Universidade Federal do Rio de Janeiro Centro de Tecnologia Escola Politécnica Engenharia Naval e Oceânica

"Influência do cálculo da massa adicional hidrodinâmica nas frequências naturais verticais de vibração de um navio graneleiro que opera em águas rasas"

> Aluna Juliana Patrícia Esquivel Pérez Barreiros DRE: 106030680

Professor Orientador Ulisses Admar Barbosa Vicente Monteiro, D.Sc.

Professor Co-Orientador Ricardo Homero Ramírez Gutiérrez, M.Sc.

> Rio de Janeiro, RJ – Brasil Agosto de 2013

ESCOLA POLITÉCNICA ENGENHARIA NAVAL E OCEÂNICA

"Influência do cálculo da massa adicional hidrodinâmica nas frequências naturais verticais de vibração de um navio graneleiro que opera em águas rasas"

Juliana Patrícia Esquivel Pérez Barreiros - DRE 106030680

Projeto Final Submetido Ao Corpo Docente Do Departamento De Engenharia Naval E Oceânica Da Escola Politécnica Da Universidade Federal Do Rio De Janeiro Como Parte Dos Requisitos Necessários Para A Obtenção Do Grau De Engenheiro Naval e Oceânico.

Aprovado por:

Ulisses Admar Barbosa Vicente Monteiro, D.Sc. (ORIENTADOR)

> Ricardo Homero Ramírez Gutiérrez, M.Sc. (CO-ORIENTADOR)

Luiz Antonio Vaz Pinto, D.Sc. - COPPE/UFRJ

Rio de Janeiro, RJ – Brasil Agosto de 2013

INFLUÊNCIA DO CÁLCULO DA MASSA ADICIONAL HIDRODINÂMICA NAS FREQUÊNCIAS VERTICAIS DE VIBRAÇÃO DE UM NAVIO GRANELEIRO QUE OPERA EM ÁGUAS RASAS

Juliana Patrícia Esquivel Pérez Barreiros Agosto/2013

Orientador: Ulisses Admar Barbosa Vicente Monteiro

Co-Orientador: Ricardo Homero Ramírez Gutiérrez

Departamento: Engenharia Naval e Oceânica

Resumo do Trabalho: Foram comparados os coeficientes de massa adicional hidrodinâmica obtidos através da utilização de uma correlação empírica amplamente difundida (método de Landweber e método de Prohasky) com os coeficientes obtidos através do software comercial ANSYS-AQWA. Para a obtenção dos coeficientes através do software comercial ANSYS-AQWA, será realizada a modelagem tridimensional do navio graneleiro em questão. De posse dos resultados, será possível identificar qual dos métodos de cálculo dos coeficientes de massa adicional fornece os melhores resultados para as estimativas das frequências naturais verticais de vibração.

Agradecimentos

Primeiramente agradeço a Deus, por ter me dado a vida e por colocar em meu caminho pessoas tão especiais e importantes.

Agradeço ao meu anjinho, minha querida filha Mariana, que é minha inspiração, minha alegria, minha força e minha fraqueza, e que algumas vezes deixo de estar por perto a fim de buscar um lindo futuro para ela. Ao meu marido, por me fazer acreditar que sou capaz, pelos momentos em que perdi a paciência e suas doces palavras me acalmaram, por sua compreensão nos momentos em que não pude estar presente, e principalmente por tanto amar e se dedicar a nossa família.

Agradeço à minha mãezinha por estar sempre ao meu lado, nas horas em que eu chorei e nas horas que sorri, por todas as suas orações, por meus dias de mau-humor que me acalmou em seu colo. Agradeço ao meu avô (in memoriam) e à minha avó, meu exemplo de mulher, que sempre me espera de braços abertos com todo carinho que só ela sabe dar. Ao meu pai Kiko, que mesmo de longe sempre esteve presente. Ao meu padrasto Paulo, meu segundo pai, que nas madrugadas de estudo me apoiava e me levava café quente. Aos meus amados irmãos, que ao lado deles brinco e sorrio como se tivéssemos as mesmas idades, os mesmos gostos. À amiga Vanusa por me aconselhar e pela paciência com minha bagunça. Agradeço à minha sogra Rosane, por seu amor ao próximo e ao meu sogro Naná, a pessoa mais íntegra que já conheci. Vocês são exemplos de dedicação à família. À minha cunhada Amanda, por me apoiar, independente da situação. Ao tio Marcos, por mimar minha filhinha. A todos vocês, minha "pequena" família, por me darem a tranqüilidade que preciso ao confiar a guarda da Mariana nos momentos em que tive que estar ausente.

Agradeço às minhas amigas Bianca, Juliana Hemerly, Julianne, Karlinha, Luciana, Patrícia Barbosa e Patrícia Soncim, pelos momentos incríveis que vivemos desde a época de cursinho e por ajudarem sempre que precisei. Aos meus amigos de faculdade, Aninha, Eliza, Nilda, Paula, Rafael, Thalita e Daniel por caminharem comigo, por me animarem nos momentos de desânimo e por muitas, muitas risadas. Aos amigos Allan, Larissa, Luiz, Giuliana e Nuno, que sem notarem, me incentivaram muito. Ao meu amigo, Raphael Saidel por ser tão presente durante todos esses anos.

Por último, mas não menos importante, agradeço muito aos professores e funcionários do LEME/LEDAV, em especial aos Professores Ulisses e Homero, que me acompanharam neste projeto com muita sabedoria e paciência, ao Professor Severino por seus sábios e doces conselhos, às funcionárias Denise e Dona Carmem por seus cuidados e motivação.

Cada um de vocês são responsáveis por essa conquista! Muito Obrigada a todos! Amo muito vocês!

Sumário

Agradecimentos	8
1. Introdução	11
1.1. Objetivos	11
2. Navegação em Águas Rasas	12
2.1. Navegação Fluvial	15
3. Análise de Vibração em Navios	17
3.1. Vibração Livre de Sistema de um grau de liberdade	17
3.2. Vibração Livre de um Sistema de " <i>n</i> " graus de liberdade	19
4. Análise da Massa Adicional em Navios	23
4.1. Coeficientes para o cálculo da massa adicional	24
4.2. Águas Profundas (Landweber)	28
4.3. Águas Rasas (Prohasky)	29
4.4. Massa Adicional (ANSYS-AQWA)	30
5. Caso de Estudo	35
5.1. Modelo Tridimensional	37
5.2. Modelo Rhinoceros	
5.2. Modelo Rhinoceros.5.3. Cálculo da Massa	38 40
5.2. Modelo Rhinoceros.5.3. Cálculo da Massa5.3.1. Massa estrutural	
 5.2. Modelo Rhinoceros 5.3. Cálculo da Massa 5.3.1. Massa estrutural 5.3.2. Massa adicional 	38 40 40 41
 5.2. Modelo Rhinoceros 5.3. Cálculo da Massa 5.3.1. Massa estrutural 5.3.2. Massa adicional 5.3.3. Modelo ANSYS 	
 5.2. Modelo Rhinoceros. 5.3. Cálculo da Massa 5.3.1. Massa estrutural 5.3.2. Massa adicional. 5.3.3. Modelo ANSYS 6. Resultados 	
 5.2. Modelo Rhinoceros. 5.3. Cálculo da Massa	
 5.2. Modelo Rhinoceros	

1. Introdução

A vibração excessiva é uma das principais causas dos problemas operacionais em navios, e, portanto, é uma área de estudo de grande importância para a engenharia naval.

O fenômeno de vibração ocorre sempre que existam forças dinâmicas, ou seja, forças que variam ao longo do tempo, atuando nos elementos estruturais locais do navio e no casco como um todo.

A navegação fluvial, em especial, apresenta problemas devido à proximidade do casco com o fundo, ocasionando restrição do calado com que o navio pode operar. Devido a essa proximidade, há aumento da velocidade de escoamento na região entre o casco e o fundo, gerando uma região de baixa pressão, fazendo com que a embarcação aumente seu calado. Com isso, surgem problemas como colisão do fundo com o casco e de objetos com o propulsor, vibração excessiva do sistema propulsivo e da estrutura como um todo.

A vibração estrutural está fortemente ligada ao aumento da massa adicional quando se navega em trechos de profundidade limitada. Esse aumento da massa adicional ocasiona redução nos valores das frequências naturais de vibração da viga navio. Com isso, as frequências naturais podem coincidir com as frequências de excitação, colocando o navio, dessa forma, numa condição de ressonância o qual pode acarretar em danos à estrutura.

Além dos níveis elevados de vibração comprometerem o conforto da tripulação, afetam também a estrutura do navio, provocando falhas por fadiga, avarias em sistemas e equipamentos do navio, e em casos de ressonância, pode causar o colapso estrutural, afetando significativamente sua operacionalidade.

1.1. Objetivos

Obter os coeficientes de massa adicional de um navio graneleiro que opera em águas rasas mediante a utilização do software comercial ANSYS-AQWA e compará-los com os coeficientes obtidos mediante a utilização de correlação empírica de Landweber e Prohasky.

Fazer o cálculo das 5 primeiras frequências e modos naturais de vibração da embarcação e comparar os resultados com trabalhos desenvolvidos anteriormente.

2. Navegação em Águas Rasas

Conduzir uma embarcação com um determinado calado, em local com determinada profundidade, é fundamentalmente, um problema de navegação. Não é suficiente que o calado do navio seja menor que a profundidade de um dado local para nele navegar com segurança. Essa restrição quanto à profundidade em que o navio opera existe quando se navega em águas rasas.

Para ser definido o conceito de águas rasas, a profundidade 'h' da água na qual o navio opera e o seu calado 'T' são fundamentais. Através da relação desses dois parâmetros é possível determinar se as águas em que o navio opera podem ser ou não consideradas rasas.

De acordo com a NPCP [2], as relações que determinam quantitativamente as condições do mar em que se navega (a profundidade do trecho), quanto ao calado do navio, são dadas na Tabela 1.

Relação Profundidade	e(h)/Calado(T)
Águas profundas	h/T > 3,0
Águas intermediárias	1,5 < h/T < 3,0
Águas rasas	1,2 < h/T < 1,5
Águas Muito Rasas	h/T < 1,2

Tabela 1. Relação de profundidade e calado.

Com as considerações acima, de uma maneira geral, pode-se dizer que o efeito do fundo restrito pode ser percebido em águas intermediárias, é muito significante em águas rasas e domina o comportamento do navio em águas muito rasas.

Considerando que as características dos portos nacionais e de seus acessos variam muito e existem diferentes reações das embarcações a essas restrições, que são influência direta da variação de suas formas, carga, calado e propulsão, torna-se difícil a fixação de um parâmetro único que estabeleça uma folga mínima segura entre o calado e a profundidade. Sendo assim, são consideradas inúmeras variáveis que permitem recomendar ao navegante um percentual da profundidade seguro a se navegar. Nesses estudos devem ser consideradas as variáveis empíricas a seguir discutidas:

<u>Naturezas do Fundo</u>: Fundos sólidos, como rocha, tendem a causar maiores danos aos navios, bem como a tornar mais difíceis os desencalhes. Avaliados os tipos de fundos:

- Lama macia
- Areia
- Pedra

Os mais sólidos são o que acrescentam uma maior porcentagem de segurança no calado de navegação quando comparados com fundos como o de lama, justamente por apresentarem uma menor flexibilidade na sua movimentação.

<u>Incertezas da Área</u>: Informações de batimetria desatualizadas, variações de densidade da água, sejam em razão de chuvas, seja por predominância de rios ou marés, também exigem um acréscimo no calado mínimo navegável.

<u>Movimentos Provocados pelo Mar</u>: Para um estado do mar três (3) na Escala Beaufort, os seguintes valores devem ser considerados:

- Área Abrigada (águas interiores protegidas)
- Área Normal (águas interiores que sofrem efeitos do mar alto)
- Área Desabrigada (águas submetidas ao embate direto do mar)

Em áreas desabrigadas, onde são observadas ondas com alturas significativas e/ou combinações adversas de agentes ambientais, tais como vento, correnteza ou maré, que dificultem o tráfego das embarcações, a influência é muito maior do que em relação às áreas abrigadas.

<u>Squat</u>: A mais importante das considerações é quando ocorre o efeito Squat. Quando se trata de navegação em águas rasas, a resistência de uma embarcação em certa velocidade é fortemente modificada quando existe essa restrição de profundidade. A massa de água que o navio desloca ao se movimentar pelo meio fluido tende a fluir sob o casco, causando uma variação de pressão em partes da massa líquida. Essa variação de pressão sob o casco não é uniforme, e também não compensada, como a que ocorre nos dois bordos, que se anulam devido à simetria do casto em relação à Linha de Centro.

Disso resultam alterações no escoamento potencial junto ao casco, devido ao aumento da velocidade da água no fundo da embarcação, quando comparada com o escoamento em águas profundas. Maior velocidade leva a menos pressão e a um aumento no trim e na resistência ao avanço do casco.

Sendo assim, a baixa profundidade agrava os efeitos que levam ao afundamento do casco, o que pode obrigar a ser definido um limite superior para a velocidade na qual o navio irá operar quando houver uma restrição de fundo. A Figura 2.1. apresenta um esquema da navegação do navio.

Figura 2.1. Fluido abaixo do casco

Pelo Princípio de Bernoulli, a soma das parcelas gravitacional, hidrostática e hidrodinâmica da pressão é constante.

Figura 2.2 Equação de Bernoulli

Isso indica que um aumento na pressão hidrostática ocasiona uma queda na pressão hidrodinâmica devido ao aumento da velocidade do fluxo.

A todos esses efeitos acima se referenciam ao fenômeno chamado "squat", que é de grande importância na determinação dos fatores de segurança e está relacionado não só com a profundidade local como também, com o tipo de navio, seu calado e sua velocidade.

Dessa forma, os fatores de segurança e, conseqüentemente os calados máximos, devem referir-se a pontos específicos dos portos e seus acessos, pois são características muito particulares que são avaliadas, seja do tipo e forma da embarcação ou do trecho em que se navega.

Figura 2.3. Efeito Squat

Regiões onde as embarcações operam em águas rasas são os rios, onde a profundidade depende de muitos fatores geográficos e ambientais.\

2.1. Navegação Fluvial

A utilização dos rios como via de transporte e navegação sempre foi presente na história da humanidade. Em países desenvolvidos, onde a rede de transporte terrestre é extremamente desenvolvida, as hidrovias ainda são de fundamental importância, e transportam grandes volumes de carga de baixo valor agregado, como grão e insumos agrícolas. Além disso, o transporte hidroviário é econômico e menos poluente.

Porém, não basta somente implantar uma hidrovia, existem fatores que limitam ou até mesmo impedem sua instalação. Um dos principais problemas está ligado à sua topografia, pois para que a navegação se desenvolva eficientemente, é preciso levar em conta fatores como períodos de cheia e vazantes dos rios, pois a variação de volume de água interfere na navegação.

O Brasil, possui um dos maiores sistemas aquaviários do mundo, contendo 8 Bacias hidrográficas (Amazônica Oriental, Amazônica Ocidental, do Nordeste, do Tocantins e Araguaia, do São Francisco, do Paraguai e Paraná, Bacia do Sul e do Tietê Paraná), sendo uma das maiores redes hidrográficas onde ao todo existe movimentação de quase meio milhão de toneladas de cargas. A Figura 2.4 apresenta as principais hidrovias do Brasil.

A Bacia do Sul, aonde opera a embarcação que será estudada, possui uma extensa área de quase 224.000 km², abrangendo os estados do Rio Grande do Sul e Santa Catarina. Nesta região é predominante a navegação de embarcações com comprimento de 90 m, 15 m de boca e capacidade de aproximadamente 3000 toneladas, que predominantemente, se dá pelo transporte de grãos como o milho, farelo, óleo

vegetal, areia extraída do rio Jacuí (principal rio da região da Bacia do Sul) para o consumo na construção civil e carvão energético consumido no Pólo Petroquímico do Sul (COPESUL). A Figura 2.5 apresenta a extensão da bacia do sul.

Figura 2.4. Principais hidrovias do Brasil.

Figura 2.5. Extensão da bacia do sul.

3. Análise de Vibração em Navios

Vibração é, em seu sentido geral, um movimento periódico, isto é, um movimento que se repete após certo intervalo de tempo, e num navio a vibração ocorre quando forças dinâmicas agem sobre o casco ou em elementos estruturais locais do navio.

Em geral, um sistema vibratório inclui um meio para armazenar energia potencial, um meio para armazenar energia cinética, e um meio de perda gradual de energia (amortecedor). A vibração de um sistema envolve a transferência alternada de sua energia potencial para energia cinética e vice-versa. Porém, se o sistema for amortecido, certa quantidade de energia é dissipada em cada ciclo de vibração.

Vibrações ocorrentes na superestrutura e na região de popa de navios geralmente causam desconforto à tripulação, problemas operacionais nas máquinas e equipamentos e fadiga na estrutura. Por isso, é necessário evitar condições de ressonância, que ocorre quando a freqüência natural da estrutura se aproxima da freqüência das fontes de excitação. As fontes de excitação [5] mais importantes são:

- Forças induzidas nos casco pelo propulsor;
- Forças e momentos induzidos no eixo pelo propulsor;
- Forças internas e momentos de desbalanceamento produzidos nos MCP's e MCA's;
- Forças provocadas pela ação das ondas do mar.

Para entender a vibração da viga navio, o qual é um sistema de "n" graus de liberdade, primeiro é necessário entender um sistema de um grau de liberdade.

3.1. Vibração Livre de Sistema de um grau de liberdade

A vibração livre, que será abordada nesse projeto, pode ser descrita considerando um caso em que um sistema, que após sofrer uma perturbação inicial, continua a vibrar por conta própria. Sendo assim, na vibração livre nenhuma força periódica age sobre o sistema. A Figura 3.1. apresenta um esquema de uma sistema de um grau de liberdade.

Figura 3.1. Sistema de 1 grau de liberdade.

Utilizando a segunda lei de Newton, pode ser obtida a equação do movimento do sistema da Figura 3.1 [3].

$$m\ddot{x} + c\dot{x} + kx = F_{ext}(t) \tag{3.1}$$

Onde:

 $F_{ext}(t)$: Força de excitação externa;

- *m*: Massa do sistema;
- *c*: Constante de amortecimento;
- *k*: Rigidez do sistema;
- *x*: Aceleração;
- \dot{x} : Velocidade;
- *x*: Deslocamento;

Como esta sendo considerada vibração livre, a força de excitação externa e o fator de amortecimento podem ser desprezados, então a equação (3.1) pode ficar expressa da seguinte forma:

$$m\ddot{x} + kx = 0 \tag{3.2}$$

Assumindo a solução da equação (3.2) é de forma harmônica:

$$x = c_1 \cos(\omega_n t - \phi)$$

$$\ddot{x} = -c_1 \omega_n^2 \cos(\omega_n - \phi)$$
(3.3)

Substituindo na equação (3.2):

$$-c_1\omega_n^2\cos(\omega_n t - \phi) + \frac{k}{m}c_1\cos(\omega_n t - \phi) = 0$$
(3.4)

Fatorando o termo $\cos(\omega_n t - \phi)$ e divindo por "m", a equação (3.4) fica da forma seguinte:

$$-\omega_n^2 + \frac{k}{m} = 0 \quad \Rightarrow \quad \omega_n = \sqrt{\frac{k}{m}}$$
(3.5)

Onde, ω_n representa a frequência natural do sistema e depende da rigidez e da massa.

3.2. Vibração Livre de um Sistema de "n" graus de liberdade

Um sistema com "*n*" graus de liberdade, possui "*n*" frequências naturais, cada uma associada a sua própria forma modal, conforme mostrado na Figura 3.2 (formas modais da viga navio).

Figura 3.2. Formas modais da viga navio.

A solução de um sistema com "*n*" graus de liberdade é obtida de maneira análoga ao sistema de um grau de liberdade.

A equação geral do movimento é descrita da seguinte forma:

$$m_i \ddot{x} = \sum_j F_{ij}$$
 (para a massa m_i) (3.6)

Onde:

 $\sum_{i} F_{ij}$: Designa a soma de todas as forças que agem sobre a massa m_i ;

i: Número de graus de liberdade do sistema (1, 2, 3, ...);

Aplicando-se a equação (3.6) para cada massa do sistema discretizado, tem-se:

$$m_{i}\ddot{x}_{i} = -k_{i}(x_{i} - x_{i-1}) + k_{i+1}(x_{i+1} - x_{i}) - c_{i}(\dot{x}_{i} - \dot{x}_{i-1}) + c_{i+1}(\dot{x}_{i+1} - \dot{x}_{i}) + F_{i}$$
(3.7)

A equação do movimento do sistema pode ser expressa da forma matricial como a seguir:

$$[M]{\dot{x}} + [C]{\dot{x}} + [K]{x} = {F}$$
(3.8)

Onde [M], [C] e [K] são denominadas matrizes de massa, amortecimento e rigidez, respectivamente, e são dadas por:

	m_1	0	0				0	0 -
	0	m_2	0				0	0
	0	0	m_3				0	0
[M] =	•	•	•	•	·	·	•	•
	•	•	•	•	•	·	•	•
	•	•	•	•	•	·	•	•
	L 0	0	0			•	0	m_n

$$[C] = \begin{bmatrix} (c_1 + c_2) & -c_2 & 0 & \dots & 0 & 0 \\ -c_2 & (c_2 + c_3) & -c_3 & \dots & 0 & 0 \\ 0 & -c_3 & (c_{3+}c_4) & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \vdots & c_n & (c_n + c_{n+1}) \end{bmatrix}$$
(3.9)

$$[K] = \begin{bmatrix} (k_1 + k_2) & -k_2 & 0 & \dots & 0 & 0 \\ -k_2 & (k_2 + k_3) & -k_3 & \dots & 0 & 0 \\ 0 & -k_3 & (k_{3+}k_4) & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & k_n & (k_n + k_{n+1}) \end{bmatrix}$$

E, {x}, { \dot{x} }, { \ddot{x} } e {*F*} são os vetores de deslocamento, velocidade, aceleração e força, respectivamente, dados por:

$$\{x\} = \begin{cases} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ \vdots \\ x_{n}(t) \end{cases}, \{\dot{x}\} = \begin{cases} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \vdots \\ \dot{x}_{n}(t) \end{cases}, \{\ddot{x}\} = \begin{cases} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \vdots \\ \vdots \\ \dot{x}_{n}(t) \end{cases}, \{F\} = \begin{cases} F_{1}(t) \\ F_{2}(t) \\ \vdots \\ \vdots \\ \vdots \\ F_{n}(t) \end{cases}$$
(3.10)

Como dito anteriormente, para vibração livre $\{F\}$ e [C] são iguais a zero, logo, tem-se:

$$[M]\{\ddot{x}\} + [K]\{x\} = 0 \tag{3.11}$$

Adotando-se a separação de variáveis no domínio do espaço e no domínio do tempo, a solução geral da equação (3.11) pode ser da seguinte forma:

$$\{x\} = \{X\}T(t) \tag{3.12}$$

Onde:

 $\{X\}$: Vetor de máximas amplitudes dos deslocamentos;

T(t): Função do tempo;

Substituindo-se a solução na equação (3.12), obtém-se:

$$[M]\{\ddot{X}\}T(t) + [k]\{X\}T(t) = 0 \tag{3.13}$$

Porém, a equação (3.13) pode ser descrita na forma escalar como "*n*" equações separadas:

$$\left(\sum_{j=1}^{n} m_{ij} X_j\right) \ddot{T}(t) + \left(\sum_{j=1}^{n} k_{ij} X_j\right) T(t) = 0 , \ i = 1, 2, 3, \dots, n$$
(3.14)

Da qual podemos obter as relações:

$$-\frac{\ddot{T}(t)}{T(t)} = \frac{\left(\sum_{j=1}^{n} k_{ij} X_{j}\right)}{\left(\sum_{j=1}^{n} m_{ij} X_{j}\right)} = \omega^{2} \quad , \quad i = 1, 2, 3, \dots, n$$
(3.15)

Rearranjando a equação (3.15), obtem-se:

$$\ddot{T}(t) + \omega^2 T(t) = 0$$
(3.16)

$$([K] - \omega^2[M])\{X\} = 0 \tag{3.17}$$

A solução da equação (3.16) pode ser dada por:

$$T(t) = C_1 cos(\omega t + \phi) \tag{3.18}$$

Onde:

 C_1 : Amplitude;

 ϕ : Ângulo de fase;

Além da solução dada na equação (3.18), tem-se que ω não pode assumir um valor arbitrário. Ele precisa, necessariamente, satisfazer a equação do problema de autovalor: ([k] – ω^2 [m]){X} = 0.

Para obter soluções não triviais, o determinante da matriz coeficiente deve ser zero. Isto é:

$$\Delta = |[K] - \omega^2[M]| = 0 \tag{3.19}$$

A equação enunciada acima é conhecida como equação característica, ω^2 é chamado de autovalor e ω é a frequência natural do sistema.

Resolvendo-se o determinante e o igualando a zero, podem-se obter as "n" frequências naturais do sistema de vibração de "n" graus de liberdade.

É de extrema importância estimar as frequências naturais da viga-navio, para evitar que os efeitos de ressonância ocorram e causem danos à estrutura.

Para o projeto em questão, será necessário encontrar as frequências naturais dos 5 primeiros modos de vibração do navio.

4. Análise da Massa Adicional em Navios

Entende-se por massa adicional como sendo a massa, ou momento estático, ou momento de inércia adicionado pelas partículas fluídas que se movimentam ao redor de um corpo flutuante quando este se translada ou rotaciona, nos seus 6 (seis) graus de liberdade (movimento do corpo rígido).

As forças hidrodinâmicas que atuam em um corpo, levando em consideração um fluido real podem ser calculadas utilizando suas propriedades inerciais e viscosas. Em algumas aproximações é possível distinguir as forças de natureza inercial, considerando o fluído ideal (não viscoso), e as forças de natureza viscosa.

Desta forma as forças de natureza inercial podem ser expressas em termos das massas adicionais do corpo flutuante, obtendo assim aproximações e coeficientes para o cálculo da mesma. Estes cálculos podem ser aplicados tanto para um corpo acelerado em qualquer um dos seis graus de liberdade, assim como para um corpo em movimento constante.

O efeito de massa adicional foi percebido primeiramente por Dubua em 1776 [4], a medida que os resultados dos cálculos das forças hidrodinâmicas atuantes em um objeto em movimento num fluído considerado incompressível e não viscoso foram distintos dos resultados experimentais. A primeira expressão matemática obtida para a massa adicional de uma esfera foi desenvolvida por Green em 1833 e Stokes em 1843 [4]. A partir daí vários pesquisadores desenvolveram diferentes expressões e coeficientes para o cálculo da massa adicional de um corpo arbitrário.

A maior parte dos cálculos é desenvolvida para cilindros de seções retangulares, circulares e elípticas, devido à simplicidade de suas formas e considerando o corpo flutuando em um fluído infinito, sem interferências de superfícies próximas. Conhecendo o escoamento do fluído ao redor destes cilindros é possível fazer o cálculo da massa virtual, através do cálculo de energia cinética do sistema, considerando o movimento do corpo flutuante e das partículas fluídas.

A seguir será feita uma breve análise dos coeficientes e fórmulas utilizados para a obtenção da massa virtual de um corpo flutuante.

4.1. Coeficientes para o cálculo da massa adicional

Como dito anteriormente, para determinação dos coeficientes de massa adicional será considerado como objeto de estudo a seção transversal de um navio. Quando esta seção penetra o fluido, o mesmo é deslocado para dar passagem ao navio. Quando o navio se movimenta para fora do fluido, o mesmo retorna ao seu espaço original, preenchendo-o. Com isso, o fluido apresenta um movimento oscilatório cujo efeito é transmitido a todas as partículas do meio.

Conforme a Figura 4.1, a energia cinética do sistema é dada por:

Figura 4.1. Esquema do movimento do navio no meio fluido.

$$E_c = \frac{1}{2}Mv^2 + \frac{1}{2}\sum_{i=1}^{\infty} m_i v_i^2$$
(4.1)

Onde:

M: Massa do corpo;

v: Velocidade vertical (movimento de *heave*);

 m_i : Massa da partícula fluida i;

 v_i : Velocidade da partícula fluida *i*;

A primeira parcela da seção é referente à seção do navio, enquanto a segunda parcela se refere às partículas que se movimentam no meio fluido.

A equação (4.1) pode ser simplificada considerando-se a energia cinética das partículas fluidas como sendo metade do produto da massa total (M') e a velocidade vertical v.

$$E_c = \frac{1}{2}Mv^2 + \frac{1}{2}M'v^2 = \frac{1}{2}(M + M')v^2$$
(4.2)

O termo M', é chamada de massa adicional e varia de acordo com as características da seção (forma, boca e calado) e das propriedades do meio fluido.

Para realização desse cálculo, inicialmente considera-se uma seção circular simples de um cilindro de raio "r", parcialmente submerso em um fluido de densidade ρ , flutuando com seu centroide coincidindo com a altura da linha d'água, de acordo com a Figura 4.2. Será assumido que o cilindro oscila verticalmente e que seu movimento possui pequena amplitude.

A massa adicional (M') por unidade de comprimento, do movimento de *heave*, para um cilindro totalmente submerso é dada como:

$$M' = \rho \pi r^2 \tag{4.3}$$

Onde:

 ρ : Massa Específica do fluido;

r: Raio do cilindro;

Assim, o valor da massa adicional por unidade de comprimento do cilindro com metade do seu volume submerso vai ser igual à metade da situação em que está totalmente submerso. E levando-se em consideração o comprimento do cilindro, tem-se o seguinte:

$$M' = \frac{1}{2} \int_{-L/2}^{L/2} \rho \pi r^2$$
(4.4)

Onde:

L: Comprimento do cilindro;

Como se pode perceber na equação (4.4), a massa de fluido deslocada é numericamente igual à massa do cilindro. Esse resultado revela a importância do

conhecimento de massa adicional, que no caso do cilindro, representa um acréscimo de 100% da sua massa total.

No caso do cálculo da massa adicional para seções do navio não se deve utilizar de forma direta as aproximações obtidas através do cilindro, uma vez que essas seções transversais não possuem formas circulares perfeitas como as de cilindros. Com isso, pesquisadores propuseram o uso do método de Transformação Conforme (KOROTKIN, 2007), onde são determinados os resultados para seções típicas do navio a partir dos resultados de uma seção circular.

A transformação conforme é realizada através de expressões matemáticas que fazem a "conversão" do contorno da forma do cilindro para o contorno da forma do casco.

Considerando um fluido incompressível e infinito, através do escoamento potencial no plano ζ encontra-se a função de corrente $\psi(y,z)$ e impõe-se as condições de contorno:

$$\Delta \psi = 0$$

$$v_y = \frac{\partial \psi}{\partial z} = 0$$

$$v_z = -\frac{\partial \psi}{\partial y} = 0$$
(4.5)

Com isso, é obtida a seguinte expressão geral:

$$f(\zeta) = k\zeta + k_0 + \frac{k_1}{\zeta} + \frac{k_2}{\zeta^2} + \dots$$
(4.6)

Onde as constantes k_n que são substituídas por combinações de valores envolvendo o calado *T* e os parâmetros *p* e *q*.

E uma vez que o escoamento potencial ao redor do cilindro no plano (ζ) é conhecido, podemos encontrar o potencial no contorno da superfície C, contida no plano τ . A Figura 4.3 apresenta um esquema da mudança de coordenadas.

Figura 4.3. Procedimento a ser realizado pela transformação conforme.

Como podemos observar pela Figura 4.3 a seção está espelhada na superfície livre, este efeito é chamado de Corpo Duplo e é aplicado a fim de garantir que as condições de contorno na superfície livre sejam satisfeitas para os movimentos horizontais.

Através dos mapas de conformação, podemos utilizar a expressão da equação (4.6), onde as constantes k_n que são substituídas por combinações de valores envolvendo o calado e a boca da seção considerada. Existem diferentes mapas de conformação que podem vir a ser utilizados, entretanto para o presente projeto serão utilizados os mapas para seções duplicadas movendo-se num fluído infinito, tendo como base os mapas de transformação conformes desenvolvidos por Lewis.

Uma vez conhecido o escoamento ao redor da forma da seção, é possível o cálculo da energia cinética das partículas do fluído e conseqüentemente obter a massa adicional da baliza considerada. A seguir temos a expressão para o cálculo da massa adicional vertical por unidade de comprimento para seções distintas a do cilindro circular:

$$M' = \lambda_{33} = \rho \frac{\pi B^2}{8} k_{33} \tag{4.7}$$

Onde:

B: Boca do navio na seção considerada;

 k_{33} : Coeficiente de correção de massa adicional vertical, baseado na transformação conforme.

Após encontrar os coeficientes de correção de massa adicional para cada seção, devemos levar em consideração que o escoamento real em torno do casco é tridimensional e não bidimensional, como calculamos. Por este motivo devemos considerar o escoamento axial do navio.

A seguir serão apresentadas as correlações amplamente difundidas para o cálculo dos coeficientes de massa adicional e por último será apresentada a forma de cálculo da massa adicional através do ANSYS-AQWA.

4.2. Águas Profundas (Landweber)

Para a determinação dos coeficientes para águas profundas (infinitas) são utilizados gráficos e tabelas que tem como parâmetros o coeficiente de área β :

$$\beta = \frac{S}{BT} \tag{4.7}$$

Onde:

S: Área submersa da seção;

B: Boca da seção considerada;

T: Calado no qual a seção se encontra submersa;

Para o cálculo dos coeficientes de massa adicional vertical para águas profundas serão utilizadas formulações e um gráfico, com base nos mapas conformes de Lewis e nos trabalhos de Landweber [1]. A Figura 4.4 tem como parâmetros a razão entre o calado e a boca na linha d'água, e as curvas de coeficiente de área β , para a obtenção do coeficiente k_{33} .

Figura 4.4. Curvas para a determinação do k_{33} para águas profundas.

4.3. Águas Rasas (Prohasky)

Os coeficientes de correção de massa adicional vertical para águas rasas levam em consideração o coeficiente de área β e a razão entre a profundidade, onde está operando a embarcação, e o calado.

Prohasky [1], realizou ensaios experimentais de um corpo submerso em águas rasas e considerando pequenas amplitudes de oscilação para obtenção da massa adicional. A Figura 4.4 apresenta o esquema da montagem do experimento.

Da Figura 4.4, têm-se a seguinte descrição: o modelo, 1, está imerso num fluido e uma haste, 2, o liga às extremidades de molas, 3. As outras extremidades das molas estão conectadas ao corpo principal do experimento. Uma placa metálica, 4, está conectada na extremidade superior da haste, 2. Um eletroímã, 5, ligado a uma bateria, 6, atrai a placa, 4, e com isso o interruptor ,7 e 8, desliga a bateria no momento em que a haste atinge sua posição superior máxima. Ao atingir a posição máxima, a haste retorna a sua posição inicial, o interruptor liga a bateria e o eletroímã atrai novamente a placa metálica. O processo se repete e os dados são gravados em 9, 10 e 11.

Figura 4.5. Esquema do aparelho experimental de Prohasky.

Com base nesses dados experimentais Prohasky [1] desenvolveu curvas do coeficiente k_{33} de acordo com o coeficiente de área de cada seção β e razão entre profundidade (*h*) e o calado (*T*). Os dados obtidos foram plotados na figura 4.6.

Figura 4.6. Curvas de k_{33} para águas rasas.

Como se pode notar, a Figura 4.6 possui pontos que relacionam diferentes seções (dispostas na parte superior do gráfico e numeradas de 1 a 10) às curvas dos β correspondentes. Em seções mais retangulares, o valor de β é alto, enquanto nas seções mais esbeltas, β se apresenta com valores menores.

De um modo geral, espera-se que os valores de massa adicional para águas rasas sejam maiores do que em águas profundas, uma vez que os valores de k_{33} dos gráficos diferem. Enquanto no caso em águas profundas eles variam até aproximadamente um valor máximo de 1,5, o k_{33} para águas rasas alcança valores máximo de aproximadamente 3.

O intuito do projeto em questão é a análise da influência das massas adicionais sobre os modos de vibração de um navio graneleiro que opera em águas rasas.

4.4. Massa Adicional (ANSYS-AQWA)

Com a ajuda do *software* AQWA e possível encontrarem valores de massa hidrodinâmica em uma faixa de freqüências que possui certa limitação relativa ao número de elementos finitos disponíveis no *software* (12000). Isso representa uma restrição da utilização deste *software* porque, na necessidade de se determinarem freqüências mais altas, torna-se necessário refinar ainda mais a malha do casco, uma vez

que o número de elementos está associado a faixa de freqüências a ser calculada, exigindo um numero de elementos finitos que esbarra nessa limitação.

A modelação do casco foi feita no *software Rhinoceros 4.0*, e exportado no formato ".igs" para ser utilizado no software ANSYS Workbench.

Figura 4.7. Iniciando o AQWA

No Workbench será utilizado o complemento Hydrodynamic Diffraction, que corresponde ao AQWA, como pode ser visto na figura acima.

A geometria é importada no item "Geometry", a algumas configurações devem ser definidas para que os cálculos sejam realizados de maneira correta.

Figura 4.8. Geometria do casco

A configuração é iniciada utilizando a ferramenta "thin surface", que define a superfície do casco com espessura zero, pois o AQWA analisará o comportamento hidrodinâmico somente e não fará uma análise estrutural.

Figura 4.9. Configuração do corpo submerso

Em seguida utiliza-se a ferramenta "Freeze", que congela o objeto e permite fatiá-lo em diversos subvolumes. Para definirmos o calado da embarcação, é criado um plano paralelo ao plano XY, mas com offset de 4500 mm, que corresponde ao calado. Após criar o plano, é utilizado a ferramenta "Slice", e no item "Slice type"é utilizado "Slice by Plane", e assim o casco é dividido em duas partes: obra viva, que corresponde a parte submersa do casco e obra morta, que corresponde a parte emersa do casco.

Assim, as configurações necessárias foram feitas no Design Modeler e a geometria está pronta para ser utilizada pelo AQWA.

No AQWA, será necessário fazer algumas configurações do fluido como a profundidade do leito, altura da superfície do fluido e densidade. Após essa configuração será inserido as características de massa (deslocamento, momentos de inércia e posição do centro de gravidade).

🙆 A : Hydrodynamic Diffra	ction [ANSYS AQWA - HYDRO	DIFFRACT]		_ 8 ×
File Edit View Units Hel	p 🛛 🔜 🛛 🗣 Solve 🛛 🗣 Solv	e Hydrossetics 🛆 🚳 + 🛛 🕅 🕅 🕅		De
S 0 0 0 0	00 0 10 0			
Geometry Madd -				
George A Standard				
Counter				
Image: A constant of the second	vo p mota p mota p mot Mass tone baa tone baa alysis Settings alysis Settings alwy vub receiton we Directions we Directions hation (AS)			13.0
Details	9	0 2.5±4004 5±4004 (mm) 1.25±4004 3.75±4004 (mm)	Ľ	*
Attached Accombly Name	Geometry Culticercit EDAVIDeditionit			
E Sea Geometry	Collage after the head of the	Ceometry (Properties) Graph Report Preview/		
Water Level	4500 mm	Cutput		Ψ×
Water Depth	5000 mm	Text Association	Timestamp	
Water Density	0.000001 kg/mm3	Warning 431 MODELLING RULE #1 VIOLATIONS IGNORED BY GOON OPTION Project>Model>Hydrodynamic Diffraction	8/22/2013 9:21:18 AM	
Water Size X	1000000 mm			
Water Size Y	1000000 mm			
Import Preferences		Solving (A4)		
Import Solid Bodies	Yes			
Import Surface Bodies	Yes	Overall Progress 30 %		
Import Line Bodies	No			

Figura 4.10. Características do fluido

Figura 4.11. Características de massa

A malha que será definida deverá tem no máximo 12000 elementos até uma frequência de 0,57 Hz, valor definido pelo programa, que representa o valor limite de frequência para considerar águas tranquilas, ou seja, superfície livre paralela ao leito.

Figura 4.12. Malha

A malha gerada tem 1293 elementos e massa adicional será calculada para freqüências de até 0,57 Hz.

Como poderá ser comprovado mais adiante, o valor obtido para a massa adicional na faixa de freqüências apresentada tende a coincidir com os valores da massa adicional calculada pelos métodos empíricos mencionados neste trabalho. Além disso, o valor da massa adicional tende a ficar constante para maiores freqüências. Outra consideração importante é que o refinamento da malha não interfere de maneira considerável nos resultados finais. A única diferença é o tempo de processamento, como poderá ser visto na tabela 6.2.

5. Caso de Estudo

O presente trabalho foca seu estudo no cálculo das frequências e modos naturais de vibração de um navio graneleiro que opera na Lagoa dos Patos e cuja navegação é realizada, em maior parte do seu trajeto, em águas rasas. Nesse sentido foi escolhido o navio Germano Becker que é um dos maiores navios de navegação fluvial do país. A Figura 5.1 apresenta uma vista da operação do navio em estudo.

Figura 5.1. Vista da operação do Germano Becker.

As características principais do Germano Becker são listadas na Tabela 5.1. Tabela 5.1. Características principais do Germano Becker.

Germano Becker											
Dimensões Principais											
Comprimento total (LOA)	110,04	m									
Comprimento entre perpendiculares (LPP)	105,14	m									
Boca Moldada (B)	16,20	m									
Pontal Moldado (D)	5,25	m									
Calado de Pojeto (T)	4,50	m									

Esta embarcação de estudo pode transportar diferentes tipos de carga, sendo assim, para cada tipo de carga terá deslocamento, calado e capacidade de cargas diferentes.

No transporte de granel sólido, a embarcação pode transportar fertilizantes, farelo, cereal e cavaco de madeira, já no transporte de contêineres, a embarcação é capaz de transportar até 102 contêineres, na condição "full container". A Tabela 5.2 apresenta os máximos calados no qual navega o Germano Becker dependendo do tipo de carga que esta transportando.

Transporte de Grane	el Sólido	
Calado máximo	4,56	m
Deslocamento	6700	ton
Capacidade máxima de carga	5410	ton
Transporte de Cont	êineres	
Calado máximo	3,75	m
Deslocamento	5540	ton
Capacidade máxima de carga	208	TEU

Tabela 5.2. Calados máximos de navegação.

O navio foi lançado em janeiro de 2006 e durante suas viagens foram constatados um alto nível de vibração na embarcação. Esse elevado nível de vibração faz com que ocorram diversos problemas, como a redução da vida útil da embarcação, problemas de fadiga do chapeamento e necessidade de troca de parafusos da base de fixação de grandes equipamentos como os MCP's. A severidade da vibração do navio pode ser ilustrada pela quebra de luminárias, situação que ocorreu durante a operação do navio em uma condição de carregamento considerada a mais crítica do ponto de vista da vibração. A Figura 5.2 apresenta luminária quebrada que é conseqüência dos altos níveis de vibração da embarcação.

Figura 5.2. Quebra da luminária.

Notou-se também durante as viagens realizadas pelo navio, que ao navegar por locais em que a profundidade não é um fator crítico, ou seja, trechos que podem ser considerados como sendo águas profundas, a vibração e o ruído excessivo não existiam. Mas quando a embarcação entrava em uma zona de baixa profundidade (águas rasas), ocorria uma vibração excessiva na região de popa e superestrutura.

Constatou-se então que esse grande nível de vibração e ruído na região de popa do navio é ocasionado primordialmente pelo propulsor e toda a influência sofrida sobre ele devido ao escoamento perturbado nessa região, que por sua vez é fortemente influenciado pela profundidade das águas em que navega, e quando se trata de águas rasas essa influência é ainda maior. O navio é equipado com três motores principais e por três conjuntos de eixo e hélice, além dos três lemes e das três máquinas de lemes.

Visto os problemas enfrentados pelo Germano Becker, que opera no limite devido à grande interferência do fundo no escoamento ao redor do casco e nos propulsores, há um grande problema de vibração excessiva, e a fim de analisar as frequências naturais e respectivos modos de vibração, será feito um estudo do método que gera resultados mais próximos dos valores reais de maneira mais prática.

5.1. Modelo Tridimensional

Para desenvolver esse projeto foi feito um modelo tridimensional com fins de obter os modos de vibração e freqüências naturais do navio Germano Becker, a embarcação de estudo.

A modelação foi feita através do Software *Rhinoceros* e complementada com as análises no módulo 'Hydrodynamic Diffraction (AQWA), para cálculo da massa adicional, e no módulo 'Modal', específico para a análise dos modos de vibração de uma estrutura, que fazem parte do pacote do Software *Ansys Workbench*.

Os Métodos numéricos avançados dos quais o método de elementos finitos é o mais conhecido são extremamente importantes para definição e análise de estruturas complexas de engenharia, pois é um método capaz de gerar resultados mais refinados quando comparado a outros métodos.

A modelação por elementos finitos apresenta-se hoje como uma indispensável ferramenta para a elaboração de projetos de engenharia. Neste sentido, a remoção das suas limitações é de crucial importância no desenvolvimento de modelos que permitam análises de qualidade.

Por meio de simulações pode-se determinar se uma estrutura em análise responde aos seus requisitos funcionais através da sua resposta ao carregamento dinâmico aplicado. Deste modo, pode ser determinado qual o parâmetro estrutural que mais afeta a resposta dinâmica da estrutura e assim, a estrutura pode ser funcionalmente modificada e melhorada.

5.2. Modelo Rhinoceros

O navio Germano Becker, como dito anteriormente, é uma embarcação para transporte de granel e containeres. Ele possui 4 porões de carga ao longo de seu corpo paralelo, uma praça de máquinas a ré e regiões de popa e proa. Todos os porões são separados entre si por uma antepara corrugada, e nas outras regiões do navio, existem anteparas transversais estanques convencionais.

No Arranjo Geral do navio, que pode ser visto no ANEXO I, ao longo do comprimento da embarcação há um total de 185 cavernas, do espelho de popa (caverna -7) até a proa (caverna 176), onde neste valor estão inclusas também anteparas transversais (corrugadas e convencionais) e cavernas gigantes e simples. Subdividida entre as regiões existentes no navio, a configuração de cavernas fica então sendo:

Grupo	Cavernas	Início	Final
1	Popa	-7	5
2	Praça de Máquinas	6	21
3	Corpo Paralelo	22	161
4	Proa	161	176

Tabela 5.3. Subdivisão das cavernas

Em posse do Arranjo, do Plano de Linhas, e Arranjo Estrutural, foi então possível modelar o contorno de todas as cavernas acima descritas, e pode ser visualizado a seguir.

Figura 5.3. Modelo Rhinoceros

A definição de cada uma das cavernas será essencial para obter os parâmetros relacionados a elas, que tornará possível encontrar por fim a massa adicional.

Figura 5.4. Seção Mestra

5.3. Cálculo da Massa

As parcelas referentes às massas distribuídas ao longo do modelo devem ser consideradas a fim de que as análises sejam feitas considerando o deslocamento que o navio apresenta para a condição de carregamento de análise, e também o valor referente à massa adicional. O peso estrutural é de 827,52 toneladas e foi calculado no módulo Modal do ANSYS.

Quando as massas forem devidamente distribuídas ao longo do modelo, será acrescido o valor correspondente ao deslocamento, desconsiderando o valor já correspondente ao peso da estrutura.

A massa total será considerada como sendo a soma da massa adicional vertical e da diferença entre o deslocamento e a massa estrutural, em cada caverna (nó) considerada.

O módulo AQWA fornece o valor do deslocamento uma vez que o casco e o calado são dados de entrada do programa. O volume obtido foi de 6744 m³ e considerando a massa específica de 1 ton/m³ teremos então um deslocamento (Δ) de 6744 toneladas.

Assim como na distribuição de massa adicional ao longo do comprimento da embarcação, será feita uma estimativa utilizando as áreas submersas para aplicar a massa relativa ao que não é estrutural na embarcação. A seguir temos uma formulação para melhor entendimento do que foi realizado:

$$MT(x,n) = M * J(x,n) + \left(\frac{Area_Submersa(x)}{\sum Area_Submersa(x)}\right) * \sum (\Delta - 827,52)$$
(5.1)

Onde:

MT(x,n):Massa adicional total na posição x do modo n;M:Massa adicional;

5.3.1. Massa estrutural

A massa estrutural foi calculada no módulo Modal do ANSYS, sendo a massa específica do aço comum de 7850 kg/m³. A massa obtida foi de 827,052 toneladas.

5.3.2. Massa adicional

Neste Projeto a massa adicional é calculada através do módulo AQWA, portanto não será apresentado o cálculo dos coeficientes hidrodinâmicos, apenas os valores de massa adicional obtidos para águas profundas e para águas rasas.

De posse dos valores de massa adicional, será apresentada a correção dos valores de massa adicional para cada modo de vibração, pois no modelo da viga-navio para cada modo de vibração diferente, o movimento vertical das partículas do fluído se altera, diminuindo assim a velocidade vertical do fluído.

Townsin [1] propôs uma correção através de uma formulação que utiliza o parâmetro J, que deverá ser multiplicado ao valor de λ_{33} , apresentado a seguir:

$$J_n = 1,02 - 3(1,2 - \frac{1}{n})\frac{B}{L}$$
(5.2)

Onde:

n: número de nós de cada modo de vibração considerado;

B: boca da seção considerada;

L: comprimento entre perpendiculares da embarcação;

Quanto maior o número de nós do modo de vibração (n) menores serão os valores de J_n .

Nos Anexos II e II encontram-se as tabelas para a massa adicional corrigida para cada modo de vibração.

5.3.3. Modelo ANSYS

Com base no modelo do *Rhinoceros*, foi então exportado em formato .igs para o Ansys Workbench, e dentro do programa foram definidos as espessuras de cada chapeamento e reforço, que está apresentado no croqui da seção mestra.

Após inserir todas as espessuras, considerando a massa específica de 7850 t/m³, o peso da estrutura já está adicionado ao modelo, como dito anteriormente. Então é necessário que sejam aplicados pontos de massa que representem o deslocamento no calado de projeto T=4,5 metros, e também acrescente o valor da massa adicional.

Considerando que a massa adicional varia para cada modo de vibração, foram desenvolvidos 10 diferentes modelos, sendo metade equivalentes aos 5 primeiros modos

de vibração vertical em águas rasas, e a outra metade para os 5 primeiros modos em águas profundas.

Para cada meia seção, as massas foram distribuídas em dois locais diferentes: para a massa referente ao corpo paralelo, foram aplicados 1 ponto de massa no costado, e 1 ponto de massa na hastilha, para cada bordo; para a massa referente à região de popa e proa, foi aplicado apenas 1 ponto de massa na hastilha, e 1 no costado, para cada bordo, como pode ser visto abaixo.

Figura 5.5. Distribuição da massa total no corpo paralelo

Figura 5.6. Distribuição da massa total na região de popa e proa

Nas planilhas dos Anexo II e II, foram inseridos os valores da massa adicional obtido pelo AQWA, e foi feita a correção para calcular os valores da massa total para cada modo de vibração. A Massa adicional foi distribuída de acordo com as figuras 5.5 e 5.6 e inserida no módulo Modal do ANSYS, conforme pode ser visto na Figura 5.7.

Figura 5.7. Massa total distribuída.

Os modos de vibração estão disponíveis no Anexo IV.

6. Resultados

A embarcação estudada neste projeto apresenta problemas de vibração ao navegar em profundidade de 5000 m, e de acordo com a NPCP[1] é classificada com águas muito rasas. Mas ao calcularmos a massa adicional através do AQWA para profundidade de 5000 m, o valor obtido é muito alto e discrepante ao compara-la coma massa obtida em projetos anteriores [7]. Isso pode ocorrer devido ao software criar uma malha grosseira na superfície livre, e quando o leito começa a influenciar na superfície livre, os resultados são inconsistentes. Tal problema poderia ser corrigido se fosse possível editar a malha da superfície livre, o que não ocorreu neste projeto.

Dessa forma, os cálculos foram feitos para profundidade de 5800 m, considerada ainda águas rasas e além disso o leito não estaria mais influenciando na malha da superfície livre.

	h (mm)	h/T	Massa adicional (ton)
sas	5000	1.11	55984.02
uas) ra:	5100	1.13	49253.368
Águito	5200	1.16	44525.376
Ē	5300	1.18	40912.536
sas	5400	1.20	37993.188
<u>n</u>	5500	1.22	35485.908
La.	5800	1.29	30429.39
Ág	6000	1.33	28134.844
as	7000	1.56	21003.742
as Jiár	8000	1.78	17597.59
nec	9000	2.00	15640.175
Á	10000	2.22	14390.35
Ē	12000	2.67	12918.535
s das	15000	3.33	11838.644
gua	17000	3.78	11441.585
pro	20000	4.44	11071.376

Tabela 6.1 – Massa adicional devido a profundidade

Figura 6.1. Gráfico da variação da massa adicional com a profundidade

Um comportamento importante que foi observado foi o refinamento da malha do casco no AQWA. É sabido que o módulo AQWA tem limite de 12000 elementos, por isso, na primeira rodada foi definida uma malha com 11021 elementos, ou seja, seria uma malha muito refinada. O tempo de processamento para um malha refinada é muito longo, por isso foi testada uma malha com cerca de 10 vezes menos elementos. A diferença entre os resultados para as diferentes malhas é de apenas 2%, portanto, neste projeto foi utilizada uma malha com 1293 elementos.

Nº de elementos da malha	Tempo de processamento	h = 15,0 m (toneladas)	h = 5,8 m (toneladas)
11021	9,7 horas	11593,456	26998,003
1293	10 minutos	11838,644	30429,39
	Diferença	2,07%	11,02%

Tabela 6.2 – Tempo de processamento

Figura 6.2 – Malha com 11021 elementos

Figura 6.3 – Malha com 1293 elementos

Os resultados da massa adicional obtido através do módulo AQWA foram comparados aos resultados [7] obtidos por meio dos métodos empíricos de Landweber e Prohasky [1].

Massa Adicional														
Modo de	Águas	s Profunda	5	Á										
Vibração	Landweber 1 D	AQWA Diferença Prohasky 3D AQW				Diferença	Unidade							
1º Modo	14423,24	14240,20	1,27%	27378,50	27603,10	0,81%	ton							
2º Modo	13510,33	13346,90	1,21%	25106,80	25275,80	0,67%	ton							
3º Modo	13053,87	12900,30	1,18%	23971,00	24112,10	0,59%	ton							
4º Modo	12780,00	12632,30	1,16%	23289,40	23413,90	0,53%	ton							
5º Modo	12597,42	12453,70	1,14%	22835,10	22948,50	0,49%	ton							

Tabela 6.3 - Comparação dos resultados de massa adicional

A fim de validar os resultados para águas restritas, baseados nos dados gerados por Prohasky, seriam necessárias medições reais na embarcação, operando em condições próximas as descritas anteriormente (calado de 4,5 m e profundidade de 5,0 m).

6.1. Comparações

A partir dos resultados gerados podemos observar que as frequências dos cinco primeiros modos de vibração da embarcação diminuíram nos dois métodos de cálculo da massa adicional. Este resultado já era esperado, uma vez que foi mantida a rigidez da estrutura e aumentou-se sua massa para águas rasas, como podemos ver através da fórmula de frequência natural, ao aumentarmos a massa, a frequência diminui.

$$\omega = \sqrt{\frac{K}{M}} \tag{6.1}$$

Os resultados obtidos neste trabalho foram comparados aos resultados obtidos através de um modelo 1D (águas profundas) e modelo 3D (águas rasas)[7], conforme a tabela 6.4.

		Fr	equência d	e Vibração			
Modo de	Águas	Profunda	S	Á			
Vibração	Landweber 1 D	AQWA Diferenç		Prohasky 3D	AQWA	Diferença	Unidade
1º Modo	0,944	0,921	2,43%	0,657	0,675	2,70%	Hz
2º Modo	2,254	2,153	4,47%	1,531	1,595	4,02%	Hz
3º Modo	3,750	3,462	7,68%	2,444	2,581	5,30%	Hz
4º Modo	5,346	4,714	11,81%	3,382	3,506	3,53%	Hz
5º Modo	6,018	5,955	1,04%	4,321	4,430	2,46%	Hz

Tabela 6.4 – Comparação das frequências

Esta redução das frequências naturais da estrutura gera problemas, pois podem coincidir com a frequência de operação dos motores, dos hélices, dentre outros equipamentos e estruturas a bordo. Desta forma poderá ocorrer o fenômeno de ressonância prejudicando o conforto da tripulação e a operação dos equipamentos a bordo.

7. Conclusões

Com o desenvolvimento deste projeto foi possível perceber que a interferência do fundo no escoamento ao redor do casco da embarcação provoca o aumento da massa adicional vertical e consequentemente diminui as frequências dos primeiros modos de vibração do conjunto (quando comparadas com a navegação em águas profundas).

A diminuição das frequências naturais resulta muitas vezes na coincidência com as frequências de operação dos maquinários e do sistema propulsivo a bordo, ocasionando o fenômeno de ressonância. Porém, este problema pode ser evitado através de simulações, do mesmo tipo da desenvolvida aqui, na fase de projeto da embarcação.

Entretanto, no caso de projetos podem ser feitos modelos mais apurados, utilizando métodos de cálculo de massa adicional consolidados para o casco, assim como para estruturas como os propulsores e apêndices.

A metodologia utilizada no cálculo da massa adicional utilizando o ANSYS-AQWA demonstrou resultados confiáveis com relação à correlação de Landweber (águas profundas), enquanto que para a correlação de Prohasky (águas rasas), os valores da massa adicional se afastavam conforma ia se restringindo a profundidade.

Para a verificação dos resultados fornecidos pela correlação de Prohasky e do ANSYS-AQWA, se faz necessário a realização de ensaios experimentais.

Outro fator importante é que a sensibilidade da malha não é tão significativa nos valores de massa adicional, isso significa que um malha mais refinada, próxima ao limite do software, apenas exige uma capacidade computacional e tempo de processamento muito maior do que uma malha menos refinada.

Sendo assim, o projeto mostrou-se satisfatório e coerente quanto a geração de resultados, utilizando método não convencional de cálculo de massa adicional vertical.

8. Referências Bibliográficas

[1] Korotkin, Alexandr I, 2007, Added Mass Of Ship Structures. 2 ed. Springer.

[2] NPCP - Normas e Procedimentos para capitania dos Portos - www.mar.mil.br

[3] Rao, S., "Vibrações Mecânicas", 4 ed São Paulo, 2008

[4] Birkhoff, G.: Hydrodynamics. Princeton Univ. Press, Princeton (1960)

[5] Troyman, Antonio Carlos R.; Lopes, Tiago Alberto P. - "Apostila de Vibrações do

Navio" - Laboratório de Estruturas Navais, COPPE/UFRJ

[6] Ministério dos Transportes - http://www2.transportes.gov.br/

[7] Brasil, R.S. – "Efeitos da Massa Adicional em Águas Rasas na Análise de Vibração de Embarcações"

[8] Mello, T.S. – "Comparação Numérico-Experimental da Vibração de Navios que Operam em Águas Rasas"

[9] Haro, B.G. – "Influência da Massa Adicional Hidrodinâmica na Análise Vibracional Global Vertical de um Navio Graneleiro"

50

A	F	G	н	1	1	K	L	М	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB
1	1		Coeficie	ntes de Co	orreção 3D				Massa Adiciona	d .					Massa Total					Distribu	ição da Mass	a Total	
Secão	Mass. Ad.	11	J2	J3	14	J5	M.A M1 (tn)	M.A M2 (tn)	M.A M3 (tn)	M.A M4 (tn)	M.A M5 (tn)	Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5	Secão	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	(tn)			1999		1.000						(tn)	(tn)	(tn)	(tn)	(tn)	(tn)		(tn)	(tn)	(tn)	(tn)	(tn)
3 Espelh	-		-		-						-		•				-	Espelho	· ·	(O).	•	•	•
4 C-6		•	-	-	-	-	-	-			-	-	-	-				C-6	-				
5 C-3	-		-	-	-	-					-							C-4					
7 C-3	0.115	1 001	0.997	0.995	0.993	0.993	0.115	0.114	0.114	0 114	0.114	0.057	0 172	0 171	0.171	0.171	0.171	C-3					
8 C-2	0.733	0.973	0.962	0.957	0.954	0.951	0.713	0.705	0.701	0.699	0.697	0.366	1.080	1.071	1.067	1.065	1.063	C -2		-			
9 C-1	1.893	0.946	0.928	0.919	0.914	0.911	1.790	1.757	1.740	1.730	1.724	0.946	2.736	2.703	2.686	2.676	2.669	C -1	3.988	3.946	3.925	3.912	3.904
10 C 0	3.612	0.919	0.895	0.883	0.876	0.871	3.319	3.233	3.189	3.163	3.146	1.805	5.125	5.038	4.994	4.968	4.951	C O	-		-		
11 C1	6.588	0.893	0.863	0.847	0.838	0.832	5.882	5.682	5.583	5.523	5.483	3.292	9.174	8.974	8.875	8.815	8.775	C1	14.299	14.012	13.869	13.783	13.726
12 C 2	11.277	0.868	0.832	0.814	0.803	0.795	9.787	9.378	9.174	9.052	8.970	5.636	15.423	15.014	14.810	14.688	14.606	C 2	-		-		-
13 C 3	16.198	0.845	0.803	0.782	0.770	0.761	13.683	13.007	12.669	12.466	12.331	8.095	21.778	21.102	20.764	20.561	20.426	C 3	37.201	36.116	35.574	35.249	35.032
14 C4	21.170	0.824	0.778	0.754	0.740	0.731	17.450	16.464	15.971	15.675	15.477	10.580	28.030	27.043	26.550	26.254	26.057	C 4	-		-	-	-
15 C 5	25.993	0.806	0.756	0.730	0.715	0.705	20.963	19.641	18.981	18.584	18.320	12.990	33.953	32.632	31.971	31.575	31.310	C 5		1.22			<i></i>
16 C 6	30.448	0.791	0.737	0.710	0.693	0.682	24.093	22.435	21.606	21.109	20.777	15.216	39.310	37.652	36.823	36.325	35.994	C 6	-	-		-	-
1/ 0/	34.520	0.779	0.721	0.693	0.676	0.664	26.887	24.905	23.915	23.320	22.924	17.252	44.139	42.157	41.166	40.572	40.176	C/	145.432	139.484	136.511	134.726	133.537
18 C8	38.288	0.768	0.708	0.678	0.660	0.648	29.411	27.115	25.967	25.278	24.819	19.135	48.546	46.250	45.102	44.413	43.953	60	101.005	06 109	- 02 650	-	01 211
20 010	41.700	0.738	0.695	0.653	0.634	0.633	33,638	30 747	29 302	28.434	27.856	22.843	56.068	53 177	51 732	50 864	50.286	C 10	101.005	90.108	93.039	52.150	91.211
20 C 10	47.782	0.741	0.675	0.642	0.622	0.609	35.428	32,259	30.674	29.724	29.090	23,879	59.307	56.138	54.554	53.603	52.969	C 11	-				
22 C 12	50.531	0.734	0.665	0.631	0.611	0.597	37.070	33.625	31.902	30.869	30.179	25.253	62.324	58.878	57.155	56.122	55.433	C 12	177.699	168.194	163,441	160.589	158.688
23 C 13	52.955	0.727	0.657	0.622	0.601	0.587	38.479	34.780	32.930	31.821	31.081	26.465	64.943	61.245	59.395	58.285	57.546	C 13		L.*.)		-	
24 C 14	55.267	0.720	0.649	0.613	0.592	0.578	39.817	35.875	33.904	32.721	31.933	27.620	67.437	63.495	61.524	60.342	59.553	C 14	132.380	124.740	120.919	118.627	117.099
25 C 15	57.428	0.715	0.642	0.606	0.584	0.570	41.055	36.883	34.797	33.545	32.711	28.700	69.755	65.583	63.497	62,245	61.411	C 15	14	- 28	-	- 2° - 3	1 12
26 C 16	59.431	0.710	0.636	0.599	0.577	0.562	42.183	37.793	35.598	34.281	33.403	29.701	71.884	67.495	65.300	63.983	63.105	C 16	141.639	133.077	128.796	126.228	124.516
27 C 17	61.257	0.705	0.631	0.593	0.571	0.556	43.214	38.627	36.333	34.957	34.039	30.614	73.828	69.241	66.947	65.571	64.653	C 17		- 18 - 19		8	•
28 C 18	62.835	0.703	0.627	0.589	0.567	0.552	44.152	39.404	37.030	35.606	34.656	31.402	75.554	70.806	68.432	67.008	66.059	C 18			-	5	-
29 C 19	64.410	0.700	0.624	0.586	0.563	0.548	45.106	40.204	37.752	36.282	35.301	32.189	77.296	72.393	69.942	68.471	67.490	C 19	-	205.005	-	-	-
30 C 20	65.568	0.698	0.622	0.584	0.561	0.545	45.797	40.778	38.268	36.762	35.758	32.768	78.566	73.546	71.036	69.530	68.526	C 20	305.243	285.986	276.357	270.580	266.728
22 622	67,809	0.698	0.621	0.565	0.559	0.544	40.550	41.451	20.072	27.969	36.312	33.341	91 145	75 020	72.215	71.756	70 712	C 21			-	-	
33 C 23	68 715	0.697	0.620	0.581	0.558	0.543	47.257	42.578	39.933	38 346	37 288	34 341	82 210	76.919	74 274	72 687	71.628	C 23				2	
34 C.24	69.528	0.696	0.619	0.581	0.558	0.542	48.422	43.065	40.387	38,780	37.709	34.747	83.169	77.813	75.134	73.527	72.456	C 24	326.415	305,433	294.942	288.647	284.451
35 C 25	70.393	0.696	0.619	0.581	0.558	0.542	49.024	43.601	40.889	39.262	38.178	35.179	84.203	78.780	76.069	74.442	73.357	C 25		-	-	-	
36 C 26	71.081	0.696	0.619	0.581	0.558	0.542	49.503	44.027	41.289	39.646	38.551	35.523	85.026	79.550	76.812	75.169	74.074	C 26	169.229	158.330	152.880	149.611	147.431
37 C 27	71.736	0.696	0.619	0.581	0.558	0.542	49.959	44.432	41.669	40.011	38.906	35.851	85.810	80.283	77.520	75.862	74.756	C 27			•	× .	
38 C 28	72.375	0.696	0.619	0.581	0.558	0.542	50.404	44.828	42.040	40.368	39.253	36.170	86.574	80.998	78.211	76.538	75.423	C 28		120			
39 C 29	72.950	0.696	0.619	0.581	0.558	0.542	50.805	45.184	42.374	40.688	39.564	36.457	87.262	81.642	78.832	77.146	76.022	C 29	259.646	242.923	234.562	229.545	226.201
40 C 30	73.519	0.696	0.619	0.581	0.558	0.542	51.201	45.537	42.705	41.006	39.873	36.742	87.942	82.278	79.447	77.747	76.615	C 30	-	-		-	
41 C 31	73.982	0.696	0.619	0.581	0.558	0.542	51.524	45.824	42.974	41.264	40.124	36.973	88.497	82.797	79.948	78.238	77.098	C 31	176.439	165.076	159.394	155.985	153.712
42 C 32	74.398	0.696	0.619	0.581	0.558	0.542	51.813	46.082	43.216	41.496	40.350	37.181	88.995	83.263	80.397	78.678	77.972	C 32					
43 033	75.027	0.696	0.619	0.581	0.558	0.542	52.041	46.285	43.400	41.679	40.528	37.345	89.380	83.630	81.077	79.024	78 187	C 34			-		
45 0.35	75.366	0.696	0.619	0.581	0.558	0.542	52.488	46.681	43.778	42.036	40.875	37.665	90.153	84.346	81.443	79.701	78,540	C 35	358,281	335.206	323,668	316.746	312,131
46 C 36	75.627	0.696	0.619	0.581	0.558	0.542	52.669	46.843	43,930	42.182	41.017	37.795	90.465	84,638	81.725	79.977	78.812	C 36	-	-	-	-	-
47 C 37	75.813	0.696	0.619	0.581	0.558	0.542	52.799	46.958	44.038	42.285	41.117	37.888	90.687	84.846	81.926	80.174	79.006	C 37				-	
48 C 38	76.014	0.696	0.619	0.581	0.558	0.542	52.939	47.083	44.155	42.398	41.226	37.989	90.928	85.072	82.143	80.387	79.215	C 38	272.079	254.556	245.794	240.538	237.033
49 C 39	76.188	0.696	0.619	0.581	0.558	0.542	53.060	47.190	44.256	42.495	41.321	38.076	91.136	85.266	82.331	80.571	79.397	C 39	-		-	-	-
50 C 40	76.292	0.696	0.619	0.581	0.558	0.542	53.132	47.255	44.316	42.553	41.377	38.128	91.260	85.382	82.443	80.680	79.505	C 40		-	-		
51 C 41	76.367	0.696	0.619	0.581	0.558	0.542	53.184	47.301	44.359	42.594	41.418	38.165	91.349	85.466	82.524	80.759	79.583	C 41)		-	-	
52 C 42	76.423	0.696	0.619	0.581	0.558	0.542	53.223	47.336	44.392	42.625	41.448	38.193	91.416	85.529	82.585	80.818	79.641	C 42	•				•
53 C 43	76.516	0.696	0.619	0.581	0.558	0.542	53.288	47.393	44.446	42.677	41.498	38.239	91.527	85.633	82.685	80.917	79.738	C 43	456.689	427.276	412.569	403.745	397.863
54 C 44	76.553	0.696	0.619	0.581	0.558	0.542	53.314	47.416	44.467	42.698	41.518	38.258	91.572	85.674	82.725	80.956	79.776	C 44	-			÷ .	
55 C 45	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 45					
57 C 46	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 46	366,494	342.890	331.088	324.007	319,286

A	F	G	Н	1	J	К	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB
1			Coeficier	ntes de Co	rreção 3D				Vlassa Adiciona	1					Massa Tota					Distrib	lição da Mas	sa Total	
Secão	Mass. Ad.	J1	J2	J3	J4	J5	M.A M1 (tn)	M.A M2 (tn)	M.A M3 (tn)	M.A M4 (tn)	M.A M5 (tn)	Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5	Secão	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	(tn)							er e				(tn)	(tn)	(tn)	(tn)	(tn)	(tn)		(tn)	(tn)	(tn)	(tn)	(tn)
58 C 48	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 48	-	-	•		· · ·
59 C 49	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 49		-	-		· · ·
60 C 50	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 50	-	-	-		-
61 C51	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 51	366.563	342.955	331.151	324.068	319.346
62 C 52	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 52	-	-		~	! <u> </u>
63 053	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	0.53		-	•		
64 0.54	76.610	0.696	0.619	0.581	866.0	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	0.54	-	-	-	-	210.246
65 055	76.610	0.090	0.619	0.561	0.556	0.542	53.334	47.452	44.501	42.730	41.550	30.207	91.041	05.735	02.700	01.017	79.037	0.55	300.303	542.955	551.151	524.000	519.540
67 057	76.610	0.696	0.619	0.561	0.558	0.542	53.334	47.452	44.501	42.730	41.550	30.207	91.641	05.739	92.700	81.017	79.037	0.57	<u> </u>	-		-	
68 059	76.610	0.090	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	20 207	01.641	05.735	02.700	81.017	70.027	C 57			-		
69 0.59	76.610	0.696	0.619	0.581	0.558	0.542	53 354	47.452	44.501	42.730	41.550	38 287	91.641	85 730	82 788	81.017	79.837	C 50	366 563	3/2 055	331 151	324.068	319 346
70 C 60	76.610	0.696	0.619	0.581	0.558	0.542	53 354	47.452	44.501	42.730	41.550	38 287	91 641	85 739	82.788	81.017	79.837	C 60	300.303	-	331.131	524.000	313.340
71 C 61	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85,739	82.788	81.017	79.837	C 61	183,282	171.477	165.575	162.034	159.673
72 C 62	76.610	0.696	0.619	0.581	0.558	0.542	53,354	47.452	44.501	42.730	41,550	38.287	91.641	85,739	82,788	81.017	79.837	C 62	-	-	-	-	-
73 C 63	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 63	-		-		-
74 C 64	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C.64		-	-	-	-
75 C 65	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 65	366.563	342.955	331.151	324.068	319.346
76 C 66	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 66		-			-
77 C 67	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 67	-		-		-
78 C 68	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 68	-	-	-	-	-
79 C 69	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 69	366.563	342.955	331.151	324.068	319.346
80 C 70	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 70	•				-
81 C 71	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 71		-	14 A	12	-
82 C 72	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 72	-	-	-	- H	
83 C 73	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 73	366.563	342.955	331.151	324.068	319.346
84 C 74	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 74		-	1.00		-
85 C 75	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 75	-	8	-	- 8 - I	
86 C 76	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 76	274.922	257.216	248.363	243.051	239.510
87 C 77	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 77	•	-	-	-	
88 C 78	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 78					I
89 C 79	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 79	274.922	257.216	248.363	243.051	239.510
90 C 80	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 80		•			·
91 C 81	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 81	-	-	•		· · ·
92 082	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	0.02	-	-	-	-	
95 083	76.610	0.090	0.619	0.561	0.558	0.542	53.334	47.452	44.501	42.730	41.550	20.207	91.041	05.759	02.700	01.017	79.037	0.04	300.303	342.955	551.151	524.000	519.540
95 0.85	76.610	0.696	0.619	0.581	0.558	0.542	53 354	47.452	44.501	42.730	41.550	38.287	91.641	85,739	82.788	81.017	79.837	C 85					
96 0.86	76.610	0.696	0.619	0.581	0.558	0.542	53 354	47.452	44.501	42.730	41.550	38.287	91.641	85 739	82 788	81.017	79.837	C 86			-		
97 C 87	76.610	0.696	0.619	0.581	0.558	0.542	53,354	47.452	44,501	42,730	41 550	38,287	91,641	85,739	82 788	81.017	79.837	C 87	366 563	342 955	331 151	324.068	319 346
98 C 88	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 88	-	-	-	-	-
99 C 89	76.610	0.696	0.619	0.581	0.558	0.542	53,354	47.452	44.501	42.730	41,550	38.287	91.641	85,739	82,788	81.017	79.837	C 89					-
100 C 90	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47,452	44.501	42,730	41.550	38,287	91.641	85,739	82.788	81.017	79.837	C 90	-	-	-		· ·
101 C 91	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 91	366.563	342.955	331.151	324.068	319.346
102 C 92	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 92	-	-	-	-	-
103 C 93	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 93		-	-		-
104 C 94	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 94	-		-		-
105 C 95	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 95	366.563	342.955	331.151	324.068	319.346
106 C 96	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 96	-	-	-	-	-
107 C 97	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 97	-	-			-
108 C 98	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 98	-			12	
109 C 99	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 99	366.563	342.955	331.151	324.068	319.346
110 C 100	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 100	-				
111 C 101	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 101	-	-	-		-
112 C 102	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 102	-		-	32	

A	F	G	Н	1	J	К	L	M	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
1			Coeficier	ntes de Co	rreção 3D				Vlassa Adiciona	1					Massa Total					Distrib	lição da Mas	a Total	
Secão	Mass. Ad.	J1	J2	J3	J4	J5	M.A M1 (tn)	M.A M2 (tn)	M.A M3 (tn)	M.A M4 (tn)	M.A M5 (tn)	Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5	Secão	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	(tn)							er e				(tn)	(tn)	(tn)	(tn)	(tn)	(tn)		(tn)	(tn)	(tn)	(tn)	(tn)
113 C 103	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 103	366.563	342.955	331.151	324.068	319.346
114 C 104	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 104		•	-	•	
115 C 105	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 105	-		•		-
116 C 106	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 105	-	-	-	-	-
11/ C10/	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85./39	82.788	81.017	79.837	C 107	366.563	342.955	331.151	324.068	319.346
118 C 108	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	92.788	81.017	79.837	C 108		-	-	-	-
120 0110	76.610	0.696	0.619	0.581	0.558	0.542	53 354	47.452	44.501	42.730	41.550	38 287	91.641	85 739	82 788	81.017	79.837	C 110					
121 C 111	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42,730	41.550	38.287	91.641	85,739	82.788	81.017	79.837	C 111	366.563	342,955	331.151	324.068	319.346
122 C 112	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 112		-	-	-	-
123 C 113	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 113	-		-	-	-
124 C 114	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 114	•		-		
125 C 115	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 115	366.563	342.955	331.151	324.068	319.346
126 C 116	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 116	•		1 . A		-
127 C 117	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 117	•	3	· · · · · ·		
128 C 118	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 118	-	1 <u>5</u>	-	-	-
129 C 119	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 119	366.563	342.955	331.151	324.068	319.346
130 C 120	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 120		i -	•	-	
131 C 121	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 121	-	2			1.0
132 C 122	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 122	-	-	-	-	-
133 C123	76.610	0.696	0.619	0.581	0.558	0.542	53.354	47.452	44.501	42.730	41.550	38.287	91.641	85.739	82.788	81.017	79.837	C 123	366.563	342.955	331.151	324.068	319.346
134 C 124	76.575	0.696	0.619	0.581	0.558	0.542	53.329	47.430	44.480	42.710	41.531	38.209	91.598	85.699	82.749	80.980	79.800	C 124			-		-
135 C 125	76.525	0.696	0.619	0.581	0.558	0.542	53 295	47.409	44.401	42.092	41.512	38 244	91.539	85.643	82.696	80.944	79.703	C 125					
137 C 127	76.487	0.696	0.619	0.581	0.558	0.542	53.255	47.335	44.431	42.661	41.504	38.225	91 493	85.600	82.654	80.886	79 708	C 120		-			
138 C 128	76.448	0.696	0.619	0.581	0.558	0.542	53.241	47.351	44.407	42.640	41.462	38.206	91.447	85.557	82.612	80.845	79.667	C 128	-				-
139 C 129	76.413	0.696	0.619	0.581	0.558	0.542	53.216	47.329	44.386	42.620	41.443	38.188	91.404	85.517	82.574	80.808	79.631	C 129		-		-	-
140 C 130	76.368	0.696	0.619	0.581	0.558	0.542	53.185	47.302	44.360	42.595	41.419	38.166	91.351	85.468	82.526	80.761	79.584	C 130		2			-
141 C 131	76.312	0.696	0.619	0.581	0.558	0.542	53.146	47.267	44.327	42.564	41.388	38.138	91.284	85.404	82.465	80.701	79.525	C 131	731.674	684.551	660.989	646.853	637.428
142 C 132	76.241	0.696	0.619	0.581	0.558	0.542	53.097	47.223	44.286	42.524	41.350	38.102	91.199	85.326	82.389	80.627	79.452	C 132		-	-	-	-
143 C 133	76.165	0.696	0.619	0.581	0.558	0.542	53.043	47.176	44.242	42.481	41.308	38.064	91.107	85.240	82.306	80.545	79.372	C 133					-
144 C 134	76.073	0.696	0.619	0.581	0.558	0.542	52.979	47.119	44.188	42.430	41.258	38.018	90.997	85.137	82.206	80.448	79.276	C 134	-	1	-	-	-
145 C 135	75.996	0.696	0.619	0.581	0.558	0.542	52.926	47.071	44.144	42.388	41.217	37.980	90.906	85.051	82.124	80.367	79.197	C 135	364.210	340.753	329.025	321.988	317.297
146 C 136	75.894	0.696	0.619	0.581	0.558	0.542	52.855	47.008	44.085	42.331	41.161	37.929	90.784	84.937	82.014	80.260	79.090	C 136	-		•	-	
147 C 137	75.763	0.696	0.619	0.581	0.558	0.542	52.764	46.927	44.009	42.257	41.090	37.863	90.627	84.790	81.872	80.121	78.953	C 137	-	-	-	-	-
148 C 138	75.611	0.696	0.619	0.581	0.558	0.542	52.658	46.833	43.920	42.1/3	41.008	37.788	90.446	84.621	81.708	79.960	78.795	C 138	-	-	-	-	-
149 C 139	75.418	0.696	0.619	0.581	0.558	0.542	52.523	46.713	43.808	42.065	40.903	37.691	90.214	84.404	81.499	79.756	78.594	C 139	362.071	338./52	327.092	320.097	315.433
150 C 140	74 975	0.696	0.619	0.581	0.558	0.542	52.300	46.439	43.054	41.955	40.750	37.469	89.684	83 908	81.020	79.346	78 132	C 140					
152 C 142	74.575	0.696	0.619	0.581	0.558	0.542	52.024	46.269	43.391	41.665	40.503	37 332	89.356	83.601	80.724	78 997	77.846	C 142					-
153 C 143	74,384	0.696	0.619	0.581	0.558	0.542	51.803	46.073	43.208	41.488	40.342	37.174	88.978	83.247	80.382	78.663	77.517	C 143	357.996	334,940	323,411	316,494	311.883
154 C 144	73,990	0.696	0.619	0.581	0.558	0.542	51.529	45.829	42,979	41.269	40.129	36.977	88.507	82.806	79.956	78.246	77.106	C 144	-	-	-		-
155 C 145	73.539	0.696	0.619	0.581	0.558	0.542	51.215	45.549	42.716	41.017	39.884	36.752	87.966	82.301	79.468	77.768	76.635	C 145			-	-	-
156 C 146	73.043	0.696	0.619	0.581	0.558	0.542	50.870	45.242	42.429	40.741	39.615	36.504	87.374	81.747	78.933	77.245	76.119	C 146	-	•	-		-
157 C 147	72.423	0.696	0.619	0.581	0.558	0.542	50.438	44.858	42.068	40.395	39.279	36.194	86.632	81.052	78.263	76.589	75.473	C 147	350.478	327.906	316.620	309.848	305.334
158 C 148	71.777	0.696	0.619	0.581	0.558	0.542	49.988	44.458	41.693	40.034	38.928	35.871	85.859	80.329	77.564	75.906	74.800	C 148		-	-	-	-
159 C 149	71.062	0.697	0.620	0.581	0.558	0.543	49.510	44.040	41.305	39.664	38.570	35.514	85.024	79.554	76.819	75.178	74.084	C 149		1	-		-
160 C 150	70.282	0.697	0.621	0.582	0.559	0.544	49.011	43.612	40.912	39.293	38.213	35.124	84.135	78.736	76.036	74.417	73.337	C 150		-	ал. С	-	-
161 C 151	69.485	0.698	0.622	0.583	0.560	0.545	48.516	43.193	40.531	38.934	37.870	34.726	83.242	77.919	75.257	73.660	72.595	C 151	338.260	316.537	305.676	299.160	294.815
162 C 152	68.547	0.700	0.624	0.585	0.563	0.547	47.971	42.746	40.133	38.565	37.520	34.257	82.228	77.003	74.390	72.823	71.777	C 152	82.228	77.003	74.390	72.823	71.777
163 C 153	67.488	0.700	0.624	0.586	0.564	0.548	47.273	42.138	39.571	38.031	37.004	33.728	81.000	75.866	73.299	71.758	70.731	C 153	-			-	
164 C 154	66.464	0.703	0.627	0.589	0.566	0.551	46.691	41.667	39.155	37.647	36.642	33.216	79.907	74.883	72.371	70.863	69.858	C 154	-	-		-	-
165 C 155	65.275	0.705	0.629	0.592	0.569	0.554	45.987	41.083	38.631	37.160	36.180	32.622	78.609	73.705	71.253	69.782	68.802	C 155	-	-	-	-	-
166 C 156	64.060	0.707	0.633	0.595	0.573	0.558	45.294	40.521	38.134	36.702	35.748	32.015	77.309	72.535	70.149	68.717	67.762	C 156	316.824	296.989	287.072	281.121	277.154
16/ C157	62.755	0.709	0.636	0.599	0.576	0.562	44.522	39.882	37.562	36.170	35.242	31.363	/5.885	/1.245	68.924	67.532	66.604	C 157	-		-	-	-

	A	F F	G	н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB
1				Coeficie	ntes de Co	rreção 3D			N	Aassa Adicion	al 👘 👘					Massa Total					Distribu	ição da Mas	sa Total	
2	Seção	Mass. Ad. (tn)	л	J2	J3	J4	J5	M.A M1 (tn)	M.A M2 (tn)	M.A M3 (tn)	M.A M4 (tn)	M.A M5 (tn)	Deslocamento (tn)	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)
168	C 158	61.259	0.713	0.639	0.603	0.581	0.566	43.649	39.164	36.922	35.577	34.680	30.615	74.264	69.779	67.537	66.192	65.295	C 158	-	-	-	+	-
169	C 159	59.740	0.716	0.643	0.607	0.585	0.571	42.746	38.415	36.250	34.950	34.084	29.856	72.602	68.271	66.105	64.806	63.940	C 159	222.750	209.295	202.567	198.530	195.839
170	C 160	58.113	0.720	0.648	0.612	0.591	0.577	41.823	37.668	35.590	34.343	33.512	29.043	70.866	66.710	64.633	63.386	62.555	C 160		-	-	5	
171	C 161	56.211	0.723	0.653	0.618	0.596	0.582	40.667	36.699	34.715	33.524	32.730	28.092	68.760	64.791	62.807	61.616	60.822	C 161	-		•	ě	-
172	C 162	54.098	0.728	0.658	0.624	0.603	0.589	39.382	35.621	33.741	32.612	31.860	27.036	66.418	62.657	60.776	59.648	58.896	C 162	•		-	-	-
173	C 163	51.853	0.734	0.666	0.632	0.611	0.597	38.049	34.515	32.748	31.688	30.981	25.914	63.963	60.429	58.662	57.602	56.896	C 163	•		•		-
174	C 164	49.502	0.741	0.675	0.642	0.622	0.608	36.691	33.406	31.763	30.777	30.120	24.739	61.431	58.145	56.502	55.516	54.859	C 164	331.437	312.732	303.380	297.769	294.028
175	C 165	46.761	0.750	0.686	0.653	0.634	0.621	35.067	32.060	30.556	29.654	29.053	23.369	58.436	55.429	53.925	53.023	52.422	C 165	•	-			
176	C 166	43.791	0.760	0.698	0.667	0.649	0.636	33.287	30.578	29.223	28.411	27.869	21.885	55.172	52.463	51.108	50.295	49.754	C 166	113.608	107.892	105.034	103.319	102.176
177	C 167	40.565	0.772	0.713	0.683	0.666	0.654	31.310	28.913	27.715	26.996	26.516	20.273	51.582	49.186	47.987	47.268	46.789	C 167			•		
178	C 168	37.020	0.785	0.729	0.701	0.684	0.673	29.065	26.994	25.959	25.338	24.924	18.501	47.566	45.496	44.460	43.839	43.425	C 168		-	1.00	-	
179	C 169	33.019	0.800	0.748	0.722	0.706	0.696	26.425	24.698	23.834	23.316	22.971	16.502	42.927	41.200	40.336	39.818	39.472	C 169		2		- 2 - I	
180	C 170	28.666	0.817	0.769	0.745	0.731	0.721	23.433	22.050	21.359	20.944	20.667	14.326	37.759	36.376	35.685	35.270	34.994	C 170	179.834	172.257	168.469	166.196	164.680
181	C 171	23.725	0.838	0.795	0.773	0.760	0.751	19.882	18.854	18.340	18.032	17.827	11.857	31.739	30.711	30.197	29.889	29.683	C 171	•	-	-		-
182	C 172	18.123	0.863	0.826	0.807	0.796	0.789	15.647	14.971	14.634	14.431	14.296	9.057	24.704	24.028	23.691	23.488	23.353	C 172	79.957	77.818	76.749	76.107	75.679
183	C 173	11.683	0.896	0.867	0.852	0.843	0.837	10.471	10.127	9.955	9.852	9.783	5.839	16.310	15.966	15.794	15.690	15.622	C 173	-			2	-
184	C 174	4.758	0.940	0.921	0.912	0.906	0.902	4.474	4.383	4.338	4.311	4.293	2.378	6.851	6.761	6.716	6.689	6.671	C 174	•			¥	-
185	C 175	0.235	1.001	0.997	0.994	0.993	0.992	0.235	0.234	0.234	0.234	0.233	0.118	0.353	0.352	0.351	0.351	0.351	C 175			•		-
186	C 176	-	15	-	-	-		-	-	-	-	-	-	-	-	-		-	C 176	-	÷	-	÷	-
187	Proa	-	- 24	-	-	-		-	-	-	-	-			-	-	1 (A. 1	-	Proa	-	-			-
188	3	11838.644	128.8349	116.0384	109.6402	105.8013	103.2420	1525230.517	1373737.874	1297991.552	1252543.759	1222245.230	5916.4800	14240.1827	13346.9174	12900.2848	12632.3052	12453.6521		14240.1827	13346.9174	12900.2848	12632.3052	12453.6521
189													827.52											
190													6744.0000									1		

	A	F	G	Н	I.	1	К	L	M	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
1				Coeficie	ntes de Co	rreção 3D				Massa Adicion	al					Massa Total					Distribu	ição da Mas	sa Total	
	Course .	Mass. Ad.		12	12	14	10						Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5		M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	Seçao	(tn)	л	32	13	J4	15	MIA MII (th)	WI.A WIZ (th)	M.A Mi3 (th)	M.A M4 (th)	M.A MIS (th)	(tn)	(tn)	(tn)	(tn)	(tn)	(tn)	Seçao	(tn)	(tn)	(tn)	(tn)	(tn)
3	Espelho		- 22						620	-	2		121	-			2	1.00	Espelho	-	12		120	_
4	C -6									-	-		(24)		•				C -6		141			-
5	C-5	-	1.1			-	2			-			121		-			-	C-5	-	14			-
6	C-4			-					-	-	-						-	-	C -4		-	-		
7	C-3	0.294	1.001	0.997	0.995	0.993	0.993	0.295	0.293	0.293	0.292	0.292	0.057	0.352	0.351	0.350	0.350	0.349	C-3			-		-
8	C-2	1.883	0.973	0.962	0.957	0.954	0.951	1.834	1.813	1.802	1.796	1.792	0.366	2.200	2.179	2.168	2.162	2.158	C -2		(e)			-
9	C-1	4.865	0.946	0.928	0.919	0.914	0.911	4.602	4,516	4.473	4.447	4,430	0.946	5.548	5.462	5.419	5.393	5.376	C -1	8.099	7.991	7.937	7.905	7.883
10	0 00	9,285	0.919	0.895	0.883	0.876	0.871	8.532	8.309	8,197	8.130	8.086	1.805	10.337	10.114	10.002	9.935	9.891	CO		1.2	-		
1	C1	16.932	0.893	0.863	0.847	0.838	0.832	15.118	14.605	14.349	14,195	14.093	3.292	18.410	17.898	17.641	17.487	17.385	C 1	28,748	28.012	27.644	27.423	27.276
13	2 C 2	28.987	0.868	0.832	0.814	0.803	0.795	25.156	24.106	23.581	23.266	23.056	5.636	30.792	29.742	29.217	28.902	28.692	C 2	-	-	-	-	-
13	3 C 3	41.633	0.845	0.803	0.782	0.770	0.761	35.170	33.433	32.564	32.043	31.695	8.095	43.265	41.527	40.659	40.138	39.790	C 3	74.057	71.269	69.876	69.039	68.482
14	C4	54.413	0.824	0.778	0.754	0.740	0.731	44.853	42.317	41.050	40.289	39.782	10.580	55.433	52.897	51.630	50.869	50.362	C4	-			-	-
15	C 5	66.811	0.806	0.756	0.730	0.715	0.705	53.882	50.485	48.787	47.768	47.089	12.990	66.872	63.476	61.777	60.758	60.079	C 5				120	-
16	5 C 6	78.261	0.791	0.737	0.710	0.693	0.682	61.928	57.667	55.536	54.257	53.405	15.216	77.144	72.883	70.752	69.474	68.622	C 6	-		-		-
17	7 C7	88.729	0.779	0.721	0.693	0.676	0.664	69.109	64.016	61.469	59.941	58.922	17.252	86.361	81.267	78.721	77.192	76.174	C 7	285.810	270.523	262.880	258.294	255.236
18	3 C 8	98.414	0.768	0.708	0.678	0.660	0.648	75.595	69.694	66.743	64.972	63.792	19.135	94.730	88.829	85.878	84.107	82.927	C 8	-				-
19	C9	107.199	0.758	0.696	0.665	0.646	0.633	81.264	74.579	71.236	69.230	67.893	20.843	102.107	95.422	92.079	90.073	88.736	C 9	196.838	184.251	177.957	174.181	171.663
20	C 10	115.361	0.749	0.685	0.653	0.634	0.621	86.461	79.031	75.315	73.086	71.600	22.430	108.891	101.461	97.745	95.516	94.030	C 10		-	-		-
2	C 11	122.816	0.741	0.675	0.642	0.622	0.609	91.062	82.917	78.844	76.400	74.771	23.879	114.941	106.796	102.723	100.280	98.651	C 11	-		-		-
23	2 C 12	129.881	0.734	0.665	0.631	0.611	0.597	95.284	86.428	82.000	79.343	77.572	25.253	120.537	111.681	107.253	104.596	102.825	C 12	344.369	319.938	307.722	300.392	295.506
23	C 13	136.112	0.727	0.657	0.622	0.601	0.587	98.903	89.396	84.642	81.790	79.889	26.465	125.368	115.861	111.107	108.255	106.353	C 13	•	1.00			-
24	C 14	142.055	0.720	0.649	0.613	0.592	0.578	102.342	92.210	87.144	84.105	82.078	27.620	129.963	119.831	114.765	111.725	109.699	C 14	255.331	235.692	225.872	219.980	216.052
25	5 C 15	147.610	0.715	0.642	0.606	0.584	0.570	105.524	94.801	89.439	86.222	84.078	28.700	134.224	123.501	118.140	114.923	112.778	C 15		12			-
26	5 C 16	152.759	0.710	0.636	0.599	0.577	0.562	108.425	97.141	91.500	88.115	85.858	29.701	138.126	126.843	121.201	117.816	115.559	C 16	272.350	250.344	239.341	232.739	228.337
27	7 C 17	157.452	0.705	0.631	0.593	0.571	0.556	111.076	99.284	93.388	89.851	87.492	30.614	141.690	129.898	124.002	120.465	118.106	C 17			-	1	-
28	6 C 18	161.507	0.703	0.627	0.589	0.567	0.552	113.485	101.282	95.180	91.520	89.079	31.402	144.887	132.684	126.583	122.922	120.481	C 18	-	18			-
29	C 19	165.555	0.700	0.624	0.586	0.563	0.548	115.939	103.337	97.037	93.256	90.736	32.189	148.128	135.527	129.226	125.445	122.925	C 19	-	19 A.	÷	1.1	-
30	C 20	168.533	0.698	0.622	0.584	0.561	0.545	117.715	104.813	98.362	94.491	91.911	32.768	150.483	137.581	131.130	127.259	124.679	C 20	585.188	535.690	510.941	496.091	486.191
3:	C 21	171.479	0.698	0.621	0.583	0.560	0.544	119.649	106.492	99.914	95.967	93.335	33.341	152.991	139.834	133.255	129.308	126.677	C 21	•	- 14 C	•		-
32	C 22	174.293	0.697	0.620	0.582	0.558	0.543	121.467	108.059	101.355	97.333	94.651	33.888	155.355	141.947	135.243	131.221	128.540	C 22	2			1 - Qu - 1	- 1
33	C 23	176.620	0.697	0.620	0.581	0.558	0.543	123.039	109.441	102.641	98.562	95.842	34.341	157.380	143.781	136.982	132.903	130.183	C 23	-				
34	C 24	178.711	0.696	0.619	0.581	0.558	0.542	124.460	110.692	103.808	99.678	96.924	34.747	159.208	145.440	138.556	134.425	131.672	C 24	624.933	571.002	544.036	527.857	517.071
35	C 25	180.934	0.696	0.619	0.581	0.558	0.542	126.008	112.069	105.099	100.917	98.130	35.179	161.187	147.248	140.279	136.097	133.309	C 25	-	125	•		· · ·
36	C 26	182.701	0.696	0.619	0.581	0.558	0.542	127.239	113.164	106.126	101.903	99.088	35.523	162.762	148.687	141.649	137.427	134.612	C 26	323.950	295.935	281.928	273.523	267.921
37	C 27	184.385	0.696	0.619	0.581	0.558	0.542	128.412	114.207	107.104	102.843	100.002	35.851	164.262	150.057	142.955	138.693	135.852	C 27	-	121	-	1 31	
38	6 C 28	186.028	0.696	0.619	0.581	0.558	0.542	129.556	115.224	108.059	103.759	100.893	36.170	165.726	151.394	144.229	139.929	137.063	C 28					-
39	C 29	187.506	0.696	0.619	0.581	0.558	0.542	130.585	116.140	108.917	104.583	101.694	36.457	167.043	152.597	145.374	141.041	138.152	C 29	497.031	454.049	432.558	419.663	411.066
40	C 30	188.968	0.696	0.619	0.581	0.558	0.542	131.603	117.045	109.766	105.399	102.487	36.742	168.345	153.787	146.508	142.140	139.229	C 30	-			*	•)
4:	C 31	190.160	0.696	0.619	0.581	0.558	0.542	132.433	117.783	110.458	106.063	103.133	36.973	169.407	154.757	147.432	143.037	140.107	C 31	337.752	308.544	293.940	285.177	279.336
42	C 32	191.229	0.696	0.619	0.581	0.558	0.542	133.178	118.446	111.080	106.660	103.713	37.181	170.359	155.627	148.261	143.841	140.895	C 32	-				•
4	C 33	192.071	0.696	0.619	0.581	0.558	0.542	133.764	118.967	111.569	107.130	104.170	37.345	171.109	156.312	148.914	144.475	141.515	C 33	-		•		-
44	C 34	192.845	0.696	0.619	0.581	0.558	0.542	134.304	119.447	112.018	107.561	104.590	37.496	1/1.799	156.942	149.514	145.057	142.085	C 34		-	-		-
4	C 35	193.718	0.696	0.619	0.581	0.558	0.542	134.911	119.987	112.525	108.048	105.063	37.665	172.576	157.652	150.190	145.713	142.728	C 35	685.844	626.534	596.879	579.085	567.223
40	C 36	194.388	0.696	0.619	0.581	0.558	0.542	135.378	120.402	112.914	108.422	105.427	37.795	173.173	158.198	150.710	146.217	143.222	C 36					-
4	C 3/	194.865	0.696	0.619	0.581	0.558	0.542	135./10	120.698	113.192	108.688	105.686	37.888	173.599	158.586	151.080	146.576	143.574	6.37		475 701	452.374	420.750	420.754
41	C 38	195.383	0.696	0.619	0.581	0.558	0.542	136.0/1	121.019	113.492	108.977	105.966	37.989	174.060	159.007	151.481	140.966	143.955	C 38	520.832	475.791	453.271	439.759	430.751
49	C 39	195.830	0.696	0.619	0.581	0.558	0.542	136.382	121.296	113./52	109.226	106.209	38.076	174.458	159.371	151.828	147.302	144.285	C 39			-	100	
50	C 40	196.097	0.696	0.619	0.581	0.558	0.542	136.568	121.461	113.907	109.375	106.353	38.128	174.695	159.588	152.035	147.502	144.481	C 40	-		-		
5.	C 41	196.289	0.696	0.619	0.581	0.558	0.542	136.702	121.580	114.019	109.482	106.458	38.165	174.867	159.745	152.184	147.647	144.623	C 41	-				-
5.	C 42	196.433	0.696	0.619	0.581	0.558	0.542	136.802	121.669	114.102	109.562	106.535	38.193	174.995	159.862	152.295	147.755	144.728	C 42	-	700 632	-	730.146	702.021
5.	C 43	196.672	0.696	0.619	0.581	0.558	0.542	136.968	121.817	114.241	109.695	106.665	38.239	175.208	160.056	152.480	147.935	144.905	C 43	874.223	798.622	760.822	738.141	/23.021
54	C 44	196.767	0.696	0.619	0.581	0.558	0.542	137.035	121.876	114.295	109.748	106.717	36.256	175.292	160.134	152.554	148.006	144.975	C 44			-		-
5	C 45	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 45	-		-		-
50	C 46	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 46	701.567	640 907		503.264	
5.	C47	190.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106./9/	38.287	1/5.425	160.254	152.009	148.118	145.084	C47	/01.56/	040.897	010.562	592.361	580.227

-	A	F	G	н	1	1	K		M	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB
1				Coeficier	ntes de Co	rreção 3D		1		Aassa Adiciona	l .					Massa Total				_	Distrib	uição da Mas	sa Total	
	Secão	Mass. Ad.	11	12	12	14	15	M A M11 (tra)	M A M2 (tr)	M A M2 (to)	NA A NAA (tra)	M A M5 (tra)	Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5	Secão	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	Seçao	(tn)	,1	12	12	34	12	WI.A WII (th)	WI.A WI2 (UI)	WI.A WIS (tri)		WI.A IVIS (til)	(tn)	(tn)	(tn)	(tn)	(tn)	(tn)	Seçao	(tn)	(tn)	(tn)	(tn)	(tn)
58	C 48	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106,797	38.287	175.425	160.254	152.669	148.118	145.084	C 48	-		-	-	-
59	C 49	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 49	-	-	-	-	
60	C 50	196,915	0.696	0.619	0.581	0.558	0.542	137,138	121.968	114.382	109.831	106,797	38,287	175.425	160.254	152.669	148.118	145.084	C 50	-	-	-	-	-
61	C 51	196 915	0.696	0.619	0.581	0.558	0.542	137 138	121 968	114 382	109 831	106 797	38 287	175 425	160 254	152 669	148 118	145 084	C 51	701 699	641.018	610 677	592 472	580 336
62	C 52	196.915	0.696	0.619	0.501	0.558	0.542	137.138	121.968	114 382	109.831	106 797	38 287	175 425	160.254	152.669	1/8 118	145.084	0.52	701.055	0411010	010.077	552.472	500.550
62	0.52	106.015	0.050	0.610	0.501	0.550	0.542	137.130	121.000	114.382	100.831	106.797	20 207	175.425	160.254	152.005	140.110	145.084	0.52	-				-
64	C 53	106.015	0.050	0.610	0.501	0.558	0.542	137.130	121.908	114.382	100.831	106.797	20 207	175.425	160.254	152.005	140.110	145.084	C 54					-
65	0.54	106.015	0.000	0.610	0.501	0.558	0.542	137.130	121.908	114.382	100.831	106.707	20.207	175.425	160.254	152.009	140.110	145.084	0.54	701 600	641.019	610.677	503 473	E90 226
05	055	196.913	0.090	0.019	0.561	0.556	0.542	137.138	121.900	114.362	109.631	106.797	30.207	175.425	160.254	152.009	140.110	145.084	0.55	701.099	041.018	010.077	392.472	560.550
00	0.56	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	0.55	-	-	•	-	-
67	0.57	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	0.57		-		-	-
68	C 58	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	1/5.425	160.254	152.669	148.118	145.084	C 58	-	-	-	-	-
69	C 59	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 59	701.699	641.018	610.677	592.472	580.336
70	C 60	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 60	-		-		-
71	C 61	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 61	350.850	320.509	305.338	296.236	290.168
72	C 62	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 62	•	51	-		
73	C 63	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 63			-	÷ 1	-
74	C 64	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 64	÷	-	-		-
75	C 65	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 65	701.699	641.018	610.677	592.472	580.336
76	C 66	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 66	-				
77	C 67	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 67	-		-		-
78	C 68	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 68	-	(=)	-	4	-
79	C 69	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 69	701.699	641.018	610.677	592.472	580.336
80	C 70	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 70	•		-		
81	C 71	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 71	-			8	-
82	C 72	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 72	-				-
83	C 73	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 73	701.699	641.018	610.677	592.472	580.336
84	C 74	196,915	0.696	0.619	0.581	0.558	0.542	137,138	121.968	114,382	109.831	106,797	38,287	175.425	160.254	152.669	148.118	145.084	C 74	-	-	-	-	-
85	C 75	196,915	0.696	0.619	0.581	0.558	0.542	137,138	121.968	114.382	109.831	106,797	38,287	175.425	160.254	152.669	148.118	145.084	C 75	-		-	8	
86	C 76	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 76	526.274	480,763	458.008	444.354	435.252
87	C 77	196.915	0.696	0.619	0.581	0.558	0.542	137 138	121.968	114 382	109.831	106.797	38 287	175.425	160 254	152.669	148 118	145 084	C 77	JEULETT	-	-	-	
88	C 78	196 915	0.696	0.619	0.581	0.558	0.542	137 138	121.968	114 382	109.831	106 797	38.287	175.425	160 254	152.669	148 118	145 084	C 78		-			
80	C 79	196.915	0.696	0.619	0.501	0.558	0.542	137 138	121.968	114 382	109.831	106 797	38 287	175.425	160.254	152.669	1/18/118	145.084	C 79	526 274	480 763	458.008	444 354	135 252
90	C 80	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	28 287	175.425	160.254	152.669	1/12 112	145.084	C 80	520.274	400.705	458.008	444.554	455.252
01	C 81	106.015	0.050	0.610	0.501	0.556	0.542	137.130	121.908	114.382	100.831	106.797	20.207	175.425	160.254	152.005	140.110	145.084	0.01					-
91	C 01	106.015	0.090	0.619	0.561	0.556	0.542	137.130	121.908	114.362	109.651	106.797	20.207	175.425	160.254	152.009	140.110	145.004	C 01					-
92	C 02	196.913	0.090	0.619	0.561	0.556	0.542	137.130	121.908	114.362	109.051	106.797	20.207	175.425	160.254	152.009	140.110	145.064	C 02	701.600	-	610.677	- E02.472	-
93	0.04	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	0.83	701.699	641.018	610.6//	592.472	580.336
94	0.05	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.009	148.118	145.084	0.05					-
95	0.85	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	0.85	-		•		
96	C 86	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	1/5.425	160.254	152.669	148.118	145.084	C 86	-	-	-	502 152	-
97	C 87	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 87	701.699	641.018	610.677	592.472	580.336
98	C 88	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 88	-		-	-	
99	C 89	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 89				1	
100	C 90	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 90	-	÷.	-		-
101	C 91	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 91	701.699	641.018	610.677	592.472	580.336
102	C 92	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 92			-		
103	C 93	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 93					
104	C 94	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 94		- ÷			-
105	C 95	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 95	701.699	641.018	610.677	592.472	580.336
106	C 96	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 96	-	-	-	-	-
107	C 97	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 97	-	-		-	-
108	C 98	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 98	14 A			2	
109	C 99	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 99	701.699	641.018	610.677	592.472	580.336
110	C 100	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 100	-	-	-	-	-
111	C 101	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 101	-	-		-	-
112	C 102	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 102	-		-	-	-

_	A	F	G	н	1	J	К	L	M	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z	AA	AB
1				Coeficier	ntes de Co	orreção 3D		1		Aassa Adiciona	l .					Massa Total					Distribu	uição da Mas	sa Total	
1.1	Secão	Mass. Ad.	п	12	13	14	15	MAM1 (tn)	MAM2 (tn)	MAM3 (tn)	MAM4 (th)	MAM5 (tn)	Deslocamento	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5	Secão	M.T M1	M.T M2	M.T M3	M.T M4	M.T M5
2	ocyao	(tn)	-						()	tomethis (any		(iii)	(tn)	(tn)	(tn)	(tn)	(tn)	(tn)	ocyas	(tn)	(tn)	(tn)	(tn)	(tn)
113	C 103	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 103	701.699	641.018	610.677	592.472	580.336
114	C 104	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 104	•	•	-		-
115	C 105	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 105	•	-	-		
116	C 106	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 106		-	-		
117	C 107	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 107	701.699	641.018	610.677	592.472	580.336
118	C 108	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 108	•				-
119	C 109	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 109	•	-	-	-	-
120	C 110	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 110	-		-		-
121	C 111	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 111	701.699	641.018	610.677	592.472	580.336
122	C 112	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 112	•	•	· · · ·		· · · ·
123	C 113	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 113	-	-	1.00		
124	C 114	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 114	•	•	-		•
125	C 115	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 115	701.699	641.018	610.677	592.472	580.336
126	C 116	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 116		•			
127	C 117	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 117	•	5			
128	C 118	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 118	•	-	-	-	-
129	C 119	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 119	701.699	641.018	610.677	592.472	580.336
130	C 120	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 120		•	-		
131	C 121	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 121		-			
132	C 122	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 122	-		-	- E	-
133	C 123	196.915	0.696	0.619	0.581	0.558	0.542	137.138	121.968	114.382	109.831	106.797	38.287	175.425	160.254	152.669	148.118	145.084	C 123	701.699	641.018	610.677	592.472	580.336
134	C 124	196.824	0.696	0.619	0.581	0.558	0.542	137.075	121.911	114.330	109.781	106.748	38.269	175.344	160.180	152.599	148.050	145.017	C 124	•		-		-
135	C 125	196.739	0.696	0.619	0.581	0.558	0.542	137.015	121.858	114.280	109.733	106.701	38.252	175.267	160.111	152.532	147.985	144.954	C 125	•				
136	C 126	196.696	0.696	0.619	0.581	0.558	0.542	136.985	121.832	114.255	109.709	106.678	38.244	175.230	160.076	152.499	147.953	144.923	C 126	•	-	1	- E	-
137	C 127	196.597	0.696	0.619	0.581	0.558	0.542	136.916	121.770	114.197	109.654	106.625	38.225	175.141	159.995	152.422	147.879	144.849	C 127		(÷	-		-
138	C 128	196.498	0.696	0.619	0.581	0.558	0.542	136.847	121.709	114.140	109.599	106.571	38.206	175.053	159.915	152.346	147.804	144.777	C 128		-			-
139	C 129	196.407	0.696	0.619	0.581	0.558	0.542	136.784	121.653	114.087	109.548	106.522	38.188	174.972	159.841	152.275	147.736	144.710	C 129		-	1.00		-
140	C 130	196.293	0.696	0.619	0.581	0.558	0.542	136.705	121.582	114.021	109.484	106.460	38.166	174.871	159.748	152.187	147.650	144.626	C 130					-
141	C 131	196.148	0.696	0.619	0.581	0.558	0.542	136.603	121.492	113.936	109.403	106.381	38.138	174.741	159.630	152.074	147.541	144.518	C 131	1400.619	1279.496	1218.935	1182.598	1158.374
142	C 132	195.967	0.696	0.619	0.581	0.558	0.542	136.477	121.380	113.832	109.302	106.283	38.102	174.580	159.483	151.934	147.405	144.385	C 132	•	-	-		•
143	C 133	195.769	0.696	0.619	0.581	0.558	0.542	136.340	121.258	113.717	109.192	106.176	38.064	174.404	159.322	151.781	147.256	144.240	C 133	-	-	-		-
144	C 134	195.533	0.696	0.619	0.581	0.558	0.542	136.175	121.111	113.579	109.060	106.047	38.018	174.193	159.129	151.597	147.078	144.065	C 134	-	-	-	- 2	-
145	C 135	195.336	0.696	0.619	0.581	0.558	0.542	136.038	120.990	113.465	108.951	105.941	37.980	174.018	158.970	151.445	146.931	143.921	C 135	697.195	636.903	606.757	588.670	576.611
146	C 136	195.074	0.696	0.619	0.581	0.558	0.542	135.856	120.827	113.313	108.804	105.799	37.929	173.785	158.756	151.242	146.733	143.728	C 136		-	•	-	-
147	C 137	194.737	0.696	0.619	0.581	0.558	0.542	135.621	120.618	113.117	108.616	105.616	37.863	173.484	158.482	150.980	146.480	143.479	C 137		÷	-	÷	-
148	C 138	194.347	0.696	0.619	0.581	0.558	0.542	135.350	120.377	112.891	108.399	105.404	37.788	173.137	158.164	150.678	146.186	143.192	C 138	-		-	1	-
149	C 139	193.850	0.696	0.619	0.581	0.558	0.542	135.003	120.069	112.602	108.122	105.135	37.691	172.694	157.760	150.293	145.812	142.826	C 139	693.100	633.162	603.193	585.212	573.224
150	C 140	193.344	0.696	0.619	0.581	0.558	0.542	134.651	119.755	112.308	107.839	104.860	37.592	172.243	157.348	149.900	145.432	142.453	C 140	•	•		6	
151	C 141	192.711	0.696	0.619	0.581	0.558	0.542	134.210	119.363	111.940	107.486	104.517	37.469	171.679	156.833	149.409	144.956	141.986	C 141	•		-	<u> </u>	•
152	C 142	192.006	0.696	0.619	0.581	0.558	0.542	133.719	118.927	111.531	107.093	104.135	37.332	171.051	156.259	148.863	144.425	141.467	C 142	-	-	-		-
153	C 143	191.193	0.696	0.619	0.581	0.558	0.542	133.153	118.423	111.058	106.640	103.694	37.174	170.327	155.597	148.233	143.814	140.868	C 143	685.300	626.037	596.405	578.626	566.773
154	C 144	190.181	0.696	0.619	0.581	0.558	0.542	132.448	117.796	110.471	106.075	103.145	36.977	169.425	154.774	147.448	143.053	140.122	C 144		•	-	-	-
155	C 145	189.019	0.696	0.619	0.581	0.558	0.542	131.639	117.077	109.796	105.427	102.515	36.752	168.391	153.829	146.547	142.179	139.266	C 145	•		-		-
156	C 146	187.747	0.696	0.619	0.581	0.558	0.542	130.753	116.289	109.057	104.717	101.825	36.504	167.257	152.793	145.561	141.222	138.329	C 146	•		-		-
157	C 147	186.152	0.696	0.619	0.581	0.558	0.542	129.642	115.301	108.130	103.828	100.960	36.194	165.836	151.495	144.325	140.022	137.154	C 147	670.909	612.890	583.881	566.475	554.871
158	C 148	184.492	0.696	0.619	0.581	0.558	0.542	128.486	114.273	107.166	102.902	100.059	35.871	164.357	150.144	143.037	138.773	135.931	C 148		•	-		-
159	C 149	182.654	0.697	0.620	0.581	0.558	0.543	127.257	113.197	106.168	101.950	99.138	35.514	162.771	148.711	141.681	137.464	134.652	C 149	-	-	-		-
160	C 150	180.648	0.697	0.621	0.582	0.559	0.544	125.975	112.098	105.159	100.995	98.220	35.124	161.099	147.222	140.283	136.119	133.344	C 150	-	-	-	-	-
161	C 151	178.600	0.698	0.622	0.583	0.560	0.545	124.703	111.021	104.179	100.074	97.338	34.726	159.429	145.746	138.905	134.800	132.063	C 151	647.656	591.823	563.906	547.156	535.989
162	C 152	176.190	0.700	0.624	0.585	0.563	0.547	123.303	109.871	103.156	99.126	96.440	34.257	157.560	144.128	137.413	133.383	130.697	C 152	157.560	144.128	137.413	133.383	130.697
163	C 153	173.466	0.700	0.624	0.586	0.564	0.548	121.507	108.310	101.711	97.752	95.113	33.728	155.235	142.038	135.439	131.480	128.840	C 153	-	-		2	
164	C 154	170.835	0.703	0.627	0.589	0.566	0.551	120.012	107.098	100.641	96.767	94.184	33.216	153.228	140.314	133.857	129.983	127.400	C 154		-			
165	C 155	167.780	0.705	0.629	0.592	0.569	0.554	118.201	105.598	99.296	95.515	92.994	32.622	150.823	138.220	131.918	128.137	125.616	C 155	-		-	•	
166	C 156	164.656	0.707	0.633	0.595	0.573	0.558	116.421	104.153	98.018	94.338	91.884	32.015	148.436	136.167	130.033	126.352	123.899	C 156	607.722	556.738	531.247	515.952	505.755
167	C 157	161.303	0.709	0.636	0.599	0.576	0.562	114.437	102.510	96.547	92.969	90.584	31.363	145.800	133.873	127.910	124.332	121.946	C 157	-		100		-

	A	. F	G	н	1	1	K	L L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB
1				Coeficier	ntes de Co	rreção 3D				Massa Adiciona	al					Massa Total					Distribu	ição da Mas	sa Total	
2	Seção	Mass. Ad. (tn)	л	J2	J3	J4	J5	M.A M1 (tn)	M.A M2 (tn)	M.A M3 (tn)	M.A M4 (tn)	M.A M5 (tn)	Deslocamento (tn)	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)
16	C 158	157.457	0.713	0.639	0.603	0.581	0.566	112.193	100.666	94.903	91.444	89.139	30.615	142.808	131.281	125.518	122.059	119.754	C 158	-	•	-	+	-
169	C 159	153.553	0.716	0.643	0.607	0.585	0.571	109.871	98.740	93.174	89.834	87.608	29.856	139.727	128.595	123.030	119.690	117.464	C 159	428.335	393.749	376.457	366.081	359.164
170	C 160	149.371	0.720	0.648	0.612	0.591	0.577	107.500	96.819	91.478	88.274	86.138	29.043	136.542	125.861	120.521	117.317	115.181	C 160		-	-	5	
17	L C 161	144.482	0.723	0.653	0.618	0.596	0.582	104.529	94.329	89.229	86.168	84.128	28.092	132.622	122.421	117.321	114.261	112.220	C 161	-		-	9	-
173	2 C 162	139.049	0.728	0.658	0.624	0.603	0.589	101.226	91.559	86.725	83.825	81.891	27.036	128.262	118.595	113.761	110.860	108.927	C 162	-	-	-	*	-
173	B C 163	133.280	0.734	0.666	0.632	0.611	0.597	97.798	88.716	84.174	81.450	79.633	25.914	123.712	114.630	110.088	107.364	105.547	C 163	-	-	-		-
174	4 C 164	127.237	0.741	0.675	0.642	0.622	0.608	94.310	85.864	81.641	79.107	77.418	24.739	119.049	110.603	106.380	103.846	102.157	C 164	640.187	592.110	568.071	553.648	544.032
17	C 165	120.191	0.750	0.686	0.653	0.634	0.621	90.134	82.405	78.540	76.222	74.676	23.369	113.503	105.774	101.909	99.591	98.045	C 165		-	1	14 H	-
176	6 C 166	112.557	0.760	0.698	0.667	0.649	0.636	85.560	78.596	75.114	73.025	71.632	21.885	107.445	100.481	96.999	94.910	93.517	C 166	220.948	206.255	198.909	194.501	191.562
17	C 167	104.265	0.772	0.713	0.683	0.666	0.654	80.477	74.317	71.237	69.388	68.156	20.273	100.750	94.589	91.509	89.661	88.429	C 167					-
17	C 168	95.154	0.785	0.729	0.701	0.684	0.673	74.707	69.385	66.724	65.128	64.064	18.501	93.208	87.886	85.225	83.629	82.565	C 168		-	1.0	17	-
179	C 169	84.871	0.800	0.748	0.722	0.706	0.696	67.922	63.482	61.262	59.931	59.043	16.502	84.424	79.984	77.764	76.432	75.544	C 169		8		12	-
180	C 170	73.682	0.817	0.769	0.745	0.731	0.721	60.230	56.676	54.899	53.833	53.122	14.326	74.556	71.003	69.226	68.160	67.449	C 170	352.937	333.462	323.725	317.882	313.987
18	1 C 171	60.980	0.838	0.795	0.773	0.760	0.751	51.104	48.462	47.141	46.349	45.820	11.857	62.961	60.319	58.998	58.205	57.677	C 171	•	-		+	-
183	2 C 172	46.581	0.863	0.826	0.807	0.796	0.789	40.219	38.482	37.614	37.092	36.745	9.057	49.275	47.539	46.670	46.149	45.802	C 172	159.589	154.090	151.341	149.692	148.592
183	B C 173	30.030	0.896	0.867	0.852	0.843	0.837	26.915	26.030	25.587	25.322	25.145	5.839	32.754	31.869	31.426	31.161	30.984	C 173				- 2	-
184	4 C 174	12.230	0.940	0.921	0.912	0.906	0.902	11.499	11.266	11.150	11.080	11.034	2.378	13.876	13.644	13.528	13.458	13.412	C 174		-			-
18	C 175	0.604	1.001	0.997	0.994	0.993	0.992	0.605	0.602	0.601	0.600	0.600	0.118	0.723	0.720	0.719	0.718	0.717	C 175	-		•	. ÷)	-
180	5 C 176	-	1.5	-	E.	-	i i ž	-	-	-	÷)	-		-	8	-		-	C 176	-	i e	-		-
18	/ Proa	-	-	-	-			-	-	-	145	-	-		-	-	12	-	Proa	-	2	14	1	-
18	8	30429.390	128.8349	116.0384	109.6402	105.8013	103.2420	3920367.422	3530979.183	3336285.063	3219468.591	3141590.943	5916.4800	27311.2610	25015.2617	23867.2621	23178.4623	22719.2625		27311.2610	25015.2617	23867.2621	23178.4623	22719.2625
189					1		1						827.52											
190	D												6744.0000											

-

Anexo IV – Modos de Vibração

1º Modo de vibração vertical - Águas Profundas

2º Modo de vibração vertical - Águas Profundas

3º Modo de vibração vertical - Águas Profundas

4º Modo de vibração vertical - Águas Profundas

5º Modo de vibração vertical - Águas Profundas

1º Modo de vibração vertical - Águas Rasas

2º Modo de vibração vertical - Águas Rasas

3º Modo de vibração vertical - Águas Rasas

4º Modo de vibração vertical - Águas Rasas

5º Modo de vibração vertical - Águas Rasas