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a b s t r a c t

A stabilized finite element method is presented for scalar and linear second-order boundary value prob-
lems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual
of the differential equation at element level. These multiple projections allow the generation of appropri-
ate number of free stabilization parameters in the element matrix depending on the local space of
approximation and on the differential operator. The free parameters can be determined imposing some
convergence and/or stability criteria or by postulating the element matrix with the desired stability prop-
erties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained
using this new method with appropriate choices of the stabilization parameters. We applied this formu-
lation to diffusion–reaction problems. Optimal rates of convergency are numerically observed for regular
solutions.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Boundary value problems governed by scalar linear second-or-
der partial differential equations model a great variety of physical
phenomena. Usually, the Galerkin finite element method (FEM) is
used to solve numerically these boundary value problems. For
purely diffusion problems the Galerkin method provides the opti-
mal solution. However, it is well known that most Galerkin finite
element methods are unstable and inaccurate for some problems
described by scalar and linear second-order partial differential
equations, presenting spurious oscillations that do not correspond
to the actual solution of the problem.

Advection–diffusion type equation [2–30], diffusion–reaction
equation [7,8,31–49] and Helmholtz equation [50–64] are repre-
sentative examples of the poor stability of the corresponding
Galerkin finite element formulations. Stable and accurate numeri-
cal solution via finite element method for these problems has been
a real challenge, and a great variety of finite element formulations
have been developed aiming at stable and accurate approxima-
tions. The interested readers should look at [2–64] and references
therein. These attempts have used either continuous or discontin-
uous finite element spaces. The main challenge is to find a consis-

tent formulation, in continuous or discontinuous finite
dimensional spaces, such that its approximate solution is stable
and the closest possible to the exact solution in infinite dimen-
sional space (‘‘best approximation”). In that respect, a judicious
choice of the stabilization strategy is a decisive issue which has
been addressed in most of the above cited papers. In some of them,
success has been attained through clever strategies that rely upon
automatic choices that explore the local characteristics of the prob-
lem. The drawbacks related above motivated us to pursue a new
venue for building stable finite element formulations.

Here, we will consider only continuous finite element spaces.
Stability and accuracy of finite element methods for these bound-
ary value problems have been consistently improved through the
so called stabilized finite element formulations. They are built by
adding to the classical Galerkin method different residual terms
at the element level which are multiplied by parameters to be
tuned to improve stability and accuracy. This is the base of the
GLS, GGLS methods [10,31] and other stabilized methods [38] as
well. Thus, it seems to be desirable to seek for stabilized methods
with a maximum number of free parameters. This method should
be built in a such way that, if the criteria to determine the free
parameters is the same as adopted, for example, in the GLS, GGLS
methods or another linear stabilized method, then the element
matrix of these methods can be obtained starting from this new
formulation.

In this work, a general formulation is developed for a scalar and
linear second-order boundary value problems by adding to the
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Galerkin formulation appropriate multiple projections of residual
of the differential equation at element level. These residual projec-
tions carry out explicitly the dependence on the differential oper-
ator and on the local finite element space. The resulting finite
element method can be applied to any space dimension and con-
tains the necessary number of free parameters, determined follow-
ing some specific criteria to improve the stability and accuracy of
the approximate solution. In [64] this method, which we will refer
as Galerkin projected residual method (GPR), is applied to the
Helmholtz equation with the free parameters of the formulation
determined by minimizing the phase error of the approximate
solution yielding a C0 Lagrangian finite element formulation with
minimal pollution.

The paper is organized as follows. The model problem, the
associated variational formulation and the corresponding Galer-
kin finite element approximation are briefly presented in Section
2. In Section 3, we introduce the theoretical base for the GPR
method. In section 4 we applied the GPR method to diffusion–
reaction equation. Some numerical experiments to evaluate
the performance of the new formulation are presented in Sec-
tion 5. Finally, Section 6 contains some conclusions and final
remarks.

2. The model problem

Let X � Rnðn P 1Þ be an open bounded domain with a Lipschitz
continuous smooth piecewise boundary C. Let Cg , Cq and Cr

subsets of C satisfying measðCg \ CqÞ ¼ measðCg \ CrÞ ¼ meas
ðCq \ CrÞ ¼ 0 and C ¼ Cg [ Cq [ Cr , where measð�Þ denotes Lebes-
gue measure. We denote byLð�Þ the scalar and linear second-order
differential operator

Lð/Þ ¼ �$ � ðD$/Þ þ u � $/þ r/; ð1Þ

where D 2 H1ðXÞ \ C0ðX [ CÞ, u ¼ ðu1; . . . ;unÞ 2 ½H1ðXÞ�n\
½C0ðX [ CÞ�n, r 2 C0ðX [ CÞ, $/ denotes the gradient of /,
$ � ðD$/Þ denotes the divergent of D$/ and / 2 H1;diff

ðD;XÞ ¼ fg 2 H1ðXÞ; ð$ � ðD$/ÞÞ 2 L2ðXÞg. H1ðXÞ and ½H1ðXÞ�n are
Sobolev spaces, C0ðX [ CÞ is a Banach space, L2ðXÞ is a Hilbert space
as defined in Ref. [1]. The dot ‘‘�” denotes the usual inner product in
Rn or in the linear space of matrices, and the derivatives are in the
sense of the distributions.

The functions D (‘‘diffusion”), u (‘‘advection”) and r (‘‘reaction”)
are assumed satisfy

�r � u
2

P mo P 0 in X and 0 < D0 6 D 6 D in X; ð2Þ

r2
0 6j r j6 �r2 in X; ð3Þ

where D0, D, r0, mo and �r are positive real constants.
We consider as our model problem: Find / 2 H1ðXÞ such that

ð$ � ðD$/ÞÞ 2 L2ðXÞ satisfying

Lð/Þ ¼ f in X; ð4Þ
/ ¼ g on Cg ; ð5Þ
ðD$/Þ � n ¼ q on Cq; ð6Þ
ðD$/Þ � nþ a/ ¼ r on Cr; ð7Þ

where f 2 L2ðXÞ, g 2 H1=2ðCgÞ \ C0ðCgÞ, q 2 L2ðCqÞ, r 2 L2ðCrÞ,
a 2 L1ðCrÞ and the spaces H1=2ðCgÞ, C0ðCgÞ, L2ðCqÞ, L2ðCrÞ and
L1ðCrÞ are defined as in [1]. The outward normal unit vector defined
almost everywhere on C is denoted by n.

Defining S ¼ fg 2 H1ðXÞ;g ¼ g on Cgg and V ¼ fg 2 H1ðXÞ;g ¼
0 on Cgg, the weak form of the boundary value problem defined
by (4)–(7) is introduced as: Find / 2 S satisfying

Að/;gÞ ¼ FðgÞ 8g 2 V ð8Þ

with

Að/;gÞ ¼
Z
X
½Dð$/Þ � ð$gÞ þ ðu � $/Þgþ r/g�dXþ

Z
Cr

a/gdC; ð9Þ

FðgÞ ¼
Z
X
fgdXþ

Z
Cq

qgdCþ
Z
Cr

rgdC: ð10Þ

The major challenges in constructing finite element approximations
for this model problem is to find a consistent formulation in contin-
uous finite dimensional spaces with an stable approximate solution
as close as possible to the correspondent exact solution in infinite
dimensional space given by (8)–(10). In the present article we pur-
sue this goal for the reaction–diffusion problem. A similar effort was
developed in [64] for the Helmholtz equation.

3. The GPR finite element framework

The present section is devoted to establish the theoretical
grounds of the proposed methodology along with its characteriza-
tion as a framework to develop stabilized finite element formula-
tions. A crucial point to be highlighted consists in the way those
formulations are designed, combining the choice of a criterium,
encoded in a reference matrix, and the tuning of a set of free
parameters. This last feature is frequently found in stabilized
methods.

3.1. Theoretical background

In this section we briefly present the theoretical background for
the GPR finite element formulation. For this, we consider
Xh ¼ fX1; . . . ;Xneg, a partition of X into non degenerated finite ele-
ments Xe, such that Xe can be mapped in standard elements by iso-
parametric mappings and Xe \Xe0 ¼ £ if e–e0. Moreover,
X [ C ¼ [ne

e¼1ðXe [ CeÞ, where Ce denotes the boundary of Xe. We
also assume that De, re and fe, the corresponding restrictions of
D, r and f to Xe, are continuous in Xe. Let k P 1 be an integer
and consider PkðXeÞ the space of polynomials of degree less than
or equal to k in the local coordinates.

Let Hh;k ¼ fg 2 H1ðXÞ;ge 2 PkðXeÞg, Sh;k ¼ fg 2 Hh;k;g ¼ gh in
Cgg, Vh;k ¼ fg 2 Hh;k;g ¼ 0 in Cgg are the finite dimension spaces,
and gh the interpolate of g.

As previously stated, the GPR formulation is constructed adding
to the Galerkin formulation multiple projections of the residual at
element level with a free parameter associated with each projec-
tion. The number of free parameters depends on the differential
operator and the local approximation space. Thus, the maximum
number of linearly independent residual projections will depend
on properties of operator (such as symmetry, for example) and
on the order of polynomial interpolation adopted. These free
parameters would then be determined by appropriate criteria for
each specific problem, to get more accuracy and stable approxi-
mate solutions. To this end, consider for each fixed element Xe

the space E0
GPRðXeÞ defined as

E0
GPRðXeÞ ¼ u : Xe ! R; u ¼

Xnpel
i¼1

Xnpel
j¼1

Ci;j
cLðgiÞLðgjÞ; Ci;j 2 R

( )
;

ð11Þ

where npel denotes the number of nodal points of the element Xe,
and giði ¼ 1; . . . ;npelÞ denotes the usual local shape function associ-
ated with the nodal point i. cL denotes a special operator which is
the core of the proposed formulation and do not necessarily have
to be linear. The choice of the operator cL will depend on each
specific problem. From (11) follows that, E0

GPRðXeÞ is the space
generated by cLðgiÞLðgjÞ; ðj; i ¼ 1; . . . ;npelÞ, which is supposed to
satisfy the following condition.
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Condition 1: The space E0
GPRðXeÞ is not coincident to the space

f0L2ðXeÞg, where 0L2ðXeÞ is the null vector of L2ðXeÞ, or equivalently,
there must exist ði0; j0Þ 2 f1; . . . ;npelg � f1; . . . ;npelg such thatcLðgi0 ÞLðgj0 Þ–0 in L2ðXeÞ.

A base for E0
GPRðXeÞ can be obtained using the methodology pre-

sented in [64] or Proposition 1 presented in the next subsection. If
N is the dimension of E0

GPRðXeÞ then we can identify a basis
uGPR;e

1 ; . . . ;uGPR;e
N for E0

GPRðXeÞ, with uGPR;e
l 2 fcLðgiÞLðgjÞ; ði; jÞ 2

f1; . . . ;npelg � f1; . . . ;npelgg, ðl ¼ 1; . . . ;NÞ.

3.2. An adequate space of matrices for the GPR method

The basis uGPR;e
1 ; . . . ;uGPR;e

N of the E0
GPRðXeÞ space will play an

important role on the construction of the GPR element matrix. By
construction, the GPR method is obtained by adding multiple pro-
jections of the residual to the Galerkin formulation at element le-
vel. Thus, the element matrix of GPR method is formed by the
sum of Galerkin matrix and linear combination of element matri-
ces associated with these multiple residuals. The optimal or nearly
optimal GPR matrix is determined by appropriate choice of the sca-
lar parameters of this linear combination, aiming at obtaining
more accurate and stable approximate solutions.

Consider Me, the real linear space of all npel� npel matrices in
Xe and denote by AGPR;l;e ðl ¼ 1; . . . ;NÞ the set of N matrices
belonging to Me with ði; jÞ entry defined as

AGPR;l;e
ij ¼ ðcLðgiÞLðgjÞ;u

GPR;e
l ÞL2ðXeÞ

ði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelg; ð12Þ

then the following property of finite dimensional space with inner
product follows.

Proposition 1. The functions uGPR;e
1 ; . . . ;uGPR;e

N are linearly indepen-
dent if and only if the matrices AGPR;l;eðl ¼ 1; . . . ;NÞ are linearly
independent.

Proof. (a) Assume uGPR;e
1 ; . . . ;uGPR;e

N linearly independent.
Consider the linear combinationXN

l¼1

klA
GPR;l;e ¼ 0matrix ð13Þ

with kl 2 Rðl ¼ 1; . . . ;NÞ and 0matrix denoting the npel� npel null
matrix. From (13) we haveXN
l¼1

klA
GPR;l;e
ij ¼ 0 8ði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelg ð14Þ

and from (12) and (14) we obtainXN
l¼1

klðcLðgiÞLðgjÞ;u
GPR;e
l ÞL2ðXeÞ ¼ 0

8ði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelg ð15Þ

or equivalently

ðcLðgiÞLðgjÞ;
XN
l¼1

kluGPR;e
l ÞL2ðXeÞ ¼ 0 ð16Þ

for all ði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelg. From (11) and (16) followsXN
l¼1

kluGPR;e
l ¼ 0 in L2ðXeÞ: ð17Þ

Since uGPR;e
1 ; . . . ;uGPR;e

l are linearly independent, from (17) follows

kl ¼ 0 8l 2 f1; . . . ;Ng; ð18Þ

proving that the matrices AGPR;l;eðl ¼ 1; . . . ;NÞ are linearly
independent.

(b) Assume AGPR;l;eðl ¼ 1; . . . ;NÞ linearly independent.
Consider the linear combinationXN

l¼1

kluGPR;e
l ¼ 0 in Xe ð19Þ

with kl 2 Rðl ¼ 1; . . . ;NÞ. Multiplying Eq. (19) by cLðgiÞLðgjÞ, for
each pair ðði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelgÞ, and integrating in
Xe, from (12) yieldsXN
l¼1

klðcLðgiÞLðgjÞ;u
GPR;e
l ÞL2ðXeÞ ¼

XN
l¼1

klA
GPR;l;e
ij ¼ 0 ð20Þ

for all ði; jÞ 2 f1; . . . ;npelg � f1; . . . ;npelg, or

XN
l¼1

klA
GPR;l;e ¼ 0matrix; ð21Þ

which imply

kl ¼ 0 8l 2 f1; . . . ;Ng ð22Þ

since AGPR;l;e ðl ¼ 1; . . . ;NÞ are linearly independent. Consequently,
the functions uGPR;e

1 ; . . . ;uGPR;e
N are linearly independent. h

The previous property allows to choose an appropriate base for
the space of matrices MGPR;e � Me generated by the GPR method,
that is

MGPR;e ¼ M 2 Me; M ¼
XN
l¼1

klA
GPR;l;e

; kl 2 R

( )
: ð23Þ

The above correspondence between the GPR functions and matrices
shows to be very convenient from the computational implementa-
tion point of view.

3.3. The Galerkin projected residual method (GPR)

Consider the real parameters se0; se1; . . . ; seN, the vector se ¼
ðse1; . . . ; seNÞ 2 RN and the function We 2 C0ðXe [ CeÞ and define
the bilinear form

AGPR;eðse;/;gÞ ¼
XN
l¼1

sel ðLð/Þ;cLðgÞuGPR;e
l ÞL2ðXeÞ ð24Þ

on H1;diffðDe;XeÞ � H1;diffðDe;XeÞ and the linear functional

FGPR;eðse;gÞ ¼
XN
l¼1

sel ðf ;cLðgÞuGPR;e
l ÞL2ðXeÞ 8g 2 H1;diffðDe;XeÞ: ð25Þ

The Galerkin projected residual method (GPR) consist of finding
/h 2 Sh;k satisfying 8gh 2 Vh;k

Að/h;ghÞ þ
Xne
e¼1

se0ðLð/h
e Þ;Lðgh

e Þ j W
e j ÞL2ðXeÞ þ AGPR;eðse;/h

e ;g
h
eÞ

¼ FðghÞ þ
Xne
e¼1

se0ðf ;Lðgh
e Þ j W

e j ÞL2ðXeÞ þ FGPR;eðse;gh
eÞ: ð26Þ

The function We and the parameter se0 will be determined after the
parameters se1; . . . ; seN. It is possible to consider the function We

dependent on the parameters se1; . . . ; seN and on the base
uGPR;e

1 ; . . . ;uGPR;e
N .

To determine the vector se ¼ ðse1; . . . ; seNÞ via an appropriate cri-
terion for each specific problem, we shall determine the element
matrix of the GPR method as follows. Considering the restriction
of /h to Xe

/h
e ¼

Xnpel
j¼1

/̂h
eðjÞgj; ð27Þ
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where /̂h
eðjÞ denotes the value of /h

e on the local node ‘‘j” of Xe and gj

is the standard finite element polynomials restricted to the element
e and denoting AG;e

i;j and AGLS;e
i;j as ði; jÞ – entry of the element matrix

for Galerkin and a weighted GLS methods, respectively, we have

AG;e
i;j ¼

Z
Xe

ðD$gj � $gi þ u � $gjgi þ rgjgiÞdXþ
Z
Ce\Cr

agjgidC;

AGLS;e
i;j ¼ AG;e

i;j þ se0ðLðgjÞ;LðgiÞ j W
e j ÞL2ðXeÞ

ð28Þ

and

ðLð/h
e Þ;cLðgiÞu

GPR;e
l ÞL2ðXeÞ ¼

Xnpel
j¼1

/̂h
eðjÞðLðgjÞ;cLðgiÞu

GPR;e
l ÞL2ðXeÞ:

ð29Þ

From (29) and (12) follows

ðLð/h
e Þ;cLðgiÞu

GPR;e
l ÞL2ðXeÞ ¼

Xnpel
j¼1

/̂h
eðjÞA

GPR;l;e
ij : ð30Þ

IfMGPR;e denotes the element matrix of GPR method, then from (12),
(24),(26) and (28) follows that its ði; jÞ – entry denoted by MGPR;e

i;j is
given by

MGPR;e
i;j ¼ AGLS;e

i;j þ
XN
l¼1

sel A
GPR;l;e
ij : ð31Þ

Note that the GLS method can be considered as a first projection
of the residual of the differential equation, while the element ma-
trix of GPR method is formed by the usual part of Galerkin plus
Nþ 1 projections of residual of the differential equation at ele-
ment level including the GLS projection. Moreover, the linear
independence of the matrices AGPR;l;e

ij is crucial to add new stabil-
ization terms different of GLS term. The vector se with each com-
ponent corresponding to a residual projection can be determined
through some criterion adopted to improve the accuracy and/or
stability of the approximate solution for each specific problem.
In general, if we know an appropriate element matrix
‘‘AGLS;e þMgen;e”, generated by any stabilization criterion, then the
components of the vector se in (31) can be determined, for exam-
ple, by solving the following minimization problem at element
level.

Find se1; . . . ; seN that minimize the least square functional

FðMgen;eÞ ¼
Xnpel
i¼1

Xnpel
j¼1

XN
l¼1

sel A
GPR;l;e
ij

 !
�Mgen;e

i;j

" #2
; ð32Þ

or, equivalently

oFðMgen;eÞ
osek

¼ 0 8k 2 f1; . . . ;Ng ð33Þ

with Mgen;e
i;j denoting the ði; jÞ – entry of Mgen;e, which will be named

GPR-generating matrix.

Remark 1. A particular GPR method is derived for each specific
choice of the set of free parameters sel . This set of parameters can
be determined, as illustrated above, by knowing or postulating an
element matrix with the stability properties coherent with the
differential operator. With this strategy in mind, a consistent
variational formulation can be derived associated with any postu-
lated element matrix.

Remark 2. The set of parameters can also be determined using
information on the solution of the homogeneous or non homoge-
neous problem like in optimal or nearly optimal Petrov–Galerkin
formulations, multiscale or residual free bubble stabilizations.

Remark 3. In [64] a stabilization matrix obtained via standard dis-
persion analysis for the homogeneous Helmholtz equation is
adopted to develop a variationally consistent GPR formulation
capable to deal with the non homogeneous equation.

4. A GPR method for diffusion reaction problems

From now on, we only consider cL ¼ L and also restrict our
differential model problem to the diffusion–reaction equation,
e.g.,

Lð/Þ ¼ �$ � ðD$/Þ þ r/ ¼ f ð34Þ

with the reaction parameter bounded by

ðr0Þ2 6 r 6 ð�rÞ2 in X; ð35Þ

and the boundary conditions given in (5)–(7). As mesh parameter
we adopt

he ¼
Z
Xe

dX
� �1

n

: ð36Þ

Considering that successful stabilized finite element methods have
been already applied to reaction diffusion problems, such as the
gradient Galerkin least squares (GGLS) and the unusual stabilization
(USFEM), we design our method departing from a nontrivial combi-
nation of both. Indeed, the possibility of directly combining two sta-
bilizing formulations was explored in [64–66] aiming at obtaining
their best features. The possibility of combining stabilization terms
is also explored with success in the realm of fluid mechanics in [29].
Here we built the GPR matrix through the weighted stiffness matrix
inspired on the GGLS method

Ke
ij ¼

Z
Xe

ve;2rðJð$gjÞÞ � ðJð$giÞÞdX ð37Þ

and also using the stabilization matrix of the USFEM method to
introduce the weighted mass matrix

Me
ij ¼ �

Z
Xe

ve;1rgjgidX; ð38Þ

where ve;1 and ve;2 are dimensionless functions, understood as the
weights of the nontrivial combination mentioned above, and J is
the Jacobian matrix corresponding to the mapping between refer-
ence and actual elements. The resulting GPR-generating matrix
was adopted to reproduce the ability of the GGLS method in cap-
turing thin sharp layers along with the stable behavior obtained
by the USFEM when applied to problems where those layers are
no longer confined to thin regions. Indeed, as will be confirmed
by the numerical experiments reported in the next section, by
exploring this combination the GPR method developed here
achieves optimal convergence even in the presence of sharp gra-
dients. Fig. 1 presents numerical results illustrating typical insta-
bility of Galerkin approximations for a predominantly reactive
diffusion–reaction problem. We clearly observe the spurious oscil-
lations close to the boundary layers compared to the nodally ex-
act solution presented in Fig. 2. The well known GGLS
stabilization is capable of reducing these oscillations as shown
in Figs. 3 and 4. We also observe the improved performance of
GGLS method with bilinear elements (Fig. 3) compared to linear
elements (Fig. 4).

It is also worth mentioning that the expression inspired on the
GGLS method was used above as, indeed, (37) differs fundamen-
tally from the original form of the stabilizing GGLS term due to
the presence of the Jacobian J replacing the h2 in order to handle
distorted elements. This is also confirmed by the numerical tests.
Considering the definition of the Jacobian matrix J, we observe that
Ke

ij can be equivalently given by
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Ke
ij ¼

Z
Xe

ve;2rðJJ�1$locgjÞ � ðJJ
�1$locgiÞdX; ð39Þ

Ke
ij ¼

Z
Xe

ve;2r$locgj � $locgidX ð40Þ

with

$locg ¼ og
on1

; . . . ;
og
onn

� �
; ð41Þ

for quadrilateral elements and hexahedron elements, and

$locg ¼ og
oL1

� og
oLnt

; . . . ;
og
oLn

� og
oLnt

� �
ðnt ¼ nþ 1Þ; ð42Þ

for triangular elements and tetrahedral elements.
We will consider the simple version (without the term GLS and

with cL ¼ L) of the GPR method: Find /h 2 Sh;k satisfying
8gh 2 Vh;k

Að/h;ghÞ þ
Xne
e¼1

AGPR;eðse;/h
e ;g

h
eÞ ¼ FðghÞ þ

Xne
e¼1

FGPR;eðse;gh
e Þ ð43Þ

with the bilinear form Að�; �Þ and linear functional Fð�Þ, correspond-
ing to the Galerkin projection, as defined before and

AGPR;eðse;/;gÞ ¼
XN
l¼1

sel ðLð/Þ;LðgÞuGPR;e
l ÞL2ðXeÞ; ð44Þ

FGPR;eðse;gÞ ¼
XN
l¼1

sel ðf ;LðgÞuGPR;e
l ÞL2ðXeÞ: ð45Þ

For the elements Xe such that Mgen;e–0matrix the components of the
vector se ¼ ðse1; . . . ; seNÞ are determined as being the solution of the
minimization problem given by (32) and (33) considering the ma-
trix Mgen;e given by

Mgen;e ¼ Ke þMe ð46Þ

with

ve;1 ¼ 1e;0veðj 1� ve j Þ
1

1�ve

� �
; ð47Þ

ve;2 ¼ ðveÞ
1
ve

� �
1e;21e;0; ð48Þ

for

ve ¼ 1
ve;0ðPe

reatÞ þ Pe
reat

; ð49Þ

Fig. 1. Galerkin – bilinear elements.

Fig. 2. Nodally exact.

Fig. 3. GGLS – bilinear elements.

Fig. 4. GGLS – linear elements.
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where

Pe
reat ¼

6D

rðheÞ2
ð50Þ

and

ve;0ðPe
reatÞ ¼

1 if Pe
reat 6 1;

Pe
reat if Pe

reat > 1:

(
ð51Þ

We still need to determine the real constant 1e;0 and the dimension-
less function 1e;2. To this end, for eachXe and for eachXe0 we consider
½W�ee0 ðW 2 L2ðXÞ and We 2 H1ðXeÞ 8XeÞ being defined as follows:

½u�ee0 ¼
Z
Ce\Ce0

j ue �ue0 j dC; ð52Þ

which keeps track of possible discontinuities across element edges.
We also introduce Cint defined as

Cint ¼
[ne
e¼1

[ne
e0¼1

C�
ee0

 !
; ð53Þ

where

C�
ee0 ¼ C�

e0e ¼
ðCe \ Ce0 Þ if ð½f �ee0–0 or ½r�ee0–0 or ½D�ee0–0Þ;
£ if ð½f �ee0 ¼ 0 and ½r�ee0 ¼ 0 and ½D�ee0 ¼ 0Þ;

�
ð54Þ

which is the union of the external boundary with the internal edges
between two elements presenting discontinuous properties or
sources. It should be observed that for diffusion–reaction problems,
sharp layers will only occur inside an element Xe if Ce \ ðC [ CintÞ–
£.

Based on this observation and inspired on Refs. [31,38], we
accomplished a large number of computational experiments with
bilinear rectangular elements and linear triangular elements and
conclude that the following expressions for the real constant 1e;0
and the dimensionless function 1e;2 present very good stability
and accuracy properties

1e;0 ¼
0 if ððC [ CintÞ \ CeÞ ¼ £;

1 if ððC [ CintÞ \ CeÞ–£;

�
ð55Þ

1e;2 ¼

1e;q ðif Xe is a quadrilateral element
or is a hexahedron elementÞ;

1e;t ðif Xe is a triangular element
or is a tetrahedral elementÞ;

8>>><>>>: ð56Þ

where 1e;q for bilinear quadrilateral element and trilinear hexahe-
dron element and 1e;t for linear triangular element and linear tetra-
hedral element are, respectively, data as follows:

1e;q ¼ 2=3þ ðNe
face � 1Þ=6 if measC \ Ce > 0;

2=3 if measðC \ CeÞ ¼ 0;

�
ð57Þ

1e;t ¼
1e;q if ðC [ CintÞ \ Ce ¼ £;

ðPe
reatÞ

�ðveþ1Þ if ðC [ CintÞ \ Ce–£

(
ð58Þ

with Ne
face being the number of faces of Xe contained in C.

Remark 4. From (55) we observe that the extra computational
effort demanded by the proposed GPR formulation compared to
the Galerkin method is not significant as it corresponds basically to
the calculations of the stabilization matrices and forcing vectors of
the elements Xe such that Ce \ðC [ CintÞ–£. It must be empha-
sized that those elements are mapped beforehand, which signif-
icatively reduces the computational burden.

Remark 5. For GPR finite element approximations with polynomi-
als of degree bigger than 1, additional numeric experiments need
to be accomplished to validate the proposed expressions for 1e;q
and 1e;t .

5. Numerical results

To assess the overall performance of the proposed GPR method,
a comprehensive number of numerical tests were carried out. Spe-
cial emphasis was placed in sharp layers and distorted meshes,
which often are present on real applications. We will only describe,
along their corresponding results, the most significant numeric
experiments.

The assessment of our method was accomplished through the
use of examples with exact solutions, and comparisons with well

Fig. 5. Nonuniform mesh – quadrilaterals.

Fig. 6. Nonuniform mesh – triangles.

Fig. 7. USFEM – bilinear elements.
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known stabilized formulations were also considered here.
Those comparisons are not intended to be exhaustive through
encompassing all methods dealing with stabilized formulations.
Only some amid those focused on the diffusion–reaction problem,
which in their turn have been already compared to many others,
were used to support the conclusions concerning the good perfor-
mance of the method introduced here. We will denote by ‘‘EMM”
(enriched multiscale method) the method presented in reference
[46], ‘‘USFEM” (unusual stabilization) the method presented in
[38] and ‘‘ASGS” (algebraic subgrid scales) the method introduced
in [37,43].

Fig. 8. ASGS – bilinear elements.

Fig. 9. GPR – bilinear elements.

Fig. 10. Nodally exact.
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5.1. Quadrilateral domain using non uniform meshes

This experiment demonstrates the performance of GPR method
when applied to a reaction dominated problem defined over a
quadrilateral domain of vertices (0.5, 0.0), (1.5, 0.0), (2.0, 2.0) and
(0.0, 1.0) with D ¼ 10�6, r ¼ 1, f ¼ 1 and homogeneous Dirichlet
boundary conditions.

Special emphasis is placed on the use of non uniform meshes.
Results were obtained for the mesh of quadrilateral elements
shown in the Fig. 5 and for the mesh of triangular elements shown
in the Fig. 6. Results in 3D plots for ‘‘USFEM”, ‘‘ASGS”, ‘‘GPR” and
nodally exact solutions are presented in Figs. 7–10, respectively,
for the mesh of 20 � 20 quadrilateral elements. As Ref. [46] does
not present the corresponding formulation for distorted quadrilat-
eral elements, we did not present results for the method denomi-
nated ‘‘EMM”. Clearly, we can observe the great performance of
the ‘‘GPR” method, showing that the effects of the distortion on

Fig. 13. USFEM – linear elements.

Fig. 14. ASGS – linear elements.

Fig. 15. GPR – linear elements.

Fig. 16. Nodally exact.
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the elements do not cause loss of accuracy and stability, maintain-
ing the accuracy and the stability observed with uniform meshes.
However, the effect of the distortion on the elements is clearly ob-
served for the methods ‘‘USFEM” and ‘‘ASGS”, with evident losses
of accuracy and stability. Figs. 11 and 12 present 2D plots compar-
ing these solutions in two sections.

Similar results in 3D plots are presented in Figs. 13–16 for the
mesh of 800 triangular elements. Once more, we can observe the
great accuracy and stability of the methods ‘‘GPR” and presenting
equivalent performance, and indicating again that the effects of
the distortion on the elements do not cause loss of accuracy and
stability. Again, it is clear the effect of the distortion on the

elements for the methods ‘‘USFEM” and ‘‘ASGS”, with remarkable
losses of accuracy and stability. In this case the ‘‘EMM” method,
not shown here, presents performance to the ‘‘GPR” method.
Figs. 17 and 18 present 2D plots comparing these solutions in
two sections.

5.2. Convergence study

The second numerical experiment consists of obtaining the con-
vergence rates expressed in terms of L2ðXÞ and H1ðXÞ norms for the
problem defined over the quadrilateral domain given in Section 5.1
above, with r ¼ 1; f ¼ ð2p2Dþ 1Þ sinðpxÞ sinðpyÞ and boundary
conditions / ¼ sinðpxÞ sinðpyÞ on C. The results were obtained
for quadrilateral meshes with partitions 10 � 10, 20 � 20, 40 �
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40, 80 � 80 and 120 � 120 and for triangular meshes with 400,
1600, 3600, 6400 and 10,000 elements. The convergence results
are presented in graphs �LogðHmeshÞ � LogkErrork in the natural
basis, where Hmesh ¼ ðneÞ

1
2, kErrork ¼ k/� /hkL2ðXÞ or kErrork ¼

j /� /hjH1ðXÞ with ne denoting the number of elements, n the
dimension of the domain and j �jH1ðXÞ the H1-semi-norm. The quad-
rilateral mesh 20 � 20 is shown in the Fig. 5 and the triangular
mesh with 800 elements in the Fig. 6. The convergence study
was performed for different values of the diffusion coefficient,
e.g., D ¼ 1, D ¼ 10�3 and D ¼ 10�6. Results for quadrilateral meshes
are presented in Figs. 19, 21 and 23 and for triangular meshes are
presented in the Figs. 20, 22 and 24, for different values of the dif-
fusion coefficient D. Clearly, for all values of D tested, the GPR
method presents optimum rates of convergence.

6. Conclusions

The inability of purely Galerkin formulations on generating ro-
bust and stable FEM’s capable of handling, for instance, sharp gra-
dients, has pushed the design of the so called stabilized
formulations. The present contribution fits within this context. It
is devoted to introduce a new consistent FEM to be applied to dif-
fusion–reaction boundary value problems. It is built upon a generic
methodology, refereed to as GPR due its main characteristics,
which permits to obtain a family of methods that depend on the
choice of the GPR-generating matrix and on the cL operator at ele-
ment level. The GPR-generating matrix encodes information about
features of the exact solution to be pursued. The formulation is va-
lid for any space dimension and any order of local basis functions.
For each operator and local approximation space the GPR method
introduces a maximum number of free parameters via multiple
projections of the residual at element level. These free parameters
can be determined by appropriate criteria allowing to find the
solution in the continuous finite dimensional space Sh that best
approximates the exact solution. The element matrix of several
stabilized methods (as, for example, the methods presented in
Refs. [37,38,43]) can be obtained departing from GPR method tak-
ing into consideration appropriate choices of parameters.

Using the proposed methodology, a new stabilized method of
the class GPR was developed for diffusion–reaction problems
requiring extra computational effort when compared to typical
Galerkin formulations. This extra effort is handled with a pre-pro-
cessing, not representing a real burden, restricted to the elements
Xe such that Ce \ ðC [ CintÞ–£. The GPR framework is able to re-
trieve well explored stabilized finite element formulations like
the GLS and these can be cast as derivations from the abstract mul-
tiscale approach (VMS) introduced in [15]. We believe that there is
a connection between GPR and multiscale approaches that should
be explored in the near future.

A comprehensive number of numerical experiments was under-
taken in order to assess and analyze the proposed method. They
clearly indicate that the new method possesses a great perfor-
mance in terms of accuracy and of stability which compensates
the extra computational effort. Moreover, it was possible to embed
in generating matrix the mesh distortion what we are convinced
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helped on reducing the sensitivity of the solution to mesh distor-
tions frequently found in real applications.

The presented results are representative as they deal with both
regular situations and some presenting sharp layers. A study with a
typical regular problem indicates that the proposed method pre-
sents optimum convergence rates. Boundary layers were captured
with high precision as well.

It should be observed, that the methodology GPR can be used
to obtain different stabilized formulations with even better
performance when compared to the one introduced here, once
a more efficient GPR-generating matrix can be proposed. In [64]
the GPR method was applied to Helmholtz equation and as
result was obtained a finite element formulation with minimal
pollution. The good performance of the proposed formulation
obtained for diffusion–reaction problem and Helmholtz equation,
stimulates to apply the GPR methodology to other problems in
future works, for example, non linear problems, Helmholtz prob-
lems in non structured meshes, advection problems and vector
systems.
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