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MAXIMUM DRAWDOWN: MODELS AND APPLICATIONS

Abstract

Financial series may possess fractal dimensions which would induce cycles of many dif-

ferent durations. This inherent characteristic would explain the turbulent cascades in

stock markets when strong local dependence is observed. A drawdown is defined as the

percentual accumulated loss due to a sequence of drops in the price of an investment. It

is collected over non-fixed time intervals and its duration is also a random variable. The

maximum drawdown occuring during a fixed investment horizon is a flexible measure that

may provide a different perception of the risk and price flow of an investment. In this

paper we propose statistical models from the extreme value theory for the severity and

duration of the maximum drawdown. Our empirical results indicate that there may exist

a relation between the pattern of the GARCH volatility of an investment and the fluc-

tuations of the severity of the maximum drawdown and that, typically, extreme (but not

outlying) maximum drawdowns occur during stress periods of high volatility. We suggest

applications for the maximum drawdown, including the computation of the Maximum

Drawdown-at-Risk with exceedance probability α, and the classification of investments

according to their performance when controlling losses via the maximum drawdown.

Key Words: Drawdown; Drawup; Maximum Drawdown-at-Risk; Extreme value distrib-

utions; GARCH volatility.

Clients of financial institutions usually follow closely the performance of their in-

vestments, even when these are not meant for short term objectives. Although high

volatility raises tension, a sequence of consecutive drops in the price of a portfolio

may take the investor to withdraw from the market. On the other hand, a long

lasting sequence of drops may be an extreme test for traders and their trading

methodology. Traders typically fix a small proportion 0 < p < 1 such that, if the

capital available is less than p times the initial capital, the investment is withdrawn.

A drawdown is defined as the loss in percentual from the last local maximum to

the next local minimum of an investment. Similarly, a drawup is defined as the gain
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from the last local minimum to the next local maximum of an investment. Both

quantities are collected over non-fixed time intervals and their durations are also

random variables. Risk measures based on the drawdown may provide a different

perception of the risk and price flow of an investment. They may be seen as a

complementary approach beyond the standard deviation and Value-at-Risk.

An important characteristic of a drawdown is that it is defined over highly cor-

related data. Many successive drops of a stock price suggest the existence of a

time dependent subordinated process causing local dependence. This topic was

first introduced by Mandelbrot [1967] in the context of modeling some aspects of a

phenomenon showing an intermittent turbulence. According to Mandelbrot [1972,

1997]), financial time series would possess fractal dimensions which would induce

cycles of many different durations. This inherent characteristic would explain the

turbulent cascades in stock markets, the fat tails returns distributions, and the pres-

ence of long memory in stock returns and squared stock returns. Here we focus in

the statistical modeling of these sequences of losses (gains) in stock markets.

Previous literature addressing the problem of obtaining the probability distribu-

tion of the drawdown includes Johansen and Sornette [2001], that used the Stretched

Exponential to model the drawdown severity from indexes, commodities and curren-

cies. They found that typically this distribution fits well the bulk of the data, but

under-estimates one to ten extreme observations. Mendes and Brandi [2003] empir-

ically showed that the Modified Generalized Pareto distribution and its sub-models

fit very well the drawdown data, including most of those observations previously

found to be atypical.

Other works focused on the usefulness of this measure in financial applications.

For example, Chekhlov et al. [2000] introduced the conditional Drawdown-at-Risk

(DaR) as an optimality constraint to obtain optimal portfolio allocation (see also

Palmquist et al 1999).

In this paper we are interested in charactering the distribution of the maximum

drawdown occurring during a fixed time period. We consider two definitions of the

maximum drawdown and propose models from the extreme value theory for each

one. We discuss which modeling strategy would be more operational to be used on a

daily basis. Previous work of Acar and James [1997] also studied the distributional

properties of the maximum drawdown. However, they started by assuming a normal
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distribution for the daily returns.

We provide an illustration using three stock indexes. Our empirical results indi-

cate that there may exist a relation between the pattern of the GARCH volatility

of an investment and the fluctuations of the severity of the maximum drawdown.

We observed that typically extreme (but not outlying) maximum drawdowns occur

during stress periods of high volatility. Our empirical findings also suggest that long

lasting maximum drawdowns may occur during periods of low volatility and in this

case they might be considered outliers. We recall that in many cases, traders, fund

managers, and investors can handle periods of large volatility, but cannot handle a

long string of consecutive losses.

Then we estimate the probability distribution of the maximum drawdown for

the three indexes. We show that the empirical distribution when compared to the

estimated one, underestimates high quantiles of the distribution of the maximum

drawdown. The best fitted model is used to compute the risk measure MDaRα,

the Maximum Drawdown-at-Risk with exceedance probability α. We note that the

Value-at-Risk with exceedance probability α, the VaRα, is a downside risk measure

concerned with a single loss. The MDaRα, being a sum of individual correlated

losses, is a new type of multi period downside risk measure. It may be seen as

an upper bound for the loss resulted by a marked-to-market investment during a

certain period and therefore as a useful concept in determining market risk. The

knowledge of its statistical model may help to set aside bank capital during a fixed

period to absorb losses from that investment.

Another application suggested is the classification of investments according to

their performance when controlling losses via maximum drawdowns. Acar and

James [1997] used the maximum drawdown to investigate portfolios’ and funds’

performances. We envision the use of their estimated densities to discriminate the

portfolio’s performances, to check, for example, the potential benefits from inter-

national diversification. In fact, the objective of this paper was rather to open up

several suggestions for applications using the proposed models for the maximum

drawdown than to carry on extensive investigation on them.

The remaining of this paper is as follows. In Section 2 we give two definitions of

the maximum drawdown, propose statistical models for its severity and duration,

estimate the models for three stock market indexes, and investigate the relation
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between the fluctuations of the maximum drawdown and the GARCH volatility of

the daily returns. In Section 3 we suggest applications for the maximum drawdowns

and compute the MDaRα risk measure. In Section 4 we summarize our findings and

provide directions for further works.

Statistical Models for the Maximum Drawdown

Definitions

Let Pt denote the price of an investment at day t. Let rt denote the percentual

logarithm daily return, i. e., rt = (lnPt − lnPt−1) ∗ 100, and assume {rt}t≥1 is
a stationary sequence. We will consider two different definitions of the maximum

drawdown3. Even though they result in similar data sets, they admit different

statistical modeling approaches.

Definition 1. Let Pk be a local maximum and Pl be the next local minimum. This

means that Pk > Pk+1 ≥ · · · ≥ Pl, with l−k ≥ 1, k ≥ 1. A drawdown is then defined
as Xi = (lnPl− lnPk) ∗ 100, i = 1, 2, .... Consider a fixed period of N business days,

and the collection of drawdowns X1, ..., XT , T < N , occurring during this period.

Definition 1 states that the maximum drawdown is M = min(X1, ..., XT ).

Definition 2. Let Pk, Pl, and N be as in Definition 1. A drawdown is now defined as

Xi = rk+1+rk+2+ · · ·+rl, i = 1, 2.... Consider the collection of T drawdowns occur-
ring during the N business days. Definition 2 states that the maximum drawdown

is M = min(X1, ..., XT ). Note that now we can write the (maximum) drawdown as

3A third definition may also be considered. It is relevant when one is considering marked-to-

market investments. Let rt be the daily log-returns and consider a fixed period of N business

days. Consider the partial sums of consecutive returns r1, r1 + r2, ..., r1 + r2 + ...+ rN occurring

during this period. This definition states that the maximum drawdown is the smallest partial sum

of daily returns, i.e.,

M = min(

j

t=1

rt , j = 1, 2, ..., N) .

Note that this definition involves positive and negative log-returns whose sums represent the

marked-to-market investment value.
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a (smallest) random sum of daily log-returns, i.e,

M =
D

j=1

rk+j ,

for some 1 ≤ k ≤ N , and where D is the length of the sequence of negative returns.

It is easy to see that the two definitions are equivalent, resulting in the same data set.

However, Definition 2 opens up the possibility of modeling separately the duration

D of a drawdown and the severity rt of losses (mimicking the classical risk model in

Actuary, see next section).

The classical actuarial homogeneous risk model

One of the main topics in classical risk theory in actuary is the modeling of the

total excess claims amount S occurring during the lifetime of a contract, usually one

year. The basic assumption is that S = D
i=1 Yi, where Yi are the iid excess losses

independent of D, the random number of claims exceeding the retention limit u in

one year. It is suggested to obtain the distribution of S by convolutions, to model

D using a Negative Binomial (NB(k, p)) or a Poisson distribution (Poisson(λ)), and

to model Y using a Gamma or a Pareto distribution.

We apply this modeling structure to the maximum drawdown obtained from

Definition 2. Thus, we model separately the number of consecutive losses D (the

duration of the maximum drawdown) and the severity of the negative returns rt,

obtaining by convolution the distribution of M :

Pr{M < s} = Pr{D = 0}+
∞

d=1

Pr{r1 + · · ·+ rd < s}Pr{D = d}. (1)

To model D we experiment the NB(k, p), the Poisson(λ), and also a truncated

Poisson since the value zero is never observed. We note that the drawdowns obser-

vations, having aggregated data possessing short range dependence, may be thought

as independent. Estimates are obtained by maximum likelihood and the chi-square

test statistic (given in the next subsection) is used to test the good quality of the

fits to the observations of D. The rts are modelled using a distribution given in the

next subsection.
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Models from the extreme value theory

Recently we have seen a large amount of research applying techniques from the

extreme value theory (EVT) in the computation of risk measures. Examples include

Danielsson and de Vries [1997], McNeil [1998], Embrechts, McNeil, and Strauman

[1999], McNeil and Frey [2000], Embrechts [2000], etc. For a comprehensive review

of methodologies based on EVT models, see Focardi and Fabozzi [2003].Many of

these applications rely on theoretical results from a branch of the EVT, a collection

of methodologies arranged under the general name of peaks over threshold (POT)

methods. The derived techniques usually apply the generalized Pareto distribution

(GPD) to model the extreme tails of the underlying distribution.

Let X represent our random variable of interest, the drawdown, let FX represent

its distribution function, and let X1, X2, ... be observations of FX . Mendes and

Brandi [2003] empirically showed that drawdowns may be well modelled using the

modified generalized Pareto distribution (MGPD), a flexible extension of the GPD.

The POT stability property (Embrechts, Klüppelberg, and Mikosch, 1997) implies

that the tail of an MGPD should also be an MGPD. By noting that the maximum

drawdown is a tail event, we propose the MGPD as the model distribution for the

maximum drawdown from Definition 1. The flexibility of this distribution allows us

to consider it for modeling the negative returns composing the maximum drawdown

from Definition 2.

The MGPD was proposed in Anderson and Dancy (1992) and has distribution

function given by

Gξ(m) =
1− (1 + ξm

γ

ψ
)−1/ξ, if ξ = 0

1− e−mγ

ψ , if ξ = 0 ,
(2)

where γ ∈ is the modifying parameter. When γ < 1 the corresponding densities

are strictly decreasing with heavier tails; the GPD is recovered by setting γ = 1;

γ > 1 induces concavity.

In the applications that follow, the MGPD is fitted to data by maximum likeli-

hood. We chose to estimate by maximum likelihood because these estimates possess

good (asymptotic) properties and allow the use of well known statistical tests. Let

m1, ...,mn represent the data. The maximum likelihood estimates of the full model

MGPD(γ, ξ,ψ) are obtained by maximizing the logarithm of the likelihood function
n
i=1 g(γ, ξ,ψ;mi), where g(γ, ξ,ψ;mi) is given by
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g(γ, ξ,ψ;mi) =
(1 + ξψ−1mγ

i )
−1−ξ
ξ ψ−1γmγ−1

i , if ξ = 0

e−ψ
−1mγ

i ψ−1γm(γ−1)
i , if ξ = 0 .

(3)

Maximum likelihood estimates are also obtained for the three nested constrained

models: 1) MGPD(γ, 0,ψ), the constrained modified generalized Pareto (CMGPD,

also known as the Weibull distribution); 2) MGPD(1, ξ,ψ), the GPD; and 3)

MGPD(1, 0,ψ), the unit exponential distribution.

The likelihood ratio test is used to discriminate between the nested models.

Standard errors of the estimates and confidence intervals based on simple Bootstrap

techniques may also be easily obtained. Goodness of fits are graphically checked by

means of qq-plots.

We formally test the goodness of fit using the Kolmogorov test whose test statis-

tic is Tn = maximax{ in −F0(m(i)), F0(m(i))− (i−1)
n
}, where m(1) ≤ m(2) ≤ ... ≤ m(n)

are the ordered observations of the maximum drawdown M , n is the sample size,

and F0 is the distribution of M under the null hypothesis. Large values of the test

statistic leads one to reject the null hypothesis and to conclude that M is not well

modeled by F0. Critical values for small sample sizes are obtained in (Bickel and

Doksum, 2001).

Illustration

We now provide an illustration of the modelling strategies proposed for the maximum

drawdowns from Definition 1 and from Definition 2. Since the two definitions result

in the same data set, it would be interesting to find out which one would provide a

more accurate fit to the data. To this end we use daily closing prices of three stock

indexes. Two are from developed markets, the US Nasdaq and the British FTSE.

The third is the Brazilian IBOVESPA, a volatile market.

Descriptive Analysis

We start by collecting data in blocks of 6 months which correspond to approximately

N = 130 working days (corrections were made when necessary to assure that the

block did not end during a run of consecutive losses). Simple statistics based on

the observations of the iid sample M1,M2, ...,Mn of the maximum drawdown M for

the three indexes are given in Table Exhibit 1. This table provides the sample size
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s of closing prices, the period covered (month and year), the number of maximum

drawdowns collected (n), the smallest Ms, the median Mm, and the largest Ml

maximum drawdown, the median and the longest duration in number of days of

the maximum drawdowns (Dme and Dma), the mean block size of consecutive daily

returns (business days) Bmean, and the mean number bmean of drawdowns within

blocks.

Exhibit 1: Simple statistics of maximum drawdowns from the three indexes.

Index s Period n Ms, Mm, Ml (%) Dme - Dma Bmean bmean

Nasdaq 7959 08/71 - 08/02 61 -29.18, -5.71, -2.07 5 - 16 130.5 26.13

FTSE 4316 06/84 - 08/02 33 -24.51, -4.94, -2.14 5 - 7 130.3 31.21

IBOVESPA 2171 04/94 - 12/02 16 -42.51, -13.89, -4.42 4 - 7 130.3 30.69

Notation in table: s: sample size of closing prices; n: number of maximum drawdowns collected;

Ms,Mm, Ml: the smallest, median, and largest maximum drawdown; Dme and Dma: median

and maximum durations in number of days; Bmean: mean block size; bmean: mean number of

drawdowns within blocks.

The Nasdaq series yielded a sample of n = 61 maximum drawdowns with 23 of

them lying between -4% and -6%. They seem to last longer than those from the

other two indexes, as indicated by the numbers in Table Exhibit 1. For the FTSE,

more than half (17) of the 33 maximum drawdowns lied between -4% and -6%. This

concentration of observations is an indication that the concavity of the density of

an MGPD with γ > 1 should provide a good fit. The IBOVESPA provided a quite

different picture. The severity of its maximum drawdowns is greater with all of

them smaller than -4%.

Models Fitting

We first fit the MGPD models to data of maximum drawdowns from Definition 1.

For the Nasdaq, the best fit (and estimates) turned out to be the MGPD(γ =

2.03, ξ = 0.71,ψ = 39.55). For the FTSE it is the MGPD(γ = 3.58, ξ = 1.17,ψ =

342.37), and for the IBOVESPA we found a MGPD(γ = 1.45, ξ = 0.0,ψ = 72.07).

The FTSE fit was poor for the smallest observation which showed up as an outlier

(the second smallest is -14.45%), as we can see in the qq-plot at the left hand side

of Figure Exhibit 3.

Then, we find the distribution of M based on the random sum approach. We

collect the whole set of K negative daily returns composing all the n maximum
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drawdowns. That is, K = d1 + d2 + ... + dn, with di being the duration of Mi,

i = 1, ..., n. Usually K is large. For the Nasdaq K = 316 and approximately half

of the losses are greater than -1%. The FTSE data contain two very large outliers,

-13.03% and -11.48%, quite distant from the third largest daily loss which is -5.88%.

Data summaries of the three (very left skewed) data sets and the value of K are

given in Exhibit 2.

Exhibit 2: Simple statistics of daily negative returns composing the maximum drawdowns

from Definition 2.

Index Smallest Median Mean Largest K

Nasdaq -12.0500% -0.9674% -1.5200% -0.0104% 316

FTSE -13.0300% -0.9451% -1.3710% -0.0186% 149

IBOVESPA -17.2100% -3.3520% -4.1950% -0.0368% 69

The extreme value nested models are fitted to the losses data. The standard log-

likelihood ratio test indicated as best fits for the Nasdaq, FTSE and IBOVESPA,

respectively, theMGPD(γ = 1.17, ξ = 0.2573,ψ = 1.31), theMGPD(γ = 1.37, ξ =

0.4199,ψ = 1.11) and the MGPD(γ = 1.20, ξ = 0.0,ψ = 5.99).

Figure Exhibit 3 compares the two MGPD fits on data from definitions 1 and

2 in the case of the FTSE index. On the left hand side we show the fit on the

33 observations of maximum drawdown from Definition 1. At the right hand side

we can see the good adherence (except for the two extreme observations) of the

MGPD fit to the 149 negative daily returns composing the maximum drawdowns

from Definition 2.

The Kolmogorov goodness of fit test confirmed the good adherence of all six

MGPD fits obtained so far. For example, in the case of the FTSE fits shown in

Figure Exhibit 3, the values of the test statistic Tn are, respectively, 0.1115 and

0.0416. These should be compared to the critical values of 0.2400 and 0.1100, at

the 5% confidence level. Similar results were found for the other two indexes.

Next, we estimate the distribution of D, the random number of daily losses

composing the maximum drawdown. The empirical distribution is given in Table

Exhibit 4, where we note that the most probable duration of the maximum draw-

down, in number of days, is 3, 5, and 4, respectively for the Nasdaq, FTSE and

IBOVESPA. They never lasted only one day.
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FTSE Maximum Drawdown - Definition 1
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Exhibit 3: QQ-plots of the FTSE MGPD fits on the maximum drawdowns obtained from

Definition 1 (at left) and for all losses composing the maximum drawdowns from Definition

2 (at right).

In the three cases we strongly rejected goodness of fit for the Negative Bino-

mial. For the Nasdaq duration data we also rejected the Poisson and the Truncated

Poisson distributions. For the FTSE we accepted the Poisson (p-value=0.53 and

λ = 4.515) and the Truncated Poisson (p-value 0.29 and λ = 4.463) fits. For the

IBOVESPA we did not reject goodness of fit for the Poisson (p-value=0.577 and

λ = 4.312) and rejected for the Truncated Poisson (p-value 0.025). So, we model

D, the number of consecutive negative returns composing the maximum drawdowns

from Definition 2, for the Nasdaq using the empirical distribution, and for the FTSE

and the IBOVESPA using the Poisson distribution.

Using expression (1) we obtain by convolutions the distribution ofM for the three

indexes. They are the lighter lines of Figure Exhibit 5, for the Nasdaq (first row)

and IBOVESPA (second row). The entire distribution functions are shown at the

right hand side of this figure. At the left hand side we take a zoom on the tail of the

distributions, and consider probabilities between 0.90 and 1. Figure Exhibit 5 also
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shows the distribution function of the maximum drawdown obtained from Definition

1, in darker lines. The distributions obtained under the two methodologies seem to

be close to each other. However, for the Nasdaq and for very small probabilities,

the quantiles under the simple approach (Definition 1) are much more extreme.
Exhibit 4: Empirical distribution of the durations of maximum drawdowns from definitions

1 and 2 and for the three indexes.

Index Duration (number of days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nasdaq 0 .08 .20 .15 .20 .13 .11 .06 .02 .03 0 0 0 0 0 .02

FTSE 0 .09 .15 .24 .28 .15 .09 0 0 0 0 0 0 0 0 0

IBOVESPA 0 .12 .12 .38 .13 .19 .06 0 0 0 0 0 0 0 0 0

To decide which modeling strategy may provide the best fit for the maximum

drawdown we rely on the Kolmogorov test described in Section 2.3. For each index

and for each fitted distribution using (Definition 1, Definition 2) we compute the

test statistic Tn. Their values are equal to (0.1278, 0.1299), (0.1115, 0.2216), and

(0.1539, 0.1699), respectively for the Nasdaq, FTSE, and IBOVESPA. Based on the

critical values (respectively, 0.171, 0.240, 0.350) we conclude that we do not have

enough evidence to reject the null hypothesis of good adherence to the data for

all six fits. In the case of the FTSE, the values indicate that the simple approach

using Definition 1 may be the preferred one. In the case of the Nasdaq, the two

methodologies provided close values for the test statistic, but Figure 2 suggests that

for extreme quantiles the simple approach may be more conservative. In the case of

the IBOVESPA, the approach based on Definition 1 also provided a slightly better

fit.

We should note that modeling via the random number of daily losses is more

computationally intensive and may be less attractive to be used on a daily basis.

However, for a large enough data set, whenever a good fit for the duration D can be

found, one should consider the second approach as an interesting and sophisticated

modeling alternative. In addition, finding the distribution of the duration of a crisis

has much appealing by its own.

From now on we keep the best approach which is the the simple modeling of

M from Definition 1, and use the estimated distribution MGPD(γ̂, ξ̂, ψ̂) of the

maximum drawdown in applications.
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Exhibit 5: The estimated distribution functions (zoom at left) of the 6-months maximum

drawdown from definitions 1 (darker) and 2 (lighter), for the Nasdaq and IBOVESPA.

Applications

The MDaRα risk measure

Like the unconditional Value-at-Risk, the Maximum Drawdown-at-Risk (MDaRα)

is just a quantile with exceedance probability α of the distribution of the maximum

drawdown. It is a measure of the maximum possible (cumulated) loss that an

investment may incur during a fixed horizon. It is thus a downside risk measure that

may be used, for example, to discriminate and classify stock markets. To illustrate,

we use the three indexes and the six fits of the last subsection and compute the

MDaRα. Actually, they are the quantiles shown in the zooms of Figure Exhibit 5.

In Table Exhibit 6 we give the MDaRα for α = 0.05, 0.01, 0.001, together with the

empirical estimates.

In Table Exhibit 6 we note that the simple approach provided more conserva-
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tive estimates for the three indexes. For α = 0.01, the MDaRαs for the Nasdaq

and IBOVESPA are, respectively, -35.36% and -54.78%. However, for α = 0.001,

the values -79.87% and -72.45% suggest that there may exist less difference in the

extreme tails of these markets.

Exhibit 6: MDaRα empirical and based on Definition 1 estimates.

MDaRα

Empirical (n) Definition 1 - MGPD

Index (n) 0.01 0.05 0.01 0.05

Nasdaq (61) – -17.5 -35.36 -19.42

FTSE (33) – -24.18 -22.09 -12.94

IBOVESPA (16) – -42.43* -54.78 -40.72

Notation in table: −42.43∗ approximated value.
It is worth to investigate if the Maximum Drawdown-at-Risk is a coherent mea-

sure of risk in the sense of Artzner et all. [1998]. To see that, let D1 and D2 be

the maximum drawdowns corresponding to the portfolios (or stocks) X1 and X2.

Let MDaRα(Xi) represent the Maximum Drawdown-at-Risk associated to portfolio

Xi, i = 1, 2. Assume that the distributions F1 and F2 of D1 and D2 belong to a

Pareto family. Note that MDaRα(Xi) = F
−1
i (1 − α). Under comonotonicity (that

is, ρ(X1, X2) = 1, which implies ρ(D1, D2) = 1) it is easy to show that

F−11 (1− α) + F−12 (1− α) = F−1(D1+D2)(1− α) ,

where F(D1+D2)(·) represent the distribution of the sum D1 +D2.

According to results in Embrechts et al. [1999], for (1−α) large enough, whenever
F1 and F2 are heavy tails distributions we have that

F−1(D1+D2)(1− α) < F−11 (1− α) + F−12 (1− α).

Now, let FD be the distribution of the maximum drawdown obtained from the

portfolio (X1+X2). Under comonotonicity we obtain F
−1
(D1+D2)

(1−α) = F−1D (1−α).
We wonder that for ρ(X1, X2) < 1 the distribution FD possesses lighter tails than

FD1+D2 . This would make the MDaRα a subadditive measure of risk:

MDaRα(X1 +X2) < MDaRα(X1) +MDaRα(X2).
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It is easy to see that the MDaRα, being a quantile, also possesses the other properties

required by Artzner, Delbaen, Eber, and Heath [1998] for a coherent measure of risk.

In fact, it is a location and scale invariant positive measure.

The Maximum Drawdown fluctuations

We wonder if there would exist a relation between the maximum drawdown sizes

fluctuations and the corresponding daily returns (fractionally integrated) GARCH

volatility. In particular we wonder if extreme maximum drawdowns would occur

during periods of large volatility and whether or not the extent of the degree of

fractional integration is related to the weight of the tail of the maximum drawdown

distribution. This seems reasonable since during crisis extreme returns are observed.

We checked this out for the three indexes.

For example, Figure Exhibit 7 shows the Nasdaq series of daily returns super-

posed by two times its GARCH volatility (fractional parameter d = 0.46) and the

values of its 6-month maximum drawdowns, plotted at the end of their durations.

We observe that the maximum drawdown seems to follow the fluctuations of the

volatility of the daily returns with “outlier” maximum drawdowns occurring during

stress periods. The extreme drawdowns of severities -28.53% and -29.17%, respec-

tively, occurred during the crisis of October, 1987, and April, 2000. This feature

was also observed for the other two indexes.

An interesting finding of this empirical analysis is that among the three data sets,

the longest observed duration (16 business days) occurred for the Nasdaq during a

period of low volatility (first and second weeks of February, 1984)4. Its value is

large, -13.20%, but not extreme if compared to the minimum of -29.17%. Even

though it is the 8th smaller Nasdaq maximum drawdown, we see this value as an

outlier, because it is extreme when compared to those observed during periods of

low volatility. It corresponds to position 3284 in Figure Exhibit 7, and can be seen

at the upper plot, where we represent the maximum drawdowns durations using

vertical bars. We recall that even when the sizes of drops are small, a drawdown

duration large enough may induce investors to give up of their investment, or a

portfolio manager to change positions.

4This may be related to the presence of long memory in the mean and variance of daily returns.
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Exhibit 7: At top, the maximum drawdown values plotted at the end of their durations. At

the bottom, the Nasdaq series of daily returns superposed by 2 times its GARCH volatility.

We also consider the possibility of the existence a common pattern in the behav-

ior of drawdowns and drawups among markets. Figure Exhibit 8 shows the maxi-

mum drawdowns and drawups from the Nasdaq and the FTSE in time. These are

observations from January 6, 1984 to August 15, 2002. We note that the maximum

drawdowns’ and drawups’ fluctuations follow a similar pattern, although possess-

ing different magnitudes. This might be an indication of globalization and con-

tagion. Actually, we could identify the extreme maximum drawdowns of -24.51%

and -28.25% respectively for the Nasdaq and FTSE, during the global crisis around

October, 20, 1987 (approximately position 960 in Figure Exhibit 8).
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Exhibit 8: Nasdaq (dark) and FTSE (light) maximum drawups and drawdowns plotted at

the end of their durations.

However, at the end of the series we observe extreme maximum drawdowns just

for the Nasdaq (-29.17% and -25.66%). This also makes sense since we now identify

a local crisis.

Conclusions

In this paper we proposed statistical models for two different definitions of the max-

imum drawdown (drawup). We focused on statistical modeling issues and empirical

investigation of the usefulness of derived risk measures. We proposed extreme value

distributions for modeling the maximum drawdown (drawup) which were fitted by

maximum likelihood. Formal statistical tests were carried on to test goodness of

fits.

The proposed modeling strategies were illustrated using three stock market in-

dexes. For these data we found that the fluctuations of the maximum drawdown
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(drawup) may be related to the daily returns (fractionally integrated) GARCH

volatility. The behavior of the maximum drawdown severities may reflect local and

global crisis and may therefore be a common pattern among (correlated) markets.

We suggested applications for the maximum drawdown (drawup) estimated dis-

tributions. We computed the Maximum Drawdown-at-Risk α, the MDaRα, and

argued that it may be considered a coherent measure of risk. The model based

estimates were compared to the empirical ones. The MDaRα may also be used as

constrains in portfolio optimization procedures. The authors have experimented

using the maximum-drawdown estimated distributions in this useful application of

selecting investments.

We leave for future work a comprehensive empirical investigation of the findings

suggested in this paper. There are many open possibilities such as comparisons of the

performance of portfolios using the MDaRα (for example, diversified and non diver-

sified, classical and robust, etc.); the assessment of effect of the maximum drawdown

block size on the results obtained; comparisons involving other distributions (for in-

stance, the GEV extreme value distribution) for the maximum drawdown (drawup)

data; comparisons involving other estimation methods, including non-parametric

and Bayesian methods; the use of alternatives to the log-likelihood ratio test, since

at the null ξ = 0 the likelihood function is still continuous but non-differentiable;

and so on. In fact, the objective of this paper was rather to open up several sugges-

tions for applications using the proposed models for the maximum drawdown than

to carry on extensive investigation on them.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. Modelling extremal events for

insurance and finance. Springer-Verlag, Berlin, 1997.

Embrechts, P., McNeil, A., and Strauman, D. (1999). “Correlation: pitfalls and

alternatives”. RISK, 69-71.

Focardi, s. M. and Fabozzi, F. J. (2003). “Fat tails, scaling, and stable laws: A

critical look at modeling extremal events in financial phenomena”. The Journal of

Risk Finance, 5-26.

Mandelbrot, B. B. and Taylor, H. M. (1967). “On the Distribution of Stock Price

Differences”. Operations Research, 15, 1057-1062.

Mandelbrot, B. B. (1972). “Possible Refinement of the Log-normal Hypothesis Con-

cerning the Distribution of Energy Dissipation in Intermittent Turbulence”. Statis-

tical Models and Turbulence, M. Rosenblatt & C. Van Atta (Eds.) Lecture Notes in

Physics, 12, New York Springer, 333-351.

Mandelbrot, B. B. (1997). Fractals and Scaling in Finance. Springer-Verlag N.Y.

McNeil, A. J. (1998). “Calculating Quantile Risk Measures for Financial Return

Series Using Extreme Value Theory”. Dep. Mathematik, ETH Zentrum, Zürich.
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