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Abstract
In this work we investigate the spectral signature of Navier–Stokes–Voigt
(NSV) viscoelastic fluid flows by employing numerical simulations of a singular
dyadic shell model. Our results clearly show that as the relaxation time is
increased above a threshold, the inertial range is reduced, conserving part of
the large-scale statistics. These results differ drastically from the two power-law
scenarios observed in a previous work, where the NSV model was studied via
Sabra shell model simulations instead. We also show that the additional elastic
term regularizes the singular dyadic model, which is the main reason behind
this reduction of degrees of freedom. The results of this work aim at proposing
the NSV regularization as a sub-grid model.

PACS numbers: 47.35.−i, 47.27.−i, 83.60.Df, 47.10.ad, 02.40.Xx
Mathematics Subject Classification: 35Q30, 35Q35, 76F20, 76F55

(Some figures may appear in colour only in the online journal)

1. Introduction

In spite of being the subject of intensive research for several decades, many details of the
statistical theory of turbulent flows remain elusive. One of the cornerstones of the theory,
developed by Kolmogorov in his groundbreaking works of the early 1940s, predicts that in a
certain range of length scales, where neither dissipation nor energy input are dominant, the
nth-order structure function of the velocity field of turbulent flows should obey the scaling law
Sn(r) ∼ Cεn/3rn/3, where ε is the mean energy dissipation rate and C is a universal constant.
However, experiments show that this law can be considered correct only for the moments
of orders 2 and 3, but incorrect for higher order. The true nature and ultimate causes of this
intermittent behavior are still subjects of great scientific disputes to this day; see [16] for
details.
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Large fluctuations of small-scale structures, mainly due to boundary effects, may be the
source of this deviation, as was first noticed by Landau, who challenged the universality
assumption, see [16, section 6.4]. It is important to remark that most of Kolmogorov’s
predictions in his landmark papers were based on purely dimensional arguments, i.e. the
Navier–Stokes (NS) equations played a very small role.

Different features of Kolmogorov theory were independently discovered by many other
scientists, including Lars Onsager, who after rederiving the Kárman–Howarth relation and
the Kolmogorov 4/5th law, proposed that weak solutions of Euler equations could develop
singularities in finite time, which can be the ultimate source for the power-law scaling of the
structure functions; see [11, 12] for more details. This is similar to the phenomenology of
Burgers’ equation, see [7, 16].

Debates about the universality assumption, the correct scaling of the structure functions
and the role played by singularities remain central topics in the fluid mechanics community.

Another consequence of K41 theory is the existence of a dissipative range of scales,
below the Kolmogorov dissipative length scale, where the effects of viscosity are dominant.
This range, despite carrying only a small fraction of the total kinetic energy of the flow,
represents the vast majority of scales involved in direct numerical simulations; see [30, 39].

The main objective of sub-grid models is to accurately reproduce the large-scale details
of turbulent flows without the need to compute too much of the dissipative range, which
is the main source of computational costs. This can be achieved in many ways, but they
essentially involve modeling the energy transfer between large and small scales through the
inertial nonlinear term; see [30, 39] for more details.

Understanding the intricate details of the interplay between the inertial range and the
dissipation range is crucial not only for numerical analysis purposes, but also for understanding
the still very mysterious physics of viscoelastic flows; see [33]. For example, the phenomenon
of drag reduction in viscoelastic fluids is one of the most studied topics in the fluid mechanics
community, and even after many years of scientific efforts, most of the details behind this
phenomenon are still elusive; see [35, 43, 47]. Study [43] is one which is phenomenologically
more connected to ours, since it proposes an explanation for the phenomena based on the
suppression of the energy cascade due to elastic interactions.

Recently, a related phenomenon still very poorly understood has attracted much attention
from the turbulence community. It is the elastic turbulence phenomenon arising from
viscoelastic flows, which displays many features of turbulence even for very small Reynolds
numbers; see [42] and references therein. This may have important applications for heat
transfer problems in micro-channels.

The complex behavior of this kind of flow is mainly due to the nonlinear interaction of
its inner polymeric structures and the solvent, and it leads to very complex and ingenuous
micro–macro models (see [10]) which are often very difficult to analyze either analytically or
numerically.

A long-time tradition of analyzing viscoelastic materials from a purely macroscopic point
of view comes from the days of Kelvin, Maxwell and Voigt; see [45, 46, 48]. It amounts to
the consideration of appropriate modifications of the Cauchy stress tensor, which ultimately
yields its viscoelastic nature. This way of modeling complex viscoelastic flows is certainly
very naive, but it does play an important role in grasping some of the fundamentals in this very
complex setting.

In this work, we give continuity to the study presented in [28], where it was proposed that
a viscoelastic macroscopic model, the Navier–Stokes–Voigt (NSV) equations, could be used
as a sub-grid model. Indeed, it is our belief that a large family of viscoelastic models, which
are based on timescale modifications, can be used as sub-grid models.
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One of the main advantages of the NSV model compared to other regularization and
sub-grid scale models, such as hyperviscosity or α-models, is the fact that it does not require
any artificial boundary conditions, which cause difficulties and possibly exhibit non-physical
behavior in applications, such as non-physical boundary layer; see, e.g., [14].

In [28], the spectral behavior of the NSV equations was investigated via shell model
simulations. Let us briefly comment on the NSV model. In the purely macroscopic approach,
the main rheological properties of a viscoelastic flow are defined by its constitutive law and,
in particular, by its Cauchy stress tensor. For Kelvin–Voigt materials, it is given by

σ = −pI + 2μD + 2β
∂D
∂t

,

where pI is the normal stress, related to the incompressibility condition, D is the symmetric
component of the velocity gradient and ∂D

∂t is the stretch tensor. The coefficient μ is the shear
viscosity and β is the shear modulus of the elastic component.

Considering this class of stress tensor for incompressible fluids, and substituting it into
the linear momentum balance, gives rise to the equations of motion for the NSV fluids:⎧⎪⎪⎨

⎪⎪⎩
∂t (u − α2�u) − ν�u + u · ∇u + ∇p = f, x ∈ 	,

∇ · u = 0, x ∈ 	,

u(x, 0) = u0(x), x ∈ 	,

u(x, t) = 0 x ∈ ∂	, or u(x, t) is periodic;
(1)

in the domain 	 (	 = [0, L]3 in the periodic case), where α � 0 is a given length-scale
parameter and ν > 0 is a given kinematic viscosity, such that α2/ν is the relaxation time of
the viscoelastic fluid. Of course, if we set α = 0, we recover the incompressible NS equations.

We will discuss some of the properties of the NSV equations in the following section,
but we would now like to point out the recent work [27] in which the authors test the Voigt
regularization in benchmark problems of the two-dimensional NS and magnetohydrodynamic
(MHD) equations. Their results show the efficacy of this regularization in numerical
simulations performed in a coarse grid in domains with physical boundaries, building up
more evidence that this model can be used as a sub-grid model.

Numerical simulations of the full three-dimensional NSV equations, however, are certainly
an extremely demanding task for very high Reynolds number flows, just like for the NS
equations.

In order to get an insight into the turbulence problem, several simplified models have been
developed in the past. One of the most studied models is the shell model of turbulence, which
is a phenomenological model inspired by a severe truncation and averaging of the equations of
motion in Fourier space. Shell models of turbulence have a long history in the fluid mechanics
community since the pioneering works of Obukhov; see [16]. These models possess conserved
quantities compatible with the unforced 3D incompressible Euler equations, and simulations
are usually performed with forcing concentrated in the low modes, with a quadratic viscous
dissipation inspired by the NS equations. The main weakness of these models is the absence
of geometrical information in the real space, but, nevertheless, it is very useful to test simple
ideas concerning the statistical spectral dynamics of turbulent flows.

In [28], the statistical properties of the Voigt regularization have been studied by the
second author and collaborators, where the effects of the Voigt regularization to the Sabra
shell model of turbulence were described. The equations of motion of the Sabra shell model
of turbulence were introduced in [36], and they have the following form:

dun

dt
= i(akn+1un+2u∗

n+1 + bknun+1u∗
n−1 − ckn−1un−1un−2) − νk2

nun + fn, (2)
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Figure 1. Log–log plot of the S2 structure function of the Sabra–Voigt model with viscosity =
ν = 10−12 and several values of α. Forcing: constant on the third and fifth modes. This figure was
taken and adapted from [28].

for n = 1, 2, 3, . . ., with the boundary conditions u1 = u0 = 0. The wavenumbers kn are
taken as kn = λn, with λ > 1 being the shell spacing parameter. Although the equation does
not capture any geometry, the scale L = k−1

0 is frequently considered as a fixed typical length
scale of the model. In an analogy to the NS equations, ν > 0 represents a kinematic viscosity
and fn are the Fourier components of forcing.

The Voigt–Sabra equations are a simple adaptation of the Sabra model described above.
The equations are

(
1 + α2k2

n

)dun

dt
= i

(
akn+1un+2u∗

n+1 + bknun+1u∗
n−1 − ckn−1un−1un−2

) − νk2
nun + fn, (3)

where, as in (1), α � 0 is a given length-scale parameter and ν > 0 is a given kinematic
viscosity, such that α2/ν is the relaxation time of the viscoelastic fluid. All the other parameters
are as in (2).

In [28], two different scalings for the inertial range (see figure 1) and a relevant decrease of
dissipation range intermittency were observed. It was argued that the regularization of possible
singularities in the inviscid Sabra model may be the main reason for this behavior. But since
the question of blow-up for the inviscid Sabra model has not yet been answered, this is really
only a conjecture; see [9] for more details concerning the regularity of the Sabra model.

A large set of phenomenological assumptions in turbulence lead naturally to a large set
of shell model types. Recently, several works analyzed the so-called dyadic model, which is
known to produce both power-law scaling and Onsager-like singularities when viscosity is set
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to zero; see [3–5, 23]. The viscous dyadic model is the following system of nonlinear ordinary
differential equations (ODEs):

dun

dt
+ νλ2nun − λnu2

n−1 + λn+1unun+1 = fn, (4)

for n = 1, 2, 3, . . ., with the boundary condition u0 = 0, and where λ > 1 is the shell spacing
parameter. As in (2), the wavenumbers kn are taken as kn = λn, with λ > 1 being the shell
spacing parameter. In this work, we set λ = 25/2.

In [3, 23], one can find a derivation of the dyadic model based on a Littlewood–Paley
decomposition of the Euler equations, where each ODE represents a wavelet coefficient
describing the behavior of the velocity localized to a certain frequency shell.

The inviscid dyadic model (ν = 0) is known to blow-up in the H5/6 norm, and to possess
a global attractor in L2, for certain choices of forcing. These global attractors do not belong
to the space H5/6, and they have a spectral scaling compatible with Onsager’s theory. The
mechanism of dissipation is provided by the singularity, similar to the Burgers’ equations; see
[3–5, 23]. The main reason for this dissipation is the monotonic transfer of energy to high
modes provided by the nonlinear term.

It has also been proved that when viscosity is positive, solutions remain regular and
possess global attractors. These attractors converge to the singular global attractor as ν goes
to zero, see [21, 29, 40].

In this work, we continue the investigation initiated at [28] by studying, analytically
and numerically, the effects of the Voigt viscoelastic parameter on the dyadic model. The
Voigt–dyadic system of equations is

(1 + α2λ2n)
dun

dt
+ νλ2nun − λnu2

n−1 + λn+1unun+1 = fn, (5)

for n = 1, 2, 3, . . ., with the boundary condition u0 = 0, and where λ = 25/2 is the shell
spacing parameter. The parameter α � 0 plays the same role as described in (3). Again, here
the wavenumbers kn are taken as kn = λn.

We show that the Voigt term does regularize the singular inviscid dyadic model, and
that dissipation range oscillations are indeed tamed by the additional regularization, with a
significant reduction of the inertial range’s size. We also show that Kolmogorov power-law
scaling persists for viscous flows for any of the tested values of α, without a secondary inertial
range, which is in dissonance with our previous work. These results, if corroborated by more
extensive and realistic DNS, imply that the NSV regularization may become a useful sub-grid
model.

In section 2, we discuss the energy distribution scale by scale following the Kraichnan
arguments involving conserved quantities and dimensional analysis. In conjunction with the
numerical results, we argue for a transfer timescale which is different from the one observed
in [28]. This shows the limitation of using shell models for investigating the correct scaling of
new models.

We also discuss the issue of smallest scales of motion. Our numerical results clearly show
a reduced inertial range, with no modification of the statistics of large scales. This is the main
result of this paper, and this is the reason we argue for the NSV to be tested as a possible
sub-grid model. We also present several relations between the dissipative cut-off scale and the
parameters α and ν.

In section 3, we offer our conclusions, and in the appendix we sketch the proof of the
regularity of the Voigt–dyadic model.

5
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2. The spectral distribution

The NSV model of viscoelastic incompressible fluid has been studied by Oskolkov in
[32, 37, 38], where he proved its solvability in different functional spaces. The NSV model was
further studied in [2, 29] where other regularity issues were proved. We will not discuss much
about regularity issues for the NSV equations in this work, but we remark that these equations
behave like a damped hyperbolic system; see [21]. Therefore, solutions do not experience fast
(instantaneous) smoothening of the initial data, as is the case for parabolic systems like the
NS equations.

However, it was proved in [21] that solutions in the global attractor are smooth if the
forcing field is smooth enough, even for initial data satisfying only finite kinetic energy and
finite enstrophy (i.e. bounded in the Sobolev H1-norm). In particular, in [21] it was shown
in the periodic case that if the forcing field is analytic, then the global attractor consists of
analytic functions. This result, in conjunction with the results proved in [40], proves that if the
forcing field is smooth enough, then averaged structure functions, with respect to an invariant
measure for the NSV flow, display an exponentially decaying tail.

In this work, we show that this smoothening character of the NSV global attractor is not
lost even for singular models such as the dyadic model.

The NSV model satisfies the following energy equation for every t ∈ [0,∞):

d

dt

(
1

2
|u(·, t)|2L2 + α2

2
|∇u(·, t)|2L2

)
= (f, u(·, t))L2 − ν |∇u(·, t)|2L2 . (6)

Therefore, a positive quadratic conserved quantity in the inviscid, ν = 0, unforced, f = 0, and
periodic or no-slip setting, which was proved rigorously in [2], is

Sα
2 = 1

2
|u|2L2 + α2

2
|∇u|2L2 , (7)

which we call the α-energy. The quantity

S2 = 1

2
|u|2L2 (8)

is the usual kinetic energy, and we remark that it is not conserved for the inviscid unforced
NSV equations.

Another conserved quadratic quantity is the α-helicity:

�α = (u − α2�u, curl(u))L2 . (9)

In order to study the statistical equilibrium spectral profile, we will employ the methods
used in [25] (see also [13]). However, instead of considering the kinetic energy, we will analyze
the ideally conserved α-energy, Sα

2 , and conclusions will be further recovered for the kinetic
energy, S2. This method was also used in [1, 2, 6, 14, 17, 31, 34, 28] for studying various α

regularizations of the NS equations.
The main difference of our work in comparison with those cited above is that we will

consider the α regularization of a singular shell model, i.e. for which the kinetic energy is not
ideally conserved when α = 0.

This singularity is associated with a very fast, and monotonic, energy transfer rate of the
input energy from low wavenumbers to high wavenumbers. We show that the dimensional
analysis argument carried out in [28] does not lead to the observed spectra in our numerical
simulations. This shows the limitation of investigating α-models via shell model simulations,
since two different shell models may lead to different scaling for the same α-model.

6
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2.1. Singularity scaling

The main mechanism behind the power-law scaling in the viscous dyadic model is the scaling
of the singular global attractor for the inviscid dyadic model. The singular scaling persists
for low wavenumbers because the viscous regularization acts mostly at high wavenumbers,
leaving most of the large-scale statistics untouched.

To describe more precisely this singularity mechanism, we must now briefly introduce
the relevant functional setting of this work. We first rewrite the NSV equations in a functional
form and mimic the same procedure to the Voigt–dyadic model (keeping the same notation).
Let A be the Stokes operator defined by Au = −PLH�u, where PLH is the (Leray–Helmhotz)
orthogonal projector over the divergence-free vector fields in L2(	)3; see, e.g., [8, 15, 44] for
more details. For the sake of simplicity, we will consider only divergence-free forcing fields,
i.e. f = PLHf. The term B(u, v) = PLH((u · ∇)v) is a bilinear form associated with the inertial
term. Let u and v be the divergence-free smooth functions in 	. The important orthogonality
property holds (see, e.g., [8])

(B(u, v), v)L2 = 0. (10)

This relation holds only for sufficiently smooth velocity fields, and failure to fulfil the equivalent
to this identity is the ultimate source of the anomalous dissipation in the singular dyadic model.
The NSV model can be written in the functional form as

(I + α2A)
du

dt
+ νAu + B(u, u) = f . (11)

Let us now turn to the Voigt–dyadic model. We first define the relevant spaces and
operators. Let H = �2 be defined with the usual scalar product and norm

(u, v) :=
∞∑

n=1

unvn, |u| :=
√

(u, u).

The α–dyadic model can be written as in (11) in terms of the dyadic nonlinear operator
(B(u, u)) and the dyadic Stokes operator A : D(A) → H, defined in this context, as

(B(u, v))n = −λnun−1vn−1 + λn+1unvn+1, (Au)n = λ2nun. (12)

The domain D(A) is a dense subset of H. A is a positive definite operator with eigenvalues

0 � λ2 � λ4 � λ6 � . . . .

We define the functional space Hs = A−s/2H with the following scalar product and norm:

(u, v)s :=
∞∑

n=1

λ2nsunvn, |u|s :=
√

(u, u)s.

The dissipation mechanism provided by the singularity of the inviscid dyadic model comes
from the fact that solutions of these equations fail to be in H5/6 after the blow-up, so that the
energy balance is no longer valid:

1

2

d

dt
|u|2 − ( f , u) = (B(u, u), u) �= 0. (13)

This lack of balance is caused by the blow-up solution, whose spectral scaling is
〈|uk|〉 ∼ k−1/3. Solutions with positive viscosity are always regular, which implies that they
belong to Hs for every s ∈ R and satisfies the energy balance. Nonetheless, the viscous
regularization is mostly concentrated on high wavenumbers, and this is the reason we still
observe in our simulations a k−1/3 inertial range, which is reminiscent of the singularity
produced by inviscid solutions; see [3–5].

7
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The inviscid Voigt–dyadic model, on the other hand, does not produce any singularity
when α > 0. This means that if initial data are in Hs, it will remain in Hs. This is proved in the
appendix of this work. It implies that if the initial data have exponentially decaying modes,
i.e. are smooth, then the global attractor keeps this exponentially decaying feature. This can
be proved by following the arguments of [21].

As we will see in this section, this has consequences on the decaying behavior of the
spectra of the viscous α–dyadic model: the inertial range is shortened, which implies that
fewer degrees of freedom are necessary to reproduce the large-scale features accurately. Since
the large-scale statistics is unchanged, this result suggests the use of the Voigt regularization
as a sub-grid model.

2.2. Dimensional analysis

Now, we follow [13] and [15] to investigate the energy distribution scale by scale for the
3D NSV equations. Let 〈·〉 denote average with respect to an invariant measure for the NSV
semi-group (such a measure is known to exist for the NSV, see [40]). For the NS equations,
assuming that there exists an extensive range of wavenumbers, where the viscous dissipation
does not play a significant role, one can show that the energy simply cascades through these
length scales, with the rate being equal to the mean energy dissipation rate, ε = ν〈|∇u|〉.
In [28], we prove that a similar scenario holds for the α-energy, defined in (7), of the NSV
equations. The same could be done here for the Voigt–dyadic model.

In [28], the authors argued via dimensional analysis to find the proper scaling for the
inertial range. The extra parameter α generates several possible timescales, which further
complicates the dimensional analysis. The correct scaling could only be settled by the
employment of numerical simulations. In this section, we argue in the same lines as in
[28], but due to different results for our numerical simulations we have to argue for a different
timescale. This shows the limitations of dimensional analysis arguments. Let u be a solution
of the NSV equations. We denote by εα the mean α-energy dissipation rate,

εα = ν〈|∇u|2〉.
Now, we want to investigate the distribution of the inviscid conserved quantity, the α-energy,
scale by scale. We define the following characteristic velocities at scale k:

U (0)

k := 〈|uk|2〉1/2

and

U (α)

k := (1 + α2k2)〈|uk|2〉1/2.

We denote the characteristic α-energy at scale k by

Sα
2 (k) := 1

2
U(0)

k U(α)

k = 1

2
(1 + α2k2)

(
U(0)

k

)2
. (14)

The characteristic kinetic energy at scale k by

S2(k) := 1

2

(
U(0)

k

)2
.

With this notation, we can write the α-energy as

Sα
2 :=

∑
k

Sα
2 (k) = 1

2

∑
k

U(0)

k U(α)

k

and the kinetic energy as

S2 :=
∑

k

S2(k) = 1

2

∑
k

(
U(0)

k

)2
.

8
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In the inertial range, the α-energy transfer timescale can be defined as

t transf
k = Sα

2 (k)

εα

. (15)

Following the arguments used by Kraichnan in [13, 25, 26] we may argue that in the inertial
range, the eddies of size k−1, in average, transfer their characteristic α-energy to neighboring
eddies in the time, t transf

k , it takes to travel their own length, k−1, i.e.

t transf
k = 1

kUk
, (16)

where Uk is the characteristic velocity at scale k. Substituting (16) into (15), and setting α = 0,
we recover the k−2/3 scaling for the inertial range of the S2 structure function, which was
theoretically predicted for the NS equations by Kolmogorov in [24]. (We remark that the k−2/3

scaling for the structure function is commonly quoted in terms of its correspondent energy
spectrum density, which obeys the k−5/3 power law.) This sort of argument also leads to the
double cascading scenario for 2D turbulence described in [25].

For the NSV case, the situation is complicated due to the fact that we have two different
characteristic velocities, U (0)

k and U (α)

k . In fact, any log–convex combinations of them would
give us a possible characteristic velocity; see, e.g., [1, 2, 6, 28].

Real world turbulent flows, however, present anomalous scaling, i.e. structure functions
deviate significantly from the Kolmogorov predictions in [24]; see, e.g., [16, 36, 41]. This
anomalous behavior is present in some phenomenological models, such as the Sabra shell
models introduced in [36]. For example, in [36], the scaling computed for the S2 structure
function was −0.72, slightly deviating from the Kolmogorov −2/3 scaling. The nature of
inertial range intermittency is a topic of current intense research in the turbulence community;
see, e.g., [16] for more details.

In [28], simulations of the Sabra–NSV shell model clearly displayed two distinct power
laws for Sα

2 . For large values of α compared to the Kolmogorov dissipation length scale,
η := (ν3/ε)1/4, a range with scaling slightly deviating from the k−2/3 Kolmogorov scaling
(see section 4 for more details) and a range with a nearly power zero scaling were observed; see
figure 1. This distribution was explained by setting up the transfer timescale t transf

k in equation
(16), derived from the translational velocity, Uk ∼ U (0)

k :

t transf
k = 1

kU (0)

k

∼ (1 + α2k2)1/2

k(U (0)

k )1/2(U (α)

k )1/2
. (17)

In fact, substituting the expression above into (15), we obtain

Sα
2 (k) ∼ ε2/3k−2/3(1 + α2k2)1/3. (18)

Therefore, for k � α−1, we have a k−2/3 range, while for α ≈ k−1 we have a power zero
range, just as is observed in the shell model simulations in [28]. From this relation, we also
obtain the energy transfer timescale for the Voigt–Sabra model:

tsabra
k ∼ ε−1/3

α (1 + α2k2)1/3k−2/3. (19)

This scenario of two power laws in the inertial range was first proposed in [14] for the
NS–α model, and then for other α models in [1, 2, 6, 20, 31, 34, 28].

The numerical experiments of the Voigt regularization of the singular dyadic shell model
reported in this section show that despite the similar scaling structure of the equations, our
results imply a different timescale. These simulations show a clean k−2/3 scaling for the S2

structure function without any intermittent corrections. As a matter of fact, all the observed Sn
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structure functions displayed a clean −n/3. This fact can only be explained via the Kraichnan-
like arguments mentioned above by setting up the characteristic velocity as

Uk ∼ U (0)

k

1 + α2k2
. (20)

Indeed, substituting (20) into (16), and equating the result with (15) yields the observed scaling
(U (0)

k )n ∼ εn/3k−n/3.
Therefore, the energy transfer timescale for the Voigt–dyadic model is

tdyadic
k ∼ ε−1/3

α (1 + α2k2)k−2/3. (21)

If we now compare (19) and (21), we see that while for the Voigt–Sabra model the transfer
timescale approaches O(1) for large k in the inertial range, the transfer timescale for the Voigt–
dyadic model grows to O(k4/3). This explains the energy equidistribution range observed in
the Voigt–Sabra simulations, and the reduced inertial range for the Voigt–dyadic model.

Therefore, by applying the Kraichnan-type analysis to the observed simulations, we
observe that the different structures of the nonlinear terms of each of the shell models yield
different transfer timescales, and ultimately, different spectra. Hence, the true spectra of the
full NSV equations remain an open question, which can be answered only by direct numerical
simulations which we intend to report in a follow-up work.

2.3. Numerical experiments

In this section, we discuss the results of numerical simulations of the Voigt–dyadic model.
The simulations were performed using the MATLAB stiff ODE solver ode15s. We

found that letting MATLAB approximate the Jacobian of the system via finite differences
was much faster than passing the actual Jacobian as a parameter to the solver. The use of an
approximated Jacobian has no relevant effect on the quality of the numerical solutions, since
the solver algorithm keeps the error under a predefined tolerance in any case.

Let us first define the Sn structure function as

Sn(k) = 〈|Uk(t)|n〉, k = 1, . . . , M,

where 〈·〉 means time average and M is the number of modes used in the simulation. We denote
by kd the dissipative cut-off wavenumber, where the inertial range ends and the dissipative
range begins. Also, for a fixed force and fixed viscosity ν, we denote by αc the dissipative
critical length scale such that for all values of α � αc, the inertial range starts to shorten,
and such that for all values of α < αc, the inertial range (or, equivalently, the value of kd) is
unchanged. Finally, we define the value Tr = α2

c /ν, which has a dimension of time, as the
critical relaxation time of a given simulation.

The free parameters of the simulations are the viscosity ν, which ranges from 10−12 to
10−6, the parameter α, which ranges from 10−4 to 105, and the forcing term f . We have
tested several forcing schemes, varying from constant to highly oscillatory in time. We have
also varied the spectral support of the forces, from being located only on the first few modes
to forces applied in all wavenumbers. All simulations displayed the same spectral behavior
as those discussed below, differing only at the total energy level, and thus we list only a
few of them. All data and programs can be obtained upon request via the authors’ e-mail
addresses.

In order to keep the consistency of the results across all runs, the maximum wavenumber
M and the final time Tf were fixed for a given force scheme. In all simulations, the final time

10
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Table 1. In this table, αc is the critical length parameter such that for any α � αc, the inertial range
is shortened. Note the universality of the critical relaxation time parameter Tr . For all simulations,
the forcing method was fixed: a mix of constant and highly oscillatory forcing modes in the first
few wavenumbers. Final time = Tf = 2 × 107 in all runs.

ν αc Tr αd

1 × 10−12 1.258 925 × 10−3 1.584 893 × 106 6.309 573 × 102

1 × 10−11 3.981 072 × 10−3 1.584 893 × 106 6.309 573 × 102

1 × 10−10 1.258 925 × 10−2 1.584 893 × 106 6.309 573 × 102

1 × 10−9 3.981 072 × 10−2 1.584 893 × 106 6.309 573 × 102

1 × 10−8 1.258 925 × 10−1 1.584 893 × 106 6.309 573 × 102

1 × 10−7 3.981 072 × 10−1 1.584 893 × 106 6.309 573 × 102

1 × 10−6 1.258 925 × 100 1.584 893 × 106 6.309 573 × 102

Table 2. Similar to table 1. Here we just show data for a different forcing scheme. Forcing =
constant in all modes. Final time = Tf = 1 × 108 in all runs.

ν αc Tr αd

1 × 10−12 1.584 893 × 10−3 2.511 886 × 106 3.162 278 × 103

1 × 10−11 5.011 872 × 10−3 2.511 886 × 106 3.162 278 × 103

1 × 10−10 1.584 893 × 10−2 2.511 886 × 106 3.162 278 × 103

1 × 10−9 5.011 872 × 10−2 2.511 886 × 106 3.162 278 × 103

1 × 10−8 1.584 893 × 10−1 2.511 886 × 106 3.162 278 × 103

1 × 10−7 5.011 872 × 10−1 2.511 886 × 106 3.162 278 × 103

1 × 10−6 1.584 893 × 100 2.511 886 × 106 3.162 278 × 103

was chosen in order to satisfy the following convergence criterion: if at the final time Tf > Tr

the solution U satisfied

max
k�M

{
〈|U2

k (·) − 〈|Uk|2〉I|2〉1/2
I

〈|Uk|2〉I

}
< 10−3, I = [Tf − Tr, Tf ],

then the numerical experiment converged. The reason for measuring the convergence in a time
window I = [

Tf − Tr, Tf
]

of length Tr is that the critical relaxation time is the most relevant
time unit in this problem. Moreover, we shall see that once the solutions converge, the value
of Tr depends on the forcing term f only. In practice, we choose Tf > 10 × Tr and verify that
Tf satisfies the convergence criteria a posteriori.

The values of Sn, Tr, kd and αc were observed from the numerical results. In order to
standardize the simulations, an objective way of measuring kd was deemed necessary. As
such, we have stipulated kd as the smaller wavenumber k such that S2(k + 1)/S2(k) � 10−1/2,
if k � kd . In our experience, this corresponds well with the eyeballed notion of kd when one
sees the graph of S2 versus k in a semi-log plot; otherwise, it was an arbitrary decision with no
deeper reason behind it. The coefficient αc was defined as the smaller α that makes the value
of kd drop.

In figure 2, we display the semi-log plots of the scaled structure functions, Sn(k) · kn/3,
for several values of α in each plot. First, observe that there is no intermittent scaling for any
structure function, i.e. Sn(k) ∼ k−n/3 in the inertial range with no deviations. We also observe
that the power-law range is reduced as the parameter α is increased.

Tables 1 and 2 show that, indeed, the relevant parameter is the critical relaxation time.
We observe that αc changes with ν in such a way that Tr is a constant, which is mainly force

11
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Figure 2. Semi-log plot of compensated structure functions, Sn(k) · kn/3. Viscosity = ν = 10−12

and several values of α. Forcing: constant in time = fk for each mode k. Final time = Tf = 1 × 108

in all runs.

dependent. Moreover, for every ν we have αc(ν) ∼ Trν
1/2. This law is illustrated in figure 3.

This is very useful, since for each fixed force, one can run a cheap simulation with large
viscosity, and from that information, one can obtain the critical relaxation time Tr. With this
coefficient in hand, for every fixed viscosity, it is possible to tune up the parameter α above
the critical αc so that the degrees of freedom are reduced. This can be key information for the
use of the Voigt regularization as a sub-grid model.

We denote by αd the critical value of the parameter α such that for all values of α � αd the
inertial range disappears, giving way to a unique dissipative range. As can be observed in the
tables, this critical value is force dependent, but, surprisingly, it is viscosity independent. This
shows the power of the Voigt regularization, and so far we have not obtained any explanation
for this behavior, which is certainly related to the regularity result proved in the appendix.

In figure 4, we show the graph of S2 with varying ν, for fixed α and fixed force. As expected,
one observes that kd decays with increasing ν. This decay seems to be regular. Indeed, by
fitting the data we were able to obtain the law kd (ν) ∼ − log(ν)+ B f for αc � α � αd , where
B f is a constant dependent only on the force.

12
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Figure 5. Dissipative cut-off wavenumber (kd ) as a function of α for several values of viscosity ν.
Forcing: constant in time = fk for each mode k. Final time = Tf = 1 × 108 in all runs.

Figure 5 shows the values of kd as a function of α for selected values of ν. The curves
corresponding to different ν overlap as α grows, being practically indistinguishable from each
other for α > 10. This figure makes it evident that, for any ν and small α, kd assumes a
constant value up to a critical value αc (such a value depends on ν). After that, kd decreases
in regular steps (the curve y(α) = −2 log10 α + 10 fits the edges of the steps very well) until
α assumes the dissipative critical value αd . After that, for α > αd , kd is again a constant, this
time with the minimum possible value 1.

This behavior is also observed when we choose different forcing terms. In general, the
steps of kd fit a line y(α) = −2 log10 α + c f , where c f is a constant that depends on the force
f only. Once again, this is very useful information for the aim of sub-grid modeling, because
if such a law is true, for any given ν and k, one is able to choose α such that the dissipative
cut-off wavenumber is exactly k. In the case of figure 5, it is sufficient to choose α to the left

of the line, that is, α > 10
10−k

2 . In the general case, α must satisfy the condition α > 10
c f −k

2 .
The value of c f can be obtained from αd , via linear interpolation: since kd jumps from 2 to 1
at αd , one has

− 2 log10 αd + c f = 2 ∴ c f = 2 + 2 log10 αd . (22)

3. Conclusions

In this work, we have investigated the spectral scaling of the Navier–Stokes–Voigt model as
the relaxation time parameter α2/ν varies. We found that the inertial range is shortened
as α is increased above a critical length scale αc such that the relaxation time satisfies
α2/ν � Tr = α2

c /ν, a critical relaxation time which is only force dependent. Indeed, we
have numerically obtained a more precise law describing the dissipative cut-off, kν, f , for a
fixed viscosity ν and force f : the law reads kν, f (α) = −2 log α + c f , where c f is a force-
dependent constant.
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The statistics of scales larger than this critical length were insensitive to the regularization.
This means that the effects of the Voigt regularization were constrained to the small scales,
where dissipation is more prominent, and timescales tend to be very short, which usually
increases computational costs. This is consistent with the numerical simulations of the two-
dimensional Navier–Stokes equations and MHD flows reported in [27], where the Voigt
regularization was shown to improve resolution in coarse meshes.

We would also like to point out some very interesting results concerning the sub-grid
effects of α regularization of three-dimensional flows obtained in [18, 19]. It is our intention
to compare the three-dimensional simulations of the Voigt model with those observed in
[18, 19] in a future work.

Our results are compatible with the energy cascade explanation for the phenomena of
drag reduction in viscoelastic flows. The elastic contribution increases the energy transfer
timescales, which follows (21). This faster energy transfer implies that the viscous term
becomes more dominant in large scales, so that small-scale kinematics, which is dominant
close to the boundary, gets less excited. This consequently shortens the inertial range and
reduces the drag.

We recall that the results obtained in this work are very different from those observed in
[28], where the Voigt model was studied via Sabra shell model simulations. There, simulations
showed two power-law scenarios, commonly observed in the simulations of α-regularization
models. This shows the limitations of dimensional analysis arguments for studying spectral
scaling of large coupled systems of equations arising in fluid mechanics without looking at
the details of the coupling terms. This disparity in the results is the main motivation for the
use of extensive three-dimensional numerical simulations in a coming work to settle down the
correct scaling and argue for the use of the Voigt regularization as a sub-grid model.

We conjecture that the reduced degrees of freedom are mainly due to the regularization
effect proved in the appendix. We believe that a large class of viscoelastic modifications of the
Navier–Stokes equations may be useful as a large-eddy simulation tool as long as the elasticity
effects are concentrated in small scales, and as long as it does not require extra boundary
conditions.
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Appendix. Regularity of the Voigt–dyadic model

The inviscid Voigt–dyadic model is the system of equations

(1 + α2λ2n)
dun

dt
− λnu2

n−1 + λn+1unun+1 = fn, (A.1)

for n = 1, 2, 3, . . ., with the boundary condition u0 = 0, and where λ > 1 is the shell spacing
parameter. The parameter α � 0 plays the same role as described in (3).
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Theorem 1. Let u0 ∈ Hs, f ∈ L∞([0, T ], Hs), then for every α > 0 and T > 0, there exists a
unique solution u(t) = {un(t)}n∈Z ∈ C([0, T ], Hs) of equation (A.1) with the initial condition
u(0) = u0.

Proof. Let us begin with an inequality for the nonlinear term B(u, v), defined in (12), which
will be very important in this proof. Let u, w ∈ Hs, s ∈ Z and v ∈ H1, then

|(B(u, v), w)s| =
∣∣∣∣∣
∑

n

λnλ2snun−1vn−1wn +
∑

n

λn+1λ2snunvn+1wn

∣∣∣∣∣
� λs+1

∣∣∣∣∣
∑

n

[(
λs(n−1)un−1

) (
λn−1vn−1

)]
(λsnwn)

∣∣∣∣∣
+

∣∣∣∣∣
∑

n

[
(λsnun)

(
λn+1vn+1

)]
(λsnwn)

∣∣∣∣∣
� λs+1

(∑
n

λ2sn|wn|2
)1/2 (∑

n

(
λ2s(n−1) |un−1|2

) (
λ2(n−1) |vn−1|2

))1/2

+
(∑

n

λ2sn|wn|2
)1/2 (∑

n

(
λ2sn |un|2

) (
λ2(n+1) |vn+1|2

))1/2

� Cλ ‖w‖s

(
sup

n

(
λ2n |vn|2

)∑
n

λ2sn|un|2
)1/2

� Cλ ‖u‖s ‖v‖1 ‖w‖s . (A.2)

This proves that the operator B(u, v) can be extended such that B : Hs × H1 → Hs, and that
for u ∈ Hs, v ∈ H1, one has

‖B(u, v)‖s � Cλ ‖u‖s ‖v‖1 . (A.3)

It is easy to see that the roles of u and v can be interchanged in inequality (A.2), and, therefore,
for u ∈ Hs, v ∈ H1, one also has

‖B(v, u)‖s � Cλ ‖u‖s ‖v‖1 . (A.4)

We now continue with the proof of the theorem. It follows the arguments from [2] and
[29], and, therefore, we will only give a brief sketch of how it works in the dyadic model case.
Let us first rewrite equation (A.1) as

dvn

dt
= N(v) := −νλ2nun + λnu2

n−1 − λn+1unun+1 + fn,

vn = (1 + α2λ2n)un. (A.5)

We start by proving that if v0 = (1 + α2A)u0 ∈ H−1 (u0 ∈ H1), then there exists a short
time T∗(‖v0‖−1) such that equation (A.5) has a unique solution in C1([−T∗, T∗], H−1). The
proof follows from the Picard iteration scheme, once we prove that N(v) is locally Lipschitz
continuous in H−1.

It follows from inequalities (A.3) and (A.4) and from Poincaré’s inequality that for every
u(1), u(2) ∈ H1 ⊂ H, the bound

‖B(u(1), u(2))‖−1 � Cλ‖u(1)‖1‖u(2)‖1 (A.6)

holds.
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Now, if we let v(i) = (1 +α2A)u(i), i = 1, 2, we have from (A.6) the bilinearity of B(·, ·),
the triangle inequality, and from the equivalence of the norms ‖u‖1 and ‖v‖−1 that

‖N(v(1)) − N(v(2))‖−1 � C‖u(1) − u(2)‖1(‖u(1)‖1 + ‖u(2)‖1)

� CR‖v(1) − v(2)‖−1, (A.7)

where R is a constant such that ‖u(1)‖1, ‖u(2)‖1 � R/2. This implies that N(v) is locally
Lipschitz in H−1. Now, to prove that the solution remains bounded, note that if we denote by
[0, Tmax) the maximal interval of existence where u ∈ C([0, Tmax), H1), then by taking the
duality product in (A.5) with u, we have

1

2

d

dt

(|u|2 + α2 ‖u‖2
1

)
� ‖ f ‖−1 |u| � ‖ f ‖−1

α

(|u|2 + α2 ‖u‖2
1

)1/2
. (A.8)

From this inequality, it follows that u(t) ∈ C([0,∞), H1), if u0 ∈ H1.
Now, to prove the general case, where u0 ∈ Hs, note that if, again, we let v(i) =

(1 + α2A)u(i), i = 1, 2, we have from inequalities (A.3) and (A.4) the bilinearity of B(·, ·),
the triangle inequality, and from Poincaré’s inequality that

‖N(v(1)) − N(v(2))‖s � C‖u(1) − u(2)‖s(‖u(1)‖1 + ‖u(2)‖1)

� C‖v(1) − v(2)‖s−2(‖u(1)‖1 + ‖u(2)‖1) � CλR‖v(1) − v(2)‖s, (A.9)

where R is a constant such that
∥∥u(1)

∥∥
1 ,

∥∥u(2)
∥∥

1 � R. This implies that N(v) is locally
Lipschitz in Hs, and, therefore, the Picard iteration scheme provides a local in time regular
solution.

Now, to prove that the solution remains bounded, we proceed by induction. Suppose that
for any u0 ∈ Hs, s ∈ Z, we know that the solution of (A.5) remains bounded in Hr−1, r � s.
We will show that this solution also remains bounded in Hr.

Indeed, denoting by [0, T (r)
max) the maximal interval of existence, where u ∈

C([0, T (r)
max), Hr), then by taking the duality product in (A.5) with Ar−1u, we obtain

1

2

d

dt

(‖u‖2
r−1 + α2 ‖u‖2

r

)
�

∣∣∣(A
r−1

2 B(u, u), A
r−1

2 u
)∣∣∣ +

∣∣∣(A
r−1

2 f , A
r−1

2 u
)∣∣∣

� C‖u‖2
r−1‖u‖1 + ‖ f ‖r−1‖u‖r−1. (A.10)

Since we have assumed that all norms of u up to order r − 1 were bounded, it follows
easily from (A.10) that the r-norm of u is bounded as well. We want to remark that all the
preceding inequalities were formal, but they can all be made rigorous by truncating u as
PM(u) := ∑M

n=1 un, so that all inequalities above hold for PM(u). Then, one may let M → ∞
and use classical compactness theorems as described in [8, 44]. This finishes the proof of the
theorem. �
Remark. It is easy to see from the proof above that we have indeed algebraic bounds in time.
This is important if we want to control the effects of large oscillations in the statistical behavior
of the solutions.
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