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Abstract

Volatility plays an important role when managing risks, composing portfolios, pricing fi-

nancial instruments. However it is not directly observable, being usually estimated through

parametric models such as those in the GARCH family. A more natural empirical measure

of daily returns variability is the so called realized volatility, computed from high-frequency

intra day returns, an unbiased and highly efficient estimator of the return volatility. At

this time point, with globalization effects driving markets’ volatilities all over the world,

it becomes of great interest to assess volatilities’ co-movements and contagion. To this

end we use pair-copulas, a powerful and flexible statistical model which allows for linear

and nonlinear, possibly asymmetric forms of dependence without the restrictions posed

by existing multivariate models. Given the importance of the Brazilian stock market in

the Latin America, in this paper we characterize the dependence structure linking the

realized volatilities of seven Brazilian stocks. The realized volatilities are computed using

an 8-year sample of 5-minutes returns from 2001 through 2009. We include a more com-

prehensive study involving seven emerging markets, addressing the issue of contagion in a

more general scenario.

Keywords: Pair-copulas; Dependence structure; Realized Volatilities; High-frequency data;

Contagion; Multivariate tail dependence coefficient.

JEL subject classifications: C22, C51, G17, G32.
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Resumo

Volatilidade tem um papel importante na administração de riscos, na composição e ad-

ministração de carteiras, e no apreçamento de intrumentos financeiros. Contudo ela no é

diretamente observável, sendo usualmente estimada através de modelos paramétricos tais

como aqueles da grande famı́lia GARCH. Uma medida emṕırica mais natural da volatili-

dade de retornos financeiros diários é a volatilidade realizada, calculada a partir de dados

de alta frequencia, um estimador eficiente e no viciado da volatilidade do retorno. At-

ualmente vemos os efeitos da globalização comandando os movimentos das volatilidades

dos mercados de todo o mundo, sendo assim de grande interesse o entendimento desses

movimentos simultâneos e do contágio resultante. Para acessar esses efeitos, neste ar-

tigo utilizamos a modelagem através de pair-copulas, um modelo estat́ıstico flex́ıvel e

poderoso que permite modelar formas de dependência lineares, no lineares, assimétricas,

sem colocar restrições usualmente impostas por modelos simplificadores existentes. Dada

a importância do mercado brasileiro na América Latina, neste trabalho caracterizamos a

estrutura de dependência entre as 8 ações brasileiras mais comercializadas. Calculamos a

volatilidade realizada utilizando uma amostra de 8 anos contendo retornos de 5-minutos de

2001 a 2009. Incluimos também uma investigação mais abrangente envolvendo 7 mercados

emergentes, focando no estudo do contágio neste cenário mais geral.

Palavras-Chave: Pair-copulas; Estrutura de dependência; Volatilidade Realizada; Dados

de alta frequencia; Contágio; Coeficiente de dependência multivariada de cauda.
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On the Dependence Structure of Realized Volatilities

1 Introduction

Volatility plays an important role when managing risks, composing portfolios and

pricing financial instruments. However it is not directly observable. The existing

parametric models for estimating the latent volatility include the popular ARCH-

GARCH family, stochastic volatility models and Markov-switching models. Being

estimated, are subject to many sources of errors and are only valid under the specific

assumptions of each approach. Ex-post squared or absolute returns may be used

as a non-parametric measure of daily returns variability. However, a more natural

empirical measure is the so called realized volatility, computed from high-frequency

intra day returns, an unbiased and highly efficient estimator of the return volatility.

By noting that variability of a variable during some interval may be measured as the

integral of its instantaneous variability over this interval, Andersen and Bollerslev

(1998a) defined the realized variance as the sum of the squared high-frequency intra

day returns over this interval.

Many following research papers focused in either characterizing the systematic

distributional features of the intra day return volatility process or providing appli-

cations of the new estimator. Andersen and Bollerslev (1998b) and Dacorogna et

al. (1993), characterized intra day volatility pattern in foreign exchange markets,

while Ederington and Lee (1993), and Fleming and Remolona (1999) did the same

in bond markets. Andersen, Bollerslev, and Cai (2000) characterized the volatility

in the Japanese stock market, whereas Andersen, Bollerslev, Diebold, and Ebens

(2001) studied realized variance measures using 30 DJIA stocks. Improved forecasts

and risk measures were computed based on the realized volatilities in Martens (2001),

Moosa and Bollen (2002), Pong, Shackleton, Taylor, and Xu (2004), and Giot and

Laurent (2004). All these empirical research based on high-frequency asset prices

highlighted the fact that intra day return volatility processes vary substantially ac-

cording to the asset and market types. This fact makes the investigation on the

topic even more interesting and calls for specific data treatments.

However, all above references handle the series of realized volatility in the univari-

ate setting. There are just a few papers addressing the problem of modeling volatil-

ities interdependencies. For example, Andersen, Bollerslev, Diebold, and Labys
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(2003) estimate the (conditional) fractionally-integrated Gaussian vector autoregres-

sion bivariate model for the logarithmic realized volatilities for the Deutschemark/Dollar

and the Yen/Dollar spot exchange rates. Ané and Métais (2009) examine the uncon-

ditional distribution of the realized variance of three European stock market indexes

and characterize their dependence structure using copulas. Indeed, Ané and Métais

(2009) note that ... important lessons, for both academic research and practical

use, could be derived from a closer attention paid to the multivariate unconditional

probabilistic features of realized volatility or variance series. In fact, any question

about the assets co-movements during crisis or about the long run simultaneous be-

havior of their volatilities, may only be answered through their unconditional joint

distribution.

Accordingly, in this paper we focus on the unconditional joint parametric mod-

eling of series of realized volatilities for seven Brazilian stocks. Although driven

by similar motivations, our work differs from the Ané and Métais (2009) study

in many ways: the copula model used, the data, choice of the univariate marginal

model, and the risk measures computed. Instead of using copulas, we go further and

parametrically characterize the dependence structure linking the series of realized

volatilities using pair-copulas. The pair-copulas construction, being an hierarchical

cascade of copulas, constitute a powerful and flexible model which allows for linear

and nonlinear, possibly asymmetric forms of dependence without the restrictions

posed by classical multivariate models, including high dimensional copulas. Being

a factorization based on only bivariate copulas, it is easy to estimate. The bivariate

copulas are free to vary and may belong to any family, from non-exchangeable to

elliptical or extreme value, or archimedians, or any other, and may possess positive

and different upper and lower tail dependence coefficients to model contagion during

extreme events. The decomposition is then able to cover all types of dependence

resulting in a tailored dependence structure.

We illustrate the modeling approach using two data sets from emerging markets,

our second contribution. Most studies dealing with stock market volatility use U.S.

data, and a look at the behavior of the realized volatility in emerging markets is

still lacking. We firstly focus in modeling the multivariate behavior of the realized

variance from Brazilian stocks due to the importance of this market in the Latin

America. Using data from just one geographical area also avoids the effects of lack

of synchronicity among the series, which may potentially corrupt the observed co-
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movements. Our full sample consists of 8 years of 5-minutes returns from 2001

through 2009 for the seven most liquid stocks. The period analyzed include the

sub-prime crisis and some local ones. Some well known characteristics of intra day

volatility were found also for the Brazilian data. Then we look at contagion among

volatilities from seven emerging markets’ indexes.

Thirdly, we contribute to the existing efforts for modeling the univariate distri-

bution of the realized log-volatility. The path we follow here is simple: we paramet-

rically model using the flexible skew-t distribution.

Finally, we compute measures of contagion and assess the effect of the dimen-

sionality on the strength of the multivariate tail dependence. In the remainder of

the paper we show in Section 2 how we collected and transformed the Brazilian

data into volatility measures. In Section 3 we set up the selected marginal and

joint models, providing a brief review on copulas and pair-copulas along with in-

ference methodologies. Estimation results are provided. In Section 4 we assess the

usefulness of the modeling strategy by computing accurate estimates of contagion

measures and of the multivariate upper tail dependence coefficient. We conclude in

Section 5 with suggestions for future research and discussion of the findings in this

paper.

2 Realized volatility in the Brazilian stock market

High frequency data possess unique characteristics, not present in low frequency

data (daily, weekly, monthly). Transactions (with variable volumes) occur in irreg-

ular time space; data show different periodic market activity patterns; there may

be asynchronicity in the data; and the bid-ask bounce effect may distort inferences.

The number of observations is huge, increasing the chances of many types of er-

rors (transaction errors, recording errors). All these features call for specific data

treatments and make their statistical analysis more interesting.

The high frequency data used here were provided by BOVESPA and covers the

8-years period from January, 2001 to April, 2009. We use the 7 more liquid stocks

in the Brazilian market, PETR4 (Petrobras), VALE5 (Vale), TNLP4 (Telemar),

USIM5 (Usiminas), BBDC4 (Bradesco), CSNA3 (Siderúrgica Nacional) and ITAU4

(Itauunibanco). According to Zivot (2005) stocks must be liquid since infrequent

trading may induce negative autocorrelation. This also guarantees many quotes
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per day per stock. Each data record is similar to the “Trades and Quotes” (TAQ)

provided by the NYSE, and contains information on the price, volume traded, day

and time of trading, and names of the trading firms.

Some specific data treatments were needed. Firstly, data were expressed using

the Greenwich mean time format. This was necessary to eliminate the impacts

caused by the changes in the BOVESPA closing time. Usually the BOVESPA has a

continuous trading session from 10 a.m. to 5 p.m., but during summer this changes

to 11 a.m. through 6 p.m. The data also required other adjustments to make

prices comparable, such as taking care of bonus, splits, capital adjustments, groups,

subscription, dividends, number of quotes, fusions, and so on.

We consider the 5-minutes sampling interval as the regularly spaced time for the

seven hours of continuous negotiation in the Brazilian market. Thus the number

of sampled observations per trading session is m = 84 interval/day. Let ∆ = 1/m

be the fraction of a trading session associated with the sampling frequency, and let

Pi,j and Qi,j represent a j-th price and volume for the i-th stock, during some time

interval ∆.

For data alignment, a common practice denominated “before” makes use of the

most recent observation, or the closest, with respect to the desired minute, and,

through a linear interpolation of the log-price, obtains the average of the bid-ask

values. In this work, to align the logarithmic price process to the regularly spaced

time clock chosen, we compute the real value log-price pi,t of asset i for the interval

from time t to t + ∆, as

pi,t = ln

(
Pi,1 · Qi,1 + Pi,2 ·Qi,2 + · · · + Pi,n · Qi,n

Qi,1 + Qi,2 + · · · + Qi,n

)
, (1)

where n is the number of negotiations of stock i in this time interval, the so-called

volume-weighted average price, VWAP. The VWAP gives rise to a smaller realized

variance, since it is closest to the efficient price instead of the closing price.

According to some authors it is necessary to eliminate days with too many 5-

minutes intervals with no change in the stock price (what would result in zero

volatility). Since our analysis is multivariate, the same days were withdrawn from

analysis for all stocks.

Then we obtain the the intra-day continuously compounded return ri,t+∆, on

asset i, from time t to t + ∆ as

ri,t+∆ = pi,t+∆ − pi,t. (2)
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Intra-day returns data also present seasonality (Breyman, 2003), volatility clus-

ters, and the higher the frequency the larger the kurtosis in the data. High fre-

quency data are typically affected by specific conditions such as periods without

trading, calendar effects, or the bid-ask bounce effects. Among others market mi-

crostructure effects, equity returns usually present negative autocorrelation. An

ARMA(p, q) (autoregressive moving average) model may be used to filter the series

before constructing the series of realized volatility. We note that the daily return

was computed by summing up all 5-minutes log-returns computed during a daily

continuous session.

The realized variance (RVi,t) for the stock i, i = 1, . . . , d, d = 7, at day t, is

defined as:

RVi,t =
m∑

j=1

r2
i,t−1+j∆, t = 1, . . . , T (3)

where T is the number of days in the period analyzed. We recall that the consis-

tency of the estimator is attached to ∆ → 0 (m → ∞). The realized volatility

(RV OLi,t) of stock i at day t is defined as the square root of the realized vari-

ance, RV OLi,t =
√

RVi,t, and the log-realized volatility (RLV OLi,t) is given by

RLV OLi,t = ln (RV OLi,t).

We now treat volatility as directly observed rather than latent. The seven

RLV OL series provided the basic statistics gathered in Table (1).

Table 1: Basic statistics for the seven series of log-realized volatilities (RLV ol).

RLV olStock mean std skewness exc-kurtosis max min median

RLV olITAU4 0.4198 0.4174 0.3430 0.6070 2.1690 -0.8068 0.4007

RLV olBBDC4 0.4811 0.3818 0.5191 1.0857 2.1207 -1.0681 0.4505

RLV olPETR4 0.3458 0.4065 0.7295 0.9256 2.0986 -0.6623 0.2916

RLV olV ALE5 0.3507 0.4256 0.5577 0.9643 2.1596 -0.9979 0.3118

RLV olCSNA3 0.6307 0.4194 0.1941 0.7791 2.2620 -1.0406 0.6266

RLV olUSIM5 0.7385 0.3749 0.2938 0.4432 2.1764 -0.5653 0.7219

RLV olTNLP4 0.5354 0.3849 0.5764 0.4223 2.0074 -0.7107 0.4869

These series, rather than the RVi,t or the RV OLi,t series, will be used to assess

interdependencies and contagion in the Brazilian stock market since they are more

suitable for marginal parametric modeling. Moreover, their dependence structure

is the same as the one among the series of realized volatility due to the copula

invariance property to increasing transformations.
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3 Building up the margins and the dependence structure

To model the joint distributional behavior and characterize the types of linear and

non-linear association among the RLV OL series (all potentially different) we use

pair-copulas. In the next subsection we provide a brief review on this subject.

3.1 Copulas and Pair-copulas

Let X1, . . . , Xd be real-valued random variables (r.v.). Here they represent the

series of log-realized volatilities and d = 7. The dependence between X1, . . . , Xd is

completely described by H(x1, . . . , xd), their joint distribution function (c.d.f.). In

most applied situations, only the margins are known (estimated or fixed a priori)

and the joint distribution H may be unknown or difficult to estimate.

The idea of separating H into a part which describes the dependence structure

and parts which describe the marginal behavior only, has lead to the concept of

copulas, introduced in statistical literature by Sklar (1959).

Copulas may be defined as follows: Let X1, . . . , Xd be continuous r.v. with

joint distribution function H(x1, . . . , xd), joint density function h, marginal c.d.f.s

F1, . . . , Fd, and marginal densities fi, i = 1, · · · , d. For every (x1, . . . , xd) ∈ [−∞,∞]d

consider the point in [0, 1]d+1 with coordinates (F1(x1), . . . , Fd(xd), H(x1, . . . , xd)).

This mapping from [0, 1]d to [0, 1] is a d-dimensional copula.

The Sklar’s Theorem may be stated as follows: Let H be a d-dimensional c.d.f.

with marginal c.d.f.s F1, . . . , Fd. Then there exists an d-dimensional copula C such

that for all (x1, . . . , xd) ∈ [−∞,∞]d,

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (4)

Conversely, if C is a d-dimensional copula and F1, . . . , Fd are c.d.f.s, the function

H defined by (4) is a d-dimensional distribution function with margins F1, . . . , Fd.

Furthermore, if all marginal c.d.f.s are continuous, C is unique.

Given a joint c.d.f. H with continuous margins F1, . . . , Fd, as in Sklar’s Theorem,

it is easy to construct the corresponding copula:

C(u1, . . . , ud) = H(F−1
1 (u1), . . . , F

−1

d (ud)), (5)

where F−1
i is the generalized inverse of Fi.
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We assume C being absolutely continuous, and by taking partial derivatives of

(4) one obtains

h(x1, · · · , xd) = c(F1(x1), · · · , Fd(xd))f1(x1) · · · fd(xd) (6)

where c represents the copula density. This expression will prove useful later for

parameter estimation.

The copula C summarizes the dependence structure of H independently of the

specification of the marginal distributions. It is invariant under strictly increas-

ing transformations of the marginal variables being therefore very convenient for

studying the dependence structure of the log-realized volatilities.

However, the copula approach has also its limitations. On the one hand, most

of the available softwares deal only with the bivariate case. On the other hand

and most importantly, high-dimensional parametric copula families usually have a

common parameter for the dependence structure and marginal distributions, which

would restrict all pairs to possess the same type or strength of dependence. A

solution may be a pair-copula decomposition.

The decomposition of a multivariate distribution into a cascade of bivariate cop-

ulas was originally proposed by Joe (1996), and later discussed in detail by Bedford

and Cooke (2001, 2002), Kurowicka and Cooke (2006) and Aas, Czado, Frigessi,

and Bakken (2007). The pair-copulas hierarchical construction, being a collection

of potentially different bivariate copulas, is flexible and very appealing. The vari-

ables are sequentially incorporated into the conditioning sets as one moves from the

first modeling level (tree 1) to the other levels (up to tree d − 1). The composing

bivariate copulas may vary freely, being chosen from any parametric family and pa-

rameter values. Therefore, all types and strengths of dependence can be covered.

Pair-copulas are easy to estimate and simulate, making them very appropriate for

modeling large dimensional data sets.

To derive a pair-copula factorization, first note that any multivariate density

function may be uniquely decomposed as

h(x1, ..., xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · · · f(x1|x2, ..., xd). (7)

The conditional densities in Equation (7) may be written as functions of the corre-

sponding copula densities. That is, for every j

f(x | v1, v2, · · · , vd) = cxvj |v−j
(F (x | v−j), F (vj | v−j)) · f(x | v−j), (8)
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where v−j denotes the d-dimensional vector v excluding the jth component. Note

that cxvj |v−j
(·, ·) is a bivariate marginal copula density. For example, when d = 3,

f(x1|x2, x3) = c13|2(F (x1|x2), F (x3|x2)) · f(x1|x2)

and

f(x2|x3) = c23(F (x2), F (x3)) · f(x2).

Expressing all conditional densities in Equation (7) by means of Equation (8),

we derive a decomposition for h(x1, · · · , xd) that consists of only univariate marginal

distributions and bivariate copulas. This also provides the pair-copula decomposition

for the d-dimensional copula c, a factorization of a d-dimensional copula based only

in bivariate copulas. This is a very flexible and natural way of constructing a higher

dimensional copula.

The conditional c.d.f.s necessary for pair-copulas construction are given (Joe,

1996) by

F (x | v) =
∂Cx,vj |v−j

(F (x | v−j), F (vj | v−j))

∂F (vj | v−j)
.

For the special case (unconditional) when v is univariate, and x and v are standard

uniform, we have

F (x | v) =
∂Cxv(x, v, Θ)

∂v

where Θ is the set of copula parameters.

For large d, the number of possible pair-copula constructions is very large. As

shown in Bedford and Cooke (2001), there are 240 different decompositions when

d = 5. These authors introduce a systematic way to obtain the decompositions,

which involves graphical models, the so called regular vines. The graphical models

also aid in understanding the conditional specifications made for the joint distribu-

tion. Special cases are the hierarchical canonical vines (C-vines) and the D-vines.

Each of these graphical models provides a specific way of decomposing the density

h(x1, · · · , xd). For example, for a D-vine, h() is equal to

d∏

k=1

f(xk)
d−1∏

j=1

d−j∏

i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, ..., xi+j−1), F (xi+j|xi+1, ..., xi+j−1)).

In a D-vine, there are d − 1 hierarchical nested trees with increasing conditioning

sets, and there are d(d − 1)/2 bivariate copulas. For a detailed description, see
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Aas, Czado, Frigessi, and Bakken (2007). Tree Tj of the D-vine has d − j bivariate

copulas, j = 1, · · · , (d − 1). Those in tree 1 are unconditional, and all others are

conditional.

It is not essential that all the bivariate copulas involved belong to the same

family. This feature is exactly what we are searching for, since our objective is

to construct and estimate a multivariate distribution that best represents the data

at hand, which might be comprised by completely different margins (symmetric,

asymmetric, with different dynamic structures, and so on) and, more importantly,

could be pair-wise joined by more complex dependence structures possessing linear

and/or non-linear forms of dependence, including tail dependence, or, otherwise,

could be joined independently.

For example, one may combine the following types of (bivariate) copulas: Gaus-

sian (no tail dependence, elliptical); t-student (equal lower and upper tail depen-

dence, elliptical); Clayton (lower tail dependence, Archimedean); Gumbel (upper

tail dependence, Archimedean/EV); Tawn (non-exchangeable with different up-

per and lower tail dependence); BB7 (different lower and upper tail dependence,

Archimedean), and others. See Joe (1997) for a copula catalogue. We have consid-

ered 12 families.

Given a d-dimensional data set and a a set of parametric copula families, equation

(6) suggests that estimation may be carried on in two steps: first the univariate fits,

and then the copula fit. When both steps apply the maximum likelihood method,

the methodology is refereed to as the IFM method (Joe, 1997). This method yields

consistent and efficient estimates. In the case of pair-copulas, maximum likelihood

estimators depend on (i) the choice of factorization and (ii) the choice of pair-copula

families. Algorithm implementation is straightforward. For smaller dimensions, we

may compute the log-likelihood of all possible decompositions. For d >= 5 a specific

decomposition may be chosen. One possibility is to look for the pairs of variables

having the stronger tail dependence, and let those be in Tree 1 and determine the

decomposition to estimate. To this end, a t-copula may be fitted to all pairs and

pairs would be ranked according to the smallest number of degrees of freedom.

3.2 Estimation of marginal and joint models

The basic statistics in Table (1) suggest to unconditionally model the univariate

series of log-realized volatilities using an asymmetric distribution also able to ac-
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commodate the observed high kurtosis. We chose the skew-t density of Hansen

(1994), which has a closed form and for which the implementation of the maximum

likelihood method is an easy task because there are only 4 parameters to estimate

(µ, λ, ν, σ). The parameter µ and σ equal, respectively, to the population mean

and standard deviation, which exists if ν > 2. When the skewness parameter λ is

zero the symmetric case is recovered.

Figure (1) shows the good skew-t fit to the log-realized volatility of PETR4. In

fact, the Kolmogorov test accepted the good quality of all seven skew-t fits which

provided highly significant parameters estimates. We recall that under the true

distribution, U = Fi(Xi) is uniformly distributed on [0, 1], but this may not be true

under the estimated marginal distribution, U = F̂i(Xi). When applying the IFM

method it is crucial that the estimated marginal distributions are indistinguishable

from the true marginal distributions. Marginal fits should be carefully checked since

a poor fit will result in any copula model being mis-specified. Evaluation whether

the transformed series are i.i.d. may be accomplished by visual assessment using the

autocorrelation function. Diebold et al. (1998) suggest that the autocorrelations

should be computed and inspected for the first four moments. The hypothesis that

the transformed series are standard uniform may be tested via the Kolmogorov-

Smirnov test. All these tools were used to assess the good quality of transformed

series.

Among some well documented empirical facts on the distribution of realized

volatilities (see Andersen, Bollerslev, Diebold, and Labys (2000), (2001) and (2003)),

one states that although the distributions of realized volatilities are clearly asym-

metric, the distributions of the logarithms of realized volatilities are approximately

Gaussian. This was not the case for the stocks analyzed, as confirmed by the uni-

variate fits and illustrated in Figure (1). In addition, all stocks daily returns stan-

dardized by their realized volatilities failed to accept the null hypothesis of both the

Shapiro-Wilk and Jarque Bera tests at the 1% level, contradicting another stylized

fact.

We now choose a particular pair-copula decomposition to estimate. The support

set for the empirical pair-copula are the pseudo standard uniform values obtained

from the skew-t fits. To help choosing the leading pairs in Tree 1 of the D-vine,

we inspected the scatter plots of pairs of the transformed data, computed their

linear correlation coefficients, and fitted simple appropriate bivariate copulas such
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Figure 1: Skew-t fit to the log-realized volatility of PETR4.

as the Gumbel and the t-copula, looking for those pairs showing higher correlations,

stronger tail dependence and smaller degrees of freedom. These numbers along

with the information gathered from the plots, indicated the D-vine decomposition

depicted in Figure (2). In this Figure, the notations “I”, “B”, “P”, “V”, “C”, “U”,

and “T”, refer to the log-realized volatilities of stocks ITAU4, BBDC4, PETR4,

VALE5, CSNA3, USIM5, and TNLP4, respectively. For the sake of simplicity, we

write I & P |B, instead of I|B & P|B, for example.

Estimation of the composing bivariate copulas was carried on by maximum like-

lihood and best fits were chosen based on the AIC values. Most important copulas

were considered (Gaussian, Frank, Kimeldorf Sampson (Clayton), Gumbel, Galam-

bos, Husler Reiss, Tawn, BB1, BB2, BB3, BB4, BB5, BB6, BB7, Normal Mixture,

Joe, t-student, and Survival Clayton). Figure (2) also shows the final fits and cor-

responding values of the lower and upper tail dependence coefficients (λL, λU ). All

parameters estimates were highly significant.

All copulas in Tree 1 have positive upper tail dependence coefficients and, ac-

cording to Joe, Li, and Nikoloulopoulos (2008), this is a sufficient condition for the

fitted D-vine to possess multivariate upper tail dependence. The large values of the
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Figure 2: Pair-copulas decomposition for the 7 series of log-realized volatilities. Figure shows

the copula families fitted along with the values of the lower and upper tail dependence coefficients

(λL, λU ).

I & B B & P P & V V & C C & U U & T

tawn copula tawn copula tawn copula tawn copula tawn copula gumbel copula

(0.000,0.555) (0.000,0.541) (0.000,0.505) (0.000,0.446) (0.000,0.440) (0.000,0.339)

I & P | B B & V | P P & C | V V & U | C C & T | U

t17 copula t8 copula t7 copula tawn copula tawn copula

(0.006,0.006) (0.057,0.057) (0.063,0.063) (0.000,0.147) (0.000,0.230)

I & V | B P B & C | P V P & P | V C V & T | C U

t15 copula tawn copula gumbel copula t22 copula

(0.003,0.003) (0.000,0.158) (0.000,0.164) (0.002,0.002)

I & C | B P V B & P | P V C P & T | V C U

t10 copula gumbel copula t28 copula

(0.010,0.010) (0.000,0.156) (0.001,0.001)

I & P | B P V C B & T | P V C U

t19 copula frank copula

(0.0003,0.0003) (0.000,0.000)

I & T | B P V C U

clayton copula

(0.058,0.000)

λU coefficients in Tree 1 tell us that high realized volatilities in the Brazilian stock

market tend to occur simultaneously. Although all values of the λL coefficients in

Tree 1 are approximately zero, the Tawn fit was necessary to model the asymmetry

of the data, a feature captured only by a non-exchangeable copula (note that the

second best fit was based on a Gumbel copula).

It is clear now that such an accurate and tailored modeling of the data depen-

dence structure, in particular its complex pattern of dependence in the tails and

the non-exchangeable characteristic, would not be possible using any multivariate

family of distribution or even a d-dimensional copula.

4 Contagion measures

4.1 Contagion in the Brazilian stock market

The multivariate model fitted to the log-realized volatilities of Brazilian stocks may

now be used to help understanding co-movements and contagion in this stock mar-
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ket. In the bivariate case, asymmetric contagion may be assessed by computing

and comparing the probabilities Pr
{
Ui > u |Uj > v

}
and Pr

{
Uj > u |Ui > v

}
, for

meaningful u and v values. In the case the first probability is larger than the second

one, we may say that volatility of stock i is more influenced by volatility of stock j

than the other way around.

We propose to compute similar conditional probabilities based on fitted D-vines

and for some (d − 1)-dimensional conditioning set C. We consider

Pr
{
Ui > u | C > v−i

}
=

Pr
{
Ui > u, C > v−i

}

Pr
{
C > v−i

} (9)

where Ui, i = 1, · · · , d, d = 7, represents the uniform(0, 1) transformed log-realized

volatility of stock i, C represents the set of the remaining six standard uniform

transformed log-realized volatilities, and v−i represents a value in [0, 1]d−1. We

compute these probabilities by simulating from the fitted pair-copula.

Figure 3: Conditional probabilities (9) measuring contagion for varying levels v
−i of the condi-

tioning set. Plot on the left hand side has u fixed equal to 0.95. Plot on the right hand side has i

fixed to be the realized volatility of BBDC4, and u varying in {0.80, 0.90, 0.95, 0.99}.

Figure 3 shows the conditional probabilities (9) for fixed u and for increasing

values for v−i, varying from (0.80, · · · , 0.80) to (0.99, · · · , 0.99). Four values are
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chosen for u: 0.80, 0.90, 0.95, 0.99. The plot on the left hand side has u fixed equal to

0.95 for all seven realized volatilities. We observe that the stock BBDC4 (pink line)

seems to be the one whose volatility is most influenced by the others (followed by

PETR4, black line). The spill-overs observed for the seven log-realized volatilities are

very strong. Note that under independence the (unconditional) probability equals

to 0.05 (1 − u). Plot on the right hand side has i fixed to be the realized volatility

of BBDC4, and u varying in {0.80, 0.90, 0.95, 0.99}. The solid dot enhances the

situation where u and elements of v−i coincide.

The increasing feature of Figure 3, apart from the high variability observed as

all v−i values approach 1, reflects the positive interdependence among the Brazilian

stocks’ volatilities. As long as most important stocks experiment high turbulence,

each one in turn also increase its conditional probability to be extreme. In other

words, the results indicate that one may expect high volatility from any Brazilian

liquid stock whenever the set of remaining liquid stocks present high variability. In

summary, whatever is causing the phenomenon, clusters of high volatility seems to

occur simultaneously for Brazilian liquid stocks.

Alternatively, one may be interested in computing the conditional probability

Pr
{
C > v−i | Ui > u

}
=

Pr
{
Ui > u, C > v−i

}

Pr{Ui > u
} , (10)

which would indicate the influence of each realized volatility on the behavior of the

remaining set. Actually, this leads to the concept of multivariate tail dependence

coefficient if we let (v−i, u) = (u, · · · , u, u) and u → 1.

The tail dependence coefficient is an asymptotic measure that reveals the strength

of dependence at extreme levels. It is very important for predicting the degree of

association among markets, or stocks, or volatilities, during crisis. Similarly to the

definition in the bivariate case, the multivariate upper tail dependence coefficient

ΛU (the definition of the lower tail dependence coefficient ΛL is analogous) is the

conditional tail probability that components go to extreme values at the same rate:

ΛU = lim
u→1

Pr
{
(U1, · · · , Ui−1, Ui+1, · · · , Ud) > (u, · · · , u) | Ui > u

}
. (11)

Therefore, as u → 1, it does not matter on which variable Ui we are conditioning, in

the limit the probability converges to a fixed value ∈ [0, 1] (if the limit exists). If this

limit equals 0 then we say that the set of d variables are asymptotically independent.
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Figure 4: Multivariate upper tail dependence coefficient: conditional probability (11).

This measure have been considered by other authors. Joe, Li, and Nikoloulopou-

los (2008) developed various multivariate tail dependence functions and determined

tail dependence properties for some specific vine copulas. The authors analyze how

the tail dependence of a vine copula is built up from that of lower-dimensional mar-

gins and how it is affected by the bivariate tail dependence of basic linking copulas.

According to Joe, Li, and Nikoloulopoulos (2008) the theoretical development of

tail dependence functions for pair-copulas is still an open issue. Estimation is also

difficult, as it is any asymptotic measure, see Klüppelberg, Kuhn and Peng, 2008.

The probability in (11) is actually the d-dimensional copula built up by the

bivariate copulas. As we already commented, for the seven Brazilian log-realized

volatilities, the fitted vine copula is tail dependent since all the bivariate baseline

copulas are tail dependent.

We obtain the limit (11) for the 7 Brazilian realized volatilities using simula-

tions. Of course, as u approaches 1 the variability increases. It is very difficult

to empirically estimate an asymptotic measure, and to get a feeling where to stop

when going up to the extreme quantiles, we have simulated this probability in the

bivariate case for copulas for which we do know the true theoretical value, actually,
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Figure 5: Multivariate upper tail dependence coefficient for dimensions 2 up to 7.

for the copulas in Tree 1 (see one example in Figure 5). The simulations indicated

that beyond u = 0.96 the estimation error is very large.

Figure 4 shows (11) computed by conditioning in each Ui, i = 1, 2, · · · , 7. All

lines practically coincide, and it shows that although all upper tail dependence

coefficients in Tree 1 are very high, the 7-dimensional upper tail dependence of the

vine copula may be low. Here it seems to converge to a value around 0.061. Similar

situations are usually referred to as “the curse of dimensionality”, and we illustrate

it in Figure 5. In this figure we show the convergence of the upper tail dependence

coefficient for varying vine copulas with increasing dimensionality, that is, from 2

up to 7 (we use the order defined in Figure 2). Note that the limiting simulated

value in the case of the bivariate copula linking “I and B” (first pair in Tree 1) it

is very close to the maximum likelihood estimate 0.555 given in Figure 2.

4.2 Contagion in Emerging markets

At this time point, with globalization effects driving markets’ volatilities all over

the world, it becomes of great interest to assess volatilities’ co-movements and con-

tagion in a more general scenario. Following a referee’s suggestion, in this sub-
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section we complement the analysis made for the Brazilian intra-day stocks using

data from 7 emerging markets. Daily prices for 7 indexes were obtained from the

www.msci.com site: the MXRU Index (Russia), MXIN Index (India), MXZA In-

dex (South Africa), MXMX Index (Mexico), MXID Index (Indonesia), MXCN Index

(China), and MXBR Index (Brazil). Data cover the period from 01/02/2006 through

10/05/2011 and length of contemporaneous series is 1275.

Figure 6: Conditional probabilities (9) measuring contagion for varying levels v
−i of the condi-

tioning set. Plot on the left hand side has u fixed equal to 0.95. Plot on the right hand side has i

fixed to be the realized volatility of Brazil, and u varying in {0.80, 0.90, 0.95, 0.99}.

As suggested by the referee, we use the absolute returns as a naive measure

of volatility. Due to the strictly decreasing behavior and strong right asymmetry

shown by the corresponding empirical densities, the marginal distributions were

estimated for the logarithm of the absolute returns. As before, excellent skew-t fits

were obtained for all series and used to transform the data. The same inference

steps and statistical tests carried on for the previous illustration were applied here.

The order of variables in the leading Tree 1 is MXIN, MXCN, MXID, MXZA,

MXBR, MXMX, MXRU (India, China, Indonesia, South Africa, Brazil, Mexico,

and Russia). This particular choice resulted in the highest correlations for the

unconditional copulas. The copula families providing the best fits were Gumbel
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(13), BB7 (3), Tawn (3), and t-student (2). All copulas fitted in Tree 1 possess

upper tail dependence. The asymmetric Tawn copula links the volatilities of Mexico

and Russia, and the other 5 unconditional fits were based on the Gumbel copula.

Figure 7: Conditional probabilities (9) measuring contagion : The realized volatility of Mexico

(left) and Indonesia (right) and u varying in {0.80, 0.90, 0.95, 0.99}, and for varying levels v
−i of

the conditioning set.

Likewise Figure 3, Figure 6 shows the conditional probabilities (9) for fixed u

and for v−i varying from 0.80 to 0.99 for each variable. We observe that the Latin

America indexes are those seeming to be most influenced by the others. As expected,

contagion is very strong. Plot on the right hand side has i fixed to be the volatility

of Brazil, and u varying in {0.80, 0.90, 0.95, 0.99}. This picture when i represents

the volatility of Mexico and Indonesia is provided in Figure 7.

All plots confirm the positive interdependence among the Emerging markets’

volatilities. Contagion is evident at all levels. It is interesting to note that although

all emerging markets move together, we observe stronger links between Brazil and

Mexico, and note that Indonesia is the one suffering less influence by the others.

The seven Emerging markets log-absolute returns are tail dependent since all the

bivariate baseline copulas are tail dependent. The value of the multivariate upper

tail dependence coefficient ΛU was obtained by simulations and converged to a value
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around 0.04.

5 Concluding remarks

We have characterized the interdependencies and contagion among volatilities in

Emerging markets. Series of realized volatility were obtained from high-frequency

intraday stock prices. The realized (integrated) volatility being the square root of

the sum of squared high frequency returns over a certain period is considered an

observable variable which evolves stochastically over the trading day. It is not equal

to the volatility estimated through discrete-time GARCH models which only utilizes

the past daily return observations, and it is a consistent and efficient model-free

estimator of the daily return variability.

In a first exercise, the realized volatilities from the seven most liquid stocks in the

Brazilian equity market were obtained from high-frequency intraday stock prices.

Some particular characteristics of the Brazilian market required special treatment

of the high frequency data before constructing the series of realized volatilities. We

found that the marginal behavior of the series did not confirm some well known styl-

ized facts. For instance, the distributions of the logarithms of the realized volatilities

were not approximately Gaussian. The main factor contradicting the normality hy-

pothesis was the right asymmetry. Actually, very good marginal fits based on the

asymmetric t-distribution were obtained for all seven series. In addition, the stocks

daily returns standardized by their realized volatilities failed to accept the normality

hypothesis at the 1% level, another empirical fact described in the literature. An

observed characteristic shared by other data sets was the presence of short and long

range dynamics in the series of realized volatilities.

The multivariate modeling of the realized volatilities was based on the pair-

copulas construction. The flexibility of the process was outstanding. It allowed for

completely different marginal distributions joined by a 7-dimensional copula built up

by completely different bivariate copulas possessing complex dependence structures,

asymmetry and non-exchangeability, able to model linear and/or non-linear forms of

dependence, as well as upper and lower tail dependence. We note that asymmetries

in information transmission within the Brazilian market, and more generally among

emerging markets, are likely to induce asymmetries in the dependence of stock’s

variances, and this type of behavior can only be captured by exchangeable copulas.
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The methodology was then applied in a more general context, where contagion

among emerging markets was investigated. Volatilities of indexes from seven emerg-

ing markets were analyzed confirming the high level of interdependencies among the

corresponding markets.

The estimated pair-copula model provided measures of shocks transmission and

contagion among volatilities. We found that high volatility may be expected from

any emerging index or liquid stock whenever the set of remaining indexes present

high variability. In summary, whatever is the cause of the phenomenon, clusters of

high volatility seems to occur simultaneously within the emerging markets. Using

simulations we computed the multivariate upper tail dependence coefficient associ-

ated with the fitted vine. As expected, all upper tail dependence coefficients between

pairs of volatilities were very high, and the 7-dimensional upper tail dependence of

the vine copula converged to a positive lower value.

Many other applications may follow such a tailored unconditional fit, and we

expect to see them in future papers.
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