

Aplicação de Algoritmos Genéticos para a Determinação de Faixas de Operativas no Modelo SUISHI

GUILHERME ARAUJO ROSA

Projeto de Graduação apresentado ao Curso de Engenharia Elétrica da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do grau de Engenheiro Eletricista.

Orientadora: Carmen Lúcia Tancredo Borges D.Sc

Co-Orientador: Fábio Rodrigo Siqueira Batista D.Sc

Rio de Janeiro

Agosto de 2013

Aplicação de Algoritmos Genéticos para a Definição das Faixas de Operativas no Modelo SUISHI

GUILHERME ARAUJO ROSA

PROJETO SUBMETIDO AO CORPO DOCENTE DO DEPARTAMENTO DE ENGENHARIA ELÉTRICA DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DE GRAU DE ENGENHEIRO ELETRICISTA.

Aprovada por:	
	Prof. Carmen Lúcia Tancredo Borges, D.Sc (Orientadora)
	Fábio Rodrigo Siqueira Batista D.Sc. (Co-Orientador)
	Prof. Djalma Mosqueira Falcão, Ph.d. (Examinador)
	Luiz Guilherme Barbosa Marzano, D.Sc.
	(Examinador)

RIO DE JANEIRO, RJ – BRASIL

Agosto de 2013

Rosa, Guilherme Araujo

Aplicação de Algoritmos Genéticos para a Definição das Faixas de Operativas no Modelo SUISHI / Rio de Janeiro: UFRJ / Escola Politécnica / Departamento de Engenharia Elétrica, 2013.

XIII, 116 p.: il. 29,7 cm.

Orientadores: Carmen Lúcia Tancredo Borges, Fábio Rodrigo Siqueira Batista

Projeto de Graduação – UFRJ / Escola Politécnica / Departamento de Engenharia Elétrica, 2013.

Referências Bibliográficas: p. 101-102.

- 1. Simulação a Usinas Individualizadas para Sistemas Hidrotérmico Interligados 2. Planejamento Eltroenergético. 3. Algoritmos Genéticos.
- I. Borges, Carmen Lúcia Tancredo et al Batista, Fabio Rodrigo Siqueira. II. Universidade Federal do Rio de Janeiro. III. Escola Politécnica. IV. Departamento de Engenharia Elétrica. V. Título

Resumo do Projeto de Graduação apresentado à Escola Politécnica/UFRJ como parte dos

requisitos necessários para a obtenção do grau de Engenheiro Eletricista.

APLICAÇÃO DE ALGORITMOS GENÉTICOS PARA A DEFINIÇÃO DAS FAIXAS

DE OPERATIVAS NO MODELO SUISHI

Guilherme Araujo Rosa

Agosto/2013

Orientadores: Carmen Lúcia Tancredo Borges

Fábio Rodrigo Siqueira Batista

O principal modelo computacional utilizado no Brasil para o planejamento da operação

energética a médio prazo é o modelo NEWAVE. Para que a solução desse problema seja

computacionalmente viável,, representando de forma adequada a estocasticidade inerente

às afluências das bacias hidrográficas brasileiras, o modelo NEWAVE agrega os

reservatórios das usinas hidrelétricas de um sistema hidrotérmico.

O modelo SUISHI (Simulação a Usinas Individualizadas para Sistemas Hidrotérmicos

Interligados), desenvolvido pelo Centro de Pesquisas de Energia Elétrica, surge da

necessidade de se simular a operação energética de sistemas hidrotérmicos em nível de

usinas individualizadas, já que o modelo NEWAVE representa apenas um reservatório por

região.

Para simular a operação das usinas, o modelo SUISHI divide os reservatórios das usinas

zonas chamadas faixas operativas. Tais faixas são utilizadas na heurística para enchimento

e deplecionamento dos reservatórios das usinas hidrelétricas e atualmente são configuradas

de forma que o modelo tenta simular a operação das usinas em paralelo, ou seja, tentando

manter todas as usinas do sistema no mesmo nível de armazenamento.

O objetivo desse trabalho é investigar a existência de uma configuração alternativa para as

faixas operativas do modelo SUISHI, de forma que sua simulação apresente um custo

menor do que a configuração atual. Para tanto, abordou-se o problema utilizando

algoritmos genéticos.

Palavras Chave

- Energia Elétrica, SUISHI, Planejamento Energético, Algoritmo Genético.

iv

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the

requirements for the degree of Engineer.

GENETIC ALGORITHMS APLICATION FOR THE DEFINITION OF OPERATIVE

BANDS IN THE SUISHI MODEL

Guilherme Araujo Rosa

August/2013

Advisors: Carmen Lúcia Tancredo Borges

Fábio Rodrigo Siqueira Batista

The main computational model utilized in Brazil for the medium term electroenergetical

operation planning is the NEWAVE model. In its mathematical modeling, the NEWAVE

model needs to work with equivalent reservoirs for each region in order to represent, with

good reliability, the stochasticity of Brazilian rivers inflows.

The SUISHI model (Individualized power plants Simulation for Interconnected

Hydrothermal Systems), developed by CEPEL (Electrical Energy Research Center), arises

from the necessity to simulate the energetical operation at individualized hydroplants level,

considering that the NEWAVE model works based on equivalent reservoirs.

To simulate the power plants operation, the SUISHI model divides the reservoirs in zones

called operative bands. Such bands are used in the filling and depleting reservoirs

heuristics and are currently configured in a way in which the model tries to keep all the

reservoirs at the same storage level, called parallel operation.

This project's goal is to investigate the existence of an alternative configuration whose

total operational cost is lower than the current configuration. To accomplish this goal the

problem was approached using genetic algorithms.

Key Words

- Electrical Energy, SUISHI, Energetical Planning, Genetic Algorithms.

v

AGRADECIMENTOS

A Deus, pois ele está acima de tudo e é tudo.

À minha noiva Aurélie por sua compreensão e apoio durante o desenvolvimento deste trabalho, sem você eu não teria conseguido. Sou eternamente grato aos momentos de felicidade que você me proporciona vivenciar ao vir para o Brasil.

À minha mãe, Hilce, e ao meu pai, Iran. Vocês são diretamente responsáveis por tudo que eu sou hoje. Quero também agradecer pelo apoio logístico, moral e durante este trabalho.

Aos meus irmãos Pedro, Giulia e Ricardo, e a Rogério e Katia.

Quero agradecer aos meus chefes e orientadores Fábio e Guilherme, por terem me dado total liberdade para o desenvolvimento do projeto, bem como apoio, não só durante este trabalho, mas ao longo de todo meu período dentro do CEPEL.

Aos professores do DEE, por todas as aulas e ensinamentos.

Em especial à professora Carmen por ter aceitado me orientar e seu esforço para a confecção de um bom trabalho e sua apresentação célere.

À patota da Gi, sem vocês por perto, nunca teria concluído a faculdade.

Aos meus companheiros da sala C-20 do CEPEL, pela excelente convivência, ajuda acadêmica e risadas.

Aos meus amigos da matemática, em especial Ci e Gab.

À UFRJ por ter me proporcionado além da excelente formação, a possibilidade de um intercâmbio, experiência mais marcante da minha vida.

CONTEÚDO

AG	RADECIMENTOS	vi
CO.	NTEÚDO	vii
LIS	STA DE FIGURAS	ix
LIS	STA DE TABELAS	. xiii
1 II	NTRODUÇÃO	14
	OBJETIVO	
1.2	ORAGNIZAÇÃO	17
	ETOR ELÉTRICO BRASILEIRO E PLANEJAMENTO DA OPERAÇÃO	10
	<i>ERGÉTICA</i> FATORES CONDICIONANTES DO PLANEJAMENTO DE OPERAÇÃO DO SIN	
	CADEIA DE MODELOS COMPUTACIONAIS E MODELOS DE MÉDIO PRAZO	
2.2	2.2.1 Modelos Computacionais Usados no Planejamento de Médio Prazo	
	2.2.2 Modelos para o Planejamento de Curto Prazo e Programação da Operação	
2.3	FORMULAÇÃO MATEMÁTICA	
3 M HII	IODELO DE SIMULAÇÃO A USINAS INDIVIDUALIZADAS PARA SUBSISTEM DROTÉRMICOS INTERLIAGDOS (SUISHI)	!AS 27
	FUNCIONAMENTO DO MODELO	
3.2	OPERAÇÃO EM PARALELO DOS RESERVATÓRIOS	31
3.3	CONFIGURAÇÃO DAS FAIXAS OPERATIVAS	32
4 A	LGORITMOS GENÉTICOS	34
4.1	FUNCIONAMENTO DOS ALGORITMOS GENÉTICOS	34
4.2	CARACTERÍSTICAS DOS ALGORITMOS GENÉTICOS	35
	4.2.1 Representação de Cromossomos	35
	4.2.2 Função de Aptidão	35
	4.2.3 População	36
	4.2.4 Método de Seleção de Pais	37
	4.2.5 Operadores Genéticos	37
5 A	BORDAGEM AO PROBLEMA DE DETERMINAÇÃO DAS FAIXAS OPERATIVA	1 <i>S</i>
UT	ILIZANDO-SE ALGORITMO GENÉTICO	38
	CONSIDERAÇÕES	
5 2	REPRESENTAÇÃO DE SOLUÇÕES	38

5.3	FUNÇAO DE APTIDAO	39
5.4	CRITÉRIO DE CONVERGÊNCIA	40
5.5	OPERADORES GENÉTICOS	41
	5.5.1 Crossover	41
	5.5.2 Operador de mutação	42
5.6	INICIALIZAÇÃO DA POPULAÇÃO	42
	MÉTODO DE SELEÇÃO DE PAIS	
5.8	FUNCIONAMENTO	43
5.9	AMBIENTE COMPUTACIONAL E PROCESSAMENTO PARALELO	44
6 C	CASO DE ESTUDO E RESULTADOS DA OTIMIZAÇÃO (UM SUBSISTEMA)	45
6.1	PROGRAMA MENSAL DA OPERAÇÃO (PMO) DE ABRIL DE 2013	45
6.2	PREMISSAS	46
6.3	PROPOSTA1	47
	PROPOSTA 2	
6.5	PROPOSTA 3	60
6.6	PROPOSTA 4: FOCO EM USINAS DE MONTANTE E JUSANTE	66
6.7	PROPOSTA 5	73
6.8	COMPARAÇÃO ENTRE AS PROPOSTAS	78
	RESULTADOS DO PMO ABRIL DE 2013 (QUATRO SUBSISTEMAS)	
	RESULTADOS DA SIMULAÇÃO DO MODELO SUISHI UTILIZANDO O PMO	
	IGINAL (4SUBSISTEMAS)	
	RESULTADOS DA PROPOSTA 2 APLICADA A QUATRO SUBSISTEMAS	
	RESULTADOS DA PROPOSTA 3 APLICADA A QUATRO SUBSISTEMAS	
	RESULTADOS DA PROPOSTA 4 APLICADA A QUATRO SUBSISTEMAS	
	RESULTADOS DA PROPOSTA 5 APLICADA A QUATRO SUBSISTEMAS	
7.6	COMPARAÇÃO ENTRE AS PROPOSTAS DE FAIXAS OPERATIVAS	100
8 C	CONCLUSÕES	102
8.1	TRABALHOS FUTUROS	102
9 B	SIBLIOGRAFIA	104
10	ANEXO: PROPOSTAS	106
10.	1 PROPOSTA 1	106
10.2	2 PROPOSTA 2	108
10.3	3 PROPOSTA 3	110
10.4	4PROPOSTA 4	112
10.5	5 PROPOSTA 5	114

LISTA DE FIGURAS

Figura 2-1 Decisões e consequências	21
Figura 2-2 Gráfico Ilustrativo das funções de custo	21
Figura 2-3 Divisão de períodos, incerteza e detalhamento.	22
Figura 2-4 Cadeia de Modelos para o Planejamento da Expansão da Geração e	da
Operação Energética.	23
Figura 3-1 Faixas Operativas.	30
Figura 3-2 Fluxograma de funcionamento do modelo SUISHI	30
Figura 3-3 Representação Gráfica das Faixas Operativas de um Reservatório	32
Figura 5-1 Janela de Configuração das Faixas Operativas de uma Usina	38
Figura 5-2 Representação do Cromossomo.	39
Figura 5-3 Crossover Uniforme	41
Figura 5-4 Fluxograma simplificado do Algoritmo Genético	43
Figura 6-1 Evolução do AG. Caso 1	48
Figura 6-2 \triangle CMO Proposta 1	49
Figura 6-3 \triangle COPER Proposta 1	49
Figura 6-4 Δ EARMFS Proposta 1	50
Figura 6-5 \triangle GHID Proposta 1	51
Figura 6-6 \triangle GTER Proposta 1	51
Figura 6-7 ΔGDEF proposta 1	52
Figura 6-8 ΔVERTTUR Proposta 1	52
Figura 6-9 Indivíduo Proposta 2	54
Figura 6-10 \triangle CMO Proposta 2	56
Figura 6-11 \(\Delta\text{COPER Proposta 2}\)	56
Figura 6-12 \(\Delta EARMFS\) Proposta 2.	57
Figura 6-13 \triangle GHID Proposta 2	57
Figura 6-14 \triangle GTER Proposta 2	58
Figura 6-15 \triangle GDEF Proposta 2	58
Figura 6-16 \(\Delta VERTTUR \) Proposta 2	59
Figura 6-17 Evolução do AG Proposta 3	61

Figura 6-18 Melhor Aptidão Proposta 3	61
Figura 6-19 ∆CMO Proposta 3	62
Figura 6-20 ∆COPER Proposta 3	63
Figura 6-21 \(\Delta \text{EARMFS Proposta 3}\)	63
Figura 6-22 \triangle GHID Proposta 3	64
Figura 6-23 \triangle GTER Proposta 3	64
Figura 6-24 ∆GDEF Proposta 3	65
Figura 6-25 △VERTTUR Proposta 3	65
Figura 6-26 Indivíduos Proposta 4	67
Figura 6-27 Evolução do AG Proposta 4	68
Figura 6-28 ∆CMO Proposta 4	69
Figura 6-29 \(\Delta\)COPER Proposta 4	69
Figura 6-30 ∆EARMFS	70
Figura 6-31 ∆GHID Proposta 4	70
Figura 6-32 ∆GTER Proposta 4	71
Figura 6-33 ∆GDEF Proposta 4	71
Figura 6-34 ∆VERTTUR	72
Figura 6-35 Indivíduo Proposta 5	73
Figura 6-36 Evolução do AG ; Proposta 5	74
Figura 6-37∆CMO Proposta 5	74
Figura 6-38 \(\Delta\)COPER Proposta 5	75
Figura 6-39 \(\Delta EARMFS Proposta 5	75
Figura 6-40 \triangle GHID Proposta 5	76
Figura 6-41 ∆GTER	76
Figura 6-42 \(\Delta\)GDEF Proposta 5	77
Figura 6-43 \(\DeltaVERTTUR Proposta 5	77
Figura 7-1 △CMO Proposta 1, 4 Subsistemas	80
Figura 7-2∆COPER Proposta 1, 4 Subsistemas	81

Figura 7-3∆EARMFS Proposta 1, 4 Subsistemas	81
Figura 7-4∆GHID Proposta 1, 4 Subsistemas	82
Figura 7-5∆GTER Proposta 1, 4subsistemas	82
Figura 7-6∆GDEF Proposta 1, 4 Subsistemas	83
Figura 7-7\(\DeltaVERTTUR Proposta 1, 4 Subsistemas	83
Figura 7-8 \triangle CMO Proposta 2; 4 Subsistemas	85
Figura 7-9 △COPER Proposta 2; 4 Subsistemas.	85
Figura 7-10 ∆EARMFS Proposta 2; 4 Subsistemas	86
Figura 7-11 △GHID Proposta 2; 4 Subsistemas.	86
Figura 7-12 △GTER Proposta 2; 4 Subsistemas.	87
Figura 7-13 △GDEF Proposta 2; 4 Subsistemas.	87
Figura 7-14 △VERTTUR Proposta 2; 4 Subsistemas	88
Figura 7-15 △CMO Proposta 3; 4 Subsistemas	89
Figura 7-16 △COPER Proposta 3; 4 Subsistemas.	89
Figura 7-17 ∆EARMFS Proposta 3; 4 Subsistemas	90
Figura 7-18 △GHID Proposta 3; 4 Subsistemas.	90
Figura 7-19 △GTER Proposta 3; 4 Subsistemas.	91
Figura 7-20 ∆GDEF Proposta 3; 4 Subsistemas.	91
Figura 7-21 △VERTTUR Proposta 3; 4 Subsistemas	92
Figura 7-22 △CMO Proposta 4, 4 Subsistemas	93
Figura 7-23 △COPER Proposta 4, 4 Subsistemas.	93
Figura 7-24 ∆EARMFS Proposta 4, 4 Subsistemas	94
Figura 7-25 △GHID Proposta 4, 4 Subsistemas.	94
Figura 7-26∆GTER Proposta 4, 4 Subsistemas.	95
Figura 7-27 \(\Delta\)GDEF Proposta 4, 4 Subsistemas.	95
Figura 7-28 \(\Delta VERTTUR Proposta 4, 4 Subsistemas \).	96
Figura 7-29 ∆CMO Proposta 5, 4 Subsistemas	97

Figura 7-30 \(\Delta\)COPER Proposta 5, 4 Subsistemas.	97
Figura 7-31 \triangle EARMFS Proposta 5, 4 Subsistemas.	98
Figura 7-32 \triangle GHID Proposta5, 4 subsistemas.	98
Figura 7-33 \triangle GTER Proposta 5, 4 Subsistemas.	99
Figura 7-34 \triangle GDEF Proposta 5, 4 Subsistemas.	99
Figura 7-35 \triangle VERTTUR Proposta 5, 4 Subsistemas	100

LISTA DE TABELAS

Tabela 1 Quadro-resumo dos fatores condicionantes do planejamento de sistemas
hidrotérmicos20
Tabela 2 - Comparação de Resultados: Configuração em Paralelo x Solução do AG
Proposta 153
Tabela 3 Faixas das usinas de montante e jusante54
Tabela 4 Usinas de Montante e Jusante55
Tabela 5 - Comparação de Resultados: Configuração em Paralelo x Proposta 259
Tabela 6 - Comparação de Resultados: Configuração em Paralelo x Proposta 366
Tabela 7 - Comparação de Resultados: Configuração em Paralelo x Proposta 472
Tabela 8 - Comparação de Resultados: Configuração em Paralelo x Proposta 578
Tabela 9 - Tabela Comparativa de Resultados entre todas as Propostas
Tabela 10 - Comparação de Resultados: Configuração em Paralelo x Proposta 1 (Quatro
Subsistemas)
Tabela 11 - Comparação de Resultados: Configuração em Paralelo x Proposta 2 (Quatro
Subsistemas)
Tabela 12 - Comparação de Resultados: Configuração em Paralelo x Proposta 3 (Quatro
Subsistemas)92
Tabela 13 - Comparação de Resultados: Configuração em Paralelo x Proposta 4 (Quatro
Subsistemas)96
Tabela 14 - Comparação de Resultados: Configuração em Paralelo x Proposta 5 (Quatro
Subsistemas)
Tabela 15 - Tabela Comparativa de Resultados entre todas as Propostas para operação em
quatro subsistemas

1 INTRODUÇÃO

Energia é um dos temas de maior relevância estratégica para o desenvolvimento sustentável de uma nação e seu aproveitamento econômico requer o uso mais eficiente dos recursos naturais energéticos, principalmente dos não-renováveis e dos dependentes de condições climáticas, como os recursos hídricos.

A energia elétrica, sobre os aspectos técnicos, econômicos e socioambientais, é a que mais contribui para o desenvolvimento e o bem-estar da sociedade [1]. De fato, a eletricidade, tanto ou mais do que as outras formas de energia, tornou-se fundamental à sociedade moderna, revolucionando as relações produtivas e condicionando seu estilo e qualidade de vida. Assim, as necessidades da vida moderna passaram a demandar um fornecimento de energia elétrica ininterrupto, obedecendo a padrões de disponibilidade e confiabilidade cada vez mais elevados.

Sendo um insumo fundamental para a oferta de produtos e serviços nos segmentos macro e microeconômicos, a evolução do consumo de energia elétrica está diretamente relacionada com o crescimento econômico de um país. Tal assertiva é corroborada verificando-se que quanto maior o PIB per capita de um país, maior é o poder de compra da população e maior é a demanda individual de energia elétrica. Como corolário, a promoção do desenvolvimento de uma nação depende da facilidade de acesso a fontes de energia competitivas e tecnologias de transformação adequadas.

Há décadas, o consumo de energia elétrica no país vem crescendo anualmente a taxas superiores ao PIB [2] e as projeções para o decênio atual (2010-2020) indicam uma tendência de crescimento a níveis ligeiramente menores do que os atuais, embora compatíveis com o PIB projetado para o mesmo período. Tais fatos concorrem para aumentar a pressão sobre o desempenho da área de geração de energia que, na atualidade, é composta basicamente por fontes de energia hidrotérmica, sobretudo a hidráulica. Em função desse dado estatístico econômico, o planejamento da operação energética precisa ser cada vez mais refinado, de forma a minimizar custos e aumentar a confiabilidade do sistema.

Em decorrência dos investimentos em infraestrutura realizados nos últimos 50 anos para a exploração de seu imenso potencial hídrico - entre os maiores do planeta - a atual matriz energética brasileira, na parcela concernente à oferta de energia elétrica, está fortemente concentrada na energia hidrelétrica, cujo custo da matéria prima de geração é

praticamente inexistente. Além do que, trata-se de uma fonte renovável e que possui tecnologias de aproveitamento devidamente consolidadas.

Todavia, a enorme capacidade instalada de que dispõe o país na atualidade demanda uma complexa gestão operacional e financeira das usinas de geração (hidrelétricas, termelétricas, nucleares e eólicas) e das linhas de transmissão, as quais se encontram interligadas em todo o território dentro de um sistema elétrico unificado, responsável pelo abastecimento de energia elétrica em nível nacional. O custo resultante da gestão desse sistema impacta diretamente o preço da energia ao consumidor final, seja ele doméstico ou relacionado a qualquer atividade produtiva.

Em um sistema hidrotérmico unificado de fornecimento de energia elétrica, como é o caso no Brasil, a questão específica do custo da energia ao consumidor está relacionada propriamente à variação da oferta de energia hidrelétrica (menor disponibilidade por causas naturais ou por picos de demanda diversos) e a consequente utilização de energia termelétrica para suprir a parcela da demanda do mercado não atendida por aquela, uma vez que o custo financeiro e socioambiental da energia fornecida por uma usina termelétrica, em geral, é mais elevado (normalmente movida a partir de combustível fóssil), comparado ao de uma hidrelétrica (energia cinética do fluxo de água).

Neste contexto, nota-se que existe um fator de custo de geração hidrelétrica denominado *custo de oportunidade*, cujo cálculo é bastante complexo devido à incerteza das afluências futuras e requer, no caso brasileiro, a utilização de modelos matemáticos para a sua obtenção.

Dentre as ferramentas utilizadas no planejamento desta operação para buscar o melhor arranjo econômico na relação "custo x benefício" entre as duas formas de geração de energia acima mencionadas, os modelos computacionais, no Brasil, são imprescindíveis à redução dos custos inerentes à energia hidrotérmica.

Uma vez que as decisões no presente têm implicações diretas nos custos futuros, a modelagem matemática tenta representar as incertezas hidrológicas através de cálculos probabilísticos de cenários de médio e longo prazo, a fim de informar ao operador o risco atrelado às suas decisões.

Naturalmente, a evolução dos modelos acompanha o crescimento em tamanho e complexidade do sistema elétrico como um todo. Portanto, toda melhora de performance desses modelos contribui positivamente para o planejamento e o controle da ação

planejada, proporcionando o respaldo científico necessário para o aprimoramento do processo decisório.

O modelo computacional oficialmente empregado no SEB (Setor Elétrico Brasileiro) para a realização do planejamento da operação energética de médio prazo é o modelo NEWAVE [3] [4], o qual, para um determinado horizonte de planejamento, determina a política ótima de operação do sistema, além de diversos cenários de despacho térmico, hidráulico e fluxos de intercâmbio entre subsistemas.

Para tornar o problema viável computacionalmente, o modelo NEWAVE agrega os reservatórios das usinas hidráulicas por subsistema. Neste contexto, outro modelo empregado no planejamento da operação de médio prazo, é o modelo SUISHI (Simulação a Usinas Individualizadas em Subsistemas Hidrotérmicos Interligados). A função do modelo SUISHI é simular a operação das usinas hidrelétricas de um sistema hidrotérmico de forma individualizada, utilizando a política de operação determinada pelo modelo NEWAVE.

O modelo SUISHI funciona baseado na premissa da operação dos reservatórios das usinas hidrelétricas em paralelo. Para tanto, os reservatórios são divididos em zonas chamadas faixas operativas, e o modelo tenta controlar a geração hidráulica e o armazenamento de água buscando manter todos os reservatórios do sistema numa mesma faixa operativa.

1.1 OBJETIVO

Conforme mencionado anteriormente, o modelo SUISHI divide os reservatórios das usinas hidrelétricas em faixas operativas, e busca manter todos os reservatórios dentro da mesma faixa. A configuração padrão adotada pelo modelo SUISHI considera as faixas operativas de todas as usinas com a mesma amplitude. Consequentemente, ao tentar manter todos os reservatórios em uma mesma faixa, o modelo estará tentando deplecionar/encher os reservatórios em paralelo, pois as faixas são iguais para todas as usinas.

O objetivo desta monografia é avaliar configurações alternativas para faixas operativas modelo computacional SUISHI, verificando a possibilidade de ganhos em relação a operação em paralelo. Desta forma, espera-se obter uma melhoria dos indicadores associados ao custo de operação do sistema frente à configuração atual. Cabe observar que,

para cada usina hidrelétrica, poderá ser adotada uma configuração distinta das faixas operativas.

Para esta finalidade, utilizou-se uma abordagem baseada na meta-heurística conhecida como algoritmo genético devido à sua fácil implementação e capacidade de adaptação.

1.2 ORGANIZAÇÃO

O projeto esta estruturado como disposto a seguir:

O capítulo 1 consiste de uma introdução contendo as considerações iniciais, o objetivo e a organização do trabalho.

O capítulo 2 trata do Setor Elétrico Brasileiro e do Planejamento da Operação do SIN (Sistema Interligado Nacional), elencando os fatores condicionantes do planejamento da operação e discorrendo sobre a cadeia de modelos computacionais do Centro de Pesquisas de Energia Elétrica (CEPEL), em especial os modelos de planejamento da operação de médio prazo.

O capítulo 3 aborda as características principais e o funcionamento do modelo SUISHI. Também abrange o conceito de faixas operativas e como ele é utilizado dentro deste modelo.

O capítulo 4 versa sobre a meta-heurística Algoritmo Genético, com o propósito de explicitar, de maneira concisa, suas principais características e seu funcionamento.

No capítulo 5 define-se a estratégia de abordagem ao problema utilizando-se o algoritmo genético e demonstrando como este foi empregado para a determinação de uma configuração alternativa de melhor rendimento. Esse capítulo relaciona a heurística com o problema e como o modelo SUISHI se encaixa nesse cenário.

O capítulo 6 expõe um breve resumo sobre o Programa Mensal da Operação Energética (PMO), elaborado pelo ONS (Operador Nacional do Sistema Elétrico) e a metodologia adotada. Também são analisados os resultados para a execução do algoritmo genético para o caso de estudo.

No capítulo 7 são avaliados os resultados das propostas de configuração das faixas operativas para o caso real do PMO com quatro subsistemas.

No capítulo 8 são apresentadas as conclusões sobre o trabalho e trabalhos futuros O capítulo 9 contém a bibliografia.

2 SETOR ELÉTRICO BRASILEIRO E PLANEJAMENTO DA OPERAÇÃO ENERGÉTICA

O SEB apresenta um elevadíssimo grau de integração entre todos os seus segmentos – geração, transmissão e distribuição de energia elétrica – que estão interligados nacionalmente, permitindo atender às demandas regionais dentro de padrões adequados de continuidade e qualidade. Na atualidade, o SEB encontra-se estruturado em uma matriz de geração quase que integralmente hidrotérmica, com predominância das fontes hidrelétricas e, complementarmente, das fontes termelétricas.

A infraestrutura composta pela malha de transmissão, interligando regiões e suas usinas, delimita o SIN, que controla o fornecimento estimado de 96% da energia elétrica produzida em todo o país e dispõe de uma Rede Básica de Transmissão de cerca de 100 mil quilômetros de linhas, à qual estão conectadas redes secundárias de transmissão e redes de distribuição.

Esse extenso sistema de transmissão, com interligações que permitem o intercâmbio de energia entre as regiões, possibilita o aproveitamento dos diferentes comportamentos hidrológicos das 12 bacias hidrográficas do Brasil.

O modelo do SEB amparado pela legislação vigente preconiza como objetivos principais:

- Garantir a segurança do suprimento de energia elétrica;
- Promover a modicidade tarifária; e
- Promover a inserção social no Setor Elétrico Brasileiro, em particular pelos programas de universalização de atendimento.

2.1 FATORES CONDICIONANTES DO PLANEJAMENTO DE OPERAÇÃO DO SIN

Dentro da estrutura organizacional que regula o setor, o órgão responsável pela coordenação e controle da operação das instalações de geração e transmissão de energia elétrica no SIN é o Operador Nacional do Sistema Elétrico (ONS), a quem compete, dentre outras atribuições correlatas à sua missão institucional, elaborar as diretivas de planejamento e operação das unidades geradoras componentes do Sistema para garantir a segurança, a continuidade e o menor custo possível do suprimento de energia elétrica no país.

Em linhas gerais, a política de operação do SIN está condicionada ao suprimento da demanda de energia pelo mercado consumidor, em consonância com as diretrizes do planejamento estratégico nacional, e deve atender aos seguintes critérios:

- Economicidade (redução de custos em todos os segmentos da cadeia de fornecimento – geração/transmissão/distribuição)
- Confiabilidade (continuidade e qualidade de transmissão manutenção da capacidade instalada)
- Disponibilidade (adequação da capacidade geradora à demanda atual e futura)
- Universalidade (acesso à população em todas as regiões geográficas)

Para a consolidação do planejamento operacional do SIN, o ONS subdivide essa tarefa em dois módulos, em função da natureza das atividades:

- 1. Planejamento elétrico;
- 2. Planejamento energético.

O primeiro deles destina-se a prognosticar a infraestrutura elétrica adequada para o funcionamento do sistema (geração e transmissão), enquanto o segundo circunscreve sua área de atuação à otimização da operação dos recursos energéticos disponíveis, dada à configuração elétrica do sistema. Em suma, como a quantidade de energia a ser fornecida é o somatório das componentes hidrelétrica e termelétrica, o objetivo deste planejamento é desenvolver mecanismos para minimizar o custo total de operação de todo o horizonte de estudo.

Face ao escopo do trabalho estar diretamente relacionado ao planejamento energético, passaremos a analisar as características das variáveis que interferem neste planejamento. No quadro-resumo abaixo são apresentados os fatores condicionantes do planejamento de sistemas hidrotérmicos e suas principais características.

Tipo de	Natureza do Problema	Observações
Problema		
Interdependência Temporal	A utilização dos recursos hídricos no cenário atual impacta diretamente sobre o futuro, podendo ocasionar déficit de geração ou vertimento dos reservatórios.	O potencial de geração energética, (representado pela água armazenada nos reservatórios), é limitado. A sua disponibilidade num dado momento depende do grau de sua utilização anterior, o que estabelece um vínculo entre as decisões operativas no tempo (problema dinâmico).
Estocasticidade	Incerteza sobre as afluências futuras e sobre a demanda de energia.	As incertezas relacionadas às afluências futuras tornam-se mais significativas quanto maior for o horizonte do planejamento.
Interdependência Operacional	As usinas hidrelétricas são construídas em cascata, portanto a operação da usina a montante afeta a operação de todas as usinas a jusante desta.	As hidrelétricas estão situadas em uma mesma bacia hidráulica visando ao máximo aproveitamento do potencial energético, apresentando um acoplamento operativo entre si.

Tabela 1 Quadro-resumo dos fatores condicionantes do planejamento de sistemas hidrotérmicos

A estocasticidade e o acoplamento temporal são os fatores de maior importância no planejamento de sistemas hidrotérmicos, pois as incertezas embutem risco de ineficiência a todas as decisões tomadas pelo planejamento, podendo provocar prejuízos no futuro.

Por exemplo, caso seja decidido armazenar água no estágio atual e ocorrerem vazões elevadas num estágio posterior, o sistema estará desperdiçando energia, pois os reservatórios, provavelmente, não serão capazes de armazenar as afluências favoráveis, visto que já se encontrarão com níveis elevados.

O outro cenário desfavorável ocorre quando se opta por utilizar os recursos hídricos no estágio atual e as afluências futuras não corresponderem às expectativas (forem reduzidas), o que provavelmente acarretaria num aumento de geração térmica ou até a ocorrência de déficit.

Uma representação esquemática do processo decisório relacionado a este tipo de planejamento encontra-se na figura abaixo.



Figura 2-1 Decisões e consequências

Conforme representado no gráfico abaixo, o acoplamento temporal pode ser expresso matematicamente como a minimização de função de custo total de operação (FCT), que é composta pelas funções de custo presente (FCP) e futuro de todo o horizonte de estudo. A função de custo presente corresponde ao benefício imediato do uso de recursos hídricos, enquanto a função de custo de futuro (FCF), ao benefício do armazenamento da água para uso futuro.

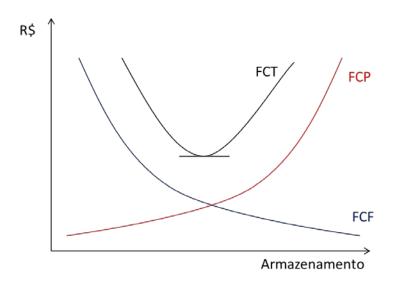


Figura 2-2 Gráfico Ilustrativo das funções de custo

Matematicamente, o valor mínimo da função de custo total ocorre quando sua derivada é igual à zero, ou seja:

$$FCT = FCP + FCF \quad (1)$$

$$\frac{\partial FCT}{\partial EARMF} = \frac{\partial (FCP + FCF)}{\partial EARMF} = \frac{\partial FCP}{\partial EARMF} + \frac{\partial FCF}{\partial EARMF} = 0 \quad (2)$$

$$\frac{\partial FCP}{\partial EARMF} = -\frac{\partial FCF}{\partial EARMF} \quad (3)$$

Por fim, dado que tanto as usinas hidrelétricas quanto as usinas termelétricas apresentam um custo de geração não linear, o problema de planejamento da operação de sistemas hidrotérmicos pode ser classificado como um problema de otimização de um sistema dinâmico, interconectado, estocástico, não linear e de grande porte.

No Brasil, devido à complexidade e tamanho do sistema elétrico, os problemas do planejamento da operação de médio e curto prazo, além da programação da operação, são computacionalmente inviáveis de serem resolvidos por meio de um único problema matemático. Por conseguinte, divide-se o problema em horizontes temporais diferentes, os quais contemplam maiores níveis de detalhamento à medida que se chega mais perto do tempo presente. A divisão do problema requer o desenvolvimento de modelos computacionais específicos para cada horizonte, levando-se em conta as suas particularidades. A figura abaixo sintetiza esse processo.

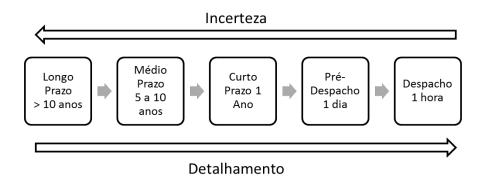


Figura 2-3 Divisão de períodos, incerteza e detalhamento.

2.2 CADEIA DE MODELOS COMPUTACIONAIS E MODELOS DE MÉDIO PRAZO

Conforme mencionado anteriormente, devido à alta complexidade do problema do planejamento no Brasil, se faz necessário dividirmos o planejamento em diferentes horizontes temporais e utilizarmos uma modelagem matemática condizente com as características de cada período.

Para melhor abordagem dessa desagregação temporal do problema, o CEPEL desenvolveu uma cadeia de modelos matemáticos e computacionais dividindo o problema do planejamento da operação em três blocos: Planejamento da Expansão da Geração, Planejamento da Operação Energética e Programação da Operação.

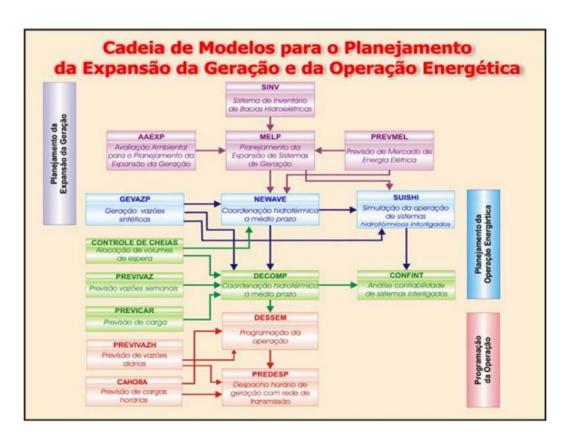


Figura 2-4 Cadeia de Modelos para o Planejamento da Expansão da Geração e da Operação Energética.

2.2.1 Modelos Computacionais Usados no Planejamento de Médio Prazo

Considerando o planejamento da operação de médio prazo, que se enquadra dentro do bloco de Planejamento da Operação Energética na cadeia de modelos, os três modelos computacionais mais importantes são:

- GEVAZP [3]
- NEWAVE [4]
- SUISHI ([3] e [5])

Considerado o principal modelo utilizado para o planejamento a médio prazo, o NEWAVE trabalha com um horizonte de planejamento de até dez anos, com discretização mensal e representação detalhada da estocasticidade das afluências, calculando para cada etapa do período a distribuição ótima dos recursos hídricos e térmicos do sistema levando em conta a minimização do valor esperado do custo total de operação (geração térmica e déficit). O cálculo da política de operação é elaborado segundo a técnica de Programação Dinâmica Dual Estocástica [4] e a representação do parque hidrelétrico é feita através de subsistemas equivalentes [3].

O modelo GEVAZP gera cenários hidrológicos que alimentarão os modelos NEWAVE e SUISHI, a partir da concepção de séries hidrológicas sintéticas com características probabilísticas semelhantes às séries históricas das vazões. Tal modelo incorpora uma maior robustez ao reproduzir, com mesma severidade, os períodos desfavoráveis ocorridos previamente.

O modelo SUISHI surge da necessidade de simular a operação energética de sistemas interligados em nível de usinas individualizadas. O acoplamento entre esses modelos é feito através da função de custo de futuro do NEWAVE, calculada para estágio.

2.2.2 Modelos para o Planejamento de Curto Prazo e Programação da Operação

No planejamento de curto prazo, o principal modelo computacional utilizado é o modelo DECOMP, que também se encontra no bloco do Planejamento da Operação Energética. O acoplamento com a etapa anterior (planejamento de médio prazo, NEWAVE) se dá pela função de custo futuro. Esse modelo determina a geração para todas as usinas do sistema num horizonte de um ano, com discretização semanal para o primeiro mês de estudo, e mensal para o restante do período.

Na programação da operação, o principal modelo computacional utilizado é o modelo DESSEM. Esse modelo possui um horizonte semanal e discretização em intervalos de até trinta minutos.

Os modelos citados acima representam a operação com maior fidelidade, quando comparados ao modelo NEWAVE. Esses modelos já representam as usinas de forma individualizadas e consideram restrições hidráulicas de forma mais detalhada.

Os modelos DECOMP e DESSEM também resolvem problemas de otimização, assim como o modelo NEWAVE, utilizando técnicas de programação dinâmica dual estocástica, e programação dinâmica dual, respectivamente [3].

2.3 FORMULAÇÃO MATEMÁTICA

A formulação matemática simplificada dos modelos computacionais de operação de médio prazo é apresentada a seguir. O problema do planejamento consiste em minimizar o valor esperado da soma do custo de operação de todas as usinas térmicas do sistema e o custo de déficit para todo o período de estudo.

$$Minimizar E_a \left[\sum_{t=1}^{\tau} \sum_{i=1}^{nt} c_i G_{i,t} + c_{def} Def_t \right]$$
 (1)

Sujeito a:

$$\sum_{j=1}^{nh} \rho_{j}. q_{j,t} + \sum_{i=1}^{nt} G_{i,t} + Def_{t} = D_{t} \quad (2)$$

$$V_{j,t+1} = V_{j,t} - q_{j,t} - s_{j,t} + a_{j,t} + \sum_{m \in U(j)} (q_{m,t} + s_{m,t}) \quad (3)$$

$$\underline{V}_{j,t} \leq V_{j,t} \leq \overline{V}_{j,t} \quad (4)$$

$$\underline{q}_{j,t} \leq q_{j,t} \leq \overline{q}_{j,t} \quad (5)$$

$$\underline{s}_{j,t} \leq s_{j,t} \leq \overline{s}_{j,t} \quad (6)$$

$$\underline{G}_{j,t} \leq G_{j,t} \leq \overline{G}_{j,t} \quad (7)$$

Onde:

 $t=1,\cdots,\tau$ representa o horizonte de estudo

 $j = 1, \dots, nh$ representa o índice de usinas hidrelétricas

 $i = 1, \dots, nt$ representa o índice de usinas térmicas

 τ , nt, e nh representam o horizonte de estudo, o número de usinas hidrelétricas e o número de usinas térmicas respectivamente

 c_i representra o custo de operação da usina térmica i

 $G_{i,t}$ representa a geração da usina térmica i no estágio t

 $Def\ e\ c_{def}$ representam o déficit de energia do sistema e seu custo respectivamente

 ρ_j e $q_{j,t}$ representam a produtibildiade da usina j e o volume de água turbinado pela usina j no estáio t

 D_t representa a demanda a ser atendida

 $V_{j,t}$ representa o volume armazenado no reservatório da usina j no estágio t

 $s_{i,t}$ representa os vertimentos da usina j no estágio t

As grandezas com barras inferiores e superiores representam limites mínimos e máximos respectivamente.

A equação (1) representa a função objetivo, que é minimizar o custo de operação para todo o período.

A equação (2) representa a restrição de atendimento à demanda (balanço de energia).

A equação (3) representa a restrição de balanço hídrico

As equações de (4) a (6) representam restrições operativas máximas e mínimas para a vazão total, vazão turbinada e vazão vertida de uma usina hidrelétrica.

A equação (7) representa as restrições de geração máxima e mínima de uma usina térmica.

3 MODELO DE SIMULAÇÃO A USINAS INDIVIDUALIZADAS PARA SUBSISTEMAS HIDROTÉRMICOS INTERLIGADOS (SUISHI)

Um dos objetivos do planejamento da operação do sistema hidrotérmico brasileiro é determinar uma operação estratégica tal que, para cada período do planejamento, produza metas de geração para as usinas do sistema de forma a minimizar o custo total de operação ao longo do horizonte de planejamento. Neste contexto, sabe-se que o modelo NEWAVE é utilizado na etapa de planejamento energético de médio prazo do SIN. Entretanto, uma vez que os resultados do modelo NEWAVE são determinados a subsistemas equivalentes de energia, pode ser necessária à obtenção de metas de geração individualizadas para as usinas hidrelétricas ao longo do horizonte de planejamento. Face esse cenário, o modelo SUISHI [3], desenvolvido pelo CEPEL, pode ser caracterizado como um modelo de simulação da operação de usinas hidrelétricas individualizadas em um sistema hidrotérmico interligado, tal como o sistema brasileiro.

O sistema de geração do modelo SUISHI é formado por usinas hidrelétricas e termelétricas. As usinas hidrelétricas podem ser classificadas em dois tipos: usinas a fio d'água, onde não há variação do volume d'água armazenado no reservatório; e usinas com reservatório, quando estas possuem uma capacidade significativa de regularização. O grupo de usinas termelétricas consiste de todos os outros tipos de usinas geradoras (Nuclear, Combustíveis Fósseis, GNL, etc.) que possam ser representadas por capacidades mínima, máxima e custo de geração constantes.

O déficit de energia é representado, em patamares, por usinas termelétricas de alto custo e capacidades diferentes, considerando-se a usina do último patamar como possuidora de capacidade ilimitada, de forma a fechar o balanço de potência do sistema.

Os sistemas de transmissão são representados de forma simplificada, pois o foco do modelo está direcionado aos estudos de planejamento energético e não aos de planejamento elétrico. Em vista disso, são levadas em consideração apenas as grandes limitações de intercâmbio entre regiões.

No modelo SUISHI, não são consideradas restrições elétricas de transmissão dentro de um subsistema, permitindo que a demanda possa ser agregada num mercado de energia único e a geração de energia individual de todas as usinas dos subsistemas, em apenas uma geração total. Outras características que merecem ser destacadas são:

- O modelo simula até 10 subsistemas hidrotérmicos eletricamente interligados em malha, mas hidraulicamente independentes, observando os limites de intercâmbio de energia nos dois sentidos;
- Pode ser acoplado a um modelo de decisão estratégica que forneça uma função de custo futuro para a operação de cada estágio da simulação como, por exemplo, o modelo NEWAVE;
- Considera restrições operativas locais devido ao uso múltiplo da água, tais como: vazão máxima para controle de cheias, vazão mínima para saneamento, navegação ou desvio de vazão para irrigação;
- Simula múltiplas séries hidrológicas em paralelo, permitindo obter facilmente índices probabilísticos de desempenho para cada estágio da simulação; e
- Possui quatro modos de simulação: simulação com configuração estática do sistema (não há expansão da capacidade de geração do sistema), simulação com configuração dinâmica (pode haver expansão na capacidade instalada do sistema), simulação estática com cálculo de energia firme e simulação estática com cálculo de energia garantida.

As principais aplicações do modelo SUISHI estão voltadas para os estudos de planejamento energético, tais como cálculo de energia firme, cálculo de energia garantida, subsídios para a elaboração de casos de referência para estudos de planejamento elétrico e estudos de viabilidade de usinas hidrelétricas.

Dentre os principais resultados do modelo SUISHI, para cada cenário hidrológico, destacam-se os seguintes: a geração hidráulica individualizada, a geração térmica por classe, os intercâmbios entre subsistemas, além da energia armazenada, da geração hidráulica, do custo marginal de operação e do custo total de operação por subsistema para todos os meses do horizonte de planejamento.

3.1 FUNCIONAMENTO DO MODELO

O processo de solução do modelo SUISHI é dividido em duas etapas subsequentes: otimização do balanço hidrotérmico entre subsistemas e simulação a usinas hidrelétricas individualizadas. A rigor, o problema resolvido na primeira etapa de solução equivale ao problema resolvido pelo modelo NEWAVE durante a simulação final da operação do sistema. Nesta etapa, o objetivo do modelo SUISHI é definir metas de geração hidráulica

para cada subsistema equivalente, mediante a solução de um problema de programação linear. Assim como no modelo NEWAVE, tal problema tem como objetivo a minimização da soma do custo presente com o custo futuro, sujeito a determinadas restrições, tais como as de balanço hídrico, atendimento à demanda, armazenamento máximo, geração hidráulica máxima e à função de custo futuro proveniente do modelo NEWAVE.

A formulação matemática utilizada pelo modelo SUISHI é semelhante à formulação apresentada previamente, diferindo apenas no detalhamento de restrições hidráulicas e na não construção de uma função de custo futuro, resultando num problema de programação linear, não sendo necessária a utilização de PDDE.

Na segunda etapa, as metas de geração hidráulica a subsistema equivalente servem para alimentar o módulo de simulação a usinas individualizadas do modelo SUISHI. O objetivo desta etapa é alocar as metas de geração hidráulica de cada subsistema entre as suas respectivas usinas hidrelétricas, através da reprodução de heurísticas operativas, procedimento que é chamado de simulação da operação. Esta simulação é feita segundo uma política de operação, cujas principais características são:

- 1. basear-se em prioridades (automática ou definida pelo usuário) e faixas operativas (definidas pelo usuário);
- 2. manutenção de todos os reservatórios do sistema, tanto quanto possível, dentro de uma mesma faixa de operação;
- 3. considerar o efeito do deplecionamento de um reservatório em reservatórios a jusante;
- 4. manter livre a faixa superior dos reservatórios para aumentar a capacidade de armazenamento do excesso de afluências durante o período molhado, minimizando-se os vertimentos e as inundações a jusante; e.
- 5. manter cheia a faixa inferior dos reservatórios para evitar uma excessiva perda de potência no sistema devido à redução das alturas de queda líquida.

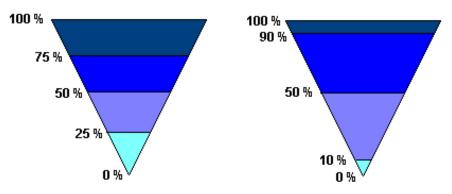


Figura 3-1 Faixas Operativas

Ao final da etapa de simulação, duas distintas situações podem ser observadas:

- O atendimento das metas de geração hidráulica provenientes da etapa de otimização do modelo SUISHI. Neste caso o modelo passa para o próximo estágio (modelo SUISHI inicia o módulo de otimização para o mês seguinte); e
- O não atendimento das metas de geração hidráulica, ocasionado por um déficit ou um excesso na soma da geração hidráulica individualizada. Nestes casos, o modelo SUISHI irá realimentar a primeira etapa do processo (otimização do balanço hidrotérmico), procurando redefinir a meta de geração hidráulica máxima (em caso de déficit de geração) ou de energia armazenada máxima (em caso de excesso de geração), de tal forma que as metas de geração hidráulica a subsistema equivalente possam ser atendidas na segunda etapa do processo de solução.

A figura abaixo apresenta um fluxograma do processo de solução do modelo SUISHI.

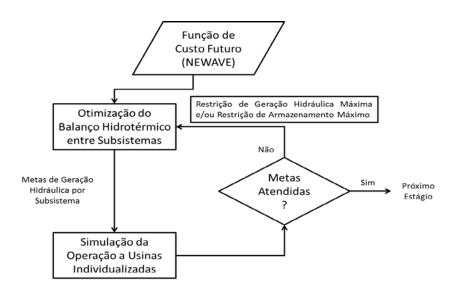


Figura 3-2 Fluxograma de funcionamento do modelo SUISHI

3.2 OPERAÇÃO EM PARALELO DOS RESERVATÓRIOS

O modelo de simulação a usinas individualizadas possui um conjunto de subrotinas que simulam a operação em cada estágio do problema (mês) puramente hidrelétrico. O modelo procura reproduzir o processo decisório adotado na prática para o estabelecimento dos valores de energia hidráulica gerada e o armazenamento de cada usina, com a maior fidelidade possível.

A política de operação das usinas hidrelétricas baseia-se em prioridades determinadas pelo modelo SUISHI e em faixas operativas fornecidas pelo usuário com base na experiência prática ou em modelos de otimização auxiliares.

Inicialmente, a capacidade de armazenamento de cada reservatório é dividida em zonas ou faixas. Por exemplo, a primeira faixa (superior) de um reservatório pode estar compreendida entre 100% e 90% da capacidade de armazenamento; a segunda faixa, entre 90 e 75%; e assim sucessivamente.

A política de operação adotada procura manter todos os reservatórios do sistema, tanto quanto possível, dentro de uma mesma faixa de operação. Na observância do caso particular em que as faixas de todos os reservatórios encontram-se proporcionalmente iguais, tal política é denominada: Regra de Operação em Paralelo dos Reservatórios.

Dentro do módulo de simulação existem três sub-rotinas que utilizam as faixas operativas no processo de classificação, enchimento ou esvaziamento de reservatórios.

Inicialmente, realiza-se uma avaliação do estado do sistema, necessária para as operações de enchimento e deplecionamento dos reservatórios, percorrendo-se todos os reservatórios e verificando o nível em que se encontram, determinando a faixa operativa correspondente ao volume do reservatório. Adicionalmente, calcula-se também a produtibilidade acumulada de cada usina do sistema, de tal forma que usinas com elevada produtibilidade possuem prioridade de esvaziamento frente às usinas com baixa produtibilidade acumulada, e vice-versa.

Desta forma, o princípio da operação consiste em percorrer os reservatórios seguindo dois critérios hierárquicos:

31

¹ Quantidade de energia que pode ser gerada ao se deplecionar um reservatório, considerando que a vazão turbinada pode ser também turbinada nas usinas a jusante.

- 1° Nível de Armazenamento
- 2º Prioridade de Operação

Resumidamente, primeiro procura-se equilibrar os volumes dos reservatórios numa mesma faixa operativa e posteriormente dentro de cada faixa percorre-se os reservatórios de acordo com sua prioridade de enchimento/esvaziamento.

3.3 CONFIGURAÇÃO DAS FAIXAS OPERATIVAS

Dentro do modelo SUISHI é possível determinar a quantidade e os limites inferiores das faixas operativas mensais para todas as usinas hidrelétricas com reservatórios.

As faixas operativas, conforme mencionado anteriormente, são necessárias para a execução da heurística utilizada para a simulação da operação a usinas individualizadas.

Atualmente, o modelo utiliza como configuração *default*, 20 faixas operativas de 5% de largura para todos os meses, tal como ilustrado na Figura 3-2 Representação Gráfica das Faixas Operativas de um Reservatório. Nota-se que, nessa situação, todas as faixas operativas são proporcionalmente iguais, caracterizando a, já citada anteriormente, regra de operação em paralelo.

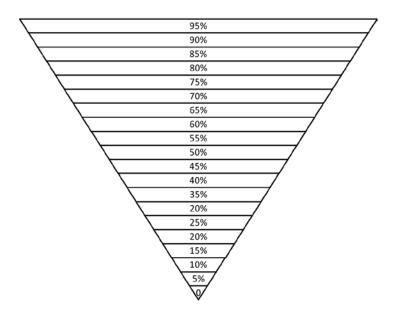


Figura 3-3 Representação Gráfica das Faixas Operativas de um Reservatório

Observa-se que a amplitude das faixas operativas pode ter influência na qualidade dos resultados do modelo SUISHI, uma vez que elas orientam o processo de simulação da operação dos reservatórios das usinas hidrelétricas.

Nesse sentindo, é importante se avaliar outras possibilidades de amplitudes para as faixas operativas de cada usina. Uma possibilidade é acentuar o deplecionamento dos reservatórios à montante de forma que a vazão turbinada nestas usinas possa ser aproveitada nas usinas à jusante destas.

Podemos realizar a idéia proposta, adotando de faixas operativas superiores de maior amplitude para as usinas de montante, e por outro lado, amplitudes menores nas faixas superiores de usinas de jusante, esperando uma operação mais econômica do sistema.

Determinar a configuração ótima das faixas operativas para todas as usinas do sistema é uma tarefa de elevado grau de dificuldade, visto que o desempenho das usinas não pode ser estudado separadamente e superposto.

Destarte, a proposta deste trabalho é determinar uma configuração de faixas operativas que resulte em custo de operação menor do que a operação em paralelo.

Em face da complexidade inerente às características do problema, adotou-se uma abordagem consubstanciada na meta-heurística conhecida como algoritmo genético, que consiste de uma técnica de busca orientada, dentro de um espaço de soluções. Através do algoritmo genético espera-se encontrar uma configuração de faixas operativas que satisfaça o objetivo proposto.

4 ALGORITMOS GENÉTICOS

Os algoritmos genéticos (AGs), propostos na década de 1970 por John Holland [6] são um ramo dos algoritmos evolucionários e podem ser definidos como uma técnica de busca baseada numa metáfora do processo biológico de evolução natural [7].

Consoante a Teoria da Seleção Natural de Darwin, sabemos que os indivíduos mais aptos à sobrevivência dentro de uma população tendem a propagar essas características para gerações futuras, enquanto que as características daqueles menos aptos tendem a desaparecer com o tempo. Os AGs funcionam baseados nessa premissa.

As principais vantagens dos AGs são:

- Paralelismo: As soluções de uma população podem ser avaliadas simultaneamente: e
- Otimização Global: O AG é uma heurística global e não se utiliza de informações locais como derivadas e gradientes para a realização da busca, o que lhe confere a condição de não se prender a ótimos locais, podendo ser aplicados a funções descontínuas ou discretas sem queda de desempenho.

4.1 FUNCIONAMENTO DOS ALGORITMOS GENÉTICOS

Em síntese, os AGs funcionam dentro da seguinte sequência de procedimentos:

- Criação de uma população inicial de soluções do problema a ser resolvido
- Avaliação de todas as soluções dentro dessa população
- Combinação das soluções atuais para formar uma nova população
- Reavaliação da população

Por ocasião da última etapa, caso a melhor solução dessa nova população seja satisfatória, encerra-se o processo. Do contrário, retoma-se o processo criando uma nova geração partindo da atual.

As peças-chaves dos AGs são: a forma de representar a solução, a avaliação da solução e o método utilizado para combinar soluções de forma a se obter uma solução nova. As soluções devem ser codificadas em um alfabeto e sua representação deve conter todo o espaço de busca, isto é, todas as soluções possíveis do problema.

Dentro dos algoritmos genéticos são usadas terminologias com forte analogia à biologia. Uma solução possível (indivíduo) é chamada de *cromossomo*; uma parte desse cromossomo - que representa uma característica - é chamada de *gene*, seu valor é chamado de *alelo* e sua posição, *locus*.

4.2 CARACTERÍSTICAS DOS ALGORITMOS GENÉTICOS

4.2.1 Representação de Cromossomos

A representação dos cromossomos é fundamental na execução do algoritmo genético, pois ela codifica a informação do problema de forma que ela possa ser tratada computacionalmente, como por exemplo, representar o estado de um interruptor (ligado ou desligado) utilizando os números 1 e 0.

A representação é definida pelo programador que deve tentar mantê-la o mais simples possível (não há necessidade de representar os estados de interruptor com números 1 e 2 para ligado e 3 e 4 para desligado: dois número apenas são suficientes).

Outra regra de procedimento é escolher uma representação que evite soluções proibidas (como por exemplo, representar a quantidade de canetas num estojo, com números racionais: um estojo não pode ter 2,7 canetas - ou ele contém 2 canetas ou 3 canetas).

Qualquer estrutura de dados pode ser utilizada para representação de cromossomos, porém as mais comuns são:

- Binária;
- Números Inteiros: e
- Números Reais.

Ao determinar a representação do cromossomo é importante ter em mente que os cromossomos precisarão ser combinados. Logo, quanto mais simples for a representação, mais fácil será o desenvolvimento dos operadores responsáveis pelas combinações.

4.2.2 Função de Aptidão

A função de avaliação é o mecanismo utilizado para determinar a qualidade de uma solução. Essa função utiliza os parâmetros armazenados no cromossomo e retorna um valor numérico que indica a qualidade da solução utilizando esses parâmetros.

A função de avaliação deve conter o maior conhecimento acerca do problema, seus objetivos e restrições, e, se possível, diferenciar soluções "subótimas". É interessante adotar funções de avaliação que tenham contradomínio estritamente positivo para o bom funcionamento do processo de seleção.

4.2.3 População

Na maioria dos trabalhos que utilizam algoritmo genético, a população é inicializada aleatoriamente devido a maior simplicidade e espera-se que normalmente os indivíduos estejam bem distribuídos pelo espaço de soluções.

O tamanho da população é determinante na execução do algoritmo genético. Caso a população seja muito pequena, não haverá variabilidade genética suficiente para que se alcancem boas soluções, pois as soluções podem não cobrir de maneira satisfatória o espaço. Caso a população seja muito grande, o algoritmo genético aproximar-se-á de uma busca exaustiva demandando um esforço computacional muito grande.

Obviamente, o tamanho ideal da população depende do tamanho do espaço de soluções e dos operadores genéticos utilizados. Normalmente, são necessárias várias execuções com tamanhos de população diferentes, de forma a calibrar o algoritmo genético. O número 100 é visto com grande frequência em trabalhos, mas não é necessariamente ótimo.

Outra característica importante da população é a substituição da geração atual pela geração nova. Normalmente, substituem-se todos os indivíduos da geração atual pela geração nova, porém, dessa forma, não há garantias de que a população seguinte apresentará uma solução melhor que a atual, podendo apresentar apenas soluções piores e ocasionando a perda de soluções boas.

Para garantirmos que o AG nunca perca suas melhores soluções, podemos adotar a técnica do elitismo, que consiste em manter as melhores soluções da geração atual durante a substituição da população. Tal procedimento garante que a geração seguinte sempre terá, no mínimo, uma solução tão boa quanto à geração anterior.

4.2.4 Método de Seleção de Pais

O método de seleção de pais para as combinações deve simular o mecanismo de seleção natural, ou seja, quanto melhor avaliado for um indivíduo dentro de uma população, maior as chances dele ser escolhido para ser pai. Os dois métodos mais difundidos são:

- Roleta Viciada: A probabilidade de um indivíduo ser escolhido é igual a sua avaliação, dividida pela soma das avaliações de todos os indivíduos dentro de uma população. Conforme o algoritmo progride e a convergência genética se aproxima, a pressão seletiva diminui devido à similaridade entre os indivíduos.
- Torneio: Seleciona-se aleatoriamente uma quantidade de indivíduos e, dentre esses, o indivíduo de maior avaliação é escolhido como pai. Caso o torneio seja muito pequeno, a pressão seletiva é baixa e o algoritmo se aproxima de uma busca aleatória. Caso o torneio seja muito grande, um indivíduo prevalecerá sempre forçando uma convergência genética prematura.

4.2.5 Operadores Genéticos

Os operadores genéticos são divididos em dois tipos:

- Crossover: baseado no crossover entre cromossomos. Determina-se um ponto
 de corte nos dois pais selecionados e trocam-se as partes entre os pais de forma
 a se obter novos indivíduos. Existem vários tipos de operadores crossover e
 dentre eles, destacam-se, como mais utilizados, os crossovers de um e de dois
 pontos de corte.
- Mutação: o operador de mutação altera o valor de um gene para um alelo aleatório dento do alfabeto.

Por intermédio desses operadores, os indivíduos de uma geração são combinados para formar novas soluções. Através do operador de crossover espera-se chegar a indivíduos que contenham os melhores genes da população, enquanto através do operador de mutação espera-se provocar mudanças que possam melhorar a solução.

5 ABORDAGEM PROPOSTA AO PROBLEMA DE DETERMINAÇÃO DAS FAIXAS OPERATIVAS UTILIZANDO-SE ALGORITMO GENÉTICO

5.1 CONSIDERAÇÕES

No início do presente trabalho foi enunciado que seu objetivo seria buscar uma configuração de faixas operativas melhor do que a atual, através da heurística do algoritmo genético. Ao longo do trabalho foram feitas explanações sobre o modelo computacional e seu funcionamento, bem como da heurística. Nessa etapa mostraremos como o problema foi abordado do ponto de vista do algoritmo genético.

Vale destacar que, até o momento, as aplicações de algoritmos genéticos em problemas de planejamento da operação energética têm se concentrado na sua utilização para a determinação do despacho de usinas e do fluxo de intercâmbio em sistemas reduzidos (vide [8] [9]). Neste trabalho, o AG será utilizado para o aprimoramento das premissas adotadas no problema de simulação da operação das usinas hidrelétricas do SIN.

5.2 REPRESENTAÇÃO DE SOLUÇÕES

As faixas operativas de uma usina hidrelétrica com reservatório, dentro do modelo SUISHI, são representadas como uma matriz 20x12 (vide Figura 5-1), onde as linhas correspondem às faixas operativas e as colunas aos meses do ano.

Usina 6-FI	JRNAS	_	<u>-</u>										
Faixa de Operação	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	_
1	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	Г
2	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	
3	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
4	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	
7	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
8	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
9	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
10	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
11	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	
12	ΠΔ	0.4	0.4	Π4	0.4	0.4	0.4	0.4	Π4	0.4	0.4	Π4	Ľ
	Unidade : pu										Un		

Figura 5-1 Janela de Configuração das Faixas Operativas de uma Usina

Podemos observar que, nos valores padrão, para uma dada usina, as faixas operativas são iguais para todos os meses e podem ser sintetizadas em apenas um vetor coluna com 20 campos, premissa esta que foi adotada neste trabalho, de forma a simplificar a execução do problema e reduzir o espaço de soluções. Este vetor, adotando a simplificação de utilizarem-se as mesmas faixas para todos os meses, é suficiente para descrever as características operativas da usina, podendo ser considerado como um gene dentro do contexto do algoritmo genético.

Partindo deste vetor coluna como representação de um gene, podemos agregar todos os vetores de todas as usinas em uma matriz $m \times n$ onde m é o numero de faixas operativas e n é o número de usinas do caso estudado, criando, dessa forma, a representação do cromossomo (Figura 5-2 Representação do Cromossomo).

Os elementos dessa matriz representam os limites inferiores das faixas operativas da usina, o elemento $f_{1,1}$ representa o limite inferior da primeira faixa operativa da usina um.

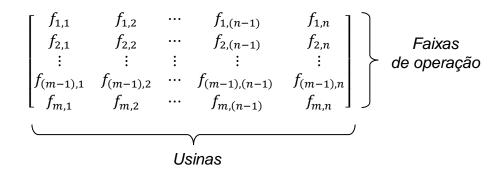


Figura 5-2 Representação do Cromossomo

Um gene do cromossomo pode assumir qualquer sequência em ordem decrescente de números contidos no intervalo [0 ; 0,999]. Esse ordenamento é necessário, pois, considerando duas faixas adjacentes, a faixa operativa mais abaixo não pode ter um limite inferior maior do que o limite inferior da faixa acima, caso contrário uma mesma zona do reservatório estaria inclusa em duas faixas diferentes.

Nesse trabalho foram utilizadas 20 faixas operativas e o caso SUISHI executado possui 71 usinas com reservatório.

5.3 FUNÇÃO DE APTIDÃO

O modelo SUISHI calcula diferentes variáveis para cada estágio da simulação como, por exemplo:

- Energia Armazenada nos Reservatórios ao Final do Mês;
- Custo Marginal de Operação;
- Geração Hidráulica Controlável Total;
- Vertimento:
- Déficit e Excesso de Geração; e
- Custo mensal de Operação.

O problema do planejamento da operação energética consiste em minimizar a soma do valor esperado do custo total de operação, sujeito a restrições operativas. Podemos inferir, então, que o mínimo custo leva aos valores ótimos de armazenamento e de geração de energia hidráulica (que não são necessariamente os maiores valores possíveis desses parâmetros). Assim, o valor esperado do custo de operação médio mensal foi considerado, o melhor parâmetro a ser otimizado, de forma a se obter um ganho em todos os aspectos do sistema.

5.4 CRITÉRIO DE CONVERGÊNCIA

A princípio, adotou-se como critério de convergência, a estabilidade da aptidão média da população (convergência genética), a estabilidade da melhor avaliação da população, e a diferença entre a melhor aptidão e a aptidão média.

Para tanto foi determinado como critério de estabilidade, que os valores de aptidão média e melhor aptidão deveriam manter uma diferença de 0.01% entre as iterações do algoritmo por cinco iterações.

Ao executarmos o programa, verificou-se que esses os parâmetros adotados são muito restritos e dificilmente o AG atingia convergência. Face a esse problema, a convergência do algoritmo foi verificada visualmente para todas as execuções, o que só foi possível devido ao grande intervalo de tempo entre as iterações. A execução foi interrompida quando se julgou que a melhor aptidão e aptidão média da população haviam estabilizado.

5.5 OPERADORES GENÉTICOS

Os operadores genéticos implementados são uma extensão natural dos operadores típicos para a representação binária. Na operação binária, um conjunto de bits dentro de um número corresponde a um gene. Dentro da representação matricial adotada, podemos considerar cada coluna da matriz como um gene, e criar uma analogia entre um bit e uma coluna da matriz.

5.5.1 Crossover

O operador de crossover utilizado no presente trabalho é o crossover uniforme, que funciona da seguinte maneira: após a seleção dos pais, faz-se um sorteio para cada gene do cromossomo, determinando de qual pai o primeiro filho receberá o gene, enquanto o segundo filho recebe o gene do pai não escolhido.

Outro operador cogitado foi o crossover de média, no qual os filhos são gerados por médias ponderadas dos pais. Esse operador também foi implementado, porém não utilizado devido à necessidade de calibragem dos pesos utilizados, além de necessitar de mais tempo para convergir para uma solução.

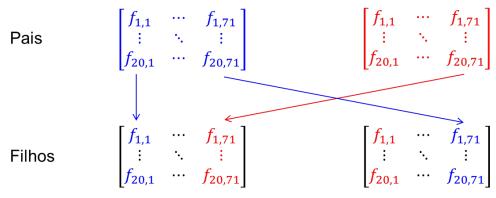


Figura 5-3 Crossover Uniforme

5.5.2 Operador de mutação

Numa string binária, a mutação consiste em alterar os bits de um gene e, na representação com números reais, alterar o valor do gene com um valor aleatório dentro do intervalo permitido para o gene. O operador implementado neste trabalho seleciona um gene aleatório e altera seu alelo (valor), substituindo-o por uma sequência de números aleatórios contidos no intervalo [0; 0,999] ordenada de forma decrescente.

5.6 INICIALIZAÇÃO DA POPULAÇÃO

A inicialização da população, num primeiro momento, foi feita de maneira aleatória, conforme a maioria dos trabalhos na área. Um cromossomo é formado por genes aleatórios gerados de forma análoga ao funcionamento da mutação.

Posteriormente, os indivíduos passaram a ser gerados de formas diferentes e esses processos serão detalhados futuramente, nos capítulos dedicados à análise dos resultados, de forma que o procedimento esteja contextualizado.

Para esse trabalho trabalhamos com um módulo fixo de 100 indivíduos na população para todas as execuções do algoritmo genético.

5.7 MÉTODO DE SELEÇÃO DE PAIS

O método de seleção de pais utilizado no trabalho foi o método da roleta viciada. Esse método atribui probabilidades de seleção maiores para indivíduos com valores de aptidão maiores. Como o problema estudado consiste na minimização de uma função objetivo, maiores probabilidades de seleção devem ser associadas aos indivíduos de menor aptidão.

Neste caso, a solução encontrada foi utilizar o inverso da função da aptidão no método de seleção. Invertendo-se a função de aptidão, quanto menor for a avaliação do indivíduo, maior será seu inverso, permitindo a efetivação da linha de ação planejada.

5.8 FUNCIONAMENTO

Expostos os conceitos do algoritmo genético e de como o mesmo será aplicado ao problema, dispomos de elementos suficientes para proceder a uma explicação metodológica sobre o funcionamento do algoritmo e seus aspectos técnicos. A Figura 5-3 traz uma representação esquemática do funcionamento do algoritmo.

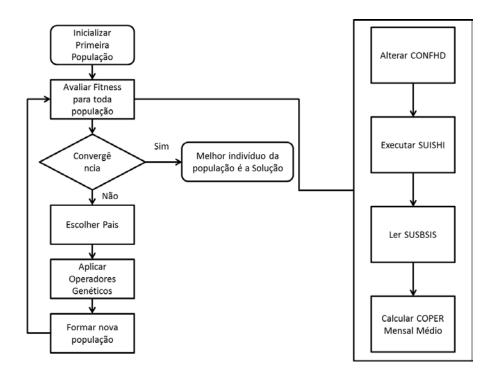


Figura 5-4 Fluxograma simplificado do Algoritmo Genético

Conforme a Figura 5-3, o primeiro passo da execução é a inicialização da população, composta por matrizes $m \times n$ onde m é o número de faixas de operação configuradas e n é o número de usinas com reservatório neste caso.

Em seguida, procedemos ao cálculo da função de aptidão para todos os indivíduos dentro da população, executando o modelo SUISHI para todas as configurações de faixa presente na população.

Antes da execução do programa é necessário alimentar o modelo com faixas operativas do indivíduo avaliado. O modelo SUISHI trabalha com vários arquivos de entrada, dentre eles o arquivo CONFHD.dat que contém as faixas operativas das usinas no caso. Assim, a primeira etapa do cálculo da função de avaliação é editar esse arquivo inserindo as faixas de operação.

Após a edição do arquivo CONFHD.dat, o modelo SUISHI foi executado, gerando arquivo de saída SUBSIS.csv. Esse arquivo contém o valor de todas as variáveis de subsistemas calculadas para todos os estágios de simulação. Para o cálculo do valor esperado do custo de operação mensal médio, importou-se o arquivo SUBSIS.csv e efetuou-se a manipulação da coluna correspondente à variável desejada.

Uma vez calculada a função de aptidão para toda a população, faz-se a verificação do critério de convergência, interrompendo ou prosseguindo a execução do algoritmo genético.

Depois de verificada a não convergência, prossegue-se para a formação de uma população nova. Para tanto, seleciona-se pais e aplicam-se os operadores genéticos obtendo novos indivíduos que são inseridos numa nova população. Esse processo é repetido até que uma nova população com 100 indivíduos seja formada.

A próxima etapa consiste em substituir a população antiga pela nova. Nessa etapa o algoritmo ordena os vetores de população atual e nova para então deslocar os indivíduos da população nova para a atual, mantendo as melhores soluções da população atual. Dessa forma, estamos adotando a técnica do elitismo, garantindo que as melhores soluções encontradas não se percam ao logo da execução do algoritmo.

5.9 AMBIENTE COMPUTACIONAL E PROCESSAMENTO PARALELO

O algoritmo genético é extremamente propício à aplicação de técnicas de processamento paralelo. Como o algoritmo trabalha com uma família de soluções independentes entre si, é possível calcular a função de aptidão para vários indivíduos simultaneamente, reduzindo, significativamente, o tempo de execução do algoritmo.

A implementação do algoritmo genético foi feita dentro do ambiente MATLAB que, desde 2009, oferece entre suas bibliotecas uma *toolbox* de processamento paralelo (*parallel computing toolbox*). Dentro dessa *toolbox* existem funções que implementam o processamento paralelo, como a função *parfor*, que pode substituir qualquer estrutura *for* dentro de um código.

A maioria dos computadores fabricados atualmente possuem processadores "multicores", permitindo dividir o esforço computacional entre os núcleos do processador. O computador utilizado para esse trabalho possui quatro núcleos, o que permitiu avaliar a população em grupos de quatro.

6 CASO DE ESTUDO E RESULTADOS DA OTIMIZAÇÃO (UM SUBSISTEMA)

6.1 PROGRAMA MENSAL DA OPERAÇÃO (PMO) DE ABRIL DE 2013

O Programa Mensal de Operação Energética (PMO) é elaborado pelo Operador Nacional do Sistema Elétrico – ONS com a participação dos agentes. Os estudos – realizados em base mensal, discretizados em etapas semanais e por patamar de carga, revistos semanalmente – fornecem metas e diretrizes a serem seguidas pelos órgãos executivos da Programação Diária da Operação Eletroenergética e da Operação em Tempo Real. As responsabilidades e produtos do PMO estão descritos no Submódulo 7.3 dos Procedimentos de Rede do ONS. [10]

No início de cada mês, o ONS disponibiliza uma plataforma (deck) de dados para a execução do modelo NEWAVE, contendo as diretrizes da operação energética de médio prazo. Conforme mencionado anteriormente, o conjunto de dados utilizados pelo modelo SUISHI é o mesmo conjunto de dados utilizados pelo NEWAVE, sendo a função de custo futuro construída pelo NEWAVE também utilizada pelo SUISHI.

Para o caso de estudo, foi utilizada uma adaptação do deck de dados do PMO de Abril de 2013, disponibilizado pelo ONS. Essa adaptação consiste em agregar os quatro subsistemas do caso original em apenas um.

A construção do caso SUISHI deu-se da seguinte forma:

- Alteração do deck de dados NEWAVE relativo ao PMO-04/13, adaptando o
 caso com quatro subsistemas para uma configuração com um subsistema único.
 Para tanto, todas as usinas do caso foram colocadas em apenas um subsistema e
 o mercado a ser atendido foi obtido somando-se o mercado de todos os
 subsistemas existentes anteriormente; e
- Execução do deck NEWAVE alterado para a determinação da função de custo futuro a ser utilizada pelo modelo SUSHI.

O caso com um único subsistema foi fundamental para o desenvolvimento desse trabalho, uma vez que esta simplificação proporcionou uma redução considerável de tempo computacional. O caso com um subsistema leva em torno de 88 segundos para ser executado pelo modelo SUISHI, enquanto o caso com quatro subsistemas precisa de aproximadamente 835 segundos. A execução mais rápida do caso com um subsistema deve-se à eliminação das restrições elétricas de intercâmbio, permitindo considerar carga e

geração agregadas para todo o sistema. A execução do AG, para o caso com um subsistema e uma população de 100 indivíduos, leva em torno de 24 horas para 120 iterações do algoritmo, numa máquina com o processador AMD A8-3500.

A seguir serão expostos alguns dados tentando caracterizar o caso utilizado (os casos NEWAVE e SUISHI, podem ser disponibilizados se desejado):

- Mercado médio de 69870 MW.mês
- 116 usinas térmicas com custo médio de 379 R\$/MW.h e capacidade instalada de 20085 MW
- 163 usinas hidrelétricas com capacidade instalada de 85821 MW

A configuração de faixas operativas obtidas para as usinas hidrelétricas por meio da aplicação do AG, para o caso com um subsistema, foi então adotada para o caso original com quatro subsistemas, cujos resultados são objeto de consideração a seguir.

6.2 PREMISSAS

Com exceção da quantidade de subsistemas, os casos utilizados possuem as mesmas premissas.

- Os casos NEWAVE foram executados utilizando o modelo NEWAVE 17
- O Algoritmo Genético foi executado utilizando o modelo SUISHI 7.8.1
- Os decks de dados utilizados correspondem ao PMO de Abril de 2013
- Os casos NEWAVE e SUISHI foram executados para apenas um patamar de carga
- A execução do modelo NEWAVE s SUISHI foi feita utilizando-se séries históricas de vazões
- Optou-se pela não utilização do operador de mutação na execução do AG, devido ao aumento do tempo necessário para sua convergência.
- As variáveis analisadas (todas em termos médios) para cada execução serão:
 - o Custo de operação (COPER);
 - o Custo marginal de operação (*CMO*);
 - o Energia armazenada no final do estágio (EARMF);
 - o Déficit de geração (GDEF) que equivale ao corte de carga;

- Excesso de geração (VERTTUR) o que representa vertimentos turbináveis;
- o Geração hidráulica (GHID); e
- o Geração térmica (GTER).
- Para melhor comparação entre a solução encontrada pelo AG e a operação em paralelo (configuração padrão), serão analisados gráficos da diferença entre as variáveis, tomando-se sempre como o primeiro termo da subtração, a variável correspondente à proposta alternativa de configuração

A seguir, serão apresentadas cinco propostas de configuração das faixas operativas para o modelo SUISHI, organizadas na ordem em que foram concebidas, de forma a ilustrar a evolução da metodologia e dos resultados. Inicialmente serão apresentados os resultados referentes ao valor esperado do custo médio de operação tanto para a aptidão média quando para a melhor aptidão, durante a evolução do algoritmo genético. Em seguida estes resultados serão analisados e complementados com as informações sobre as demais variáveis observadas.

6.3 PROPOSTA1

Esta proposta possui como característica específica a geração aleatória dos indivíduos da população inicial, ou seja, as amplitudes das 20 faixas operativas de cada usina hidráulica da configuração foram determinadas aleatoriamente pelo AG.

Esse foi o primeiro caso onde o algoritmo genético foi utilizado e, ainda que tenha servido apenas como teste, apresentou resultados positivos não obstante a reduzida população (100 indivíduos). Observando-se o gráfico abaixo, podemos identificar uma rápida evolução do AG até a geração 40 e, a partir dessa fase, a melhor aptidão da geração passa a demorar várias gerações para reduzir seu valor. A aptidão média da população oscila de uma geração para outra, mas ao longo do estudo seu comportamento é decrescente, conforme o esperado.

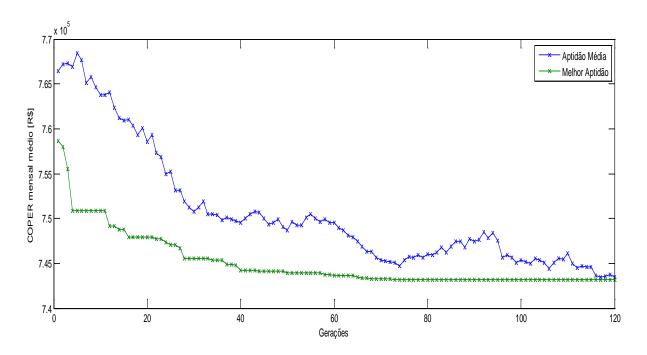


Figura 6-1 Evolução do AG. Caso 1

O critério de convergência adotado foi observar a estabilidade da melhor aptidão e aptidão média, bem como a diferença entre essas. No caso apresentado anteriormente, o AG foi interrompido após 120 iterações, pois ele atingiu convergência genética, com a melhor aptidão apresentando valor esperado do custo de operação aproximadamente igual ao da aptidão média. A melhor aptidão da geração estagnou antes da geração 80, ainda que a avaliação média continuasse oscilando.

O valor esperado do custo de operação médio da solução encontrada foi de R\$743.187,00 (setecentos e quarenta e três mil e cento e oitenta e sete reais) enquanto a configuração em paralelo atingiu um valor esperado do custo médio de R\$749.478,00 (setecentos e quarenta e nove mil e quatrocentos e setenta e oito reais) de forma que a solução encontrada pelo AG é 0,8% mais barata que a configuração padrão.

Conforme explicitado anteriormente, nas figuras 9-2 a 9-6 são apresentados os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG.

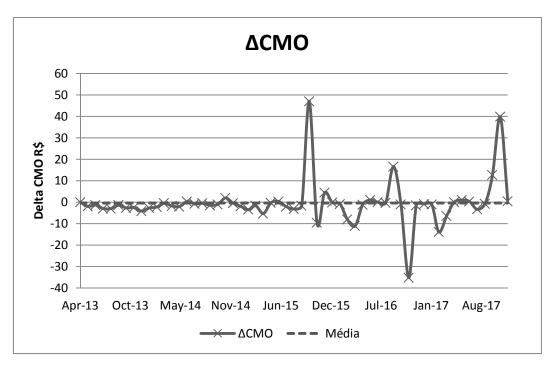


Figura 6-2 \triangle CMO Proposta 1

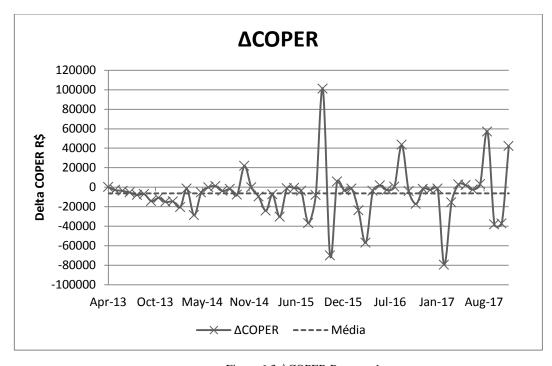


Figura 6-3 ΔCOPER Proposta 1

As curvas de \triangle CMO e \triangle COPER estão fortemente relacionadas, pois o CMO funciona como um indicador do preço da energia. Logo, as duas curvas devem seguir a

mesma tendência. Observando-se as Figura 6-2 e Figura 6-3 podemos confirmar que os picos e vales ocorrem simultaneamente para as duas curvas.

Através dos mesmos gráficos, também podemos confirmar visualmente o resultado expresso pelas funções de aptidão. Ao longo do período de estudo, as curvas poucas vezes assumem valores acima de zero, o que significa que a configuração em paralelo quase sempre opera de maneira mais cara do que a solução do AG e, consequentemente, tem um valor esperado do custo de operação médio maior, conforme ilustrado na Tabela 2, ao final dessa seção.

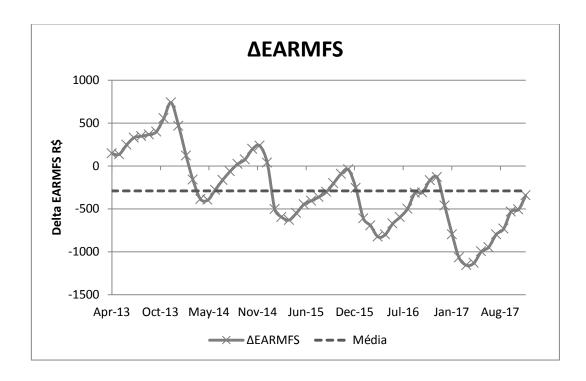


Figura 6-4 ΔE ARMFS Proposta 1

Analisando o gráfico da energia armazenada (Figura 6-4), podemos perceber que a configuração padrão opera com maior armazenamento médio ao longo do período. No início do período de estudo, a curva é positiva indicando que a Proposta 1 tem maior armazenamento. Entretanto, ao longo do estudo a curva se torna negativa, indicando que a configuração padrão passa a armazenar mais energia.

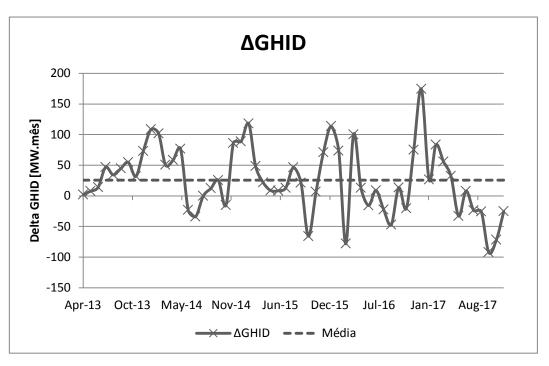


Figura 6-5 ΔGHID Proposta 1

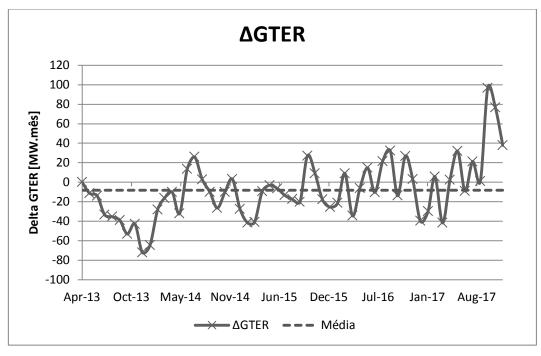


Figura 6-6 \triangle GTER Proposta 1

Quando analisamos o comportamento das gerações (**Figura 6-5** e **Figura 6-6**) ao longo do período podemos perceber, que, em média, a configuração em paralelo apresenta geração hidráulica menor e geração térmica maior quando comparada à solução do AG.

Esse resultado já era esperado, pois, a Proposta 1 apresentou menores armazenamentos ao longo período, indicando um maior uso de geração hidráulica.

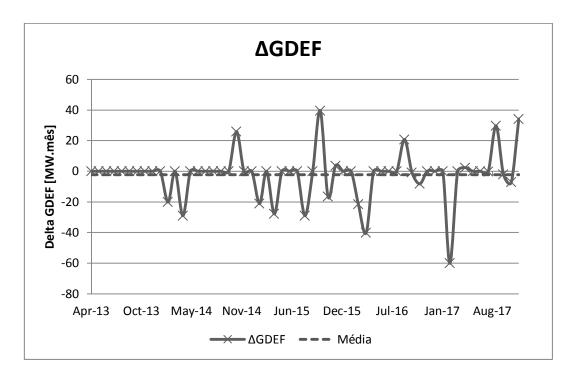


Figura 6-7 ΔGDEF proposta 1

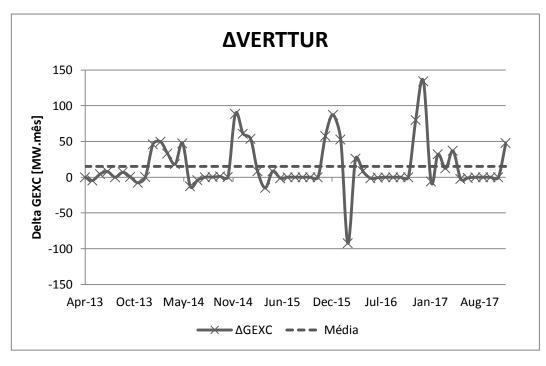


Figura 6-8 Δ VERTTUR Proposta 1

Observando-se as curvas das Figura 6-7 e Figura 6-8 verificamos que a configuração em paralelo possui um déficit médio maior e um excesso de geração menor. O modelo SUISHI, utilizando a solução do AG, reduziu o déficit de geração, o que contribuiu para um menor valor esperado do custo de operação médio. O maior excesso de geração se deve ao fato da Proposta 1 apresentar geração hidráulica maior.

VARIÁVEIS	DEFAULT	Proposta 1	Delta
CMO [R\$/MW.mês]	173.92	173.50	-0.24%
COPER [R\$]	749477.61	743187.18	-0.84%
EARMF [MW.mês]	181841.44	181550.98	-0.16%
GDEF [MW.mês]	66.75	64.50	-3.36%
VERTTUR [MW.mês]	902.96	918.09	1.68%
GHID [MW.mês]	55288.76	55314.36	0.05%
GTER [MW.mês]	8112.60	8104.40	-0.10%

Tabela 2 - Comparação de Resultados: Configuração em Paralelo x Solução do AG na Proposta 1

A partir dos dados apresentados pela Tabela 2 - Comparação de Resultados: Configuração em Paralelo x Solução do AG na Proposta 1, podemos concluir que a solução do AG apresentou menor valor esperado do custo de operação médio mensal, o qual foi adotado neste trabalho como função de avalição do AG. Outro ponto importante é que, embora haja melhora no desempenho do modelo SUISHI, essa melhora não foi significativa. Quando observamos a última coluna da Tabela 1 podemos concluir que a melhora de desempenho é muito pequena, sendo o déficit, a variável que mais se destacou apresentando uma redução 3.36%.

6.4 PROPOSTA 2

Nesta proposta foi utilizada uma configuração baseada na premissa de que os reservatórios mais à montante devem ter prioridade de deplecionamento frente aos reservatórios de jusante, uma vez que a produtibilidade acumulada daqueles é maior (a vazão da usina de montante passará por todas as usinas a jusante dela). Para tanto, adotouse amplitudes maiores para as faixas operativas superiores, e amplitudes menores para as faixas inferiores de determinadas usinas de montante. Para as usinas de jusante adotou-se o procedimento inverso. É importante observar que nessa proposta não haverá execução do

AG, consistindo apenas na execução do modelo SUISHI para a configuração descrita a seguir.

Para essa proposta foi consultado o Diagrama Esquemático de Usinas Hidrelétricas do SIN, disponível no website do ONS [11], e foram selecionadas usinas com grandes reservatórios, que estão localizados em início (montante) e final de cascata (jusante). As usinas selecionadas (Tabela 3 e 4) tiveram suas faixas operativas alteradas. As cinco primeiras faixas operativas das usinas de montante variam de 9% a 5%, em intervalos de 1%, do volume útil do reservatório, enquanto as cinco últimas variam de 5% a 1%. As faixas intermediárias possuem 5% do volume útil do reservatório.

Г Montante		Jusante		1
9%)		1%)		5%
8%		2%		5%
7% } 35%	•••	3% \ 15%	•••	5%
6%		4%		5%
5% <i> </i>		5%)		5%
:	•••	:	•••	:
5%γ		5%)		5%
4%		6%		5%
3% } 15%	•••	7% \ 35%	•••	5%
2%		8%		5%
L _{1%} J		9%)		5%]

Figura 6-9 Indivíduo Proposta 2

A configuração das usinas de jusante é exatamente o oposto, com as cinco primeiras faixas variando de 1% a 5% do volume do reservatório, enquanto as cinco últimas faixas variam de 5% a 9% do volume do reservatório. As faixas operativas das usinas de montante e jusante se encontram na Tabela 3.

Desta forma, mesmo realizando uma operação dos reservatórios em paralelo, o modelo SUISHI estará acentuando o deplecionamento nas usinas de maior produtibilidade acumulada, e priorizando ainda mais o enchimento das usinas de menor produtibilidade.

Faixa operativa	Montante	Jusante
1	91%	99%
2	83%	97%
3	76%	94%
4	70%	90%
5	65%	85%
6	60%	80%
7	55%	75%
8	50%	70%
9	45%	65%
10	40%	60%
11	35%	55%
12	30%	50%
13	25%	45%
14	20%	40%
15	15%	35%
16	10%	30%
17	6%	24%
18	3%	17%
19	1%	9%
20	0%	0%

	1
USINA	TIPO
FUNIL	
I.SOLT.EQV	
CAPIVARA	JUSANTE
MACHADINHO	JUSANTE
ITAPARICA	
TUCURUI	
BATALHA	
SERRAFACAO	
TRESMARIAS	
SERRAMESA	
JAGUARI	
PARAIBUNA	
FURNAS	
NOVAPONTE	MONTANTE
BARRABONITA	
A.A.LAYDNER]
MAUA	
G.B.MUNHOZ	
BARRAGRANDE	
FICT.TRESMA	
FICT.SERRAM]

Tabela 3 Faixas das usinas de montante e jusante

Tabela 4 Usinas de Montante e Jusante

As figuras 9-9 a 9-15 apresentam os resultados obtidos através da execução do modelo SUISHI para essa proposta, conforme feito na seção anterior.

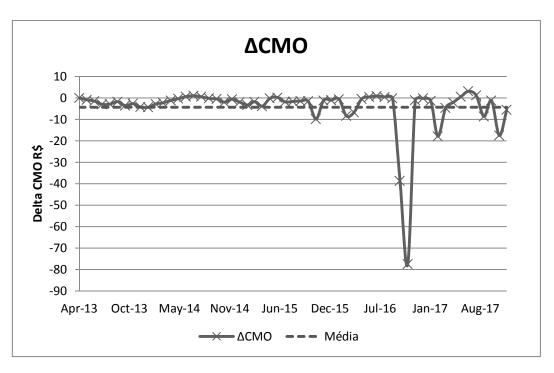


Figura 6-10 ΔCMO Proposta 2

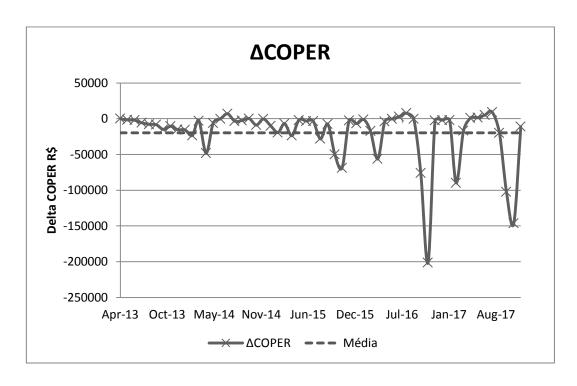


Figura 6-11 \triangle COPER Proposta 2

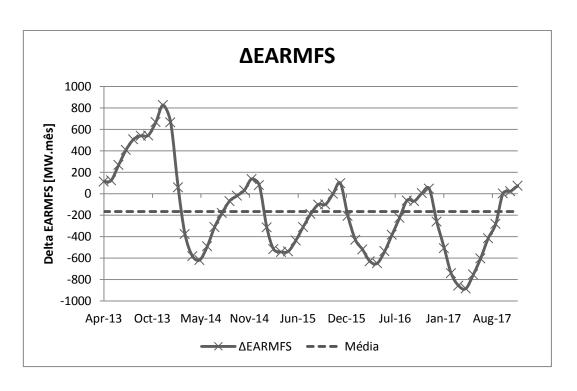


Figura 6-12 $\Delta \textsc{EARMFS}$ Proposta 2

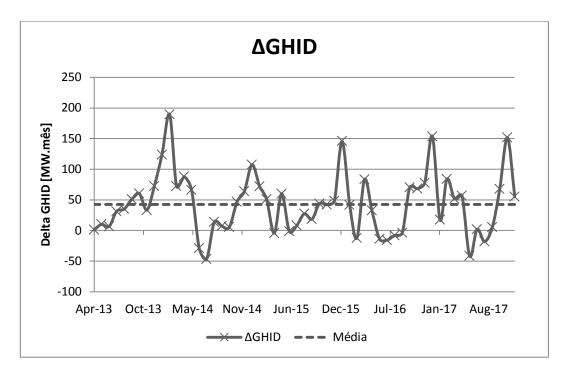


Figura 6-13 \triangle GHID Proposta 2

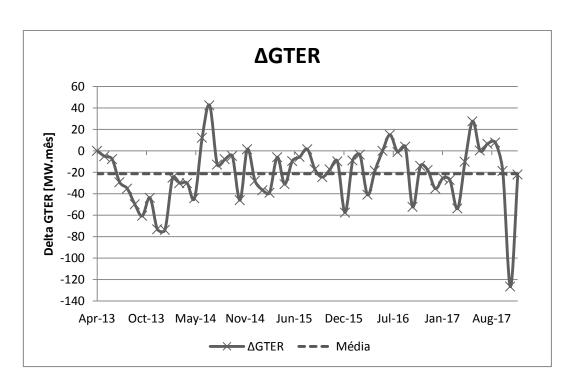


Figura 6-14 ΔGTER Proposta 2

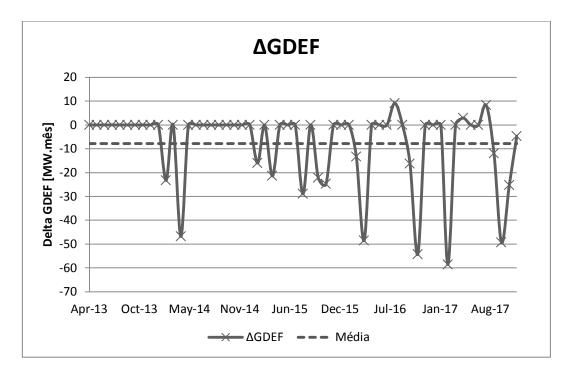


Figura 6-15 \(\Delta GDEF \) Proposta 2

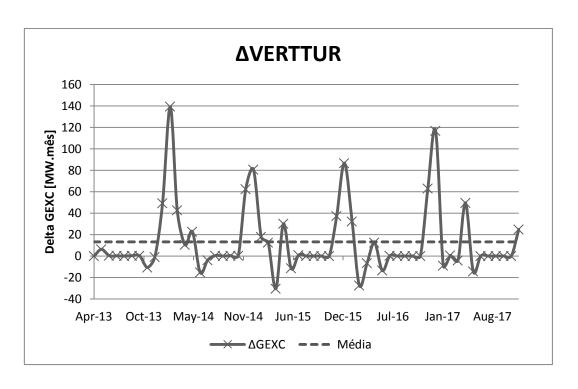


Figura 6-16 \(\Delta VERTTUR \) Proposta 2

VARIÁVEIS	DEFAULT	Proposta 2	Delta
CMO [R\$/MW.mês]	173.92	169.55	-2.51%
COPER [R\$]	749477.61	729795.07	-2.63%
EARMF [MW.mês]	181841.44	181674.91	-0.09%
GDEF [MW.mês]	66.75	58.93	-11.71%
VERTTUR [MW.mês]	902.96	916.15	1.46%
GHID [MW.mês]	55288.76	55331.23	0.08%
GTER [MW.mês]	8112.60	8091.16	-0.26%

Tabela 5 - Comparação de Resultados: Configuração em Paralelo x Proposta 2

Observando-se as curvas de CMO e COPER para a Proposta 2 (Figura 6-9 e Figura 6-10) podemos constatar uma melhora mais acentuada em relação à Proposta 1 e em relação à operação em paralelo. As curvas mantêm a tendência da Proposta 1, sendo negativas na maior parte do tempo, além de não possuírem grandes vales como nas Figura 6-2 e Figura 6-3.

A curva de EARMFS (Figura 6-11) inicia positiva, ou seja, a Proposta 2 está operando com os reservatórios mais cheios do que a configuração em paralelo. Ao longo do período, a configuração em paralelo passa a ter maior armazenamento durante o intervalo de tempo de estudo, exceto nos meses de novembro e dezembro.

Analisando as curvas de GHID e GTER (Figura 6-12 e Figura 6-13), podemos observar que, na maior parte do tempo, a Proposta 2 tem maior geração hidráulica e menor geração térmica.

Analisando a curva de GDEF (Figura 6-14) podemos perceber que a Proposta 2 apresenta menos déficit de geração do que a configuração em paralelo, o que adicionado ao fato de possuir menor CMO médio, resulta em um valor esperado do custo de operação menor, como pode ser verificado na figura (Figura 6-10).

Na curva de VERTTUR podemos notar grandes picos acima do eixo horizontal, indicando que a Proposta 2 possui maior excesso de geração hidráulica do que a configuração em paralelo. Tal fato pode ser mais bem entendido ao analisarmos a curva de VERTTUR em conjunto com a curva de GHID. Os picos das curvas de VERTTUR e GHID ocorrem ao mesmo tempo, indicando uma correlação entre o aumento da geração hidráulica e o excesso de geração.

De acordo com os índices da Tabela 5, verifica-se que a Proposta 2 tem melhor desempenho em quase todas as variáveis analisadas, sendo inclusive, melhor do que a Proposta 1.

6.5 PROPOSTA 3

Uma vez que a Proposta 2 apresentou um valor esperado do custo médio de operação inferior à melhor aptidão da Proposta 1, o objetivo da Proposta 3 foi o de obter-se uma solução ainda melhor do que as encontradas até então. Para atingir esse propósito, inseriu-se a Proposta 2 dentro da população inicial do AG, fazendo com que o AG tivesse os genes da Proposta 2 disponíveis e fosse capaz de construir soluções melhores que as atuais.

Nessa execução do AG foram incluídas quatro soluções dentro da população inicial:

- Operação em paralelo;
- Proposta 2;

- Operação em paralelo com alteração apenas das usinas de montante, feita de forma análoga a Proposta 2; e
- Operação em paralelo com alteração apenas das usinas de jusante, feita de forma análoga a Proposta 2.

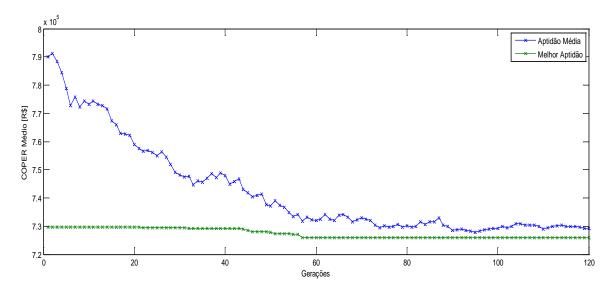


Figura 6-17 Evolução do AG Proposta 3

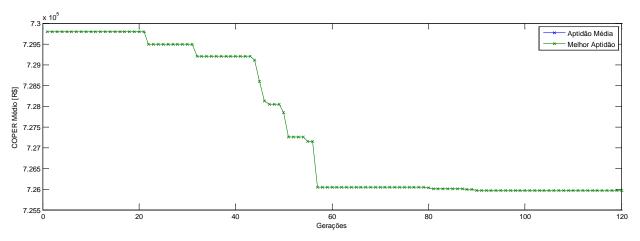


Figura 6-18 Melhor Aptidão Proposta 3

Analisando a evolução do AG (Figura 9-16) verificou-se que a inclusão das soluções na população inicial, fez com que a melhor aptidão iniciasse em um valor abaixo da Proposta 1, fazendo com que o AG partisse de um ponto melhor do que na execução prévia.

Podemos observar também que a melhor avaliação evoluiu de maneira mais acentuada até a geração 60, quando passa a evoluir de maneira menos acentuada até parar de evoluir por volta da geração 90.

As Figura 6-18 à Figura 6-24 apresentam os resultados da subtração entre a melhor aptidão obtida com a aplicação do AG e a solução em paralelo, para os parâmetros CMO, valor esperado do custo de operação, déficit, excesso de geração, energia armazenada final, geração térmica e geração hidráulica.

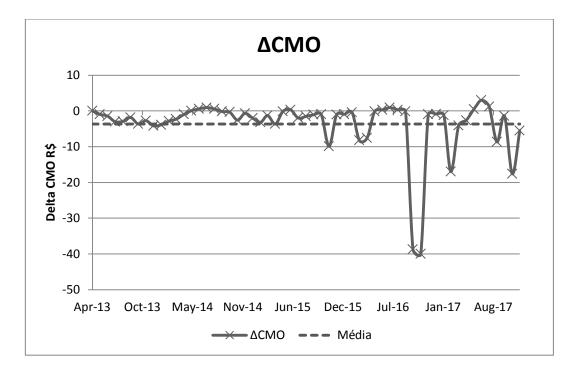


Figura 6-19 ∆CMO Proposta 3

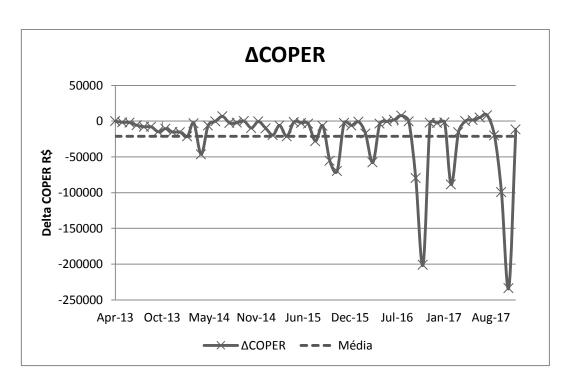


Figura 6-20 ΔCOPER Proposta 3

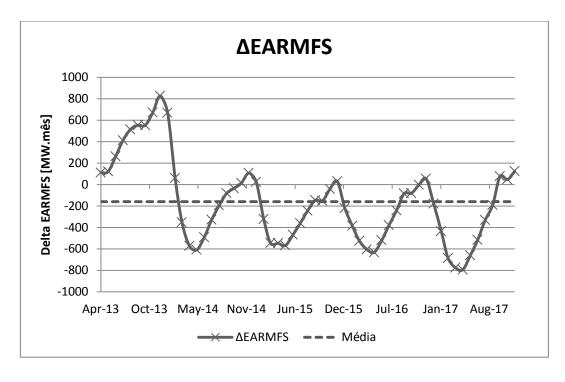


Figura 6-21∆EARMFS Proposta 3

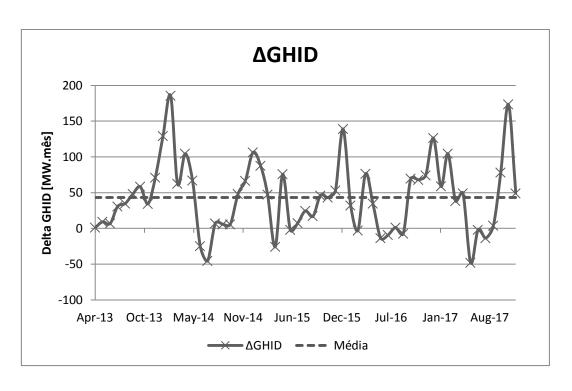


Figura 6-22 ΔGHID Proposta 3

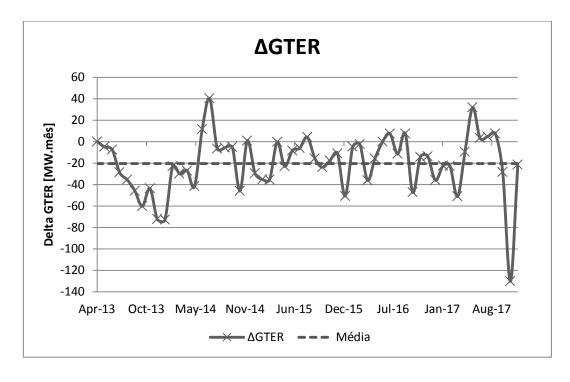


Figura 6-23 \(\Delta GTER \) Proposta 3

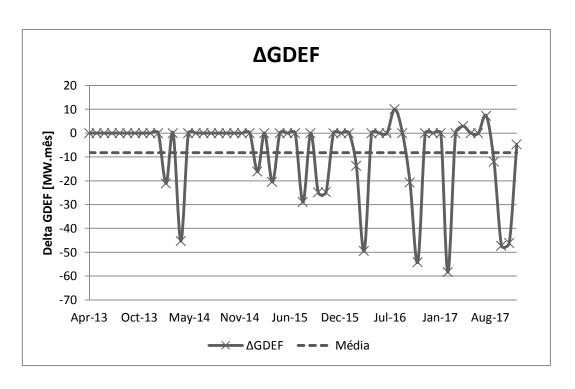


Figura 6-24 ΔGDEF Proposta 3

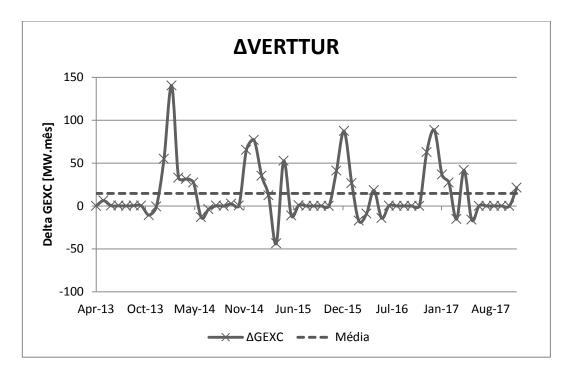


Figura 6-25 \(\Delta VERTTUR \) Proposta 3

VARIÁVEIS	DEFAULT	Proposta 3	Delta
CMO [R\$/MW.mês]	173.92	168.46	-3.14%
COPER [R\$]	749477.61	725961.39	-3.14%
EARMF [MW.mês]	181841.44	181872.04	0.02%
GDEF [MW.mês]	66.75	57.62	-13.68%
VERTTUR [MW.mês]	902.96	923.69	2.30%
GHID [MW.mês]	55288.76	55354.90	0.12%
GTER [MW.mês]	8112.60	8076.32	-0.45%

Tabela 6 - Comparação de Resultados: Configuração em Paralelo x Proposta 3

A Proposta 3, similarmente a Proposta 2, apresenta redução das seguintes variáveis frente à configuração em paralelo: CMO, COPER, GDEF e GTER. A variável GDEF obteve grande melhora com esta proposta, sendo reduzida em 13,68%. O custo de operação médio caiu em 3,14%, o que representa uma diferença de mais de R\$1,3 milhões entre os custos totais de operação da Proposta 3 e o da configuração em paralelo.

Diferentemente das propostas anteriores, a Proposta 3 apresenta um armazenamento de energia médio maior do que a configuração em paralelo, mesmo utilizando mais geração hidráulica. Tal fato se deve ao uso mais eficiente dos recursos hídricos através de deplecionamentos maiores nas usinas de montante, necessitando de um menor volume para se atingir um mesmo nível de geração

Não obstante tais resultados significativos, mais uma proposta de solução foi submetida a teste, pois a distribuição das faixas superiores e inferiores das usinas de montante e jusante utilizadas na Proposta 2 não é necessariamente ótima. Tal cenário dá margem para mais uma melhoria ao AG, introduzindo soluções com diferentes distribuições para as faixas superiores e inferiores das usinas de montante e jusante.

6.6 PROPOSTA 4: FOCO EM USINAS DE MONTANTE E JUSANTE

O objetivo da Proposta 4 é investigar se há configurações melhores, do que as utilizadas na Proposta 2, para as faixas superiores e inferiores das usinas de montante e jusante. Para realizar essa investigação foi necessário inicializar a população de forma diferente do que tem sido feito até então.

Para melhor compreensão do que foi realizado, recordaremos o procedimento adotado na Proposta 2.

Na operação em paralelo, cada faixa operativa tem uma largura de 5% do volume do reservatório, enquanto na Proposta 2, as cinco primeiras faixas possuem juntas 35%, ou 15% do volume do reservatório dependendo de sua posição na cascata. Nas usinas de montante transferiu-se 10% do volume das faixas inferiores para as faixas superiores, enquanto o contrário ocorre nas usinas de jusante.

Nessa proposta, assim como na Proposta 2, todos os indivíduos da população inicial terão apenas os genes correspondentes às usinas de montante e jusante alterados enquanto os genes correspondentes às outras usinas serão mantidos de acordo com a configuração em paralelo. A alteração feita nesses genes será explicada a seguir.

Para as usinas de montante a largura das cinco primeiras faixas será determinada de maneira aleatória com a restrição de que, somadas, sejam iguais a 35% do volume do reservatório. De forma análoga, as larguras das cinco últimas faixas também são determinadas aleatoriamente, porém com a restrição de que, somadas, sejam iguais a 15% do volume do reservatório. É feito o procedimento inverso para as usinas de jusante. Vale ressaltar que as faixas intermediárias mantém amplitude de 5%.

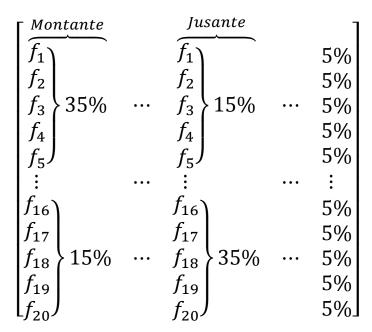


Figura 6-26 Indivíduos Proposta 4

Podemos observar que a execução dessa proposta (Figura 6-27) convergiu muito mais rápido do que as anteriores. Tal fenômeno pode ser explicado pelo fato de que a maior parte dos genes é igual em todos os cromossomos, ou seja, apenas os genes correspondentes de montante e jusante são distintos, o que leva a uma convergência genética muito mais rápida.

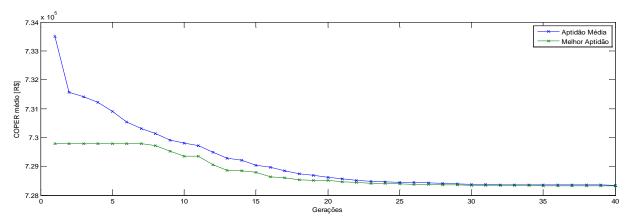


Figura 6-27 Evolução do AG Proposta 4

As figuras 9-26 a 9-32 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG, para os parâmetros CMO, custo de operação, déficit, excesso de geração, energia armazenada final, geração térmica e geração hidráulica.

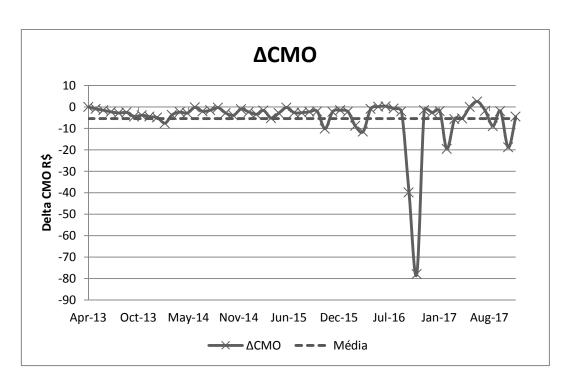


Figura 6-28 \triangle CMO Proposta 4

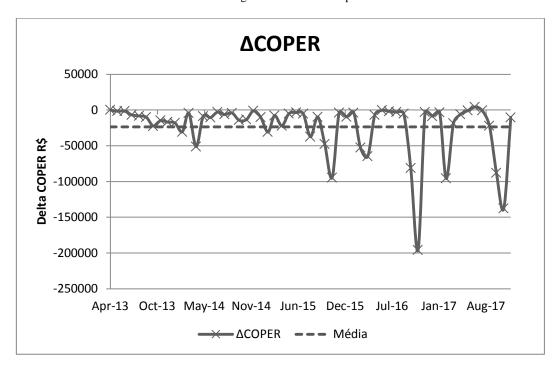


Figura 6-29 ΔCOPER Proposta 4

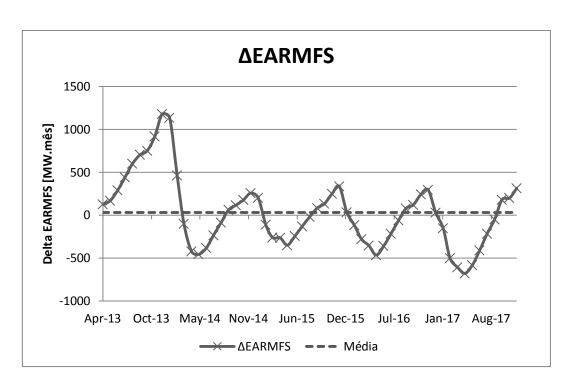


Figura 6-30 ∆EARMFS

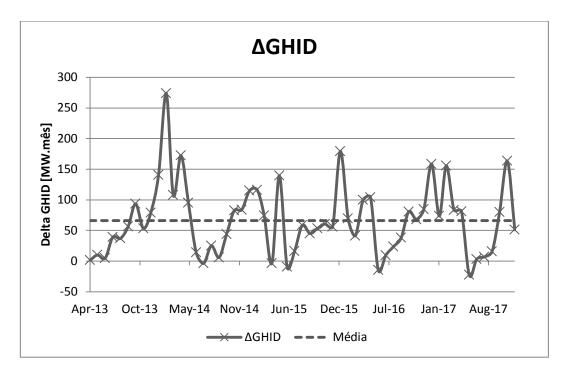


Figura 6-31 \(\Delta GHID \) Proposta 4

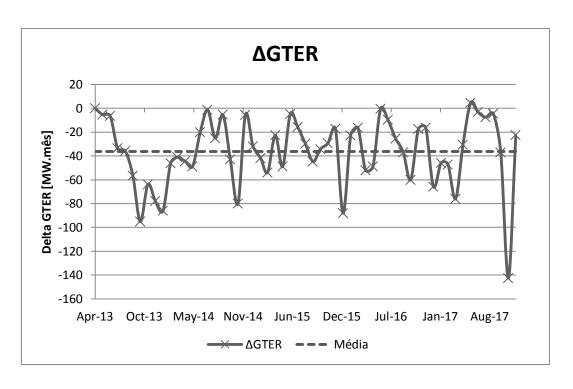


Figura 6-32 ΔGTER Proposta 4

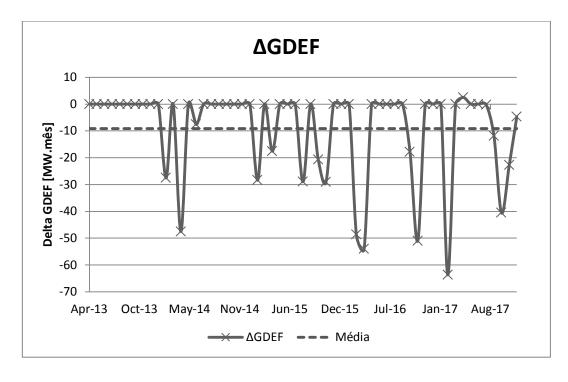


Figura 6-33 \(\Delta GDEF \) Proposta 4

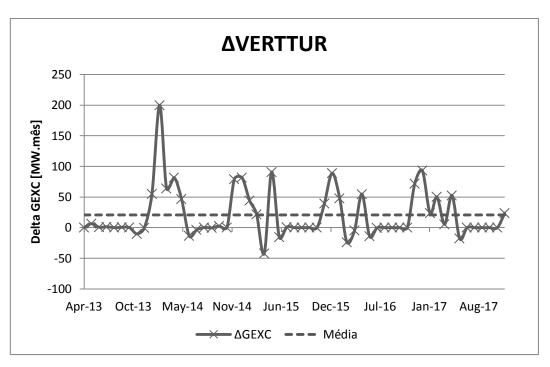


Figura 6-34 ∆VERTTUR

VARIÁVEIS	DEFAULT	Proposta 4	Delta
CMO [R\$/MW.mês]	173.92	170.27	-2.10%
COPER [R\$]	749477.61	728326.95	-2.82%
EARMF [MW.mês]	181841.44	181681.63	-0.09%
GDEF [MW.mês]	66.75	58.53	-12.30%
VERTTUR [MW.mês]	902.96	917.57	1.62%
GHID [MW.mês]	55288.76	55332.03	0.08%
GTER [MW.mês]	8112.60	8092.17	-0.25%

Tabela 7 - Comparação de Resultados: Configuração em Paralelo x Proposta 4

Face aos resultados obtidos para a Proposta 4 podemos observar que ela é melhor do que a Proposta 2, porém desvantajosa quando comparada à Proposta 3, tendo em vista o custo médio de operação. Os gráficos gerados para a Proposta 4 seguem a mesma tendência das propostas anteriores.

Embora a Proposta 4 apresente resultados inferiores à Proposta 3, podemos concluir que a configuração das faixas para as usinas de montante e jusante na Proposta 2 são boas, porém ainda há margem para melhorias.

6.7 PROPOSTA 5

O objetivo dessa proposta foi o de tentar combinar as características das Propostas 3 e 4, o que demandou mudar, novamente, a forma de inicialização da população inicial.

Nos cromossomos da Proposta 5, os genes correspondentes às usinas de montante e jusante foram inicializados da mesma forma que na Proposta 4, enquanto o restante dos genes é composto de faixas aleatórias.

$$\begin{bmatrix} \frac{Montante}{f_1} & \frac{Jusante}{f_1} & f_1 \\ f_2 & f_2 \\ f_3 & 35\% & \cdots & f_3 \\ f_4 & f_5 & f_4 \\ f_5 & & f_5 \\ \vdots & & \ddots & \vdots \\ f_{16} & & f_{16} \\ f_{17} & & f_{18} \\ f_{19} & & f_{20} \end{bmatrix}$$

Figura 6-35 Indivíduo Proposta 5

Com base nos resultados das Propostas 2 e 4, através desse procedimento estaremos inserindo genes de alta qualidade para as usinas de montante e jusante em todos os indivíduos da população, e não em apenas quatro cromossomos.

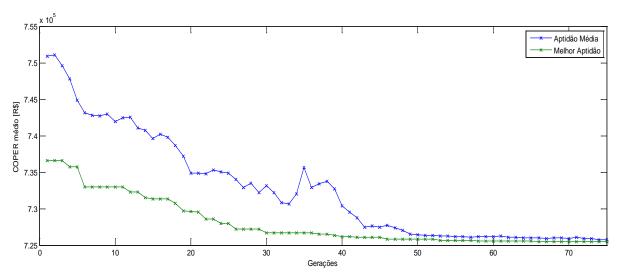


Figura 6-36 Evolução do AG; Proposta 5

Ao comparar-se a evolução do AG da Proposta 5 (Figura 9-33) com a Proposta 3 (Figura 9-16) percebe-se que a Proposta 3 começa com uma melhor aptidão menor do que a Proposta 5 e o contrário para a aptidão média. Ao final da execução A Proposta 5 apresenta um custo menor do que a Proposta 3, mostrando que uma melhor solução inicial não implica necessariamente em uma melhor solução final. A qualidade da solução final depende dos genes disponíveis durante a execução do AG.

As figuras 6-37 a 6-43 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG, para os parâmetros CMO, custo de operação, déficit, excesso de geração, energia armazenada final, geração térmica e geração hidráulica.

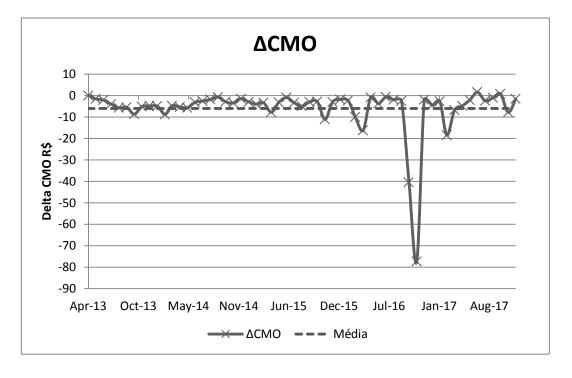


Figura 6-37∆CMO Proposta 5

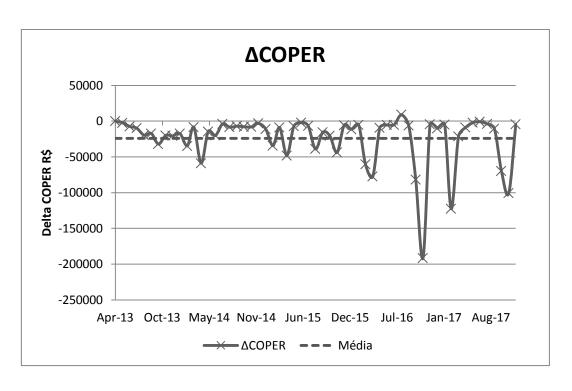


Figura 6-38 ΔCOPER Proposta 5

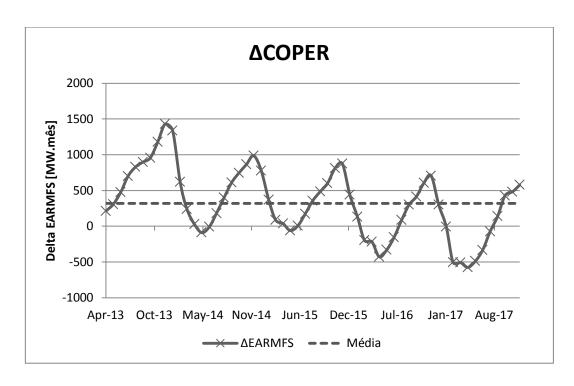


Figura 6-39 ΔEARMFS Proposta 5

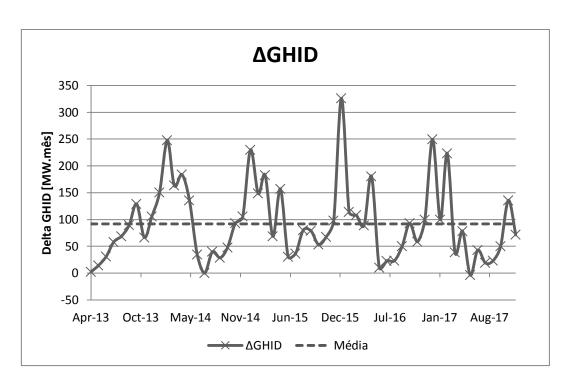


Figura 6-40 ΔGHID Proposta 5

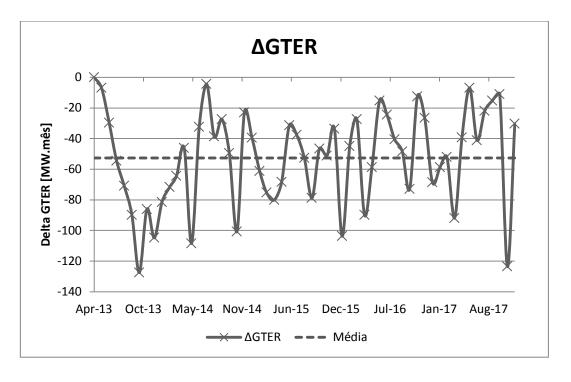


Figura 6-41 ∆GTER

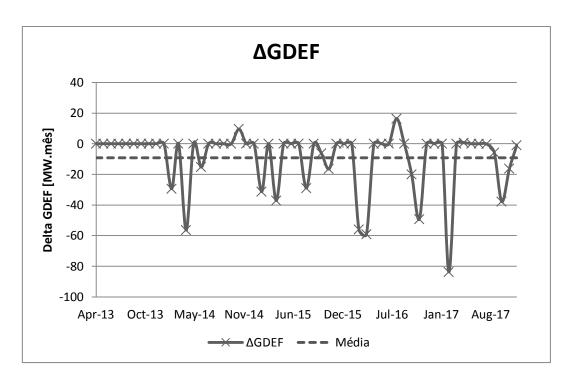


Figura 6-42 ΔGDEF Proposta 5

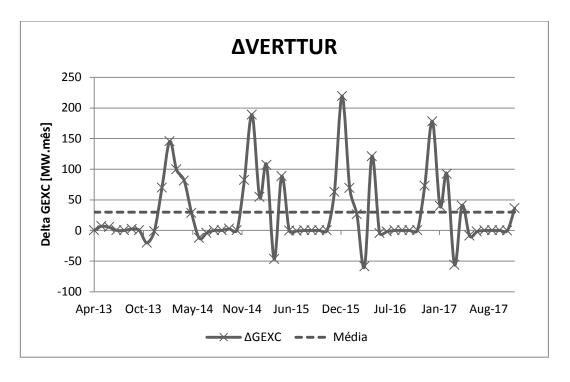


Figura 6-43 \(\Delta VERTTUR \) Proposta 5

VARIÁVEIS	DEFAULT	Proposta 5	Delta
CMO [R\$/MW.mês]	173.92	167.88	-3.47%
COPER [R\$]	749477.61	725442.95	-3.21%
EARMF [MW.mês]	181841.44	182161.28	0.18%
GDEF [MW.mês]	66.75	57.56	-13.76%
VERTTUR [MW.mês]	902.96	932.84	3.31%
GHID [MW.mês]	55288.76	55380.51	0.17%
GTER [MW.mês]	8112.60	8059.93	-0.65%

Tabela 8 - Comparação de Resultados: Configuração em Paralelo x Proposta 5

Os resultados da Proposta 5 são os melhores obtidos até esta etapa do trabalho, pois apresentam valor esperado do custo médio de operação 3,21% inferior ao da configuração em paralelo (essa informação está repetida no parágrafo abaixo da tabela 9). Os gráficos dessa proposta seguem as mesmas tendências das propostas anteriores, porém de forma muito mais pronunciada.

Um resultado de destaque é o gráfico da energia armazenada (Figura 6-35). Nesse gráfico, uma mera inspeção visual é suficiente para se constatar que o armazenamento da Proposta 5 é maior do que o da configuração em paralelo.

Outro resultado digno de menção é o fato da curva de geração térmica ser estritamente positiva, indicando que, para todos os estágios da simulação, a Proposta 5 utiliza, em média, menos geração térmica do que a configuração em paralelo.

6.8 COMPARAÇÃO ENTRE AS PROPOSTAS

A tabela 9 abaixo apresenta um resumo dos resultados encontrados para todas as propostas. Cabe observar que as variações negativas observadas abaixo significam uma redução em relação ao valor *default*

VARIÁVEIS	DEFAULT	Δ Proposta 1	Δ Proposta 2	Δ Proposta 3	∆ Proposta 4	Δ Proposta 5
CMO[R\$/MW.mês]	173.92	0.24%	2.51%	3.14%	2.10%	3.47%
COPER [R\$]	749477.61	0.84%	2.63%	3.14%	2.82%	3.21%
EARMF[MW.mês]	181841.44	0.16%	0.09%	-0.02%	0.09%	-0.18%
GDEF [MW.mês]	66.75	3.36%	11.71%	13.68%	12.30%	13.76%
VERTTUR [MW.mês]	902.96	-1.68%	-1.46%	-2.30%	-1.62%	-3.31%
GHID [MW.mês]	55288.76	-0.05%	-0.08%	-0.12%	-0.08%	-0.17%
GTER [MW.mês]	8112.60	0.10%	0.26%	0.45%	0.25%	0.65%

Tabela 9 - Tabela Comparativa de Resultados entre todas as Propostas

Comparando as propostas na Tabela 9, evidencia-se a melhor performance do sistema a partir da operação da Proposta 5, destacando-se: a redução de 3,47% no custo marginal de operação; a redução de 3,21% no custo de operação; e uma redução do déficit de geração de 13.76%.

Além de possuir os melhores índices, a Proposta 5, assim como a Proposta 3, apresenta, simultaneamente, ganhos na geração hidráulica e no armazenamento, frente à configuração em paralelo, demonstrando que, neste caso, a operação em paralelo não se mostrou a mais eficiente.

Outro aspecto interessante nessa comparação dos resultados é a evolução das propostas. A etapa de geração da população inicial no algoritmo genético, ponto de partida das soluções, começou relativamente simples e se sofisticou ao longo das propostas, à medida que se obteve mais conhecimento acerca do problema.

Cabe observar que, teoricamente, a evolução dessas propostas foi necessária devido à restrição de tempo computacional. Acredita-se que uma solução com mesma qualidade da melhor solução encontrada também seria obtida, a partir da Proposta 1, com um número suficientemente grande de cromossomos na população inicial.

A próxima etapa do trabalho consiste em executar o modelo SUISHI para o caso com quatro subsistemas, considerando a solução de melhor aptidão encontrada em cada uma das cinco propostas anteriores.

7 RESULTADOS DO PMO ABRIL DE 2013 (QUATRO SUBSISTEMAS)

De posse de novas propostas de faixas operativas, iremos utilizar as faixas determinadas no caso com um subsistema, dentro de um caso com quatro subsistemas. Cabe ressaltar que, embora se tenha a expectativa de resultados melhores nos procedimentos a seguir, eles não substituem a execução do AG utilizando diretamente o caso com quatro subsistemas.

Para o caso com quatro subsistemas, as variáveis observadas são referentes à soma delas para todos os subsistemas, exceto o CMO que é referente apenas ao subsistema sudeste.

7.1 RESULTADOS DA SIMULAÇÃO DO MODELO SUISHI UTILIZANDO O PMO ORIGINAL (4SUBSISTEMAS)

As figuras 7-1 a 7-6 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG, para os parâmetros CMO, custo de operação, déficit, excesso de geração, energia armazenada final, geração térmica e geração hidráulica.

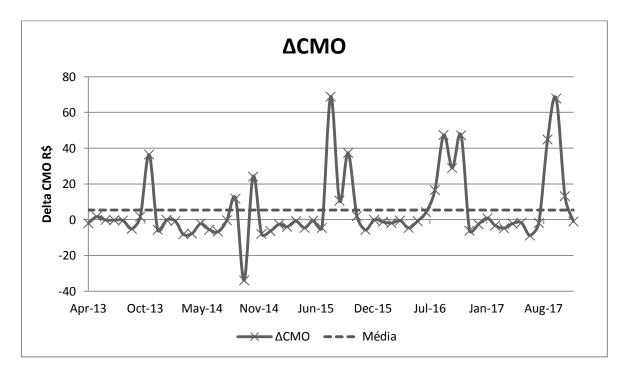


Figura 7-1 ∆CMO Proposta 1, 4 Subsistemas.

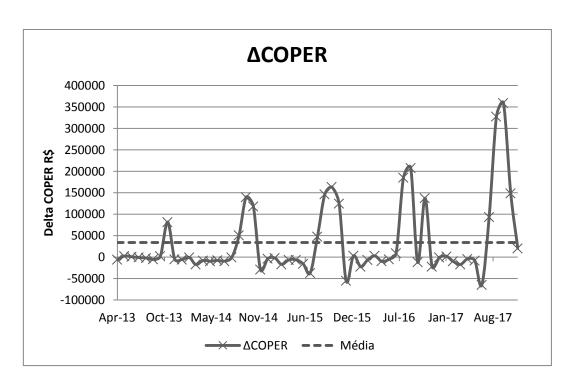


Figura 7-2∆COPER Proposta 1, 4 Subsistemas.

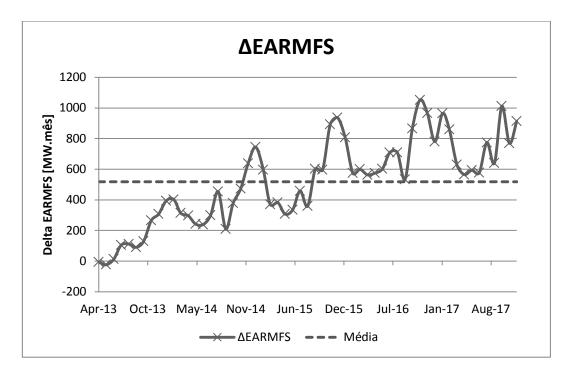


Figura 7-3∆EARMFS Proposta 1, 4 Subsistemas.

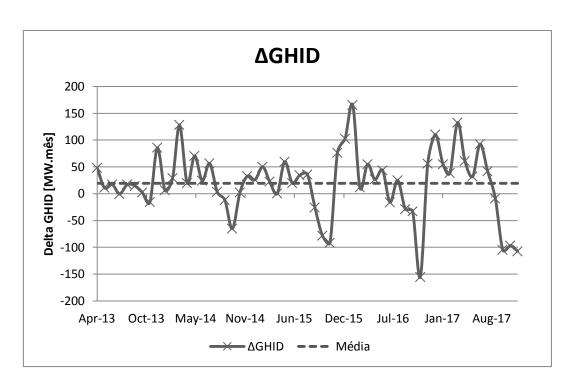


Figura 7-4 \triangle GHID Proposta 1, 4 Subsistemas.

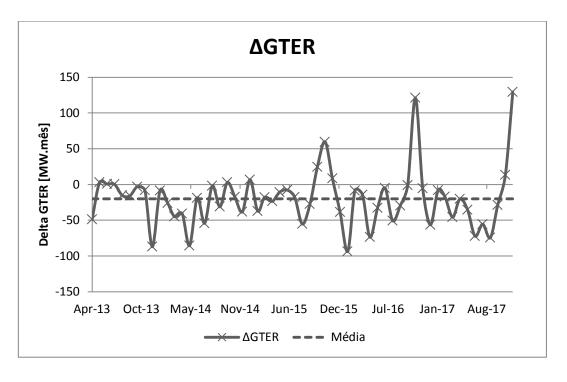


Figura 7-5∆GTER Proposta 1, 4subsistemas.

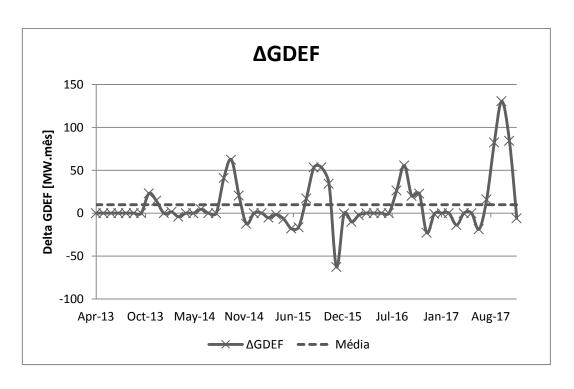


Figura 7-6 \triangle GDEF Proposta 1, 4 Subsistemas.

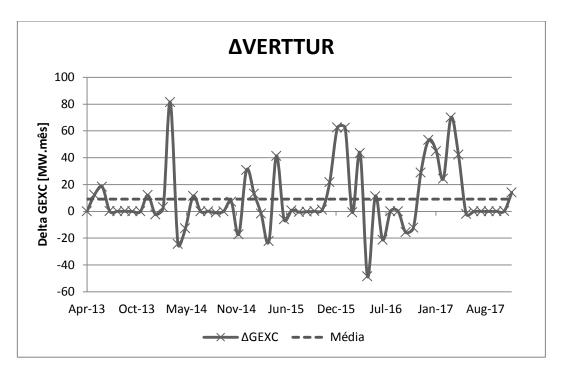


Figura 7-7∆VERTTUR Proposta 1, 4 Subsistemas.

VARIÁVEIS	DEFAULT	Proposta 1	Delta
CMO [R\$/MW.mês]	258.4062	263.8052	2.09%
COPER [R\$]	1065391	1099209	3.17%
EARMF [MW.mês]	157534.3	158052.4	0.33%
GDEF [MW.mês]	194.7618	204.5713	5.04%
VERTTUR [MW.mês]	848.659	857.7687	1.07%
GHID [MW.mês]	55055.12	55074.44	0.04%
GTER [MW.mês]	8164.436	8144.442	-0.24%

Tabela 10 - Comparação de Resultados: Configuração em Paralelo x Proposta 1 (Quatro Subsistemas)

A Proposta1 não é melhor que a operação em paralelo para o caso com quatro subsistemas, tendo em vista o maior valor observado do custo médio de operação. Entre todos os casos executados até o presente momento, nenhum havia apresentado desempenho inferior à configuração dos reservatórios em paralelo.

Observando os gráficos (Figura 7-1, Figura 7-2, Figura 7-6 e Figura 7-7) podemos verificar que as curvas de CMO, COPER, GDEF e VERTTUR, são negativas na maior parte do tempo ao longo do período de estudo, indicando que o custo, o déficit e o excesso de geração são maiores que a operação na configuração em paralelo.

A Proposta1 apresenta resultados positivos apenas para as gerações hidráulica, térmica e armazenamento de energia.

7.2 RESULTADOS DA PROPOSTA 2 APLICADA A QUATRO SUBSISTEMAS

Dentro da mesma sistemática, as figuras 7-8 a 7-14 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG.

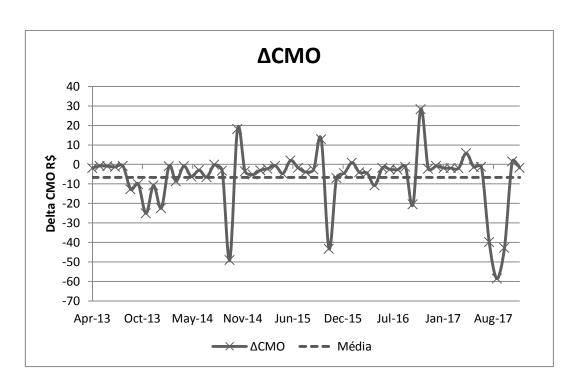


Figura 7-8 \triangle CMO Proposta 2; 4 Subsistemas.

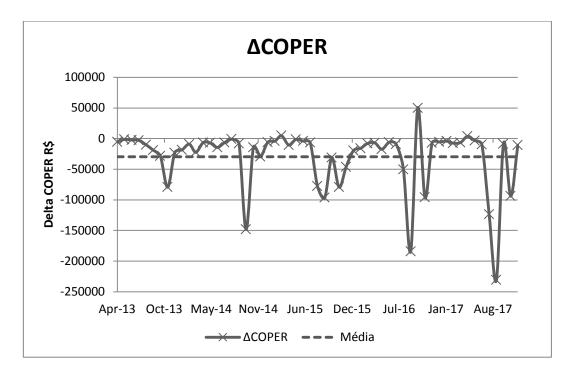


Figura 7-9 △COPER Proposta 2; 4 Subsistemas.

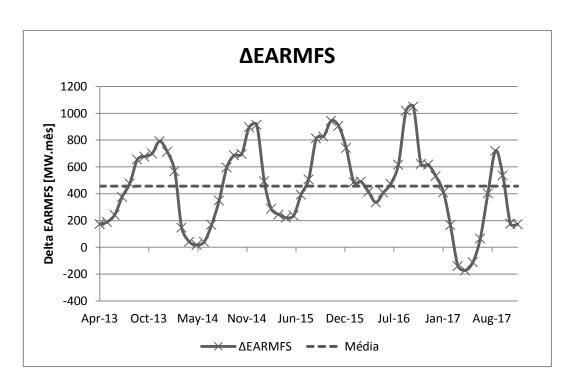


Figura 7-10 \triangle EARMFS Proposta 2; 4 Subsistemas.

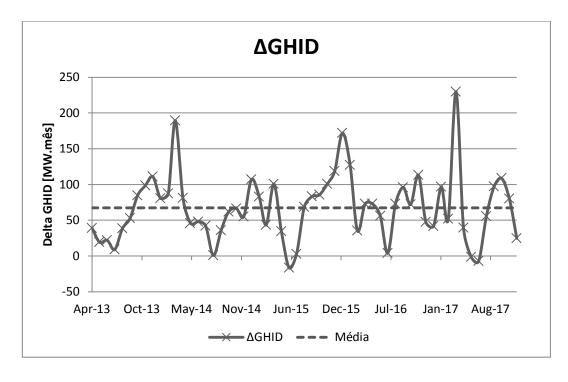


Figura 7-11 \triangle GHID Proposta 2; 4 Subsistemas.

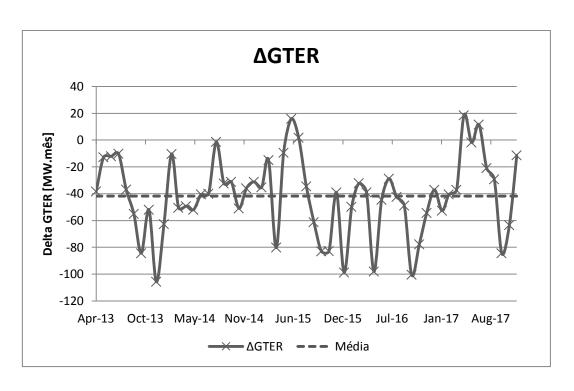


Figura 7-12 \triangle GTER Proposta 2; 4 Subsistemas.

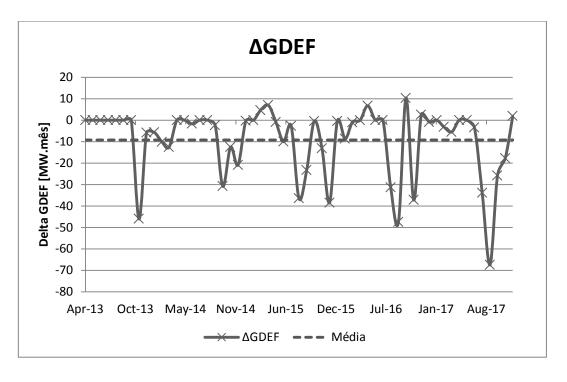


Figura 7-13 ∆GDEF Proposta 2; 4 Subsistemas.

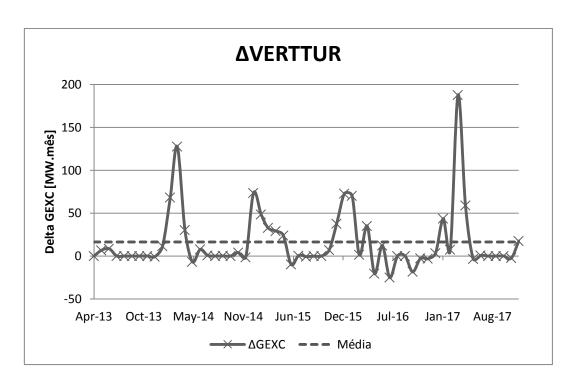


Figura 7-14 △VERTTUR Proposta 2; 4 Subsistemas.

VARIÁVEIS	DEFAULT	Proposta 2	Delta
CMO [R\$/MW.mês]	258.4062	251.7473	-2.58%
COPER [R\$]	1065391	1035706	-2.79%
EARMF [MW.mês]	157534.3	157990.5	0.29%
GDEF [MW.mês]	194.7618	185.5374	-4.74%
VERTTUR [MW.mês]	848.659	865.0298	1.93%
GHID [MW.mês]	55055.12	55122.51	0.12%
GTER [MW.mês]	8164.436	8122.622	-0.51%

Tabela 11 - Comparação de Resultados: Configuração em Paralelo x Proposta 2 (Quatro Subsistemas)

Diferentemente da Proposta 1, a Proposta 2 possui índices melhores do que a operação em paralelo, tendo em vista o menor valor do custo médio de operação observado. Essa proposta tem comportamento análogo ao caso com um subsistema, obtendo melhor desempenho em todas as variáveis, excluindo o excesso de geração. Em particular, para o valor esperado do custo médio de operação, tal valor foi reduzido em 2,79% para o caso com quatro subsistemas, enquanto esta redução foi de 2,63% para o caso com um subsistema. Cabe observar que a EARMF é maior do que a configuração em paralelo, diferentemente do caso com 1 subsistema

7.3 RESULTADOS DA PROPOSTA 3 APLICADA A QUATRO SUBSISTEMAS

Seguindo a mesma metodologia, as figuras 7-15 a 7-21 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG.

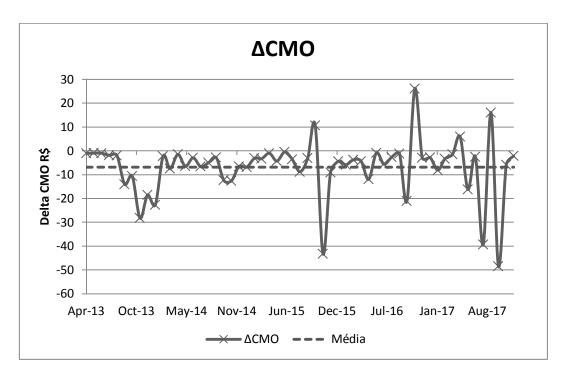


Figura 7-15 ∆CMO Proposta 3; 4 Subsistemas.

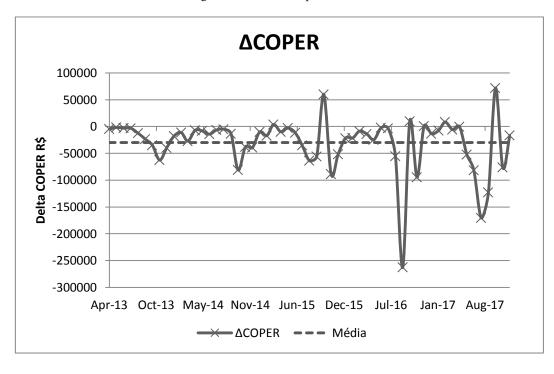


Figura 7-16 △COPER Proposta 3; 4 Subsistemas.

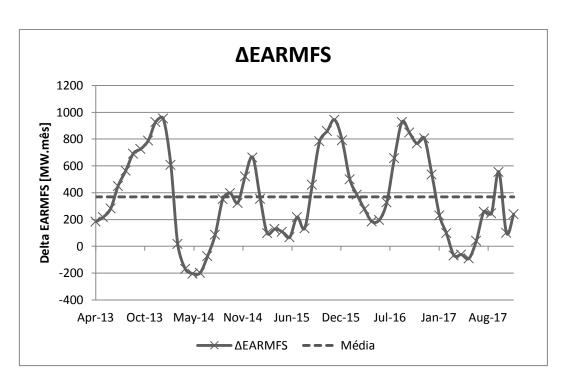


Figura 7-17 \triangle EARMFS Proposta 3; 4 Subsistemas.

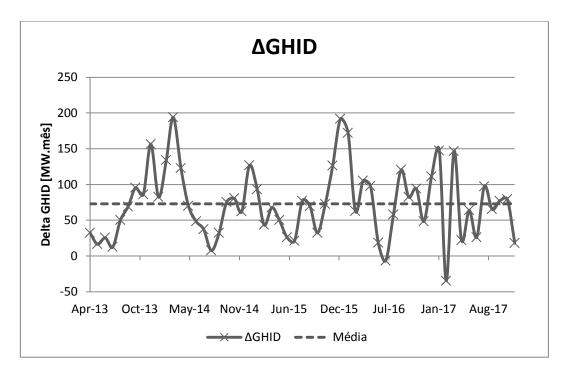


Figura 7-18 \(\Delta GHID \) Proposta 3; 4 Subsistemas.

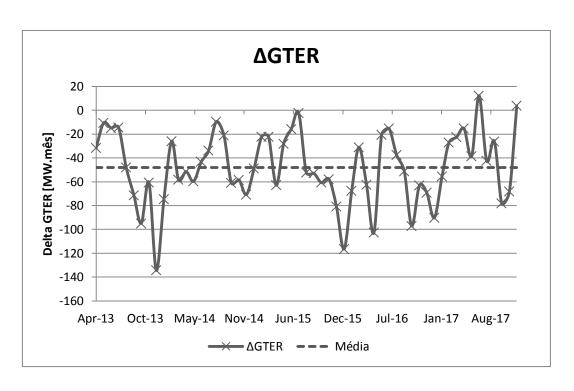


Figura 7-19 \triangle GTER Proposta 3; 4 Subsistemas.

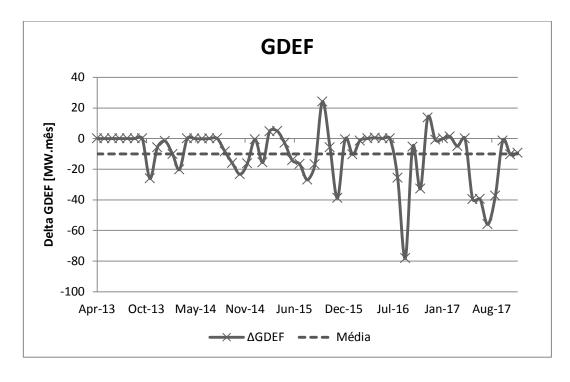


Figura 7-20 \(\Delta GDEF \) Proposta 3; 4 Subsistemas.



Figura 7-21 △VERTTUR Proposta 3; 4 Subsistemas

VARIÁVEIS	DEFAULT	Proposta 3	Delta
CMO [R\$/MW.mês]	258.4062	251.5436	-2.66%
COPER [R\$]	1065391	1035487	-2.81%
EARMF [MW.mês]	157534.3	157903	0.23%
GDEF [MW.mês]	194.7618	184.7353	-5.15%
VERTTUR [MW.mês]	848.659	863.7906	1.78%
GHID [MW.mês]	55055.12	55128.12	0.13%
GTER [MW.mês]	8164.436	8116.389	-0.59%

Tabela 12 - Comparação de Resultados: Configuração em Paralelo x Proposta 3 (Quatro Subsistemas)

Assim como a Proposta 2, a Proposta 3 possui índices melhores do que a operação em paralelo, tendo em vista o menor valor do custo médio de operação observado. Essa proposta tem comportamento análogo ao caso com um subsistema, obtendo melhor desempenho em todas as variáveis, excluindo o excesso de geração. Neste caso, o custo médio de operação foi reduzido em 2,81% para o caso com quatro subsistemas, enquanto esta redução foi de 3,14% para o caso com um subsistema.

7.4 RESULTADOS DA PROPOSTA 4 APLICADA A QUATRO SUBSISTEMAS

Analogamente às seções anteriores, as figuras 7-22 a 7-28 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG.

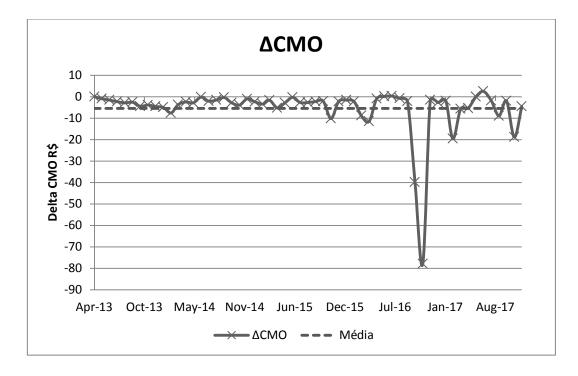


Figura 7-22 ∆CMO Proposta 4, 4 Subsistemas.

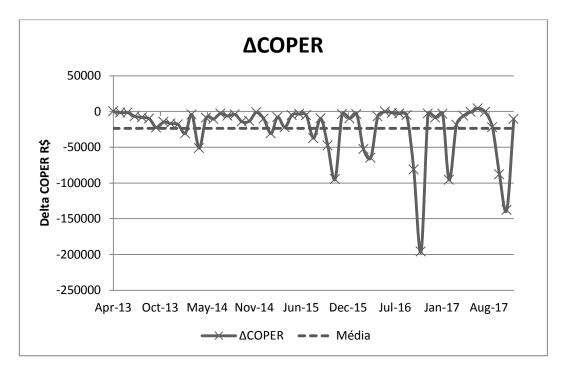


Figura 7-23 \triangle COPER Proposta 4, 4 Subsistemas.

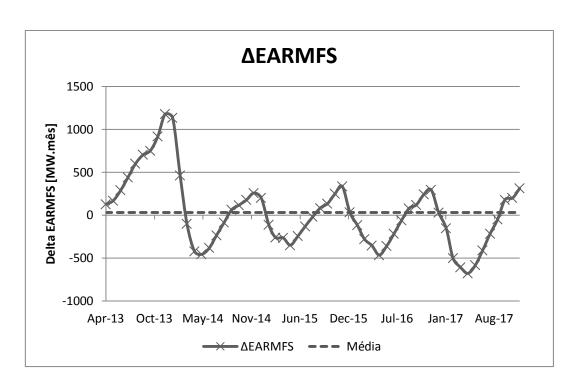


Figura 7-24 \(\Delta\)EARMFS Proposta 4, 4 Subsistemas.

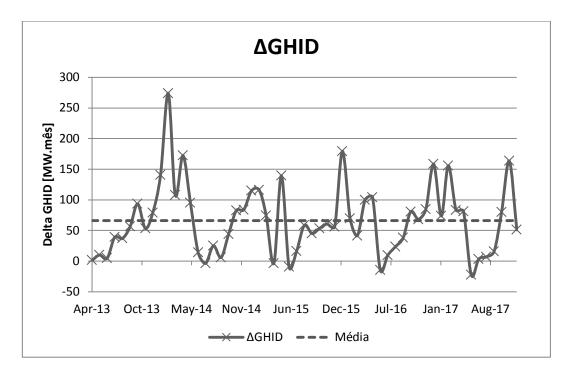


Figura 7-25 \(\Delta \text{GHID Proposta 4, 4 Subsistemas.} \)

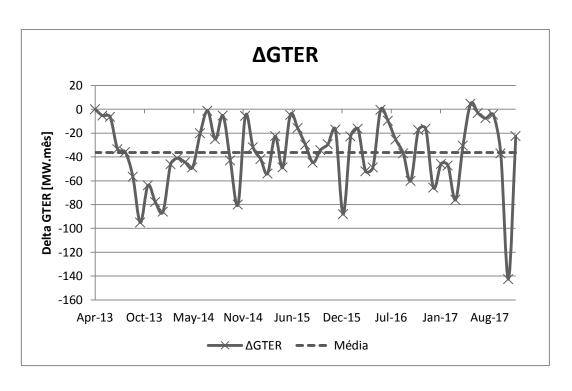


Figura 7-26 \triangle GTER Proposta 4, 4 Subsistemas.

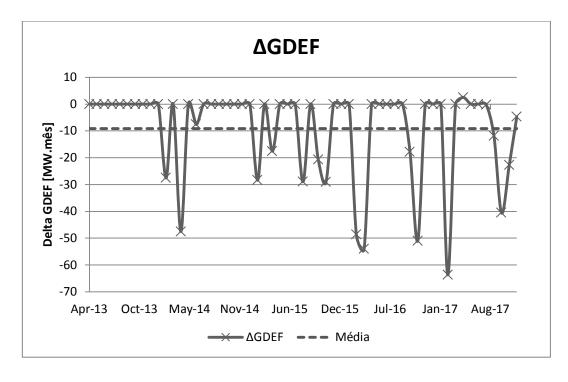


Figura 7-27 \(\Delta GDEF \) Proposta 4, 4 Subsistemas.

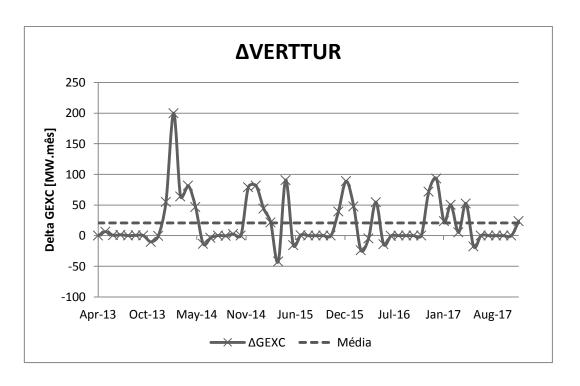


Figura 7-28 \(\Delta VERTTUR Proposta 4, 4 Subsistemas. \)

VARIÁVEIS	DEFAULT	Proposta 4	Delta
CMO [R\$/MW.mês]	258.4062	252.4792	-2.29%
COPER [R\$]	1065391	1036755	-2.69%
EARMF [MW.mês]	157534.3	157969.8	0.28%
GDEF [MW.mês]	194.7618	185.7963	-4.60%
VERTTUR [MW.mês]	848.659	863.6789	1.77%
GHID [MW.mês]	55055.12	55118.69	0.12%
GTER [MW.mês]	8164.436	8124.73	-0.49%

Tabela 13 - Comparação de Resultados: Configuração em Paralelo x Proposta 4 (Quatro Subsistemas)

A Proposta 4 se comporta de forma similar às Propostas 2 e 3, apresentando ganho em todas as variáveis, excluído o excesso de geração. Neste caso, o custo médio de operação foi reduzido em 2,69% para o caso com quatro subsistemas, enquanto esta redução foi de 2,82% para o caso com um subsistema.

7.5 RESULTADOS DA PROPOSTA 5 APLICADA A QUATRO SUBSISTEMAS

Tal como nas seções anteriores, as figuras 7-29 a 7-35 apresentam os resultados da subtração entre a solução em paralelo e a melhor aptidão obtida com a aplicação do AG.

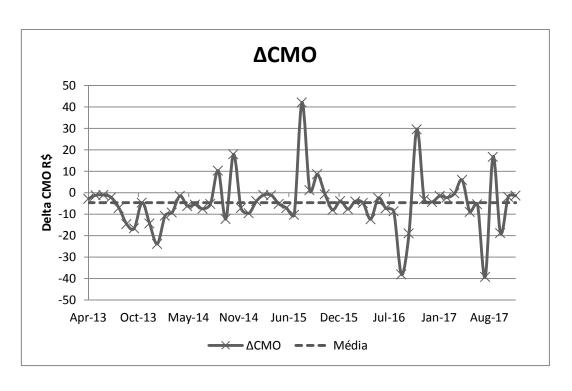


Figura 7-29 \triangle CMO Proposta 5, 4 Subsistemas.

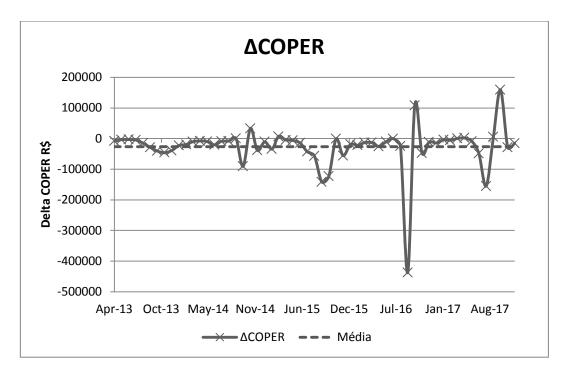


Figura 7-30 \(\Delta COPER \) Proposta 5, 4 Subsistemas.

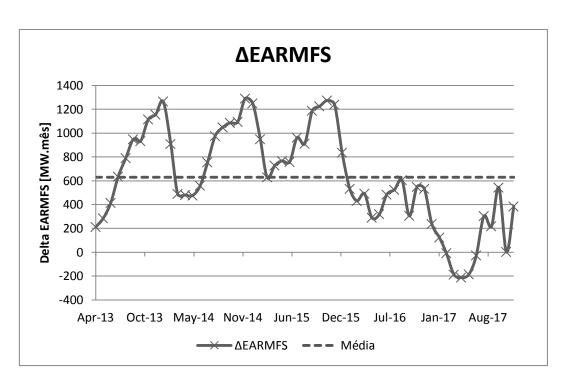


Figura 7-31 \triangle EARMFS Proposta 5, 4 Subsistemas.

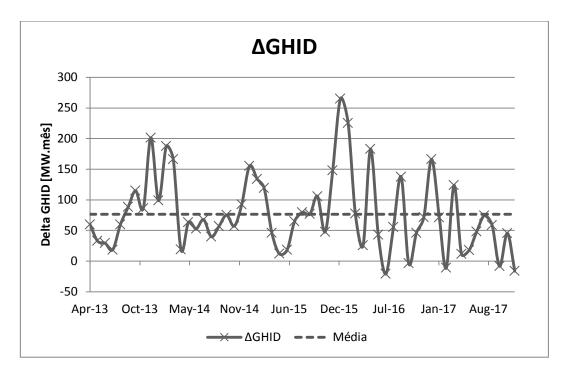


Figura 7-32 \(\Delta GHID \) Proposta5, 4 subsistemas.

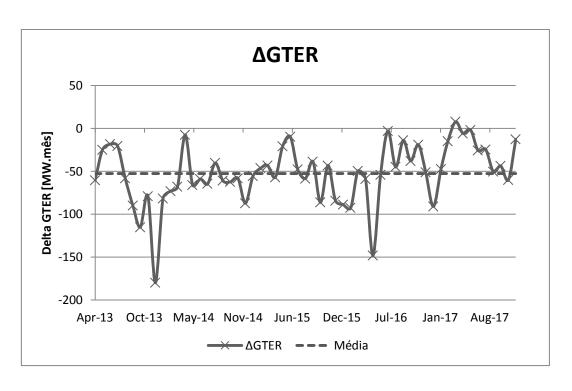


Figura 7-33 \triangle GTER Proposta 5, 4 Subsistemas.

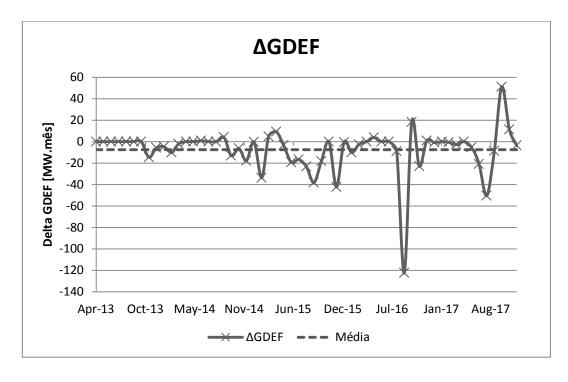


Figura 7-34 \(\Delta GDEF \) Proposta 5, 4 Subsistemas.

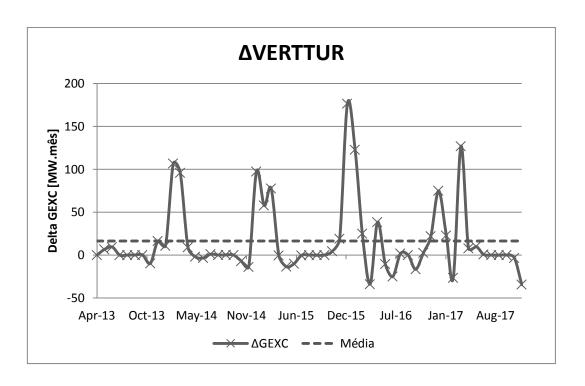


Figura 7-35 \triangle VERTTUR Proposta 5, 4 Subsistemas.

VARIÁVEIS	DEFAULT	Proposta 5	Delta
CMO [R\$/MW.mês]	258.4062	253.7508	-1.80%
COPER [R\$]	1065391	1038889	-2.49%
EARMF [MW.mês]	157534.3	158163.7	0.40%
GDEF [MW.mês]	194.7618	187.2434	-3.86%
VERTTUR [MW.mês]	848.659	864.9894	1.92%
GHID [MW.mês]	55055.12	55131.59	0.14%
GTER [MW.mês]	8164.436	8111.743	-0.65%

Tabela 14 - Comparação de Resultados: Configuração em Paralelo x Proposta 5 (Quatro Subsistemas)

A Proposta 5 apresenta resultados interessantes, embora possua comportamento análogo às três propostas anteriores. Destaca-se por não ser a melhor para a situação com quatro subsistemas, pois seu custo médio de operação foi reduzido em 2,49% (enquanto que na Proposta 3 chega-se a uma redução de 2,81%). Em relação ao caso com um subsistema, a redução obtida foi de 3,21%.

7.6 COMPARAÇÃO ENTRE AS PROPOSTAS DE FAIXAS OPERATIVAS

VARIÁVEIS	DEFAULT	Δ	Δ	Δ	Δ	Δ
VARIAVEIS	DEFAULI	Proposta 1	Proposta 2	Proposta 3	Proposta 4	Proposta 5
CMO[R\$/MW.mês]	258.4062	-2.09%	2.58%	2.66%	2.29%	1.80%
COPER [R\$]	1065391	-3.17%	2.79%	2.81%	2.69%	2.49%
EARMF [MW.mês]	157534.3	-0.33%	-0.29%	-0.23%	-0.28%	-0.40%
GDEF [MW.mês]	194.7618	-5.04%	4.74%	5.15%	4.60%	3.86%
VERTTUR [MW.mês]	848.659	-1.07%	-1.93%	-1.78%	-1.77%	-1.92%
GHID [MW.mês]	55055.12	-0.04%	-0.12%	-0.13%	-0.12%	-0.14%
GTER [MW.mês]	8164.436	0.24%	0.51%	0.59%	0.49%	0.65%

Tabela 15 - Tabela Comparativa de Resultados entre todas as Propostas para operação em quatro subsistemas

Analisando a Tabela 15 - acima, podemos afirmar que a Proposta 3 foi a melhor solução encontrada para o caso com quatro subsistemas, obtendo os melhores índices de CMO, COPER, e GDEF, com reduções de 2,66%, 2,81%, e 5.15%, respectivamente; e os segundos melhores índices de GHID e GTERM com um aumento de 0.13% e uma redução de 0.59%, respectivamente.

Um aspecto interessante é o fato da Proposta 3 possuir o pior índice de armazenamento entre todas as propostas, com um aumento de 0.23% em relação à operação em paralelo. Embora seja o pior índice, ainda há ganhos em relação à configuração em paralelo e cabe ressaltar que um maior armazenamento não representa necessariamente o melhor uso dos recursos hídricos tendo em vista o comportamento do custo total de operação.

Seguindo a lógica das execuções do AG para um subsistema, esperava-se que a Proposta 5 apresentasse os melhores resultados para o caso com quatro subsistemas, fato que não se comprova na realidade. Esse resultado também corrobora a afirmação feita anteriormente: é necessário executar o AG utilizando diretamente o caso com quatro subsistemas para se obter as faixas operativas apropriadas, levando em conta as restrições inerentes ao caso com quatro subsistemas. Apesar disso, não é possível afirmar que a Proposta 5 apresentará os melhores resultados para o caso com quatro subsistemas, onde existem limitações de intercâmbio.

8 CONCLUSÕES

Esse trabalho apresentou a investigação de uma premissa operacional do modelo SUISHI, a operação dos reservatórios em paralelo, para a simulação de usinas hidrelétricas individualizadas utilizando algoritmo genético. Para a execução do trabalho, utilizou-se uma adaptação do PMO original contendo apenas 1 subsistema, permitindo uma execução mais rápida do algoritmo. As soluções encontradas nessa etapa foram, então, aplicadas ao caso original.

Os resultados obtidos empregando-se o algoritmo genético para determinar uma melhor configuração das faixas de operação das hidrelétricas com reservatório, operadas pelo modelo SUISHI cumpriram as expectativas contidas no enunciado do objetivo deste trabalho, obter uma configuração de faixas que simulasse a operação com um custo menor do que as faixas utilizadas atualmente. Além de ser uma metodologia de fácil aplicação, a mesma mostrou-se eficiente ao apresentar resultados melhores do que a operação em paralelo. O algoritmo desenvolvido permite mudar o foco da política de operação de acordo com a necessidade do planejador. Com uma simples alteração no código é possível fazer com que o algoritmo busque maximizar ou minimizar qualquer variável calculada pelo modelo SUISHI.

Uma vez que o SIN está constantemente incrementando sua capacidade instalada, a entrada de novas usinas no sistema demandaria a necessidade da realização de um novo estudo para determinação de novas faixas operativas, executando o algoritmo sempre que preciso.

Dentre todas as propostas de faixas operativas aplicadas a um subsistema, a Proposta 5 se mostrou a melhor das configurações. Para as propostas de faixas operativas aplicadas a quatro subsistemas, a Proposta 3 se mostrou a melhor das configurações para o caso real, apresentando ganhos significativos para o planejamento da operação energética de médio prazo, utilizando o modelo SUISHI, quais sejam:

- Redução em mais de 2,5% do valor esperado do custo de operação do subsistema;
- Redução em mais de 5% do déficit de geração ao longo do estudo;
- Redução em mais de 2,5 do custo marginal de operação; e
- Redução da geração térmica em 0,59%.

8.1 TRABALHOS FUTUROS

Embora relevantes, os resultados obtidos ainda não são suficientes. É necessário executar o algoritmo genético com o caso original, de forma a se determinar faixas operativas ótimas levando em conta as restrições reais, visto que há uma grande diferença de desempenho entre os casos com um e quatro subsistemas.

Como o trabalho foi feito em caráter experimental, há que se considerar que o AG empregado ainda se encontra em evolução, sendo possível melhorar seu desempenho de forma a buscar faixas operativas ainda melhores que as ora apresentadas. Nesse sentido, duas providências fundamentais são apontadas: a implementação do operador de mutação e a realização de um estudo para a calibragem do tamanho ideal da população.

Visto que os resultados são auspiciosos, é lícito inferir que, inicializando a metodologia aplicada neste trabalho diretamente à quantidade de subsistemas existentes no SIN, com maior disponibilidade de tempo e com *hardware* de maior capacidade de processamento, poder-se-ia aprimorar o Algoritmo Genético e, consequentemente, otimizar ainda mais os resultados do modelo SUISHI, com razoáveis perspectivas de ganhos de escala na operação energética.

9 BIBLIOGRAFIA

- [1] Portal Brasil, "Matriz Energética," Agosto 2013. [Online]. Available: www.brasil.gov.br.
- [2] I. M. d. T. Camargo, "Panorama da oferta e do consumo de energia," *Revista Brasileira de Energia*, 2007.
- [3] M. E. P. Maceira, L. Terry, F. Costa, J. Damázio e A. Melo, *Chain of optimization models for setting the energy dispatch and spot price in the Brazilian system*, Sevilla, 2002.
- [4] M. E. P. Maceira, V. Duarte, D. Penna, L. Moraes e A. Melo, *Ten years of application of stochastic dual dynamic in official and agent studies in Brazil description of the NEWAVE program*, Glasgow: 16th Power Systems Computation Conference, 2008.
- [5] F. Batista, M. M.E.P., A. Marcato e V. Duarte, "Levantamento das Diferenças Numéricas e Metodológicas entre os Modelos NEWAVE e SUISHI," em XX SNPTEE, Recife, 2009.
- [6] J. Holand, *Adapatation in natural and artificial systems*, MI: University of Michigan Press, 1975.
- [7] R. Linden, Algoritmos Genéticos 3a edição, Rio de Janeiro: Ciência Moderna, 2012.
- [8] P. L. Leite, "Aplicação de Algoritmos Genéticos na Determinação da Operação Ótima de Sistemas Hidrotérmicos de Potência," *Revista Controle & Automação Vol.17*, Janeiro 2006.
- [9] T. C. T. Silva, "Planejamento Hidrotérmico Utilizando Algoritmos Genéticos," Revista Online Inteligência Computacional Aplicada, Julho 2010.
- [10] ONS, "Programa Mensal da Operação," [Online]. [Acesso em Agosto 2013].

- [11] ONS, "Mapas do SIN," [Online]. [Acesso em Agosto 2013].
- [12] ONS, "O que é o SIN Sistema Interligado Nacional," [Online]. [Acesso em Julho 2013].

10 ANEXO: PROPOSTAS

Para todas as faixas apresentadas, as usinas em verde correspondem às usinas de montante e as azuis, às usinas de jusante, de acordo com as Tabela 3 e Tabela 4.

10.1 PROPOSTA 1

1	BATALHA	985	978	939	915	839	689	650	649	501	456	373	308	280	194	188	132	48	39	20	18
2	SERRA FACAO	995	964	877	820	794	730	709	690	670	568	560	421	317	230	211	176	173	165	43	6
3	CAPIM BRANC1	899	863	779	767	626	624	622	617	574	521	510	446	424	351	344	276	239	236	217	3
4	CORUMBA IV	904	892	867	828	801	697	676	626	530	474	415	351	273	197	182	107	105	87	31	13
5	RETIRO BAIXO	948	926	913	901	803	685	638	569	473	426	294	256	223	223	189	186	161	111	94	44
6	TRES MARIAS	965	940	920	882	803	785	744	699	689	655	444	442	396	282	248	238	224	133	74	14
7	QUEIMADO	940	826	749	742	734	718	604	593	592	585	521	511	480	462	440	271	177	46	32	2
8	CORUMBA III	980	977	962	916	890	864	755	738	610	513	475	395	394	238	210	133	120	111	48	10
9	SERRA MESA	913	784	760	709	647	629	567	512	460	446	438	329	296	295	165	134	130	128	9	1
10	PEIXE ANGIC	994	976	949	934	899	873	829	705	698	586	580	534	359	314	295	288	275	263	108	52
11	RONDON II	995	943	891	817	698	650	616	381	363	341	334	275	255	171	164	146	95	78	65	37
12	ESPORA	959	956	929	802	697	664	649	619	607	557	545	401	381	374	371	335	307	270	154	60
13	CACU	996	932	889	803	712	701	658	492	486	462	442	364	355	315	280	275	204	172	159	94
14	FICT.MAUA	996	973	900	865	857	804	737	618	613	458	456	451	427	375	374	340	258	193	115	8
15	JAGUARI	868	816	812	769	705	655	650	630	585	552	458	411	264	262	243	235	233	137	77	25
16	PARAIBUNA	966	890	883	860	791	765	736	731	645	641	582	360	358	339	252	250	182	83	82	4
17	SANTA BRANCA	974	935	858	836	812	591	577	442	440	369	359	278	246	211	146	116	110	33	33	2
18	FUNIL	987	908	888	861	804	724	721	698	646	642	596	556	510	498	261	257	155	136	93	36
19	LAJES	953	941	939	903	839	811	774	770	636	621	571	566	565	461	300	296	154	52	29	25
20	P. ESTRELA	988	971	794	717	665	656	576	540	498	446	327	292	269	251	229	208	196	113	106	2
21	SAMUEL	964	956	943	943	911	842	815	751	745	704	592	576	564	490	489	450	447	355	175	16
22											,							447	333		
	IRAPE	973	937	891	880	859	813	746	745	732	637	541	527	478	456	436	258	256	135	81	36
23	IRAPE CAMARGOS	973 968	937 912	891 831	880 733	859 729	813 685	746 671		732 608			527 575	478 515	456 421	436 416					
23									745		637	541					258	256	135	81	36
	CAMARGOS	968	912	831	733	729	685	671	745 654	608	637	541 588	575	515	421	416	258 339	256 318	135 205	81 42	36 26
24	CAMARGOS FURNAS	968 993	912	831 899	733 699	729 606	685 599	671 583	745 654 503	608	637 608 467	541 588 299	575 249	515 243	421 228	416 210	258 339 168	256 318 93	135 205 81	81 42 67	36 26 9
24 25	CAMARGOS FURNAS M. DE MORAES	968 993 942	912 912 921	831 899 790	733 699 767	729 606 735	685 599 707	671 583 700	745 654 503 605	608 499 528	637 608 467 474	541 588 299 448	575 249 438	515 243 417	421 228 295	416 210 206	258 339 168 92	256 318 93 63	135 205 81 56	81 42 67 38	36 26 9 24
24 25 26 27 28	CAMARGOS FURNAS M. DE MORAES CACONDE	968 993 942 982 997 982	912 912 921 959 927 972	831 899 790 947 902 908	733 699 767 926 886 901	729 606 735 851 826 882	685 599 707 752 795 800	671 583 700 705 701 771	745 654 503 605 599 610 717	608 499 528 594 529 680	637 608 467 474 543 521 570	541 588 299 448 524 459	575 249 438 507	515 243 417 415	421 228 295 395 406 301	416 210 206 244 386 264	258 339 168 92 126 374 145	256 318 93 63 116 310	135 205 81 56 99 296 50	81 42 67 38 98	36 26 9 24 71
24 25 26 27	CAMARGOS FURNAS M. DE MORAES CACONDE MARIMBONDO	968 993 942 982 997	912 912 921 959 927	831 899 790 947 902	733 699 767 926 886	729 606 735 851 826	685 599 707 752 795	671 583 700 705 701	745 654 503 605 599 610	608 499 528 594 529	637 608 467 474 543	541 588 299 448 524 459	575 249 438 507 454	515 243 417 415 448	421 228 295 395 406	416 210 206 244 386	258 339 168 92 126 374	256 318 93 63 116 310	135 205 81 56 99 296	81 42 67 38 98 142	36 26 9 24 71 15
24 25 26 27 28	CAMARGOS FURNAS M. DE MORAES CACONDE MARIMBONDO A. VERMELHA	968 993 942 982 997 982	912 912 921 959 927 972	831 899 790 947 902 908	733 699 767 926 886 901	729 606 735 851 826 882	685 599 707 752 795 800	671 583 700 705 701 771	745 654 503 605 599 610 717	608 499 528 594 529 680	637 608 467 474 543 521 570	541 588 299 448 524 459	575 249 438 507 454 407	515 243 417 415 448 402	421 228 295 395 406 301	416 210 206 244 386 264	258 339 168 92 126 374 145	256 318 93 63 116 310	135 205 81 56 99 296 50	81 42 67 38 98 142 2	36 26 9 24 71 15
24 25 26 27 28 29	CAMARGOS FURNAS M. DE MORAES CACONDE MARIMBONDO A. VERMELHA EMBORCACAO	968 993 942 982 997 982 895	912 912 921 959 927 972 843	831 899 790 947 902 908 759	733 699 767 926 886 901 750	729 606 735 851 826 882 749	685 599 707 752 795 800 726	671 583 700 705 701 771 661	745 654 503 605 599 610 717	608 499 528 594 529 680 573	637 608 467 474 543 521 570	541 588 299 448 524 459 473 533	575 249 438 507 454 407 488	515 243 417 415 448 402 462	421 228 295 395 406 301 416	416 210 206 244 386 264 383	258 339 168 92 126 374 145 382	256 318 93 63 116 310 131	135 205 81 56 99 296 50	81 42 67 38 98 142 2 140	36 26 9 24 71 15 0
24 25 26 27 28 29 30	CAMARGOS FURNAS M. DE MORAES CACONDE MARIMBONDO A. VERMELHA EMBORCACAO NOVA PONTE	968 993 942 982 997 982 895	912 912 921 959 927 972 843 915	831 899 790 947 902 908 759	733 699 767 926 886 901 750	729 606 735 851 826 882 749	685 599 707 752 795 800 726	671 583 700 705 701 771 661 740	745 654 503 605 599 610 717 655	608 499 528 594 529 680 573	637 608 467 474 543 521 570 561	541 588 299 448 524 459 473 533	575 249 438 507 454 407 488 489	515 243 417 415 448 402 462 360	421 228 295 395 406 301 416 294	416 210 206 244 386 264 383 273	258 339 168 92 126 374 145 382 200	256 318 93 63 116 310 131 300	135 205 81 56 99 296 50 184	81 42 67 38 98 142 2 140	36 26 9 24 71 15 0 1

Second Promission	34	SAO SIMAO	983	907	906	881	851	835	774	686	536	529	529	514	467	450	246	194	167	67	29	23
36 PROMISSAO 979 815 802 680 606 594 591 436 394 335 332 331 321 226 161 152 130 118 63 37 GUARAPIRANGA 989 980 878 738 725 617 584 549 522 417 387 374 320 259 258 232 150 103 15 38 BILLINGS 912 881 852 787 784 743 716 632 628 590 567 546 493 474 452 391 380 287 273 39 I.SOLT.EQU 968 890 845 769 729 651 535 426 426 367 350 270 206 190 182 154 128 111 61 61 61 61 61 61																						27
STATE GUARAPIRANGA 989 980 878 738 725 617 584 549 522 417 387 374 320 259 258 232 150 103 15 388 BILLINGS 912 881 852 787 784 743 716 632 628 590 567 546 493 474 452 391 380 287 273 391 1. SOLT. EQV 968 890 845 769 729 651 535 426 426 367 350 270 206 190 182 154 128 111 61 61 61 61 61 61													-									34
BILLINGS 912 881 852 787 784 743 716 632 628 590 567 546 493 474 452 391 380 287 273																						0
39 I.SOLT.EQV 968 890 845 769 729 651 535 426 426 367 350 270 206 190 182 154 128 111 61																						
MANSO																						41
14																						21
CHAVANTES 988 869 853 713 706 690 344 298 177 135 134 123 114 99 83 79 78 47 41 41 43 CAPIVARA 994 970 961 953 932 929 830 827 753 753 752 624 538 478 349 329 285 104 43 44 MAUA 981 891 758 617 557 546 527 526 417 413 398 390 228 209 201 160 147 110 96 55 51A CLARA PR 620 614 560 448 442 352 329 300 298 283 268 246 194 144 120 101 51 44 40 46 6 G.B. MUNHOZ 979 910 842 792 754 737 725 587 492 351 341 310 268 262 175 163 119 106 94 47 8ARRA GRANDE 977 805 669 565 551 503 475 381 355 354 349 326 273 235 231 204 165 108 75 48 SAO ROQUE 875 830 760 745 700 684 673 595 540 458 325 255 234 201 140 97 84 82 68 49 CAMPOS NOVOS 950 891 861 672 635 625 614 575 571 478 425 341 310 255 199 192 172 165 137 50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 932 888 802 777 674 698 645 633 616 547 482 431 391 270 262 111 56 JORDAO 979 974 937 932 888 802 770 764 698 645 633 616 547 482 431 391 270 262 111 56 JORDAO 999 974 937 932 888 802 770 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 11APARICA 862 861 826 772 713 673 627 588 580 569 527 427 365 527 219 143 99 92 68 20 62 111 61 FICT.QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 527 219 141 99 92 68 20 71 131 111 58 30 61 147 147 147 147 148 147 148 147 148 148 148 148 148 148 148 148 148 148																						21 6
CAPIVARA 994 970 961 953 932 929 830 827 753 753 752 664 538 478 349 329 285 104 43 44 MAUA 981 891 758 617 557 546 527 526 417 413 398 390 228 209 201 160 147 110 96 45 STACLARA PR 620 614 560 448 442 352 329 300 298 283 268 246 194 144 120 101 51 44 40 46 G.B. MUNHOZ 979 910 842 792 754 737 725 587 492 351 341 310 268 262 175 163 119 106 94 47 BARRA GRANDE 977 805 669 565 551 503 475 381 355 354 349 326 273 235 231 204 165 108 75 48 SAO ROQUE 875 830 760 745 700 684 673 595 540 458 325 255 234 201 140 97 84 82 68 49 CAMPOS NOVOS 950 891 861 672 635 625 614 575 571 478 425 341 310 255 199 192 172 165 137 50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 93 393 886 877 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 51 FICT.QUEIMAD 993 994 975 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 50 OBRADINHO 889 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 50 ITAPARICA 862 861 826 772 713 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 51 FICT.RETIRO 938 807 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 55 51 54 FICT.RETIRO 938 807 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 55 51 55 P. CAVALO 928 894 741 730 713 712 701 698 600 634 570 546 374 342 165 157 137 100 63																						18
44 MAUA 981 891 758 617 555 546 527 526 417 413 398 390 228 209 201 160 147 110 96 45 STACLARAPR 620 614 560 448 442 352 329 300 298 283 268 246 194 144 120 101 51 44 40 46 G.B. MUNHOZ 979 910 842 792 754 737 725 587 492 351 341 310 268 262 175 163 119 106 94 47 BARRAGRANDE 977 805 669 565 551 503 475 381 355 354 349 326 273 235 231 204 165 108 75 48 SAO ROQUE 875 830 760 745 700 684 673 595 540 458 325 255 234 201 140 97 84 82 68 49 CAMPOS NOVOS 950 891 861 672 635 625 614 575 571 478 425 341 310 255 199 192 172 165 137 50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 61 FICT.REIRMA 992 963 808 728 545 517 434 390 372 372 364 347 328 205 191 181 148 121 103 63 FICT.REIRO 988 894 741 730 713 712 701 698 650 634 570 546 347 432 165 157 137 100 63																						23
45 STA CLARA PR 620 614 560 448 442 352 329 300 298 283 268 246 194 144 120 101 51 44 40 40 46 G.B. MUNHOZ 979 910 842 792 754 737 725 587 492 351 341 310 268 262 175 163 119 106 94 47 BARRA GRANDE 977 805 669 565 551 503 475 381 355 354 349 326 273 235 231 204 165 108 75 48 SAO ROQUE 875 830 760 745 700 684 673 595 540 458 325 255 234 201 140 97 84 82 68 49 CAMPOS NOVOS 950 891 861 672 635 625 614 575 571 478 425 341 310 255 199 192 172 165 137 50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673 648 634 565 525 516 448 434 421 309 151 140 122 117 61 FICT. QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 62 FICT. TRES MA 992 963 808 728 545 517 434 390 372 372 364 377 364 379 375 51 51 444 441 300 390 324 315 224 178 75 75 51 64 FICT. REPROVED 988 889 887 882 835 828 788 697 660 653 634 570 546 374 342 165 157 137 100 63 65 59 P.CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63																						3
## A PASSO FUNDO ## A PASSO REAL ## PASSO RE																						18
## SAC ROQUE																						18
## SAO ROQUE																						17
49 CAMPOS NOVOS 950 891 861 672 635 625 614 575 571 478 425 341 310 255 199 192 172 165 137 50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673 648 634 565 525 516 448 434 421 309 151 140 122 117 61 FICT.QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 62 FICT.TRES MA 992 963 808 728 545 517 434 390 372 372 364 347 328 205 191 181 148 121 103 63 FICT.RETIRO 938 907 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 51 64 FICT.IRAPE 982 889 887 882 835 828 728 697 660 653 635 521 491 411 325 287 202 71 31 65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63																						35
50 MACHADINHO 989 968 964 940 919 859 750 745 584 567 526 526 455 307 302 256 191 164 114 51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 777 762 <td></td> <td>-</td> <td></td> <td>24</td>		-																				24
51 PASSO FUNDO 975 914 879 853 687 679 566 556 499 493 337 321 319 316 299 201 136 104 59 52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 877 762 742 705 667 <td></td> <td>0</td>																						0
52 QUEBRA QUEIX 950 924 922 881 876 873 862 838 821 807 618 495 376 348 219 168 147 138 89 53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 865 765 730																						14
53 ERNESTINA 815 814 810 756 733 658 605 557 552 503 490 483 478 354 348 269 226 109 89 54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765																						16
54 PASSO REAL 994 953 938 884 832 795 616 535 497 375 374 242 210 201 191 145 136 126 120 55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705																						9
55 G.P. SOUZA 983 896 857 808 777 762 742 705 679 667 619 585 468 451 358 333 225 194 112 56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808																						3
56 JORDAO 979 974 937 923 898 802 770 764 698 645 633 616 547 482 431 391 270 262 111 57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673																						111
57 SEGREDO 952 943 906 879 865 765 730 532 508 482 278 255 196 145 127 113 111 58 30 58 SLT.SANTIAGO 972 935 816 757 726 705 650 611 605 549 342 284 166 154 146 106 100 95 72 59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673 648 634 565 525 516 448 434 421 309 151 140 122 117 61 FICT.QUEIMAD 993 992 900 721 673 627																						14
59 SOBRADINHO 989 942 877 869 833 808 594 505 491 425 383 348 317 222 178 167 117 113 99 60 ITAPARICA 862 861 826 772 713 673 648 634 565 525 516 448 434 421 309 151 140 122 117 61 FICT.QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 62 FICT.TRES MA 992 963 808 728 545 517 434 390 372 364 347 328 205 191 181 148 121 103 63 FICT.RETIRO 938 907 821 725 725 661 641 <td>57</td> <td>SEGREDO</td> <td>952</td> <td>943</td> <td></td> <td></td> <td></td> <td>765</td> <td>730</td> <td>532</td> <td>508</td> <td></td> <td>278</td> <td></td> <td></td> <td></td> <td>127</td> <td>113</td> <td></td> <td>58</td> <td></td> <td>7</td>	57	SEGREDO	952	943				765	730	532	508		278				127	113		58		7
60 ITAPARICA 862 861 826 772 713 673 648 634 565 525 516 448 434 421 309 151 140 122 117 61 FICT.QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 62 FICT.TRES MA 992 963 808 728 545 517 434 390 372 372 364 347 328 205 191 181 148 121 103 63 FICT.RETIRO 938 907 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 51 64 FICT.IRAPE 982 889 887 882 835 828	58	SLT.SANTIAGO	972	935	816	757	726	705	650	611	605	549	342	284	166	154	146	106	100	95	72	54
61 FICT.QUEIMAD 993 992 900 721 673 627 588 580 569 527 427 365 273 219 143 99 92 68 20 62 FICT.TRES MA 992 963 808 728 545 517 434 390 372 372 364 347 328 205 191 181 148 121 103 63 FICT.RETIRO 938 907 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 51 64 FICT.IRAPE 982 889 887 882 835 828 728 697 660 653 635 521 491 411 325 287 202 71 31 65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63	59	SOBRADINHO	989	942	877	869	833	808	594	505	491	425	383	348	317	222	178	167	117	113	99	78
62 FICT.TRES MA 992 963 808 728 545 517 434 390 372 372 364 347 328 205 191 181 148 121 103 63 FICT.RETIRO 938 907 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 51 64 FICT.IRAPE 982 889 887 882 835 828 728 697 660 653 635 521 491 411 325 287 202 71 31 65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63	60	ITAPARICA	862	861	826	772	713	673	648	634	565	525	516	448	434	421	309	151	140	122	117	74
63 FICT.RETIRO 938 907 821 725 725 661 641 627 444 441 430 390 324 315 224 178 75 75 51 64 FICT.IRAPE 982 889 887 882 835 828 728 697 660 653 635 521 491 411 325 287 202 71 31 65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63	61	FICT.QUEIMAD	993	992	900	721	673	627	588	580	569	527	427	365	273	219	143	99	92	68	20	10
64 FICT.IRAPE 982 889 887 882 835 828 728 697 660 653 635 521 491 411 325 287 202 71 31 65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63	62	FICT.TRES MA	992	963	808	728	545	517	434	390	372	372	364	347	328	205	191	181	148	121	103	50
65 P. CAVALO 928 894 741 730 713 712 701 698 650 634 570 546 374 342 165 157 137 100 63	63	FICT.RETIRO	938	907	821	725	725	661	641	627	444	441	430	390	324	315	224	178	75	75	51	7
	64	FICT.IRAPE	982	889	887	882	835	828	728	697	660	653	635	521	491	411	325	287	202	71	31	23
66 B ESPERANCA 988 980 928 902 855 708 633 511 383 348 317 243 218 205 162 150 130 100 82	65	P. CAVALO	928	894	741	730	713	712	701	698	650	634	570	546	374	342	165	157	137	100	63	35
1 00 5. 25. 21. 11. 11. 12. 300 300 320 302 033 300 033 311 303 340 317 243 210 203 102 133 130 100 62	66	B. ESPERANCA	988	980	928	902	855	708	633	511	383	348	317	243	218	205	162	159	130	100	82	16
67 TUCURUI 964 942 921 919 807 753 702 616 616 551 547 528 515 512 387 366 286 224 93	67	TUCURUI	964	942	921	919	807	753	702	616	616	551	547	528	515	512	387	366	286	224	93	47
68 BALBINA 989 859 731 712 708 707 642 562 515 462 450 358 318 292 271 264 238 224 204	68	BALBINA	989	859	731	712	708	707	642	562	515	462	450	358	318	292	271	264	238	224	204	122
69 FICT.SERRA M 990 872 859 786 785 723 671 659 561 555 543 517 508 446 330 278 179 175 98	69	FICT.SERRA M	990	872	859	786	785	723	671	659	561	555	543	517	508	446	330	278	179	175	98	28
70 FICT.PEIXE A 991 977 971 921 802 776 727 725 611 593 592 506 376 354 229 213 146 117 106	70	FICT.PEIXE A	991	977	971	921	802	776	727	725	611	593	592	506	376	354	229	213	146	117	106	7
71 CURUA-UNA 974 913 910 862 839 825 801 784 784 749 723 712 405 373 361 166 86 84 71	71	CURUA-UNA	974	913	910	862	839	825	801	784	784	749	723	712	405	373	361	166	86	84	71	49

10.2 PROPOSTA 2

1	BATALHA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
2	SERRA FACAO	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
3	CAPIM BRANC1	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
4	CORUMBA IV	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
5	RETIRO BAIXO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
6	TRES MARIAS	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
7	QUEIMADO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
8	CORUMBA III	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
9	SERRA MESA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
10	PEIXE ANGIC	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
11	RONDON II	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
12	ESPORA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
13	CACU	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
14	FICT.MAUA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
15	JAGUARI	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
16	PARAIBUNA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
17	SANTA BRANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
18	FUNIL	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
19	LAJES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
20	P. ESTRELA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
21	SAMUEL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
22	IRAPE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
23	CAMARGOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
24	FURNAS	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
25	M. DE MORAES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
26	CACONDE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
27	MARIMBONDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
28	A. VERMELHA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
29	EMBORCACAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
30	NOVA PONTE	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
31	MIRANDA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
32	CORUMBA I	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
33	ITUMBIARA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
34	SAO SIMAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
35	BARRA BONITA	910	830	760	700	650	700	550	500	450	400	350	300	250	200	150	100	150	30	10	0
36	PROMISSAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
37	GUARAPIRANGA	950 950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
38	BILLINGS I. SOLT. EQV	990	970	940	900	750 850	700 800	750	700	550 650	500 600	450 550	500	350 450	300 400	250 350	300	150 240	170	50 90	0
40	MANSO	950	900	850	800	750	700	650	600	550		450	400	350	300	250	200			50	0
41	A.A. LAYDNER	910	830	760	700	650	600	550	500	450	500 400	350	300	250	200	150	100	150 60	30	10	0
		950	900	850													200		100	50	0
42	CHAVANTES	950	900	გ20	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	ъU	U

43	CAPIVARA	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
44	MAUA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
45	STA CLARA PR	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
46	G.B. MUNHOZ	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
47	BARRA GRANDE	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
48	SAO ROQUE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
49	CAMPOS NOVOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
50	MACHADINHO	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
51	PASSO FUNDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
52	QUEBRA QUEIX	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
53	ERNESTINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
54	PASSO REAL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
55	G.P. SOUZA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
56	JORDAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
57	SEGREDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
58	SLT.SANTIAGO	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
59	SOBRADINHO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
60	ITAPARICA	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
61	FICT.QUEIMAD	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
62	FICT.TRES MA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
63	FICT.RETIRO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
64	FICT.IRAPE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
65	P. CAVALO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
66	B. ESPERANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
67	TUCURUI	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
68	BALBINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
69	FICT.SERRA M	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
70	FICT.PEIXE A	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
71	CURUA-UNA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0

10.3 PROPOSTA 3

1	BATALHA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
2	SERRA FACAO	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
3	CAPIM BRANC1	990	961	804	747	725	709	629	569	559	505	474	471	461	355	346	233	191	179	110	11
4	CORUMBA IV	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
5	RETIRO BAIXO	935	931	882	864	812	781	755	505	502	416	317	289	272	265	205	144	102	66	49	46
6	TRES MARIAS	966	910	905	883	875	813	790	745	722	671	568	481	434	294	246	207	175	93	86	37
7	QUEIMADO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
8	CORUMBA III	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
9	SERRA MESA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
10	PEIXE ANGIC	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
11	RONDON II	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
12	ESPORA	990	959	905	860	845	840	811	741	643	611	575	571	462	459	366	359	330	301	186	125
13	CACU	971	965	920	844	843	818	752	742	721	637	603	524	492	456	362	235	215	72	67	65
14	FICT.MAUA	985	847	840	704	670	598	506	498	491	437	337	319	236	176	137	84	74	50	25	4
15	JAGUARI	753	655	642	517	405	374	331	278	269	257	226	212	188	143	142	109	85	38	35	12
16	PARAIBUNA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
17	SANTA BRANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
18	FUNIL	926	899	850	814	805	753	610	547	501	404	333	330	304	224	99	95	83	44	32	10
19	LAJES	996	983	964	958	932	725	690	647	647	634	632	579	523	497	443	405	341	239	124	48
20	P. ESTRELA	977	969	943	856	830	802	775	724	720	675	661	595	484	440	388	219	168	101	100	19
21	SAMUEL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
22	IRAPE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
23	CAMARGOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
24	FURNAS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
25	M. DE MORAES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
26	CACONDE	954	947	870	862	829	819	695	631	599	422	384	357	256	252	185	181	138	130	124	48
27	MARIMBONDO	960	932	905	898	894	796	748	685	668	660	622	555	532	504	502	498	326	282	142	95
28	A. VERMELHA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
29	EMBORCACAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
30	NOVA PONTE	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
31	MIRANDA	996	836	738	722	679	654	598	596	508	497	340	334	263	218	172	155	155	122	41	18
32	CORUMBA I	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
33	ITUMBIARA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
34	SAO SIMAO	986	900	899	842	795	744	716	689	659	639	597	573	503	397	363	326	157	93	88	72
35	BARRA BONITA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
36	PROMISSAO	963	897	848	848	819	783	708	681	665	659	651	455	424	419	375	289	214	212	208	77
37	GUARAPIRANGA	950	920	920	867	814	797	751	641	589	533	528	489	405	394	268	198	195	140	107	22
38	BILLINGS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
39	I. SOLT. EQV	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
40	MANSO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
41	A.A. LAYDNER	940	852	838	821	675	649	630	621	478	415	358	338	311	288	266	250	135	114	94	9
42	CHAVANTES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0

43	CAPIVARA	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
44	MAUA	975	876	811	790	744	658	651	616	553	532	340	337	315	294	172	165	53	40	18	4
45	STA CLARA PR	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
46	G.B. MUNHOZ	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
47	BARRA GRANDE	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
48	SAO ROQUE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
49	CAMPOS NOVOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
50	MACHADINHO	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
51	PASSO FUNDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
52	QUEBRA QUEIX	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
53	ERNESTINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
54	PASSO REAL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
55	G.P. SOUZA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
56	JORDAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
57	SEGREDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
58	SLT.SANTIAGO	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
59	SOBRADINHO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
60	ITAPARICA	990	970	940	900	850	800	750	700	650	600	550	500	450	400	350	300	240	170	90	0
61	FICT.QUEIMAD	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
62	FICT.TRES MA	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
63	FICT.RETIRO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
64	FICT.IRAPE	978	973	967	919	843	723	643	589	543	465	464	242	237	207	177	154	126	63	15	0
65	P. CAVALO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
66	B. ESPERANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
67	TUCURUI	968	954	941	919	796	784	765	662	615	611	575	555	554	476	423	241	197	189	166	10
68	BALBINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
69	FICT.SERRA M	910	830	760	700	650	600	550	500	450	400	350	300	250	200	150	100	60	30	10	0
70	FICT.PEIXE A	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
71	CURUA-UNA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0

10.4 PROPOSTA 4

1	BATALHA	941	888	787	723	650	600	550	500	450	400	350	300	250	200	150	139	93	65	38	0
2	SERRA FACAO	910	852	782	715	650	600	550	500	450	400	350	300	250	200	150	102	71	34	6	0
3	CAPIM BRANC1	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
4	CORUMBA IV	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
5	RETIRO BAIXO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
6	TRES MARIAS	946	893	839	722	650	600	550	500	450	400	350	300	250	200	150	109	64	63	13	0
7	QUEIMADO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
8	CORUMBA III	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
9	SERRA MESA	910	840	780	704	650	600	550	500	450	400	350	300	250	200	150	116	69	19	14	0
10	PEIXE ANGIC	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
11	RONDON II	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
12	ESPORA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
13	CACU	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
14	FICT.MAUA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
15	JAGUARI	937	877	788	723	650	600	550	500	450	400	350	300	250	200	150	114	104	65	27	0
16	PARAIBUNA	925	854	762	710	650	600	550	500	450	400	350	300	250	200	150	138	129	90	42	0
17	SANTA BRANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
18	FUNIL	973	953	942	900	850	800	750	700	650	600	550	500	450	400	350	281	198	129	67	0
19	LAJES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
20	P. ESTRELA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
21	SAMUEL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
22	IRAPE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
23	CAMARGOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
24	FURNAS	946	871	806	749	650	600	550	500	450	400	350	300	250	200	150	132	92	47	14	0
25	M. DE MORAES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
26	CACONDE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
27	MARIMBONDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
28	A. VERMELHA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
29	EMBORCACAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
30	NOVA PONTE	945	883	818	744	650	600	550	500	450	400	350	300	250	200	150	145	96	91	45	0
31	MIRANDA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
32	CORUMBA I	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
33	ITUMBIARA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
34	SAO SIMAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
35	BARRA BONITA	948	883	821	722	650	600	550	500	450	400	350	300	250	200	150	147	142	98	49	0
36	PROMISSAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
37	GUARAPIRANGA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
38	BILLINGS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
39	I. SOLT. EQV	969	920	917	899	850	800	750	700	650	600	550	500	450	400	350	295	229	157	96	0
40	MANSO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
41	A.A. LAYDNER	927	876	773	723	650	600	550	500	450	400	350	300	250	200	150	121	88	87	38	0
42	CHAVANTES	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0

43	CAPIVARA	971	956	936	888	850	800	750	700	650	600	550	500	450	400	350	286	227	138	52	0
44	MAUA	927	867	780	714	650	600	550	500	450	400	350	300	250	200	150	111	102	91	43	0
45	STA CLARA PR	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
46	G.B. MUNHOZ	949	878	806	732	650	600	550	500	450	400	350	300	250	200	150	108	82	64	35	0
47	BARRA GRANDE	893	842	787	720	650	600	550	500	450	400	350	300	250	200	150	128	122	74	24	0
48	SAO ROQUE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
49	CAMPOS NOVOS	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
50	MACHADINHO	957	947	937	897	850	800	750	700	650	600	550	500	450	400	350	295	204	116	50	0
51	PASSO FUNDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
52	QUEBRA QUEIX	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
53	ERNESTINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
54	PASSO REAL	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
55	G.P. SOUZA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
56	JORDAO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
57	SEGREDO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
58	SLT.SANTIAGO	958	925	917	891	850	800	750	700	650	600	550	500	450	400	350	276	184	119	66	0
59	SOBRADINHO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
60	ITAPARICA	991	991	946	898	850	800	750	700	650	600	550	500	450	400	350	280	199	149	84	0
61	FICT.QUEIMAD	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
62	FICT.TRES MA	910	846	786	732	650	600	550	500	450	400	350	300	250	200	150	144	117	85	49	0
63	FICT.RETIRO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
64	FICT.IRAPE	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
65	P. CAVALO	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
66	B. ESPERANCA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
67	TUCURUI	979	976	948	900	850	800	750	700	650	600	550	500	450	400	350	294	235	168	86	0
68	BALBINA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
69	FICT.SERRA M	932	870	806	721	650	600	550	500	450	400	350	300	250	200	150	108	59	32	25	0
70	FICT.PEIXE A	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0
71	CURUA-UNA	950	900	850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0

10.5 PROPOSTA 5

1	BATALHA	910	849	797	714	650	600	550	500	450	400	350	300	250	200	150	144	143	94	45	0
2	SERRA FACAO	902	839	772	706	650	600	550	500	450	400	350	300	250	200	150	130	107	74	31	0
3	CAPIM BRANC1	910	865	842	834	781	524	482	435	433	396	359	327	298	298	279	244	192	139	109	50
4	CORUMBA IV	892	860	857	483	400	353	346	284	267	246	209	193	166	162	119	98	87	58	24	21
5	RETIRO BAIXO	979	883	825	795	790	779	746	714	662	579	527	457	376	366	303	262	216	172	130	91
6	TRES MARIAS	941	868	777	711	650	600	550	500	450	400	350	300	250	200	150	139	116	99	49	0
7	QUEIMADO	986	877	784	781	754	703	584	549	524	516	455	445	291	249	247	237	213	182	118	9
8	CORUMBA III	999	803	791	782	747	695	636	596	574	489	465	287	278	233	223	147	121	69	44	5
9	SERRA MESA	941	875	770	719	650	600	550	500	450	400	350	300	250	200	150	102	59	24	2	0
10	PEIXE ANGIC	972	958	938	880	855	807	784	761	737	729	692	563	555	497	373	225	218	207	165	75
11	RONDON II	974	905	845	844	783	529	527	510	499	418	415	363	340	326	312	268	238	166	146	56
12	ESPORA	937	928	917	910	903	730	724	717	686	666	587	568	483	194	187	182	89	78	22	6
13	CACU	991	963	899	845	803	783	715	705	685	644	639	577	544	526	473	459	408	381	242	209
14	FICT.MAUA	973	968	912	883	864	799	711	592	506	430	383	315	299	243	234	201	144	113	15	10
15	JAGUARI	938	877	764	705	650	600	550	500	450	400	350	300	250	200	150	145	125	81	44	0
16	PARAIBUNA	941	891	782	730	650	600	550	500	450	400	350	300	250	200	150	144	143	98	48	0
17	SANTA BRANCA	945	845	819	774	765	709	639	627	558	545	509	484	440	416	363	288	215	175	83	12
18	FUNIL	994	951	950	900	850	800	750	700	650	600	550	500	450	400	350	298	210	148	74	0
19	LAJES	945	944	822	785	758	725	689	583	523	459	407	380	334	227	203	173	160	53	50	5
20	P. ESTRELA	995	990	972	932	913	897	831	815	632	603	409	394	348	329	234	167	138	72	42	5
21	SAMUEL	994	984	984	880	878	858	692	622	586	574	429	380	364	315	266	226	197	178	143	80
22	IRAPE	989	983	939	859	829	760	745	682	652	584	559	513	302	261	196	95	92	91	88	7
23	CAMARGOS	958	947	931	920	913	900	861	828	795	793	782	761	696	514	506	291	253	247	212	44
24	FURNAS	948	826	756	701	650	600	550	500	450	400	350	300	250	200	150	136	128	98	50	0
25	M. DE MORAES	912	889	852	797	758	739	551	530	459	415	413	387	324	316	300	271	263	235	180	0
26	CACONDE	897	890	871	857	791	755	722	625	623	622	572	500	479	330	325	256	175	100	99	71
27	MARIMBONDO	983	983	978	960	944	922	915	890	830	790	749	740	726	717	715	409	350	317	230	8
28	A. VERMELHA	977	960	908	805	699	684	669	615	611	561	537	450	437	388	319	319	181	165	142	13
29	EMBORCACAO	955	921	912	894	889	852	757	754	636	565	506	476	444	430	388	342	296	277	271	5
30	NOVA PONTE	946	889	832	747	650	600	550	500	450	400	350	300	250	200	150	128	90	67	26	0
31	MIRANDA	996	978	948	900	749	694	693	691	596	591	546	500	471	383	322	224	177	96	9	7
32	CORUMBA I	977	904	889	833	814	703	695	689	670	664	643	545	513	377	368	367	231	221	215	67
33	ITUMBIARA	996	956	892	877	837	761	760	734	696	534	458	359	350	345	309	146	125	118	110	18
34	SAO SIMAO	942	894	706	691	671	643	588	550	522	520	451	422	416	416	343	331	285	259	250	14
35	BARRA BONITA	949	898	758	703	650	600	550	500	450	400	350	300	250	200	150	107	94	48	43	0
36	PROMISSAO	994	993	985	900	881	806	732	676	627	589	538	515	476	463	461	459	367	366	87	80
37	GUARAPIRANGA	986	973	936	901	846	746	740	675	586	543	457	437	425	265	233	222	124	93	34	6
38	BILLINGS	843	805	522	519	443	302	300	287	284	276	270	241	202	183	175	160	159	66	26	12
39	I. SOLT. EQV	994	993	945	899	850	800	750	700	650	600	550	500	450	400	350	294	197	131	58	0
40	MANSO	964	936	895	891	846	829	817	773	645	611	545	505	453	272	245	196	179	133	53	35
41	A.A. LAYDNER	927	873	820	749	650	600	550	500	450	400	350	300	250	200	150	111	98	50	31	0
42	CHAVANTES	899	887	872	851	811	793	678	637	633	614	601	599	541	476	239	239	210	97	53	30

43	CAPIVARA	954	921	900	861	850	800	750	700	650	600	550	500	450	400	350	283	187	103	50	0
44	MAUA	937	879	796	733	650	600	550	500	450	400	350	300	250	200	150	105	58	17	11	0
45	STA CLARA PR	829	770	734	641	640	638	536	521	469	456	445	369	322	238	199	94	80	48	36	21
46	G.B. MUNHOZ	931	847	774	714	650	600	550	500	450	400	350	300	250	200	150	126	103	55	12	0
47	BARRA GRANDE	929	866	800	722	650	600	550	500	450	400	350	300	250	200	150	134	108	67	17	0
48	SAO ROQUE	984	743	734	732	685	670	561	519	459	457	449	434	401	268	208	138	122	91	61	2
49	CAMPOS NOVOS	900	882	877	868	867	849	778	647	586	544	433	419	270	210	153	147	144	134	102	52
50	MACHADINHO	996	987	944	898	850	800	750	700	650	600	550	500	450	400	350	237	183	131	73	0
51	PASSO FUNDO	901	865	859	805	553	520	477	461	448	323	260	227	196	191	129	112	78	64	45	19
52	QUEBRA QUEIX	935	788	669	651	649	399	374	323	322	296	244	222	221	208	186	171	119	110	88	82
53	ERNESTINA	970	893	792	680	671	613	597	490	477	466	427	425	417	280	237	186	184	90	55	28
54	PASSO REAL	999	983	937	929	893	873	638	632	627	433	318	318	298	288	169	135	134	123	122	82
55	G.P. SOUZA	977	954	939	921	787	632	628	552	516	493	434	384	379	368	253	94	83	47	45	32
56	JORDAO	989	928	882	879	719	525	492	471	442	398	383	322	312	303	258	250	196	90	73	50
57	SEGREDO	893	881	804	751	740	692	692	568	538	482	444	425	389	328	327	204	119	104	66	31
58	SLT.SANTIAGO	966	964	931	895	850	800	750	700	650	600	550	500	450	400	350	252	159	106	50	0
59	SOBRADINHO	981	902	782	698	610	575	423	356	351	331	320	279	242	225	213	211	180	63	39	0
60	ITAPARICA	957	948	935	900	850	800	750	700	650	600	550	500	450	400	350	274	220	135	78	0
61	FICT.QUEIMAD	997	957	896	874	870	780	752	748	563	538	449	413	410	364	333	277	243	66	24	12
62	FICT.TRES MA	881	829	755	700	650	600	550	500	450	400	350	300	250	200	150	101	66	45	3	0
63	FICT.RETIRO	893	826	728	675	663	568	550	544	506	473	454	440	377	347	207	143	138	123	82	72
64	FICT.IRAPE	910	889	882	814	799	738	614	581	551	355	251	171	131	89	73	48	27	22	13	3
65	P. CAVALO	954	949	917	828	795	718	545	537	484	477	472	432	416	387	355	349	293	290	74	4
66	B. ESPERANCA	965	924	893	838	831	801	776	726	696	675	644	639	634	515	426	190	189	153	140	37
67	TUCURUI	963	941	898	854	850	800	750	700	650	600	550	500	450	400	350	299	246	184	114	0
68	BALBINA	957	913	873	775	669	611	518	516	507	495	492	472	345	296	261	254	224	107	88	24
69	FICT.SERRA M	937	859	774	720	650	600	550	500	450	400	350	300	250	200	150	114	112	82	35	0
70	FICT.PEIXE A	942	936	890	867	847	832	762	752	666	621	583	580	567	357	287	240	68	56	40	8
71	CURUA-UNA	954	909	843	809	799	793	738	664	549	539	509	304	253	223	179	127	126	73	67	51