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ABSTRACT 
A convergence enhancement technique known as the integral balance 
approach is employed in combination with the Generalized Integral 
Transform Technique (GITT) for solving diffusion or convection-diffusion 
problems in physical domains with subregions of markedly different 
materials properties and/or spatial scales. GITT is employed in the solution 
of the differential eigenvalue problem with space variable coefficients, by 
adopting simpler auxiliary eigenproblems for the eigenfunction representa-
tion. The examples provided deal with heat conduction in heterogeneous 
media and forced convection in a microchannel embedded in a substrate. 
The convergence characteristics of the proposed novel solution are critically 
compared against the conventional approach through integral transforms 
without the integral balance enhancement, with the aid of fully converged 
results from the available exact solutions. 
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1. Introduction 

A number of applications in heat and fluid flow offer challenging mathematical formulations in 
diffusion and convection-diffusion with abrupt and/or multiscale spatial and physical properties 
variations in the associated partial differential equations’ coefficients. These governing parameters’ 
behavior may originate, for instance, from natural or tailored physical properties’ variability in 
heterogeneous media and from abrupt material transitions or multiscale spatial dimensions in 
multiregion geometries, such as in multilayered media or conjugated problems [1–6]. 

A few different approaches have been proposed to effectively deal with such spatial variations 
throughout computational domains [3–11], including attempts at benefiting from semi-analytical 
solution implementations, towards more robust and cost-effective simulations, for instance aimed 
at computationally intensive tasks, such as in optimization, inverse problem analysis, and simulation 
under uncertainty. 

One such hybrid numerical-analytical approach, known as the Generalized Integral Transform 
Technique (GITT) [12–18], has been employed in the solution of diffusion problems in hetero-
geneous media with spatial variations in thermophysical properties [3–6]. Particularly in connection 
with conjugated heat transfer problems [5–6], a strategy coined as the single domain formulation has 
been introduced to rewrite a multiregion problem into one single region with space variable thermo-
physical properties and source terms, so as to allow for a single integral transformation operation of 
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the whole domain. This strategy is appropriate to dealing with complex configurations and irregular 
regions, as recently illustrated [5–6], and has a potential for further extension aiming at automatic 
implementations of the integral transform procedure, as illustrated through the so-called Unified 
Integral Transforms (UNIT) algorithm [19–21]. 

In this approach, the resulting convection-diffusion equations with space variable coefficients, for 
each associated potential, are solved by integral transforms through eigenvalue problems that carry the 
information on the variable coefficients. The eigenvalue problems are themselves handled by the GITT 
[13, 22, 23], transforming the differential eigenvalue problems into algebraic eigensystems which can 
be solved very efficiently by widely available subroutines and computational platforms [24]. However, 
it has been observed in recent developments that the eigenfunction expansions proposed in the sol-
ution of eigenvalue problems with abrupt and/or multiscale variations on the governing coefficients 
can experience a slower convergence rate. Therefore, it is of interest to implement a convergence 
enhancement technique to allow for computational savings on GITT application in such cases. 

Thus, based on previous developments on convergence enhancement of eigenfunction expansions 
for diffusion problems [25, 26], by employing an integral balance analytical procedure the GITT 
solution of eigenvalue problems [13, 22] is here revisited so as to derive analytical expansions to 
accelerate the convergence of eigenfunctions expansion, explicitly accounting for the space variable 
coefficients of the original problem formulation, within the resulting functional form of the redefined 
inverse formulae for the eigenfunctions. Starting with successive integration of the original eigenvalue 
problem from the boundaries to any point within the domain, analytical expressions for the eigen-
function and its derivative are obtained, which depend on the boundary values of both the eigenfunc-
tion and the associated derivative, but explicitly account for the space variable coefficients in the 
eigenfunction representation. Then, by making use of the available boundary conditions, the bound-
ary quantities are eliminated from the newly derived expressions of the eigenfunction, as well as of 
its derivative. Working expressions are provided for a general one-dimensional Sturm–Liouville 
problem, and the approach is tested for both a functionally graded material (FGM) heat conduction 
problem, which involves markedly different orders of magnitude in the thermophysical properties, 
and a conjugated heat transfer problem, which involves abrupt material transitions and markedly 
different spatial scales. 

Nomenclature 

d(x) Dissipation operator coefficient, Eq. (1.a) 
f(x) Initial condition, Eq. (1.a) 
k(x) Diffusion operator coefficient, Eq. (1.a) 
M Truncation order of the algebraic eigenvalue 

problem 
Ni Normalization integral of the eigenvalue 

problem, Eq. (7) 
P(x, t, T) Nonlinear source term appearing in Eq. (1.a) 
T(x, t) Potential 
TFðx; t;T�Þ Filtering solution, Eq. (2). 
t Time variable 
u Dependent variable in FGM application,  

Eq. (25) 
U Dimensionless fluid velocity in conjugated 

problem 
x Space variable (one-dimensional problem) 
x Position vector 
w(x) Transient operator coefficient, Eq. (1.a) 
α(x), β(x) Coefficients for the boundary conditions,  

Eq. (1.c) 

α0 Reference thermal diffusivity in FGM 
application, Eq. (23.c) 

β Coefficient in FGM application, Eq. (23.a,b) 
λn Eigenvalues of problem (11) 
mi Eigenvalues of problem (5) 
ψi Eigenfunctions of eigenvalue problem (5) 
Ω Eigenfunction of the auxiliary problem,  

Eq. (11) 
ϕ(x, t, T) Nonlinear source term appearing in  

Eq. (1.c) 

Subscripts & Superscripts: 
i, n Order of eigen quantities 
– Integral transform 
∼ Normalized eigenfunction 
* Filtered temperature field 
s Quantity corresponding to the solid region 

(channel walls) 
f Quantity corresponding to the fluid flow 

region   
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2. Formal solution 

The formal solution of a general convection-diffusion problem is first presented in brief, readily 
available from different sources [12–18], so as to lead to the eigenvalue problem that will be 
handled through the convergence enhancement technique here proposed. The following nonlinear 
convection-diffusion problem is then analyzed: 

wðxÞ
qTðx; tÞ

qt
¼ r � ½kðxÞrTðx; tÞ� � dðxÞTðx; tÞ þ Pðx; t;TÞ; x 2 V; t > 0 ð1:aÞ

subjected to the following initial and boundary conditions: 

Tðx; 0Þ ¼ f ðxÞ; x 2 V ð1:bÞ

aðxÞTðx; tÞ þ bðxÞkðxÞ
qTðx; tÞ

qn
¼ /ðx; t;TÞ; x 2 S ð1:cÞ

Any sort of nonlinearities in the equation and boundary condition coefficients can be recast into 
the corresponding source terms, P(x, t, T) and ϕ(x, t, T), without loss of generality. In this sense, the 
linear equation (w, k, d) and boundary condition (α, β) coefficients are essentially characteristic func-
tions that are chosen so as to intrinsically formulate the eigenvalue problem that is adopted as a basis 
for the eigenfunction expansion solution that now follows. 

Before applying the integral transform methodology, it is usually recommended to reduce the impor-
tance of the source terms in the original equation and the boundary conditions given by Eq. (1a,c), since 
these are largely responsible for an eventually slower convergence behavior. A filtering scheme is then 
applied in a general form that includes both linear and implicit nonlinear filters, given as 

Tðx; tÞ ¼ T�ðx; tÞ þ TFðx; t;T�Þ ð2Þ

where TFðx; t;T�Þ is the proposed filter and T�ðx; tÞ is the resulting filtered potential to be determined. 
After introducing Eq. (2) into Eq. (1) 

wðxÞ
qT�ðx; tÞ

qt
¼ r � ½kðxÞrT�ðx; tÞ� � dðxÞT�ðx; tÞ þ P�ðx; t;T�Þ; x 2 V; t > 0 ð3aÞ

T�ðx; 0Þ ¼ f �ðxÞ; x 2 V ð3bÞ

aðxÞT�ðx; tÞ þ bðxÞkðxÞ
qT�ðx; tÞ

qn
¼ /�ðx; t;T�Þ; x 2 S ð3cÞ

where the filtered functions are written as 

f �ðxÞ � f ðxÞ � TFðx; 0;T�ðx; 0ÞÞ ð4:aÞ

P�ðx; t;T�Þ ¼ Pðx; t;TÞ � wðxÞ
qTFðx; t;T�Þ

qt
þr � ½kðxÞrTFðx; t;T�Þ� � dðxÞTFðx; t;T�Þ ð4:bÞ

/�ðx; t;T�Þ ¼ /ðx; t;TÞ � aðxÞTFðx; t;T�Þ � bðxÞkðxÞ
qTFðx; t;T�Þ

qn
; x 2 S ð4:cÞ

According to Eq. (2), either a linear explicit filter, TF(x, t), or a nonlinear implicit filter, TFðx; t;T�Þ, 
can be chosen, with inherently more simple expressions, in the choice of a linear filter, for the filtered 
initial conditions and source terms obtained from Eq. (4). In any case, it is in general desirable that the 
chosen filter at least satisfies Eq. (1.c), so as to homogenize the boundary conditions, thus leading to 
/�ðx; t;T�Þ ¼ 0. Nevertheless, a posteriori convergence enhancement techniques [25, 26] can still be 
employed when a boundary condition source term remains in the unfiltered or filtered problem. 

Following the steps in the integral transform approach [12–17], we define an auxiliary eigenvalue 
problem, which shall provide the basis for the eigenfunction expansions, as 

r � ½kðxÞrwiðxÞ� þ ½m2
i wðxÞ � dðxÞ�wiðxÞ ¼ 0; x 2 V ð5:aÞ
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aðxÞwiðxÞ þ bðxÞkðxÞ
qwiðxÞ
qn

¼ 0; x 2 S ð5:bÞ

The eigenvalue problem given by Eq. (5) allows for the definition of the integral transform pair 
below: 

�TiðtÞ ¼
Z

V

wðxÞwiðxÞT�ðx; tÞdV; transform ð6:aÞ

T�ðx; tÞ ¼
X1

i¼1

1
Ni

wiðxÞ�TiðtÞ; inverse ð6:bÞ

and the normalization integral 

Ni ¼

Z

v
wðxÞw2

i ðxÞdV ð7Þ

After application of the integral transformation procedure, through the operator 
R

v wiðxÞð:ÞdV 
over Eq. (3.a), and 

R

v wðxÞwiðxÞð:ÞdV over Eq. (3.b), the resulting ODE system for the transformed 
potentials, TiðtÞ, is written as 

d�TiðtÞ
dt
þ m2

i
�TiðtÞ ¼ �giðt; �TÞ; t > 0; i ¼ 1; 2 ð8:aÞ

with initial conditions 
�Tið0Þ ¼ �fi ð8:bÞ

where 

�giðt; �TÞ ¼
Z

v
wiðxÞ P�ðx; t;T�ÞdV þ

Z

S
/�ðx; t;T�Þ

wiðxÞ � kðxÞ qwi
qn

aðxÞ þ bðxÞ

 !

dS ð8:cÞ

�fi ¼
Z

v
wðxÞwiðxÞf �ðxÞdV ð8:dÞ

�T ¼ �T1ðtÞ; �T2ðtÞ; :::f g
T

ð8:eÞ

System (8) is then numerically solved through well-established initial value problem solvers, 
readily available in scientific subroutine libraries, or directly as a built-in function in mixed 
symbolic-numerical platforms, such as the function NDSolve of the Mathematica system [24], which 
implements automatic relative error control schemes. After truncation to a sufficiently large finite 
truncation order N, the desired hybrid numerical-analytical solution is then reconstructed as 

Tðx; tÞ ¼
XN

i¼1

1
Ni

wiðxÞ�TiðtÞ þ TFðx; t;T�Þ ð9Þ

It should be recalled that the filter problem, in the case of an implicit filtering strategy for 
nonlinear problems, has to be solved simultaneously with the transformed system, Eq. (8). 

3. Eigenvalue problem solution 

The eigenvalue problem that provides the basis for the eigenfunction expansion can be efficiently 
solved through the GITT itself, as proposed in [13, 22] and successfully employed in different appli-
cations. The idea is to employ the generalized integral transform technique formalism to reduce the 
eigenvalue problem described by partial differential equations into standard algebraic eigenvalue 
problems, which can be solved by existing routines for matrix eigensystem analysis. Therefore, the 
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eigenfuctions of the original auxiliary problem can be expressed by eigenfunction expansions based 
on a simpler auxiliary eigenvalue problem, for which exact analytic solutions are available. 

The solution of problem (5) is thus proposed as an eigenfunction expansion: 

wiðxÞ ¼
X1

n¼1

~XnðxÞ�wi;n; inverse ð10:aÞ

�wi;n ¼

Z

V

ŵðxÞwiðxÞ~XnðxÞdV; transform ð10:bÞ

where the normalized auxiliary eigenfunction and its norms are 

~XnðxÞ ¼
XnðxÞ
ffiffiffiffiffiffiffiffi
NXn
p ; with NXn ¼

Z

V

ŵðxÞX2
nðxÞdV ð10:c; dÞ

in terms of the simpler auxiliary eigenvalue problem given as 

r:k̂ðxÞrXnðxÞ þ ðk2
nŵðxÞ � d̂ðxÞÞXnðxÞ ¼ 0; x 2 V ð11:aÞ

with boundary conditions 

aðxÞXnðxÞ þ bðxÞk̂ðxÞ
qXnðxÞ
qn

¼ 0; x 2 S ð11:bÞ

where the coefficients, ŵðxÞ; k̂ðxÞ; and d̂ðxÞ; are simpler forms of the equation coefficients chosen so 
as to allow for an analytical solution of the auxiliary problem. Thus, the solution of problem (11), 
which needs to be known in terms of the eigenfunctions Ωn(x) and related eigenvalues kn, offers a 
basis for the eigenfunction expansion of the original eigenvalue problem (5). Equation (5a) is now 
operated on with

R

V
~XiðxÞ �ð ÞdV , to yield the transformed algebraic system: 

ðAþ CÞ �w
� �

¼ m2B �w
� �

ð12:aÞ

with the elements of the M � M matrices given by 

Aij ¼

Z

S

~XiðxÞ � k̂ðxÞ q
~XiðxÞ
qn

aðxÞ þ bðxÞ
bðxÞ kðxÞ � k̂ðxÞ

� � q~XjðxÞ
qn

" #

dS

�

Z

S

kðxÞ � k̂ðxÞ
� �

~XiðxÞ
q~XjðxÞ
qn

dSþ

þ

Z

V

kðxÞ � k̂ðxÞ
� �

r~XiðxÞ � r~XjðxÞdV þ
Z

V

dðxÞ � d̂ðxÞ
� �

~XiðxÞ~XjðxÞdV

ð12:bÞ

Cij ¼ k2
i dij ð12:cÞ

Bij ¼

Z

V

wðxÞ~XiðxÞ~XjðxÞdV ð12:dÞ

where δij is the Kronecker delta. 
Therefore, the eigenvalue problem given by Eq. (5) is reduced to the standard algebraic eigenvalue 

problem given by Eq. (12), which can be solved with existing software for matrix eigensystem analysis, 
yielding the eigenvalues μ, whereas the corresponding calculated eigenvectors from this numerical 
solution, �wi, are to be used in the inversion formula, given by Eq. (10.a), to find the desired eigen-
function. By increasing the number of terms in the truncated expansion, M, the eigenfunctions are 
obtained to within the user prescribed accuracy. 
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The one-dimensional version of the problem given by Eq. (5.a,b) is reduced to 

d
dx

kxðxÞ
dXðxÞ

dx

� �

þ ½c2wxðxÞ � dxðxÞ�XðxÞ ¼ 0; x0 � x � x1 ð13:aÞ

ax;0XðxÞ � bx;0kxðxÞ
dXðxÞ

dx
¼ 0; x ¼ x0 ð13:bÞ

ax;1XðxÞ þ bx;1kxðxÞ
dXðxÞ

dx
¼ 0; x ¼ x1 ð13:cÞ

for which the elements of the M x M matrices in Eq. (12.a) are simplified to 

Aij ¼ �
~Xiðx0Þ þ k̂xðx0Þ~X

0
iðx0Þ

ax;0 þ bx;0
bx;0ðx0Þ kxðx0Þ � k̂xðx0Þ

� �
~X0jðx0Þþ

þ
~Xiðx1Þ � k̂xðx1Þ~X

0
iðx1Þ

ax;1 þ bx;1
bx;1ðx1Þ kxðx1Þ � k̂xðx1Þ

� �
~X0jðx1Þþ

þ kxðx0Þ � k̂xðx0Þ
� �

~Xiðx0Þ~X
0
jðx0Þ � kxðx1Þ � k̂xðx1Þ

� �
~Xiðx1Þ~X

0
jðx1Þþ

þ

Zx1

x0

kxðxÞ � k̂xðxÞ
� �

~X0iðxÞ~X
0
jðxÞdxþ

Zx1

x0

dxðxÞ � d̂xðxÞ
� �

~XiðxÞ~XjðxÞdx

ð14:aÞ

Cij ¼ k2
i dij ð14:bÞ

Bij ¼

Zx1

x0

wxðxÞ~XiðxÞ~XjðxÞdx ð14:dÞ

For an improved convergence of the eigenfunction expansion for the original potential, Eq. (6.b), it 
is of interest to include as much information as possible of the coefficients’ spatial behavior in the 
eigenvalue problem, Eq. (5). This is particularly important when multiple spatial scales and/or very 
abrupt variations of the coefficients need to be handled. However, when dealing with the GITT sol-
ution of this eigenvalue problem with markedly variable spatial coefficients, it is not always possible to 
employ an auxiliary eigenvalue problem that incorporates even part of this information, as in Eq. (11), 
since it may not be solvable in analytic explicit form. Therefore, in many cases it is necessary to 
choose very simple non-informative auxiliary coefficients, ŵðxÞ; k̂ðxÞ; and d̂ðxÞ; which may lead to 
slowly converging expansions for the original eigenfunctions, Eq. (10.a). In such cases, an integral 
balance procedure [25, 26] can be particularly beneficial in accelerating the convergence of such 
eigenfunction expansions by analytically rewriting Eq. (10.a), while explicitly accounting for the space 
variable coefficients local variation. 

The integral balance procedure employed is a convergence acceleration technique [15, 25, 26] that 
is here aimed at obtaining eigenfunction expansions of improved convergence behavior for both the 
eigenfunction and its derivatives, through integration over the spatial domain, thus benefiting from 
the better convergence characteristics of the integrals of eigenfunction expansions. It consists of the 
double integration of the original equation that governs the potential for which the convergence 
improvement is being sought, in this case, the eigenvalue problem itself, Eq. (13.a) for the one- 
dimensional formulation to be illustrated. Through a single integration of the original equation, an 
improved expression for the eigenfunction derivative is obtained, and a second integration then offers 
an improved relation for computation of the eigenfunction itself. However, the problem boundary 
conditions need to be accounted for, so that the eigenfunctions and respective derivatives at the 
boundaries can be eliminated. 

NUMERICAL HEAT TRANSFER, PART A 497 



The first step is thus the integration of Eq. (13.a) with 
R x

x0
ð:Þdx to find 

dXðxÞ
dx
¼

1
kxðxÞ

kxðx0Þ
dXðxÞ

dx

�
�
�
�

x0

�
1

kxðxÞ
c2 Iwx0ðxÞ þ

1
kxðxÞ

Idx0ðxÞ ð15:aÞ

where 

Iwx0ðxÞ ¼
Z x

x0

wxðx0ÞXðx0Þdx0; Idx0ðxÞ ¼
Z x

x0

dxðx0ÞXðx0Þdx0 ð15:b; cÞ

A second integration over Eq. (15.a) is then performed with 
R x1

x ð:Þdx to yield 

XðxÞ ¼ Xðx1Þ � kxðx0Þ
dXðxÞ

dx

�
�
�
�

x0

Ikx1ðxÞ þ c2 Iwkx1ðxÞ � Idkx1ðxÞ ð16:aÞ

where 

Ikx1ðxÞ ¼
Z x1

x

1
kxðx0Þ

dx0; Iwkx1ðxÞ ¼
Z x1

x

1
kxðx0Þ

Iwx0ðx
0Þdx0;

Idkx1ðxÞ ¼
Z x1

x

1
kxðx0Þ

Idx0ðx
0Þdx0

ð16:b � dÞ

A similar procedure could be implemented by starting from the integration of Eq. (13.a) with 
R x1

x ð:Þdx to find 

dXðxÞ
dx
¼

1
kxðxÞ

kxðx1Þ
dXðxÞ

dx

�
�
�
�

x1

þ
1

kxðxÞ
c2 Iwx1ðxÞ �

1
kxðxÞ

Idx1ðxÞ ð17:aÞ

where 

Iwx1ðxÞ ¼
Z x1

x
wxðx0ÞXðx0Þdx0; Idx1ðxÞ ¼

Z x1

x
dxðx0ÞXðx0Þdx0 ð17:b; cÞ

A second integration over Eq. (17.a) is now performed with 
R x

x0
ð:Þdx to yield 

XðxÞ ¼ Xðx0Þ þ kxðx1Þ
dXðxÞ

dx

�
�
�
�

x1

Ikx0ðxÞ þ c2 Iwkx0ðxÞ � Idkx0ðxÞ ð18:aÞ

where 

Ikx0ðxÞ ¼
Z x

x0

1
kxðx0Þ

dx0; Iwkx0ðxÞ ¼
Z x

x0

1
kxðx0Þ

Iwx1ðx
0Þdx0;

Idkx0ðxÞ ¼
Z x

x0

1
kxðx0Þ

Idx1ðx
0Þdx0

ð18:b � dÞ

Either Eq. (15.a) or (17.a) can be used as alternative expressions for the eigenfunction derivatives, 
while Eq. (16.a) or (18.a) can be adopted for computing the eigenfunctions, once the boundary con-
ditions are employed to eliminate the values of the eigenfunctions and derivatives at the boundaries. 
Therefore, writing Eq. (15.a) for x ¼ x1 and Eq. (16.a) for x ¼ x0, the following two equations are 
obtained: 

kxðx1Þ
dXðxÞ

dx

�
�
�
�

x1

¼ kxðx0Þ
dXðxÞ

dx

�
�
�
�

x0

� c2 Iwx0ðx1Þ þ Idx0ðx1Þ ð19:aÞ

Xðx0Þ ¼ Xðx1Þ � kxðx0Þ
dXðxÞ

dx

�
�
�
�

x0

Ikx1ðx0Þ þ c2 Iwkx1ðx0Þ � Idkx1ðx0Þ ð19:aÞ
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These two relations, together with the boundary conditions, Eq. (13.b,c), provide four equations 
for determination of the boundary quantities, Xðx0Þ; Xðx1Þ;

dXðxÞ
dx

�
�
�

x0
;

dXðxÞ
dx

�
�
�
x1

, which can be readily 

solved through symbolic computation in the more general situation of third kind boundary 
conditions, to yield 

Xðx0Þ ¼ �
b0 b1 Idx0ðx1Þ � c2Iwx0ðx1Þð Þ þ a1 Idkx1ðx0Þ � c2Iwkx1ðx0Þð Þ½ �

a0b1 þ a1 b0 þ a0Ikx1ðx0Þð Þ
ð20:aÞ

Xðx1Þ ¼

b1
a0Idkx1ðx0Þ � b0 þ a0Ikx1ðx0Þð Þ

Idx0ðx1Þ � c2Iwx0ðx1Þð Þ � c2a0Iwkx1ðx0Þ

� �

a0b1 þ a1 b0 þ a0Ikx1ðx0Þð Þ
ð20:bÞ

dX
dx

�
�
�
�
x0

¼ �
a0 b1 Idx0ðx1Þ � c2Iwx0ðx1Þð Þ þ a1 Idkx1ðx0Þ � c2Iwkx1ðx0Þð Þ½ �

a0b1 þ a1 b0 þ a0Ikx1ðx0Þð Þ½ �kxðx0Þ
ð20:cÞ

dX
dx

�
�
�
�

x1

¼

a1
� a0Idkx1ðx0Þ þ b0 þ a0Ikx1ðx0Þð Þ

Idx0ðx1Þ � c2Iwx0ðx1Þð Þ þ c2a0Iwkx1ðx0Þ

� �

a0b1 þ a1 b0 þ a0Ikx1ðx0Þð Þ½ �kxðx1Þ
ð20:dÞ

Substituting Eq. (20) into Eqs. (15.a, 16.a) results in the following general expressions with 
enhanced convergence for the eigenfunctions and the corresponding derivatives, respectively: 

XðxÞ ¼ � Idkx1ðxÞ þ Iwkx1ðxÞc2þ

þ b1

Idkx1ðx0Þa0 � Idx0ðx1Þ Ikx1ðx0Þa0 þ b0ð Þ

þc2 � Iwkx1ðx0Þ þ Ikx1ðx0ÞIwx0ðx1Þa0 þ Iwx0ðx1Þb0ð Þ

Ikx1ðx0Þa0a1 þ a1b0 þ a0b1

2

6
6
4

3

7
7
5þ

þ
Ikx1ðxÞa0 Idkx1ðx0Þa1 � Iwkx1ðx0Þc

2a1 þ b1 Idx0ðx1Þ � Iwx0ðx1Þc
2ð Þ½ �

Ikx1ðx0Þa0a1 þ a1b0 þ a0b1

ð21:aÞ

dXðxÞ
dx
¼

1
kðxÞ

Idx0ðxÞ � Iwx0ðxÞc2þ

�

þ
� Idkx1ðx0Þa1 � Idx0ðx1Þb1 þ c2 Iwkx1ðx0Þa1 þ Iwx0ðx1Þb1ð Þ

Ikx1ðx0Þa0a1 þ a1b0 þ a0b1

� �� ð21:bÞ

which account for the local space variations of the equation and boundary condition coefficients. 
Alternatively, substituting Eq. (20) into Eqs. (17.a, 18.a) yields equivalent expressions. In the parti-
cular cases of either first or second kind boundary conditions, at one or both boundaries, the final 
expressions become even simpler. 

The expressions provided by Eq. (21) can then be employed back into the solution of the eigen-
value problem (13), following the integral transformation procedure above described, yielding the 
algebraic eigenvalue which provides the eigenvalues γ2 and the eigenvectors that can be readily 
substituted back in the inversion formula, Eq. (10.a). This procedure is further detailed in the next 
section for the two applications that illustrate this work. 

4. Applications 

In order to demonstrate the methodology here developed, two applications are selected. The chosen 
problems involve the analysis of two quite different situations. First, an example of variable coeffi-
cients with large but continuous scale changes is drawn from the literature related to the heat transfer 
analysis of FGM [3]. The other example is related to an abrupt variation of thermophysical properties, 
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typical of the transition between two different materials layers, at different length scales, as in 
conjugated heat transfer problems in microchannels [5]. 

4.1. Heat conduction in FGMs 

The related dimensionless energy equation with initial and boundary conditions for transient heat 
conduction across a slab of a FGM is written as [3] 

wðxÞ
qTðx; tÞ

qt
¼

q

qx
½kðxÞ

qTðx; tÞ
qx

�; 0 < x < 1; t > 0 ð22aÞ

with initial and boundary conditions 

Tðx; 0Þ ¼ f ðxÞ; 0 < x < 1 ð22bÞ
Tð0; tÞ ¼ 0; Tð1; tÞ ¼ 0; t > 0 ð22c; dÞ

where the thermophysical properties are assumed to vary exponentially in the form [3] 

kðxÞ ¼ k0e2bx; wðxÞ ¼ w0e2bx; a0 ¼
k0

w0
¼ const: ð23a � cÞ

This particular choice of functional forms leads to a problem formulation that allows for an exact 
solution via the classical integral transform method [27], yielding a benchmark solution for the 
variable coefficients case. Thus, after manipulating the coefficients within Eq. (22a), one finds 

1
a0

qTðx; tÞ
qt

¼
q2Tðx; tÞ

qx2 þ 2b
qTðx; tÞ

qx
; 0 < x < 1; t > 0 ð24Þ

In addition, a dependent variable transformation can recover the usual heat conduction equation 
form, as 

Tðx; tÞ ¼ uðx; tÞe� bðxþba0tÞ ð25Þ

Then, the problem for u(x, t) becomes 

1
a0

quðx; tÞ
qt

¼
q2uðx; tÞ

qx2 ; 0 < x < 1; t > 0 ð26:aÞ

with initial and boundary conditions: 

uðx; 0Þ ¼ f �ðxÞ ¼ f ðxÞebx; 0 < x < 1 ð26:bÞ
uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t > 0 ð26:c; dÞ

This first application was solved for extreme values of the parameter β, with the initial condition 
given by 

f ðxÞ ¼
1 � e2bð1� xÞ

1 � e2b
ð27Þ

which corresponds to the steady-state solution for the case of prescribed temperatures T(0, t) ¼ 1 and 
T(1, t) ¼ 0. Problem (26) can then be directly solved in analytical form for verification purposes, 
employing the classical integral transform method [27]. 

The preferred eigenvalue problem for the solution of problem (22) through the GITT is given by 

d
dx

kðxÞ
dXðxÞ

dx

� �

þ c2wðxÞXðxÞ ¼ 0 ð28:aÞ

Xð0Þ ¼ 0; Xð1Þ ¼ 0 ð28:b; cÞ
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Then, the expressions for the eigenfunctions and its derivative, as computed from the integral 
balance approach, given by Eq. (21.a,b) are simplified to 

XðxÞ ¼ Iwkx1ðxÞc2 �
Ikx1ðxÞIwkx1ð0Þ

Ikx1ð0Þ
c2 ð29:aÞ

dXðxÞ
dx
¼

c2

kðxÞ
� Iwx0ðxÞ þ

Iwkx1ð0Þ
Ikx1ð0Þ

� �

ð29:bÞ

Substituting the corresponding expressions for Iwkx1(x) and Iwx0(x) and employing the inversion 
formula for the original eigenfunctions appearing on the right hand side of Eq. (29.a,b), one obtains 

XiðxÞ ¼ ci
2
X

n

�XinIBnðxÞ � ci
2 Ikx1ðxÞ

Ikx1ð0Þ

X

n

�XinIBnð0Þ ð30:aÞ

dXiðxÞ
dx

¼ �
ci

2

kðxÞ

X

n

�XinIAnðxÞ þ
ci

2

kðxÞIkx1ð0Þ

X

n

�XinIBnð0Þ ð30:bÞ

with IAn(x) and IBn(x) given by 

IAnðxÞ ¼
Zx

0

wðx0Þ~Xnðx0Þdx0 ð30:cÞ

IBnðxÞ ¼
Z1

x

1
kðx0Þ

IAnðx0Þdx0 ð30:dÞ

where the eigenfunctions Ω(x) are derived from a simpler auxiliary eigenvalue problem with known 
solution. For this application we have chosen the simplest possible eigenvalue problem with constant 
unitary coefficients: 

d2XðxÞ
dx2 þ k2XðxÞ ¼ 0 ð31:aÞ

Xð0Þ ¼ 0; Xð1Þ ¼ 0 ð31:b; cÞ

with 

~XnðxÞ ¼
XnðxÞ
N1=2

Xn
; NXn ¼

Z1

0

X2
nðxÞdX ð32:a; bÞ

The integral transformation of the eigenvalue problem (28) can be achieved by operating on 
Eq. (28.a) with 

R 1
0 �ð Þ

~XmðxÞdx to obtain 

Z1

0

d
dx

kðxÞ
dXiðxÞ

dx

� �

~XmðxÞdxþ c2
Z1

0

wðxÞXiðxÞ~XmðxÞdx ¼ 0 ð33Þ

employing integration by parts on the first term, and making use of the boundary conditions given by 
Eq. (28.b,c), it can be written more conveniently as 

�

Z1

0

kðxÞ
dXiðxÞ

dx
d~XmðxÞ

dx
dxþ c2

Z1

0

wðxÞXiðxÞ~XmðxÞdx ¼ 0 ð34Þ

and now substituting the expressions for the eigenfunctions and their derivatives with improved 
convergence, given by Eq. (30.a,b), into Eq. (34), and truncating the expansions to a finite order 
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M, results in the following algebraic eigenvalue problem: 

A � c2B
� �

�X ¼ 0 ð35:aÞ

where 

A ¼ A1 � A2; B ¼ B2 � B1 ð35:b; cÞ

with the matrices coefficients given by 

A1n;m ¼

Z1

0

IAnðxÞ
d~XmðxÞ

dx
dx; A2n;m ¼

IBnð0Þ
Ikx1ð0Þ

Z1

0

d~XmðxÞ
dx

dx ð35:d; eÞ

B1n;m ¼

Z1

0

wðxÞIBnðxÞ~XmðxÞdx; B2n;m ¼
IBnð0Þ
Ikx1ð0Þ

Z1

0

Ikx1ðxÞwðxÞ~XmðxÞdx ð35:f ; gÞ

The algebraic problem (35) can be numerically solved to provide results for the eigenvalues γ2 and 
eigenvectors �Xin, upon truncation to a sufficiently large finite order M, and then employed in Eq. (30. 
a,b) to provide the desired eigenfunctions and their derivatives with improved convergence behavior. 
Once these eigenfunctions Xi(x) corresponding to eigenvalue problem (28) are made available, prob-
lem (22) becomes completely transformable and the solution for T(x, t) becomes straightforward [3]. 

4.2. Conjugated heat transfer with single domain formulation 

The second example is related to conjugated heat transfer in parallel plate microchannels, when the 
substrate material participates in the heat transfer process significantly [5], as schematically shown in 
Figure 1. We assume that the flow is dynamically developed and thermally developing. The formu-
lation of the conjugated problem as a single region model is proposed, accounting for heat transfer 
phenomena at both the fluid flow and the channel solid wall, by making use of coefficients repre-
sented as space variable functions where abrupt transitions occur at the fluid–solid wall interface. 
The conjugated problem is then given in dimensionless form by the following single domain 
formulation with space variable coefficients [5]: 

UðYÞ
qhðY;ZÞ

qZ
¼

q

qY
KðYÞ

qh

qY

� �

; 0 < Y < 1;Z > 0 ð36:aÞ

hðY;Z ¼ 0Þ ¼ hin ð36:bÞ
qh

qY

�
�
�
�

Y¼0
¼ 0; hðY ¼ 1;ZÞ ¼ hw ð36:c; dÞ

Figure 1. Geometry and coordinates system for conjugated heat transfer in a parallel plates microchannel [5].  
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where θin and θw are the dimensionless temperatures at the channel inlet (fluid and wall) and at the 
external face of the channel wall, respectively. The dimensionless space variable coefficients are given by 

UðYÞ ¼ Uf ðYÞ; if 0 < Y < Yi ¼ yi=yw
0; if Yi < Y < 1

�

ð36:eÞ

KðYÞ ¼ 1; if 0 < Y < Yi ¼ yi=yw
ks=kf ; if Yi < Y < 1

�

ð36:f Þ

Problem (36) has also been selected for illustration of the methodology, since a straightforward 
exact solution can be readily obtained. For this purpose, the heat transfer problem is then modeled 
as an internal convective problem for the fluid, coupled at the interface Y ¼Yi with the conduction 
problem for the solid wall. Thus, the problem for the fluid flow region becomes a Graetz type problem 
with third kind boundary condition: 

Uf ðYÞ
qhf ðY;ZÞ

qZ
¼

q2hf

qY2 ; 0 < Y < Yi;Z > 0 ð37:aÞ

hf ðY;Z ¼ 0Þ ¼ 0 ð37:bÞ
qhf

qY

�
�
�
�

Y¼0
¼ 0;

qhf

qY

�
�
�
�

Y¼Yi

þ
ks=kf

1 � Yi
hf ðYi;ZÞ ¼

ks=kf

1 � Yi
ð37:c; dÞ

Problem (37) has an exact analytical solution readily obtainable by the Classical Integral Transform 
Technique [27] and then the channel wall region temperature distribution can be directly obtained 
from its linear profile across the transversal coordinate. The exact solution for the fluid flow region 
is obtained from the solution of the following eigenvalue problem, formulated by directly applying 
separation of variables to the homogeneous version of problem (37): 

d2/ðYÞ
dY2 þ Uf ðYÞc2/ðYÞ ¼ 0 ð38:aÞ

d/

dY

�
�
�
�

Y¼0
¼ 0;

d/

dY

�
�
�
�

Y¼Yi

þ
ks=kf

1 � Yi
/ðYiÞ ¼ 0 ð38:b; cÞ

which allows for an analytical solution in terms of hypergeometric functions that can be readily 
obtained using the routine DSolve of the Mathematica platform [24]. These results are used as a 
benchmark solution for the comparisons that follow. 

Handling problem (36) through GITT, as previously described in the general solution method-
ology, yields the following preferred choice of eigenvalue problem: 

d
dx

kðxÞ
dXðxÞ

dx

� �

þ c2wðxÞXðxÞ ¼ 0 ð39:aÞ

dX
dx

�
�
�
�

x¼0
¼ 0; Xð1Þ ¼ 0 ð39:b; cÞ

where the variable x in Eqs. (39.a–c) above corresponds to the transversal direction, Y, in problem 
(36). For this application, the expressions for the eigenfunction and its derivative, as computed from 
the integral balance scheme given by Eq. (21.a,b), are simplified to 

XðxÞ ¼ Iwkx1ðxÞc2 ð40:aÞ
dXðxÞ

dx
¼ �

c2

kðxÞ
Iwx0ðxÞ ð40:bÞ

Substituting the corresponding expressions for Iwkx1(x) and Iwx0(x) and employing the inversion 
formula for the original eigenfunctions appearing on the rhs of Eq. (40.a, b), one obtains 

XiðxÞ ¼ ci
2
X

n

�XinIBnðxÞ ð41:aÞ
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dXiðxÞ
dx

¼ �
ci

2

kðxÞ

X

n

�XinIAnðxÞ ð41:bÞ

with IAn(x) and IBn(x) already defined in Eq. (30c, d), with the eigenfunctions Ω(x) calculated from a 
simpler auxiliary eigenvalue problem, which in this second illustration is again chosen as the simplest 
possible one: 

d2XðxÞ
dx2 þ k2XðxÞ ¼ 0 ð42:aÞ

dXðxÞ
dx

�
�
�
�

x¼0
¼ 0; Xð1Þ ¼ 0 ð42:b; cÞ

with 

~XnðxÞ ¼
XnðxÞ
N1=2

Xn

; NXn ¼

Z1

0

X2
nðxÞdX ð42:d; eÞ

The integral transformation of the eigenvalue problem (39) can be achieved by operating on Eq. (39a) 
with 

R 1
0 �ð Þ

~XmðxÞdx to obtain, after integrating by parts the first term: 

�

Z1

0

kðxÞ
dXiðxÞ

dx
d~XmðxÞ

dx
dxþ c2

Z1

0

wðxÞXiðxÞ~XmðxÞdx ¼ 0 ð43Þ

and now substituting the expressions for the eigenfunctions and their derivatives with improved con-
vergence, given by Eq. (41.a,b), into Eq. (43), and truncating the expansions to a finite order M, yields 
the following algebraic eigenvalue problem: 

A � c2B
� �

�X ¼ 0 ð44:aÞ

where 

A ¼ A1; B ¼ � B1 ð44:b; cÞ

with the matrices coefficients given by Eqs. (35.d) and (35.f). The algebraic problem (44) can be 
numerically solved to provide results for the eigenvalues γ2 and eigenvectors �Xin, upon truncation 
to a sufficiently large finite order M, and then employed in Eq. (41.a,b) to provide the desired eigen-
functions and their derivatives with improved convergence behavior. Once the eigenfunctions Xi(x) 
corresponding to eigenvalue problem (39) are made available, problem (35) becomes completely 
transformable and the solution becomes straightforward [5]. 

5. Results and discussion 

5.1. Heat conduction in FGMs 

The application related to transient heat conduction across a FGM layer has been previously solved 
through GITT in [3], for a range of the parameter β within [� 3, 3]. At the highest value in this inter-
val, β ¼ 3, the thermal conductivities at the two boundaries, k(1) and k(0), experience a ratio of about 
400. Here, a higher value of β ¼ 4 is considered, which leads to a ratio k(1)/k(0) of approximately 
3000, as can be seen in Figure 2. Therefore, FGM thermal conductivity would, for instance, vary from 
a dimensional thermal conductivity of 0.1 W/m°C at x ¼ 0, typical of insulating materials, up to a 
thermal conductivity of 300 W/m°C at x ¼ 1, typical of some highly conductive metallic materials. 

Besides the exact solution from the GITT solution using the traditional inverse formula for the 
eigenfunctions, the improved eigenfunction expansions obtained from the integral balance approach, 
as detailed in Section 4.1, were also computed for different truncation orders in both the eigenvalue 

504 R. M. COTTA ET AL. 



problem (M) and on the temperature expansion (N). In order to illustrate the improved behavior of 
the proposed eigenfunction expansions, we first present in Tables 1–3 the convergence of the 
dimensionless temperature at the position x ¼ 0.1 and time t ¼ 0.01, in the vicinity of the temperature 
maximum, for increasing values of the truncation order in the temperature expansion, from N ¼ 5 to 
40, which is sufficient to yield full convergence to the six significant digits here presented. Tables 1–3 
correspond to increasing values of the eigenvalue problem truncation order, respectively, M ¼ 40, 60, 
and 80. Besides the exact solution and the two alternative GITT solutions, through the usual inversion 
formulae and via the integral balance improvement, the relative deviations with respect to the exact 
solution are also presented. First, it can be verified that all three solutions are fully converged to six 
significant digits for the range of the temperature expansions truncation orders, N < 40. It can be 
observed that improvement in accuracy is provided by the increase in the eigenvalue problem trunc-
ation order (M), which reduces the error in the first 40 eigenvalues and eigenfunctions that are actu-
ally employed in the temperature convergence analysis here undertaken. The relative error in the 
traditional inversion formula drops from about 0.06%�at M ¼ 40 to about 0.0075%�at M ¼ 80, while 
the integral balance approach drops from 0.0007 to 0%�relative error for the same values of M. How-
ever, more impressive is the improvement allowed for by the integral balance approach in comparison 
to the plain inverse formula expansion. In general, two additional significant digits of precision are 
achieved with the use of the approach here proposed, with respect to the inverse formula, which is 
also fully analytical and readily applicable as here illustrated. This improved convergence behavior 
is even more evident in the calculation of dimensionless heat fluxes, or temperature derivatives, as 
shown in Table 4, for the same position and time and increasing truncation orders in the derivative 

Figure 2. Behavior of FGM dimensionless thermal conductivity [3].  

Table 1. Comparison of the exact solution, GITT via inverse formula, and GITT via integral balance for temperature convergence 
behavior at x ¼ 0.1 and t ¼ 0.01, with the eigenvalue problem truncation order of M ¼ 40 (heat conduction in FGM). 

N Exact GITT Inv. Form. Rel. Error Inv. Form. %� GITT Int. Balance Rel. Error Int. Balance %��

5  0.360318  0.360152  � 0.0460  0.360316  � 0.000555 
10  0.456293  0.456017  � 0.0604  0.456288  � 0.001096 
15  0.435866  0.435613  � 0.0582  0.435863  � 0.000688 
20  0.431986  0.431738  � 0.0574  0.431983  � 0.000694 
25  0.432331  0.432078  � 0.0586  0.432326  � 0.001157 
30  0.432365  0.432111  � 0.0587  0.432360  � 0.001156 
35  0.432363  0.432110  � 0.0587  0.432360  � 0.000694 
40  0.432363  0.432110  � 0.0587  0.432360  � 0.000694 
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expansions with a fixed value of M ¼ 80. As usual, the derivative expressions are in general slower in 
convergence than the original potentials, but through the integral balance approach we can observe 
that at least four significant digits of agreement with the exact solution could be achieved at this 
truncation order. One should note that the relative error obtained for the derivative employing the 
integral balance scheme is two orders of magnitude lower than that obtained through the traditional 
eigenfunction expansion approach. Finally, Table 5 provides an evaluation of the convergence beha-
vior of the temperature distribution by the two approaches throughout the spatial domain, from 
x ¼ 0.01 to 0.9, for fixed truncation orders of N ¼ 40 and M ¼ 60. Clearly, the integral balance pro-
cedure provides final results with four to five significant digits already fully converged and coincident 
with the exact solution. 

5.2. Conjugated heat transfer with single domain formulation 

This example comes from the original work that introduced the methodology of combining the single 
domain reformulation with GITT in solving conjugated problems [5]. The application is motivated by 
a channel of polyester resin (ks ¼ 0.16 W/mK) with water as the working fluid (kf ¼ 0.64 W/mK), and 
it is considered that the channel wall thickness is half of the channel height, so that the interface 
occurs at Yi ¼ 0.5. 

Table 6 shows the dimensionless temperatures at different transversal positions in the fluid flow 
region at Z ¼ 0.01, calculated by solving the eigenvalue problem with space variable coefficients with 
the traditional inverse formula, as presented in ref [5]., in comparison with the solution employing 
the integral balance expressions presented in this work. Both cases employed N ¼ 5 terms in the tem-
perature expansion, which is enough to achieve convergence of the five significant digits shown. The 
traditional solution scheme employed M ¼ 50 terms in the eigenvalue problem solution, only M ¼ 5 
terms for the integral balance scheme. The results are quite impressive, demonstrating that with a 
much lower truncation order in the eigenfunction expansion, the integral balance scheme achieved 
a much more accurate solution, with four to five digits of agreement with the exact solution provided. 

In order to provide more challenging examples, we considered two cases in which the channel wall 
thickness was 1:1000 with respect to channel height, and accurate local temperatures at both the fluid 

Table 3. Comparison of the exact solution, GITT via inverse formula, and GITT via integral balance for temperature convergence 
behavior at x ¼ 0.1 and t ¼ 0.01, with the eigenvalue problem truncation order of M ¼ 80 (heat conduction in FGM). 

N Exact GITT Inv. Form. Rel. Error Inv. Form. %� GITT Int. Balance Rel. Error Int. Balance %��

5  0.360318  0.360297  � 0.00572  0.360318  0.0 
10  0.456293  0.456259  � 0.00750  0.456293  0.0 
15  0.435866  0.435834  � 0.00749  0.435866  0.0 
20  0.431986  0.431954  � 0.00745  0.431986  0.0 
25  0.432331  0.432298  � 0.00754  0.432331  0.0 
30  0.432365  0.432332  � 0.00755  0.432364  � 0.000231 
35  0.432363  0.432331  � 0.00755  0.432363  0.0 
40  0.432363  0.432331  � 0.00755  0.432363  0.0   

Table 2. Comparison of the exact solution, GITT via inverse formula, and GITT via integral balance for temperature convergence 
behavior at x ¼ 0.1 and t ¼ 0.01, with the eigenvalue problem truncation order of M ¼ 60 (heat conduction in FGM). 

N Exact GITT Inv. Form. Rel. Error Inv. Form. %� GITT Int. Balance Rel. Error Int. Balance %��

5  0.360318  0.360269  � 0.0136  0.360318  0.0 
10  0.456293  0.456211  � 0.0179  0.456292  � 0.000219 
15  0.435866  0.435789  � 0.0177  0.435866  0.0 
20  0.431986  0.431910  � 0.0176  0.431986  0.0 
25  0.432331  0.432254  � 0.0178  0.432330  � 0.000231 
30  0.432365  0.432287  � 0.0178  0.432364  � 0.000231 
35  0.432363  0.432286  � 0.0178  0.432363  0.0 
40  0.432363  0.432286  � 0.0178  0.432363  0.0   
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Table 5. Comparison of the exact solution, GITT via inverse formula, and GITT via integral balance for temperature along 
coordinate x and t ¼ 0.01, with temperature expansion with N ¼ 40 and the eigenvalue problem truncation order of M ¼ 60 (heat 
conduction in FGM). 

x Exact GITT Inv. Form. GITT Int. Balance  

0.01  0.134336  0.133847  0.134327 
0.1  0.432363  0.432286  0.432363 
0.2  0.201625  0.201607  0.201625 
0.3  0.0904128  0.0904049  0.0904127 
0.4  0.0404403  0.0404360  0.0404402 
0.5  0.0179862  0.0179835  0.0179862 
0.6  0.00789693  0.00789506  0.0078969 
0.7  0.00336353  0.00336225  0.00336351 
0.8  0.00132654  0.00132573  0.00132653 
0.9  0.000411261  0.000410878  0.000411252   

Table 4. Comparison of the exact solution, GITT via inverse formula, and GITT via integral balance for temperature derivative 
convergence behavior at x ¼ 0.1 and t ¼ 0.01, with the eigenvalue problem truncation order of M ¼ 80 (heat conduction in FGM). 

N Exact GITT Inv. Form. Rel. Error Inv. Form. %� GITT Int. Balance Rel. Error Int. Balance %��

5  0.680294  0.678029  � 0.333  0.680289  � 0.000735 
10  � 2.03037  � 2.03430  0.193  � 2.030400  0.00148 
15  � 2.78191  � 2.78643  0.162  � 2.781950  0.00144 
20  � 2.58533  � 2.59013  0.186  � 2.585390  0.00232 
25  � 2.55610  � 2.56094  0.189  � 2.556160  0.00235 
30  � 2.55829  � 2.56313  0.189  � 2.558350  0.00234 
35  � 2.55844  � 2.56329  0.189  � 2.558500  0.00234 
40  � 2.55844  � 2.56328  0.189  � 2.558500  0.00234 

Table 6. Comparison of the exact solution, GITT via inverse formula with M ¼ 50, and GITT via integral balance with M ¼ 5 for 
dimensionless temperatures at different transversal positions at the fluid flow region, Z ¼ 0.01 (conjugated heat transfer). 

Y Exact sol. GITT Relative error GITT %� GITT Int. Balance Relative error Int. Balance %��

0.00  0.010413  0.010422  0.086  0.010413  0.0 
0.10  0.015230  0.015246  0.11  0.015230  0.0 
0.15  0.021439  0.021465  0.12  0.021439  0.0 
0.20  0.030396  0.030435  0.13  0.030396  0.0 
0.25  0.042192  0.042249  0.13  0.042192  0.0 
0.30  0.056776  0.056854  0.14  0.056777  0.0 
0.35  0.073900  0.074001  0.14  0.073901  0.0 
0.40  0.093122  0.093249  0.14  0.093123  0.0 
0.45  0.11384  0.11399  0.13  0.11384  0.0 
0.50  0.13534  0.13605  0.53  0.13534  0.0   

Table 7. Convergence of temperatures at the interface between the fluid flow region and the channel wall at Z ¼ 0.05 (water flow 
in the polyester resin channel). 

M GITT Rel. Error* GITT %� GITT Int. Balance Rel. Error* Int. Balance %��

5  0.04398  68.9  0.14133  0.100 
10  0.05200  63.2  0.14144  0.018 
15  0.06208  56.1  0.14146  0.005 
20  0.07392  47.8  0.14147  0.0 
40  0.11748  17.0   
60  0.12657  10.5   
80  0.12821  9.4   
100  0.13266  6.2   
120  0.13337  5.7   

*Calculated with respect to the exact solution: 0.14147.    
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Table 8. Comparison of the exact solution, GITT via inverse formula with M ¼ 120, and GITT via integral balance with M ¼ 20 for 
dimensionless temperatures at different transversal positions at the fluid flow region, Z ¼ 0.05 (water flow in the polyester resin 
channel). 

y Exact GITT Rel. Error GITT %� GITT Int. Balance Rel. Error Int. Balance %��

0.1  0.99561  0.99555  0.006  0.99561  0.0 
0.2  0.98775  0.98760  0.015  0.98775  0.0 
0.3  0.96852  0.96816  0.037  0.96852  0.0 
0.4  0.92938  0.92863  0.081  0.92938  0.0 
0.5  0.86123  0.85987  0.159  0.86123  0.0 
0.6  0.75857  0.75637  0.289  0.75857  0.0 
0.7  0.62266  0.61949  0.509  0.62266  0.0 
0.8  0.46149  0.45730  0.907  0.46149  0.0 
0.9  0.28613  0.28094  1.81  0.28613  0.0 
0.99  0.07215  0.07375  2.22  0.07215  0.0   

Figure 3. Comparison among transversal temperature profiles at different longitudinal positions obtained with the three solutions 
(exact, traditional scheme, and integral balance scheme) for conjugated heat transfer of water flow in polyester resin channel 
substrate: (a) full solid–fluid domain; (b) wall region.  
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and channel wall were sought. In the first case we considered the flow of water in a polyester resin 
channel, yielding ks/kf ¼ 0.25. The second case involved the flow of air (kf ¼ 0.0271 W/mK) in an 
acrylic channel (ks ¼ 0.2 W/mK), yielding ks/kf ¼ 7.38. 

For the case of water flow in the polyester resin channel, Table 7 presents the calculated tempera-
tures at the interface between the fluid flow region and the channel wall, typically the most critical 
position for convergence in the single domain formulation, at Z ¼ 0.05. The results presented are cal-
culated with N ¼ 5 terms in the temperature expansion, which is enough to achieve convergence of 
the five significant digits shown. The results are presented for increasing truncation orders M in the 
eigenfunction expansion, and the good convergence behavior achieved by the integral balance scheme 
is remarkable, yielding a fully converged result of five significant digits, in full agreement with the 
exact solution, with only M ¼ 20 terms, whereas the solution obtained through the traditional inverse 
formula is slowly converging, clearly not yet fully converged to within M ¼ 120 terms. 

Table 8 summarizes the results for different transversal positions at Z ¼ 0.05, obtained with M ¼ 20 
terms in the integral balance scheme and M ¼ 120 terms in the traditional scheme. The results 
confirm the good convergence behavior provided by the integral balance scheme at all positions. 
The traditional scheme provides reasonably good results at the fluid region, but the convergence is 
noticeably affected for increasing Y values, as the interface is approached. This conclusion is also 
reached by observing Figures 3a, b, which present the comparison among the transversal temperature 
profiles at different longitudinal positions obtained with the three solutions (exact, traditional 
scheme, and integral balance scheme). In Figure 3a the whole domain is presented, while in 
Figure 3b only the thin solid wall region is presented. It is clearly seen that the exact solution and 
the GITT with integral balance scheme are fully coincident with the graph scale, while the traditional 
GITT solution still shows some deviation from the exact solution at the wall region. 

Finally, the results of the last case (air flow in acrylic channel) are presented in Tables 9 and 10, and 
in Figures 4a, b. It is observed that the results obtained with the traditional scheme present a worse 
convergence behavior in comparison with the previous case, for the same truncation orders. This is 

Table 9. Convergence of temperatures at the interface between the fluid flow region and the channel wall at Z ¼ 0.05 (air flow in 
acrylic channel). 

M GITT Rel. Error* GITT %� GITT Int. Balance Rel. Error* Int. Balance %��

5  0.01835  245.3  0.0053170  0.041 
10  0.01183  122.6  0.0053151  0.006 
15  0.00904  70.1  0.0053149  0.002 
20  0.00766  44.2  0.0053148  0.0 
40  0.00670  26.1   
60  0.00623  17.2   
80  0.00596  12.2   
100  0.00590  11.0   
120  0.00575  8.1   

*Calculated with respect to the exact solution: 0.0053148.    

Table 10. Comparison of the exact solution, GITT via inverse formula withM ¼ 120, and GITT via integral balance with M ¼ 20 for 
dimensionless temperatures at different transversal positions at the fluid flow region, Z ¼ 0.05 (air flow in acrylic channel). 

Y Exact GITT Rel. Error GITT %� GITT Int. Balance Rel. Error Int. Balance %��

0.1  0.99405  0.99402  0.003  0.99405  0.0 
0.2  0.98376  0.98367  0.009  0.98376  0.0 
0.3  0.95912  0.95892  0.021  0.95912  0.0 
0.4  0.91013  0.90971  0.046  0.91013  0.0 
0.5  0.82689  0.82616  0.089  0.82689  0.0 
0.6  0.70449  0.70336  0.160  0.70449  0.0 
0.7  0.54622  0.54466  0.286  0.54622  0.0 
0.8  0.36249  0.36052  0.543  0.36249  0.0 
0.9  0.16597  0.16366  1.39  0.16597  0.0 
0.99  0.0027105  0.00285  5.21  0.0027105  0.0   
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probably due to the larger variation in the abrupt transition of the thermal conductivity (4:1 in the 
previous case and 1:7.38 in the current case). On the other hand, the results obtained with the integral 
balance scheme remain in full agreement with the exact solution, demonstrating the robustness of the 
approach in dealing with abrupt transitions and multiscale problems. 

6. Conclusions 

The integral balance approach, as applied to Sturm–Liouville problems, has been derived and 
employed in generating improved eigenfunction expressions for the integral transform solution of 
diffusion and convection-diffusion problems with space variable coefficients. The derived expressions 
are then used in the integral transformation of the eigenvalue problem with space variable 

Figure 4. Comparison among the transversal temperature profiles at different longitudinal positions obtained with the three 
solutions (exact, traditional scheme, and integral balance scheme) for conjugated heat transfer of air flow in acrylic channel 
substrate: (a) full solid–fluid domain; (b) wall region.  
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coefficients, generating the matrix coefficients in the algebraic eigenvalue problem, thus also improv-
ing the accuracy of eigenvalue computation. The proposed approach is aimed at improving the accu-
racy and convergence rates of eigenfunction expansions when multiscale variations of thermophysical 
properties and/or geometrical dimensions are present in the problem formulation. The derived 
expressions explicitly incorporate the space variable coefficients in the final eigenfunction relations, 
thus providing improved results for the local variations of the eigenfunctions. 
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