref

$�p� þmr2�v� þgbðT� �T�
ref Þey� þ re

qref
ðv� �B�Þ�B�

ð12Þ

Thus, the system of partial differential equations to be solved
for a two-dimensional MHD flow, in the presence of an externally
applied time-independent magnetic field, may be written as
follows:

$� � v� ¼ 0 ð13Þ

v� �$�v� ¼� 1
qref

$�p� þmr2�v� þgbðT� �T�
ref Þey� þ re

qref
ðv� �B�Þ�B�

ð14Þ

v� � $�T� ¼ ar2�T� ð15Þ

r2�B� þ lere$
� � ðv� � B�Þ ¼ 0 ð16Þ

The dimensionless independent and dependent variables are
defined as

x¼x�

L
; y¼y�

L
; v¼v

�

v�
0
; p¼ p�

qref ðv�
0Þ2

; T¼T� �T�
ref

T�
H�T�

C
; B¼ B�

jB�
0j

ð17Þ

where v0⁄ denotes a reference velocity for the fluid flow inside the
cavity. Therefore, substituting the dimensionless groups given by
Eq. (17) into Eqs. (13)–(16), yields

$ � v ¼ 0 ð18Þ

v � rv ¼ �$pþ 1
Re

r2v þ Gr

Re2
Tey þ Ha2

Re
ðv � BÞ � B ð19Þ

v � $T ¼ 1
RePr

r2T ð20Þ

r2Bþ Rem$� ðv � BÞ ¼ 0 ð21Þ

The following operator identities are readily verified
$⁄(	) = L�1$(	) and r2⁄(	) = L�2r2(	). Also, the dimensionless
groups Re, Pr, Gr, Ha, and Rem, respectively, the Reynolds number,
the Prandtl number, the Grashof number, the Hartmann number,
and the magnetic Reynolds number, are defined as

Re¼ v�
0L
m

; Pr ¼ m
a
; Gr ¼ gbDTL3

m2
; Ha¼ jB�

0jL
ffiffiffiffiffiffiffiffiffiffiffi
re

qrefm

s
; Rem ¼ v�

0L
mm

ð22a-eÞ
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where DT* � TH
* - TC* denotes a characteristic temperature difference

and mm � (mere)�1 is referred to as the magnetic diffusivity. The
magnitude of Hartmann number, Ha, expresses the ratio of mag-
netic to viscous forces acting on the fluid, whilst the magnetic Rey-
nolds number, Rem, measures the relative importance of diffusive
and convective terms in Eq. (21).

For the special case of very low magnetic Reynolds number
(Rem 
 1), Eq. (21) simplifies to r2B � 0, whose solution, for
boundary conditions of the first kind B = B0 prescribed at the walls
of the cavity, is simply B(x,y) = B0 or, equivalently, B0(x,y) = 0.
Notice that the low magnetic Reynolds number assumption (or,
equivalently, the inductionless approximation) decouples Eqs.
(19) and (21). Henceforth, one assumes the low magnetic Reynolds
number assumption, which is valid for most engineering applica-
tions of MHD flows.

The governing partial differential equations for steady two-
dimensional MHD natural convection within the cavity illustrated
in Fig. 1 may thus be rewritten in scalar form in terms of the prim-
itive field variables u⁄(x⁄,y⁄), v⁄(x⁄,y⁄), p⁄(x⁄,y⁄) and T⁄(x⁄,y⁄) as
follows

@u�

@x�
þ @v�

@y�
¼ 0 ð23Þ

u� @u
�

@x�
þ v� @u

�

@y�
¼ � 1

qref

@p�

@x�
þ m

@2u�

@x�2
þ @2u�

@y�2

 !

� rejB�
0j2

qref
u� sin2 c� v� sin c cos c
� �

ð24Þ

u� @v�

@x�
þ v� @v�

@y�
¼ � 1

qref

@p�

@y�
þ m

@2v�

@x�2
þ @2v�

@y�2

 !
þ gbðT� � T�

ref Þ

þ rejB�
0j2

qref
ðu� sin c cos c� v� cos2 cÞ ð25Þ

u� @T
�

@x�
þ v� @T

�

@y�
¼ a

@2T�

@x�2
þ @2T�

@y�2

 !
ð26Þ

where the symbol c denotes the inclination angle of the magnetic
field B0

⁄ with respect to the x⁄-direction, 0 � c � 2p (see Fig. 1);
hence, B0x

⁄ = |B0
⁄|cosc and B0y

⁄ = |B0
⁄|sinc. Before proceeding with

the integral transformation of Eqs. (23)–(26), one eliminates the
pressure field p⁄(x⁄,y⁄), in the usual manner, by defining
the streamfunction W⁄(x⁄,y⁄) such that u⁄(x⁄,y⁄) = @W⁄/oy⁄ and
v⁄(x⁄,y⁄) = �@W⁄/ox⁄.

Differentiating Eqs. (24) and (25) with respect to y⁄ and x⁄,
respectively, subtracting the resulting equations and then using
both the continuity equation and the definition of the streamfunc-
tion, one reduces the previous system of four second-order partial
differential equations into the following system of two fourth-
order and second-order partial differential equations for W⁄(x⁄,y⁄)
and T⁄(x⁄,y⁄)

@ W�;r2�W�
� �
@ðy�;x�Þ ¼ mr4�W� �gb

@T�

@x�

�rejB�
0j2

qref

@2W�

@x�2
cos2 cþ2

@2W�

@x�@y�
sinccoscþ@2W�

@y�2
sin2 c

 !

ð27Þ

@W�

@y�
@T�

@x�
� @W�

@x�
@T�

@y�
¼ a

@2T�

@x�2
þ @2T�

@y�2

 !
ð28Þ

subjected to the following boundary conditions at the cavity walls

W�ð0; y�Þ ¼ 0;
@W�ð0; y�Þ

@x�
¼ 0; T�ð0; y�Þ ¼ T�

H; 0 < y� < L

ð29a-cÞ

W�ðL; y�Þ ¼ 0;
@W�ðL; y�Þ

@x�
¼ 0; T�ðL; y�Þ ¼ T�

C ; 0 < y� < L

ð29d-fÞ

W�ðx�;0Þ ¼ 0;
@W�ðx�;0Þ

@y�
¼ 0;

@T�ðx�;0Þ
@y�

¼ 0; 0 < x� < L

ð29g-iÞ

W�ðx�; LÞ ¼ 0;
@W�ðx�; LÞ

@y�
¼ 0;

@T�ðx�; LÞ
@y�

¼ 0; 0 < x� < L

ð29j-lÞ
where r2⁄W and r4⁄W are the well-known Laplace and bi-
harmonic operators whereas @(W⁄,r2⁄W)/o(y⁄,x⁄) is defined as

@ W�;r2�W�
� �
@ðy�; x�Þ ¼ @W�

@y�
@

@x�
@2W�

@x�2
þ @2W�

@y�2

 !

� @W�

@x�
@

@y�
@2W�

@x�2
þ @2W�

@y�2

 !
ð30Þ

By defining the dimensionless streamfunction as W(x,y) =
W⁄(x⁄,y⁄)/m and then substituting it into Eqs. (27)–(29), together
with the dimensionless variables previously defined, yields

@W
@y

@3W
@x3

þ @3W
@x@y2

 !
� @W

@x
@2W
@x2@y

þ @3W
@y3

 !

¼ @4W
@x4

þ 2
@4W

@x2@y2
þ @4W

@y4
� Gr

@T
@x

� Ha2 @2W
@x2

cos2 cþ 2
@2W
@x@y

sin c cos cþ @2W
@y2

sin2 c

 !
ð31Þ

@W
@y

@T
@x

� @W
@x

@T
@y

¼ 1
Pr

@2T
@x2

þ @2T
@y2

 !
ð32Þ

with associated dimensionless boundary conditions

Wð0; yÞ ¼ 0;
@Wð0; yÞ

@x
¼ 0; Tð0; yÞ ¼ 1=2; 0 < y < 1 ð33a-cÞ

Wð1; yÞ ¼ 0;
@Wð1; yÞ

@x
¼ 0; Tð1; yÞ ¼ �1=2; 0 < y < 1

ð33d-fÞ

Wðx;0Þ ¼ 0;
@Wðx;0Þ

@y
¼ 0;

@Tðx;0Þ
@y

¼ 0; 0 < x < 1 ð33g-iÞ

Wðx;1Þ ¼ 0;
@Wðx;1Þ

@y
¼ 0;

@Tðx;1Þ
@y

¼ 0; 0 < x < 1 ð33j-lÞ

The MHD natural convection problem given by Eqs. (31)–(33)
can now be handled by the GITT.

3. Integral transform solution

By inspection of Eqs. (33), it is easy to verify that the boundary
conditions at the horizontal walls (y = 0 and y = 1) are all homoge-
neous; on the other hand, there is a non-homogeneous boundary
condition for the temperature at the vertical wall x = 0. In order
to improve the convergence of the eigenfunction expansion in
the presence of non-homogeneous boundary conditions, a
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common strategy is to split the solution into a filtered potential
and a filter, prior to integral transformation. However, here it is
possible to progress without filtering, eliminating the y indepen-
dent variable through integral transformation and leaving the
non-homogeneous boundary condition to be solved together with
the resulting system of ordinary differential equations for the
transformed potentials, as now demonstrated.

The GITT solution of the MHD natural convection problem com-
prises three steps. The first step is to choose an appropriate eigen-
value problem to provide the eigenvalues and eigenfunctions for
the proposed expansions. By inspection of the diffusive terms
appearing on Eqs. (31) and (32), the eigenvalue problems chosen
for the series expansions of W(x,y) and T(x,y) are, respectively,
given by:

d4Ui

dy4
� a4

i UiðyÞ ¼ 0; 0 < y < 1 ð34aÞ

Uið0Þ ¼ 0;
dUið0Þ
dy

¼ 0 ð34b; cÞ

Uið1Þ ¼ 0;
dUið1Þ
dy

¼ 0 ð34d; eÞ

and

d2Ci

dy2
þ b2

i CiðyÞ ¼ 0; 0 < y < 1 ð35aÞ

dCið0Þ
dy

¼ 0;
dCið1Þ
dy

¼ 0 ð35b; cÞ

The eigenfunctions, eigenvalues, orthogonality properties and
norms for the two eigenvalue problems are analytically deter-
mined, as follows:

UiðyÞ ¼
cos½aiðy� 1=2Þ�

cosðai=2Þ � cosh½aiðy� 1=2Þ�
coshðai=2Þ ; for i ¼ 1;3;5; . . .

sin½aiðy� 1=2Þ�
sinðai=2Þ � sinh½aiðy� 1=2Þ�

sinhðai=2Þ ; for i ¼ 2;4;6; . . .

8>>><
>>>:

ð36a;bÞ

tanðai=2Þ ¼
� tanhðai=2Þ; for i ¼ 1;3;5; . . .
tanhðai=2Þ; for i ¼ 2;4;6; . . .

�
ð36c;dÞ

Z 1

0
UiðyÞUjðyÞdy ¼ 0; for i– j

NUi
; for i ¼ j

(
; NUi

¼
Z 1

0
U2

i ðyÞdy ¼ 1

ð36e-gÞ
and

CiðyÞ ¼ cosðbiyÞ; bi ¼ ði� 1Þp; for i ¼ 1;2;3; . . . ð37a;bÞ
Z 1

0
CiðyÞCjðyÞdy ¼ 0; for i–j

NCi
; for i ¼ j

(
;

NCi
¼
Z 1

0
C2

i ðyÞdy ¼ 1; if i ¼ 1
1=2; if i > 1

� ð37c-fÞ

where Ui and Ci are the eigenfunctions, ai and bi are the eigenval-
ues, and NUi and NCi are the norms for the streamfunction and tem-
perature fields, respectively. The eigenvalues ai are the positive real
roots of the transcendental equations (36c,d). These positive real
roots may be readily computed with the aid of an appropriate
numerical algorithm for nonlinear algebraic equations. The normal-
ization integrals were computed within the Mathematica symbolic
manipulation platform [42] and the closed-form expressions
obtained are given by Eqs. (36g) and (37e,f).

The second step comprises the definition of the integral trans-
form pair. The eigenfunctions Ui(y) and Ci(y) are orthogonal func-
tions that satisfy the orthogonality properties given by Eqs. (36e,f)
and (37c,d), respectively. Hence, we determine the following inte-
gral transform pairs for the potentials W(x,y) and T(x,y), respec-
tively, as

�WiðxÞ ¼
Z 1

0

~UiðyÞWðx; yÞdy; transform ð38aÞ

Wðx; yÞ ¼
X1
i¼1

~UiðyÞ �WiðxÞ; inverse ð38bÞ

and

TiðxÞ ¼
Z 1

0

~CiðyÞTðx; yÞdy; transform ð39aÞ

Tðx; yÞ ¼
X1
i¼1

~CiðyÞTiðxÞ; inverse ð39bÞ

The modified eigenfunctions ~UiðyÞ and ~CiðyÞ are normalized and
related to the original ones as:

~UiðyÞ � UiðyÞ=N1=2
Ui

¼ Ui and

~CiðyÞ ¼ CiðyÞ=N1=2
Ci

¼ CiðyÞ; if i ¼ 1ffiffiffi
2

p
CiðyÞ; if i > 1

(
ð40a-dÞ

The third step comprises the integral transformation of Eqs. (31)
and (32). For this purpose, Eqs. (31) and (32), followed by the
boundary conditions in the x direction given by Eqs. (33a-f), are
multiplied respectively by ~UiðyÞ and ~CiðyÞ and integrated over
the domain [0,1] in the y direction, and the inverse formulae given
by Eqs. (38b) and (39b) are employed. After the usual manipula-
tions, the following nonlinear coupled ordinary differential system
is obtained for the computation of the transformed potentials �WiðxÞ
and TiðxÞ, respectively:

d4 �Wi

dx4
¼ �a4

i
�WiðxÞ þ Ha2 cos2 c

d2 �Wi

dx2

�
X1
j¼1

2Aij
d2 �Wj

dx2
� Ha2 sin2 cAij

�WjðxÞ þ 2 sin ccoscBij
d �Wj

dx

� �( )

�
X1
j¼1

X1
k¼1

Cijk
d �Wj

dx
�WkðxÞ þ Dijk

d �Wj

dx
d2 �Wk

dx2

"

�Eijk
�Wj

d �Wk

dx
� Dijk

d3 �Wj

dx3
�WkðxÞ

#
þ Gr

X1
j¼1

Fij
dTj

dx
ð41aÞ

d2Ti

dx2
¼ b2

i TiðxÞ � Pr
X1
j¼1

X1
k¼1

GijkTjðxÞd
�Wk

dx
�Hijk

dTj

dx
�WkðxÞ

" #
ð41bÞ

�Wið0Þ ¼ 0;
d �Wið0Þ
dx

¼ 0; Tið0Þ ¼ �f i=2 ð41c-eÞ

�Wið1Þ ¼ 0;
d �Wið1Þ
dx

¼ 0; Tið1Þ ¼ ��f i=2 ð41f-hÞ

where

Aij ¼
Z 1

0

~UiðyÞ~U00
j ðyÞdy; Bij ¼

Z 1

0

~UiðyÞ~U0
jðyÞdy;

Cijk ¼
Z 1

0

~UiðyÞ~UjðyÞ~U000
k ðyÞdy ð42a-cÞ
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Dijk ¼
Z 1

0

~UiðyÞ~UjðyÞ~U0
kðyÞdy;

Eijk ¼
Z 1

0

~UiðyÞ~U0
jðyÞ~U00

kðyÞdy; Fij ¼
Z 1

0

~UiðyÞ~CjðyÞdy ð42d-fÞ

Gijk ¼
Z 1

0

~CiðyÞ~C0
jðyÞ~UkðyÞdy;

Hijk ¼
Z 1

0

~CiðyÞ~CjðyÞ~U0
kðyÞdy; �f i ¼

Z 1

0

~CiðyÞdy ð42g-iÞ

The infinite series expansions for W(x,y) and T(x,y) are hence-
forth truncated to a finite number of terms, denoted respectively
by NW and NT. The above integral coefficients appearing in the cou-
pled system of ordinary differential equations for the transformed
potentials, �WiðxÞ and TiðxÞ, are evaluated by symbolic computation
within the Mathematica platform [42], and closed-form expres-
sions are obtained.

The coupled system of ordinary differential equations has been
numerically solved with two Fortran subroutines, namely: (i) sub-
routine BVPFD from the IMSL Library [43] and (ii) Fortran subrou-
tine BVP_SOLVER developed by Shampine et al. [44] and freely
available for download at http://cs.stmarys.ca/~muir/BVP_SOL-
VER_Webpage.shtml. A dedicated Fortran 90 code has been devel-
oped to perform the computations described in the next section.
The relative error target adopted for the two previously men-
tioned Fortran subroutines was set to 10�4. The final results
achieved by the two subroutines were critically compared, and
it was verified that they were coincident to the fourth significant
digit, thus confirming the automatic relative error control in both
algorithms.

Once the transformed potentials are obtained, heat transfer
parameters such as Nusselt numbers may be computed. Therefore,
the local and average Nusselt numbers are defined as

Nu ¼ uðx; yÞTðx; yÞ � @Tðx; yÞ
@x

¼ @Wðx; yÞ
@y

Tðx; yÞ � @Tðx; yÞ
@x

; Nux ¼
Z 1

0
Nudy ð43a;bÞ

After introducing the inverse formulae given by Eqs. (38b) and
(39b), it results

Nu ¼
X1
i¼1

X1
j¼1

~U0
iðyÞ~CjðyÞ �WiðxÞTjðxÞ �

X1
i¼1

~CiðyÞ dTiðxÞ
dx

;

Nux ¼
X1
i¼1

X1
j¼1

Iij �WiðxÞTjðxÞ �
X1
i¼1

�f i
dTiðxÞ
dx

; Iij ¼
Z 1

0

~U0
iðyÞ~CjðyÞdy

ð44a-cÞ

The local and average Nusselt numbers at the hot vertical wall
are simply computed by substituting x = 0 into Eqs. (44).

4. Results and discussions

In order to evaluate the accuracy and robustness of the pro-
posed eigenfunction expansion approach, several test cases were
analyzed with the developed Fortran code. The numerical results
obtained for the velocity and temperature distributions, as well
as for both local and average Nusselt numbers at the vertical walls
are reported, discussed and, whenever possible, critically com-
pared against previous ones reported in [7–10,14].

The computations were performed for two Grashof and three
Rayleigh numbers, Gr = {104,106} and Ra = {104,105,106}, for
Hartmann numbers Ha 2 [0,300], for two Prandtl numbers,
Pr = {0.71,0.733}, and for magnetic field inclination angles
c 2 [�90�, 90�] in order to allow for comparisons with the
literature. The above Grashof and Rayleigh numbers cover widely

Table 1
Convergence behavior of the GITT solution for the values of dimensionless streamfunction and temperature at nine different positions, and for the average Nusselt number at the
hot vertical wall (Nux¼0) for Gr = 104, Ha = 0 and 50, c = 0� and Pr = 0.71.

NW/NT Ha = 0 W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 �0.3526 �1.381 �0.1787 �0.9444 �6.146 �0.9444 �0.1787 �1.381 �0.3526
20/20 �0.3520 �1.380 �0.1791 �0.9442 �6.146 �0.9442 �0.1791 �1.380 �0.3520
30/30 �0.3521 �1.380 �0.1791 �0.9442 �6.146 �0.9442 �0.1791 �1.380 �0.3521
40/40 �0.3521 �1.380 �0.1791 �0.9442 �6.146 �0.9442 �0.1791 �1.380 �0.3521

NW/NT T(x,y) + 1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 0.6963 0.7905 0.9388 0.2284 0.5000 0.7716 0.06121 0.2095 0.3037 2.010
20/20 0.6956 0.7903 0.9387 0.2282 0.5000 0.7718 0.06129 0.2097 0.3044 2.011
30/30 0.6956 0.7903 0.9387 0.2282 0.5000 0.7718 0.06128 0.2097 0.3044 2.011
40/40 0.6956 0.7903 0.9387 0.2282 0.5000 0.7718 0.06128 0.2097 0.3044 2.011

NW/NT Ha = 50 W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 �0.07250 �0.1436 �0.06060 �0.1896 �0.4700 �0.1896 �0.06060 �0.1436 �0.07250
20/20 �0.07228 �0.1430 �0.06050 �0.1894 �0.4693 �0.1894 �0.06050 �0.1430 �0.07228
30/30 �0.07233 �0.1431 �0.06053 �0.1895 �0.4693 �0.1895 �0.06053 �0.1431 �0.07233
40/40 �0.07232 �0.1431 �0.06053 �0.1895 �0.4693 �0.1895 �0.06053 �0.1431 �0.07232

NW/NT T(x,y) + 1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 0.8784 0.8988 0.9168 0.4391 0.5000 0.5609 0.08318 0.1012 0.1217 1.019
20/20 0.8783 0.8988 0.9168 0.4390 0.5000 0.5610 0.08316 0.1012 0.1217 1.019
30/30 0.8783 0.8988 0.9168 0.4390 0.5000 0.5610 0.08317 0.1012 0.1217 1.019
40/40 0.8783 0.8988 0.9168 0.4390 0.5000 0.5610 0.08317 0.1012 0.1217 1.019

508 C.F.T. Matt et al. / International Journal of Heat and Mass Transfer 113 (2017) 502–513

http://cs.stmarys.ca/<ucode type=
http://cs.stmarys.ca/<ucode type=


different intensities of buoyancy-driven flows. It is important to
mention that the reference temperature was taken as the mean
between the temperatures of the hot and cold walls, i.e., Tref⁄ = (TH-
⁄ + TC

⁄)/2. Therefore, in order to allow for comparisons with previ-
ous works in the literature, the dimensionless temperature is
computed by adding 1/2, i.e., T(x,y) + 1/2. The Hartmann numbers
analyzed cover the range from extremely low to high magnetic
field strengths.

4.1. Convergence

In the first set of results, the convergence of the GITT solution
is analyzed for the values of the dimensionless streamfunction
and temperature at nine different positions (xr,ys), with
xr 2 {0.1,0.5,0.9} and ys 2 {0.1,0.5,0.9}, and for the average Nusselt
number at the hot vertical wall, Nux¼0. Table 1 reports the numer-
ical results obtained for Gr = 104, c = 0� and Pr = 0.71, for increasing
truncation orders NW and NT, respectively, for Ha = 0 and Ha = 50.
Table 2 reports similar results for a two orders-of-magnitude
higher Grashof number (Gr = 106). Truncation orders are increased
up to 50 for the higher Grashof number in order to achieve conver-
gence to at least three significant digits. The results reported in the
previous tables for the streamfunction and temperature were com-
puted for equal truncation orders NW and NT. Hence, it is not pos-
sible from the outputs in Tables 1 and 2 to identify which potential
(streamfunction or temperature) has the strongest influence in the
rate of convergence of the GITT solution. In this context, Table 3
provides a convergence analysis, again for dimensionless stream-
function and temperature at the same nine different positions,
for Gr = 106, Ha = 100, c = 0� and Pr = 0.71, for two cases: (a) for a
fixed truncation order in the streamfunction expansion, NW = 50,

but with increasing truncation order in the temperature expansion,
NT; (b) for a fixed truncation order in the temperature expansion,
NT = 50, but with increasing truncation order in the streamfunction
expansion, NW. From the analysis of Tables 1–3, we may draw the
following important conclusions. Firstly, for the lower Grashof
number, convergence to three significant digits is achieved already
with NW = NT = 20. Secondly, for the higher Grashof number, con-
vergence to three significant digits is attained with higher trunca-
tion orders (NW = NT = 30), as expected, because larger temperature
and velocity gradients are induced by larger buoyancy forces.
Thirdly, as the Hartmann number increases, higher truncation
orders are required to achieve the same accuracy (three significant
digits). Fourthly, the convergence for the temperature field is
noticeably faster than that for the streamfunction. Fifthly, conver-
gence is slower for the points (0.1,0.1) and (0.9,0.9) which are clo-
ser to regions with larger temperature and velocity gradients. It
can be concluded from the convergence analysis in Table 3 that
the computational cost can be further reduced by considering dif-
ferent truncation orders for the two fields, since smaller truncation
orders might be sufficient for full convergence, as can observed
from fixing one of them. Based on the results reported in Table 3,
it is also concluded that for a fixed high truncation order NW accu-
rate results are achieved for both streamfunction and temperature
with lower truncation orders NT. On the other hand, for a fixed NT,
accurate results for the streamfunction are achieved with high
truncation orders NW, although much lower truncation orders NW
are required for both the temperature and average Nusselt number
at the hot wall. To sum up, the temperature potential requires a
lower truncation order than the streamfunction; therefore, we
may conclude that the latter is mainly responsible for the delay
in the convergence speed of the GITT solution. Finally, in order to

Table 2
Convergence behavior of the GITT solution for the values of dimensionless streamfunction and temperature at nine different positions, and for the average Nusselt number at the
hot vertical wall (Nux¼0) for Gr = 106, Ha = 0 and 50, c = 0� and Pr = 0.71.

NW/NT Ha = 0 W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 �5.515 �18.89 �7.944 �4.103 �21.04 �4.103 �7.944 �18.89 �5.515
20/20 �5.738 �18.95 �7.974 �4.076 �21.19 �4.076 �7.974 �18.95 �5.738
30/30 �5.749 �18.96 �7.996 �4.078 �21.20 �4.078 �7.996 �18.96 �5.749
40/40 �5.750 �18.96 �7.994 �4.078 �21.20 �4.078 �7.994 �18.96 �5.750
50/50 �5.750 �18.96 �7.995 �4.078 �21.20 �4.078 �7.995 �18.96 �5.750

NW/NT T(x,y)+1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 0.2346 0.4896 0.8244 0.1802 0.5000 0.8198 0.1756 0.5104 0.7655 7.976
20/20 0.2311 0.4875 0.8203 0.1790 0.5000 0.8210 0.1797 0.5125 0.7690 8.013
30/30 0.2313 0.4876 0.8200 0.1790 0.5000 0.8210 0.1800 0.5124 0.7688 8.015
40/40 0.2312 0.4876 0.8201 0.1790 0.5000 0.8210 0.1800 0.5124 0.7688 8.016
50/50 0.2312 0.4876 0.8200 0.1790 0.5000 0.8210 0.1800 0.5124 0.7688 8.016

NW/NT Ha = 50 W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 �4.877 �8.818 �2.385 �4.505 �13.04 �4.505 �2.385 �8.818 �4.877
20/20 �4.908 �8.789 �2.383 �4.520 �13.06 �4.520 �2.383 �8.789 �4.908
30/30 �4.921 �8.793 �2.386 �4.522 �13.06 �4.522 �2.386 �8.793 �4.921
40/40 �4.920 �8.793 �2.386 �4.522 �13.06 �4.522 �2.386 �8.793 �4.920
50/50 �4.921 �8.793 �2.386 �4.522 �13.06 �4.522 �2.386 �8.793 �4.921

NW/NT T(x,y)+1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/10 0.2594 0.6478 0.9356 0.1619 0.5000 0.8381 0.06442 0.3522 0.7406 5.451
20/20 0.2578 0.6471 0.9351 0.1615 0.5000 0.8385 0.06488 0.3529 0.7422 5.465
30/30 0.2586 0.6473 0.9352 0.1616 0.5000 0.8385 0.06481 0.3527 0.7414 5.466
40/40 0.2585 0.6473 0.9352 0.1616 0.5000 0.8385 0.06485 0.3527 0.7415 5.466
50/50 0.2585 0.6473 0.9352 0.1616 0.5000 0.8385 0.06483 0.3527 0.7415 5.466
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guarantee convergence to at least three significant digits through-
out, the numerical results reported in what follows were computed
with fixed truncation orders NW,NT = 40.

4.2. Verification

In the second set of results, verification was pursued for the x-
component of the velocity field, u(x,y), at the cavity midplane along
the vertical axis of symmetry (x = 0.5), and for the temperature
field T(x,y) at the cavity midplane along the horizontal axis of sym-
metry (y = 0.5). The GITT results are compared against those
reported by Al-Najem et al. [10] and by Colaço et al. [14]. Figs. 2
and 3 show the velocity and temperature profiles for an external
magnetic field, transversal to gravity acceleration (c = 0�),
Pr = 0.71, for Ha 2 {0,10,15,25,50,100} and for Gr = 104 and
Gr = 106, respectively. Owing to different definitions adopted for
the dimensionless velocity, the current GITT results for u(x,y) are
divided by Gr1/2 in order to compare with the results reported in
Ref. [10].2 From the analysis of Figs. 2 and 3 we may conclude that
the current GITT results for both velocity and temperature profiles
match to the graph scale the FVM and RBF results, respectively
reported by Al-Najem et al. [10] and by Colaço et al. [14].

In the third set of results, we compare the GITT results obtained
for the average Nusselt number at the hot vertical wall with those

reported in Refs. [10,14], for Gr 2 {104,106}, Pr = 0.71, c = 0� and for
different values of the Hartmann number, Ha. Table 4 reports the
GITT results for Nux¼0 and the ones computed in Refs. [10,14].
For the lowest Grashof number, we verify that the current GITT
results are in excellent agreement with those reported in Ref.
[10]. The largest relative deviation is approximately 2.4% for
Ha = 25. The GITT results are also in good agreement with the
RBF results (with 15 � 15 centers) reported by Colaço et al. [14];
the largest relative deviation reaching 5.05% for Ha = 50. Larger
deviations are noticed when comparing with the FVM results (with
41 � 41 control volumes) also reported by Colaço et al. [14], reach-
ing 8% and 11.6%, respectively, for Ha = 10 and Ha = 25. For the
highest Grashof number, the GITT results for the average Nusselt
number are lower than those reported in Ref. [10]. The relative
deviation increases from 8.5% to 11.2% when the Hartmann num-
ber increases from 0 to 100. Smaller deviations are verified when
the GITT results are compared with the FVM results (with
41 � 41 control volumes) reported in Ref. [14], although the largest
deviation reaches 24.7% for Ha = 100. When compared to the RBF
results (with 25 � 25 centers) reported in Ref. [14], the largest
deviation achieved is 14.2% for Ha = 25. In synthesis, larger
deviations have been verified for the largest Grashof number and
for larger Hartmann numbers, although larger differences are
encountered for Gr = 104 when comparing the current GITT results
with those obtained in Ref. [14] with FVM.

In the fourth set of results, the GITT results for the average Nus-
selt number Nux¼0 are compared against those of Pirmohammadi
et al. [8], which reported in tabular form numerical results for
the average Nusselt number at the hot vertical wall as a function
of Rayleigh (Ra � GrPr) and Hartmann numbers, for a fixed value

Table 3
Convergence behavior of the GITT solution for the values of dimensionless streamfunction and temperature at nine different positions, and for the average Nusselt number at the
hot vertical wall (Nux¼0) for Gr = 106, Ha = 100, c = 0� and Pr = 0.71: (a) for a fixed truncation order NW = 50 and variable NT; (b) for a fixed truncation order NT = 50 and variable
NW.

NW/NT W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

(a) Fixed NW and variable NT

50/10 �3.097 �3.416 �1.133 �3.224 �7.188 �3.224 �1.133 �3.416 �3.097
50/20 �3.093 �3.417 �1.133 �3.224 �7.188 �3.224 �1.133 �3.417 �3.093
50/30 �3.094 �3.417 �1.133 �3.224 �7.189 �3.224 �1.133 �3.417 �3.094
50/40 �3.094 �3.417 �1.133 �3.224 �7.189 �3.224 �1.133 �3.417 �3.094
50/50 �3.094 �3.417 �1.133 �3.224 �7.189 �3.224 �1.133 �3.417 �3.094

NW/NT T(x,y) + 1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

50/10 0.4114 0.7897 0.9525 0.1772 0.5000 0.8228 0.04752 0.2103 0.5886 3.213
50/20 0.4086 0.7891 0.9523 0.1767 0.5000 0.8233 0.04773 0.2109 0.5914 3.213
50/30 0.4096 0.7894 0.9524 0.1768 0.5000 0.8233 0.04757 0.2106 0.5904 3.214
50/40 0.4094 0.7893 0.9524 0.1768 0.5000 0.8233 0.04763 0.2107 0.5906 3.214
50/50 0.4095 0.7893 0.9524 0.1768 0.5000 0.8233 0.04760 0.2107 0.5905 3.214

NW/NT W(x,y)

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

(b) Fixed NT and variable NW
10/50 �3.095 �3.457 �1.131 �3.217 �7.203 �3.217 �1.131 �3.457 �3.095
20/50 �3.086 �3.414 �1.133 �3.223 �7.188 �3.223 �1.133 �3.414 �3.086
30/50 �3.095 �3.418 �1.134 �3.224 �7.189 �3.224 �1.134 �3.418 �3.095
40/50 �3.093 �3.417 �1.133 �3.224 �7.189 �3.224 �1.133 �3.417 �3.093
50/50 �3.094 �3.417 �1.133 �3.224 �7.189 �3.224 �1.133 �3.417 �3.094

NW/NT T(x,y)+1/2 Nux¼0

x = 0.1; y = 0.1 x = 0.1; y = 0.5 x = 0.1; y = 0.9 x = 0.5; y = 0.1 x = 0.5; y = 0.5 x = 0.5; y = 0.9 x = 0.9; y = 0.1 x = 0.9; y = 0.5 x = 0.9; y = 0.9

10/50 0.3995 0.7887 0.9527 0.1765 0.5000 0.8235 0.04727 0.2113 0.6006 3.210
20/50 0.4101 0.7893 0.9524 0.1768 0.5000 0.8233 0.04762 0.2107 0.5899 3.213
30/50 0.4094 0.7893 0.9524 0.1768 0.5000 0.8233 0.04760 0.2107 0.5906 3.214
40/50 0.4095 0.7893 0.9524 0.1768 0.5000 0.8233 0.04760 0.2107 0.5905 3.214
50/50 0.4095 0.7893 0.9524 0.1768 0.5000 0.8233 0.04760 0.2107 0.5905 3.214

2 Al-Najem et al. [10] defined the dimensionless velocities U and V as
U = u⁄/(gbDT*L)1/2 and V = v⁄/(gbDT*L)1/2. Using our definitions for the
dimensionless independent and dependent variables, it is easy to demonstrate
that u = u⁄L/m and v = v⁄L/m. After algebraic manipulations, one may demonstrate that
u = U(gbDT*L3/m2)1/2 = UGr1/2 and v = V(gbDT*L3/m2)1/2 = VGr1/2.
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of the Prandtl number (Pr = 0.733). Those authors considered only
the case of magnetic field transversal to gravity acceleration (i.e.,
c = 0�). They solved the governing equations in the primitive vari-
ables formulation with the finite-volume method and the SIMPLER
algorithm to treat the velocity-pressure coupling. The GITT results
and those reported in Ref. [8] are summarized in Table 5. We may
conclude that the GITT results for the average Nusselt number,
although always smaller, are in good agreement with those
reported by Pirmohammadi et al. [8]. The relative deviation gener-
ally increases as the Hartmann number increases. For Ra = 104, the
minimum and maximum relative deviations are, respectively,
�1.67% and �2.08%. When the Rayleigh number increases one
order of magnitude (Ra = 105), the relative deviation reaches 9.4%
and 11.9% for the two larger Hartmann numbers. For the largest
Rayleigh number, the relative deviation does not exceed 2.0% for
the first three Hartmann numbers, notwithstanding it reaches
19.3% for Ha = 300.

In the final set of verification results, we compare the current
GITT results with those reported in Han [13], which solved the
MHD problem addressed here in a tilted cavity with an imposed
magnetic field always parallel to gravity acceleration. The govern-
ing equations in the primitive variables formulation were solved
with the finite-volume method with the SIMPLER algorithm. The
particular case of a tilt angle equal to 90� in Ref. [13] is equivalent
to our problem with c set to �90� (see Fig. 1).3 For the particular

case in which Gr = 106, Ha = 0 and Pr = 0.733, the computed GITT
result for the average Nusselt number at the hot wall is 8.103
whereas the results reported in Ref. [13] are 8.13 and 8.10, respec-
tively for a non-uniform (51 � 51) and uniform (201 � 201) meshes
of control volumes. We may thus conclude that the current GITT
results are also in good agreement with the results reported in the
literature for the particular case in which the magnetic field is ori-
ented parallel to gravity acceleration.

Fig. 4, which provides both verification and validation of the
present simulation, shows the comparison for the dimensionless
y-direction velocity component, v(x,0.5) along the cavity midplane
y = 0.5.4 The solid line represents the GITT results, while the open
circles represent the numerical predictions in Ref. [13] and the solid
triangles denote the experimental data measured by Linthorst et al.
[45] by means of laser doppler velocimetry. The numerical y-
direction velocities shown in Fig. 4 are computed using the same
dimensionless governing parameters estimated in the experiments
performed by Linthorst et al. [45], namely, Ra = 1.3 � 105, Ha = 0
and Pr = 0.733. One may conclude that the present GITT results agree
quite well with both Han’s numerical predictions and the experi-
mental measurements reported in Ref. [45]. Notice that for the plot
shown in Fig. 4, the hot wall is located at x = 1. The GITT results

Fig. 2. Velocity and temperature distributions along cavity midplane vertical and
horizontal axes of symmetry for Gr = 104 and c = 0�, u(0.5,y) and T(x,0.5) + 1/2. The
present GITT results for the dimensionless velocity u were divided by Gr1/2 to
compare with those reported by Al-Najem et al. [10] and by Colaço et al. [14] (RBF
with 15 � 15 centers).

Fig. 3. Velocity and temperature distributions along cavity midplane vertical and
horizontal axes of symmetry for Gr = 106 and c = 0�, u(0.5,y) and T(x,0.5) + 1/2. The
present GITT results for the dimensionless velocity u were divided by Gr1/2 to
compare with those reported by Al-Najem et al. [10] and by Colaço et al. [14] (RBF
with 25 � 25 centers).

3 It should be noticed that in Ref. [13] the cold and hot walls are at the boundaries
x = 0 and x = 1, respectively. Hence, the main heat flow direction is from right to left,
contrary to our case.

4 Han [13] defined the dimensionless velocities U and V as U = u*/v0
⁄ and V = v*/v0

⁄

where the reference velocity v0⁄ is given by the ratio a/L. Based on our definition of
dimensionless velocities, algebraic manipulations yield the following relationships
u = U/Pr and v = V/Pr. Hence, the GITT results for the dimensionless velocity v(x,0.5)
shown in Fig. 4 are multiplied by the Prandtl number to compare with Han’s results
[13].
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reproduce quite well the measured increasing-decreasing behavior
of the y-direction velocity component near the hot wall.

5. Conclusions

A hybrid numerical-analytical solution has been obtained,
based on eigenfunction expansions, for the coupled system of non-
linear partial differential equations governing the 2-D magnetohy-
drodynamic flow with heat transfer inside a square cavity,
differentially heated at the sidewalls. The governing equations
were rewritten in dimensionless form using the streamfunction-
only formulation. After integral transformation, the coupled sys-
tem of nonlinear partial differential equations was reduced to a
denumerable system of nonlinear fourth-order ordinary differen-
tial equations. Its numerical solution was obtained through robust
and well-tested Fortran subroutines, with automatic relative error

control, after truncating the series expansions for both streamfunc-
tion and temperature to a finite number of terms.

The convergence behavior of the hybrid solution for both the
streamfunction and temperature fields at prescribed positions
inside the cavity, as well as for the average Nusselt number at
the hot wall, was carefully investigated in order to demonstrate
the robustness of the proposed eigenfunction expansions. The GITT
results reported here are fully converged to at least three signifi-
cant digits in all cases considered. Four significant digits are fully
converged for the average Nusselt number, which is the quantity
of practical relevance in thermal engineering. Afterwards, a
detailed verification and validation analysis was performed by
comparing the current results obtained for fluid velocities and
temperature, as well as for the average Nusselt number, against
previous results (numerical and experimental) reported in the lit-
erature. Quite good agreement was achieved in most situations,
with the GITT results for the average Nusselt number in general
lower than those computed by other authors with FVM and RBF
schemes. Relative deviations in general increased for higher Gra-
shof and Hartmann numbers.

The proposed eigenfunction expansion approach may be
extended to more involved magneto-hydrodynamic natural con-
vection problems to investigate, in future works, the effects of var-
ious parameters on heat transfer rate, including cavity inclination
angle and aspect ratio, internal volumetric heat generation rate,
spatial variation of temperature and/or heat flux at the boundaries,
spatial variation of thermophysical properties, and irregular
geometries.
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