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Abstract

This paper is concerned with the statistical modeling of the dependence structure

in the ¯rst and second moments of a univariate ¯nancial time series using the concept of

copulas. The appealing feature of the method is that it captures not just the linear form of

dependence (a job usually accomplished by ARIMA linear models), but also the non-linear

ones, including tail dependence, the dependence occuring only among extreme values. In

addition we investigate the changes in the mean modeling after whitening the data through

the application of GARCH type ¯lters. Sixty two U.S. stocks are selected to illustrate the

methodologies. The copula based results corroborate empirical evidences on the existence

of linear and non-linear dependence at the mean and at the volatility levels, and contributes

to practice by providing yet a simple but powerful method for capturing the dynamics in

a time series. Applications may follow and include VaR calculation, simulations based

derivatives pricing, and asset allocation decisions. We recall that the literature is still

inconclusive as to the most appropriate Value-at-Risk computing approach, which seems

to be a data dependent decision.

1Corresponding author. beatriz im.ufrj.br.
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1 Introduction

This paper is concerned with the statistical modeling of the temporal dependence

structure existing in a univariate ¯nancial series using the concept of copulas.

Modeling the dependence structure among variables using copulas is an ap-

proach recently rediscovered (see Joe (1997) and Nelsen (2006), Genest, Gendron

and Bourdeau-Brien (2008) for a review on the subject). For every continuous

multivariate distribution there is a unique copula which links the marginal vari-

ables, isolating the description of their dependence structure independently of the

marginal distributions. Modeling multivariate data through copulas adds °exibility,

since there is a uncountable number of possible combinations of copulas families and

marginal distributions that can be assumed.

Copulas had become popular in ¯nance mostly in the bivariate context (see

Cherubini, Luciano, and Vecchiato (2004), Mc Neil, Frey, and Embretchs (2005),

and references therein). However, copulas can also be used to model the temporal

dependence structures in a univariate time series r1; r2; ¢ ¢ ¢ ; rT . Instead of a pair of
assets, we now consider the bivariate series formed by pairs of consecutive returns

(r1; r2),(r2; r3), ¢ ¢ ¢ ; (rT¡1; rT ), an idea ¯rst suggested in Joe (1997) and pursued
later by Domma, Giordano and Perri (2001), Chen and Fan (2006), and Ibragimov

(2009). Since an appropriate copula function can be found for any type of association

(linear, non-linear, ranging from perfect negative to perfect positive dependence),

modeling the serial dependence within a univariate series using copulas brings new

contributions to the time series theory. We recall that the well known ARIMA

processes, designed to model a time series conditional mean, are built up solely

based on the behavior of the linear correlation between lagged observations.

In this paper we model the temporal dynamics in the ¯rst and second moments of

a ¯nancial returns series using the concept of copulas. Initially, we treat the returns

series as a ¯rst order Markov process, and model the conditional mean by ¯tting

copulas to the bivariate series of consecutive returns. Di®erently from Domma,

Giordano e Perri (2001), here we use the skew-t distribution for modeling the un-

conditional distribution of the returns and elliptical copulas. The skew-t allows for
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high kurtosis and asymmetry, providing tailored marginal ¯ts, improvements carried

on to the conditional copula ¯t. The copula families used in this paper are able to

model linear and non-linear dependence, as well as temporal association occuring

only between extreme values, and as the copula parameter ranges in its parameter

space, all dependence measures change accordingly.

Next, we treat the squared returns as a ¯rst order Markov process, and model

the dynamics in the conditional volatility by ¯tting copulas to pairs of consecutive

squared returns (r21; r
2
2),(r

2
2; r

2
3), ¢ ¢ ¢ ; (r2T¡1; r2T ). This approach can be seen as an

alternative to the ARCH(1) model. However, di®erently from the ARCH(1) process,

under which the squared returns follow an autoregressive process of order 1, under

the conditional copula approach the whole dependence structure linking consecutive

squared returns is speci¯ed, and not just the lag 1 (linear) autocorrelation.

Finally, we investigate whether or not the dynamic behavior of the series' second

moment spills over the behavior of the ¯rst moment. In other words, we investigate if

any type of serial dependence in the mean is left over after ¯ltering the data through

some GARCH type model, verifying if the dependence in the level of consecutive

residuals (¯ltered returns) is in anyway di®erent from that initially found for the

(raw) returns.

In Section 2 we present a brief review of the copula theory and provide the the-

oretical background for the univariate conditional modeling using copulas. In Sec-

tion 3 we provide an real data example based on daily returns of 62 stocks from the

New York Stock Exchange (NYSE), chosen from 8 di®erent sectors: Conglomorates,

Consumer Goods, Financial, Healthcare, Ind. Goods, Services, Technology, Utili-

ties. For each sector we pick the 5 largest and the 5 smallest stocks in terms of

market capitalization. We empirically show that the estimates and forecasts of the

conditional mean and volatility can be improved when the ascertained dependence

between consecutive returns is properly described through a copula function. This is

assessed through an out-of-sample Value-at-Risk computation. Results indicate that

when returns and/or squared returns possess tail dependence, the conditional cop-

ula strategy may result in better out-of-sample VaR estimates performance. Some

concluding remarks are given in Section 4.
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2 Copulas: a brief review

2.1 Copulas

Let F represent the joint distribution function (df) of a continuous random vector

X = (X1; : : : ; Xd) 2 Rd. Let F1; : : : ; Fd be their marginal dfs, and let Xi !
Fi(Xi); i = 1; : : : ; d, be their probability integral transformation to the standard

uniform distribution. Then the copula C pertaining to F is de¯ned as

C(u1; : : : ; ud) = F (F
¡1
1 (u1); : : : ; (F

¡1
d (ud)); 8(u1; : : : ; ud) 2 (0; 1)d (1)

where F¡1i is the quantile function of Fi; i = 1; : : : ; d. Thus the copula is a multi-

variate distribution with uniform(0,1) margins. The copula C completely speci¯es

the distribution F (Sklar, 1996) inasmuch as 8(x1; : : : ; xd) 2 Rd

F (x1; :::; xd) = C(F1(x1); :::; Fn(xd)): (2)

When F is not continuous, there still exists the copula representation of F , but

it may not be unique anymore (Schweizer & Sklar, 1983). The copula of any F

captures and summarizes the dependence between the Xi variables, and is invariant

under strictly increasing transformations of the Xi.

By taking partial derivatives of (2) one obtains the multivariate density function

f(x1; ¢ ¢ ¢ ; xd) = c(F1(x1); ¢ ¢ ¢ ; Fd(xd))
dY
i=1

fi(xi) (3)

where c denotes a d-dimensional copula density. Decomposition (3) simpli¯es the

speci¯cation of the data underlying multivariate distribution and suggests estimating

the marginal distributions fi separated from the dependence structure given by the

d-variate copula.

Dependence measures de¯ned only through C(¢) or c(¢) whose expressions do
not involve the margins Fi or fi, are known as copula based dependence measures.

An important copula based dependence measure is the tail dependence coe±cient.

The concept of bivariate tail dependence relates to the amount of dependence in

the upper- or lower-quadrant tails of a bivariate distribution. The tail dependence
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coe±cient is a number in [0; 1] and measures dependence between extreme joint

gains (¸U) or losses (¸L). The upper and lower tail dependence coe±cients are

respectively given by

¸U = lim
u!1

¹C(u; u)

1¡ u (4)

and

¸L = lim
u!0

C(u; u)

u
; (5)

if these limits exist, and where ¹C(u; v) is the survival copula, ¹C(u; v) = C(1¡u; 1¡
v).

From now on we assume d = 2. In the bivariate case all copula functions satisfy

the following inequality

max(u+ v ¡ 1; 0) · C(u; v) · min(u; v); (6)

where the bounds are copulas of functionally dependent variables. The lower bound,

the minimum copula denoted by C¡, models perfect negative dependence, while

the upper bound, the maximum copula denoted by C+, models perfect positive

dependence. Some copula families cover the entire range of dependence, from C¡

to the product copula CI , ¯nally reaching C+, while the indexing parameter ranges

over the parameter space, see Table 1. CI is the copula of independent variables

and it serves as basis (null hypothesis) for the generalized log-likelihood test.

Archimedean copulas are popular in ¯nance and are particularly easy to handle

(see Genest and MacKay, 1986). They are based on a generating function Á :

[0; 1] ! [0;1) continuous, strictly decreasing, convex and such that Á(1) = 0.

Given such a Á function, a bivariate Archimedean copula may be constructed from

C(u; v) = Á¡1(Á(u) + Á(v)). The class of one parameter Archimedean copulas

includes the Gumbel, Frank, Clayton, and Joe copulas. Two-parameter families

include the BB1, BB2, BB3, BB6 and BB7 copulas (notation of Joe, 1997). Details

on the Archimedean copulas may be found in Joe (1997). The two-parameter BB7

(also known as Joe-Clayton) family allows for modeling di®erent strengths of upper
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and lower tail dependences, an appealing feature since in ¯nance major emphasis is

given to the dependence in joint extreme losses.

The elliptical copulas are those pertaining to elliptical families. Most popular

members are the Gaussian and the t-copula. Both are parameterized by the linear

correlation coe±cient ½ and the t-copula has a second parameter, º, the degrees of

freedom. The symmetric t-copula possess ¸L = ¸U which is non-zero even when

½ = 0:0.

A summary of the copulas used in this paper, their family and type, parame-

ters and their limiting special cases, along with the value of their tail dependence

coe±cients, are given in Table 1. The limit copulas are the copulas attained when

the parameter(s) reaches the parameter space boundaries. For all these copulas the

strengh of dependence increases with ½ or µ.

Table 1: Summary characteristics of selected copulas. For the t-copula, ¸L = ¸U =

2tº+1(¡
p
º + 1

p
1¡ ½=p1 + ½). The Gumbel copula has ¸U = 2 ¡ 21=µ. Clayton copula

possess ¸L = 2
¡1=µ. For the BB7 copula, ¸U = 2¡ 21=µ may be di®erent from ¸L = 2

¡1=±.

Family Type Parameters ¸L ¸U C¡ CI C+

Gaussian Elliptical ¡1 · ½ · +1 0.0 0.0 ½ = ¡1 ½ = 0 ½ = +1

t-copula Elliptical ¡1 · ½ · +1, º p p
½ = ¡1 - ½ = +1

Frank Archim. ¡1 < µ < +1 0.0 0.0 µ ! ¡1 µ = 0 µ! +1
Surv.Clayton Archim./EV µ ¸ 0 0.0

p
- µ = 1 µ! +1

Gumbel Archim./EV µ ¸ 1 0.0
p

- µ = 1 µ! +1
BB7 Archimedean µ ¸ 1,± > 0 p p

- - µ or ± !1

We note that all copula-based dependence measures are increasing functions of

the copula parameters. We will work with the six copula families given in Table 1

which cover all types of tail dependence that can be found in the data.

2.2 Copula Modeling of Serial Dependence

A stylized fact about ¯nancial series is that current returns are usually a®ected only

by their recent past. This makes the Markovianity property a plausible assumption

for describing the evolution in time of moments of a returns series. As anticipated,
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the bivariate copula modeling of a random vector (X1; X2) may now be adapted to

model the conditional mean and volatility of a return series.

Let rt represent a stationary ¯rst order Markov process with continuous state

space, and let F1 denote its unconditional distribution function. Let (rt; rt+1) be

two consecutive random variables of this process. By Sklar's theorem, the process'

properties are completely determined by the marginal distribution of rt and the

copula function of (rt; rt+1). This means that the transition distribution function is

given by the conditional copula

P (rt · ytjrt¡1 = yt¡1) = C2j1(F1(yt)jF1(yt¡1)); (7)

where

C2j1(v j u) = P (V · vjU = u) = @C(u; v)

@u
; (8)

the ¯rst derivative of C(¢).
Suppose now that a parametric copula family CÃ, Ã a parameter vector, and a

marginal distribution F1 indexed by a parameter vector ® have been speci¯ed for

the data at hand r1; r2; ¢ ¢ ¢ ; rT . We apply the full maximum likelihood method, and
estimate marginal and association parameters simultaneously. The log-likelihood

function to be jointly maximized is

L(®; Ã; r1; :::; rT ) =
TX
t=1

L1;t(®; rt) +
TX
t=2

LC;t(®; Ã; (rt¡1; rt)) (9)

where L1;t denotes the log likelihood function of rt, and LC;t denotes the log of

the copula density function. Maximization of (9) will lead to the joint maximum

likelihood estimates (MLE) (b®; bÃ).
After the estimation phase one usually wants to forecast quantities of interest

using the conditional distribution of rt given its immediate past rt¡1. In ¯nance,

for example, the predictive distribution of future values may be used to compute

one-step-ahead risk measures, or to estimate the entire asset price path over some

¯xed horizon.

To simulate a sequence of T +1 values from some Markov process and linked by

a copula C, we iteratively apply the conditional copula (8):
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1. generate a random number u1 from the uniform(0,1) distribution such that,

for any v, 0 · C2j1(v j u1) · 1;

2. iterate the following procedure T + 1 times: generate wk from a uniform(0,1)

and compute vk as the numerical solution of the equation C2j1(v j uk) = wk,
where uk = vk¡1; k = 1; :::; T + 1, with u1 as de¯ned in step 1;

3. transform the pairs (uk; vk) back to their original values (rt¡1; rt) using the

inverse function F¡11 .

We note that the conditional copula approach may be applied to any time series.

In the next section it is applied to the return series and to the squared return series,

thus modeling the conditional mean and volatility of the assets.

3 Fitting Conditional Copulas to U.S. stocks

We provide applications based on the conditional copula modeling using daily re-

turns on 80 stocks from the New York Stock Exchange. The period covered is

February 28th, 2001, to February 17th, 2009, (length is 2002), obtained from the

Bloomberg data base. The stocks are chosen from 8 di®erent sectors: Basic Ma-

terials, Industrial Goods, Utilities, Technology, Services, Health Care, Financial,

Consumer Goods, Conglomerates. For each sector we pick the 5 largest and the 5

smallest stocks in terms of market capitalization. However, some of these stocks

were recent initial public o®ers and their series, being shorter than the others, were

not used in the analysis. The ¯nal number of series analyzed is 62.

As usual, we start the analysis by testing the returns series with respect to

stationarity. The KPSS test rejected the null hypothesis for 3 series. They would

require special treatment and were dropped from the analysis. Some basic statistics

con¯rmed the well known stylized facts. All series are not normally distributed,

possessing asymmetry and heavy tails, and according to the p-values of the Ljung-

Box test (5% level), 25 assets did not show signi¯cant autocorrelations in the ¯rst

3 lags. Although we have rejected the Ljung-Box null hypothesis for 34 series,

as expected the strength of linear dependence between consecutive returns is very
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weak, as measured by the sample autocorrelation estimates. This is con¯rmed by

the values of the empirical version of Spearman's rank correlation, which ranged

from 0.01 to 0.14.

The histograms of the squared returns revealed a non-strictly decreasing right

asymmetric distribution. The squared returns series showed larger values for the

rank correlation, ranging from 0.05 to 0.25. The null hypothesis of no autocorrelation

of the Ljung-Box test (in the second moment) was accepted for 6 assets.

3.1 Conditional copula modelling of the mean and volatility

As anticipated in the Introduction, we model the unconditional distribution of the

log-returns with the skew-t distribution (Hansen, 1994), an extention of the t-student

distribution designed to capture asymmetry in the data. The skew-t is a very °exible

four parameter distribution which allows for calibrations in the location (¹), scale

(¾), tail thickness (À, degrees of freedom) and skewness (¸), while keeping the

simplicity of the symmetric version. It has been successfully used when modeling

¯nancial returns, see Jondeau and Rockinger (2003) and Patton (2004, 2006).

Assuming the parametric families given in Table 1 (we also use the Clayton

copula, which models lower tail dependence), we compute for each return series the

joint maximum likelihood point estimates and standard errors of the parameters

(®; Ã), where ® = (¹; ¾; ¸; À), and Ã represents the copula parameters (see Table 1).

The best ¯t was determined by the Akaike criterion. With respect to the marginal

¯ts, we observed that the degrees of freedom are typically small (around 5 and 6)

and that most skewness and location estimates are not statistically di®erent from

zero.

For all series the best copula ¯t turned out to be the t-copula. Since we are

investigating Markov processes generated via tail dependent copulas, we tested (us-

ing the MLEs and their standard errors) and kept in the study the series possessing

positive tail dependence between consecutive observations. Out o® the 59 series,

only 43 had the tail dependence coe±cient statistically di®erent from zero. The

stocks names along with their sectors and classi¯cation as liquid or illiquid, and as

small or large capitalizations are given in columns 1-3 of tables 2 and 3, where most
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relevant results are gathered.

In columns 4 and 5 we give the point estimates and standard errors of the t-

copula parameter ½ and corresponding tail dependence coe±cient. It is interesting

to note that, based on the 95% con¯dence interval constructed with the maximum

likelihood estimates, most of these 43 series accepted the null hypothesis of zero lag

1 auto-correlation. The 5 exceptions showed ½ negative and around ¡0:07. They
are the stocks SPF, CE Franklim, DNA, P¯ser, Gen Corp, and, as we will see later,

for these stocks the copula approach for risk estimation performed better.

Next we conditionally model the second moment ¯tting copulas to the squared

returns r2t . This strategy may be seen as an alternative to the ARCH(1) model of

Engle (1982), which speci¯es that the conditional variance ¾2t at time t follows an

autoregressive model:

¾2t = ®0 + ®1r
2
t¡1:

Specifying an ARCH(1) model for the return rt is equivalent to specifying AR(1)

model for the squared returns. Applying copulas to consecutive squared returns, be-

sides estimating the lag 1 autoregressive coe±cient e®ect, also captures dependence

in the tails. In other words, one is able to model clusters of extreme consecu-

tive squared data even when this temporal dependence is not observed for small

or moderate returns (usual days). The larger the tail dependence coe±cient of the

copula the greater the risk of persistence of high volatility in the series. One can

expect to improve the volatility forecasts when using the copula approach since it

uses information provided by the whole dependence structure between consecutive

squared returns. Alternatives to the ARCH(r) generalization, r ¸ 1, can be easily
implemented by ¯tting (r + 1)-dimensional copulas.

In order to ¯t copulas to the consecutive squared data we again combine the 6

parametric families given in Table 1 and take as unconditional marginal model the

modi¯ed generalized Pareto distribution (MGPD)2. The initial candidate for mod-

eling the unconditional distribution of the squared data was the Generalized Pareto

distribution (GPD), but the shape of the squared data empirical distribution did not

2X follows a MGPD if Xb, b > 0, follows a GPD. To deal with long tails usually b < 1.
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match the required strictly decreasing behavior. Therefore a power transformation

was necessary, what is equivalent to ¯t the MGPD.

As expected the best copula ¯ts were provided by the Gumbel and the Survival

Clayton copulas, those possessing upper tail dependence ¸U , meaning that high

volatility days come in clusters. In columns 6 through 8 of tables 2 and 3 we

provide part of the results concerning the modeling of the second moment.

For each stock we give the winning copula family (column labeled Copula(2)),

and the point estimates and standard errors of the copula parameter and upper tail

dependence coe±cient. For all series the generalized log-likelihood test rejected the

simple model (product copula) and all ¸U are statistically di®erent from zero. This

means that a model for squared returns should explicitly account for dependence

between consecutive high volatility days. However, our objective is to model the

dynamics in the volatility, and an inherent problem when modeling and forecasting

conditional volatility is that it is unobservable, and an issue is if the squared returns

would be the best proxy for the variance. We intend in future work to compute

the realized variance (Andersen, Bollerslev, Diebold, and Labys (2001, 2003)) using

intra-day returns and apply the conditional copula modeling to this proxy.

Finally, to assess the e®ect of volatility in the dependence structure of consecutive

returns we previously ¯lter the returns series through Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) type models (Bollerslev, 1986), and then

check for changes in conditional copula ¯ts using the standardized residuals. The

GARCH speci¯cations included a leverage term, long memory, and were based on

the normal and t-student conditional distributions. The best model was decided

based upon the AIC values. The results obtained are not shown here but may be

obtained from the authors by request. We observed that typically the strength of

linear and non-linear serial dependence are weaker for the ¯ltered data. For most

stocks the copula family changed to the product copula. For the remaining series,

although the copula parameters estimates were close to the independence boundary,

the generalized likelihood test rejected the null hypothesis of independence.
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4 Applications: Computing the Value at Risk

We now investigate whether or not an important application in ¯nance, namely

the Value-at-Risk (VaR), can be improved by applying the proposed methodologies.

The VaR measures the potential loss of a market position over a ¯xed horizon with

a certain probability. It is the most popular tool for assessing market risk and it is

basically a quantile of the asset probability distribution.

We compute the out-of-sample one-step-ahead VaR at the 1% and 5% risk levels

for the most recent 250 observations in each series listed in tables 2 and 3. When

simulating the trajectories, we use the best conditional models (copulas and marginal

distributions) found for each series, and obtain the one-step ahead predictive returns

distribution, speci¯ed as the skew-t distribution. Having the mean and variance of

the skew-t we compute the desired quantile, the VaR. The ¯nal one-step-ahead VaR

value is the average value over 1000 simulations. For comparisons purpose, we also

compute the Gaussian ARCH(1)-based VaR. The performances of the new copula-

based VaR and of the traditional ARCH-based VaR are assessed through Kupiec's

test at the 5% signi¯cance level (Kupiec, 1995).

Using the 250 VaR estimates we compute the Kupiec's test p-value and report

in columns 9 and 10 of tables 2 and 3 a \C" or \A", when the null hypothesis of

true risk (1% and 5%) is accepted for the copula-based VaR or for the ARCH-based

VaR, respectively. The notation ¡¡ is used when both methods fail on the test.

Out of the 43 series, and for the 1% VaR, no procedure wins over the other. For the

5% VaR and independently of the stocks' type (L/NL/La/Sm), the copula approach

wins 14 times, the ARCH approach wins 10 times, both provide good results for 12

series, and both fail for 7 series. In summary, at the 1% risk level, the copula-based

VaR is as good as the ARCH(1)-VaR, but at the 5% risk level the conditional copula

approach provided better one-step-ahead VaR forecasts.
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Table 2: Summary of results from the conditional copula ¯ts to the ¯rst and second

moments, along with results from the out-of-sample VaR estimation.
Stock Sector L/NL ½ ¸L=¸U Copula(2) µ ¸U VaR 1% VaR 5%

La/Sm se(½) se(¸U ) se(µ) se(¸U )

CNOOC B. Materials NL -0.0191 0.0624 S-Clayton 0.2598 0.069 { {

La 0.0439 0.0167 0.0010 0.000

Petrobras B. Materials L -0.0172 0.0534 S-Clayton 0.2310 0.050 { {

La 0.0332 0.0166 0.0008 0.000

Lockheed M B. Materials L -0.0414 0.0644 Gumbel 1.1195 0.143 { {

Sm 0.0412 0.0148 0.0003 0.000

Emerson E Ind. Goods L -0.0014 0.0656 S-Clayton 0.2608 0.070 CA C

La 0.0412 0.0183 0.0010 0.001

Honeywell Ind. Goods L -0.0020 0.0488 S-Clayton 0.2472 0.061 CA CA

Sm 0.0380 0.0194 0.0011 0.001

SPF Ind. Goods L -0.0669 0.0528 S-Clayton 0.3412 0.131 CA C

Sm 0.0291 0.0123 0.0013 0.001

LMI Ind. Goods L -0.0048 0.0725 S-Clayton 0.2653 0.073 { A

Sm 0.0364 0.0140 0.0012 0.001

Hawk Ind. Goods NL -0.0227 0.0476 S-Clayton 0.2486 0.062 CA {

Sm 0.0425 0.0152 0.0009 0.000

Exelon Ind. Goods L -0.0262 0.0680 S-Clayton 0.2536 0.065 CA CA

Ls 0.0352 0.0107 0.0010 0.001

FPL Utilities L 0.0000 0.0693 Gumbel 1.1649 0.187 A A

La 0.0307 0.0151 0.0004 0.000

National G Utilities NL -0.0150 0.0504 Gumbel 1.1355 0.159 { A

La 0.0350 0.0190 0.0003 0.000

Semitool Technology NL -0.0016 0.0471 Gumbel 1.1201 0.143 CA A

Sm 0.0352 0.0143 0.0003 0.000

Zygo Technology NL -0.0369 0.0556 Gumbel 1.1445 0.168 CA C

Sm 0.0364 0.0158 0.0003 0.000

Technitrol Technology NL 0.0083 0.0508 S-Clayton 0.2971 0.097 CA CA

Sm 0.0329 0.0177 0.0012 0.001

Maxcom Technology NL -0.0435 0.0522 Gumbel 1.1416 0.165 CA CA

Sm 0.0415 0.0163 0.0003 0.000

CE Franklin Services NL -0.0900 0.0542 Gumbel 1.1172 0.140 { A

Sm 0.0346 0.0148 0.0003 0.000

Wal-Mart Services L -0.0414 0.0387 S-Clayton 0.3253 0.119 CA CA

La 0.0407 0.0159 0.0013 0.001

Guangshen Services NL -0.0392 0.0549 Gumbel 1.1379 0.161 CA C

Sm 0.0349 0.0171 0.0003 0.000

McDonald's Services L -0.0032 0.0544 Gumbel 1.1424 0.166 C A

La 0.0335 0.0180 0.0003 0.000

CVS Services L -0.0419 0.0407 Gumbel 1.1605 0.183 CA CA

La 0.0273 0.0149 0.0003 0.000

Johnson&J Healthcare L -0.0502 0.0463 Gumbel 1.1420 0.165 CA C

La 0.0415 0.0187 0.0003 0.000
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Table 3: Continued: Summary of results from the conditional copula ¯ts.

DNA Healthcare NL -0.0688 0.0391 Gumbel 1.1252 0.148 CA C

La 0.0391 0.0178 0.0003 0.000

P¯zer Healthcare L -0.0921 0.0437 Gumbel 1.1336 0.157 CA C

La 0.0343 0.0193 0.0003 0.000

GlaxoSmith Healthcare L 0.0199 0.0598 Gumbel 1.1425 0.166 CA C

Sm 0.0397 0.0180 0.0003 0.000

Mannatech Healthcare NL -0.0347 0.0586 Gumbel 1.1196 0.143 CA C

Sm 0.0370 0.0190 0.0003 0.000

WEA Financial NL -0.0039 0.0568 S-Clayton 0.3764 0.159 CA CA

Sm 0.0385 0.0162 0.0013 0.001

Boulder Financial NL -0.0188 0.0577 S-Clayton 0.2625 0.071 CA CA

Sm 0.0418 0.0190 0.0011 0.001

1st Financ Financial NL -0.0121 0.0545 Gumbel 1.1683 0.190 CA A

La 0.0369 0.0183 0.0003 0.000

Unibanco Financial L -0.0373 0.0479 Gumbel 1.1545 0.177 { {

La 0.0443 0.0147 0.0003 0.000

JPMorgan Financial L -0.0045 0.0462 Gumbel 1.1701 0.192 CA A

La 0.0361 0.0140 0.0003 0.000

WellsFargo Financial L -0.0401 0.0467 Gumbel 1.1353 0.159 CA A

La 0.0393 0.0171 0.0003 0.000

P&G Consumer Goods L 0.0046 0.0761 Gumbel 1.1764 0.197 { {

La 0.0411 0.0174 0.0003 0.000

Toyota Consumer Goods L -0.0359 0.0606 S-Clayton 0.2458 0.060 CA {

La 0.0362 0.0170 0.0009 0.000

Honda Consumer Goods L 0.0349 0.0686 Gumbel 1.1237 0.147 CA C

La 0.0362 0.0166 0.0003 0.000

Oxfords Consumer Goods NL -0.0175 0.0443 S-Clayton 0.2848 0.088 CA C

Sm 0.0290 0.0141 0.0010 0.001

A Axle Consumer Goods L -0.0172 0.0542 Gumbel 1.1495 0.172 A A

Sm 0.0325 0.0123 0.0003 0.000

Crane Conglomerates NL -0.0325 0.0419 Gumbel 1.1504 0.173 CA C

La 0.0428 0.0187 0.0004 0.000

GenCorp Conglomerates NL -0.0684 0.0473 S-Clayton 0.3226 0.117 CA CA

Sm 0.0290 0.0141 0.0014 0.001

Cherokee Conglomerates NL -0.0443 0.0658 S-Clayton 0.2952 0.096 C CA

La 0.0325 0.0123 0.0013 0.001

Rentech Conglomerates NL -0.0186 0.0457 S-Clayton 0.2450 0.059 CA CA

Sm 0.0428 0.0187 0.0010 0.000

GE Conglomerates NL 0.0038 0.0608 Gumbel 1.1250 0.148 CA C

La 0.0396 0.0166 0.0003 0.000

United Tech Conglomerates L -0.0321 0.0587 S-Clayton 0.2639 0.072 CA C

La 0.0394 0.0162 0.0012 0.001

Danaher Conglomerates L -0.0195 0.0605 S-Clayton 0.2288 0.048 CA CA

Sm 0.0420 0.0125 0.0009 0.000
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5 Conclusions

This paper used a conditional copula approach for modeling the time dependence in

the mean and variance of a univariate time series. Motivation came from empirical

evidence that ¯nancial returns present short memory which a®ects both the ¯rst and

second moments in a linear and also non-linear fashion. Thus, the whole dependence

structure linking consecutive returns and their squares was modeled using copulas,

an strategy which allows to go beyond the time series linear models and/or the linear

correlation coe±cient.

To explore the conditional copula approach potentials we used a data set com-

posed by 62 American stocks, ¯nally analyzing just 43 possessing positive tail de-

pendence. Inference was based on two-steps maximum likelihood. Several marginal

distributions and copula families were considered for ¯tting. The t-copula was the

best model for the returns, and the Gumbel or Survival Clayton provided best ¯ts

for the squared returns. For the marginal ¯ts the best models turned out to be the

skew-t and the modi¯ed GPD distributions, respectively for the returns and their

squares.

As expected, we found stronger association in the returns second moment when

compared to the the ¯rst moment, as well as signi¯cant non-linear dependence, as

measured by the upper tail dependence, explaining the volatility clusters.

Having captured and modeled the dependence between consecutive returns, one

is able to simulate the returns' one-step-ahead predictive distribution, and applica-

tions follow. For example, one may be interested in obtaining the returns' future

trajectory, or in estimating one-step-ahead risk measures. We computed the one-

step-ahead VaR at the 1% and 5% risk levels for the 43 U.S. stocks, and compared

to those obtained from an ARCH(1) ¯t. The ARCH(1) is the fair comparison since

based on behavior of squared consecutive observations.

The Kupiec's test p-value was used to compare the out-of-sample copula-based

and ARCH-based VaR, estimated for the last 250 observations. Out of the 43 series,

and for the 1% VaR, no procedure wins over the other. However, for the 5% VaR,

the copula approach wins 14 times against the 10 times won by the ARCH approach.
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The other cases were ties. In summary, at the 1% risk level, the copula-based VaR

is as good as the ARCH(1)-VaR, but at the 5% risk level the conditional copula

approach provided better one-step-ahead VaR forecasts. This may be considered an

indication that the modeling through copulas possessing positive tail dependence

would provide better forecasts whenever there is persistence in the series provided

by non-linear dependence between consecutive returns and their squares.

We focused on ¯rst order Markov processes. However, more information may be

extracted from the data by considering higher dimensional copulas. They would be

competitors for the ARCH(r), r > 1, models. We also note that simple extentions

of the conditional copula model allows for including indicator functions as leverage

terms to model the e®ect of consecutive negative (or positive) returns. Further,

more °exibility can be added if conditional pair-copulas are considered. We intend

to pursue this investigation in future work.

It is very interesting to have alternative methods for computing the VaR since

it is well recognized today that the best methodology for VaR computing is data

dependent. Our work indicates a new methodology to be further explored. Fi-

nally, time series analysis in many other areas such as epidemiology, environment,

economy, and so on, may bene¯t from the conditional copula model approach.
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