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RESUMO

O presente trabalho teve por objetivo comparar o método de elementos finitos com o
método de diferenças finitas no cálculo numérico da pressão interna do mancal com ex-
centricidade e geometria cilíndrica, com uso da geometria para simplificação da equação
de Navier-Stokes. Fez-se o uso do software de código aberto ROSS para prover os resul-
tados com o método de diferenças finitas, enquanto que o método de elementos finitos foi
programado pelo autor. Como base para checagem de erro, fez-se o uso de soluções não
numéricas para o problema do mancal nos casos curto e longo, onde a equação de Navier-
Stokes torna-se ainda mais simples. Avaliou-se o número de iterações até conversão da
malha bem como o tempo de processamento de cada iteração. Os resultados indicaram
um desempenho levemente superior do método de diferenças finitas para o cenário e os
critérios avaliado e considerando diferentes configurações da malha.

Palavras-chave: cálculo numérico. máquinas rotativas. equação de Poisson.



ABSTRACT

The present work aimed to compare the finite-element method with the finite-difference
method in the numerical calculation of the internal pressure of the bearing with eccentric-
ity and cylindrical geometry, using its geometry to simplify the Navier-Stokes equation.
The open-source software ROSS was used to provide the results for the finite-difference
method, while the finite-element method was programmed by the author. As a basis for
error checking, non-numerical solutions were used for the bearing problem in short and
long cases, where the Navier-Stokes equation becomes even simpler. The number of itera-
tions until mesh conversion was evaluated, as well as the processing time of each iteration.
The results indicated a slightly superior performance of the finite-difference method for
the scenario and the evaluated criteria and considering different mesh configurations.

Keywords: numerical analysis. rotating machines. Poisson’s equation.
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1 INTRODUCTION

Rotating machines are largely applied in industry, such as in compressors, pumps
and turbines. A rotating machinery usually consists of disks, shafts, and bearings; all of
these elements can be of many shapes, types, and situated at various positions, according
to different needs and environments (ISHIDA; YAMAMOTO, 2012). One important
application, for example, is in crude oil extraction from under the sea, an important
component in Brazilian economy.

When designing such machinery, it is crucial to determine its dynamic behavior, usu-
ally referred as rotordynamics, in order to be sure that it will rotate stably, i.e., that its
vibration will not exceed safe and acceptable levels, which otherwise could cause excessive
wear on bearings or cause seals to fail. Likewise, the understanding of rotordynamics is
also important for the diagnosis of a fault when it occurs, as well as for repairing strategies
(FRISWELL et al., 2010).

The need for a better understanding of rotordynamics led to the creation of the Rotor-
dynamic Open Source Software project (ROSS) 1 (TIMBÓ et al., 2019), an open source
library written in Python for rotordynamic analysis. It is stored in the hosting platform
GitHub and, as an open source software, it is available for use, change, and distribution.

Among its applications, ROSS allows the construction of a bearing by giving its fluid,
and structure parameters. A bearing is the component of a machine composed of a
rotating cylinder, called rotor or journal, inside of a slightly larger hollow one, the stator or
bearing, with fluid filling the small gap between them. In the case of a horizontal bearing,
gravity works and the stator has contact with the rotor when it is still. When the rotor
is rotating, a high fluid pressure is created between the rotor and the stator, preventing
them to make contact. This high pressure makes the fluid film work equivalently as
mass-spring-damper system, causing the rotor to vibrate around an equilibrium position,
slightly misplaced from the stator center (ISHIDA; YAMAMOTO, 2012; FRISWELL et
al., 2010). Fig 1 shows a simple bearing.

Fig. 2 shows an axial cut of a bearing with its gap exaggerated, and eccentricity e. Ro

is the outer radius and Ri is the inner radius as well as the distance between the origin
and the gap. Such as in Pina and Carvalho (2006) and Queiroz (2018), differing from
Mota et al. (2020) and ROSS, the coordinate system will be attached to the center of the
inner cylinder in this work. As well as the center of the coordinate system, the position
θ = 0 varies in literature. In this work, θ will begin from the largest gap (dot AAA in Fig.
2)

After instantiating a bearing, ROSS calculates its pressure field using the finite-
difference method. With the pressure field, it is possible to calculate the velocity field of
1 <https://github.com/ross-rotordynamics/ross>

https://github.com/ross-rotordynamics/ross
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Figure 1 – A simple bearing

Source: (FOX; PRITCHARD; MCDONALD, 2011, p. 339)

the fluid inside the bearing, as well as the dynamic forces acting on it. The finite-difference
method is one among other possibilities of obtaining the pressure field.

1.1 OBJECTIVE

The objective of this work is to compare the use of the finite-element method with
the finite-difference method to solve the pressure field inside the bearing, analyzing both
approaches. A secondary objective is to implement and make it available a program that
provides this solution based on ROSS, in order to allow its future use and integration to
the platform. Although the finite-element method is used in other parts of the code, such
as in modeling a rotor with disks, shafts, and bearing elements, the bearing pressure field
is calculated using the finite-difference method.

1.2 LITERATURE REVIEW

The finite-element method became popular in solving problems in structural mechan-
ics, but it has been largely used for lubrication problems (FRÊNE et al., 1990). One of
the advantages of the finite-element method over the finite-difference method is that the
first handles irregularly shaped boundaries better, since such boundaries make it difficult
to place the grid points using finite difference techniques (BURDEN; FAIRES, 2010). Its
weakness, as compared to the finite-difference method, is being more laborious, leading
to computer codes of larger size (FRÊNE et al., 1990).

Ishida and Yamamoto (2012) explain the application of finite-element method to rotor
systems, stating that it "has been used successfully in the design and analysis of practical
rotors with a complicated and irregular shape" (p. 327). Friswell et al. (2010) highlight
that, even though the finite-element method is powerful, its derivation is simple and
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Figure 2 – Axial cut of a bearing with exaggerated gap

Adapted from: (MOTA; VALÉRIO; RANGEL, 2020)

logical. Because of that, "[it] has developed into a sophisticated method for the analysis
of stress, vibration, heat flow, and many other phenomena" (p. 124).

1.3 METHOD

The first step is to introduce the Navier-Stokes equations, that describe the motion of
fluids, and obtain their simplification that base the equations used. This allows the fluid
pressure to be calculated numerically using a 2-dimensional field. This step is achieved in
Chapter 2.

Following the simplification of the Navier-Stokes equations, both finite difference and
finite-element methods will be introduced and the later one will be implemented in Python
language, using ROSS as one of the packages. The code will be made available online.
For that purpose, GitHub will be used as hosting platform and the link will be provided
here. Chapter 3 covers the description of both numerical methods.

The numerical analysis is then introduced, detailing the results that will be collected
and the tests to be made. These tests will be run for both method, providing graphics
are extracted to allow comparison. Chapter 4 introduces the numerical analysis to be
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performed and shows the results obtained using both methods.
Finally, the results are discussed in Chapter 5 and a conclusion is presented, as well

as future work perspectives.
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2 FLUID THEORY

The difference between a fluid and a solid is intuitively known: whereas solids tend to
deform or bend, fluids tend to flow when interacted with. A more formal definition, as
described by Fox et al. (2011), is that a fluid is a substance that deforms continuously
under the application of a tangential stress, no matter how small the stress may be.

Given its properties, a fluid cannot be modeled the same way as a solid object. Its mass
is not continuously distributed in space and it will not move altogether and as predictably
as a solid would. Instead, fluid properties are treated as continuous above certain volumes,
in which the properties are observed to behave predictably. For example, the density of
air varies greatly for very small volumes, but becomes stable above 0.001 mm³ at STP
(Standard Temperature and Pressure). As a consequence of this continuum assumption,
each fluid property is assumed to have a defined value at every point in space above a
certain volume and conditions. Likewise, in order to describe its motion, a velocity field
is usually applied instead of describing each particle.

2.1 THE NAVIER-STOKES EQUATIONS

Following the continuum assumption, in a system, i.e, a fixed amount of matter, M ,

Msystem =

∫
M(system)

dm =

∫
V (system)

ρdV

where dm is a infinitesimal quantity of matter, ρ is the fluid’s density (mass per volume),
V is the volume and dV is large enough so that we can assume the fluid’s properties to
be the same for every dV .

In a similar manner, the linear momentum of the system,
#»

P , can be written as

#»

P system =

∫
M(system)

#»v dm =

∫
V (system)

#»v ρdV

where #»v is the velocity vector in the velocity field, obtained as a function of time, t, and
position, #»x , which is also a function of time. Therefore, #»v = #»v (t, #»x (t)).

In order to compute the acceleration, i.e, the derivative of the velocity, the chain rule
must be applied:

D #»v

Dt
=
∂ #»v

∂t
+
∂ #»v

∂ #»x

d #»x

dt

Considering that #»v is a three-dimensional vector, it can be written in terms of its three
scalar components. Denoting them in the x, y, and z directions as u, v, and w, respectively,
each of them being also a function of time and position, then #»v = uî + vĵ + wk̂. The
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same applies for #»x , which can be written in terms of the particle position in coordinates
x, y, and z, so #»x (t) = xp(t)̂i+ yp(t)ĵ + zp(t)k̂. Then:

D #»v

Dt
=
∂ #»v

∂t
+
∂ #»v

∂x

dxp
dt

+
∂ #»v

∂y

dyp
dt

+
∂ #»v

∂z

dzp
dt

Since
dxp
dt

= u,
dyp
dt

= v, and
dzp
dt

= w, then:

D #»v

Dt
=
∂ #»v

∂t
+
∂ #»v

∂x
u+

∂ #»v

∂y
v +

∂ #»v

∂z
w

Resorting to the gradient operator ∇, the above expression can be simplified as:

D #»v

Dt
=
∂ #»v

∂t
+ ( #»v · ∇) #»v (2.1)

As for the forces that act on a fluid particle, there are two types: body forces and
surface forces, which include normal and tangential (shear) forces (FOX; PRITCHARD;
MCDONALD, 2011). Normal stress σn and shear stress τn acting on the portion of surface
δAn, oriented by the normal vector n, are defined as:

σn = lim
δAn→0

δFn
δAn

τn = lim
δAn→0

δFn
δAn

Considering all possible directions of σn and τn in three mutually perpendicular planes,
the stress at any point is specified by nine components. Together they form the Cauchy
stress tensor:

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


The stresses can be grouped in the direction that they act to give rise to the surface

forces in that direction. Considering as body force dFB only the force of gravity ρ #»g , for
each direction the net force dF will be the sum of the force of gravity and the surface
force dFS in that direction. Respectively to x, y, and z:

dFx = dFBx + dFSx =

(
ρgx +

∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
dxdydz

dFy = dFBy + dFSy =

(
ρgy +

∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

)
dxdydz

dFz = dFBz + dFSz =

(
ρgz +

∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

)
dxdydz

Considering Newton’s second law,
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d
#»

F = dm
d #»v

dt

the differential equations of motion can be obtained by replacing the terms with the
expression for the linear momentum (Eq. 2.1) and the above expressions for forces acting
on a fluid:

d
#»

F = ρ

(
∂ #»v

∂t
+ ( #»v · ∇) #»v

)
(2.2)

Assuming a Newtonian fluid of viscosity µ and local pressure p, then the viscous stress
is directly proportional to the angular deformation rate - the rate of shearing strain. The
stresses may be expressed as follows:

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)

τyz = τzy = µ

(
∂w

∂y
+
∂v

∂z

)

τzx = τxz = µ

(
∂u

∂z
+
∂w

∂x

)

σxx = −p− 2

3
µ∇ · #»v + 2µ

∂u

∂x

σyy = −p− 2

3
µ∇ · #»v + 2µ

∂v

∂y

σzz = −p− 2

3
µ∇ · #»v + 2µ

∂w

∂z

If these expressions are introduced into the differential equations of motion (Eq. 2.2),
the resulting equations of motion are called Navier-Stokes equations. Such equations are
greatly simplified when applied to incompressible flow with constant viscosity, in which
case they are reduced to (FOX; PRITCHARD; MCDONALD, 2011):

ρ

(
∂ #»v

∂t
+ #»v · ∇ #»v

)
= ρ #»g −∇p+ µ∇2 #»v

2.2 FURTHER SIMPLIFYING THE NAVIER-STOKES EQUATIONS

The following manipulations of the Navier-Stokes equations, as well as the ones in
next section, have been extensively showed and applied in the fluid field involving flow in
the annular space between two cylinders. A few previous works of the kind include the
one by Queiroz (2018), by de Pina and Carvalho (2006), and by Andrade (2008). Still,
the manipulations were kept here for educational purposes.
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In this work, the system is assumed to have reached a steady state, after accelerating
for a while, meaning that, for the properties of the system, the partial derivative with

respect to time is equal to zero and remains so:
∂(∗)
∂t

= 0. Thus,
∂ #»v

∂t
= 0 and the

Navier-Stokes equation can be rewritten as:

ρ( #»v · ∇ #»v ) = ρ #»g −∇p+ µ∇2 #»v

For the purpose of simplifying the equation, no body forces will be considered, which
means the gravity force will be neglected. Then:

ρ( #»v · ∇ #»v ) = −∇p+ µ∇2 #»v

As the journal bearing system is a cylindrical one, it is possible to use a cylindrical
coordinates system and take advantage of the geometry by doing so. Rewriting the
Navier-Stokes equations in cylindrical coordinates, assuming that u, v, and w are now
the velocities in the axial-axis (z-axis), radial-axis (r-axis), and tangential-axis (θ-axis),
respectively, results in:

• on the z-axis:

ρ

(
u
∂u

∂z
+ v

∂u

∂r
+
w

r

∂u

∂θ

)
=

− ∂p

∂z
+ µ

(
1

r

∂

∂r

[
r
∂u

∂r

]
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2

) (2.3)

• on the r-axis:

ρ

(
u
∂v

∂z
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r

)
=

− ∂p

∂r
+ µ

(
∂

∂r

[
1

r

∂(rv)

∂r

]
+

1

r2

∂2v

∂θ2
− 2

r2

∂w

∂θ
+
∂2v

∂z2

) (2.4)

• on the θ-axis:

ρ

(
u
∂w

∂z
+ v

∂w

∂r
+
w

r

∂w

∂θ
+
vw

r

)
=

− 1

r

∂p

∂θ
+ µ

(
∂

∂r

[
1

r

∂(rw)

∂r

]
+

1

r2

∂2w

∂θ2
+

2

r2

∂v

∂θ
+
∂2w

∂z2

) (2.5)

By performing a dimensional analysis, a technique for gaining insight into many engi-
neering and scientific phenomena (FOX; PRITCHARD; MCDONALD, 2011), the follow-
ing equalities are considered, introducing a few dimensionless variables represented by a
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‘^’ above them: u = ûU , v = v̂U , w = ŵU , p = p̂P , z = ẑL, r = r̂F , rθ = r̂θL; being U
a typical velocity, P a typical pressure, L a typical length, F = Ro −Ri, with L, Ro, and
Ri of the same order of magnitude. Notice that F � L. Replacing these variables in Eq.

2.3, and rearranging it, using the fact that P =
µUL

F 2
, results in:

(
ρU2

L

)(
û
∂û

∂ẑ
+

(
L

F

)
v̂
∂û

∂r̂
+
ŵ

r̂

∂û

∂θ

)
=(

µU

F 2

)(
−∂p̂
∂ẑ

+ µ

(
1

r̂

∂

∂r̂

[
r̂
∂û

∂r̂

]
+

(
F 2

L2

)
1

r̂2

∂2û

∂θ2
+

(
F 2

L2

)
∂2û

∂ẑ2

)) (2.6)

By multiplying both sides of above equation by
L2

µU
, the Reynolds number appears on

the right side:

(
ρUL

µ

)(
û
∂û

∂ẑ
+

(
L

F

)
v̂
∂û

∂r̂
+
ŵ

r̂

∂û

∂θ

)
=(

L2

F 2

)(
−∂p̂
∂ẑ

+ µ

(
1

r̂

∂

∂r̂

[
r̂
∂û

∂r̂

]
+

(
F 2

L2

)
1

r̂2

∂2û

∂θ2
+

(
F 2

L2

)
∂2û

∂ẑ2

)) (2.7)

The Reynolds number, a dimensionless measure, usually denoted as Re, predicts with
a high degree of accuracy whether the flow is laminar (in case of a small Re) or turbulent
(in case of a large Re) (FOX; PRITCHARD; MCDONALD, 2011).

Multiplying both sides of Eq. 2.7 by
F 2

L2
and using Re =

ρUL

µ
results in:

Re

((
F 2

L2

)
û
∂û

∂ẑ
+

(
F

L

)
v̂
∂û

∂r̂
+

(
F 2

L2

)
ŵ

r̂

∂û

∂θ

)
=

− ∂p̂

∂ẑ
+ µ

(
1

r̂

∂

∂r̂

[
r̂
∂û

∂r̂

]
+

(
F 2

L2

)
1

r̂2

∂2û

∂θ2
+

(
F 2

L2

)
∂2û

∂ẑ2

) (2.8)

Since F � L, terms multiplying
F

L
or

F 2

L2
may be neglected. Therefore, the motion

equation on z-axis becomes (after returning dimensions to dimensionless terms):

−∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂u

∂r

)]
= 0 (2.9)

By applying the dimensional analysis into Eqs. 2.4 and 2.5, r-axis and θ-axis become,
respectively:

−∂p
∂r

= 0 (2.10)

−1

r

∂p

∂θ
+ µ

[
∂

∂r

(
1

r

∂(rw)

∂r

)]
= 0 (2.11)

Based on Eq. 2.10, it is possible to conclude that the pressure is constant along the
r-axis. Also, v, the radial velocity, is no longer present in the system, thus it is not
significant in comparison with u and w.
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2.3 SOLVING THE SIMPLIFIED NAVIER-STOKES EQUATIONS

Now we can integrate both Eqs. 2.9 and 2.11 in order to isolate u and w, obtaining
velocities on z-axis and theta-axis. Beginning with Eq. 2.9, by rearranging and integrating
twice in r we obtain:

u =
∂p

∂z

r2

4
+ c1 ln r + c2 (2.12)

Experiments with laminar pipe flows show that the velocity at the wall is zero along
the entire length of the pipe (FOX; PRITCHARD; MCDONALD, 2011), therefore the
two boundary conditions necessary to determine a unique solution to Eq. 2.12 can be
defined simply as:

u(Ro) = 0

u(Ri) = 0

By applying these conditions into Eq. 2.12, we get to determine c1 and c2 as:

c2 = −∂p
∂z

R2
i

4
− c1 lnRi

c1 =

1

4

∂p

∂z
(R2

i −R2
o)

ln
Ro

Ri

Finally, by replacing c1 and c2 in 2.12, we get to:

u =
1

4

∂p

∂z
R2
i

( r

Ri

)2

− (R2
o −R2

i )

R2
i ln

Ro

Ri

(
ln

r

Ri

)
− 1

 (2.13)

Now we turn to Eq 2.11 in order to find a suitable expression for w. By rearranging
it and integrating it twice in r we get to:

w =
1

2

∂p

∂θ
r

(
ln r − 1

2

)
+ c3r +

c4

r
(2.14)

Same as in Eq. 2.12, we require two boundary conditions for a unique solution. Since
we want the velocity along the θ-axis, and the stator is still while the rotor is spinning at
an angular velocity ω, w at Ro must be zero whereas w at Ri must be ωRi, i.e., W . Thus:

w(Ro) = 0
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w(Ri) = ωRi = W

Then:

c4 = −1

2

∂p

∂θ
R2
o

(
lnRo −

1

2

)
− c3R

2
o

c3 =

1

2

∂p

∂θ
(R2

i −R2
o)

[
R2
o

(
lnRo −

1

2

)
−R2

i

(
lnRi −

1

2

)]
+

WRi

(R2
i −R2

o)

Finally, by replacing c3 and c4 in 2.14, we get to:

w =
1

2

∂p

∂θ

[
r

(
ln r − 1

2

)
+Kr − R2

o

r

(
lnRo +K − 1

2

)]
+

WRi

(R2
i −R2

o)

(
r − R2

o

r

)
(2.15)

in which

K =
1

(R2
i −R2

o)

[
R2
o

(
lnRo −

1

2

)
−R2

i

(
lnRi −

1

2

)]
Notice that, so far, we have been dealing with four unknowns - namely, u, v, w, and p)

- and no more than three equations: Eqs. 2.9, 2.10, 2.11, and their products. Even if we
take out Eq. 2.10, we are left with three unknowns and two equations. We now require one
more equation in order to build a linear system with the possibility of a unique solution,
therefore we introduce the continuity equation, that describes the mass conservation of a
system:

∂ρ

∂t
+∇ · (ρ #»v ) = 0

But since the system is in steady state (
∂(∗)
∂t

= 0) and ρ is constant, the continuity
equation is reduced to:

∇ · #»v = 0

In cylindrical coordinates, it is written as:

1

r

∂(rv)

∂r
+

1

r

∂w

∂θ
+
∂u

∂z
= 0

By rearranging and integrating it, we get to:∫ Ro

Ri

(
∂(rv)

∂r
+
∂w

∂θ
+
∂(ru)

∂z

)
dr = 0 (2.16)

By applying the distributive property, we may write above equation as the sum of three
integrals and solve each one separately. For the first one, we can use the fundamental
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theorem of calculus, whereas the second and third can be solved by using Leibniz integral
rule:

• I)
∫ Ro

Ri

∂(rv)

∂r
dr = Rov(Ro)−Riv(Ri)

• II)
∫ Ro

Ri

∂w

∂θ
dr =

∂

∂θ

∫ Ro

Ri

w dr −
[
w(Ro)

∂Ro

∂θ
− w(Ri)

∂Ri

∂θ

]

• III)
∫ Ro

Ri

∂(ru)

∂z
dr =

∂

∂z

∫ Ro

Ri

ru dr −
[
Rou(Ro)

∂Ro

∂z
−Riu(Ri)

∂Ri

∂z

]
A few considerations can be made regarding above expressions: v is negligible, so (I)

is not significant; in (II),
∂Ri

∂θ
= 0 and w(Ro) = 0; in (III), u(Ro) = u(Ri) = 0. Rewriting

Eq. 2.16 with these considerations results in:

∂

∂θ

∫
R

w dr +
∂

∂z

∫
R

ru dr = 0

If we use u and w from Eqs. 2.13 and 2.15 and then calculate the integrals, the result
is

∂

∂θ

(
α
∂p

∂θ

)
+

∂

∂z

(
β
∂p

∂z

)
=

∂

∂θ
γ (2.17)

where

γ = −WRi

[
ln

(
Ro

Ri

)(
1 +

R2
i

(R2
o −R2

i )

)
− 1

2

]
(2.18)

α =
1

4

[
R2
o lnRo −R2

i lnRi + (R2
o −R2

i )(K − 1)
]
−[(

lnRo +K − 1

2

)
ln

(
Ro

Ri

)] (2.19)

β =
−R2

i

8

{[
R2
o −R2

i −
(R4

o −R4
i )

2R2
i

]
+(

R2
o −R2

i

R2
i ln (Ro/Ri)

)[
R2
o ln

(
Ro

Ri

)
− (R2

o −R2
i )

2

]} (2.20)

Eq. 2.17 is of type
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y), which is known as the Poisson

equation (BURDEN; FAIRES, 2010). Such equation cannot be solved analytically, there-
fore we must resort to numerical methods in order to find its solution. In our case, solving
Eq. 2.17 will give the pressure in each position of the fluid.
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3 NUMERICAL METHODS FOR SOLVING POISSON EQUATION

3.1 THE FINITE-DIFFERENCE METHOD

Additional constraints must be imposed to obtain a unique solution of the Poisson
equation. This is usually given by the boundary region of the plane described by the
equation, then a numerical method can be applied, such as the finite-difference method.
It consists in replacing each of the derivatives in the differential equation with an appropri-
ated difference-quotient approximation, then dividing the interval into equal subintervals,
choosing a step size that is small enough to get a close approximation of the derivatives,
but not too small because of the general instability of the derivative approximations
(BURDEN; FAIRES, 2010). This strategy creates a grid over the plane represented by
the equation, as in Fig. 3, where the intersection of lines are the mesh points of the grid
(θi, zj), for i = 0, 1, ..., Nθ and j = 0, 1, ..., NZ , where Nθ and NZ are the number of mesh
points in azimuthal direction and axial direction, respectively. Whereas zj ranges from
0 to the length of the bearing, which we call L, θi ranges from 0 to 2π, to represent the
bearing’s circumference.

Figure 3 – Grid over the plane

Source: (PINA; CARVALHO, 2006, p. 4)

In our case, the boundary region along both sides of the bearing is defined as

p(θi, z = 0) = Pin

p(θi, z = L) = Pout
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where Pin and Pout are the pressure values at both sides of the bearing. Notice that
there is no actual boundary at (θi = 0, zj) and (θi = 2π, zj), but still these points are
constrained by the fact that they must present the same value when in the same line zj.
That is:

p(θ = 0, zj) = p(θ = 2π, zj)

The mesh points that do not belong to the boundary region, where the values are
known, can have their pressure value calculated based on previous and next values with
the applied discretization:

∂

∂θ

(
α
∂p

∂θ

)
=

1

∆θ

[
αi,j

(
pi+1,j − pi,j

∆θ

)
− αi−1,j

(
pi,j − pi−1,j

∆θ

)]
∂

∂z

(
β
∂p

∂z

)
=

1

∆z

[
βi,j

(
pi,j+1 − pi,j

∆z

)
− βi,j−1

(
pi,j − pi,j−1

∆z

)]
∂

∂θ
γ =

1

∆θ
[γi,j − γi−1,j]

This discretization allows us to build a linear system with the same number of equa-
tions and unknowns, i.e., of unique solution. The unknowns are p in every mesh point of
the grid. The result is a pressure matrix that can be used to calculate #»v in every mesh
point by resorting to Eqs. 2.13 and 2.15.

3.2 THE FINITE-ELEMENT METHOD

Along with the finite-difference method, another possibility is the finite-element method.
The main difference between the two of them is that the finite-element method allows ir-
regular shaping of the boundary and even of the grid itself. Considering Eq. 2.17, our
main differential equation, the method seeks an approximation of the function p of the
form

φ(θ, z) =

NT∑
i=1

Ciϕi(θ, z)

where NT is the total number of nodes in the grid, C1, C2, ..., CNT
are constants, and ϕ1,

ϕ2, ..., ϕNT
are called basis functions. These functions are equal to one on the one node

numbered with the same number as them and are equal to zero on every other node.
Instead of solving Eq. 2.17, referred as the strong form (RINCON; LIU, 2015), the

finite-element method solves the weak form, which is given by the integral of the residual
multiplied by a weighting function, over the entire region. In our case, it is given by∫

Ω

κ

[
∂

∂θ

(
α
∂p

∂θ

)
+

∂

∂z

(
β
∂p

∂z

)
− ∂

∂θ
γ

]
dΩ = 0 (3.1)
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where Ω refers to the region of the θ-z-plane and κ is a weighting function. The idea
is to satisfy the differential equation in an average sense, approximating the solution by
minimizing the integral over a smaller set of functions, not over all points of p. Considering
Eq. 2.17 and its boundary conditions, both its strong and weak forms are equivalent, as it
possible to go to Eq. 3.1 from 2.17 and back; therefore solving the weak form is equivalent
to solving the strong form.

In order to reduce the number of derivatives of p, that way demanding only that its
first derivative is smooth, a few steps can be taken. First, using the relation that comes
from the derivative of the product of two functions:

d

dθ

[
κ

(
α
dp

dθ

)]
=
dκ

dθ

(
α
dp

dθ

)
+ κ

d

dθ

(
α
dp

dθ

)
Rearranging it:

κ
d

dθ

(
α
dp

dθ

)
= −dκ

dθ

(
α
dp

dθ

)
+

d

dθ

[
κ

(
α
dp

dθ

)]
Then using the distributive property of the integral, it is possible to modify the first

term of Eq. 3.1:∫
Ω

κ
∂

∂θ

(
α
∂p

∂θ

)
dΩ = −

∫
Ω

∂κ

∂θ

(
α
∂p

∂θ

)
dΩ +

∫
Ω

∂

∂θ

[
κ

(
α
∂p

∂θ

)]
dΩ

By applying the same steps to the second term of Eq. 3.1 and rearranging it, we get
to:

∫
Ω

[
−α∂κ

∂θ

∂p

∂θ
− β∂κ

∂z

∂p

∂z

]
dΩ =

∫
Ω

κ
∂

∂z
γdΩ−

∫
Ω

[
∂

∂θ

(
κα

∂p

∂θ

)
+

∂

∂z

(
κβ

∂p

∂z

)]
dΩ

Finally, we resort to the divergence theorem, which states that the volume integral
of the divergence of a vector field over the region inside a closed surface is equal to the
surface integral of a vector field over the surface. This theorem can be mathematically
represented by ∫

Ω

∇ · fffdΩ =

∫
Γ

nnn · fffdΓ

where fff is the vector field, Γ is its surface and nnn is the normal vector in each point of the

surface. In our case, the vector field is given by

κα∂p∂θ
κβ

∂p

∂z

, but because κ is chosen in a

way that it is equal to zero over the boundary, the result of the integral on the right side
of above equation is equal to zero. Therefore:∫

Ω

[
−α∂κ

∂θ

∂p

∂θ
− β∂κ

∂z

∂p

∂z

]
dΩ =

∫
Ω

κ
∂

∂z
γdΩ (3.2)
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As the function φ is zero along unknown nodes of the grid, we must still define an
approximation of p to replace in Eq. 3.2. We will define this function as pa ≈ p:

pa(θ, z) = φ(θ, z) + q(θ, z)

where q is a function that satisfies the same boundary conditions of p, but is zero over
unknown nodes:

q(θ, z) =


Pin , z = 0

Pout , z = L

0 , z 6= 0, L

The function q can be represented the same way as φ, as a sum of constants qi multiplied
by ϕi. However, in this case we know the values of qi. The same applies to the right side
of equation 2.17, which we will call function f and fi its constants. Therefore:

q(θ, z) =

NT∑
i=1

qiϕi(θ, z)

f(θ, z) =

NT∑
i=1

fiϕi(θ, z) = ϕi(θ, z)
∂

∂z
γ(θ, z)

We then replace p with pa in Eq. 3.2. We will also define the weighting function as the
function ϕi, that way maintaining its restriction of being equal to zero over the boundary.
Using the distributive property of both integral and derivative, we can rearrange the
equation such as:

∫
Ω

[
−α∂ϕi

∂θ

∂φ

∂θ
− β∂ϕi

∂z

∂φ

∂z

]
dΩ =

∫
Ω

ϕi
∂

∂z
γdΩ +

∫
Ω

[
α
∂ϕi
∂θ

∂q

∂θ
+ β

∂ϕi
∂z

∂q

∂z

]
dΩ

Because φ and q are sums of constants, these constants can be pulled out of the integral
and the derivative. We will also use the function f defined above and pull its constants
out of the integral. Therefore:

NT∑
j=1

Cj

∫
Ω

[
−α∂ϕi

∂θ

∂ϕj
∂θ
− β∂ϕi

∂z

∂ϕj
∂z

]
dΩ =

NT∑
j=1

fj

∫
Ω

ϕiϕjdΩ +

NT∑
j=1

qj

∫
Ω

[
α
∂ϕi
∂θ

∂ϕj
∂θ

+ β
∂ϕi
∂z

∂ϕj
∂z

]
dΩ

(3.3)

Now we define:

Kij =

∫
Ω

[
−α∂ϕi

∂θ

∂ϕj
∂θ
− β∂ϕi

∂z

∂ϕj
∂z

]
dΩ
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Fi =

NT∑
j=1

fj

∫
Ω

ϕiϕjdΩ +

NT∑
j=1

qj

∫
Ω

[
α
∂ϕi
∂θ

∂ϕj
∂θ

+ β
∂ϕi
∂z

∂ϕj
∂z

]
dΩ

Finally, the problem can be rewritten in its matrix form:

KC = F

3.3 AN EXAMPLE OF FINITE-ELEMENT METHOD

The region Ω is divided in small regions Ωe: the finite elements. Regardless of how
this is done, each node is uniquely numbered and two Tables are kept for the purpose of
identification: one containing the nodes in each element and another one containing the
position of the node’s equation in the linear system. Let us take this example by Rincon
and Liu to better understand how this is done. Consider the region in Fig. 4 and Tables
1 and 2.

Figure 4 – Region divided in 16 finite elements

Source: (RINCON; LIU, 2015, p. 111)
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Table 1 – Nodes per element

Source: (RINCON; LIU, 2015, p. 139)

Table 2 – Equation per node

Source: (RINCON; LIU, 2015, p. 139)

Together, Tables 1 and 2 represent the region in Fig. 4, divided in 16 elements, 4
elements per axis, with 4 nodes each. Table 1 identifies the 4 local nodes a in each
element, numbered locally from 1 to 4, counterclockwise, beginning with the lowest (x,
y), whereas Table 2 contains the row in the linear system for the equation (eqn) involving
each node A. Nodes in which the value is known are marked with zero in Table 2, as they
have no place in the linear system. In this example, such nodes are the nodes 1, 3, 5, 22,
and 24. These Tables gather enough information to implement routines that map how
the region is divided and mount the global matrices based on local parameters.

3.4 CALCULATING THE GLOBAL MATRICES

The region Ωe of an element e consists of a [xi, xi+1] x [yj, yj+1] rectangle. Or, in
another representation, [xe1, xe2] x [ye1, ye2]. This way, considering the finite element in Fig.
5, with nodes locally numbered from 1 to 4. These are the ϕei functions that apply to it,
also represented in Fig. 5:

ϕe2(x, y) =
(x− xe2)(y − ye2)

(xe1 − xe2)(ye1 − ye2)

ϕe2(x, y) =
(x− xe1)(y − ye2)

(xe2 − xe1)(ye1 − ye2)

ϕe3(x, y) =
(x− xe1)(y − ye1)

(xe2 − xe1)(ye2 − ye1)
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ϕe4(x, y) =
(x− xe2)(y − ye1)

(xe1 − xe2)(ye2 − ye1)

Figure 5 – One finite element of 4 nodes and its base functions

Source: (CARVALHO; VALÉRIO, 2012, p. 68)

They are called ϕei functions because they only apply to the region Ωe of the element
e, and to distinguish from the ϕi functions that apply to Ω. They can be related to their
correspondent ϕi functions using Table 1.

The contribution of a rectangular finite element with 4 nodes to the global matrices
is calculated locally over Ωe. The values from Ωe are then added to the local matrices Ke

and F e. The global matrices K and F will be a result of the sum of the local matrices of
all elements. Each position in Ke and F e are obtained as:
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Ke
ab =

∫
Ωe

[
−α∂ϕa

∂ξ

∂ϕb
∂ξ
− β∂ϕa

∂η

∂ϕb
∂η

]
dΩe

F e
a =

4∑
b=1

f eb

∫
Ωe

ϕaϕbdΩe +
4∑
b=1

qb

∫
Ωe

[
α
∂ϕa
∂ξ

∂ϕb
∂ξ

+ β
∂ϕa
∂η

∂ϕb
∂η

]
dΩe

Notice that Ke is a 4 x 4 matrix and F e is a 4 x 1 one.
Ke and F e are not obtained directly though. They are calculated over a [-1, 1] x

[-1, 1] square, represented as region Ωb, and then transformed to the real values using a
transformation matrix, through a isoparametric mapping, as in Fig. 6,

Figure 6 – One finite element of 4 nodes

Source: (RINCON; LIU, 2015, p. 123)

in which xxx = xxx(ξξξ) = (θ, z) and ξξξ = ξξξ(xxx) = (ξ, η).
Since nodes 1, 2, 3, and 4 are located in positions (−1, −1), (1, −1), (1, 1), and (−1,

1), respectively, in the region Ωb, the ϕi functions get a simple solution:

ϕ1(ξ, η) =
1

4
(1− ξ)(1− η)

ϕ2(ξ, η) =
1

4
(1 + ξ)(1− η)

ϕ3(ξ, η) =
1

4
(1 + ξ)(1 + η)

ϕ4(ξ, η) =
1

4
(1− ξ)(1 + η)

This isoparametric mapping is defined by:
θ(ξ, η) =

4∑
i=1

θiϕi(ξ, η)

z(ξ, η) =
4∑
i=1

ziϕi(ξ, η)

Now, in possession of this coordinate mapping, it is possible to determine:
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
∂ϕi
∂ξ

=
∂ϕi
∂θ

∂θ

∂ξ
+
∂ϕi
∂z

∂z

∂ξ
∂ϕi
∂η

=
∂ϕi
∂θ

∂θ

∂η
+
∂ϕi
∂z

∂z

∂η

In its matrix form, above equation can be written as:
∂ϕi
∂ξ
∂ϕi
∂η

 =


∂θ

∂ξ

∂z

∂ξ
∂θ

∂η

∂z

∂η


∂ϕi∂θ
∂ϕi
∂z

 (3.4)

in which


∂θ

∂ξ

∂z

∂ξ
∂θ

∂η

∂z

∂η

 is the Jacobian matrix J .

Because this transformation is reversible, there is a J−1 that is the inverse of J , so:∂ϕi∂θ
∂ϕi
∂z

 = J−1


∂ϕi
∂ξ
∂ϕi
∂η

 (3.5)

where J−1 =
1

|J |


∂z

∂η
−∂z
∂ξ

−∂θ
∂η

∂θ

∂ξ

 and |J | = (
∂θ

∂ξ

∂z

∂η
− ∂z

∂ξ

∂θ

∂η
).

Finally, the Gaussian quadrature is the numerical integration method applied to solve
the integrals from −1 to 1. It states that, for a function f(x) (BURDEN; FAIRES, 2010):

∫ 1

−1

f(x)dx ≈ f

(
−
√

3

3

)
+ f

(√
3

3

)
Now, consider the double integral of a f function, that is our case. Regardless of what

is being integrated, if either ϕi or ϕiϕj:

∫
Ωb

f(ξ, η)dΩb =

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη ≈

f

(
−
√

3

3
,−
√

3

3

)
+ f

(√
3

3
,−
√

3

3

)
+ f

(
−
√

3

3
,

√
3

3

)
+ f

(√
3

3
,

√
3

3

) (3.6)
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4 NUMERICAL ANALYSIS

The results presented in this chapter were obtained using an original code writ-
ten in Python language. This code is available at <https://github.com/flaviorangel/
ross-finite-element> for free access and use. Two aspects were measured in this numerical
analysis for both methods: how quickly the grid converges and how much time it takes to
return the pressure matrix. It is important to notice the program was run in an ordinary
notebook (2.50 GHz processor, 8 GB of Random Access Memory).

4.1 PROGRAM VALIDATION

As a means to perform a validation test, i.e., make sure the program is working as it
is supposed to, two checks were made for situations we know the exact result.

First, a short bearing with a rotor that is not rotating (W = 0) and zero pressure at
both ends (Pin = Pout = 0) is expected to have zero pressure in all its extension, regardless
of eccentricity. This situation was tested and the results came as expected.

Second, a bearing with no eccentricity and input pressure greater than output pressure
(Pin > Pout) is expected to have its pressure decreasing linearly from z = 0 to z = L and
not varying along θ. Such test was made for the bearing specifications presented in Table
3.

Table 3 – Zero eccentricity validation test data

NZ Mesh points in axial direction 128
Nθ Mesh points in azimuthal direction 128
Ro Radius of the outer cylinder 1.000194564 m
Ri Radius of the inner cylinder 1.0 m
ω Angular frequency 1002π

60
rad/s

Pin Pressure that enters the bearing 60 Pa
Pout Pressure that leaves the bearing 50 Pa
L Length of the bearing 16Ro

ρ The fluid’s density 860 kg/m³
µ Fluid viscosity 0.015 Pa.s
e The eccentricity 0.0001 m

where e is the distance between the stator’s and rotor’s centers. This data was based on
ROSS’s test for long bearing, changing only input and output pressure as well as NZ and
Nθ to better visualize.

The results of this test can be seen in Fig. 7. As expected, pressure begins at 60 Pa
and linearly decreases to 50 Pa, while not varying along the azimuth axis.

https://github.com/flaviorangel/ross-finite-element
https://github.com/flaviorangel/ross-finite-element


34

Figure 7 – 3D plot of zero eccentricity validation test

4.2 REFERENCE EXPRESSION FOR PRESSURE

With controlled error, in certain situations, the pressure inside a bearing can be calcu-
lated directly using an expression instead of a numerical method. Frene et al. (1990) do
so by neglecting the axial flow in long bearings, assuming the flow to be purely circumfer-
ential, which means neglecting the second term on the left-hand side of Eq. 2.17. They
assume long bearings to be those in which the ratio between their length and diameter is

larger than 4, i.e.,
L

2Ro

> 4. In a similar manner, when this same ratio is small, assumed

by Frene et al. (1990) as being smaller than 1/8, then the first term on the left-hand side
of Eq. 2.17 can be neglected instead.

Expressions for the pressure inside long and short bearings were used as reference
for the numerical pressure calculation in this work. Based on Frene et al. (1990), the
expression for short bearings is given by Eq. 4.1 and, based on Hamrock (1991), the
expression for long ones is given by Eq. 4.2. The references were chosen based on the
ones used by ROSS’s tests to compare its own results:

p(θ, z) = −3µω

c2

(
z2 − L2

4

)
ε sin θ

(1 + ε cos θ)3 (4.1)
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p(θ, z) =

6µω

(
Ri

c

)2

ε sin θ (2 + ε cos θ)

(2 + ε2) (1 + ε cos θ)2 + Pin (4.2)

in which c is the radial clearance, given by c = Ro − Ri, and ε is the eccentricity ratio,
given by ε =

e

c
.

4.3 GRID CONVERGENCE

The grid convergence, executed for both the finite-difference method and the finite-
element method, compares their error at maximum pressure, based on Eqs. 4.1 and 4.2,
as well as the amount of time spent to calculate the pressure matrix when varying Nθ

and NZ . The following graphics (Figures from 8 to 11) represent these comparisons. The
plots where obtained using Python’s matplotlib package1. The specifications for short
and long bearings are presented in Tables 4 and 5, respectively. Again, they were based
on the same data used in ROSS’s tests.

Two observations must be made. Firstly, as the pressure along θ-axis matters more
than the one along z-axis, Nθ was increased exponentially, whereas NZ was increased
linearly. Secondly, it was not possible to calculate grids with Nθ larger than 512 due to
hardware limitations.

Table 4 – Short bearing grid convergence data

Ro Radius of the outer cylinder 0.200194164 m
Ri Radius of the inner cylinder 0.1999996 m
ω Angular frequency 1002π

60
rad/s

Pin Pressure that enters the bearing 0 Pa
Pout Pressure that leaves the bearing 0 Pa
L Length of the bearing 2Ro/10

ρ The fluid’s density 860 kg/m³
µ Fluid viscosity 0.015 Pa.s
e The eccentricity 0.0001 m

In practical bearings with zero pressure at both edges, the pressure in the zone from
θ = π to 2π is almost equal to the atmospheric pressure, i.e., equal to zero. Therefore, the
negative pressure that would occur is set to zero; this is the so called Gumbel condition
(ISHIDA; YAMAMOTO, 2012). As pointed out by Ishida and Yamamoto (2012), the
negative pressure does not occur because the fluid at such low pressure actually evaporates.
This phenomenon is known as cavitation.

Two plots were made to check the pressure along θ-axis in the lowest error situation
for the finite-element method, comparing with the reference expression. The error was
1 <https://matplotlib.org/>

https://matplotlib.org/
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Table 5 – Long bearing grid convergence data

Ro Radius of the outer cylinder 1.000194564 m
Ri Radius of the inner cylinder 1.0 m
ω Angular frequency 1002π

60
rad/s

Pin Pressure that enters the bearing 1 Pa
Pout Pressure that leaves the bearing 0 Pa
L Length of the bearing 16Ro

ρ The fluid’s density 860 kg/m³
µ Fluid viscosity 0.015 Pa.s
e The eccentricity 0.0001 m

Figure 8 – Short bearing comparison in Nθ

Figure 9 – Long bearing comparison in Nθ

calculated based on the maximum pressure along the θ-axis, in the middle of the bearing,
compared with the pressure at the same position in the numerical methods. Fig. 12 shows
the pressure for short and long bearing in their middle section.

As expected, the number of mesh points in the θ-axis poses a greater impact over the
grid convergence, even on the long bearing case, as can be seen in Figs. 8, 9, 10, and 11.
As for the time spent, it does not vary greatly according to bearing length, since no more
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Figure 10 – Short bearing comparison in NZ

Figure 11 – Long bearing comparison in NZ

operations are added to the code, but according to number of nodes instead.
As the results show, except for a few situations, both methods converge similarly, with

the finite-difference method presenting a slightly smaller error. The amount of time spent
increases faster with the finite-element method. Even though in most cases it behaves
similarly with the finite-difference method, it is clear that the cases in which Nθ is 512

the time spent on the finite-element method is greater.
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Figure 12 – Pressure along theta for lowest error

(a) Best FEM short bearing (b) Best FEM long bearing
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5 CONCLUSION

This work aimed to explore the use of the finite-element method instead of the finite-
difference method to solve the pressure field inside the bearing, comparing and analyzing
both approaches. It was possible to conclude that both methods behave similarly to solve
the problem presented, but the finite-difference method performed slightly better than
the finite-element method in all cases, both in terms of error and time consumption.

It is important to notice that a simple square element was applied and no irregular
shaping of the boundary nor of the grid itself was present, thus most of the method’s
advantages were not explored. This way, the approach nearly matches the one of the
finite-difference method, as the grid built is the same. Because the finite-element method
is more laborious to program in comparison with the finite-difference method, specially
when programmed from scratch, the finite-difference method is a more suitable choice.
Regardless, the challenges involved when dealing with finite-elements do count for educa-
tional purposes.

Possible future work should involve comparing both methods for different geometries
of the rotor, which would allow the use of the method’s advantages. Finally, another
possibility is to implement and use different types of finite elements to see which ones
perform best.
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