
DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT

SYSTEMS

Maria Zeneide Mota Veras Neta

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre em

Engenharia Elétrica.

Orientadores: Marcos Vicente de BritoMoreira

Felipe Gomes de Oliveira Cabral

Rio de Janeiro

Novembro de 2018

DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT

SYSTEMS

Maria Zeneide Mota Veras Neta

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Marcos Vicente de Brito Moreira, D.Sc.

Prof. Felipe Gomes de Oliveira Cabral, D.Sc.

Prof. Antonio Eduardo Carrilho da Cunha, D.Eng.

Prof. José Eduardo Ribeiro Cury, Docteur d'Etat

RIO DE JANEIRO, RJ � BRASIL

NOVEMBRO DE 2018

Veras Neta, Maria Zeneide Mota

Distributed synchronous diagnosis of discrete-event

systems/Maria Zeneide Mota Veras Neta. � Rio de Janeiro:

UFRJ/COPPE, 2018.

X, 76 p.: il.; 29, 7cm.
Orientadores: Marcos Vicente de BritoMoreira

Felipe Gomes de Oliveira Cabral

Dissertação (mestrado) � UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográ�cas: p. 72 � 76.

1. Synchronous fault diagnosis. 2. Distributed

diagnosis. 3. Discrete-event systems. I.Moreira, Marcos

Vicente de Brito et al. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia Elétrica. III.

Título.

iii

Agradecimentos

Agradeço primeiramente a Deus, pela vida e por me permitir chegar até aqui.

Agradeço também a meus pais, Maria Antoneide e Manoel Mariano, por todo

carinho e apoio incondicional. Agradeço ao meu irmão Manoel Júnior, pela torcida

e incentivo. E, em especial, agradeço a minha irmã Maria Albermária, por estar

presente durante toda essa trajetória, e por sempre acreditar em mim.

Agradeço ao meu noivo Leandro de Sá, por todo apoio, paciência e

companheirismo. Obrigada por estar sempre ao meu lado e, em especial, obrigada

por me ajudar no que acabou aparecendo como uma �disciplina extra�: a

instabilidade emocional. Sem você o caminho teria sido, sem dúvidas, muito mais

difícil.

Agradeço a minha sogra Rosimeri Nery, por toda preocupação e ajuda,

principalmente nos �nais de semana corridos, com muitas horas dedicadas ao estudo.

Sua ajuda foi fundamental em muitos momentos.

Agradeço a toda equipe do Centro de Referência Tecnológica - Claro Brasil, pelo

apoio e pela �exibilidade com relação a horário, me permitindo cursar todas as

disciplinas e me ausentar nos momentos em que precisei, em especial ao José Silva,

Laila, Carolina e Luiza.

Agradeço aos meus orientadores Felipe Cabral e Marcos Moreira, por toda a

orientação e horas dedicadas a me ensinar, incentivar e aconselhar sempre que

precisei.

Agradeço também à COPPE/UFRJ, seu corpo docente e administração, e a

todos aqueles que, de alguma forma, contribuíram para que eu chegasse até aqui.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DIAGNÓSTICO SÍNCRONO DISTRIBUÍDO DE SISTEMAS A EVENTOS

DISCRETOS

Maria Zeneide Mota Veras Neta

Novembro/2018

Orientadores: Marcos Vicente de BritoMoreira

Felipe Gomes de Oliveira Cabral

Programa: Engenharia Elétrica

Recentemente, o diagnóstico síncrono centralizado e descentralizado de sistemas

a eventos discretos foi proposto na literatura. Neste trabalho, propomos uma

estratégia de diagnóstico síncrono diferente, denominada diagnóstico síncrono

distribuído. Neste esquema, diagnosticadores locais são construídos com base

na observação do comportamento livre de falha dos componentes do sistema.

Considera-se que esses diagnosticadores locais são agrupados em redes de

comunicação e capazes de informar a ocorrência de eventos e sua estimativa de

estado atual a outros diagnosticadores locais pertencentes à mesma rede. Os

diagnosticadores são implementados considerando um protocolo de comunicação

especí�co, o qual re�na a estimativa de estado do comportamento livre de falha

dos módulos do sistema, reduzindo, portanto, a linguagem aumentada livre de falha

considerada no diagnóstico síncrono. Isso é feito com a adição de condições booleanas

para a transposição de transições dos modelos livre de falha dos componentes do

sistema, as quais veri�cam se a ocorrência de um evento observável é possível de

acordo com a estimativa do estado atual dos outros diagnosticadores locais. Isso leva

à noção de diagnosticabilidade síncrona distribuída. Um algoritmo para veri�car a

diagnosticabilidade síncrona distribuída com complexidade polinomial no espaço de

estados dos modelos dos componentes do sistema é proposto.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Master of Science (M.Sc.)

DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT

SYSTEMS

Maria Zeneide Mota Veras Neta

November/2018

Advisors: Marcos Vicente de BritoMoreira

Felipe Gomes de Oliveira Cabral

Department: Electrical Engineering

Recently, the centralized and decentralized synchronous diagnosis of discrete-

event systems have been proposed in the literature. In this work, we propose a

di�erent synchronous diagnosis strategy called distributed synchronous diagnosis.

In this scheme, local diagnosers are computed based on the observation of the

fault-free behavior models of the system components. It is considered that these

local diagnosers are separated into networks, and are capable of communicating

the occurrence of events and their current state estimate to other local diagnosers

that belong to the same network. The diagnosers are implemented considering

an speci�c communication protocol that re�nes the state estimate of the fault-

free behavior of the system modules, reducing, therefore, the augmented fault-free

language considered for synchronous diagnosis. In order to do so, boolean conditions

are added to the transitions of the fault-free component models, which check if the

occurrence of an observable event is possible according to the current state estimate

of other local diagnosers. This leads to the notion of distributed synchronous

diagnosability. An algorithm to verify the distributed synchronous diagnosability

with polynomial complexity in the state-space of the system component models is

proposed.

vi

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Fundamental Concepts of Discrete-Event Systems 9

2.1 Languages . 9

2.1.1 Language operations . 10

2.2 Automata . 12

2.2.1 Operations on automata . 15

2.2.2 Automata with partially observed events 19

2.3 Final comments . 21

3 Diagnosability of DESs 22

3.1 Synchronous centralized diagnosability of DESs 26

3.1.1 Delay bound for synchronous diagnosis 33

3.2 Synchronous codiagnosability of DESs 39

3.3 Final comments . 45

4 Distributed Synchronous Diagnosability of DESs 47

4.1 Architecture . 50

4.2 Distributed synchronous diagnosis method 51

4.3 Distributed synchronous diagnosability 59

4.4 Final comments . 68

5 Conclusions and future work 69

Bibliography 72

vii

List of Figures

1.1 Di�erent diagnosis schemes and the synchronous diagnosis approach. 6

2.1 State transition diagram of automaton G of Example 2.2. 13

2.2 Automata G1 and G2 of Example 2.3. 18

2.3 Automata Gprod and Gpar of Example 2.3. 18

2.4 Automaton G of Example 2.4 (a), and observer automaton of G,

Obs(G,Σo) (b). 21

3.1 Automaton Al. 23

3.2 Automaton G (a), automaton Gl (b), and diagnoser automaton Gd

(c) of Example 3.1. 25

3.3 Synchronous centralized diagnosis architecture. 27

3.4 Automata G1 and G2 of Example 3.2. 30

3.5 Automata G and GN of Example 3.2. 30

3.6 Automata GN1 and GN2 of Example 3.2. 30

3.7 Automaton GF of Example 3.3. 33

3.8 Automata GR
N1

and GR
N2

of Example 3.3. 33

3.9 Automaton GR
N of Example 3.3. 34

3.10 Automaton GSD
V of Example 3.3. 34

3.11 Graph G
SD

V = Gdag of Example 3.4. 38

3.12 Topological Sort of graph Gdag of Example 3.4. 38

3.13 Topological Sort of graph Gdag of Example 3.4, with values of

weighting functions ρ(vi, vj) (above the edges) and l(vj) (below the

vertices). 38

3.14 Synchronous decentralized diagnosis architecture. 40

3.15 Automata ĜR
N1

and ĜR
N2

of Example 3.5. 43

3.16 Automaton ĜR
N of Example 3.5. 43

3.17 Automaton GSC
V of Example 3.5. 44

3.18 Graph G
SD

V = Gdag of Example 3.6. 45

3.19 Topological Sort of graph Gdag of Example 3.6. 45

viii

3.20 Topological Sort of graph Gdag of Example 3.4, with values of

weighting functions ρ(vi, vj) (above the edges) and l(vj) (below the

vertices). 45

4.1 Comparison between the synchronous diagnosis architectures: (a)

the synchronous centralized scheme; (b) the conditional synchronous

scheme; (c) the synchronous decentralized scheme; (d) the distributed

synchronous scheme. 49

4.2 The distributed synchronous diagnosis scheme for a system composed

of �ve modules and two networks. 51

4.3 Automata G1, G2, and G3 of Example 4.1. 52

4.4 Automaton G of Example 4.1. 53

4.5 Automaton GN of Example 4.1. 53

4.6 Automata GN1 , GN2 and GN3 of Example 4.1. 53

4.7 Automata GR
N1
, GR

N2
and GR

N3
of Example 4.1. 53

4.8 Automaton GR
N of Example 4.1. 54

4.9 Distributed synchronous diagnosis architecture for the system of

Example 4.2. 55

4.10 Automata GN1,ϕ , GN2,ϕ and GN3,ϕ of Example 4.3. 58

4.11 Automaton GR
N . The white states represent the states of GN .

The hatched states and the dashed transitions are the states and

transitions of GR
N that are eliminated by applying Algorithm 4.2 in

Example 4.4. 61

4.12 Automaton GR
N,ϕ of Example 4.4. 61

4.13 Automaton GF of Example 4.5. 65

4.14 Part of automaton GDD
V with states labeled with F of Example 4.5. . 66

ix

List of Tables

1.1 Comparison between di�erent diagnosis schemes. 7

4.1 Summary of notations regarding the synchronous diagnosis

architectures. 68

x

Chapter 1

Introduction

Industrial systems are becoming more complex, with several subsystems or local

components operating concurrently, interacting and connected on local networks or

through the internet. Such systems are known as cyber-physical systems (CPSs).

CPS is a new generation of systems that integrate computing, communication and

physical capabilities to control and monitor di�erent processes [1�4].

Several CPSs can be considered as discrete-event systems (DESs), which are

dynamic systems, whose evolution is governed by the occurrence of events, and have

a discrete state-space [5, 6]. Events are directly associated to state changes in the

system and are modeled as an instantaneous occurrence. Examples of events are

the command of a controller, the realization of a task by a robot, or a change of

position of an autonomous guided vehicle.

Due to the instantaneous occurrence of events and the discrete nature of the

state-space of a DES, mathematical formalisms based on di�erential or di�erence

equations are not suitable for representing these systems. Alternative mathematical

formalisms are used in order to represent these characteristics properly. In the

literature, there are several ways to describe DESs, and the most common are

automata and Petri nets [5�9].

DESs are subject to the occurrence of faults, which are unexpected changes in

the system behavior that can cause a reduction in the reliability and performance

of the system. In CPSs, that typically are composed of several physical subsystems,

1

the occurrence of a fault in one of these subsystems can alter the behavior of

other integrated components, which impacts the whole system behavior. Thus, the

detection and isolation of a fault can be a complex task to perform, leading to the

need for e�cient mechanisms to identify the occurrence of fault events. Moreover,

it is also important to analyze the delay bound for diagnosis, which is the maximum

number of events that the system can generate after the occurrence of the fault

event until the fault is detected, in order to evaluate the e�ciency of the diagnosis

method.

There are several works in the literature that address the problem of fault

diagnosis of DESs [10�26]. In the seminal work SAMPATH et al. [10, 11], a diagnosis

scheme for systems modeled by �nite state automata, is presented. The method

based on the construction of a diagnoser that can be used to both detect and isolate

fault event occurrences and to verify the diagnosability of a language, i.e., verify if

the fault event occurrence can be detected within a bounded delay. However, the

implementation of the diagnoser presented in SAMPATH et al. [10, 11] is usually

avoided since, in the worst-case, the state-space of the diagnoser grows exponentially

with the size of the plant model state-space. This is due to the fact that the diagnoser

proposed in SAMPATH et al. [10, 11] is based on the computation of an observer

automaton. Moreover, the diagnoser is based on the global system model, which

is in general obtained from the composition of the system components, and whose

state-space can also grows exponentially with the number of components.

In the diagnosis scheme proposed in SAMPATH et al. [10, 11], it is considered

that all information regarding the occurrence of events is available in a centralized

way, which is not always the case for systems with a high degree of complexity and

with a large number of components. In these cases, if the diagnosis information

is physically distributed, diagnosis architectures such as the decentralized [12�14]

and distributed [15, 16] are more suitable. In Protocol 3 of DEBOUK et al. [12], a

decentralized diagnosis scheme where local diagnosers identify the occurrence of a

fault event using only local observations of the global system model is presented. In

2

this approach, each local diagnoser has a di�erent set of observable events, and when

at least one local diagnoser identi�es the fault occurrence, it sends this information to

a coordinator, that informs the operator of the system. The notion of decentralized

diagnosability has been called codiagnosability [13]. The centralized diagnosis

scheme [10, 11, 24] can be seen as a particular case of the decentralized architecture

[12�14], and polynomial time algorithms for the veri�cation of codiagnosability,

that can also be used to verify diagnosability, have been proposed in the literature

[13, 27, 28].

In the distributed diagnosis approach, local diagnosers are computed from

the global system model and are based on local observations. In this scheme,

di�erently from the decentralized diagnosis architecture, the local diagnosers

exchange information with each other in order to improve the diagnosis decision.

The information exchanged between local diagnosers can be associated, for example,

with the observation of events and/or their current state estimates. In order to do

so, di�erent communication protocols for distributed diagnosis have been proposed

in the literature [15�17].

In KEROGLOU and HADJICOSTIS [16], a protocol that allows the exchange

of information regarding state estimates at predetermined synchronization points is

presented. In KEROGLOU and HADJICOSTIS [16], the global system is modeled

by a nondeterministic �nite state automaton and local diagnosers are constructed

based on di�erent sets of observable events, resulting in di�erent state estimates of

the global system. The strategy considered in KEROGLOU and HADJICOSTIS

[16] is such that when at least one local diagnoser observes a predetermined number

of events, the state estimate of all local diagnosers is sent to a coordinator, that

computes the intersection of the sets of state estimates and communicates this

information to all local diagnosers. The information exchanged is used by the local

diagnosers to re�ne their diagnosis decision in the next event observation. The fault

is detected when at least one local diagnoser identi�es its occurrence in the system.

It is important to notice that the exponential growth of the global model with

3

the number of system components is not avoided in the architectures considered

in [12�16], since the local diagnosers are computed from the global plant model.

In SU and WONHAM [17], a di�erent notion of distributed diagnosis is proposed,

where local diagnosers are constructed from the component models of the system in

order to avoid the construction of the composed system model. The idea is to infer

if a fault event, that is modeled in a local component, has been executed by the

composed system. The local diagnosers are computed based on the local behavior

models, and exchange information with other diagnosers. Since both the faulty and

fault-free behaviors of each local component is considered for the construction of

the local diagnosers, a consistency analysis must be carried out. A communication

protocol is de�ned in order to achieve global (resp. local) consistency, i.e., for each

local estimate, knowing all other local estimates does not help to further reduce

redundant information in the local estimate (resp. knowing adjacent local estimates

does not improve the local diagnosis).

Also taking advantage of the modularity of DESs, in DEBOUK et al. [29] and

CONTANT et al. [30] di�erent notions of modular diagnosability are proposed.

In these works, it is considered that the fault event is modeled in a unique local

component of the system, and the occurrence of the fault event is identi�ed by

observing only this local component. It is important to remark that in the modular

diagnosis architecture, it is assumed that the component where the fault is modeled,

has persistent excitation, i.e., the system does not generate a faulty trace with

arbitrarily long length formed only with events that do not belong to the component

where the fault is modeled.

Recently, in CABRAL et al. [31], CABRAL and MOREIRA [32] and CABRAL

[33] a new technique for fault diagnosis of DESs, called synchronous diagnosis,

is proposed. In this approach, a synchronized diagnoser based on the fault-free

behavior model of the system components is constructed, and the de�nition of

synchronous diagnosability of the language of the system is introduced. The main

advantage of this method is to use the modularity of a DES to avoid a diagnosis based

4

on the composed system model, which can have exponential growth in the state-

space with the number of system components. In CABRAL and MOREIRA [34] and

CABRAL [33], the centralized synchronous diagnosis is extended to the decentralized

architecture, and a notion of synchronous codiagnosability is de�ned. It is also

shown in CABRAL and MOREIRA [34] and CABRAL [33], that the centralized

synchronous diagnosis is a particular case of the decentralized synchronous diagnosis.

Di�erently from the modular diagnosis scheme [29, 30], where the diagnoser is

computed considering only the component where the fault is modeled, in the

decentralized synchronous approach, local diagnosers are constructed for all system

components. Thus, it is possible to detect the occurrence of the fault event in a local

diagnoser based on a component where the fault is not modeled, which is not possible

in the modular diagnosis scheme. Therefore, a system not modularly diagnosable

can be synchronously diagnosable. It is important to remark that none of the

assumptions made in CONTANT et al. [30] for modular diagnosis are considered in

the synchronous diagnosis scheme [31�36].

The main drawback of the synchronous diagnosis technique is that the observed

fault-free language considered for diagnosis can be a larger set than the observed

fault-free language of the composed system. Thus, a diagnosable system, according

to SAMPATH et al. [10], can be not synchronously diagnosable. In order to

reduce the growth of the observed fault-free language for synchronous diagnosis,

in CABRAL et al. [35], the addition of boolean conditions to the transitions of

the local diagnosers in the centralized architecture is proposed. These conditions

are computed from the fault-free behavior model of the composed system. By

considering these conditions, the transitions of the diagnosers that are not associated

with a transition in the fault-free behavior model of the composed system are

disabled, avoiding some incorrect state estimates. By applying this modi�cation, the

augmented observed fault-free language considered in the synchronous centralized

diagnosis is reduced, which improves the diagnosis decision. The notion of

conditional synchronous diagnosability is introduced in CABRAL et al. [35], where

5

it is shown that a system that is not synchronously diagnosable can be conditionally

synchronously diagnosable. In CABRAL et al. [35], a method for the veri�cation of

the conditional synchronous diagnosability of a system is also presented.

In this work, we introduce the distributed synchronous diagnosis architecture.

In this scheme, a communication protocol is developed and local diagnosers are

constructed from the fault-free behavior model of the system components. For each

component, we consider that there exists a corresponding local measurement site,

which provides information of local event observations. In addition, we assume that

local diagnosers can be connected through networks, and that they can exchange

information regarding the observation of events and local state estimates. We

also present the notion of distributed synchronous diagnosability, which takes into

account the information that can be communicated between local diagnosers. The

approach presented in this work, generalizes the conditional centralized synchronous

diagnosis method proposed in CABRAL et al. [35] to the distributed case. The

main advantage of the distributed synchronous diagnosis is the reduction of the

fault-free language for synchronous diagnosis, in comparison with the synchronous

decentralized diagnosis scheme proposed in CABRAL and MOREIRA [34] and

CABRAL [33], leading to a less conservative fault diagnosis.

Centralized Decentralized Distributed Modular

Failure
Diagnosis

Synchronous

Centralized Decentralized Distributed

Figure 1.1: Di�erent diagnosis schemes and the synchronous diagnosis approach.

It is important to remark that, in the synchronous distributed diagnosis

approach, a fault event can be detected by a local diagnoser whose corresponding

local component does not have the fault event modeled. Moreover, di�erently

from other methods proposed in the literature, the same fault event can be

modeled in more than one local component of the system. In Figure 1.1, it is

6

presented the most common diagnosis architectures proposed in the literature.

Since the synchronous diagnosis architecture cannot be classi�ed as a centralized,

decentralized, distributed nor modular architecture, it is highlighted in gray in

Figure 1.1 as a new diagnosis framework. In summary, the synchronous diagnosis can

be implemented in three di�erent schemes: (i) centralized, where a single diagnoser

is implemented, and all information regarding the observation of events is sent to the

diagnoser by a centralized measurement [31�33, 35]; (ii) decentralized, where local

diagnosers, based on the fault-free behavior component models are implemented

locally, and the fault diagnosis decision is informed to a coordinator [33, 34]; and

(iii) distributed, where diagnosers are implemented locally and can communicate

their event observations and current state estimates in order to re�ne the diagnosis

decision [36], which is the proposal of this work. In summary, in Table 1.1, the main

characteristics of each diagnosis architecture depicted in Figure 1.1 is presented.

Table 1.1: Comparison between di�erent diagnosis schemes.

Architecture
Diagnoser
computed

from

Measurement
sites

Diagnoser

Centralized
Global plant

model
Centralized
measurement

Monolithic
diagnoser

Decentralized
Global plant

model
Distributed
measurement

Local
diagnosers

Distributed
Global plant

model
Distributed
measurement

Local
diagnosers with
communication

Modular
Faulty

component
model

Centralized
measurement

Single
diagnoser

Synchronous
centralized

Fault-free
component
models

Centralized
measurement

Single
diagnoser

Synchronous
decentralized

Fault-free
component
models

Distributed
measurement

Local
diagnosers

Synchronous
distributed

Fault-free
component
models

Distributed
measurement

Local
diagnosers with
communication

7

This work is organized as follows. In Chapter 2, we present some preliminary

concepts about DESs. The notions of diagnosability and synchronous diagnosability

are presented in Chapter 3. We introduce, in Chapter 4, the distributed synchronous

diagnosis architecture, the communication protocol between local diagnosers, and

the notion of distributed synchronous diagnosability. An example is used throughout

the text to illustrate the results. The conclusions are drawn in Chapter 5.

8

Chapter 2

Fundamental Concepts of

Discrete-Event Systems

A Discrete Event System (DES) is a system whose state-space is described by a

discrete set and whose state transitions are driven by the occurrence of events.

Due to the nature of a DES, di�erential or di�erence equations are not suitable to

describe its behavior [5]. Therefore, it is necessary to introduce a di�erent formalism

to model and describe these types of systems. In this work, the automaton formalism

is considered to model DESs.

In this chapter we present the theoretical background of DESs. In order to do

so, we �rst introduce the notations and de�nitions regarding languages.

2.1 Languages

Before we introduce the concept of languages, we �rst present some notations. The

set of events of a DES is represented by symbol Σ. The concatenation of events

forms a trace, and the language of a system consists of the set of bounded length

traces that can be executed by the system. A trace that does not contain any event

is called the empty trace and is denoted by ε. The length of a trace s is represented

by ‖s‖ and, the length of the empty trace is equal to zero. In the sequel, we present

the formal de�nition of a language [5].

9

De�nition 2.1 (Language) A language L de�ned over Σ, is a set of �nite length

traces formed with events of Σ.

Example 2.1 Consider a system with event set Σ = {a, b}. The language L =

{ε, a, ab, aab, abb} is composed of �ve traces, and the length of the traces of L are

‖ε‖ = 0, ‖a‖ = 1, ‖ab‖ = 2, ‖aab‖ = 3 and ‖abb‖ = 3.

Since languages are sets, the usual operations of sets such as union, intersection,

di�erence, and complement, can be applied to languages. Moreover, there are other

important operations that can be applied to languages and are presented in the

sequel.

2.1.1 Language operations

The Kleene-closure operation over the event set Σ is represented as Σ?, and consists

of all �nite length traces that are constructed with elements of Σ, including the

empty trace ε. Therefore, a language L de�ned over Σ is a subset of Σ?. This

operation can also be applied to languages and is de�ned as follows.

De�nition 2.2 (Kleene-closure) Let L ⊆ Σ?, the Kleene-closure operation L? is

given by:

L? = {ε} ∪ L ∪ LL ∪ LLL ∪ . . .

An important operation applied to traces and, consequently, to languages is

the concatenation. A trace s = abba, for example, can be constructed by the

concatenation of two traces ab and ba. Moreover, the empty trace ε is considered

the identity element of the concatenation operation and, therefore, the trace ab is

the concatenation of ε and ab, i.e., εab = abε = ab. This operation can also be

formally de�ned for languages.

10

De�nition 2.3 (Concatenation) Let La, Lb ⊆ Σ?. The concatenation operation

LaLb is de�ned as:

LaLb = {s = sasb : (sa ∈ La) and (sb ∈ Lb)}.

The concatenation operation, when applied to languages La and Lb, generates a

set containing the concatenation of each trace of set La with each trace of set Lb.

Consider a trace s = tuv, where t, u, v ∈ Σ?, t is a pre�x of s, u is a subtrace of

s and v if a su�x of s. Notice that, since t, u, v ∈ Σ?, then ε is always a pre�x, a

subtrace and a su�x of s. Now, the de�nition of pre�x-closure of a language L can

be stated.

De�nition 2.4 (Pre�x-closure) Let L ⊆ Σ?, the pre�x-closure operation L is

given by:

L = {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.

The pre�x-closure of a language L is the set composed of all pre�xes of all traces

of L, thus L ⊆ L. If L = L, i.e., if all pre�xes of all traces of language L are also

elements of L, this language is said to be pre�x-closed.

Other important operations applied to traces and languages are the natural

projection and the inverse projection, presented in the sequel.

De�nition 2.5 (Projection) Consider Σs and Σl, such that Σs ⊂ Σl. The natural

projection P l
s : Σ?

l → Σ?
s is de�ned recursively as follows:

P l
s(ε) = ε,

P l
s(σ) =

 σ, if σ ∈ Σs,

ε, if σ ∈ Σl \ Σs,

P l
s(sσ) = P l

s(s)P
l
s(σ), for all s ∈ Σ?

l , σ ∈ Σl,

where the operator \ represents set di�erence.

11

The projection operation P l
s(s) erases all events σ ∈ Σl \ Σs from the traces

s ∈ Σ?
l . This operation can be extended to languages by applying the operation to

all traces of the language.

The inverse projection operation is de�ned as follows.

De�nition 2.6 (Inverse projection) The inverse projection P l−1

s : Σ?
s → 2Σ?

l is

de�ned as:

P l−1

s (t) = {s ∈ Σ?
l : P l

s(s) = t}.

For a given trace t ∈ Σ?
s, the inverse projection operation P l−1

s (t) generates a set

formed of all traces s that can be constructed with the events of Σl whose projection

P l
s results in the trace t. This operation can also be extended to languages by

applying the operation to all traces that belong to the language.

The language of a DES represents all traces that the system is capable of

executing, i.e., it can be used to represent the system behavior. However, mainly in

large and complex systems, the representation of the behavior of systems using only

their languages is not easy and viable to work with. Therefore, it is necessary to use

another formalism to describe DESs to facilitate the manipulation and analysis of

systems with complex behavior. In this work we use automata to represent DESs,

which are detailed in the next section.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-de�ned rules, and is formally de�ned as follows [5, 6].

De�nition 2.7 (Automaton) A deterministic automaton, denoted by G, is a �ve-

tuple:

G = (Q,Σ, f, q0, Qm),

12

where Q is the set of states, Σ is the set of events, f : Q× Σ→ Q is the transition

function, q0 is the initial state, and Qm is the set of marked states.

For the sake of simplicity, when the set of marked states Qm is the empty set,

i.e., Qm = ∅, it will be omitted in the representation of the automaton.

We can also de�ne ΓG : Q→ 2Σ as the function of active events of a state of G,

i.e., ΓG(q) is the set of all events σ ∈ Σ for which the transition function f(q, σ) is

de�ned.

Automata can be represented by state transition diagrams, which are oriented

graphs capable of reproducing all characteristics de�ned in G. The state transition

diagram is formed of vertices, represented by circles, and edges, represented by

arcs. The vertices represent the states of the system, and the edges represent the

transitions between these states, which are labeled with events of Σ in order to

represent which event correspond to each state transition. The initial state of the

automaton is represented by an arc without an origin state. Example 2.2 shows an

automaton and its state transition diagram.

Example 2.2 Consider automaton G with state set Q = {0, 1, 2} and event set

Σ = {a, g}. The transition function of G is de�ned as: f(0, a) = 1, f(0, g) =

0, f(1, g) = 2, f(2, a) = 1 and, therefore, the active event function is given by:

ΓG(0) = {a, g}, ΓG(1) = {g}, ΓG(2) = {a}. The initial state q0 is 0 and the set of

marked states is Qm = {1}. The state transition diagram of automaton G is shown

in Figure 2.1.

a
g

a
0 1 2

g

Figure 2.1: State transition diagram of automaton G of Example 2.2.

We also de�ne a path in an automaton G as a sequence

(q1, σ1, q2, . . . , qn−1, σn−1, qn), where σi ∈ Σ, qi+1 = f(qi, σi), i = 1, 2, . . . , n − 1. A

13

path (q1, σ1, q2, . . . , qn−1, σn−1, qn) is said to be cyclic, if q1 = qn. The set of states

of a cyclic path forms a cycle.

Another important de�nition is the generated and marked languages of an

automaton, presented as follows.

De�nition 2.8 (Generated and marked languages) The generated language

of an automaton G = (Q,Σ, f, q0, Qm) is de�ned as

L(G) = {s ∈ Σ? : f(q0, s) is de�ned}.

The marked language of G is de�ned as

Lm(G) = {s ∈ L(G) : f(q0, s) ∈ Qm}.

Notice that, in De�nition 2.8, the domain of the transition function is considered

to be extended, i.e., f : Q× Σ? → Q. In addition, notice that for any G such that

Q 6= ∅, ε ∈ L(G).

In general, the language generated by G, L(G), is composed of all traces that,

starting from the initial state, can be concatenated by following the transitions of

the state transition diagram. Therefore, since a trace in G is only feasible if all its

pre�xes are also feasible, the generated language L(G) is pre�x-closed by de�nition.

Moreover, if f is a total function over its domain, then L(G) = Σ?. In this work,

the language generated by G, L(G), is also referred to as L.

The marked language of G, Lm(G), is a subset of L, which contains all traces s

that reach a marked state, i.e., all traces s such that f(q0, s) ∈ Qm. In this case,

Lm(G) is not necessarily pre�x-closed, since Qm is not necessarily equal to Q.

The generated language of an automaton G = (Q,Σ, f, q0) is said to be live if

ΓG(q) 6= ∅ for all q ∈ Q.

In the following, we introduce some operations that can be applied to automata.

14

2.2.1 Operations on automata

There are several operations that can be used to modify the state transition diagram

of a single automaton, or compose two or more automata. These operations are

separated into two groups: unary and composition operations.

Unary operations

Unary operations are applied to a single automaton, in order to alter appropriately

its state transition diagram, without change the automaton event set. In the sequel

we present the de�nition of two unary operations.

De�nition 2.9 (Accessible part) Consider automaton G = (Q,Σ, f, q0, Qm).

The accessible part of G, Ac(G), is de�ned as:

Ac(G) = (Qac,Σ, fac, q0, Qac,m),

where Qac = {q ∈ Q : (∃s ∈ Σ?)[f(q0, s) = q]}, Qac,m = Qm ∩ Qac, and fac :

Qac × Σ → Qac. The transition function fac corresponds to f restricted to the

smaller domain of the accessible states Qac.

The operation of taking the accessible part of an automaton G erases the states

that are not reachable from the initial state q0 and its related transitions.

It is important to remark that the generated language of an automaton G is not

modi�ed with this operation.

De�nition 2.10 (Coaccessible part) Consider automaton G = (Q,Σ, f, q0, Qm).

The coaccessible part of G, CoAc(G), is de�ned as:

CoAc(G) = (Qcoac,Σ, fcoac, q0,coac, Qm),

where Qcoac = {q ∈ Q : (∃s ∈ Σ?)[f(q, s) ∈ Qm]}, q0,coac = q0 if q0 ∈ Qcoac and q0,coac

is not de�ned if q0 6∈ Qcoac, and fcoac : Qcoac × Σ→ Qcoac.

15

The operation of taking the coaccessible part of automaton G deletes all states

q such that a path from q to a marked state does not exist.

It is important to notice that the generated language of G can be reduced by

applying the coaccessible part, i.e., L(CoAc(G)) ⊆ L(G), while the marked language

is not modi�ed.

Composition operations

Composition operations applied to DESs modeled by automata allow us to combine

two or more automata, resulting in a single automaton. Moreover, using composition

operations it is possible to construct the global system model from the models of

its individual components. In the following, we present two important composition

operations.

De�nition 2.11 (Product composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and

G2 = (Q2,Σ2, f2, q0,2, Qm2) be two automata. The product of G1 and G2 results

in the automaton

G1 ×G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f1×2, (q0,1, q0,2), Qm1 ×Qm2),

where

f1×2((q1, q2), σ) =

 (f1(q1, σ), f2(q2, σ)) if σ ∈ ΓG1(q1) ∩ ΓG2(q2)

unde�ned, otherwise.

In the product composition, an event can only occurs in the resulting automaton

G1 × G2 if it occurs simultaneously in G1 and G2. For this reason, the product

operation is also known as completely synchronous composition.

Due to the complete synchronization of the product operation, the generated

language of G1 ×G2 is the intersection of the generated languages of the automata

used in the composition, i.e., L(G1 × G2) = L(G1) ∩ L(G2). If Σ1 ∩ Σ2 = ∅, then

16

L(G1 ×G2) = {ε}.

In general, systems are formed by several components that work together and

whose event sets have private events, representing the internal behavior of each

component, and common events, representing the coupling behavior between the

components. The common way to obtain the global model of a system from the

models of its components is applying the parallel composition. With this operation,

it is possible to maintain the private behavior of each component and capture the

synchronism between the components. The formal de�nition of parallel composition

is presented in the sequel.

De�nition 2.12 (Parallel composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and

G2 = (Q2,Σ2, f2, q0,2, Qm2) be two automata. The parallel composition of G1 and

G2 results in automaton

G1‖G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f1‖2, (q0,1, q0,2), Qm1 ×Qm2),

where

f1‖2((q1, q2), σ) =

(f1(q1, σ), f2(q2, σ)) if σ ∈ ΓG1(q1) ∩ ΓG2(q2);

(f1(q1, σ), q2) if σ ∈ ΓG1(q1) \ Σ2;

(q1, f2(q2, σ)) if σ ∈ ΓG2(q2) \ Σ1;

unde�ned, otherwise.

The parallel composition synchronizes the common events of components, i.e.,

an event σ ∈ Σ1 ∩ Σ2 can only occur in the resulting automaton G1‖G2 if it occurs

in G1 and G2 simultaneously. On the other hand, private events of each automaton,

i.e., the events in (Σ1 \ Σ2) ∪ (Σ2 \ Σ1), can be executed whenever possible in G1

and G2.

It is important to notice that if Σ1 = Σ2, then G1‖G2 = G1 × G2, since all

transitions can only occur synchronously.

17

In order to correctly de�ne the language generated by G1‖G2, it is necessary

to consider the natural projections Pi = (Σ1 ∪ Σ2)? → Σ?
i , for i = 1, 2. Based

on these projections, the generated language of G1‖G2 is equal to L(G1‖G2) =

P−1
1 (L(G1)) ∩ P−1

2 (L(G2)).

An example of the product and parallel composition operations is presented in

the sequel.

Example 2.3 Consider automata G1 and G2 presented in Figure 2.2(a) and 2.2(b),

respectively. The event set of G1 and G2 are, respectively, Σ1 = {a, b} and Σ2 =

{a, c}. Computing the product and parallel compositions of automata G1 and G2,

we obtain automata Gprod = G1 × G2 and Gpar = G1‖G2, respectively, presented

in Figure 2.3. Notice that since the only common event of G1 and G2 is event a,

i.e., Σ1∩Σ2 = {a}, automaton Gprod has only transitions labeled with event a, while

in automaton Gpar it is possible to observe the concurrent behavior of G1 and G2,

represented by transitions labeled with events b and c.

0 a 1

b, a

(a) G1

a
c

a
0 1 2

c

(b) G2

Figure 2.2: Automata G1 and G2 of Example 2.3.

0,0 a 11,

(a) Gprod

0,0 1 1,2a
c

a

b b, c

1,

(b) Gpar

Figure 2.3: Automata Gprod and Gpar of Example 2.3.

In the following, we present an important characteristic that must be taken into

account when we use automata for modeling real systems.

18

2.2.2 Automata with partially observed events

In real systems it is not always possible to detect the occurrence of all events, due to

limitations of the sensors used in the system. Events that do not have an associated

sensor, such as fault events that do not cause immediate change in sensors readings,

are called unobservable events. With the view to representing this, the event set Σ

can be partitioned as Σ = Σo∪̇Σuo, where Σo is the set of observable events, Σuo is

the set of unobservable events, and ∪̇ represents union of disjoint sets. The observed

language of an automaton G can be de�ned as Po(L(G)), where Po : Σ? → Σ?
o is the

natural projection.

In order to analyze a system with unobservable events, it is important to de�ne

the concept of unobservable reach of a state q, denoted as UR(q). The unobservable

reach of a given state q ∈ Q represents the set of states that can be reached from

q after the occurrence of a trace formed with only unobservable events, and it is

formally de�ned as follows.

De�nition 2.13 (Unobservable reach) The unobservable reach of a state q ∈ Q,

represented by UR(q), is de�ned as:

UR(q) = {y ∈ Q : (∃t ∈ Σ?
uo)[f(q, t) = y]}. (2.1)

The unobservable reach can also be de�ned for a set of states B ∈ 2Q as:

UR(B) =
⋃
q∈B

UR(q). (2.2)

From the de�nitions of observed language and unobservable reach, it is possible

to compute a deterministic automaton that generates the observed language of G

with respect to Σo, Po(L(G)). This automaton is called observer of G and is denoted

by Obs(G,Σo).

De�nition 2.14 (Observer automaton) The observer of automaton G with

respect to the set of observable events Σo, Obs(G,Σo), is given by:

19

Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs),

where qobs ⊆ 2Q. fobs, q0,obs and Qm,obs are obtained by following the steps of

Algorithm 2.1 [5, 37].

Algorithm 2.1 Observer automaton

Input: G = (Q,Σ, f, q0, Qm), and the set of observable events Σo, where Σ =

Σo∪̇Σuo.

Output: Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs).

1: De�ne q0,obs := UR(q0), Qobs := {q0,obs} and Q̃obs := Qobs.

2: Q̂obs := Q̃obs and Q̃obs := ∅.

3: For each B ∈ Q̂obs:

3.1: Γobs(B) :=
(⋃

q∈B ΓG(q)
)
∩ Σo.

3.2: For each σ ∈ Γobs(B),

fobs(B, σ) := UR({q ∈ Q : (∃y ∈ B)[q = f(y, σ)]}).

3.3: Q̃obs := Q̃obs ∪ fobs(B, σ).

4: Qobs := Qobs ∪ Q̃obs.

5: Repeat steps 2 to 4 until all accessible part of Obs(G,Σo) is constructed.

6: Qm,obs := {B ∈ Qobs : B ∩Qm 6= ∅}.

We present now an example with the observer Obs(G,Σo) of a system modeled

by automaton G.

Example 2.4 Consider automaton G presented in Figure 2.4(a). The set of events

is given by Σ = {a, b, σuo}, where Σo = {a, b} and Σuo = {σuo}, and the set of states

of G is Q = {0, 1, 2, 3}. The observer of G, Obs(G,Σo), is shown in Figure 2.4(b).

Let us assume that the system has executed trace s = aσuob, then the observed trace

20

is Po(s) = ab, where Po : Σ? → Σ?
o. Notice that the state reached in Obs(G,Σo)

after the observation of trace ab is {2, 3}, which is the state estimate of G after

observation of trace s. As it can be seen in Figure 2.4(b), each state of the observer

Obs(G,Σo) is the state estimate of G after the observation of a trace.

σuo

b
0 1 2

3

a

b

a

(a) G

0 1,3 2,3

3

a b

a, b

b
(b) Obs(G,Σo)

Figure 2.4: Automaton G of Example 2.4 (a), and observer automaton of G,
Obs(G,Σo) (b).

2.3 Final comments

In this chapter, the background of DESs, such as the de�nition of language,

operations and the automaton formalism used to represent DESs is presented.

Automata with partially observed events, which models systems where not all events

are possible to be detected, is also presented.

An example of unobservable event in real systems is the occurrence of a fault

and, methods with the aim to detect and isolate its occurrence are needed. In the

next chapter, we present the theoretical background of diagnosis for DESs modeled

as automata.

21

Chapter 3

Diagnosability of DESs

Systems are subject to faults that can alter their expected behavior. Thus, it is

necessary to de�ne mechanisms that are capable of diagnosing the occurrence of

fault events. In this work, a fault event is an unobservable event, since observable

events are trivially diagnosed. In this chapter we present some preliminary results

regarding diagnosis for DESs. In order to do so, we �rst introduce the seminal

de�nition of diagnosability of DESs presented in SAMPATH et al. [10].

Consider a system modeled by automaton G and consider the language generated

by G as L(G) = L. The set of fault events is denoted by Σf , where Σf ⊆ Σuo and,

for the sake of simplicity, assume that the set of fault events is composed of only one

fault event type, i.e., Σf = {σf}. It is important to remark that in systems with

more than one fault event type, each fault event can be considered separately [38]

and, therefore, there is no loss of generality in the results presented in this work by

making this assumption.

Before presenting the de�nition of language diagnosability of DESs, we �rst

introduce the notion of faulty and fault-free traces as follows.

De�nition 3.1 (Faulty and fault-free traces) A trace s ∈ L is a faulty trace if

σf is one of the events that form s, otherwise, the trace is said to be a fault-free

trace.

The set of all fault-free traces that can be generated by the system is the fault-

22

free language, denoted as LN , where LN ⊂ L, and the subautomaton of G that

generates LN is denoted by GN . Thus, the set of all faulty traces is LF = L \ LN ,

called faulty language. Now, the de�nition of language diagnosability, presented in

SAMPATH et al. [10], can be stated.

De�nition 3.2 (Language diagnosability) Let L and LN ⊂ L be the live and

pre�x-closed languages generated by G and GN , respectively. L is said to be

diagnosable with respect to projection Po : Σ? → Σ?
o and Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF)(‖t‖ ≥ z)⇒

(Po(st) 6∈ Po(LN)).

From De�nition 3.2, it can be seen that L is diagnosable with respect to Po

and Σf if, and only if, for all faulty traces st with arbitrarily long length after the

occurrence of a fault event, there does not exist a fault-free trace sN ∈ LN , such

that Po(st) = Po(sN). Thus, if L is diagnosable, then it is always possible to identify

the occurrence of a fault event after a bounded number of event occurrences.

In order to verify the diagnosability of L and for implementation of a fault

diagnosis scheme, a diagnoser automaton, denoted by Gd can be computed [5, 10,

11]. In order to construct the diagnoser automaton Gd, it is necessary to present

the labeler automaton automaton Al, de�ned as Al = (Ql,Σf , fl, q0,l), where Ql =

{N,F}, fl(N, σf) = F , fl(F, σf) = F , q0,l = N . The state transition diagram of Al

is shown in Figure 3.1.

σf
N F

σf

Figure 3.1: Automaton Al.

Now, consider a system modeled by automaton G = (Q,Σ, f, q0). By computing

the parallel composition between automata G and Al, we obtain automaton Gl =

G‖Al. A state ql ∈ Gl is labeled with N if it is reached by a fault-free trace, and

23

it is labeled with F if it is reached by a faulty trace. The language generated by

Gl is L(Gl) = L. After the construction of automaton Gl, the diagnoser automaton

Gd is computed by making the observer of Gl with respect to its observable events,

i.e., Gd = Obs(Gl,Σo). In the following, the diagnoser automaton Gd is formally

de�ned.

De�nition 3.3 (Diagnoser automaton) The diagnoser automaton Gd of the

system G, with respect to the faulty event set Σf and observable events set Σo,

is de�ned as:

Gd = Obs(Gl,Σo).

Notice that the generated language of Gd is the natural projection of L, i.e.,

L(Gd) = Po(L). Moreover, we can also notice that the states of Gd are the state

estimates of Gl after the observation of a trace. Thus, if Gd reaches a state that has

only labels N , it can be a�rmed that the fault did not occur, however if Gd reaches

a state where all labels are F , the fault certainly occurred and is diagnosed.

The states of Gd that have both labels, N and F , are called uncertain states,

since it indicates that the diagnoser is not certain about the fault occurrence status.

A cycle formed by uncertain states is called an uncertain cycle. When an uncertain

cycle can be associated with at least two cycles in Gl, one with states labeled with

N and one with states labeled with F , this cycle is called indeterminate. Thus,

the veri�cation of diagnosability of L can be done by searching for indeterminate

cycles in Gd, such that if Gd has an indeterminate cycle, then L is not diagnosable,

otherwise, L is diagnosable [10, 11, 39].

The example in the sequel is presented in order to illustrate the construction of

the diagnoser automaton Gd.

Example 3.1 Consider the system G depicted in Figure 3.2(a). The set of events

is given by Σ = {a, b, c, d, σf}, where the set of observable events is Σo = {a, b, c, d}

and the set of uonbservable event is Σuo = {σf}. The fault event set is Σf = {σf}.

Automaton Gl = G‖Al is shown in Figure 3.2(b), and the diagnoser automaton Gd,

24

obtained by computing the observer of Gl with respect to its observable event set Σo,

is shown in Figure 3.2(c).

Notice that, if the �rst observed event is b, the fault event has not occurred.

However, if the �rst observed event is a, Gd reaches the uncertain state {2N ; 3F}.

If, in the sequel, event b is observed, Gd reaches a fault-free state, con�rming the non

occurrence of the fault event. However if only event c is observed, Gd remains in the

uncertain state {2N ; 3F}. Notice that the uncertain cycle formed by the self-loop

labeled with event c in state {2N, 3F} is also an indeterminate cycle, since there are

two cycles in G, a faulty and a fault-free, associated with the uncertain cycle of Gd,

namely, the traces ac? and aσfc
?. Since there exists an indeterminate cycle in Gd,

the generated language of G, L, is not diagnosable with respect to Po : Σ? → Σ?
o and

Σf .

a
1

c

2
σf

3

c

4 5 6

b

a

d

c

b

(a) G

a
1N

c

σf

c

b

a

d

2N 3F

c

b

4N 5N 6N

(b) Gl

a
1N

d

;

b

6N
a

c

4N 5N

2N 3F

b

c

(c) Gd

Figure 3.2: Automaton G (a), automaton Gl (b), and diagnoser automaton Gd (c)
of Example 3.1.

Although the diagnoser automaton Gd can be used for the veri�cation of

diagnosability of L, its computation is, in general, avoided due to the exponential

computational growth of the state-space of Gd with the cardinality of the state-

space of the system Q. In order to circumvent this problem, in MOREIRA et al.

[25, 27] an algorithm for the construction of a veri�er automaton is presented, and

it is shown that the cardinality of the set of states of the veri�er grows polynomially

with the set of states of the system.

Besides the monolithic diagnosis architecture presented in SAMPATH et al.

[10], with the computation of the diagnoser automaton Gd, there exists several

diagnosis architectures, such as decentralized, distributed and modular diagnosis

25

in the literature. Recently, a new architecture, called synchronous diagnosis, which

takes advantage of the modularity of DESs modeled by automata, has been proposed.

This architecture is presented in the sequel.

3.1 Synchronous centralized diagnosability of DESs

In general, systems are composed of several subsystems, modules or components,

such that the global plant model G is obtained from the parallel composition of

these components, i.e., G = ‖rk=1Gk, where r is the total number of components,

and Gk = (Qk,Σk, fk, q0,k), k = 1, . . . , r, are the automaton models of the system

components. Let Σk = Σk,o∪̇Σk,uo be the set of events of Gk, where Σk,o and Σk,uo

are the set of observable and unobservable events of Gk, respectively.

In the most common diagnosis architectures presented in the literature, for

example the monolithic, decentralized and distributed architectures, the diagnosis

is based on the global model of the system, G, which may result in a large number

of states, since the computation of G is obtained from the parallel composition of

the system component models, Gk. In order to avoid the computation of the global

plant model for diagnosis, in [31�33] a method that uses the modularity of DESs

modeled by automata, is proposed.

The diagnosis method presented in [31�33] is called synchronous diagnosis, and is

based on the observation of the fault-free behavior of the system components, GNk
,

for k = 1, . . . , r, which provides a superset of the state estimate of the fault-free

behavior model GN after the occurrence of an observable event. In this method,

local observers that return the online state estimate of GNk
, are constructed. The

diagnosis of a fault event is given by using a fault detection logic, which detects the

fault event when, in at least one local state observer, the state estimate is equal to

the empty set, i.e., when an observable event σo ∈ Σk,o that is not feasible in the

current state estimate of GNk
is executed.

In Figure 3.3 the architecture of the synchronous diagnosis method is presented.

In this approach, there is a unique communication channel and, therefore, an

26

observable event σo ∈ Σo is observable for all system components for which σo

is de�ned, i.e., Σi,o ∩ Σj ⊆ Σj,o, for any i, j ∈ {1, 2, . . . , r}. The diagnoser consists

of the fault-free component model observers implemented concurrently, in addition

to the fault detection logic that detects the fault event occurrence.

b b bGN1 ‖ GN

Po : Σ
⋆ → Σ⋆

o

GN2 ‖ ‖ GNr

GN1

Est.‖
GN2

Est.‖ b bb ‖
GNr

Est.

Gd

P o
1,o

P o
2,o

P o
r,o

Figure 3.3: Synchronous centralized diagnosis architecture.

In the synchronous diagnosis scheme, the modular structure of the system is

taken into account. Thus, in order to provide the current state estimate of the

fault-free behavior model of the system, the diagnoser provides the online state

estimate of each component model, which are synchronized by the occurrence of

the observable events. The resulting language is given by L(‖rk=1Obs(GNk
,Σk,o)) =

∩rk=1P
o−1

k,o (Pk,o(LNk
)), where P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, and Σo = ∪rk=1Σk,o.

Let LNa denotes the augmented fault-free language obtained by applying the

synchronous diagnosis scheme, i.e., LNa = L(‖rk=1Obs(GNk
,Σk,o)). Then, we have

that Po(LN) ⊆ LNa , which indicates that a diagnoser that uses the information

provided by the parallel composition of the observers of the system components may

represent more observable traces than the system is capable of generating. Thus,

the diagnosis based on the observation of the system modules is equivalent to the

diagnosis of an augmented system Ga whose generated language is La = LNa ∪ LF ,

where LF is the faulty language of the system [33]. The direct consequence of that,

is that a diagnosable system can be not synchronously diagnosable. It occurs when

the observation of a fault-free trace in LNa \ LN is equal to the observation of a

27

faulty trace in LF . In this case, La is not synchronously diagnosable, even if L

is diagnosable. In the following we present the formal de�nition of synchronous

diagnosability.

De�nition 3.4 (Synchronous diagnosability) Let L and LN ⊂ L be the

languages generated by automata G and GN , respectively, and let LF = L \ LN .

Consider a system composed of r modules, such that GN = ‖rk=1GNk
, where GNk

is the automaton that models the fault-free behavior of Gk, and let LNk
denote the

language generated by GNk
, for k = 1, . . . , r. Then, L is said to be synchronously

diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r,

Po : Σ? → Σ?
o, and Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ‖t‖ ≥ z)⇒

(Po(st) 6∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
))).

It is important to remark that if there is no unobservable events in common

between the system components, i.e., if Σi,uo ∩Σj,uo = ∅ for all i 6= j ∈ {1, 2, . . . , r},

the augmented fault-free language LNa is equal to the observation of the fault-

free language of the system Po(LN). Thus, if there is no synchronization between

unobservable events, the synchronous diagnosability condition is the same as the

diagnosability condition presented in SAMPATH et al. [10].

The veri�cation of the synchronous diagnosability of the language of a composed

system can be carried out by using Algorithm 3.2. Before presenting this algorithm,

we show the algorithm used to compute the fault-free behavior models GNk
from

the system component models Gk.

Algorithm 3.1 Fault-free behavior models of the system components.

Input: Gk = (Qk,Σk, fk, q0,k), for k = 1, . . . , r, and G = (Q,Σ, f, q0).

Output: GNk
= (QNk

,ΣNk
, fNk

, q0,Nk
), for k = 1, . . . , r.

1: Compute automaton GN = (QN ,ΣN , fN , q0) as follows:

28

1.1: De�ne ΣN := Σ \ Σf .

1.2: Construct automaton AN composed of a single state N , that is also its

initial state, with a self-loop labeled with all events in ΣN .

1.3: Compute the fault-free automaton GN = G× AN = (QN ,Σ, fN , q0,N).

1.4: Rede�ne the event set of GN as ΣN , i.e., GN = (QN ,ΣN , fN , q0,N).

2: For all transitions fN(qN , σ) = q′N in GN , �ag the transitions fk(qk, σ) = q′k

in Gk, for k = 1, . . . , r, where qk and q′k are the k-th elements of qN and q′N ,

respectively.

3: Obtain automata G′k by erasing from Gk all transitions that are not �agged.

4: Compute automata GNk
= Ac(G′k) = (QNk

,ΣNk
, fNk

, q0,Nk
), for k = 1, . . . , r.

5: Rede�ne the event sets ΣNk
:= Σk \ Σf , for k = 1, . . . , r.

Algorithm 3.1 is necessary since the post-faulty behavior of a component model

Gi can interact with another component model Gj, i 6= j where the fault event is not

modeled. Therefore, the behavior of Gj after the occurrence of the fault event can

be di�erent from its behavior without the occurrence of the fault event, resulting in

an automaton GNj
di�erent from Gj, even if the fault event is not modeled in Gj.

This problem is illustrated in the following example.

Example 3.2 Consider the system G composed of two components G1 and G2, i.e.,

G = G1‖G2, where G1 and G2 are shown in Figures 3.4(a) and 3.4(b), respectively.

The event sets of G1 and G2 are Σ1 = Σ1,o ∪ Σ1,uo = {a, c, e, σu, σf}, and Σ2 =

Σ2,o ∪ Σ2,uo = {a, b, c, σu}, respectively, where Σ1,o = {a, c, e}, Σ1,uo = {σu, σf},

Σ2,o = {a, b, c}, and Σ2,uo = {σu}. Automaton G is depicted in Figure 3.5(a),

where the event set is given by Σ = {a, b, c, e, σu, σf}. Following Step 1 of Algorithm

3.1 we obtain automaton GN , shown in Figure 3.5(b), which is the automaton that

models the fault-free behavior of G. According to GN it is possible to notice that

transition (2, a, 2) of automaton G2 only can occurs after the occurrence of the fault

event σf and, therefore, although the fault event is not modeled in automaton G2,

29

the transition (2, a, 2) of G2 does not belong to its fault-free behavior. Automata GN1

and GN2, obtained by following Step 4 of Algorithm 3.1, are presented in Figure 3.6.

e
0 1 6

a, e
σf

σua

4

c
2

e 3

5
c e

(a) G1

b
0 1

a2σu

a c

3

(b) G2

Figure 3.4: Automata G1 and G2 of Example 3.2.

0,0 1,0

1,1

e

b

0,1 e
b

2,2

c

5,2 e
c

σu

4,33,3 e

6,2
σf

a, e

a

(a) G

0,0,N
e

e
b

e
c

σu

0,1,N

5,2,N

1,0,N

b

c
1,1,N

2,2,N

3,3,N
e

4,3,N
a

(b) GN

Figure 3.5: Automata G and GN of Example 3.2.

e
0 1

σua

4

c
2

e 3

5
c e

(a) GN1

b
0 1

2σu

a c

3

(b) GN2

Figure 3.6: Automata GN1 and GN2 of Example 3.2.

Now we can state the algorithm used to verify the synchronous diagnosability of

the language of a system [32, 33].

30

Algorithm 3.2 Synchronous Diagnosability Veri�cation

Input: System modules Gk, for k = 1, . . . , r, and G = ‖rk=1Gk.

Output: Synchronous diagnosability decision.

1: Compute automaton GF that models the faulty behavior of G, whose marked

language is LF = L \ LN , as follows:

1.1: Set Al = (Ql,Σf , fl, q0,l), where Ql = {N,F}, q0,l = {N}, fl(N, σf) = F

and fl(F, σf) = F , for all σf ∈ Σf .

1.2: Compute Gl = G‖Al and mark all states of Gl whose second coordinate

is equal to F .

1.3: Compute the faulty automaton GF = CoAc(Gl).

2: Compute automata GNk
by following the steps of Algorithm 3.1.

3: Compute automaton GR
N = (QR

N ,Σ
R, fRN , q0) as follows:

3.1: De�ne function Rk : ΣNk
→ ΣR

Nk
, as:

Rk(σ) =

 σ, if σ ∈ Σk,o,

σRk , if σ ∈ Σk,uo.
(3.1)

3.2: Construct automata GR
Nk

= (QNk
,ΣR

Nk
, fRNk

, q0,Nk
), k = 1, . . . , r, with

fRNk
(qNk

, Rk(σ)) = fNk
(qNk

, σ), ∀qNk
∈ QNk

and ∀σ ∈ ΣNk
.

3.3: Compute GR
N = ‖rk=1G

R
Nk
.

4: Compute the veri�er automaton GSD
V = (QV ,ΣV , fV , q0,V) = GF‖GR

N . Notice

that a state of GSD
V is given by qV = (qF , q

R
N), where qF and qRN are states of

GF and GR
N , respectively, and qF = (q, ql), where q ∈ Q and ql ∈ {N,F}.

5: Verify the existence of a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V), where

31

γ ≥ δ > 0, in GSD
V such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F) ∧ (σj ∈ Σ).

If the answer is yes, then L is not synchronously diagnosable with respect to

LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o, and

Σf . Otherwise, L is synchronously diagnosable.

Notice that the method used to verify the synchronous diagnosability is based on

the comparison between the projections of the languages generated by GF and GR
N ,

where GF models the faulty behavior of the system G and GR
N is the automaton that

models the augmented fault-free behavior considered in the synchronous diagnosis

scheme. Thus, the projection in Σo of the generated language of GR
N is equal to the

fault-free language observed by the synchronous diagnoser, i.e., PR
o (L(GR

N)) = LNa ,

where PR
o : ΣR? → Σ?

o [32, 33].

In the sequel we present an example that illustrates the application of Algorithm

3.2 for the veri�cation of synchronous diagnosability.

Example 3.3 Consider automata G1 and G2 depicted in Figure 3.4, and automaton

G = G1‖G2 shown in Figure 3.5(a), where Σ = {a, b, c, e, σu, σf}, Σo = {a, b, c, e},

Σuo = {σu, σf}, Σf = {σf}, Σ1 = {a, c, e, σu, σf}, Σ1,o = {a, c, e}, Σ2 = {a, b, c, σu},

Σ2,o = {a, b, c}. Following the �rst step of Algorithm 3.2, automaton GF , shown in

Figure 3.7, is constructed, which models the faulty behavior of the system. Applying

the Step 2, we compute automata GN1 and GN2, shown in Figure 3.6 and, in Step 3,

automaton GR
N is constructed by making the parallel composition of GR

N1
and GR

N2
.

In Figure 3.8 we present automata GR
N1

and GR
N2
, while automaton GR

N is depicted

in Figure 3.9. Notice that the gray states of GR
N and their corresponding transitions

labeled with observable events do not belong to GN , which indicate the growth of

the fault-free language considered in the synchronous diagnosis scheme. Finally,

applying Step 4 of Algorithm 3.2, we obtain the synchronous veri�er automaton

32

GSD
V , depicted in Figure 3.10. Since there are no cyclic path in GSD

V labeled with F

such that at least one transition is labeled with a non-renamed event, we conclude

that L is synchronously diagnosable with respect to LN1, LN2, P
o
1,o : Σ?

o → Σ?
1,o,

P o
2,o : Σ?

o → Σ?
2,o, P1,o : Σ? → Σ?

1,o, P2,o : Σ? → Σ?
2,o, Po : Σ? → Σ?

o, and Σf .

0,0,N
e

e
b

e
c

σu

σf

0,1,N

5,2,N

1,0,N

b

c
1,1,N

2,2,N 6,2,F

a, e

3,3,N
e

4,3,N
a

Figure 3.7: Automaton GF of Example 3.3.

e
0 1

σR1
ua

4

c
2

e 3

5
c e

(a) GR
N1

b
0 1

2
σR2
u

a c

3

(b) GR
N2

Figure 3.8: Automata GR
N1

and GR
N2

of Example 3.3.

3.1.1 Delay bound for synchronous diagnosis

In CABRAL and MOREIRA [32] and CABRAL [33], a method for the computation

of the delay bound for synchronous diagnosis is proposed. The delay bound is the

maximum number of events that the system can generate after the occurrence of the

fault event until the fault is detected by the diagnoser, and can be used to evaluate

the e�ciency of the diagnosis method.

Since the fault-free language observed by the synchronous diagnoser can be a

larger set that the natural projection of the fault-free language of the system, i.e.,

33

0,0 1,0

1,1

e

b

0,1 e
b

2,2

c

5,2 e
c

3,3

3,2

a
σR2
u

5,3 e 2,3

σR2
u σR2

u

σR1
u

σR1
u

e

e

4,2
σR2
u

4,3

Figure 3.9: Automaton GR
N of Example 3.3.

0,0,N;0,0
e

b

1,0,N;1,0

b

0,1,N;0,1
e

c

1,1,N;1,1

c

5,2,N;5,2
e

σR2
u

2,2,N;2,2

5,2,N;5,3
e

2,2,N;2,3

σR2
u

σR2
u

σu

σR1
u

2,2,N;3,2

2,2,N;3,3

3,3,N;3,3

3,3,N;3,2

σuσu

σR1
u

σR1
u

σR1
u

σu

σR2
u

σR2
u

6,2,F;2,2

6,2,F;2,3

σR2
u

σR1
u

6,2,F;3,2

6,2,F;3,3
σR1
u

σR2
u

e
6,2,F;4,2

e
6,2,F;4,3

σR2
u

a

6,2,F;0,0

e

6,2,F;1,0

e
4,3,N;4,3

e
4,3,N;4,2

σf σf

3,3,N;2,3

3,3,N;2,2

a

σf
σf

σR2
u

Figure 3.10: Automaton GSD
V of Example 3.3.

Po(LN) ⊆ LNa , then, the delay bound for synchronous diagnosis can be larger than

the delay bound for the monolithic diagnosis. This fact can cause a decrease in the

diagnosis performance and, for this reason, it is important to compute the delay

bound z? for synchronous diagnosis, in order to evaluate if it can be implemented

in a real system.

The method proposed in [32, 33] for the computation of z? is a polynomial

time algorithm in the size of the composed plant model, adapted from the method

34

presented in TOMOLA et al. [40] for the computation of the length of the longest

path in a directed acyclic graph (DAG). Before introducing the algorithm, it is

necessary to present how to compute the maximum number of events that the system

can execute after the occurrence of the fault event σf , namely d, for which there

exists a faulty trace st and a fault-free trace ω with the same observation, such that

Po(ω) ∈ LNa [32, 33]:

d = max{‖t‖ : (s ∈ LF)(st ∈ LF)(Po(st) = Po(ω),

Po(ω) ∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
)))}.

It is important to notice that, for the computation of d, we need to search

for traces st ∈ LF and Po(ω), such that Po(st) = Po(ω), and t has maximum

length. Since automaton GSD
V represents the faulty traces st and fault-free traces

Po(ω) ∈ LNa with the same projection Po, then, d can be computed by searching

in GSD
V for a path associated with a trace in Σ? with the largest length after the

occurrence of the fault event σf .

Now the following algorithm for the computation of d can be stated [32, 33].

Algorithm 3.3 Computation of d.

Input: GSD
V .

Output: d.

1: Compute the graph G
SD

V by eliminating all states that have label N and their

related transitions from GSD
V .

2: Find all strongly connected components of G
SD

V .

3: Obtain the acyclic graph Gdag = (Qdag,Σdag, fdag, q0,dag), where Σdag =

∪rk=1ΣR
Nk
∪ Σ, from G

SD

V by shrinking each strongly connected component to

a single state [41].

35

4: (v1, v2, . . . , vη) ← Topological Sort(Gdag), where vj ∈ Qdag, for j = 1, . . . , η,

and η = |Qdag|.

5: De�ne the weight function ρ : Qdag ×Qdag → {0, 1}, where

ρ(vi, vj) :=

 1, if ∃σ ∈ Σ such that fdag(vi, σ) = vj,

0, otherwise.

6: For j = 1, . . . , η:

l(vj) :=

 max{l(vi) + ρ(vi, vj) : (∃σ ∈ Σdag)(fdag(vi, σ) = vj)},

0, if 6 ∃(vi, σ) ∈ Qdag × Σdag such that (fdag(vi, σ) = vj).

7: d := maxj∈{1,...,η}l(vj).

In Step 1 of Algorithm 3.3, it is computed the graph G
SD

V , from automaton GSD
V ,

in order to obtain only the states of GSD
V reached after the occurrence of the fault

event σf . It is important to remark that, for the computation of the delay bound,

the system must be synchronously diagnosable according to De�nition 3.4. Thus,

the automaton veri�er GSD
V can have cyclic paths composed of transitions labeled

with renamed events. By applying Steps 2 and 3 of Algorithm 3.3, these cyclic

paths of G
SD

V are eliminated by shrinking all its strongly connected components and

obtaining the directed acyclic graph Gdag.

In Step 4 of Algorithm 3.3, the Topological Sort of Gdag is performed, which

returns the linked list of vertices of a DAG G, such that if G has an edge (u, v),

then, u appears before v in the ordering [42, 43]. In the sequel, in Step 5, a weight

function ρ is applied in order to assign weight zero to transitions of Gdag labeled

with renamed events, and weight one to transitions labeled with events of Σ. In

Steps 6 and 7, the number of transitions labeled with events of Σ of the longest path

in Gdag, d, is computed.

Finally, in order to obtain the delay bound z∗, it is necessary to add to d the

36

occurrence of the event that leads to the detection of the fault event. Therefore, the

delay bound for synchronous diagnosis can be computed as

z∗ = d+ 1. (3.2)

In the sequel we present an example using Algorithm 3.3 to compute the delay

bound for synchronous diagnosis.

Example 3.4 Consider again automata G1 and G2 depicted in Figure 3.4, and

automaton G = G1‖G2 depicted in Figure 3.5(a). As shown in Example 3.3, the

language of the system, L, is synchronously diagnosable with respect to LN1, LN2,

P o
1,o : Σ?

o → Σ?
1,o, P

o
2,o : Σ?

o → Σ?
2,o, P1,o : Σ? → Σ?

1,o, P2,o : Σ? → Σ?
2,o, Po : Σ? → Σ?

o,

and Σf . Therefore, the maximum number of transitions that can be executed by

the system after occurrence of the fault event σf , such that exist a faulty trace st

and fault-free trace Po(ω) with the same projection, can be computed by applying

Algorithm 3.3. From Example 3.3, we obtain automaton GSD
V depicted in Figure

3.10. Using GSD
V as input of Algorithm 3.3 and following Steps 1, 2 and 3, we obtain

automata G
SD

V and Gdag. In this example, G
SD

V = Gdag, as shown in Figure 3.11,

since there is no strongly connected component to be shrunk. By following Step 4, the

Topological Sort of Gdag is computed, resulting in the graph depicted in Figure 3.12.

Applying Steps 5 and 6, the weighting functions ρ and l are computed, as presented

in Figure 3.13. Finally, from Step 7, d = 3 and, the delay for synchronous diagnosis

of the system G is z∗ = 4.

It is important to remark that the delay bound of the classical monolithic

diagnoser [10] is also z∗ = 4. Thus, although the delay bound can be larger in

the synchronous diagnosis method than in the monolithic diagnosis approach, there

are systems where the fault event can be diagnosed with the same delay bound in both

approaches, even with the growth of the observed fault-free language for synchronous

diagnosis.

37

6,2,F;2,2

6,2,F;2,3

σR2
u

σR1
u

6,2,F;3,2

6,2,F;3,3
σR1
u

σR2
u

e
6,2,F;4,2

e
6,2,F;4,3

σR2
u

a

6,2,F;0,0

e

6,2,F;1,0

Figure 3.11: Graph G
SD

V = Gdag of Example 3.4.

6,2,F;2,2

σR1
u

6,2,F;3,2

e

6,2,F;4,2 6,2,F;4,3 6,2,F;0,0 6,2,F;1,0

a eσR2
u

σR2
u

σR2
u

6,2,F;2,3

σR1
u

6,2,F;3,3

e

Figure 3.12: Topological Sort of graph Gdag of Example 3.4.

6,2,F;2,2

σR1
u

6,2,F;3,2

e

6,2,F;4,2 6,2,F;4,3 6,2,F;0,0 6,2,F;1,0

a eσR2
u

σR2
u

0 10 1 2 3

0

0

0

1 0

1 1
σR2
u

0

6,2,F;2,3

σR1
u

0

0

6,2,F;3,3

e
1

Figure 3.13: Topological Sort of graph Gdag of Example 3.4, with values of weighting
functions ρ(vi, vj) (above the edges) and l(vj) (below the vertices).

38

In the next section, the notion of synchronous diagnosis is generalized to the

decentralized diagnosis scheme. In this approach, we take into account that all

information regarding the occurrence of events is not available in a centralized way,

which is usually the case for systems with a large number of components and high

degree of complexity.

3.2 Synchronous codiagnosability of DESs

The synchronous decentralized diagnosis scheme, presented in CABRAL and

MOREIRA [34] and CABRAL [33], consists in r local diagnosers, where each local

diagnoser, constructed based on one component model of the system, has its own

set of observable events, and does not communicate with the others local diagnosers.

The set of events can, in this case, be partitioned as Σi = Σ̂i,o∪̇Σ̂i,uo, for i = 1, . . . , r,

where Σ̂i,o and Σ̂i,uo are, respectively, the set of observable and unobservable events

of the local component modeled by automaton Gi. According to this architecture,

a fault event is diagnosed when at least one local diagnoser identi�es its occurrence

and send this information to a coordinator.

The synchronous decentralized diagnosis scheme is based on Protocol 3 of

DEBOUK et al. [12], where it is assumed that two di�erent sets of observable

events can have events in common, i.e., Σ̂i,o ∩ Σ̂j,o is not necessarily equal to the

empty set, for i 6= j, i, j ∈ {1, . . . , r}. However, it is also assumed in DEBOUK

et al. [12], that local diagnosers are constructed based on the global model of

the system, G, and therefore, may grow exponentially with the number of system

components. Di�erently from DEBOUK et al. [12], in CABRAL and MOREIRA [34]

and CABRAL [33] local diagnosers are constructed based on the fault-free behavior

model of the system components, avoiding the exponential growth with the number

of system components.

It is important to notice that one di�erence between the synchronous centralized

scheme presented in section 3.1 and the synchronous decentralized approach, is that

in the synchronous decentralized approach an event can be observable to a local

39

diagnoser and unobservable to another local diagnoser, and therefore, Σ̂i,o ⊆ Σi,o.

In Figure 3.14 we present the architecture of the synchronous decentralized

diagnosis scheme. Local diagnosers Dk are constructed based on the fault-free

behavior models of the system components, GNk
, for k = 1, . . . , r. The occurrence

of a fault event is identi�ed based on the observation of each component separately,

i.e., when an event that is not feasible in the current state estimate of the fault-free

behavior of one component is observed, and they send the diagnosis decision to a

coordinator.

b b bGN1 ‖ GN

GN2 ‖ ‖ GNr

D1

Coordinator

b bb

P̂1,o P̂2,o P̂r,o

D2 Dr

Figure 3.14: Synchronous decentralized diagnosis architecture.

Based on the synchronous decentralized diagnosis scheme, the following de�nition

of synchronous codiagnosability can be stated [33, 34].

De�nition 3.5 (Synchronous codiagnosability) Let GN = ‖rk=1GNk
, where

GNk
is the automaton that models the fault-free behavior of Gk, and let LNk

denote

the language generated by GNk
, for k = 1, . . . , r, where r is the number of system

components. Assume that there are r local sites with projections P̂k,o : Σ? → Σ̂?
k,o,

k = 1, . . . , r. Then, L is said to be synchronously codiagnosable with respect to LNk
,

P̂k,o, and Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ‖t‖ ≥ z)⇒

(∃k ∈ {1, 2, . . . , r})(P̂k,o(st) 6∈ P̂k,o(LNk
)).

40

Let L̂Na denotes the augmented fault-free language obtained by applying this

synchronous approach. Then, the augmented fault-free language for synchronous

decentralized diagnosis is given by L̂Na = ∩rk=1P̂
o−1

k,o (P̂k,o(LNk
)). It was also shown

in [33, 34] that Po(LN) ⊆ LNa ⊆ L̂Na . Therefore, the synchronous codiagnosability

implies in synchronous diagnosability, which ultimately implies in the diagnosability

of L. However, the converse is not always true, i.e., L can be synchronously

diagnosable and not synchronously codiagnosable. But, there is a condition which

ensures that if L is synchronously diagnosable, then L is also synchronously

codiagnosable. This condition is presented in the following corollary:

Corollary 3.1 Let Σ̂i,uo∩Σ̂j,o = ∅ for all i, j ∈ {1, . . . , r}. Then, L is synchronously

codiagnosable with respect to LNk
, P̂k,o : Σ? → Σ̂?

k,o, and Σf , if, and only if, L is

synchronously diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o,

for k = 1, 2, Po : Σ? → Σ?
o, and Σf .

Proof. See [33].

The veri�cation of synchronous codiagnosability of the language L can be done

by applying Algorithm 3.2, replacing the renaming function Rk (Equation (3.1)),

shown in Step 3, by the new renaming function R̂k : ΣNk
→ Σ̂R

Nk
de�ned as follows:

R̂k(σ) =

 σ, if σ ∈ Σ̂k,o

σRk , if σ ∈ Σ̂k,uo

. (3.3)

After replacing function Rk (Equation (3.1)) with function R̂k (Equation (3.3))

in Algorithm 3.2, the synchronous codiagnosability veri�er automaton GSC
V is

computed. The synchronous codiagnosability is veri�ed by searching for cyclic paths

in GSC
V formed by states with the label F and non-renamed events.

In the following example we illustrate the synchronous codiagnosability

veri�cation of the language of a DES.

Example 3.5 Consider again the system G composed of two components, G1 and

G2, such that G = G1‖G2. Automata G1 and G2 are depicted, respectively, in

41

Figures 3.4(a) and 3.4(b), and automata G and GN are shown in Figures 3.5(a)

and 3.5(b), where GN is the automaton that models the fault-free behavior of

G. Di�erently from Example 3.3, in this example we consider that event c is

unobservable to local diagnoser 1, such that, Σ1 = Σ̂1,o ∪ Σ̂1,uo = {a, b, e, σu, σf},

where Σ̂1,o = {a, e} and Σ̂1,uo = {c, σu, σf}. The set of fault events is composed of

only one event, Σf = {σf}, and the event set of automaton G2 is Σ2 = Σ̂2,o∪Σ̂2,uo =

{a, b, c, σu}, where Σ̂2,o = {a, b, c}, and Σ̂2,uo = {σu}.

Following Steps 1 and 2 of Algorithm 3.2, automata GF , GN1, and GN2 are

computed and can be seen in Figures 3.7, 3.6(a) and 3.6(b), respectively. In the

sequel, it is necessary to rename the unobservable events of GN1 and GN2 according

to Equation (3.3), resulting in automata ĜR
N1

and ĜR
N2
, shown in Figures 3.15(a)

and 3.15(b), respectively. In order to model the fault-free language considered in

the synchronous decentralized diagnosis approach, we compute automaton ĜR
N by

making the parallel composition between ĜR
N1

and ĜR
N2

in Step 3 of Algorithm 3.2.

Automaton ĜR
N is depicted in Figure 3.16. Since event c is unobservable to local

diagnoser D1, then language L̂Na is a larger set than language LNa of Example 3.3

where the synchronous centralized veri�cation is presented. Indeed, it can be seen by

comparing automaton GR
N , in Figure 3.9, with automaton ĜR

N , in Figure 3.16. Notice

that the growth of the fault-free language considered in the synchronous decentralized

scheme is represented by gray states, that are states that do not exist in GN , and

their related transitions labeled with observable events.

The veri�er automaton GSC
V , depicted in Figure 3.17, is constructed by following

Step 4 of Algorithm 3.2. Since there are no cyclic paths in GSC
V labeled with F

such that at least one transition is labeled with a non-renamed event, then L is

synchronously codiagnosable with respect to LN1, LN2, P̂1,o, P̂2,o, and Σf .

Since the fault-free language L̂Na considered for synchronous decentralized

diagnosis can be a larger set than the language considered for synchronous

centralized diagnosis LNa , then, it is also important to compute the delay bound

for synchronous decentralized diagnosis. It can be computed by following the steps

42

e
0 1

σR1
ua

4

cR1

2

e 3

5
cR1 e

(a) ĜR
N1

b
0 1

2
σR2
u

a c

3

(b) ĜR
N2

Figure 3.15: Automata ĜR
N1

and ĜR
N2

of Example 3.5.

0,0

cR1

0,1

e

b

e

a

σR1
u e

e

5,0

b
1,0

b

2,0

2,1

b
5,1

1,1
c

0,2
c

5,2

2,2

c

1,2

c

σR2
u

0,3

5,3

2,3

1,3

3,0

3,1

b

3,2

3,3

e

e

e

e

e

e

σR1
u

σR1
u

σR1
u

4,0

4,1

b

4,2

4,3e

e

σR2
u

σR2
u

cR1

cR1

cR1

cR1

cR1

cR1

cR1

σR2
u

c

σR2
u

c

σR2
u

Figure 3.16: Automaton ĜR
N of Example 3.5.

of Algorithm 3.3, replacing the input GSD
V by automaton GSC

V . Notice that, due to

LNa ⊆ L̂Na , the delay bound for synchronous decentralized diagnosis can be larger

than the delay bound for synchronous centralized diagnosis.

In the following example, the delay bound for synchronous decentralized

diagnosis for the system G of Example 3.5 is computed.

Example 3.6 Let us consider again the system G = G1‖G2 presented in Example

3.5. The maximum number of events that can be executed by the system, d, after

occurrence of σf , such that exist a faulty trace st and fault-free trace Po(ω) with the

same observation, can be computed by using the veri�er automaton GSC
V , depicted

43

0,0,N;0,0

0,0,N;5,0

1,0,N;1,0

1,0,N;2,0

0,1,N;0,1

0,1,N;5,1

1,1,N;1,1

0,0,N;0,0

5,2,N;0,2

5,2,N;5,2

2,2,N;1,2

2,2,N;2,2

5,2,N;0,3

5,2,N;5,3

2,2,N;1,3

2,2,N;2,3

3,3,N;1,3

3,3,N;1,2

1,0,N;3,0

1,1,N;3,1

2,2,N;3,2

2,2,N;3,3

3,3,N;3,3

3,3,N;3,2

3,3,N;2,3

3,3,N;2,2

4,3,N;4,3

4,3,N;4,2

6,2,F;1,2

6,2,F;1,3

6,2,F;2,2

6,2,F;2,3

6,2,F;3,2

6,2,F;3,3

6,2,F;4,2

6,2,F;4,3

6,2,F;2,0

6,2,F;5,0

6,2,F;1,0

6,2,F;0,06,2,F;4,0 6,2,F;3,0

b

c

σR2
u

b

c

σR2
u

b

c

σR2
u

σR1
u

σR1
u

σR1
u

σR1
u

σR1
u

σR1
u

σu

σR2
uσR2

u

σu

σR2
u σR2

u

σu σu σu σu

ae

e

cR1

cR1

cR1

e cR1

e

σR2
u

cR1

e cR1

e

cR1

e cR1

e

cR1

e cR1

e

b

b

c

c

σR2
u

σf

σf

σf

σf

σf

σf

cR1

cR1

σR1
u

σR1
u

σR2
u σR2

u σR2
u

e

e

σR2
u

a

cR1

cR1 e

e
σR1
ue

Figure 3.17: Automaton GSC
V of Example 3.5.

in Figure 3.17, as input of Algorithm 3.3, Following Steps 1, 2 and 3 of Algorithm

3.3, we can see that G
SD

V = Gdag, which is shown in Figure 3.18. By Step 4, the

Topological Sort of Gdag is computed, which is depicted in Figure 3.19. Applying

Steps 5 and 6, we obtain the weighting functions ρ and l, presented in Figure 3.20.

Then, with Step 7, d is computed, resulting in d = 4 and, �nally, with Equation

(3.2), the delay bound for synchronous decentralized diagnosis is z∗ = 5.

Comparing automaton GR
N of Example 3.3 with automaton ĜR

N of Example

3.5, we can see the the fault-free language considered for synchronous decentralized

scheme is larger than the fault-free language for the synchronous centralized scheme.

For this reason, the resulting delay bound for synchronous decentralized diagnosis

can also be larger than the delay bound for synchronous centralized diagnosis, which

indeed occurs in the system G considered.

44

6,2,F;1,2

6,2,F;1,3

6,2,F;2,2

6,2,F;2,3

6,2,F;3,2

6,2,F;3,3

6,2,F;4,2

6,2,F;4,3

6,2,F;2,0

6,2,F;5,0

6,2,F;1,0

6,2,F;0,06,2,F;4,0 6,2,F;3,0

cR1

cR1

σR1
u

σR1
u

σR2
u σR2

u σR2
u

e

e

σR2
u

a

cR1

cR1 e

e
σR1
ue

Figure 3.18: Graph G
SD

V = Gdag of Example 3.6.

6,2,F;1,2

6,2,F;1,3

6,2,F;2,2

6,2,F;2,3

6,2,F;3,2

6,2,F;3,3

6,2,F;4,2 6,2,F;4,3 6,2,F;2,06,2,F;5,0

6,2,F;1,0

6,2,F;0,0 6,2,F;4,06,2,F;3,0

cR1 σR1
u e

a

cR1

eσR1
uσR2

uσR2
uσR2

u

σR2
u

e

cR1 σR1
u

e

e

cR1

Figure 3.19: Topological Sort of graph Gdag of Example 3.6.

6,2,F;1,2

6,2,F;1,3

6,2,F;2,2

6,2,F;2,3

6,2,F;3,2

6,2,F;3,3

6,2,F;4,2 6,2,F;4,3 6,2,F;2,06,2,F;5,0

6,2,F;1,0

6,2,F;0,0 6,2,F;4,06,2,F;3,0

cR1 σR1
u e

a

cR1

eσR1
uσR2

uσR2
uσR2

u

σR2
u

e

0 0 0 1 1 2 2 3 3 4

0 0 0

0 0 0 0

0 11
1

1

0 0 0 3

cR1

0
σR1
u

0

e
1

e
1

cR1

0

Figure 3.20: Topological Sort of graph Gdag of Example 3.4, with values of weighting
functions ρ(vi, vj) (above the edges) and l(vj) (below the vertices).

3.3 Final comments

In this chapter, the problem of fault diagnosis for DES modeled by automata is

introduced, presenting the classical de�nition of diagnosability of SAMPATH et al.

[10]. A new architecture that takes advantage of the modularity of DESs, called

centralized synchronous diagnosis, is also presented. This scheme is generalized to

45

the decentralized case, called synchronous decentralized diagnosis scheme. Both

synchronous diagnosis approaches lead to di�erent notions of diagnosability, namely

synchronous centralized diagnosability and synchronous codiagnosability.

In the next chapter, a new diagnosis method, called distributed synchronous

diagnosis is proposed. In this scheme, local diagnosers can exchange information

with each other in order to reduce the size of the augmented language considered

for diagnosis.

46

Chapter 4

Distributed Synchronous

Diagnosability of DESs

In [31�33], a method for fault diagnosis of DES based on the observation of the fault-

free behavior of the system components is presented, called synchronous centralized

diagnosis method. In this scheme, an event is observable for all system components

for which it is de�ned. The diagnoser consists of local state estimators of the

fault-free component models, providing the online state estimate of each fault-

free component model, which are naturally synchronized by the observable events

executed by the system, as presented in Section 3.1.

In CABRAL et al. [35], a modi�cation in the synchronous centralized diagnosis

method with the view to re�ning the diagnosis decision, is proposed. This

modi�cation is done by adding boolean conditions to the local diagnosers transitions,

based on the fault-free model of the global plant. These conditions are implemented

to prevent fault-free traces that cannot occur in the system to be considered as

belonging to the estimated fault-free observed behavior. With this re�nement, the

augmented fault-free language considered in the synchronous centralized diagnosis

method can be reduced, improving the synchronous diagnosis.

However, in CABRAL et al. [35] it is considered that all information associated

with event observations and state estimates is available in a centralized way, which is

47

not always true in systems with a high degree of complexity and with large number

of local components. In these cases, architectures such as the decentralized and

distributed are more suitable. Thus, in order to improve the synchronous diagnosis

for systems where the information is not available in a centralized way, we propose

in this work a distributed synchronous diagnosis approach. As in Section 3.2, we

consider that the global plant model is composed of r modules, i.e., G = ‖rk=1Gk,

and, associated with each module Gk, for k ∈ {1, . . . , r}, there is a local diagnoserDk

constructed from the fault-free behavior model GNk
. The main di�erence between

the synchronous decentralized and distributed schemes is that in the decentralized

approach, local diagnosers are based only on the local observations of the system

components, while in the synchronous distributed method, local diagnosers can

exchange information regarding the observation of events and local state estimates

[36]. This information can be used to re�ne the diagnosis decision based on the

strategy proposed in CABRAL et al. [35], by adding conditions to the fault-free

component models and reducing the augmented fault-free language considered for

synchronous diagnosis.

In Figure 4.1 we show the synchronous diagnosis schemes applied to a system

composed of three local components: (i) the synchronous centralized scheme, where

the diagnoser consists in observers of the fault-free component models implemented

concurrently; (ii) the conditional synchronous scheme, where conditions associated

to state estimate of the global system model are included in the local observers

of the synchronous centralized scheme; (iii) the synchronous decentralized scheme,

where local diagnosers are constructed based on the fault-free component models,

each one with its own set of observable events, and a coordinator indicates the

fault occurrence; (iv) the distributed synchronous scheme, where local diagnosers

are separated into networks, allowing the exchange of information between them in

order to improves the synchronous diagnosis, which is the proposal of this work.

48

GN1 ‖ GN

Po

GN2 ‖GN3

D1 D2

P o
1,o

P o
2,o

P o
3,o

D3

(a) Synchronous centralized
diagnosis scheme

GN1 ‖ GN

Po

GN2 ‖GN3

D1,c D2,c

P o
1,o

P o
2,o

P o
3,o

D3,c

(b) Conditional synchronous
diagnosis scheme

GN1 ‖ GN

GN2 ‖GN3

D1

P̂1,o

D2

P̂2,o

D3

P̂3,o

Coordinator

(c) Synchronous decentralized
diagnosis scheme

GN1 ‖ GN

GN2 ‖GN3

D1

P1,o

D2

P2,o

D3

P3,o

ch1,2 Network 2

Network 1

(d) Distributed synchronous
diagnosis scheme

Figure 4.1: Comparison between the synchronous diagnosis architectures: (a) the
synchronous centralized scheme; (b) the conditional synchronous scheme; (c) the
synchronous decentralized scheme; (d) the distributed synchronous scheme.

In this chapter, we introduce the distributed synchronous diagnosis scheme for

DESs, �rst presenting its architecture with more details. Then, we introduce the

distributed synchronous diagnosis method and explain how it can improve the fault

diagnosis. In the sequel we present a communication protocol that allows the

exchange of information between local diagnosers. Finally, the notion of distributed

synchronous diagnosability is presented, and an algorithm for the veri�cation of

distributed synchronous diagnosability, that has polynomial complexity in the size

of the system components, is proposed. An example is used throughout the text to

illustrate the results.

49

4.1 Architecture

In the synchronous distributed diagnosis approach it is considered that local

diagnosers can commmunicate with each other through a network and, therefore, the

construction of each local diagnoser takes into account the communication between

diagnosers that belong to the same network.

Figure 4.2 depicts the distributed synchronous diagnosis scheme for a system

composed of �ve modules and two networks. In this setting, there are two networks

of local diagnosers: (i) a network composed of diagnosers D1, D2, and D3, with

communication channels ch1,2, ch1,3, and ch2,3; and (ii) a network composed of

diagnosers D4 and D5, and communication channel ch4,5. It is considered that each

component Gk has a local measurement site, denoted as LMk, that communicates

the observation of events directly to diagnoser Dk. In this con�guration, a local

diagnoser connected in a network works as a node in the net, being capable of sending

and receiving information from all local diagnosers in this network, regarding the

observation of events and state estimates. Therefore, observable events associated

with diagnoser Dk, of a given module Gk, is formed by the events that are directly

observed by the local measurement site LMk, and the events whose observation are

communicated to Dk from the other local diagnosers in the same network. It is

important to remark that, in this work, it is considered that each diagnoser belongs

to a unique network.

The event set of each module Gk can be partitioned as Σk = Σk,o∪̇Σk,uo, where

Σk,uo = Σk \Σk,o is the set of unobservable events for local diagnoser Dk, i.e., is the

set of events whose occurrence cannot be detected locally by LMk, or communicated

to Dk by any other local diagnoser Di, i 6= k. Thus, the set of observable events

of Gk in the distributed synchronous diagnosis scheme can be de�ned as Σk,o =

(∪ri=1Σi,k
o) ∩ Σk, where Σi,k

o , i 6= k, denotes the set of observable events that can

be communicated from local diagnoser Di to local diagnoser Dk, and Σk,k
o , is the

set of events whose observations are directly sent to local diagnoser Dk from local

measurement site LMk, as shown in Figure 4.2. Notice that if two local diagnosers

50

Σ1,1
o Σ2,2

o Σ3,3
o Σ4,4

o Σ5,5
o

ch4,5

Network 1

Network 2

‖G2 ‖ G5G1 ‖
G

G2 ‖G3 G4

ch1,2
ch2,3

ch1,3

LM1 LM2 LM3 LM4 LM5

D5D4D3D2D1

Figure 4.2: The distributed synchronous diagnosis scheme for a system composed
of �ve modules and two networks.

Di and Dk are in di�erent networks, then Σi,k
o = Σk,i

o = ∅.

Before introducing the synchronous diagnosis method, we make one last

assumption: the communication between local diagnosers is supposed to be ideal,

i.e., there is no communication delays and/or package losses.

4.2 Distributed synchronous diagnosis method

When local diagnosers connected in a communication network exchange only the

information regarding event occurrences, the distributed synchronous diagnosis

scheme becomes equivalent to a decentralized synchronous diagnosis architecture,

as proposed in [33, 34] and presented in Section 3.2, where Σ̂k,o = Σk,o. The main

drawback of this strategy is the growth of the fault-free language considered for

diagnosis, which is represented in the augmented automaton GR
N . The following

example illustrate this problem.

Example 4.1 Let the system be composed of three modules G1, G2 and G3,

presented in Figure 4.3. The event sets of each module are, respectively, Σ1 =

Σ1,o∪̇Σ1,uo = {a, c, e, g, σ1}, Σ2 = Σ2,o∪̇Σ2,uo = {e, h, σ1, σ2, σf}, and Σ3 =

Σ3,o∪̇Σ3,uo = {b, d, h, σf}, where Σ1,o = {a, c, e, g}, Σ1,uo = {σ1}, Σ2,o = {e, h},

Σ2,uo = {σ1, σ2, σf}, Σ3,o = {b, d}, and Σ3,uo = {h, σf}. The set of fault events is

51

Σf = {σf}. The composed plant model, G = G1‖G2‖G3, and the fault-free behavior

model, GN are shown in Figures 4.4 and 4.5, respectively. The fault-free behavior

model of the components G1, G2 and G3, denoted by GN1, GN2 and GN3 respectively,

are represented in Figure 4.6. Following the method presented in [33, 34], the

unobservable events of GN1, GN2 and GN3 are renamed and GR
N is obtained from

the parallel composition of the resulting automata, GR
N1
, GR

N2
and GR

N3
, depicted in

Figure 4.7. Automaton GR
N = GR

N1
‖GR

N2
‖GR

N3
is shown in Figure 4.8.

The gray states of GR
N and the associated transitions do not exist in the fault-

free behavior model of the system, GN . These states, and their associated transitions

labeled with observable events, represent the growth of the fault-free observed language

for synchronous decentralized diagnosis compared to the classical diagnosis method of

SAMPATH et al. [10]. Moreover, the faulty trace hσf (eh)z, for z ∈ N, has the same

observation in Σo = Σ1,o ∪ Σ2,o ∪ Σ3,o = {a, b, c, d, e, g, h} than the fault-free trace

hσR2
1 (ehσR2

1)z generated by automaton GR
N , which shows that the composed system,

G, is not synchronously codiagnosable.

0 1 2

34

a σ1

c

g

e

σ1

e

(a) G1

0 1

2

h

σ1

3

4

σ1

ee

σf
e, h

σ2
(b) G2

0 1h

b h

2
σf

d, h

(c) G3

Figure 4.3: Automata G1, G2, and G3 of Example 4.1.

When we consider the communication of the occurrence of observable events

and state estimates between local diagnosers, it is possible to reduce the fault-

free language for synchronous diagnosis. This can be done by checking if the

occurrence of an observable event is possible according to the state estimate of

the local diagnosers. The following example illustrate how this communication can

be used to improve the synchronous diagnosis decision.

52

0,0,0 1,0,0 4,2,1 3,2,1

0,1,1 1,1,1 2,2,1 0,0,1

0,4,2 1,4,2

3,4,2

a

a

a

hh

σf σf

σ1
c

g

b b

d, h
ee

d, h

d, h

3,3,0

eb, σ2

3,3,1

σ1

σ2

e

1,0,1

a

h

h

e

Figure 4.4: Automaton G of Example 4.1.

0,0,0 1,0,0 4,2,1 3,2,1

0,1,1 1,1,1 2,2,1 0,0,1

a

a
hh

σ1

σ1

c

g

σ2

b b

3,3,0

eb, σ2

3,3,1

e

1,0,1

a

h
h

e

Figure 4.5: Automaton GN of Example 4.1.

0 1 2

34

a σ1

c

g

e

σ1

e

(a) GN1

0 1

2

h

σ1
3 σ1

ee

σ2
(b) GN2

0 1h

b h
(c) GN3

Figure 4.6: Automata GN1 , GN2 and GN3 of Example 4.1.

0 1 2

34

a σR1
1

c

g

e

σR1
1

e

(a) GR
N1

0 1

2

h

σR2
1

3
σR2
1

ee

σR2
2

(b) GR
N2

0 1hR3

b hR3

(c) GR
N3

Figure 4.7: Automata GR
N1
, GR

N2
and GR

N3
of Example 4.1.

53

0,0,0 1,0,0 2,0,0 3,0,0 4,0,0

0,1,0 1,1,0 2,1,0 3,1,0 4,1,0

0,2,0 1,2,0 2,2,0 3,2,0 4,2,0

0,3,0 1,3,0 2,3,0 3,3,0 4,3,0

a σR1
1

σR1
1 g

c

a σR1
1

c

σR1
1 g

a σR1
1 σR1

1 g

a σR1
1

c

σR1
1 g

h h h h h

σR2
1

c

b, σR2
2

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

b, σR2
2 b, σR2

2 b, σR2
2

b, σR2
2

b b
b b

b

b b b
b

b

b b
b

b b
4,0,1 3,0,1 2,0,1 1,0,1

4,1,1 3,1,1 2,1,1 1,1,1

4,2,1 3,2,1 2,2,1 1,2,1

4,3,1 3,3,1 2,3,1 1,3,1

hR3 σR1
1

c

c

σR1
1

c
σR1
1

h h h h

c

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

hR3, σR2
2 hR3, σR2

2 hR3, σR2
2 hR3, σR2

2

0,0,1

0,1,1

0,2,1

0,3,1

a

a

a

a

h

σR2
1

σR2
1

hR3, σR2
2

hR3

hR3

hR3

g

g

g

g

σR1
1

σR1
1

σR1
1

σR1
1

σR1
1

hR3
hR3hR3hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

e e

e e

e e

e e

hR3 hR3

hR3 hR3 hR3

hR3hR3
hR3

hR3hR3

hR3hR3

hR3
hR3hR3

Figure 4.8: Automaton GR
N of Example 4.1.

Example 4.2 Consider again automaton GN of Example 4.1, shown in Figure 4.5.

It can be seen that a transition labeled with event e in GN is only possible in states

(0, 0, 0), (0, 0, 1), and (3, 2, 1), i.e., a transition labeled with event e in GN can only

occur if the �rst module GN1 is in state 0 and the second module GN2 is in state 0,

or the �rst module GN1 is in state 3 and the second module GN2 is in state 2. Now,

let us consider that diagnosers D1 and D2 are in the same network, as depicted in

Figure 4.9 and, therefore, can exchange information regarding the state estimate of

GN1 and GN2, and observable event occurrences.

Let us assume now that we add to transition (0, e, 3) of GN1 a condition associated

with state 0 of GN2, such that transition (0, e, 3) of GN1 can only be transposed if the

current state estimate of GN2 has state 0 and event e is observed. Considering the

same faulty trace hσf (eh)z, for z ∈ N, of Example 4.1, we can see that when event e

is observed, the current state estimate of automaton GN1, depicted in Figure 4.6(a),

is {0}, while the current state estimate of GN2, depicted in Figure 4.6(a), does not

have state 0. Thus, since we have added to transition (0, e, 3) of GN1 a condition

associated with state 0 of GN2, event e is not feasible in state 0 of D1 anymore and,

thus, diagnoser D1 is capable of diagnosing the fault event, after the occurrence of

trace hσfe.

54

Σ1,1
o Σ2,2

o Σ3,3
o

ch1,2 Network 2

Network 1

‖G2G1 ‖
G

G2G3

LM1 LM2 LM3

D1 D2 D3

Figure 4.9: Distributed synchronous diagnosis architecture for the system of
Example 4.2.

The idea of this work is to use the knowledge of the fault-free behavior model of

the system, GN , to add conditions to the fault-free component models GNk
for the

transposition of transitions. These conditions are associated with the states of the

other components of the system, whose corresponding local diagnosers are in the

same network. If an event σo ∈ Σk,o that is enabled in the current state estimate of

GNk
is observed, all conditions of the enabled transitions labeled with σo must be

satis�ed, otherwise, the fault event is identi�ed by the local diagnoser Dk. In order

to do so, we de�ne in the sequel the extended automaton with conditions Gϕ.

De�nition 4.1 An extended automaton with conditions is the �ve-tuple Gϕ =

(Q,Σ,Φ, fϕ, q0), where Q is the set of states, Σ is the set of events, Φ is a set

of boolean conditions, fϕ : Q × Σ × Φ → Q is the conditional transition function,

and q0 is the initial state.

In the extended automaton with conditions Gϕ, a transition q′ = fϕ(q, σ, ϕ),

where σ ∈ Σ and ϕ ∈ Φ, can only be transposed if the associated event σ occurs,

and condition ϕ is true.

In order to model the conditions for the transposition of transitions in automaton

GNk
, associated with the state estimates of the fault-free component models GNj

whose local diagnosers are in the same network, as shown in Example 4.2, it is

necessary to extend automaton GNk
, as presented in De�nition 4.1, obtaining the

55

fault-free extended automaton with conditions GNk,ϕ
. In order to do so, let us

consider, without loss of generality, that local diagnosers Dk, for k = 1, . . . ,m,

where m ≤ r, are in the same network. We �rst de�ne, for each state qNk
of GNk

,

the following set of states of GN :

BNk
= {qN ∈ QN : qNk

is the k-th coordinate of qN}. (4.1)

Then, the following set of states formed with all j-th coordinates of the states of

BNk
can be de�ned as:

Qk,j = {qNj
∈ QNj

: ∃qN =(qN1 , . . . , qNj
, . . . , qNr) ∈ BNk

}. (4.2)

Let us de�ne the projection operation Pj,o : Σ? → Σ?
j,o, and let Reachj(s) denote

the state estimate of automaton GNj
after the occurrence of a trace s ∈ L. The

procedure to compute GNk,ϕ
is shown in Algorithm 4.1.

Algorithm 4.1 Computation of the fault-free extended automaton with conditions

GNk,ϕ
.

Input: Automata GN , and GNk
, for k ∈ {1, . . . ,m}.

Output: Automaton GNk,ϕ
= (QNk

,Σk \ Σf ,Φk, fNk,ϕ
, q0,k).

1: For each state qNk
∈ QNk

of GNk
do:

1.1: Form sets Qk,j, j = 1, . . . ,m, j 6= k, as presented in Equation (4.2).

1.2: For all σ ∈ ΓGNk
(qNk

) do:

1.2.1: If σ ∈ Σk,uo, set ϕ = true.

1.2.2: If σ ∈ Σk,o, set

ϕ =
m∧

j=1,j 6=k

[Reachj(s) ∩Qk,j 6= ∅].

1.3: De�ne fNk,ϕ
(qNk

, σ, ϕ) = q′Nk
, where q′Nk

= fNk
(qNk

, σ).

2: Form set Φk with all conditions created in Step 1.2.

56

Notice that, in Step 1.2 of Algorithm 4.1, a condition associated to the state

estimate of the fault-free component models GNj
, for j 6= k and j = 1, . . . ,m, is

added to each transition of GNk
labeled with an observable event. With that, it

is possible to reduce the size of the fault-free language considered for diagnosis,

when the communication of the state estimates Reachj(s) is assumed between local

diagnosers in the same network. It is important to remark that the complexity of

adding the conditions to automata GNk
according to Algorithm 4.1 is polynomial

with the number of system components.

In the following example, the construction of the fault-free component models

with conditions, GNk,ϕ
, of a composed system is presented.

Example 4.3 Let us consider again the system G = G1‖G2‖G3 presented in

Figure 4.4, and let us assume that diagnosers D1 and D2 are in the same network

and, therefore, can exchange information regarding state estimates. The fault-free

behavior model of the composed system, GN , is depicted in Figure 4.5, and the fault-

free behavior model of automata G1, G2 and G3, denoted as GN1, GN2 and GN3,

respectively, are depicted in Figure 4.6. In order to extend automata GN1, GN2 and

GN3 according to De�nition 4.1, we apply Algorithm 4.1, resulting respectively in

the fault-free extended automata with conditions GN1,ϕ, GN2,ϕ and GN3,ϕ, shown in

Figure 4.10.

Since we have the knowledge of the fault-free behavior model of the system, GN , it

can be seen that when GN1 is in state 0, the transition labeled with event e can only be

transposed if state 0 of GN2 belongs to its current state estimate. Applying Step 1.3 of

Algorithm 4.1 to state qN1 = 0 of GN1 and σ = e, then transition fϕ(qN1 , σ, ϕ) = q′N1

of GN1,ϕ becomes fϕ(0, e, [qN2 = 0]) = 3. This procedure is repeated to all transitions

of GNk
, for k = 1, 2, 3. Notice that, since diagnoser D3 is not connected to D1 and

D2, the condition ϕ associated with the transitions labeled with observable events is

always ϕ = true. It is important to remark that, in Figure 4.10, we do not represent

the conditions ϕ = true.

57

0 1 2

34

a.[0, 1] σ1

c.[2]

g.[2]

e.[2]

σ1

e.[0]

(a) GN1,ϕ

0 1

2

h.[0, 1]

σ1

3 σ1

e.[3]e.[0]

σ2
(b) GN2,ϕ

0 1h

b h
(c) GN3,ϕ

Figure 4.10: Automata GN1,ϕ , GN2,ϕ and GN3,ϕ of Example 4.3.

In order to consider the communication between local diagnosers through a

network, it is necessary to de�ne a communication protocol. The communication

protocol proposed in this work is described for a network composed of an arbitrary

number of local diagnosers, and the same procedure is considered for all networks

of the system. The communication protocol can be divided into two steps: (i) when

an event σo ∈ Σi,i
o is directly observed by the local measurement site LMi of local

diagnoser Di, i ∈ {1, . . . , r}, it sends the information of the occurrence of σo to all

other local diagnosers in the same network; (ii) then, all local diagnosers Dj send the

state estimate of its corresponding module GNj,ϕ
to the other diagnosers in the same

network. After the end of communication of the state estimates in the network, the

conditions for the transposition of the transitions labeled with σo, in the fault-free

component models GNj,ϕ
, for which σo ∈ Σj, are veri�ed. If there is at least one

feasible transition in GNj,ϕ
, then Dj updates its state estimate. Otherwise, the fault

is identi�ed and its occurrence can be communicated to the operator of the system.

It is important to remark that, in this work, it is assumed that while steps (i) and

(ii) of the communication protocol are being performed, no other observable event

de�ned in a local diagnoser belonging to the same network occurs.

In the next section the distributed synchronous diagnosability of the language of

a system is de�ned.

58

4.3 Distributed synchronous diagnosability

In Algorithm 4.1 we add conditions for the transposition of transitions in the fault-

free component models of the system, GNk
, k ∈ {1, . . . , r}, in order to reduce the

size of the augmented fault-free language for synchronous diagnosis. Notice that, if

we assume that there is no communication of state estimates between diagnosers,

the augmented fault-free language can be modeled by using automaton GR
N and,

therefore, the distributed synchronous diagnosis can be seen as a decentralized

synchronous diagnosis problem. When we consider the e�ect of the addition of

conditions and the communication between diagnosers of the same network, we need

to de�ne an automaton that models this e�ect in the fault-free language considered

for the distributed synchronous diagnosis. In Algorithm 4.2, we compute automaton

GR
N,ϕ that models the fault-free language for distributed synchronous diagnosis.

Algorithm 4.2 Fault-free model for distributed synchronous diagnosis GR
N,ϕ.

Input: Automata GR
N and GN , and set N = {(i, j) ∈ {1, . . . , r} × {1, . . . , r} :

Di and Dj belong to the same network}.

Output: Automaton GR
N,ϕ.

1: For each pair (i, j) ∈ N , �ag all transitions (qRN , σ, q̃
R
N) of GR

N such that σ ∈

Σi,o∪Σj,o, and the combination of the i-th and j-th coordinates of qRN does not

exist in any state of GN .

2: Delete all �agged transitions of GR
N , obtaining automaton GR′

N .

3: Compute automaton GR
N,ϕ = Ac(GR′

N).

Consider that LNa,d
denotes the augmented observed fault-free language obtained

by using the synchronous distributed method proposed in this work. The following

theorem shows that automaton GR
N,ϕ, computed by applying Algorithm 4.2, can

be used to model the fault-free behavior considered in the distributed synchronous

diagnosis scheme.

59

Theorem 4.1 LNa,d
= PR

o (L(GR
N,ϕ)), where PR

o : Σ?
R → Σ?

o and ΣR = ∪rk=1ΣR
Nk
,

where ΣR
Nk

is the event set of GR
Nk

obtained after renaming all unobservable events

of GNk
.

Proof. If no conditions are added to GNk
, the observed augmented language

is L̂Na = PR
o (L(GR

N)). Thus, the addition of conditions for the transposition of

transitions in automata GNk
, erases transitions of GR

N in order to obtain automaton

GR
N,ϕ. According to Algorithm 4.1, transitions labeled with unobservable events,

i.e., σ ∈ Σk,uo, can be transposed whenever possible, since condition ϕ is true when

σ is unobservable to Gk. This fact is considered in Algorithm 4.2, since transitions

labeled with an unobservable event are not erased from GR
N in the construction of

GR
N,ϕ.

Now, without loss of generality, let us suppose that diagnoser Dk computed from

automaton GNk,ϕ
belongs to a network composed of diagnosers Dj, j = 1, . . . ,m,

where j 6= k, and m ≤ r. According to Algorithm 4.1, transitions (qNk
, σ, q′Nk

) of

GNk,ϕ
, where σ ∈ Σk,o, can be transposed only if GNk,ϕ

is in state qNk
, event σ occurs,

and condition ϕ is true. Notice that, according to Algorithm 4.1, condition ϕ is true,

only if qNj
∈ Qk,j, for j = 1, . . . ,m, and j 6= k, where qNj

is the j-th coordinate of

the states of GN . Thus, any transition labeled with σ leaving a state q of GR
N , such

that qNk
is the k-th coordinate of q, and qNj

/∈ Qk,j is the j-th coordinate of q, must

be erased from GR
N . This elimination of transitions is performed in Algorithm 4.2 in

order to obtain GR
N,ϕ. Since only these transitions are eliminated in Algorithm 4.2,

then LNa,d
= PR

o (L(GR
N,ϕ)). �

In the following example the construction of GR
N,ϕ according to Algorithm 4.2 is

illustrated.

Example 4.4 Let us consider again automata GN1, GN2 and GN3 depicted in Figure

4.6, and presented in Example 4.1. Consider again that local diagnosers D1 and

D2 are connected, forming a network. According to Step 1 of Algorithm 4.2, all

transitions labeled with observable events associated to states where the combination

of states of GN1 and GN2 do not exist in automaton GN must be �agged. In

60

Figure 4.11, we show automaton GR
N with dashed transitions representing the �agging

operation executed in Step 1. In Steps 2 and 3 of Algorithm 4.2, these transitions

are erased, and when the accessible part of the resulting automaton is computed, the

hatched states depicted in Figure 4.11 are eliminated, resulting in automaton GR
N,ϕ

shown in Figure 4.12.

0,0,0 1,0,0 2,0,0 3,0,0 4,0,0

0,1,0 1,1,0 2,1,0 3,1,0 4,1,0

0,2,0 1,2,0 2,2,0 3,2,0 4,2,0

0,3,0 1,3,0 2,3,0 3,3,0 4,3,0

a σR1
1

σR1
1 g

c

a σR1
1

c

σR1
1 g

a σR1
1 σR1

1 g

a σR1
1

c

σR1
1 g

h h h h h

σR2
1

c

b, σR2
2

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

b, σR2
2 b, σR2

2 b, σR2
2

b, σR2
2

b b
b b

b

b b b
b

b

b b
b

b b
4,0,1 3,0,1 2,0,1 1,0,1

4,1,1 3,1,1 2,1,1 1,1,1

4,2,1 3,2,1 2,2,1 1,2,1

4,3,1 3,3,1 2,3,1 1,3,1

hR3 σR1
1

c

c

σR1
1

c
σR1
1

h h h h

c

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

hR3, σR2
2 hR3, σR2

2 hR3, σR2
2 hR3, σR2

2

0,0,1

0,1,1

0,2,1

0,3,1

a

a

a

a

h

σR2
1

σR2
1

hR3, σR2
2

hR3

hR3

hR3

g

g

g

g

σR1
1

σR1
1

σR1
1

σR1
1

σR1
1

hR3
hR3hR3hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

e e

e e

e e

e e

hR3 hR3

hR3 hR3 hR3

hR3hR3
hR3

hR3hR3

hR3hR3

hR3
hR3hR3

Figure 4.11: Automaton GR
N . The white states represent the states of GN . The

hatched states and the dashed transitions are the states and transitions of GR
N that

are eliminated by applying Algorithm 4.2 in Example 4.4.

0,0,0 1,0,0 2,0,0 3,0,0

0,1,0 1,1,0 2,1,0 3,1,0

0,2,0 1,2,0 2,2,0 3,2,0 4,2,0

0,3,0 1,3,0 2,3,0 3,3,0 4,3,0

a σR1
1

σR1
1

a σR1
1 σR1

1

σR1
1 σR1

1 g

σR1
1 σR1

1

h h

σR2
1

c

b, σR2
2

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

b, σR2
2 b, σR2

2 b, σR2
2

b, σR2
2

b b
b b

b

b b b
b

b b
b

b

3,0,1 2,0,1 1,0,1

3,1,1 2,1,1 1,1,1

4,2,1 3,2,1 2,2,1 1,2,1

4,3,1 3,3,1 2,3,1 1,3,1

σR1
1

σR1
1

σR1
1

h

c

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

σR2
1

hR3, σR2
2 hR3, σR2

2 hR3, σR2
2 hR3, σR2

2

0,0,1

0,1,1

0,2,1

0,3,1

a

a

h

σR2
1

σR2
1

hR3, σR2
2

hR3

hR3

g

σR1
1

σR1
1

σR1
1

σR1
1

σR1
1

hR3
hR3hR3hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

hR3 hR3 hR3 hR3

e e
e e

hR3

hR3 hR3 hR3

hR3hR3
hR3

hR3

hR3hR3

hR3
hR3hR3

Figure 4.12: Automaton GR
N,ϕ of Example 4.4.

61

Since the augmented observed fault-free language LNa,d
can be a smaller set than

language L̂Na , obtained without considering the communication of state estimates,

it is necessary to introduce the notion of distributed synchronous diagnosability.

De�nition 4.2 (Distributed synchronous diagnosability)

Consider a system composed of r modules, such that GN = ‖rk=1GNk
, where GNk

is the automaton that models the fault-free behavior of Gk, and let LNk
denote the

language generated by GNk
, for k = 1, . . . , r. Then, L is said to be distributed

synchronously diagnosable with respect to LNa,d
, Po, and Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ‖t‖ ≥ z)⇒ Po(st) 6∈ LNa,d
.

The observed language of GR
N,ϕ with respect to Σo, denoted by LNa,d

, can be a

larger set than the observation of the fault-free language of the composed system

Po(LN), i.e., Po(LN) ⊆ LNa,d
. Thus, it is necessary to verify the distributed

synchronous diagnosability in order to implement the distributed synchronous

diagnosis scheme.

It is important do remark that the de�nition of distributed synchronous

diagnosability is equivalent to the de�nition of synchronous diagnosability of a

system with fault-free language given by LNa,d
and faulty language given by LF .

Thus, the veri�cation of distributed synchronous diagnosability of language L can be

performed by using the same strategy presented in Algorithm 3.2 for the veri�cation

of synchronous diagnosability, replacing automaton GR
N with automaton GR

N,ϕ. In

the following we present an algorithm that can be used to verify the distributed

synchronous diagnosability of the language generated by a system.

Algorithm 4.3 Distributed synchronous diagnosability veri�cation

Input: System modules Gk, for k = 1, . . . , r, and G = ‖rk=1Gk.

Output: Distributed synchronous diagnosability decision.

62

1: Compute automaton GF that models the faulty behavior of G, whose marked

language is LF = L \ LN , as follows:

1.1: Set Al = (Ql,Σf , fl, q0,l), where Ql = {N,F}, q0,l = {N}, fl(N, σf) = F

and fl(F, σf) = F , for all σf ∈ Σf .

1.2: Compute Gl = G‖Al and mark all states of Gl whose second coordinate

is equal to F .

1.3: Compute the faulty automaton GF = CoAc(Gl).

2: Compute automata GNk
, k = 1, . . . , r, by following the steps of Algorithm 3.1.

3: Compute automaton GR
N,φ following the steps of Algorithm 4.2.

4: Compute the veri�er automaton GDD
V = (QV ,ΣV , fV , q0,V) = GF‖GR

N,φ.

Notice that a state of GDD
V is given by qV = (qF , q

R
N,φ), where qF and qRN,φ

are states of GF and GR
N,φ, respectively, and qF = (q, ql), where q ∈ Q and

ql ∈ {N,F}.

5: Verify the existence of a cyclic path cl = (qδV , σi, q
δ+1
V , . . . , qγV , σγ, q

δ
V), where

0 < δ ≤ γ, in GV such that:

∃j ∈ {δ, δ + 1, . . . , γ} s.t. for some qjV ,

(qjl = F) ∧ (σj ∈ Σ). (4.3)

If the answer is yes, then L is not distributed synchronously diagnosable

with respect to LNa,d
, Po : Σ? → Σ?

o, and Σf . Otherwise, L is distributed

synchronously diagnosable with respect to LNa,d
, Po : Σ? → Σ?

o, and Σf .

Notice that any veri�cation method could be applied by using the automata

that generate languages LF and LNa,d
, or any language whose projection in Σo

corresponds to LNa,d
. The method presented in Algorithm 4.3 has polynomial

complexity with respect to the number of states of the system components, since we

do not use observers to obtain LNa,d
, and exponential complexity with the number

63

of components r. The veri�cation of the distributed synchronous diagnosability is

performed by searching for cycles of states in GDD
V with label F such that at least

one transition of the cycle is labeled with a non renamed event.

The following theorem proves the correctness of Algorithm 4.3 for the veri�cation

of distributed synchronous diagnosability.

Theorem 4.2 Let LNk
denotes the language generated by GNk

, for k = 1, . . . , r,

and consider GDD
V = GF‖GR

N,ϕ, where GR
N,ϕ is computed by following Algorithm

4.2. A state of GDD
V is given by qV = (qF , q

R
N), where qF and qRN are states

of GF and GR
N,ϕ, respectively, and qF = (q, ql), where q ∈ Q and ql ∈ {N,F}.

Then, L is not distributed synchronously diagnosable, according to De�nition 4.2,

with respect to LNk
, Pk,o, and Σf if, and only if, there exists a cyclic path cl =

(qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V) in GDD

V = GF‖GR
N,ϕ, where γ ≥ δ > 0, such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F) ∧ (σj ∈ Σ). (4.4)

Proof. According to De�nition 4.2, language L of the composed system G = ‖rk=1Gk

is distributed synchronously diagnosable if there does not exist an arbitrarily long

length faulty trace st such that Po(st) ∈ LNa,d
. Theorem 4.1 shows that LNa,d

=

PR
o (L(GR

N,ϕ)), where PR
o : Σ?

R → Σ?
o. Thus, in order to verify the distributed

synchronous diagnosability of language L, it is necessary to check if there exists a

faulty trace st with the same observation of a fault-free trace ω ∈ L(GR
N,ϕ), where

PR
o (ω) ∈ LNa,d

. Notice that the unobservable events of GR
N,ϕ are renamed, and thus,

are private events of GR
N,ϕ. Therefore, it can be seen that the veri�er automaton GDD

V

proposed in this work is equal to the veri�er automaton GV proposed in MOREIRA

et al. [27] applied to a system where the faulty behavior automaton marks LF and

whose observable fault-free behavior automaton generates LNa,d
. Besides that, using

the veri�cation method proposed in [27], the same necessary and su�cient condition

(4.4) would be obtained, which concludes the proof. �

64

In the following example, we illustrate the method for the veri�cation of

distributed synchronous diagnosability.

Example 4.5 Considering again the system composed of three modules, such that

G = G1‖G2‖G3, where G1, G2, and G3 are shown in Figure 4.3. Let us also assume

that local diagnosers D1 and D2 are connected in a network, and diagnoser D3 is

not connected to D1 and D2, as depicted in Figure 4.9. Then, applying Step 1 of

Algorithm 4.3, we compute automaton GF , depicted in Figure 4.13. According to

Step 2, we obtain automata GN1, GN2 and GN3, depicted in Figure 4.6. Following

Step 3 of Algorithm 4.3, which compute automaton GR
N,ϕ by using Algorithm 4.2, we

obtain the automaton presented in Figure 4.12. Finally, the veri�er automaton GDD
V

is computed by making the parallel composition of automaton GF and automaton

GR
N,ϕ. Only part of GDD

V is shown in Figure 4.14 due to the lack of space. Since

there are no cycles in GDD
V that satisfy condition (4.4) of Theorem 4.2, then, L is

distributed synchronously diagnosable with respect to LNa,d
, Po : Σ? → Σ?

o, and Σf .

Now, let us consider the faulty trace hσf (eh)z of G. In Example 4.1, it was

shown that L is not synchronously codiagnosable, since this faulty trace has the same

observation as the fault-free trace hσR2
1 (ehσR2

1)z of automaton GR
N . Notice that there

is no trace in GR
N,ϕ whose observation with respect to Σo is equal to h(eh)z. This

shows, as expected, that a system can be distributed synchronously diagnosable, and

not synchronously codiagnosable.

0,0,0,N 1,0,0,N 4,2,1,N 3,2,1,N

0,1,1,N 1,1,1,N 2,2,1,N 0,0,1,N

0,4,2,F 1,4,2,F

3,4,2,F

a

a

a

hh

σf σf

σ1
c

g

b b

d, h
ee

d, h

d, h

3,3,0,N

eb, σ2

e

1,0,1,N

a

h

h

Figure 4.13: Automaton GF of Example 4.5.

65

0,4,2,F;0,1,0
a

σR2
1

σf

1,4,2,F;1,1,0
σR1
1

σR2
1

σf

0,4,2,F;0,2,0

σR2
1

σf

1,4,2,F;1,2,0
σR1
1

σR2
1

σf

0,4,2,F;0,3,0

σf

1,4,2,F;1,3,0
σR1
1

σf

σR2
1

1,4,2,F;2,1,0
σR1
1

σf

σR2
1

1,4,2,F;2,2,0
σR1
1

σf

1,4,2,F;2,3,0
σR1
1

σf

σR2
1

1,4,2,F;3,1,0 hR3

σf

σR2
1

1,4,2,F;3,2,0

σf

1,4,2,F;3,3,0

σf

σR2
2

hR3

hR3

1,4,2,F;3,1,1

1,4,2,F;3,2,1

1,4,2,F;3,3,1

σR2
1

σR2
1

σR1
1

σR1
1

σR1
1

σR2
1

1,4,2,F;2,1,1

σf

1,4,2,F;2,2,1

1,4,2,F;2,3,1

σf

σfσf

hR3, σR2
2

σR1
1

σR1
1

σR1
1

σf

σR2
1

1,4,2,F;1,1,1

σR2
1

1,4,2,F;1,2,1

1,4,2,F;1,3,1

0,4,2,F;0,1,1

σR2
1

0,4,2,F;0,2,1

σR2
1

0,4,2,F;0,3,1

a

σf

σf

σf

σf

σf

σfσR2
1σf

hR3hR3hR3

hR3
hR3

hR3

hR3
hR3

hR3

σR2
2 σR2

2 σR2
2

hR3

hR3

hR3 hR3 hR3

hR3 hR3 hR3

hR3, σR2
2 hR3, σR2

2 hR3, σR2
2

Figure 4.14: Part of automaton GDD
V with states labeled with F of Example 4.5.

Although in the worst case scenario the distributed synchronous diagnosability

veri�cation method has exponential complexity in the number of system

components, in the distributed synchronous diagnosis architecture proposed in this

work, each local diagnoser has polynomial growth with the number of states of its

corresponding component model. Therefore, the use of the global plant model is

avoided for the distributed synchronous diagnosis.

Besides the need of veri�cation of distributed synchronous diagnosability due to

the fault-free language considered in this approach be a larger set than the fault-

free language of the composed system, we may also compute the delay bound z?

for distributed synchronous diagnosis. It can be computed by using Algorithm 3.3

and Equation (3.2), replacing the input automaton by GDD
V . In the next example

we compute the delay bound for distributed synchronous diagnosis for the system

of Example 4.5.

Example 4.6 Let us consider again the system G = G1‖G2‖G3 presented in

Example 4.5. Since L is distributed synchronously diagnosable with respect to

LNa,d
, Po : Σ? → Σ?

o, and Σf , we can compute the delay bound z? for distributed

synchronous diagnosis. Using the veri�er automaton GDD
V , whose states labeled with

F and their correspondent transitions is shown in Figure 4.14, as input of Algorithm

3.3 and applying the result in Equation (3.2), we obtain z? = 2. Computing the delay

bound for the monolithic diagnosis, we obtain the same result z? = 2. This shows

that, for this system, using the distributed synchronous diagnosis approach, we take

66

advantage of the modularity of the system, takes into consideration that information

is not available in a centralized way and, besides that, the resulting delay bound is

the same as in the centralized monolithic architecture.

It is important to notice that the notion of synchronous codiagnosability

presented in Section 3.2 is a particular case of the notion of distributed synchronous

diagnosability presented in this work. The distributed synchronous diagnosis is

equal to the decentralized synchronous diagnosis when there is no network formed

with local diagnosers and, consequently, no exchange of information between local

diagnosis.

In CABRAL [33], a comparison between the notion of modular diagnosability,

proposed by CONTANT et al. [30], and the notion of synchronous codiagnosability

(De�nition 3.5) is presented. The approach presented in [30] shows a di�erent notion

of modular diagnosability, where necessary and su�cient conditions that ensure the

modular diagnosability of a DES are proposed. The assumptions assumed by [30]

are: (i) the language of the system is considered live, and there are no cycles of

unobservable events in the system component models; (ii) common events between

two or more components are observable, which implies that the fault event belongs

only to one local component model of the system; (iii) the model that exhibits the

faulty behavior has persistent excitation. In [30], only the observation of the local

component where the fault event is modeled is taken into account to diagnose a

global fault occurrence.

In order to compare the notions of modular diagnosability and synchronous

codiagnosability, in CABRAL [33], the assumptions proposed by [30] are applied

to the synchronous decentralized diagnosis scheme. The e�ect of considering these

assumptions is that the de�nition of synchronous codiagnosability becomes equal to

the de�nition of modular diagnosability, which implies that modular diagnosis can

be seen as a particular case of synchronous decentralized diagnosis.

Therefore, we can conclude that modular diagnosability can also be seen as a

particular case of distributed synchronous diagnosability. Thus, if the language

67

of a system is modularly diagnosable according to [30], only the local diagnoser

associated with the fault-free component model can be used for fault diagnosis.

4.4 Final comments

In this chapter, we propose a new synchronous diagnosis method, which consider

that local diagnosers are separated into networks. Each local diagnoser works as

node in the net, and can exchange information regarding observation of events and

state estimates. This information is used to re�ne the diagnosis decision, by adding

boolean conditions for the transposition of transitions of the fault-free component

models of the system. These conditions are associated to the state estimates of

local diagnosers that belong to the same network. For the implementation of the

distributed synchronous diagnosis method, the local diagnosers considering these

boolean conditions can be constructed following the method presented in CABRAL

et al. [35]. The notion of distributed synchronous diagnosability is introduced, and

a method to verify the distributed synchronous diagnosability based on the method

for the veri�cation of synchronous diagnosability presented in Section 3.1, is also

presented.

In Table 4.1, the notations of each synchronous diagnosis architecture is

presented, in order to summarize and compare the preliminary results presented

in Chapter 3 and the distributed synchronous diagnosis proposed in this chapter.

Table 4.1: Summary of notations regarding the synchronous diagnosis architectures.

Architecture
Augmented observed
fault-free language

Augmented
fault-free
automaton

Veri�er
automaton

Diagnoser

Synchronous
centralized
diagnosis

LNa GR
N GSD

V

Single
diagnoser

Synchronous
decentralized
diagnosis

L̂Na ĜR
N GSC

V

Local
diagnosers

Distributed
synchronous
diagnosis

LNa,d
GR
N,φ GDD

V

Local
diagnosers with
communication

68

Chapter 5

Conclusions and future work

In this work, we propose the distributed synchronous diagnosis scheme for modular

discrete-event systems. In this scheme, local diagnosers are computed based on

the fault-free behavior models of the system components, and are capable of

communicating the observation of events and state estimate to other local diagnosers

in the same network. The communication between diagnosers is used to improve the

fault diagnosis in comparison with other synchronous diagnosis strategies, leading

to the notion of distributed synchronous diagnosability.

In order to implement the distributed synchronous diagnosis scheme, a

communication protocol is proposed. The addition of boolean conditions for the

transposition of transitions of the fault-free component models are presented. These

conditions are associated with the state estimate of other local components whose

corresponding local diagnosers are in the same network, which result in the de�nition

of an extended automaton with conditions. The fault detection logic considered in

this work is that, when an event is observed by a local diagnoser, all conditions of

the enabled transitions labeled with the same event should by satis�ed, otherwise,

the fault event is identi�ed.

In summary, the main contributions of this work are as follows.

• A fault diagnosis scheme with distributed architecture for modular discrete-

event systems modeled by automata, called distributed synchronous diagnosis,

69

is proposed. In this scheme, local diagnosers are constructed based on the

observation of the fault-free behavior model of the system components.

• A communication protocol is introduced in order to allow the exchange of

information between local diagnosers that belong to the same network.

• An extended automaton with conditions is introduced in order to alter its

transition function according to the boolean conditions added to the transitions

of the fault-free component models.

• The notion of distributed synchronous diagnosability is presented.

• A method for the veri�cation of distributed synchronous diagnosability of

DESs with polynomial computational complexity in the state-spate of the

system components is proposed.

Future works

In order to avoid a diagnosis technique based on the composed system model,

the synchronous diagnosis has been proposed in the literature. In this scheme,

although the composed plant model is not used for diagnosis, all system components

are considered in order to construct the synchronous diagnoser. However, in

several cases, the language of the system could be diagnosed using a subset of its

components. Therefore, an idea of future work is to obtain a method of computing

minimal subsets of local components that ensure synchronous diagnosability of the

language of a composed discrete-event system. This idea is similar to the problem

of �nding minimal diagnosis bases of events for diagnosability of DESs [22, 26], with

the di�erence that the objective is to provide a method for the computation of a

minimal synchronous diagnosis base of automata. It is important to notice that

if the minimal number of components necessary for synchronous diagnosis is used,

then the computational cost of the synchronous diagnoser is also decreased, which

is particularly interesting for systems with a high degree of concurrency.

70

For the implementation of the distributed synchronous diagnosis method, it

is considered that the network topology is known, i.e., the information of which

diagnosers can exchange information between then is previously known. Thus,

another idea of future work is to obtain a mechanism that returns an optimal network

topology in order to obtain the lowest delay bound for the distributed synchronous

diagnosis. In addition, exploring other communication protocols present in the

literature applied to this architecture, in order to increase the e�ciency of the

method, may also be interesting.

71

Bibliography

[1] SHI, J., WAN, J., YAN, H., et al. �A survey of cyber-physical systems�.

In: International Conference on Wireless Communications and Signal

Processing (WCSP), pp. 9�11, Nanjing, China, 2011.

[2] BAHETI, R., GILL, H. �Cyber-physical systems�. In: The impact of control

technology, pp. 161�166, 2011.

[3] LEE, J., BAGHERI, B., KAO, H. �A Cyber-Physical Systems architecture for

Industry 4.0-based manufacturing systems�, Manufacturing Letters, v. 3,

pp. 18�23, 2015.

[4] LIMA, P. M., ALVES, M. V. S., CARVALHO, L., et al. �Security Against

Communication Network Attacks of Cyber-Physical Systems�, Journal of

Control, Automation and Electrical Systems, pp. 1�11, 2018.

[5] CASSANDRAS, C., LAFORTUNE, S. Introduction to Discrete Event System.

Secaucus, NJ, Springer-Verlag New York, Inc., 2008.

[6] HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D. Introduction to automata

theory, languages, and computation. Boston, Addison Wesley, 2006.

[7] MIYAGI, P. E. Controle programável: fundamentos do controle de sistemas a

eventos discretos. Edgard Blücher, 1996.

[8] LAWSON, M. V. Finite automata. Florida, CRC Press, 2003.

[9] DAVID, R., ALLA, H. Discrete, Continuous and Hybrid Petri Nets. Springer,

2005.

[10] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. �Diagnosability of

discrete-event systems�, IEEE Transactions on Automatic Control, v. 40,

n. 9, pp. 1555�1575, 1995.

[11] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. �Failure diagnosis

using discrete-event models�, IEEE Transactions on Control Systems

Technology, v. 4, n. 2, pp. 105�124, 1996.

72

[12] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. �Coordinated

decentralized protocols for failure diagnosis of discrete event systems�,

Discrete Event Dynamic Systems: Theory and Applications, v. 10, n. 1,

pp. 33�86, 2000.

[13] QIU, W., KUMAR, R. �Decentralized failure diagnosis of discrete event

systems�, IEEE Transactions on Systems, Man, and Cybernetics Part A:

Systems and Humans, v. 36, n. 2, pp. 384�395, 2006.

[14] WANG, Y., YOO, T.-S., LAFORTUNE, S. �Diagnosis of discrete event systems

using decentralized architectures�, Discrete Event Dynamic Systems:

Theory And Applications, v. 17, pp. 233�263, 2007.

[15] QIU, W., KUMAR, R. �Distributed diagnosis under bounded-delay

communication of immediately forwarded local observations�, IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, v. 38, n. 3, pp. 628�643, 2008.

[16] KEROGLOU, C., HADJICOSTIS, C. N. �Distributed Fault Diagnosis

in Discrete Event Systems via Set Intersection Re�nements�, IEEE

Transactions on Automatic Control, v. 63, n. 10, pp. 3601 � 3607, 2018.

[17] SU, R., WONHAM, W. M. �Global and local consistencies in distributed fault

diagnosis for discrete-event systems�, IEEE Transactions on Automatic

Control, v. 50, n. 12, pp. 1923�1935, 2005.

[18] RAMIREZ-TREVINO, A., RUIZ-BELTRAN, E., RIVERA-RANGEL, I., et al.

�Online fault diagnosis of discrete event systems. A Petri net-based

approach�, IEEE Transactions on Automation Science and Engineering,

v. 4, n. 1, pp. 31�39, 2007.

[19] BASILE, F., CHIACCHIO, P., DE TOMMASI, G. �An e�cient approach

for online diagnosis of discrete event systems�, IEEE Transactions on

Automatic Control, v. 54, n. 4, pp. 748�759, 2009.

[20] CABASINO, M. P., GIUA, A., POCCI, M., et al. �Discrete event diagnosis

using labeled Petri nets. An application to manufacturing systems�,

Control Engineering Practice, v. 19, n. 9, pp. 989�1001, 2011.

[21] CABASINO, M., GIUA, A., LAFORTUNE, S., et al. �A New Approach

for Diagnosability Analysis of Petri Nets using Veri�ers Nets�, IEEE

Transactions on Automatic Control, v. 57, n. 12, pp. 3104�3117, 2012.

73

[22] BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al. �Computation of

minimal event bases that ensure diagnosability�, Discrete Event Dynamic

Systems: Theory And Applications, v. 22, pp. 249�292, 2012.

[23] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al.

�Robust diagnosis of discrete-event systems against permanent loss of

observations�, Automatica, v. 49, n. 1, pp. 223�231, 2013.

[24] CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. �A Petri net diagnoser

for discrete event systems modeled by �nite state automata�, IEEE

Transactions on Automatic Control, v. 60, n. 1, pp. 59�71, 2015.

[25] MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. � �Polynomial Time

Veri�cation of Decentralized Diagnosability of Discrete Event Systems�

Versus �Decentralized Failure Diagnosis of Discrete Event Systems�: A

Critical Appraisal�, IEEE Transactions on Automatic Control, v. 61, n. 1,

pp. 178�181, 2016.

[26] SANTORO, L. P. M., MOREIRA, M. V., BASILIO, J. C. �Computation

of minimal diagnosis bases of Discrete-Event Systems using veri�ers�,

Automatica, v. 77, pp. 93�102, 2017.

[27] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. �Polynomial time

veri�cation of decentralized diagnosability of discrete event systems�,

IEEE Transactions on Automatic Control, v. 56, n. 7, pp. 1679�1684,

2011.

[28] CASSEZ, F. �A note on fault diagnosis algorithms�. In: Proceedings of the

48th IEEE Conference on Decision and Control held jointly with the

28th Chinese Control Conference, CDC/CCC., pp. 6941�6946, Shanghai,

China, 2009.

[29] DEBOUK, R., MALIK, R., BRANDIN, B. �A modular architecture for

diagnosis of discrete event systems�. In: 41st IEEE Conference on

Decision and Control, pp. 417�422, Las Vegas, Nevada USA, 2002.

[30] CONTANT, O., LAFORTUNE, S., TENEKETZIS, D. �Diagnosability of

discrete event systems with modular structure�, Discrete Event Dynamic

Systems: Theory And Applications, v. 16, n. 1, pp. 9�37, 2006.

[31] CABRAL, F. G., MOREIRA, M. V., DIENE, O. �Online fault diagnosis of

modular discrete-event systems�. In: IEEE 54th Annual Conference on

Decision and Control (CDC), pp. 4450�4455, Osaka, Japan, 2015.

74

[32] CABRAL, F. G., MOREIRA, M. V. �Synchronous Diagnosis of Discrete-Event

Systems�, Transactions on Automation Science and Engineering, 2018.

Submitted for publication.

[33] CABRAL, F. G. Synchronous Failure Diagnosis of Discrete-Event Systems.

Tese de Doutorado, Programa de Pós-Graduação em Engenharia Elétrica

- COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2017.

[34] CABRAL, F. G., MOREIRA, M. V. �Synchronous Decentralized Diagnosis of

Discrete-Event Systems�. In: 20th World Congress of the International

Federation of Automatic Control, pp. 7025�7030, Toulouse, France, 2017.

[35] CABRAL, F. G., VERAS, M. Z. M., MOREIRA, M. V. �Conditional

Synchronized Diagnoser for Modular Discrete-Event Systems�. In: 14th

International Conference on Informatics in Control, Automation and

Robotics (ICINCO), v. 2, pp. 88�97, Madrid, Spain, 2017.

[36] VERAS, M. Z. M., CABRAL, F. G., MOREIRA, M. V. �Distributed

Synchronous Diagnosability of Discrete-Event Systems�. In: Discrete

Event Systems (WODES), 2018 14th International Workshop on, pp. 88�

93, 2018.

[37] BASILIO, J. C., CARVALHO, L. K., MOREIRA, M. V. �Diagnose de falhas

em sistemas a eventos discretos modelados por autômatos �nitos�, Revista

Controle & Automação, v. 21, n. 5, pp. 510�533, 2010.

[38] YOO, T.-S., LAFORTUNE, S. �Polynomial-time veri�cation of diagnosability

of partially observed discrete-event systems�, IEEE Transactions on

Automatic Control, v. 47, n. 9, pp. 1491�1495, 2002.

[39] BASILIO, J. C., LAFORTUNE, S. �Robust codiagnosability of discrete event

systems�. In: American Control Conference (ACC), pp. 2202�2209, St.

Louis, MO, USA, 2009.

[40] TOMOLA, J. H. A., CABRAL, F. G., CARVALHO, L. K., et al.

�Robust Disjunctive-Codiagnosability of Discrete-Event Systems Against

Permanent Loss of Observations�, IEEE Transactions on Automatic

Control, v. 62, n. 11, pp. 5808�5815, 2017.

[41] YOO, T.-S., GARCIA, H. �Computation of fault detection delay in discrete-

event systems�. In: Proceedings of the 14th International Workshop on

Principles of Diagnosis, DX'03, pp. 207�212, Washington, USA, 2003.

75

[42] DASGUPTA, S., PAPADIMITRIOU, C., VAZIRANI, U. Algorithms. McGraw-

Hill, 2008.

[43] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction to

algorithms. Massachusetts, MIT Press, 2007.

76

	List of Figures
	List of Tables
	Introduction
	Fundamental Concepts of Discrete-Event Systems
	Languages
	Language operations

	Automata
	Operations on automata
	Automata with partially observed events

	Final comments

	Diagnosability of DESs
	Synchronous centralized diagnosability of DESs
	Delay bound for synchronous diagnosis

	Synchronous codiagnosability of DESs
	Final comments

	Distributed Synchronous Diagnosability of DESs
	Architecture
	Distributed synchronous diagnosis method
	Distributed synchronous diagnosability
	Final comments

	Conclusions and future work
	Bibliography

