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a b s t r a c t

Theoretical and experimental methodologies for the identification of spatially variable thermophysical
properties and for simulating multidimensional heat transfer in heterogeneous materials are illustrated
by using plate samples with aluminum oxide nanoparticles dispersed in a polymeric matrix. First, the
heterogeneous nanocomposite plate is thermally characterized by means of a fairly simple experimental
setup which can be modeled by a one-dimensional heat conduction formulation with space variable
properties. Non-intrusive temperature measurements are obtained via infrared thermography, while the
direct problem is handled by an error-controlled integral transform solution with an improved lumped-
differential formulation, and the inverse analysis is undertaken via Bayesian inference, making use of the
Markov Chain Monte Carlo method. Then, in order to illustrate the application of the methodologies here
presented, an experimental multidimensional demonstration is provided consisting of a small electrical
resistance attached to the plate, simulating a heat generating electronic device installed on the nano-
composite substrate, which in such situation works as a heat spreader modeled by an improved lumped-
differential two-dimensional heat conduction formulation. The integral transform solution of the
lumped-differential two-dimensional problem is then critically compared against the infrared ther-
mography experimental results.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonhomogeneous materials morphology and composition
present endless combinations and arrangements due to design and
manufacturing, such as in the case of nanocomposites, tailored to
meet a variety of property and performance requirements [1].
Thus, the characterization of their physical properties is to be
made on a case by case basis, either in the form of averaged
effective properties or as spatially variable functions for improved
accuracy [2]. In the determination of local variations in thermo-
physical properties within heterogeneous solids, one must employ
an experimental technique that provides a sufficient amount of
information on spatially distributed temperature measurements, in
order to provide a firm basis for application of the appropriate
inverse problem analysis, such as the non-intrusive infrared ther-
mography [3e6].

Inversion methods able to process such measured fields and
estimate the corresponding parameter maps, are defined by both
a direct model and an estimation procedure [7]. In general, such
inverse methods require accurate and computationally fast direct
problem solution methodologies, so as to handle the large amount
of data that might be available and to allow for the computationally
intensive iterative analysis often required by the inverse problem
solution. Among the most adequate direct problem solution tech-
niques for inverse analysis, we may place the Generalized Integral
Transform Technique (GITT) for the hybrid numericaleanalytical
solution of convectionediffusion problems [8e10]. This approach
is based on extending the classical integral transform method
making it sufficiently flexible to handle problems that are not
a priori transformable, such as in the case of problems with arbi-
trarily space-dependent and nonlinear coefficients in either the
equation or the boundary conditions. This class of hybrid
numericaleanalytical methods was recently employed in the direct
and inverse analysis of heat conduction in heterogeneous media
[11e15], including a novel proposition of working the inverse
analysis on the transformed field, upon integral transformation of
the experimental data [13,14]. In addition, the effort to integrate the
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knowledge on the GITT application into a general purpose
computational code resulted in a recently developed open source
mixed symbolicenumerical code called UNIT (UNified Integral
Transforms) [16,17], an algorithm implementation and develop-
ment platform for researchers and engineers interested on hybrid
integral transform solutions of convectionediffusion problems.

In this context, we here present results for an experiment
involving a partially heated plate of a nanocomposite system with
space-dependent thermophysical properties composed of poly-
ester resin as the matrix material and alumina nanoparticles as
filler. First, the nanocomposite plate is thermally characterized by
means of a quite simple experimental setup which can be modeled
by a one-dimensional heat conduction formulation, employing
a heater of the same width as the sample.

A novel feature of the approach herein presentedwith respect to
previous contributions is the proposition of an improved lumped-
differential formulation [9], averaged across the plate’s thickness,
instead of the classical lumped analysis, offering an enhanced
approximation for the temperatures at the exposed surface of the
plate, which are used for the solution of the inverse problem and
direct comparison with the infrared thermography measurements.
This improved formulation to a certain extent eliminates the limi-
tation of having a thermally thin plate sample, by taking into
account, though approximately, the temperature gradients across
the sample thickness.

Then, in order to illustrate the application of these methodolo-
gies, a small electrical resistance is attached to the nanocomposite
substrate, which in such situation works as a heat spreader for an
electronic device, and requiring an improved two-dimensional
lumped-differential heat conduction model for its analysis.
Temperature measurements are again obtained via infrared
thermography.

The infrared camera employed was the SC660 model from Flir
Systems Inc, with dedicated data handling routines for quantitative
thermographic analysis. The inverse analysis procedure employs
both the infrared thermography for data acquisition and the inte-
gral transform approach for the direct problem solution [13,14],
implemented on the Mathematica 7.0 platform [18]. Based on
Bayesian inference [19e21], the methodology advanced in [13,14]
introduces the use of integral transformed temperature measure-
ments and the estimation within the transformed domain,
providing a pronounced reduction on experimental data handling
and computational effort.

Therefore, the present work provides both a verification of the
variable thermophysical properties estimation methodology as
well as its application in the multidimensional heat transfer anal-
ysis of nonhomogeneous nanocomposite heat spreaders.

2. Experimental setup

The experimental setup presented in Fig.1 employs temperature
measurements obtained from the infrared camera FLIR SC660,
a high performance infrared system with 640 � 480 image resolu-
tion, and �40 �C to 1500 �C temperature range. The main compo-
nents of the setup are marked on Fig. 1a as (a) IR camera (FLIR
SC660); (b) camera stand for vertical experiment configuration; (c)
frame with the sandwich nanocomposite plateeheaterethermal
insulation; (d) sample support; (e) data acquisition system (Agi-
lent 34970-A); (f) microcomputer for data acquisition. Fig.1b shows
the nanocomposite plate used in this experiment, which is
composed by polyester resin as matrix and alumina nanoparticles
as filler, manufactured in such a way that roughly 3/4 of the plate’s
length has 28.5% of alumina nanoparticles in mass and the other ¼
of the plate’s length is composed only by polyester resin, with no
addition of filler. The plate’s thickness is 1.51 mm and its lateral and
vertical dimensions are 40 � 80 mm. An electrical resistance
(38.2U) was employed in the heating of the plate at their contacting
interface, with the same lateral dimensions as of the plate but half
the length (40� 40mm), here joined at the upper half of the plate’s
height. The resistance is attached to the nanocomposite plate with
the aid of a thermal compound paste, being the opposite face
insulated and kept in place by the frame, with insulated corners. In
order to illustrate an application of the methodologies here pre-
sented, we also show some results in which the 40 � 40 mm elec-
trical resistance is substituted by a smaller one, with 14 � 14 mm
lateral dimensions and 29.8 U, simulating an electronic chip
installed on the nanocomposite substrate, which in such situation
works as a heat spreader for the electronic device. In such case the
heat diffusion along the plate’s width cannot be neglected and we
consider a two-dimensional lumped-differential model for the
problem formulation. In Fig. 2 the experimental setups are sche-
matically represented.

In order to reduce uncertainty in the IR camera readings, the
plate surface that faces the infrared camera was painted with
a graphite ink, which brought its emissivity to around 3¼ 0.97, as
stated by the ink manufacturer.

Nomenclature

cp(x) space variable specific heat
d(x) linear dissipation operator coefficient
heff effective heat transfer coefficient
k(x) space variable thermal conductivity
Lx plate length
Ly plate width
Lz plate thickness
N truncation order in temperature expansion
Nw, Nk, Nd truncation orders in coefficients expansions, w(x),

k(x), and d(x), respectively
NP number of parameters to be estimated
Ni normalization integrals in eigenvalue problem
P source term
q applied heat flux
t time variable
T average temperature distribution, averaged in the

plate thickness

T* local temperature distribution (fully differential
model)

TN temperature of surrounding air
w(x) space variable thermal capacity, w(x) ¼ r(x)cp(x)
x,y,z space coordinates
Y vector of measurements
P vector of unknown parameters

Greek letters
m eigenvalues of the direct problem
j eigenfunctions of the direct problem
r(x) space variable density

Subscripts and superscripts
i,j,k order of eigenquantities
e integral transform
w normalized eigenfunction
f filtering function in coefficients expansion
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The experimental procedure is initiated by prescribing a voltage
difference to be imposed on the electrical resistance, with a DC
voltage regulator. The data acquisition is started and after a certain
number of preliminary measurements to allow for averaging the
initial conditions, the DC source switch is turned on to heat the
plate (a nominal voltage of 8 V and 3.6 V has been applied through
the DC source for the experiments, respectively, using the
40 � 40 mm and 14 � 14 mm electrical resistances). The temper-
ature increase may be followed through the computer monitoring.
Figs. 3 illustrate the images produced by the FLIR SC660 camera
after some elapsed heating time both for the case with the
40 � 40 mm electrical resistance, at t ¼ 200 s, in Fig. 3a, and for the
case with the 14 � 14 mm electrical resistance, at t ¼ 100 s, in
Fig. 3b. Once steady state is achieved, the DC source is turned off.

3. Problem formulation and solution methodology

Consider a plate subjected to a prescribed heat flux at one face
and convective and radiative heat losses at the opposite face (see
Fig. 4), which represents the physical phenomena that takes
place in the experiment with the heating element of the same
width as the sample plate (40 � 40 mm). Neglecting the temper-
ature gradients on the width direction, this problem can be
formulated as:

wðxÞvT
*ðx;z; tÞ
vt

¼ v

vx

 
kðxÞvT

*

vx

!
þkðxÞv

2T*

vz2
; 0< x< Lx;

0< z< Lz; t>0 (1a)

T*ðx; z;0Þ ¼ TN; 0 � x � Lx; 0 � z � Lz (1b)

vT*

vx

����
x¼0

¼ 0;
vT*

vx

����
x¼Lx

¼ 0 (1c,d)

Fig. 2. (a) Schematic representation of the experimental setup used for the inverse
analysis procedure. (b) Schematic representation of the experimental setup used to
simulate an electronic device installed on the nanocomposite substrate as a heat
spreader.

Fig. 1. (a) General view of the experimental setup for the infrared thermography
analysis. (b) Polyester resinealumina nanocomposite plate used in the experiment
with dimensions 1.51 mm (thickness), 40 mm (width) and 80 mm (length).
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�kðxÞvT
*

vz

����
z¼0

¼qðx;tÞ; kðxÞvT
*

vz

����
z¼Lz

þheff ðxÞT*¼heff ðxÞTN (1e,f)

where the variable thermal capacitance coefficient is given by
w(x) ¼ r(x)cp(x). Assuming that the plate is thermally thin, we can
make use of a straigthforward lumped formulation across the
sample thickness, as proposed in [13,14], with the definition of the
average temperature across the z direction:

Tðx; tÞ ¼ 1
Lz

ZLz
0

T*ðx; z; tÞdz (2)

Making use of eq. (2) and the boundary conditions given by eqs.
(1e,f), problem (1) can be integrated over the plate thickness and be
rewritten as:

wðxÞ vTðx; tÞ
vt

¼ v

vx

�
kðxÞ vT

vx

�
þ qðx; tÞ

Lz
þ heff ðxÞTN

Lz

�heff ðxÞT*ðx; Lz; tÞ
Lz

; 0 < x < Lx; t>0
(3a)

Tðx;0Þ ¼ TN; 0 � x � Lx (3b)

vT
vx

����
x¼0

¼ 0;
vT
vx

����
x¼Lx

¼ 0 (3c,d)

Thus, the classical lumped approach would simply involve the
approximation that the boundary temperatures are very close to
the average temperature across the slab thickness, and eq. (3a)
would then become a one-dimensional partial differential formu-
lation for the average temperature. Here, however, we seek an
improved lumped-differential formulation, in an attempt to offer
enhanced approximations for the temperature at the exposed
surface of the plate at z ¼ Lz. The basic idea is to provide a better
relation between the boundary and the averaged temperatures,
which are to be developed from Hermite-type approximations of
the integrals that define the average temperatures and heat fluxes,
based on the so called Coupled Integral Equations Approach (CIEA)
[9,22e24]. For instance, one may employ Hermite formulas such as
the H1,1 and H0,0 approximations, which are essentially the cor-
rected and plain trapezoidal rules, respectively. When these Her-
mite formulas are applied to approximate the average temperature
and the average heat flux, respectively, one obtains:

Tðx; tÞ ¼ 1
Lz

ZLz
0

T*ðx; z; tÞdz y
1
2

h
T*ðx; z ¼ 0; tÞ þ T*ðx; z ¼ Lz; tÞ

i

þ Lz
12

"
vT*

vz

����
z¼0

� vT*

vz

����
z¼Lz

#
ð4aÞ

ZLz
0

vT*

vz
dz ¼ T*ðx; z ¼ Lz; tÞ � T*ðx; z ¼ 0; tÞ

y
Lz
2

"
vT*

vz

����
z¼0

þ vT*

vz

����
z¼Lz

#
(4b)

Eqs. (4a,b) can be solved for T*(x,Lz,t), employing the boundary
conditions (1e,f) to eliminate the remaining boundary quantities,
yielding:

T*ðx; Lz; tÞ y�Lzqðx; tÞ þ 6kðxÞTðx; tÞ þ 2LzTNheff ðxÞ
6kðxÞ þ 2Lzheff ðxÞ

(4c)

Thus, eq. (4c) provides a more complete relation between the
surface temperature and the thickness averaged temperature,
which accounts for the non-uniform temperature distribution
across the plate thickness. Substituting eq. (4c) into eq. (3a),

Fig. 4. Schematic representation of the experimental setup for thermophysical prop-
erties identification in heterogeneous media.

Fig. 3. (a) Infrared camera image acquired at t ¼ 200 s during heating period for the
case with the 40 � 40 mm electrical resistance. (b) Infrared camera image acquired at
t ¼ 100 s during heating period for the case with the 14 � 14 mm electrical resistance.
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problem (3) can be solved for the averaged potential T(x,t) and
improved results for the temperature at the exposed surface of the
plate, at z ¼ Lz, can be readily obtained with the aid of eq. (4c). The
resulting improved lumped-differential formulation for the average
temperature is given by:

wðxÞ vTðx; tÞ
vt

¼ v

vx

�
kðxÞ vTðx; tÞ

vx

�
� dðxÞTðx; tÞ þ Pðx; tÞ;

0 < x < Lx; t>0 (5a)

dðxÞ ¼ 6kðxÞheff ðxÞ
Lz
h
6kðxÞ þ 2Lzheff ðxÞ

i (5b)

Pðx; tÞ ¼ qðx; tÞ
Lz

þ qðx; tÞheff ðxÞ
6kðxÞ þ 2Lzheff ðxÞ

þ heff ðxÞTN
Lz

� 2TNh2eff ðxÞ
6kðxÞ þ 2Lzheff ðxÞ

(5c)

Tðx;0Þ ¼ TN; 0 � x � Lx (5d)

vT
vx

����
x¼0

¼ 0;
vT
vx

����
x¼Lx

¼ 0 (5e,f)

The proposed formulation includes the space variable thermal
conductivity and thermal capacity, through the coefficients w(x)
and k(x), responsible for the information related to the heteroge-
neity of the medium.

The formal exact solution of problem (5) is obtained with the
Classical Integral Transform Method [11], and is written as:

Tðx; tÞ ¼ TN þ
XN
i¼1

~jiðxÞ
Zt
0

gi
�
t�
�
e�m2

i ðt�t�Þdt� (6)

where the eigenvalues mi and eigenfunctions ji(x), are obtained
from the eigenvalue problem that contains the information about
the heterogeneous medium, in the form:

d
dx

�
kðxÞdjiðxÞ

dx

�
þ
	
m2i wðxÞ � dðxÞ



jiðxÞ ¼ 0; x˛½0; Lx� (7a)

with boundary conditions

djiðxÞ
dx

¼ 0; x ¼ 0;
djiðxÞ
dx

¼ 0; x ¼ Lx (7b,c)

Also, the other quantities that appear in the exact solution (6)
are computed after solving problem (7), such as

~jiðxÞ ¼ jiðxÞffiffiffiffiffi
Ni

p ; normalized eigenfunctions (8a)

Ni ¼
ZLx
0

wðxÞj2
i ðxÞdx; normalization integrals (8b)

giðtÞ ¼
ZLx
0

Pðx; tÞ~jiðxÞdx; transformed source terms (8c)

The Generalized Integral Transform Technique (GITT) [8e10]
is here employed in the solution of the SturmeLiouville problem
(Eqs. 7aec) via the proposition of a simpler auxiliary eigenvalue
problem, and expanding the unknown eigenfunctions in terms of

the chosen basis [11,14]. The variable equation coefficients are
themselves expanded in terms of known eigenfunctions [11,14], so
as to allow for a fully analytical implementation of the coefficients
matrices in the transformed system. For instance, the coefficients
w(x), k(x) and d(x) are expanded in terms of eigenfunctions with
first kind boundary conditions, together with a filtering solution to
enhance convergence, in the following form:

wðxÞ ¼ wf ðxÞ þ
XN
k¼1

~GkðxÞwk; inverse (9a)

wk ¼
ZLx
0

w*ðxÞ
h
wðxÞ �wf ðxÞ

i
~GkðxÞdx; transform (9b)

kðxÞ ¼ kf ðxÞ þ
XN
k¼1

~GkðxÞkk; inverse (9c)

kk ¼
ZLx
0

w*ðxÞ
h
kðxÞ � kf ðxÞ

i
~GkðxÞdx; transform (9d)

dðxÞ ¼ df ðxÞ þ
XN
k¼1

~GkðxÞdk; inverse (9e)

dk ¼
ZLx
0

w*ðxÞ
h
dðxÞ � df ðxÞ

i
~GkðxÞdx; transform (9f)

where w*(x) is the weighting function for the chosen normalized
eigenfunction ~GkðxÞ. The expansion basis may be chosen by
employing the same auxiliary problem, but with first order
boundary conditions, while the filtering function could be a simple
analytic function that satisfies the boundary values for the original
coefficients or just an average value of the respective coefficient.
This procedure shall also be of interest in the function estimation
task, when the transformed coefficients such as in eqs. (9a,c,e) will
be the parameters to be estimated.

For the illustration of the methodologies presented in this work,
an application is considered inwhich a small electrical resistance is
attached to the heterogeneous plate, simulating an electronic
device installed on the nanocomposite substrate, which works as
a heat spreader. This problem is schematically represented in
Fig. 5a,b and the three-dimensional formulation is given by:

wðxÞvT
*ðx;y;z;tÞ

vt
¼ v

vx

 
kðxÞvT

*

vx

!
þkðxÞv

2T*

vy2
þkðxÞv

2T*

vz2
;

0<x<Lx; 0<y<Ly; 0< z<Lz; t>0

(10a)

T*ðx; y; z;0Þ ¼ TN; 0 � x � Lx; 0 � y � Ly 0 � z � Lz (10b)

vT*

vx

����
x¼0

¼ 0;
vT*

vx

����
x¼Lx

¼ 0 (10c,d)

vT*

vy

����
y¼0

¼ 0;
vT*

vy

����
x¼Ly

¼ 0 (10e,f)

�kðxÞ vT
*

vz

����
z¼0

¼ qðx; tÞ; kðxÞ vT
*

vz

����
z¼Lz

þ heff ðxÞT* ¼ heff ðxÞTN

(10g,h)

where w(x) and k(x) are again the space-dependent thermal
capacity and thermal conductivity, respectively, heff(x,y) is the
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effective heat transfer coefficient, q(x,y,t) is the applied heat flux
and Lx, Ly and Lz are the plate’s length, width and thickness,
respectively. Aftermaking use of the improved lumped formulation
across the plate thickness, the following problem is obtained for the
thickness averaged temperature field, T(x,y,t):

wðxÞ vTðx; y; tÞ
vt

¼ v

vx

�
kðxÞ vT

vx

�
þ kðxÞ v

2T
vy2

þ qwðx; y; tÞ
Lz

�heff ðx; yÞ
Lz

ðTsðx; y; tÞ � TNÞ;

0 < x < Lx; 0 < y < Ly; t>0

(11a)

Tðx; y;0Þ ¼ TN (11b)

vT
vx

����
x¼0

¼ 0;
vT
vx

����
x¼Lx

¼ 0 (11c,d)

vT
vy

����
y¼0

¼ 0;
vT
vy

����
y¼Ly

¼ 0 (11e,f)

where Ts(x,y,t) should be an enhanced approximation of the
temperature at the exposed surface of the plate, which can be
written in terms of T(x,y,t) after employing Hermite-type approxi-
mations similar to what has been done in eq. (4) above, yielding:

Tsðx; y; tÞy�Lzqðx; y; tÞ þ 6kðxÞTðx; y; tÞ þ 2LzTNheff ðx; yÞ
6kðxÞ þ 2Lzheff ðx; yÞ

(12)

The resulting improved lumped-differential formulation for the
average temperature T(x,y,t) is thus given by:

wðxÞ vTðx; y; tÞ
vt

¼ v

vx

�
kðxÞ vT

vx

�
þ kðxÞ v

2T
vy2

� dðx; yÞT þ Pðx; y; tÞ;

0 < x < Lx; 0 < y < Ly; t>0 (13a)

dðx; yÞ ¼ 6kðxÞheff ðx; yÞ
Lz
h
6kðxÞ þ 2Lzheff ðx; yÞ

i (13b)

Pðx;y; tÞ ¼ qðx;y;tÞ
Lz

þ qðx;y;tÞheff ðx;yÞ
6kðxÞþ2Lzheff ðx;yÞ

þheff ðx;yÞTN
Lz

� 2TNh2eff ðx;yÞ
6kðxÞþ2Lzheff ðx;yÞ

(13c)

Tðx; y;0Þ ¼ TN; 0 � x � Lx; 0 � y � Ly (13d)

vT
vx

����
x¼0

¼ 0;
vT
vx

����
x¼Lx

¼ 0 (13e,f)

vT
vy

����
y¼0

¼ 0;
vT
vy

����
x¼Ly

¼ 0 (13g,h)

Problem (13) is now solved by making use of the Generalized
Integral Transform Technique (GITT), in the most general form as

Fig. 5. Schematic representation of the problem used to simulate an electronic device
installed on the nanocomposite substrate as a heat spreader: (a) front view. (b) lateral
view.
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implemented in the context of the UNIT code [15e17], and now
briefly presented. Eq. (13a) may be rewritten as:

ŵ
vTðx;y;tÞ

vt
¼ ŵ

wðxÞ

(
v

vx

�
kðxÞvT

vx

�
þkðxÞv

2T
vy2

�dðx;yÞTþPðx;y; tÞ
)
;

0< x< Lx; 0< y< Ly; t>0 (14a)

or simply:

ŵ
vTðx; y; tÞ

vt
¼ Gðx; y; t; TÞ; 0 < x < Lx; 0 < y < Ly; t>0 (15a)

Gðx;y;t;TÞ ¼ ŵ
wðxÞ

(
v

vx

�
kðxÞvT

vx

�
þkðxÞv

2T
vy2

�dðx;yÞTþPðx;y;tÞ
)

(15b)

Problem (15) with the initial and boundary conditions given by
eqs. (13deh) may thus be solved by means of the GITT, and the
solution may be written as:

Tðx; y; tÞ ¼
XN
i¼1

~jiðx; yÞTiðtÞ (16a)

The transformed potentials are defined with the integral
transformation operation given by:

TiðtÞ ¼
ZLx
0

ZLy
0

ŵ ~jiðx; yÞTðx; y; tÞdxdy (16b)

The eigenvalues mi and normalized eigenfunctions ~jiðx; yÞ, are
obtained from the chosen eigenvalue problem below:

k̂

 
v2~jiðx;yÞ

vx2
þv2~jiðx;yÞ

vy2

!
þm2i ŵ

~jiðx;yÞ ¼ 0; x˛½0;Lx�; y˛
�
0;Ly


(17a)

v~jiðx; yÞ
vx

¼ 0; x ¼ 0;
v~jiðx; yÞ

vx
¼ 0; x ¼ Lx (17b,c)

v~jiðx; yÞ
vy

¼ 0; y ¼ 0;
v~jiðx; yÞ

vy
¼ 0; y ¼ Ly (17d,e)

where k̂ and ŵ have been chosen as representative constant values
for the thermal conductivity and heat capacity, respectively, so as to
allow for the exact analytical solution of problem (17).

The integral transformation is now performed by operating eq.

(15a) on with
Z Lx

0

Z Ly

0

~jiðx; yÞ dxdy, to yield the following trans-

formed ordinary differential system:

dTiðtÞ
dt

¼ gi
�
t; Tj

�
; t>0; i; j ¼ 1;2;. (18a)

with the transformed source terms and initial conditions given by

gi
�
t; Tj

� ¼
ZLx
0

ZLy
0

Gðx; y; t; TÞ~jiðx; yÞdxdy (18b)

f i ¼
ZLx
0

ZLy
0

ŵTN~jiðx; yÞdxdy (18c)

The ordinary differential equations system (18) can be numeri-
cally solved [18] to provide results for the transformed tempera-
tures, upon truncation to a sufficiently large finite orderN. Recalling
eq. (16a), the temperature field T(x,y,t) is then calculated explicitly
in the space variables.

4. Inverse problem solution

In the Bayesian approach, inference is drawn by constructing the
joint probability distribution of all unobserved quantities based on
all that is known about them. This knowledge incorporates previous
information about the phenomena under study and is also based on
values of observed quantitieswhen they are available. This approach
is based on Bayes’ theorem, which can be written as [19e21]

pðPjYÞ ¼ pðYjPÞpðPÞ
pðYÞ (19)

In summary, solving an inverse problem within the Bayesian
framework may be broken into three subtasks: (i) Based on all
information available for the unknown P, find a prior probability
density p(P) that reflects judiciously this prior information; (ii) Find
the likelihood function p(YjP) that describes the interrelation
between the observations and the unknowns; (iii) Develop
methods to explore the posterior probability density p(PjY).

When it is not possible to analytically obtain the corresponding
posterior distributions, one needs to use a method based on
simulation. The inference based on simulation techniques uses
samples from the posteriori p(PjY) to extract information about
them. Several sampling strategies are proposed in the literature,
including the Monte Carlo method via Markov Chain (MCMC),
adopted in this work.

The most commonly used MCMC sampling algorithm is the
MetropoliseHastings, here employed [19e21]. The Metropolise
Hastings algorithm uses the same idea of the rejection methods,
i.e. a value is generated from an auxiliary distribution and accepted
with a given probability. This correction mechanism ensures the
convergence of the chain to the equilibrium distribution.

The unknown quantities in this work, the variable thermal
properties and the effective heat transfer coefficient, were
expressed as eigenfunction expansions, which significantly reduces
the number of parameters. The truncation orders and the choices of
filtering functions in the proposed expansions, eqs. 9(aef), govern
the number of parameters to be estimated. Thus, the total number
of parameters NP is given by the sum of parameters in each
expansion, including the number of parameters in each filter, and
the number of parameters in the heat flux expression, eventually
also to be estimated.

Another important aspect of the present study is the solution of
the inverse problem in the transformed field, from the integral
transformation of the experimental temperature data, thus com-
pressing the experimental measurements in the space variables
into a few transformed temperature fields. Once the experimental
temperature spatially distributed readings have been obtained, one
proceeds to the integral transformation of the temperature field at
each time through the integral transform pair below:

Transform : Texp;iðtÞ ¼
ZLx
0

wðxÞ~jiðxÞ
�
Texpðx; tÞ�TN


dx (20a)

Inverse : Texpðx; tÞ ¼ TN þ
XN
i¼0

~jiðxÞTexp;iðtÞ (20b)
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5. Results and discussion

The aim is to first employ the one-dimensional experiment and
its corresponding inverse analysis to estimate the space variable
thermophysical properties of the nanocomposite slab. Then, the
estimated quantities are employed in simulating the multidimen-
sional problem, which is representative of an application, allowing
for critical comparisons between the simulated and experimental
results.

The experimental conditions here encountered are expected to
fit into the problem formulation given by eq. (5), which was
adopted in the direct and inverse problem solutions. The time
variation of the applied heat flux, which accounts for the thermal
capacity of the resistance itself and of the thermal paste, besides the
thermal contact resistance, has been parameterized for the esti-
mation. Therefore, the applied heat flux is considered to be given
here by:

qðx; tÞ ¼ qwðxÞf ðtÞ; f ðtÞ ¼ c� ae�bt ;

qwðxÞ ¼
� q1; 0 < x < xC
q2; xC < x < Lx (21a ec)

where the positions x ¼ 0 and x ¼ xC ¼ 4 cm correspond to where
the electric resistance begins and ends, respectively. Therefore, the
unheated portion of the plate corresponds to a heat flux q2 ¼ 0.
Since the dissipated power in the resistance is accuratelymeasured,
eq. (5a) is thus divided by q1, and then the estimated parameters
can be expressed by multiplying each one with the measured heat
flux value, q1 and its associated uncertainty.

The effective heat transfer coefficient has a more involved
behavior and has been here expanded in eigenfunctions accord-
ing to eq. 9(e,f). In light of the nature of the applied heating,
a filter was considered in the form of a step function that
assumes two different characteristic values at the heated and
unheated plate portions:

heff ;f ðxÞ ¼
�
hx0 0 < x < xC
hxL xC < x < Lx

(22)

The initial estimates were then obtained from correlations for
natural convection over vertical plates and linearization of the
radiative heat flux. As previously discussed, the expansion trun-
cation orders govern the number of parameters involved in the
estimation procedure. Here, the total number of parameters refers

to the filters and expansions for the thermal conductivity, thermal
capacity, and effective heat transfer coefficient. Also, the parame-
ters a, b and c in eq. (21aec), that control the time variation of the
applied heat flux, are included:

P ¼��kx0;kxL;k1;k2;.;kNk

�
;
�
wx0;wxL;w1;w2;.;wNw

�
;�

dx0;dxL;d1;d2;.;dNd

�
; a;b;c


(23)

Based on the observation of fairly sharp interface that exists
between the two materials that compose the plate, we consider
a filter function for the thermophysical properties that approxi-
mates a step transition between the end values at x ¼ 0 and x ¼ Lx,
in the form [25]:

kf ðxÞ ¼ kx0 þ ðkxL � kx0ÞdðxÞ; wf ðxÞ ¼ wx0 þ ðwxL �wx0ÞdðxÞ
(24a,b)

where

dðxÞ ¼ 1
1þ e�gð�xþxtÞ (24c)

In eq. (24c), g is a parameter that controls the transition
sharpness and xt is the transition point. Both are considered as
fixed parameters, not to be estimated with the inverse analysis,
the values of which are taken as g ¼ 1500 m�1 and xt ¼ 0.02 m
[25].

For the parameters kx0,kxL,wx0 and wxL we have adopted normal
priors, with 15% standard deviation, centered in literature mean
values for the polyester resin [26] and we have used the
LewiseNielsen formula [27] for the region filled with alumina
nanoparticles. The LewiseNielsen formula takes into account the
effect of the shape of the particles and the orientation or type of
packing for a two-phase system:

kc ¼ km

�
1þ AB4
1� B4j

�
(25a)

B ¼ ðkd=kmÞ � 1
ðkd=kmÞ þ A

(25b)

j ¼ 1þ
�
1� 4s

42
s

�
4 (25c)

Table 1a
Estimated parameters with 99% confidence intervals for the thermophysical properties.

Property Material Estimated (classical lumped) [25] Estimated (improved lumped) aReference values

k Polyester 0.1617 0.1596 0.15e0.17
Nanocomposite 0.2042 0.2037 0.18e0.21

w Polyester 1.59�106 1.529�106 (1.22e1.76)�106

Nanocomposite 1.76�106 1.70�106 (1.36e1.91)�106

a The reference values for the nanocomposite have been calculated employing the LewiseNielsen formula with the values for the polyester resin given above [26] and the
following values for the aluminum oxide [28]: k ¼ 32e46 W/m�C and w ¼ (3e3.7)x106 J/m3�C.

Table 1b
Estimated parameters with 99% confidence intervals for the applied heat flux.

Parameter Estimated values (classical lumped) [26] Estimated values (improved lumped)

a 0.19 [0.188, 0.192] 0.189 [0.187, 0.193]
b 0.003319 [0.003314, 0.003324] 0.004519 [0.00451, 0.00453]
c 0.660 [0.658, 0.661] 0.657 [0.654, 0.660]
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where f is the volumetric concentration of filler, kc is the nano-
composite calculated effective thermal conductivity, kd is the
thermal conductivity of the dispersed particles used as filler, in
this instance the aluminum oxide, and km is the polymeric
matrix thermal conductivity, which in our case is the polyester
resin. A and fs are given for several geometric shapes and
orientation [27]. For spheres with random packing we have
A ¼ 1.5 and fs ¼ 0.637.

Also, normal priors were employed for the two values of the
parameters in the filter of the effective heat transfer coefficients, hx0

and hxL, provided by available correlations of natural convection
and linearized radiation. For the remaining parameters,
ðk1; k2; k3;w1;w2;w3;h1;h2;h3; a;b; cÞ, non-informative priors have
been adopted.

Tables 1a and 1b present the mean values of the estimated
parameters for the thermophysical properties and the applied heat

Fig. 6. (a) Estimated thermal conductivity. (b) Estimated heat capacity.

Table 2
Convergence behavior of the temperature field for the solution obtained using the integral transform method and the improved lumped approach, eq. (4c).

Truncation order T*(x,Lz,t) [�C] eq. (4c) T*(x,Lz,t) [�C] eq. (4c)

t ¼ 200 s t ¼ 400 s

x ¼ 0.2 cm x ¼ 0.4 cm x ¼ 0.6 cm x ¼ 0.2 cm x ¼ 0.4 cm x ¼ 0.6 cm

N ¼ 65 38.2421 32.8143 25.0284 43.1344 36.3730 25.1145
N ¼ 60 38.2473 32.8097 25.0256 43.1315 36.3694 25.1120
N ¼ 55 38.2572 32.7732 24.9912 43.1456 36.2732 25.0550
N ¼ 50 38.2613 32.5809 25.0788 43.1552 36.1114 25.1710
N ¼ 45 39.2506 32.2742 23.8192 44.3336 35.7342 23.6404

Fig. 7. (a) Vertical spatial distribution of temperatures at t ¼ 400 s. (b) Vertical spatial
distribution of temperatures at t ¼ 2210 s.
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flux, respectively. For the sake of comparison, the estimated
parameters obtained as the solution of this inverse problem when
considering the classical lumped formulation for the solution of the
direct problem [25] are also presented. One may observe that the
estimates for the heat capacity and for the parameter b of the
applied heat flux presented the most significant deviations from
the previous analysis [25], when using the improved lumped
approach. Also, Table 1a brings the reference values for the ther-
mophysical properties of the polyester resin [26] and the alumi-
naepolyester nanocomposite as calculated from the LewiseNielsen
formula [27] and Figs. 6a,b present, respectively, the estimated
spatial variations for the thermal conductivity and heat capacity,
with their 99% confidence intervals, as well as the initial guess
employed. We must stress that we have employed three trans-
formed fields in the expansion of each property in eqs. (9aed),
Nk ¼ Nw ¼ 3, and their estimated values in the inverse problem

solution have been very small (kk;wk < 10�7; k ¼ 1;2;3), con-
firming that the step filter employed already describes fairly well
the properties functional form [25]. The integral transform method
has been used for the solution of problem (5) considering the
estimated values herein obtained. Table 2 illustrates the conver-
gence behavior of the temperature values at selected positions and
times, for increasing truncation orders from bottom to top. The
results are apparently fully converged to four digits for N ¼ 65 in all
selected positions. Figs. 7 bring some curves for the temperature
vertical spatial distribution at different time values and Figs. 8
depict the time evolution of the temperature at two different
positions, and an excellent agreement between the simulated
results and the experimental data is observed throughout. Fig. 9
presents the residuals between simulated and measured temper-
atures at three positions, x ¼ 0.02, 0.04 and 0.06 m. Although
presenting some correlation, the residuals are small.

Figs. 10 brings the comparison between the temperature
profiles at the plate surface along its length obtained with the
classical and the improved lumped approaches using the same
input parameters, at three different times, t ¼ 200, 400 and 2210 s,
respectively. The difference between the solutions is better
assessed with the aid of Fig. 11, which shows the temperature
deviations between the classical and improved lumped solutions
using the same input parameters, for these three different times. It
can be noticed that the solution obtained with the classical lum-
ped approach yields slightly higher temperatures, with deviations
of up to 0.5 �C, during the transient. At steady state, both curves
are essentially coincident on the graphic scale. In fact, this result
confirms the analysis of the inverse problem solution, where we
have noticed that the heat capacity and the parameter b, both
parameters with high influence during the transient period, had
the largest deviations when estimated with the classical and the
improved lumped approaches.

Now, we look at the case in which the smaller 14 � 14 mm
electrical resistance is used, simulating an electronic chip installed
on top of the heterogeneous nanocomposite substrate, which in
this situation works as a heat spreader. For the mathematical
formulation of this problem we cannot neglect the heat diffusion
along the plate’s width and thus an improved lumped-differential

Fig. 8. (a) Time evolution of the temperature at x ¼ 2 cm (b) Time evolution of the
temperature at x ¼ 4 cm.

Fig. 9. Residuals [�C] between calculated and experimental temperatures at three
different positions.
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two-dimensional model is necessary, which corresponds to the
problem formulation in eqs. (13).

For this multidimensional problem solution the Generalized
Integral Transform Technique (GITT) was employed as previously
described, constructed as a dedicated code in the Mathematica
platform [18], using the typical steps adopted by the UNIT algo-
rithm in order to illustrate the flexibility of this solution path
[15e17]. The space-dependent thermophysical properties, k(x) and
w(x), have been adopted as estimated by the previous inverse
analysis procedure. For the heat transfer coefficient we have used
natural convection correlations and, based on the estimated value
for parameter c in the inverse analysis procedure, we have
considered that 65.7% of the heat flux generated by the electrical
resistance is applied on the nanocomposite plate. Again, the
improved lumped formulation has been used in order to yield
enhanced approximations of the temperature distribution at the
plate’s surface, z ¼ Lz.

Table 3 illustrates the convergence behavior of the temperature
profile at chosen positions and time values for the two-dimensional
situation, for increasing truncation orders from bottom to top. The
results are apparently converged to practically four digits for
N < 200 in all selected positions.

Figs. 12 illustrate the temperature distributions along, respec-
tively, the length (y ¼ 2 cm) and the width (x¼ 0.7 cm) of the plate,
both for t ¼ 1000 s, where a reasonably good agreement between
the simulated and experimental data can be observed, once the
estimated heat flux partition (c¼ 0.66) is employed in themodeling
of the applied heat flux to the nanocomposite substrate, thus
accounting for heat losses through the insulation.

Fig.13 shows the time evolution of the temperaturemeasured at
the surface of the plate at the center of the region where the
electrical resistance is placed. One may observe that a better

Fig. 10. Comparison between the temperature profile at the surface of the plate ob-
tained with the classical and the improved lumped formulations at: (a) t ¼ 200 s. (b)
t ¼ 400 s. (c) t ¼ 2210 s.

Fig. 11. Deviations [�C] between the solutions obtained with the classical and
improved lumped approaches using the same input parameters for three different
times: t ¼ 200, 400 and 2210 s.

D.C. Knupp et al. / International Journal of Thermal Sciences 62 (2012) 71e84 81



agreement between simulated and experimental data is achieved
after some elapsed time. The less adherent behavior observed in
the beginning of the heating process may be explained by the
thermal capacity of the smaller electrical resistance installation, not
available from the inverse problem analysis, and which was
therefore neglected in the two-dimensional model solution.

Figs. 14a,b present eight isotherms at steady state for the
experimental data and the simulated results, respectively,
showing an overall good agreement for the entire substrate
domain. Deviations between experimental and theoretical results
are within 1.5 �C except within the very edge of the electrical
resistance, where the model does not incorporate a heat transfer
coefficient to account for heat losses and the deviation can reach
4 �C. This good agreement between the experimental and simu-
lated curves for the two-dimensional case confirms that reliable
thermophysical properties identification in heterogeneous mate-
rials is critical for adequate simulation in the realm of applica-
tions. Further improvement in this situation would require the
estimation of the space variable heat transfer coefficient and
applied heat flux directly at the two-dimensional experimental
configuration, or alternatively, solving the more cumbersome
conjugated conductioneconvectioneradiation problem [29,30].

Table 3
Convergence behavior of the temperature profile for the solution of the two-dimensional problem.

Truncation order Ts(x,y,t) [�C] Ts(x,y,t) [�C]

t ¼ 100 s t ¼ 200 s

x ¼ 0.7 cm x ¼ 1.4 cm x ¼ 2 cm x ¼ 0.7 cm x ¼ 1.4 cm x ¼ 2 cm

y ¼ 2 cm y ¼ 2 cm y ¼ 2 cm y ¼ 2 cm y ¼ 2 cm y ¼ 2 cm

N ¼ 200 55.4965 41.2204 27.7384 62.3461 45.1843 29.0914
N ¼ 190 55.4998 41.2093 27.7314 62.3510 45.1788 29.0854
N ¼ 180 55.5069 41.2309 27.6870 62.3625 45.1903 29.0389
N ¼ 170 55.5346 41.2378 27.5858 62.3861 45.1969 29.0021
N ¼ 160 55.8803 41.4502 27.6988 62.7433 45.4083 29.0129

Fig. 12. Temperature distribution along the plate’s (a) length and (b) width, for the
case used to simulate an electronic device installed on the nanocomposite substrate as
a heat spreader.

Fig. 13. Time evolution of the temperature measured at the surface of the plate at the
center of the region where the electrical resistance is placed for the case used to
simulate an electronic device installed on the nanocomposite substrate as a heat
spreader.
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6. Conclusions

The present work is concerned with the estimation of space
variable thermophysical properties in heterogeneous nano-
composite plates, and the utilization of this information in the
thermal analysis of heat spreaders made of the same materials.
Improved lumped-differential formulations are developed for
both the problem that corresponds to the properties identification
experimental setup, and the multidimensional heat spreader
situation. The aim is to achieve simpler formulations by averaging
the original problems in the plate thickness, but providing more
accurate relations between the surface and averaged tempera-
tures, in comparison to the classical lumped system analysis.
Then, the lumped-differential formulations for the average
temperatures are accurately solved by integral transforms, and
the improved expressions are employed to more accurately esti-
mate the surface temperatures, which feed the inverse problem
analysis and the comparisons with the infrared thermography
experimental results.

A previously developed combination of integral transforms,
Bayesian inference and infrared thermography provides the
necessary tools for both the space variable properties identification
effort and the verification of the multidimensional formulation,
with overall good agreement.
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