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ABESTRACT

Simple random sampling, the most commonly used sampling
procedure in simzlation, can be vigwed as a double souwrce of
randomnessd one related to the set of input values and the other
to their random SEqUENCE .«

Following this approach and using factorial experiments,
the contribution of both sources of variation was studied Ffor
three different simulation problems®? a PERT network, a gueusing
zsystem and an inventory sustem.

The resultes showed that part of the set gffect
contribution c¢an udsually be isolated and explained in terms of a
regression model, named the linear response model, which takes
sample deviations into account.

Apart From providing a new approach for interpreting the
variability  of simulation estimates, this study browght anather
result. It contributed to the proposal of 2 new and more
gfficient sampling procedure in simtlation: descriptive sampling.



INTRODUCTION

In simulation, simple random sampling is the standard
sampling procedure used to represent the stochastic behaviour of
the input random variables. It is used in order to achieve two
different resultss

- to generate sample values in correct proportion to the
represented distribution,

-t reproduce a pattern of randomly seauenced values.

A5 a consequence of the use of sinple random sampling, it
follows that simalation sstimates will vary between different
Funs. Thus, simalation is an imprecise procedure,

One approach for improving the precision of simulation
estimates is through the use of variance reduction techniaues
{i,2,3). With proper use aof such techniques, it is possible to
produce more precise estimates without changing the run length.

However, it is not always obvious how the many different
variance reduction techniqgues do theivr jobp therefore, the choice
of the most appropriate approsch for a particular problem can be
a rather difficult task.

The parpose O0F the present  work is to evaluate the
caontribution of each of the two sources of variabhility associated
with a random sampling processs

-« the random selection of a set of values,
- the random selection of their permutation.

Following an experimental approach similar to the one
already used by Ehrenfeld and Ben-Tuvia (4);, a common feature was
observed in maost of the simulation studies: the individual
contribution of the variability due toa the set of values in use.

Moreover, it was possible to identify s common pattern of
variability in  random sampling estimates, degscribed by =a
regression moadel, named the Linear Responsgse Model.

Tl L. b ear Response Model emxplains the individual
contribution of the segt effect as a result of the observed
deviat ions between input sample moments and the corresponding

theoretical values.

Onece the sources of variation of sinulation estimates are
known, two courses of action can be followsd:



a more efficient use of the variance reduction technigues,

the removal of one source of variation, the set effect,
which is, in fact, unnecessary in the simulation contewt.
This can be done with the use of a newly proposed sampling
procedure, named descriptive sampling (%,8).



THE VARIABILITY OF SIMULATION ESTIMATES

Without lass of generality, consider % simple simglation
problem with only one output random variable For which the
distribution parameters :

@ r J :iyunng!{
J

are to be estimated. Consider too, for simplicity, that there is
only one inpuat random varisblie, X .

As Far as the present work s concerned, each simulation run
will produce one estimate for each of the unknown parameters. As
& consequence, a8 simalation run may be seen as the numerical
gvaluation of a complex function defined by

Y = F (X, ... s X )

J J i3 NN
where

Y is an estimator for the unknown parameter,
J

F is the simulation function, wsually defined by
Jd means of a computer program,

X s i = 1,0uaydN ;. is the input sample for variable X.

Adapting the mean square error criterion and assuming that
estimate Y is unbiased, it follows that Var (Y) should be kept
to a minimum.

One obvious way to reduce this variance is to increase NN,
the run length. #Another approach is to use a suitable variance
reduct jon technigque in order to produce a1 lower variance
est imator without increasing the sampling effort.

Up to now, the choice of the most appropriate variance
reduction technique for a specitic simulation problem has been
nearly guesswork.

However , after studying the wvariability of simulation
estimates, it will be possible to evaluate, for each problem, the
amount of variance that can be reduced by controlling the sources
of variability and, as a result, to make a more appropriate
choice of the variance reduction technigues for each case.

Another important contribution from the study of the sources

of wvariability of sinulation estimates was to show that it is
possible to eliminate one of them and, as =& consequence, to
produce  lower variance estimates. This improvement can  be



achieved if a new sampling procedure, called descriptive
sampling, is used instead of simple random sampling.



A MODEL FOR THE VARIABILITY OF SBIMULATION ESTIMATES

As  far as simulation is concerned, simple random sampling
may be seen as a doublie source of randomness: one related to the
sampled set of values and the other to their random ssquence.

For example, consider the simple random sample
o= ¢ L3, W48, 25, W83, .67 )

From a standard uniform distribution. S8ample U may be defined by
the set of ordered values,

SET = ( .87, .i5, .2i, .83, .99 2

and their random permutation, corresponding to the order which
those values oceur in the sample.

Thus, whengver a sinple random sasmple is generated in =a
simglation, both features - set of values and their sequence -
are randomly selected.

A simulation estimate, as a function of the input samples,
it @aleo determined by both a set of values and their segquence.
Therefore, if simple random sampling is wused, =a simulation
25t imate will be affected by two =waRd only two sources of
variabilitysz

~ The set of input sample values, and
- Their Sequence.
precording to this approach, the variability of simulation

est imates may be described by the following variance components
models

& P = S
‘O' 5 [0} b O 4+ O -
Y SET SEG SETHEEG
where,
2
c ! is the total variance for estimate Y.
B 4
E
o ' it the wvariance component of Y due only to the
CO8ET variability of the set of input values, thus excluding
the sequence effect.
2
o H is the wvariance component of Y due only tg the

SEQ variability of the sequence of input wvalues, thus
excluding the set effect.
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g ] is  the wvariance component of Y gue to the

SETHEEG interaction between bhoth effects which cannot  be
explaingd by either of them in isalation.

It is worth noticing that no residunl error is present in
the =above model. This happens because mn simulation est imate i
fuully determined by a set of values and their segquence.

The central idea behind the use of this variance components
model Ffor the study of the wvariability of random sampling
simulation estimates is that, Ffor large input samples, some
global features like their mean, standard deviation Al
autocorrelations should have =& preponderant effect on the
resulting estimates over the individunl values.

To sevaluate the contribution of each variasnce component to
the total wvariance of ¥, a factorial euperiment was designed,
varying hoth factors.

For each of three simple simulation problems
= a PERT network, a M/M/I queue and an inventory suystem -
N different input sample values were randomly taken and stored
SET
in ascending ordery also, for each problem, N random
SEG
permutat tong were generated, thus defining different sequences.

For each set  of input values and for each sequence, a
gsimilation run was carried out, giving a total of N M
GET 5EQ
runs for each studied problem. Each run, corresponding to =@
simple random sampling simulation, produced an estimate which was
used as data for a3 two—way analysis of variance model in order to
est imate the desired variance components.



EMPIRICAL RESULTS

PERT NETWORK

The first experiment Lo be reported concerns a simple PERT
network already studied by Kieindorfer (7)) and Sculli (8. As
shown in figure 1, this network has eight activities, with
independent and identically distributed durations {(d) following a
discrete uniform distribution defined by

—‘3
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Figure 4. The simulated PERT network

Each run was defined by a set of N = 50 observations for
the total project duration, DT, giving a pair of estimates
associated with this response variable distributiont

— M
Dr = I DY 7 N
) i
andd
N . /8
8 = 7 [(DT - D7) /7 (N — 1)
DY i=1 i '
For this experiment, N m 4@ different sets and N i@
SET SEG
different sgEqUBnces were sampled, giving = total of 160

gsimulation runs. Table i1 presents the ANOVA table for estimate

DT, while Table 2 presents the ANOVA table for §

DT
Table 1. a4MOVA Table Ffor estimate DT
Source of Bum of Degrees Mean F
Var iation Bquares of fresdom Square Valuye
Between sets 2.994 5 »333 i2.95
Between sequences . 387 o wBAZ 1.467
Unexplained 2.081 8i @24 -
Total S5.442 o9 W55
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Table 2. ANOVA Table For estimate 5

BT
Sourece of Sum of Degireess Mean F
Variation Soquares of freedom Square Value
Between sets - 387 @ - 843 1.32
Between soguences it 9 041 i .44
Urnexplained 2uaidé g1 828 -
Total . 3.027 99 =931
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For this problem, the results showed that the set_gffect had
a strong individual influence over the variability of DT, but not
for § » It a’also became clear that the contribution of the

oY
sequence effect could not be isolated.

After prooling the sum of squares due to different sequences
with that due to unexplained variation, the variance components
and their relative contribution for DT were estimated and
displayed in Table 3.

Table 3. Variance compopents and their relative contribution
for estimate DT.

ae moen coan cnre are mee cect man paar meih e dee mng atpt $49F o= mean g HPER benh Shes Ame MIR{ FIM SRS et $A5F S BHS Fes Map PP SR HRTT TTPT TR FYS Sti STTR T TS M s TS R Arb 420 Se M THa TS TR 454 HE EE TEE s2e BB R R

Source of Absolute Relative
variation Contribution Contribution

Het effect D304 53 *

Sequence effect - -
Interaction effect L g 47 %

Total « O5EG ie9 %

Looking at the results, it can be said that, when using

simple randaom sampling, 33 % of the total variability of estinate
DT is only due to the set variationy the remaining 47 X is dug to
the interaction between both effects.

GUEUETING PROBLEM

The second simgliation problem studied concerned @ M/MAT
gqueune with two estimates produced FTor each runt

SIZE 1 the mean quewne size, and

i



5 i the standard deviation for the queus size.
SIZE

Table 4 presents the relative contribution of gach wvariance
component  for estimate BIZE for 6 different traffic intensity
values., Table T presents the corresponding values for the
eat imate 5 n

SIZE

Table 4. Relative contribution of each source aof variation
for &6 different M/M/1 agueue sinulat ions For
est imate SIZE.
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Traffic  ——e—— Relative contribubtion = ———
intensity Set Sequentces Interaction
215 PhH.2 2.4 .2
38 ga6 -4 ‘ iZ.4a 17/

- 45 8.8 20,5 Q.7
5@ 69.14 29.5 )
=75 &2.9 C3R.5 4
.78 57 .0 39.8 R

Table . Relative contribution of each source of variation
for & different MM/ gqueue simulations for
gt imate ©

S1ZE.
Traffic e Relative contribution =—-—rem—m—————
intensity Set Sequence - Interaction
LIi5 76.9 18.5 4.
- 3@ . 0.0 47 .8 2.
. 45 47 .3 %1.0 1.7
.l . 45 .9 Hh.b 204
w7 33.3 B9 .8 6.9
« PO 32.6 LN ' 2.6
Concerning the results from Tables 4 and 5, it is warth
noting that :
a) The individual contribution of the set ¢ffect was always
high for both estimates, although higher for SIZE.
b)Y The individual contribution of the sequence effeoct was also
high for both estimates, but higher for § “
SIZE

) For both responses, the relative contribution of the set



gffect decreases with the traffic intensity, unlike the
BEGUSNnGe effect contribution which increases with the
traffic intensity.

d) Far both responses, the amount of udnexplained variation
increases with the traffic intensituy.

In summary, it was possible to edplain a substantial amount
of the variability associated with the two MM/ gueues estimates,
in terms of the individual effects contribution. Once known this
property, it will be possible to make better use of wvariance
reduct ion technigues.

INMENTORY SYSTEM

The third set of results concerns an inventory sustem, a
problem already studied by Tgnall (2) and Nawlor and Hunter (19).
It consists of a reorder point inventory system, with a fixed
order  quantity and a periodic review {(dailydy the demand is
probabhilistic, while the lead time i constant.

Costs associated with storage, placing an order and shortage
are computed daily. At the end of each period run of N = 1909
days, the mean and standard deviation of the daily cost were
computed.

Three different system configurations, defined by the
ererating paramsters

& , the Figed order quantity, @
ROP , the reorder point,

were studied, producing the results shown in Table é.

Table 4. Relative contribution of sach source of variation
for 3 different inventory problem configurations.
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Est imate Relative contribution (%)
System configuration S8ET SEQUENCE INTERAMNCTEON
AY ROP = 5@ , @ = 158 CosT 49 - 4
g A3 iy
CO8T
BY ROP = 75 ., @ = 206 CO8T 29 - 74
8 a5 &5
£OsT
) ROP = 40 , @ = 156 COsT 4% -_ bt
& an &7
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Here also, the set effect had an important individual
contribution to the variance of simple random sampling eat imates,
while the individual sequence effect contribution was nob
statistically distinguished.

it



UNDERBTANDING THE SET EFFECT VARIABILITY

Althouah only three simulation problems were studied, the
individual contribution of the set effect to  the total
variability was shown to be a common Teature in simulation
studies. On the other hand, the seguence effect individual
contribution was shown to be highly problem dependent and not  so
often detectable.

The commonly observed set effect contribution does suggest
that simulation estimates could follow & standard pattern of
variation depending upon some global set fesntures like the input
sample mean and standard deviation.

Fallaowing this idea, it was possible to explain most of the
set effect confribution by means of & regression model, named the
Linear Response Model, or simply the LRM.

The LRM assumes the existence of a relationship hetween the
input  sample moments, wusually the mean and standard deviation,
and the corresponding estimates from each simulation ren. In the
simplest case with only one sampled input variable, the LRM would
have the form

Y = @ 4 @a{X -~ My + bHhAB - o) + g

J J - X X X BN |

where,

Y , is the simulation estimate for the unknown parameter @ ,

J J
X and are, respectively, the sample mean and the
distributiin mean for variable X.

Sx and GX are, respectively, the sample standard

deviat ion and the distribution standard deviation ¥for
variable X.

Each simulation run, producing one estimate For each
parameter under study, provides an observation +or the LRM
regression  equation. By conducting a set of N independent runs
hased on the use of simple random sampling, the regression
parameters can be gst imated, in particular the R2 coefficient
measuring the amount of variability on Y explained iy  the
ohserved variability on the input sample moments.

For & subset of the three simulation problems already
studied, Table 7 presents the R2 coefficient Ffrom the LRM
analusis  together with the corresponding set effect relative
contribution previously estimated. A close agreement between the

iz



two values is clear.

Table 7 . Amount of variability explained by the LEM and the
corresponding set effect relative contribution.
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Problem Eatinate Rz . St effect
(Z contribution (%)
PERT network DT w7 53
S t}l e
DT
M/M/T Queue SIZE 62 &3
g 29 23
SIZE
Inventory System CO8T 48 49
S 34 L3
£LOsT
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The results From Table 7 allow us to affirm that the set
effect variabiliby s usually explained by  the obzerved
deviations Dbetwsen the input sample mean and standard deviation
and the corresponding theoretical values.

Therefore, an easier way of evaluating the set effect

contribut ion is to carry out a group of independent random
sampling simulation runs and, after recording the estimates and
the input samples means and standard deviations, to perform =

regression analysis to estimate the RZ coefficient.

As a final remark concerning the LRM, it is worth noting the
similarities between this model and the use of control variates
€3, @ variance reduction technique. There is, however, an
important difference between the two approachest

The LRM, unlike contrel variates, assumes n caussl
relationship hetween the input sample parameters and the
corresponding estimates. Therefore, the LRM iz a mors informative
and useful framework for the analysis and interpretation of
simulation estimates.

The main idea behind the use of the LRM is that, instead of
the specified model, a simulation estimate refers to a #lightly
different system configuration, defined not by the already known
moments for the input distributions, but by the observed sample
moments. ‘

As such devigtions are expected to be of small magnitude, =

linear approximation is usually enough to explain their effect
over the corresponding estimates, as stated in the LRM.

13



CONCLUSIONS

The results presented in this study point to twoe different
courses OoF action to follow in ordegr to improve the precision of
simalation estimatess

{1y The +First suggested approach concerns a better use of
the variance reduction technigues. Now, since more is knawn about
the souwrces of variability of simulation estimates, the role of
gach technigue shpuld become easier to understand, as for
grample, in the case of antithetic variates ( 9 ). As =a
consequence, & more efficient use of such technigques s now
possible. In such a case, the use of control variates, following
the LEM structure, is strongly recommended.

(2) The second suggested approach s n less traditional one.
Here, instead of reducing the variability of each source of
variation, we are suggesting that, whenever the input sample size
is known in advance, the set effect variability can be completely
eliminated, without introducing any significant bias into the
egatimatec.

fis will be presentfed in a forthcoming work, the only source
of randomness that it is really necessary to includ in =&
similation study concerns the sequence effect variability, while
the set effect can be excluded.

& Ffull control over the set effect wvariability can be
achieved through the use of descriptive sampling instead of
simple random sampling in simulation. Descriptive sampling is =
method based on a deterministic selection of the st of isput
values in order to fit, =as closely as possible, the desired
sampled distribution. Their sequence, -however, is 1eft to vary
and is defined by a random permutation of the set values,

Uaing descriptive sampling, the variability of simulation
¢st imates will be reduced to onlty  the SEQUENCE effect
coantribution. Any variance reduction technigue which controls the
set  effect variability will now become useless, unless it also
controls the sequence effect. as shown in Saliby % ),
antithetic wvariates are typically a case where only the set
gffect is controlled and, hence, has no more use i degscriptive
sampling is adopted as a standard procedure in simalation,

ig
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