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ABSTRACT

This paper describes an empirical study of the variability of
simulation eatinates, which producsd  some new  interesting
resulta. Bimulation estimates are determined by thes inpul sample.
Any  input sample can be decomposed into twﬁ hasic featurest the
get of input  valusgs and their sequence. Based on this idea, the
individual contribution of sach feature to the estimates gariancﬁ
tan  be empiricalluy studied. This ié done following a two-way
factorial gxperiment . Uﬁiﬁg the standard random sampling
approach, the set of values was found to affect most simulation
gstimates in an common way, and to pimm a relevant role in their
variability. The sequence effect, ﬁowever, was  Found to  bhe
prablem depend@ntn-ﬁﬁart from providing s better understanding of
the estimates variabilitu, this study contributed to the proposal

of descriptive sampling.
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INTRODUCTION

in a Monte Oarlo simuelation, processing time is directly
rélated to the variability of the estimates. Processing time may
not  be the most important issue in a simulation project, but it
is still relevant in many applications. According to Paul and
Chew (1), the coding of a simulation program tends to be highly
time-consuming, and therefore more coritical than processing
time. Bui now, there are mand new computer simglation systems
(2) which can reduce considerably the time spent in developing a
program. Certainly, the most appealing of these products ar; the
pragram  generatpors like CAPS, written by Clementson (3}, DRAFT
by Mathewson (4) and, more recently, the VUS4 system (5).
Processing time, of course, has also been systematically reduced
with computer evolution, but this improvement, unlike the
software systems, is not der ived From any simalation

development.

There are cases, however, where processing time may be
highly relevant., This happens when the simulated system is too
complex, or when there are many replications to be done or also
when response time is critical like, for example, in a military
application. When the processing time problem arises, it may bhe
worth reducing the variability of the E$timat8$u Cne possibility

of doing this ia to use variance reduction technigues (&6, 7).



The problem with variance reduction techniques is that it is
not usually clear how they work mﬁd, as | consequence, how to
uwse them efficiently. They require a better uhderstanding of how
Eimulafinn estimates vary, which is the purposg of the present

Wk .

In this paper, following an approach similar to Ehrenfeld
énd Ben-Tuvia (8), the wvariance of simulation estimates was
analysed in terms of two features -~ set and sequence - which
Jointly define an input sample. This empirical investigation was
based on a two-way %actnrial model, conducting one experiment
for each simulation problem considered. It was found that a
gubstantial  amount of the estimates’ variance is only due to the
variability associated with the set of input values, and that
the sSequUence influence 31 problem dependent and rather

unpredictablie.

The identification of the set influence represents an
important contyibut ion tawa?ds understanding the eat{mates
variability. It allows us fu make a more eFFicieﬁt use of
yariance reduction technigues. But, mare_impﬁrtant, it was the
cornerstone  for us to guestion the use of simple Fandom sampling
in HMonte Carlo simulation and to propose descriptive sampling as

the most appropriate method (9).



THE PROBLEM

fis an 0.R. technique, it is =assumed that the simulation
purpose is to estimate parameters related to a Fésponse variable
distribution. For example, in a port simualation, EI1 Sheikh et
al. (10) studied the wean waiting time of a shipy in a risk
analysis, however, higher order moments are also studied (31).
Unlike the parameters which =are unknown constants, simulation
esl imates vary depending on the particular input sample
generated. The higher this wvariability, the greater the
processing time required to achiseve =a desired level of

precisions

Problem formuliation

fs wlready explained in Saliby i, g similation run, by
definition, produces one estimate for each parameter under
study. Thus, assuming, For -ﬁimplicitg, that only ong input
random variable ﬂrivés the simulation and that‘onlg GrE FEsponse
variable is present, a simulation run can be seen as a set of

Ffunction evaluations

Y.= F (X ,ueaay X y (i
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F o+ J = 4yaunrb , it & set of functions, usually defined
by a computer program, that maps the input sample

X, 0 = dyuwwyn , into the corresponding est imators.

In principle, one has that E(Y > 2 8, J = i,vau,b o It is
J J
the variance VardY ) , J = dranasl » which we want to reduce.
J

Exampie

INlustrating thiﬁ. formulation, consider the PERT problem
formerly s#tudied by Hculli £42). As  shown in Figure 1, this
network comprises eight activities, all them with durations that
are independent and identically distributed. Activity durations
follow =a discrete distibution with equslly likely values, so

that

Fids = @.2 for d = i,...,% .

Figure i. PERY netwark wused as example. Activities are
represented by RIS their durat ions A

independent and identically distributed.



The response variable under study is the total project
duration (DT), for which the mean E(DT) and standard deviation
SD(RTY are to be estimated. Although there arse other methods to
deal with this problem, itrcan be studied using simulation. In
this case, =a run is defined by a sample of N observations for
BT,

D-r ¥ J = i,'-ﬂ?N -
J

The mean estimator is
. M
BT = 2 DT / N .
J=4 J

while the standard deviation estimator is

N _ 2 _ 172
8 = [2 (DT =~ DT} 7/ {N~-$)13 “
DT Jo=i J
Defining =& run by, say, =58 response values, the input

sample size will be n = 5@ » 8 = 498 activity durations. Then,
based on (4}, each run can be seen a8 the numerical evaluation

of two functionsi.

DT = F (D ,a202sD Y o,
i i 400
and
& = F AD yuuweD Y .
DT 2014 409

SGtatistical propertiss required are that
E<DTY = E(DT) ,
E{8 > I 8sD{(DTY ,
pT

and that Var(DT) and Var (8 } are as low as pussible.
. BT :



The variability of the estimates

Exprasﬁimn {1) shows that estimates are determined by the

input SAmp les. In a simulation ewperiment, defined by M
independent runsg, a different sample is drawn sath time,
resulting in & different estimate too., as a corolliary, the

estimates wvariability follows frowm the input sample variabilitgn
Qur -prublem e to Ffind out if there exists a pattern for this
variability, thus providing some clues on how to reduce it
Motice, however . that simelat ion estimates are aggregate
measures. Therefore, in principle, the pattern which we are
looking Ffor should not be a relationship betﬁgan gnt imntes and
individual input wvalues, but betwesn them and aggregate sample

properties too.

Based on this idea, the influence of two global features of
the input sample - set and sequence -~ are initially considered.
As will be seen, it was found that one of those features - the
set -~ has a specific and wusually important influence on the
variability of simulation est imates. This study is now

degscribed.



SET AND SEQUENCE: TWO GLOBAL SAMPLE FEATURES

In principle, any input sample can be seen as composed of
two global Fegtureﬁ='the set of input vaiueﬁ and their sequence.
The set of values is defined by all sample values, without
taking their sequence into Caccount. As such, it displays the
input wvariable’s distribution pattern. The second feature - the
sequence -~ is defined by the particular order in which the
sample wvalues ocouwr. This sequence can be seen as = permutation
of the set Qalues and, =as such, it is expected to displiay =&
“pattern of randomness” Qr,Atu be more precise, a lack of order
of those wvalues. Therefore, bobth featufea describe the tuwo
complementary properties that characterize | the idea of

probabilitu: a pattern of frequencies and randomness.

Given that ﬁimulatimn.estimatas are determined by the input
samples and that an fnput sample can be decomposed into a
(get,sequence) combination, we are yoing to investigate the
influence of toth features on the wvariability of simulation
est imates. Following the standard simulation practice, this
study will =assume the use of simple random sampling (8.R.5.) to

generate the input sample.

The set and sequeﬁce variability when using 8.R.5.
Using S.R.S8., both sample features - set amnd sequence — are

allowed to vary. This is illustrated in the example below.



Consider, for simplicity, =a simulation run based on n=9
input wvalues, sampled Ffrom = standard uniform distribution.

Hsing S5.R.5., we initially draw the sample

U= { .21, .13, .94, .83, .97 ) .

Adopting the wvalues’ ascending order as reference, this
sample is jointly defined by a set,
SET ® ( .07, .15, 2%, 83, 95 )
i

and f seEqUEnceE,

The sequence is de?ined'by the permutation in which the set

values appear in the sample, The Ffirst component of U is the
i
Ehird glement in the set, the second component of U iz also the
_ , i )

second &€lement in the seb, and %0 ONeae

Replicating the run, a second sample is drawn, say

Uom ¢ .18, 04, .82, .47, .61 ) .
&
Ais in the previous sample, thig sample is also defined by a set.,

SET

P

fi

{ 94, .13, .17, .61, .82 )

and a sequence



As  seen, the input sample variability is the Joint result of
the set and sequence variability. Notice also that the set
varigs at random when using S5.R.8., although Ffollowing fhe
sampled distribution. O©Cn the other hand, the sequence is simply
& random permutation of the.set values. Once both features can
be isolated, their inFlgence‘ on the e%timates variability can
also be iseclated. This ¢an be done following an alternative

method For random sampling generation, now presented.

An alternative method for random sampling generation

In the same way that we are able ta decnmpage a simple
random sample into a random ‘set of input wvalues and their
sequence, we can follow the reverse process o generate & sinple
random sample. Thus, we can define a simple random sample once a
random set  of Qalues and & random permutation are given., For
instance, given the two random sets and the two random
permutat ions from the previous eqdample, we can regenerate both
U and U .

i “

This follows, bhecaudse

B4y = SET [ SEG (4 1 = 8ET [331 = .21 .,
i A i i ‘ i
U (2 = GET [ SEG (2) 1 = SET [21 = .1i% ,
i i i i
and 80 ON..s As a rule, the elements of U , k = i A S

k
are defined by

U (J)y = GET L BE® (j2 3 , Jj = d,euuyn .
k k k
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Notice that sven in rasegs where repeated set values are
allowed, like when sampling from a discrete distribution, this
idea of composing a random sample is still vélid, although more

than one random pernutations may lead to the same input sample.

We have to generate both sample features separately. The
sgquence, defined by =& random permatation, can be generated
following a simple procedure described in Saliby{?). On the
other hand, to generate a random set of values with the required
variability, it is easier to continue uéing simple random
sampling., Now, S.R.5. is used only to deliver a random set. The
values are  stored into ascending order, so that the ariginal

sequence is neglected.

Given. a set of values and a sgquence, we can build an input
gample. This method increases the computer effort, but we are
now =able tao investigete the contribution of each feature to the
variability of simulation estimates. This is done fellowing an

exper imental approach now described.
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EXPERIMENTAL APPROACH TO STUDY THE ESTIMATES VARIABILITY

Since an input sample is defined by a set of values and
their sequence, and since both features vary at random when
using Snﬂuﬁu? they can be seen as the two sources of variability
of simalation @gtimateéa Knowing how to isolate both features
during the sampling protess, we are now able to conduct @
two-way factorial experiment to investigate their individual
influence on the estimates wvariabilitu. The two factors under
considerat ion BEE, Lhus, the set and the ﬁeqﬁwncau The
experiment is defined by NSET different sets of input va;'iuesP
all of them randomly generated, and NSEQ different sequences,
also randomly permutated. For each combination of a set with a
sequence -~ thus generating a simple random sample - a simulatian

Fun is carried out.

Example

fis w numerical emample, table L presents a subset Of results
from this experiment, for the PERT problem. Each run, defined by
a pair (set,sequence), produces two estimategi'ﬁT and & - For
gxample, the simulation run based on SET  and SEQUENLE ﬁzead to
DTC(i,i) = 44.14 and 5 (i,4) = 1.994. ' '

DT :

The means of the estimates, for all runs based on the same

set  of input. values, are also presented. The corresponding

theoretical wvaluss for the parameters under study are also given

in table 4. As expected, the estimates varied arcound those



values. The lower part of tabia i also displays the sample
frequencies for the activities durations, i.€., the input sets.

Finally, the inpul means are also presented.

Table {. Sample results of the experiment for the PERT problem.
Results based on a subset of NSET=5 different sets and
NSEQ=5 different gequentes.

44t st TS Renr NS S eI P SHPR MTn HENH Saet MPT Sase PER fmk PN Lt $54e Mok 445 mm $tas Sk SHAF Soes $PET Reve Sae ee bpre cece emin Seen cewb cese bl cece dive moee Sbih ame biie mee bebd mece WSS mewm whed v TH sees HOE sumd SEVE POEL bede HBIS bbb Has sewt Hum e dden

ESTIMATE DT [ E(DT) = 414.2031 1

, SET 4 SET 2 SET 3 SET 4 GET 5
SEQUENCE 4 ii.i4 11.24 19,98 i1.16 11.08
SEQUENCE 2 11.36 11.26 11.46 ii.48 14.00
SEQUENDE 3 ii.46 11.36 0 10,96 it.32 14.18
SEQUENCE 4 11.52  1i.44  11.09 14.42 i1.04
SEQUENCE S 11,32 i4.06 10,92 i5.32 11.00
MEAN  41.36 i1.3% 11.00 i4 .34 i1.06
ESTIMATE 8 L 8DIDTY = 4.8764 1
DT

_ SET 1 BET 2 SET 3 SET 4 SET 5
SEAUENCE 4 1.906 i.847 1.799 {,719 1.724
SEQUENCE 2 1.654 1.988 5. 4679 1.705 2,020
SEQUENCE 3 i.887 i.687 i.538 1.73% 2.106
SEQUENCE 4 i.787 i.864 2,138 L. 774 1.927
SEQUENCE 5 i.634 2,138 | 2.284 {842 i.738
MEAN 1.773 1.904 1.884 i.748 1.903

SAMPLE FREQUENCIES AND MEANE FOR THE INPUT VALUES

VAL UE SET 4 SET 2 SET 3 SET 4 SET 5
i 65 82 89 7a a7
2 93 80 79 7 74
3 79 72 77 95 88
4 o®3 77 82 78 80
5 79 89 73 83 74
TOTAL 400 400 400 490 400

INPUT MEAN 3.970 3.028 2.928 3.97¢ 2. F30

168 6aee 000 4 S SEen RS ES B AIE SIS SR eom ST TU SURE VPN mird SN MEe O (LS MEES SIER FOEE AiaE Me0e Tupy S G0N mmim RS SRS YOV 4842 VHL 44 AU 4 SLY Seth $4H0 bt S0 reab Aedd nane rbd mees e Span ame pran mp eh vt mems pran Sser PERP VTR TP T
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Statistical model

Althoush  estimates are  Fully  determined by a pair
{set ,sequence), we will use a statistical model to describe this

relationship. s an approximation, it will be assumed that

Y=6+(€ -&-é +<€ -
SET 5E@Q RES
where,
& i the influence on estimate Y due only to the input set of
SET '

values., This component is called the set effect and is

randomly generated. It will be assumed that

s
ECE ) =0 and  var(& = Q
CSET SET SET
6 is the influence on estimate ¥ due only to the input sample

SEa
sequence. This compoanent is called the sequence effect and

is also randoamly generated. It wilil be assumed that

i
o

ECE ) =@ and  Var¢(&E )
SEQ | SEQ SEQ

E; is the residual or dnexplained influsnce on estimate Y due
REG
tao-the joint action of both gffects. As such, it refers to

the interaction component. It will also be assumed that

-
&

ECE Yy w e and varcE oy = )
RES RES RES

According to this model, which assumes all effects to be

Cindependent, it follows that

E(Y) = O,
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and that
2 2 2
Var{Y}) = Q + Q + G “
SET SEQ RES

The purpoase of the séurces of variation study is to identify
and to estimate the individué] var iance contribution of both
factors. MNotice that, wifhaut this decmmpusition,_the var iance
of the estimates would be totally attributed to the residual

effect.

Based on this formulation, we will test the hypéthesis that
the wvariance components éséocjated with the two factors ére
meaningful. We will test to see if

o
G voe Cand if G s e
SET GEQ
estimating their walug whenever a significant contribution is

detected.

&na}gsing the results

Results in table 4 alreadu show that, at least for the PERT
problem, one of the eétimates (DT) may Follow & pattern of
variation. In fact, DT appears to have a lowsr variability once
ﬁhe set QF. input values is fixed. Another important feature is
that, as expected, DT means are higher for sets with a higher

input mean and vice-versa.

A proper analusis of the results i fhruugh analysis of

var iance, using the Fandon affects model (13). The use of this



model, also

the fact
levels
calculat ions

of VAR TARCE .

known
that
randomly

are

15 -

as the variance components model, is due to

both factors - set and sequence — have their

selected. In spite of this fact, the

the same 8% Tor the standard two-way analysis

But, in addition to the wusual calculations,

var iance components are also estimated.

Variance
A

Q

&

omponents are estimated by

= (M5 - MG ¥/ NSEQ
SET SET RES
and '
o
q = (ME - M§ 3/ NSET ,
SEQ SEQ RES
where,
MS and HMS are the mean squares from the ANOVA table,
SET SEQ

corresponding

st and the

factor turns

together with

Mo
MG = Q
RES RES
table.
Based on

of simalation

to the ewxplained variation by, respectively, the

sequence. Suach values are only considered when 2

out to be significant, otherwise they are pooled

the residual sum of sguares:

is the residual mean square, as given in the ANOUA

this method of analusis, the sources of variation

estimates can now be empirically studied.
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EMPIRICAL RESULTS

Three simelation problems. the PERT network, an M/M/1 queue,
and an inventaory system, WEre studied following this
agxperimental approach. Each ewperiment was based on 1@ random
sets of input wvalues and on i@ random seyuences, thus giving a
total of 102 simple r#ndnm sampling runs. For each problem, two
est imates were considersd? the mean and the standard deviation

af the response variabhle under study.

The queueing problem

In the gqueudeing problem, the estimates concerned thelateady
state'rqueue size distribution, inclﬁding customers in service.
For eaéh “of & different traffic intensity values {P }y ranging
from @.i% to @.992, one experiment was conducted. Each run
started with the system empty and lasted until 199¢ services
werel.completed. In a0 doing, the sawple size For the servioe
times was Fixded =at NS=1006€, whilst the sample size for the
interarrival times, NA, varied., But, since the system was empty
at the beginning of a run, it follows that NA X NS. In reality,
only the first 1069 _interarrival times were controlled in the
experimenty the remaining Na -~ NS values were generated udusing
the standard simple random sampling procedure. Despite this
gample wvariability, the run length was long enough so that
NA  — NS was always very small when compared with NS. Therefore,

it was possible to achisve & very good control over the set and
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sequence features. Finally, notice that once there are two input
random variables in this problem - interarrival and service
times -~ , esach sef-level in the experiment was defined by a pair
of set wvalues, one for each inpuf variable. Similarly, =

sequence level was defined by & péir af random permutations.

The inventory suystem

The inventory gystem investigated here represents another
standard simulation preoblem, already studied by Naylor and
Hunter (14) and Ignall (Li5),. It‘tnnaistﬁ of a single prﬁduct
inventory system, with a daily periodic review. If the inventory
level ~— including pending orders - falls below the reorder point
{(ROPY, = fixed guantity (@) is ordered. The lend time is assumed
constanty products become availaﬁle in the beginning of the
second day after their ordering. Demand not met is holdover.
Daily demand follows a gamﬁa distribution compnsed by 3 stages,
each one with mean of 1@ units. Demand values are rounded to the

nearest integer.

The response wvariable is thg steady state daily cost,
campossed of three different costs

i

i#

9.5 , cost of storage per unit per daysg
£2 = 475 , cost of placing an order: and

£33 = %.¢ , cost of shortege per unit per day.

The initial inventory is 109 nits, and the run length is &
periocd of ND=i000 simulated days. It Follows that the input

sample size consists of ND=1¢0@ demand values.



For each of the three system configurations below, =

complete exwperiment was carried oagtd

ROP = 5§ and G = 199 3
ROP = 75 and G = 2@ @ and
ROP = 49 and 4 o= 180

The results

To illustrate the analuysis of £he gxper imnental results, we
present the steps envolved in the study of estimate DT from the
PERT probliem. Exactly the same procedure was followed in all

other cases.

Each experiment produced HNSET w NSE@ = 400 values for each

egst inmate. In our case they are represented by

TCidy 5 1 = d,uwe ,NBET ., J = §,...,M8E@ .

Based on the values from one experiment, table 2 presents

the corresponding two-way ANOVA table.

‘Table 2. ANOVA Table for estimate DT

RS V4e AV dLre SR LAY A Skt R0 SIS EPR BsE SXUR SRS BV SAwe TV FTSE FRRL WP sutu St NEsE FYS RiP WLh SN LS KRN RS LD SMY 4408 SN bkt 4R i S50 rid $T mee S VI MBS HIY ol Fur b S et Mmn mm b e made e o anee —— nn

Spurce of Sum of Degrees Mean F
Var iat ion : Squares of freedom Sguare Value
Between sets 2994 G « 333 i2.95
Betusen sequences «3B7 @ T L9443 1.67
Unexplained 2.981 814 024

Total 5,462 9 . B55

FENS ber M08 0089 S0 H4RP SeE IREE ot FIOR OR SR TS S04 LM GAN KBRS A64 SIS AFRE FOTM 4k Sear mmer 4e0e Rd0 AR LEME HITH VAL GHEE HAS Ser MES 00RE SUIG
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The results in table 2 show that the set variability has a
strong contribution to the varisnce of BT, but not the sequence.
The next step i to compute the variance components of 6?, They
are presented in table 3, with the corvesponding relative

contribution.

Table 3. Variance components of estimate DT. Results based
on an experiment composed by M=109 runs.

PR 1 arEe Tran Sere en= $e Eros Seep Bamn Pand prpe e fYT Sme $YEE TP PEPE PR bR mmpn meih Srpn Femp pren —mbd preR mes bbby srmk bnk pane mmk pare kb g S S wae Sbbh mme ey e ok Yamm et g e pee res Fipe saes bbb mpas b g bkl ey b pmny

Bource of Abksolute : Relative
var iat ion Contribution Contribut ion
Set effect  .9384 o 53 %
Sequence effeut - -
Residual effect D274 47 X
Taotal 258e ige %

AR PO oiun TS oRs ES B444 TS SaNd 100 TTAS SEEE SVIR MRS BETR SUBR YETD AR SRGR YUES BT PUES 46T VA SRV Me® AR WO M4SN RUPR S4VE VIR SPas Pees Bemt AHIY Ve AR TR A4 BIY THL ITY Wme (ope LI A8SY A SO TRTS SRR Bran SMPE PTPS e PNP Pasb San nate TR

From the results in table 3, we can say that 53 % of the
tatal wvariance of DT is gxplained by the gset variability. Only
47 % of the original variancé remained unexplained by the random

effects model.

Following the same procedure, the variance components for
the other estimates were similarly computed. Table 4 summarizes

those results.



- 29 -

Table 4. Relative contribution of each factor to the
variance of the estimates for three simulat ion

prnhléma. Fach row tnta}s ie9 4 .

et g vk e et e I b Fh ey SV s Y S ks 443 S S280 s TS SS O Sbm STE 4r0e S403 a44E aS) AP 45a0 PN Sa00 SG88 LHHE PIRE HOM AER0 AME VR0R HAOS 0B PSS FEES PR SELS PR SRS W SO IR SIRY e S SeSP TH00 eeR

Froblem Fat imate SETX) BEQCR? RESIDUAL(Z)
PERT networks —
DY 953 e 47
g _ i e s 19
DT
M/t Queuet
(P =0.15) S1LZE FEe3 d-4 L5 I
(P =@.36) S1ZE Bé&a 4 I @.5
(¢ =0.4%5) SIZ7E 78.8 2e.5 2.7
(P =0.40) SI7E &9 a k 29.5 1.4
(¢ =0.73) S17E b2.9 32.5 d.d
(P =G, 70 SITIE B u® 3¢.08 ig.2
(p =@, 152 & 74.9 18.5 4.6
8176
(f =@ 39} & -1 A7 .8 2.2
SIZE ' :
(P =@.45) . s 47 .3 H5i.0 1.7
. STZE
(P =0.60) g8 41 .8 Gha.b6 P
: SLEE :
(f =@ 75} S 33.3 59.8 Ha.9
' S1ZE
{F =@ .98} - 32.6 59.4 8.0
SIEE
Inventorys .
(ROP=5@,8=415) COsT 57 el _ 43
{(ROP=75%, G=2000) .« COST 3i e H4
{ROP=49,Q9=150) COSsT 54 - 46
(ROP=35@&,a=15&) g 34 - )
- GOST :
(ROP=7%,G=20¢) & & - ' &4
_ COST
(ROP=40.,.8=158) 5 34 e H4

P B AT R Gaee B Y Bh M s HEE et TS ot S5 HE B mmrr Y e o s e e e At ek Sren Smme PEPP e TS feae PP WArY PP WAK WEEE SESR AENE SERL AVNE S4B PRI SRS bibt SE0Y mbrt S48 mbe $488 mamt gy s



Discussion

{a)d

(bl

()

Observing the results in table 4, we can conclude thats

Set wvariability appegars to be a common feature of most
simulation problems. Generally speaking, it usually expliains
a substantial amount of the estimates’ varémnae, Only in the
case of the estimate 5 for the PERT problem, does this not

DT
happen.

The segquence variability appears to be problem dependent. 1t

was only observed in the queue problem.

The queue problem deserves special attention. For both
gatimates, the amount of variance explained by both factors,
separately, was quite highs But, the relative contribution
of  the set variability decreases with the traffic intensity,
while the seqguence contribubtion increases. This result can
be explained by the Fact that in a more congested system,
higher wvalues for the servicing times {or lower values for
the interarrival times) have a long term effect in the
system response, thus creating a sequence dependence. In =a
less congested system, such extreme wvalues are qﬁickly

washed up.



CONCLUSTONG

Three different éimulatiun problems were studied whose
results concerning the set contribution are sgmptamatic of other
problems. As a  common feature of the variability of simulation
et imates, the set effect deserved Ffurther investigation. In
Saliby (46), it is shown that =a regression model, named the
Linear Response Model, axpléinﬁ the set effect as the result of
deviations between the input sample moment 4 arrdd the
corresponding theoretical values. Another Empurtanf property is
that the set relative contribution does not depand on the run
length. This means that even by increasing the input sample
size, the set still plavs the same role, as far as the variance

of the estinates are concerned.

Having =a better idea of how simulation estimates vary, we
are now in a position to make better use of variance reduction
techniques. For example, techniques that allow more control over
the eet wvariability, 1like common random numbers, areg likely to
be wmore efficient. The same appiies o control variates, where
the set variability is taﬁen into account. On:th@ ot her hand,
antithetic wvariates are lesg efficient technigues once they Just

provide a partial control over the set variability (473 .



However, the main contribution  from this study was to
suggest that the set variability is a sort of noise which is
introduced dur ing the Sampling' process. Questioning this
vériabilitg, we derived the proposal of a new sampling approach
in simslation? descriptive sampling (9). Descriptive sampling is
based on a fully deterministic selection of the set values, thus
avoiding the set wvariability, and their random permutation.
Using descriptive ‘sampling, simulation estimates will be more
precise. This follows because, in so doing, only the sequence is

varging between different FURS .
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