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Este trabalho apresenta uma metodologia semi-analítica para avaliar 

eficientemente as integrais multidimensionais encontradas nas análises de resposta 

extrema de longo prazo e fadiga probabilística de estruturas offshore. Algumas 

metodologias tradicionais usadas tanto na avaliação da resposta extrema de longo prazo 

quanto na análise probabilística de fadiga de estruturas marinhas descritas na literatura 

são discutidas neste estudo. Além desses métodos, um novo procedimento para otimizar 

esses cálculos é desenvolvido e apresentado em detalhes neste trabalho. O método 

proposto baseia-se na interpolação paramétrica de variáveis que descrevem as séries 

temporais de respostas de curto prazo; por exemplo, os parâmetros estatísticos da 

distribuição de probabilidade de picos e os danos à fadiga de curto prazo. Este método 

de interpolação é então usado para avaliar eficientemente as integrais de convolução de 

longo prazo. Três exemplos são apresentados mostrando a eficiência e precisão do 

método proposto quando comparados com os métodos de integração completa 

(metodologia da “força bruta”). No primeiro exemplo, um modelo analítico de um grau 

de liberdade é analisado no domínio da frequência. No segundo exemplo, um Steel 

Catenary Riser (SCR) é avaliado com base em simulações no domínio do tempo. Na 

sequência, uma análise semelhante é realizada para um Steel Lazy Wave Riser (SLWR). 

 



vi 
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This work presents a semi-analytical methodology to efficiently evaluate the 

multi-dimensional integrals found in the analyses of the long-term extreme response and 

probabilistic fatigue of offshore structures. Some traditional methodologies for long-

term extreme response and probabilistic fatigue analysis of marine structures described 

in literature are discussed in this study. Besides these methods, a new procedure 

developed in this work for optimizing these calculations is explained in details. The 

proposed method is based on the parametric interpolation of parameters which describe 

the short-term time-series responses, e.g., statistical parameters of peaks probability 

distribution and short-term fatigue damage. This interpolation method is then used to 

efficiently evaluate the long-term convolution integrals. Three comprehensive examples 

are presented showing the efficiency and accuracy of the proposed method when 

compared with the complete long-term integration methods (“brute force” 

methodology). In the first example, an analytic model of a single degree of freedom is 

analyzed in the frequency domain. In the second one, a Steel Catenary Riser (SCR) is 

evaluated based on time-domain simulations. In the sequence, a similar analysis is 

performed for a Steel Lazy Wave Riser (SLWR). 
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f :  Short-term extreme response peak distribution 

SR
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RF :  Long-term response cumulative probability distribution 

L
RE

F : Long-term extreme cumulative response peaks distribution 

SER
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SR
F : Short-term response peaks cumulative probability distribution 

sz HT
f : Conditional probability density function of Tz given Hs 
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S : Wave spectrum 
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edT : Design effective axial tension 

zt : Zero-up-crossing wave period 
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ST : Short-term period 

STT : Time length of a short term numerical simulation 
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Gu : Most probable value of Gumbel distribution 

ULS : Ultimate Limit State 

1U , 2U : Standard Gaussian variables 

 

Greek: 

 : Weibull scale parameter 

 
izt : Constant of linear-exponential interpolation method for non-Gaussian response 
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narrowband response processes 

 
izt : Constant of linear-exponential interpolation method for non-Gaussian response 

processes 

0β : Parameter of exponential interpolation method which defines o  for Gaussian and 

narrowband response processes 

β : Parameter of parabolic interpolation method which defines 
 for Gaussian and 

narrowband response processes 
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Chapter 1 
 

Introduction 
 

1.1 Context 

 

The oil production in many countries, as in Brazil, is mainly located in offshore 

areas. An offshore oil production system is formed by several elements such as the 

platform, subsea equipment, mooring systems, risers, pipelines, among others. 

Regarding to the structure system, the platforms may be fixed (jackets and concrete 

platforms) or floating units. In relation to their function, offshore platforms may be for 

drilling, extraction, storage or/and processing. 

In Brazil, the largest fixed platform is 170m high; however, in the North Sea 

there are taller jackets, up to 400m high. Nowadays, the offshore industry is exploring 

and producing in deep and ultra-deep waters, reaching even water depths of more than 

3000m, in these cases floating platforms are used. There are different types of floating 

platforms; for instance FPSOs, TLPs, SPARs and semi submersibles. The most used 

platform in Brazilian basins is the FPSO (Floating, Production, Storage and Offloading 

unit) because it allows oil storage and offloading for other oil transport units in 

locations that are far from the coast where the use of pipelines for transportation would 

be very expensive. 

The pipes which connect the subsea equipment to the floating units are called 

“risers”. They can be classified according to their function, configuration, and material. 

In relation to their function, risers may be of completion, oil production, oil or gas 

exportation and water or gas injection. Regarding the configuration, risers can be 

vertical, free-hanging catenary, lazy-wave, among others. In the vertical configuration 

the riser must be pulled up by applying a tension force at the top in order to prevent 

buckling. When risers are installed in free-hanging catenary configuration, as it is 

shown in Fig.1, top tensioners are not used and its shape follows a catenary curve from 

the top to the point where it touches the sea floor - TDP (Touch Down Point). In a lazy 

wave configuration, as it is shown in Fig.2, the geometry presents a double catenary, 
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obtained through the use of intermediate floaters. These elements reduce the riser 

movements mainly in the TDP region. 

Semi Submersible

Oil Platform

Steel Catenary

Riser (SCR)

 

Figure 1. Semi-Submersible platform with SCRs (MONSALVE, 2014) 

 

Floating Production

Storage and

Offloading (FPSO)

Steel Lazy Wave

Riser (SLWR)

 

Figure 2. FPSO with SLWRs (MONSALVE, 2014)  
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In relation to the material which they are made, risers may be classified as rigid 

or flexible ones. A flexible riser is a composite structure composed of steel layers 

interspersed with polyethylene layers. A rigid riser is generally composed of steel, 

titanium or cladded-steel pipes. Rigid risers in catenary are connected to the platform by 

means of a flexible joint or a monolithic structure with a variable cross section. This 

latter structural element is known as stress joint and is used mainly to reduce the effects 

of high stresses caused by axial and bending load actions. 

This work is focused on rigid risers; however, the analysis methodology 

developed in the next chapters may also be applied to other types of offshore structures. 

Besides the functional loads (self-weight, fluid density, hydrostatic loading, 

etc.), in general, marine structures are subjected to stochastic environmental actions 

such as those generated by waves, wind and current. For this reason, the structural 

responses, i.e., motions, forces, stresses, etc, are essentially stochastic processes.  

The environmental actions are represented by the vessel motions and by the 

wave and current loading acting directly on the structure. For riser, the wave loading 

acting on itself is usually neglected for deep waters.  

Any marine structure design should carefully look at extreme and fatigue limit 

states. For both limit states, the ideal design methodology should be the one that 

considers the effect of all possible combinations of wind, wave and current that the 

structure will be submitted during its service life. Regarding extreme response 

verification, the method of long-term response analysis is considered as the best 

alternative to obtain the characteristic extreme response for the design and analysis of 

marine structures (SAGRILO et al., 2011). In the case of probabilistic fatigue analysis, 

the total fatigue damage is computed by performing a complete integration of all 

predicted load cases represented by the long-term joint probability of the environmental 

parameters.  

 

1.2 Motivation 

 The basis for the long-term response design methodology for extreme response 

verification is the long-term response probability distribution; likewise, the 

characteristic response value for design purposes is usually taken as the one associated 

to a given return period. Concerning the fatigue analysis, the annual fatigue damage can 

be estimated considering the contribution of all short-term environmental conditions 
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fatigue damages; hence, the estimated fatigue life is obtained as the inverse of this 

annual damage. 

The estimation of both extreme response and fatigue damage are based on multi-

dimensional integrals in the same integration domain, which is defined by the domain of 

the joint probability distribution of the environmental parameters. Traditional numerical 

integration techniques using constant integration intervals would require a huge demand 

for computational resources, since each integration point means a numerical simulation 

of the structure (usually, a long stochastic nonlinear finite element based simulation). 

This aspect is responsible for the use of other approaches in the everyday design 

practice. For instance, it is common practice to use short-term methodologies, such as 

the environmental contour method (see, for instance, BAARHOLM et al., 2010) for 

extreme responses and the irregular (or regular) wave scatter diagram (with or without 

some blockage scheme) for wave fatigue analysis (see, for instance, PEREIRA, 2018).   

In general, the equations described above are valid for any marine structure and 

many studies are available in the technical literature dealing with the implementation of 

solutions techniques for both integrals and their application in practical cases. TRIM 

(1992) considered several approaches to predict long-term extreme responses of 

offshore structures and developed the averaged long-term peak distribution on a design 

storm approach. FARNES & MOAN (1994) studied the general theoretical basis for 

application of the direct long-term approach to offshore structures with non-Gaussian 

response. In addition, CRAMER (1994) presented a procedure for calculating the long 

term wave induced response of ship structures by obtaining the peak distribution of the 

response in each short-term period considering frequency domain analysis. 

BAARHOLM & MOAN (2000) applied the long-term method by determining 

nonlinear extremes of hull girder loads in ships. WINTERSTEIN et al. (1993) proposed 

the so-called environmental contour approach for approximately obtaining the N-yr 

long-term response. The environmental contour approach is largely used and recognized 

by some design standards (DnV-OS-F201, 2010). GAIDAI & NAESS (2008) proposed 

an approximation for efficiently calculating long-term extreme response statistics of 

drag dominated offshore structures subjected to severe sea states. Recently, some 

authors (NEJAD et al., 2013; GONG et al., 2014 and REN et al., 2015) have 

investigated the use of the long-term extreme response approach for modern offshore 

structures such as fixed and floating wind turbines.  
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Some authors have developed methods that seek to optimize the calculation of 

the long-term response. LOW & LANGLEY (2008) developed a hybrid approach in 

which the low-frequency motion is simulated in the time domain while the wave 

frequency motion is solved in the frequency domain at regular intervals. This method 

was implemented by LOW (2008) for predicting the long-term extreme vessel motions 

and line tensions. Afterwards, SAGRILO et al. (2011) proposed an improved approach 

to evaluate efficiently the long-term convolution integrals by means of a combination of 

the Inverse First Order Reliability Method (IFORM) and an Importance Sampling 

Monte Carlo Simulation approach (ISMCS). Recently, MONSALVE et al. (2018) 

proposed a hybrid parabolic interpolation-artificial neural network method for long-term 

extreme response estimation of steel risers. Their method solves the multi-dimensional 

integral of the long-term extreme response using two numerical procedures. The first 

one consists of a parabolic interpolation scheme to interpolate statistical parameters of 

the short-term integration points and the second one is an artificial neural network-

based model used to speed-up the structure numerical simulations. VIDEIRO et al. 

(2019) also proposed a reduced integration scheme, based on the most contributive 

region of the integration domain, which require a small number of structure numerical 

simulations.  

Probabilistic fatigue analysis is one of the most important limit states for the 

design of any marine structure. These structures are submitted to several dynamic 

environmental conditions causing a fatigue damage accumulation over the time. 

Nowadays, for instance, the complex and large numerical riser models and the very 

large number of sea state conditions presented in the wave scatter diagram, lead to high 

computational costs to perform the fatigue life evaluation of a single metallic riser. 

Then some techniques have proposed in the literature to efficiently and accurately solve 

the multidimensional integral associated to the long-term extreme response. LOW & 

CHEUNG (2012) presented two approaches, the Perturbation Method and the 

Asymptotic Method for efficient probabilistic analysis of mooring lines and risers, but 

their analyses were restricted to a single point of a riser section. MONSALVE et al. 

(2016) proposed the implementation of the Univariate Dimension Reduction Method 

(UDRM) to reduce the number of riser numerical simulations, obtaining interesting 

results. 

So far, although both analyses are based on the same integration domain and 

some efficient methods have been proposed, the fatigue and extreme response 
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assessments based on a long-term approach have been treated separately. Then, in this 

work an integrated, efficient and accurate method which reduces the number of 

structure numerical simulations necessary to evaluate the long-term integrals is 

developed. The method uses an interpolation scheme to describe the behavior of the 

short-term response and short-term fatigue damage conditioned on a given wave period. 

Then, for each wave period of the integration domain, just a few structure numerical 

simulations are needed to describe the response behavior. Besides using the same 

integration domain points, this approach allows to solve both long term integrals 

(fatigue and extreme response) in an efficient and accurate way.  

 

1.3 Objective  

The main objective of this research work is to propose and develop an 

innovative method, based on long-term response analysis, to optimize the computer 

time demand for the calculation of both extreme responses and probabilistic fatigue of 

marine structures presenting nonlinear behavior and requiring long time-domain 

simulations in their design analyses, such as metallic risers used in the floating 

production units.  

In order to fulfill this objective, the main idea was to develop an integrated 

methodology where the same reduced number of integration points (non-linear 

stochastic time-domain finite element-based analysis) are used in an interpolation 

scheme to efficiently solve the fatigue and extreme response long-term integrals 

associated to metallic risers analysis and design. 

 
1.4 Text Organization 

The next chapters of this work are organized as follows: 

 

Chapter 2 describes the basic concepts about the short-term and long-term of 

environmental parameters. This chapter also presents a brief explanation about joint 

probability function of the environmental parameters. 

Chapter 3 presents a theoretical background about short-term analysis including 

the following topics: short-term structural responses, crossing and peak frequencies, 

short-term peak distribution and short-term extreme peak distribution. 



7 

 

Chapter 4 presents a theoretical background about long-term analysis of ocean 

structures considering methods based on all short-term peaks, on all short-term 

extremes, and on short-term up-crossing rates. 

Chapter 5 presents a theoretical background about probabilistic fatigue of ocean 

structures. 

Chapter 6 presents the proposed method which is the main focus of this 

research work, the so-called Parametric Interpolation Method (PIM), for long-term 

extreme response and probabilistic fatigue prediction of marine structures. 

Chapter 7 presents three comprehensive examples for long-term extreme 

response prediction and probabilistic fatigue using the proposed approach. In the first 

case, a single degree of freedom model is studied based on frequency domain analysis. 

In the second example, a SCR (Steel Catenary Riser) is evaluated based on nonlinear 

time-domain simulations. Finally, a similar analysis is performed for a SLWR (Steel 

Lazy Wave Riser). 

Chapter 8 presents the final remarks concerning the study performed and some 

indications for further research topics are also addressed in this chapter 

Bibliography presents the list of references which this study was based on. 
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Chapter 2 

Short-term/long-term description of the 

environmental parameters 
 

2.1 Environmental parameters 

Ocean structures are subjected to environmental loads induced by waves, wind 

and currents. This work is focused on wave loads, however, more information about the 

other environmental loads can be found in CHAKRABARTI (2005). For extreme and 

fatigue analyses, an appropriate current profile will be used together with the wave load 

cases analyzed. Indirectly, the wind effect on the risers will be considered by means of 

an static offset.  

Ocean waves are considered as a succession of pseudo-stationary ergodic 

processes of short duration where each event corresponds to a specific sea sate 

(CHAKRABARTI, 2005). Each sea state has a short-term duration period usually taken 

as 3 hours. In this period, the wave elevation is assumed to be a Gaussian stationary and 

ergodic random process. 

Each sea state is characterized by the wave environmental parameters: the 

significant wave height (Hs), the zero-up-crossing wave period (Tz) or wave peak period 

(Tp) and the wave incidence direction w. The significant wave height (Hs) is defined as 

the average value of the one third highest individual waves identified in sea surface 

elevation record  t  and Tz is the mean value of the periods of all individual waves 

identified in the wave record. Additionally, a frequency domain representation of the 

wave record is always adopted by means of a wave spectrum  S  (see, for example, 

NEWLAND, 1993). Tp is the period associated to the modal frequency of the wave 

spectrum. The most used spectral models to represent sea elevations records are 

Pierson-Moskowitz (PIERSON & MOSKOWITZ, 1964) and JONSWAP 

(HASSELMANN et al., 1973) spectra formulas. 

The long-term modelling of the environmental parameters is considered as a 

sequence of stationary short-term periods. In the specific case of waves, it is considered 

as a sequence of sea states as shown schematically in Fig. 3.  
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Figure 3. Characterization of short and long-term wave environmental parameters 

(SAGRILO, 2016) 

 

2.2 Joint probability function of wave parameters 

 

The joint probability density function  sSf  of the wave environmental 

parameters  wzs ,T,H S  is defined so that the product   wzswzs θddtdhθ,t,hfS  

represents the probability that a set of sampled values of Hs, Tz, and  w will be within 

the region surrounded by ssss dhhHh  , zzzz dttTt  , and 

WWWW d (CLOUGH & PENZIEN, 1993). 

This definition requires that  

 

   












 1θddtdhθ,t,hf wzswzsS  (2.1) 

 

In practical terms, it is common to model the wave incidence direction by a 

discrete probability distribution. In this way the joint probability function of wave 

environmental parameters can be written as  

 

     iiwzswTz,Hswzs pt,hfθ,t,hf 
S  (2.2) 
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where  iwzswTz,Hs
t,hf 


 is the joint probability density of Hs and Tz conditioned 

on the wave incidence direction iw   and  ip   is frequency of waves coming from 

this direction.  

For sake of simplification from now on the incidence direction will be dropped 

from the representation of the joint distribution of Hs and Tz and it will be simply 

represented by  zsTz,Hs t,hf  for a given wave direction. In this way, the marginal 

probability density function of Hs, i.e.,  sH hf
s

, is defined such that   ssH dhhf
s

 is the 

chance that a sampled value of sH  will be in the range ssss dhhHh   regardless 

of the value of zT . Likewise, the marginal probability density function  zT tf
z

 is 

defined so that   zzT dttf
z

 is the chance that a sampled value of zT will be in the range 

zzzz dttTt  regardless of the value of sH . These marginal probability density 

functions are given by (CLOUGH & PENZIEN, 1993): 

 

   

   















szsT,HzT

zzsT,HsH

dht,hftf

dtt,hfhf

zsz

zss

 (2.3) 

 

The conditional probability density function  zsTH
thf

zs
 is defined such that 

  sZsTH
dhthf

zs
is the chance that sH  will be in the range ssss dhhHh   when (or 

given that) zZ tT  . In the same way, the conditional probability density function 

 szHT
htf

sz
 is defined such that   zszHT

dthtf
sz

 is the chance that ZT  will be in the 

range zzZz dttTt   when sS hH  . These conditional density probability 

distributions are given by (CLOUGH & PENZIEN, 1993): 

 

 
 

 

 
 

 sH

zsT,H

szHT

zT

zsT,H

zsTH

hf

t,hf
htf

tf

t,hf
thf

s

zs

sz

z

zs

zs





 (2.4) 

 

Based on the equations described above the zs TH    joint probability 

distribution can also be written in one of the following forms: 
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     

     szHTsHzsT,H

zsTHzTzsT,H

htfhft,hf

thftft,hf

szszs

zszzs





 (2.5) 

 

The latter expression in Eq. (2.5) is the most common form utilized in practice. In cases 

where the wave period is represented by PT  instead of ZT  the treatment described also 

applies by just changing ZT  for PT . 

 

 

2.3 Scatter diagram 

 

For a given sea location of interest, the collected wave data are firstly separated 

by the wave direction sector. For each direction, the corresponding wave scatter 

diagram is obtained by counting the jointly observed pairs of the Hs and Tz values in the 

corresponding bins of a two-dimensional Hs-Tz graph. In this graph the sea state 

characterization is represented by (NHs x NTz) bins where NHs and NTz are the number of 

Hs and Tz intervals, respectively, used to represent all observed sea state parameters. 

Each bin is represented by its central point  
ji ZS T,H . The total number of observed 

samples in each bin is divided by the total number of observations in the given direction 

characterizing then the relative probability of occurrence  j,ip  of sea states for each bin 

(see, for instance, MONSALVE, 2014). A simple scatter diagram is shown in Table 1. 

In terms of the joint probability distribution of Hs and Tz, the probability of 

occurrence j,ip  can be expressed as: 

 

  tzhst,hfp
jzs zisT,Hj,i   (2.6) 

 

where hs  and tz  are the intervals sizes of the wave scatter diagram used for the 

characterization of SH  and ZT data,  respectively. Then, an empirical representation of 

the joint probability distribution of SH  and ZT  is given by 

 

 
tzhs

p
t,hf

j,i

ZiST,H jzs 
  (2.7) 
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Table 1. Example of a scatter diagram (the value inside each cell means the probability 

of occurrence) 

Hs(m) 
Tz(s) 

3.95 4.85 5.75 6.65 7.55 8.45 9.35 10.25 11.15 12.05 

0.683 4.06E-03 6.01E-04 3.11E-05 5.70E-07 3.39E-09 1.01E-11 3.47E-13 4.82E-15 0.00E+00 0.00E+00 

1.348 9.10E-02 2.34E-01 9.76E-02 1.20E-02 4.67E-04 7.03E-06 2.40E-07 3.34E-09 1.80E-11 3.62E-14 

2.013 9.58E-03 1.36E-01 1.95E-01 7.48E-02 8.38E-03 3.38E-04 1.16E-05 1.60E-07 8.66E-10 1.74E-12 

2.678 3.24E-04 1.50E-02 5.09E-02 4.37E-02 1.08E-02 8.51E-04 2.91E-05 4.04E-07 2.18E-09 4.39E-12 

3.343 7.97E-06 9.24E-04 5.99E-03 1.02E-02 4.66E-03 6.09E-04 2.08E-05 2.89E-07 1.56E-09 3.14E-12 

4.008 1.94E-07 4.81E-05 5.70E-04 1.52E-03 1.16E-03 2.33E-04 7.98E-06 1.11E-07 5.98E-10 1.20E-12 

4.672 5.17E-09 2.44E-06 4.63E-05 1.90E-04 2.22E-04 6.41E-05 2.19E-06 3.04E-08 1.64E-10 3.30E-13 

5.338 1.56E-10 1.29E-07 3.68E-06 2.20E-05 3.69E-05 1.46E-05 5.01E-07 6.95E-09 3.75E-11 7.55E-14 

6.002 5.41E-12 7.31E-09 2.99E-07 2.49E-06 5.76E-06 3.02E-06 1.03E-07 1.44E-09 7.74E-12 1.56E-14 

6.668 2.15E-13 4.51E-10 2.55E-08 2.85E-07 8.78E-07 5.92E-07 2.02E-08 2.81E-10 1.52E-12 3.05E-15 

 

In order to have probabilistic information regarding wave parameters beyond 

those observed in the field it is necessary to fit a theoretical model to represent the joint 

probability distribution of SH  and ZT . There is not a general rule for the choice of this 

theoretical model. As stated before, the most common model used in the literature 

(CLOUGH & PENZIEN, 1993) is the conditional distribution model: 

 

     szHTsHzsT,H htfhft,hf
szszs

  (2.8) 

 

In this model, usually the Weibull or Lognormal models, depending on the data 

behavior,  are used for representing the marginal distribution of Hs, i.e.,  sH hf
s

, and 

conditional Lognormal distribution is used to represent the conditional distribution of Tz 

on Hs values, i.e.,  szHT
htf

sz
. 

Alternatively, a joint probability model for SH  and ZT  can be established based 

on the Nataf Transformation method (MANUEL et al., 2018; SILVA, 2018). This 

model uses just the marginal distributions of these two parameters, which are fitted 

independently of each other, and the correlation coefficient between them. Further 

details on this approach can be found in PAPALEO (2009), MOSQUERA (2015), 

MANUEL (2018) and SILVA (2018).
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Chapter 3 

Short-term response analysis 
 

3.1 Short-term structural response 

 

In a short-term analysis, the marine structure is subjected to the action of short-

term wave loads. As explained in the previous chapter, waves are random Gaussian 

processes and consequently the loads produced by them are transformed stochastic 

processes that can be Gaussian in case of a linear transformation or non-Gaussian 

(nonlinear) otherwise. For example, first order floater motions prescribed at the top of a 

riser are assumed to be linear transformations and then modelled as Gaussian processes. 

On the other hand, due to the nonlinear drag term, the Morison wave hydrodynamic 

loading acting on a riser is non-Gaussian. For some structures, such as risers and 

mooring lines, response parameters as axial tension and stresses along their length are 

usually non-Gaussian processes due to nonlinear structural behavior of such structures. 

For a short-term period the structural analysis can be approached in two 

different ways, depending on the degree of nonlinearity between the wave elevation and 

the structure´s response. It can be performed in time domain or frequency domain, 

where the latter case only applies to linear responses.  

In the time domain procedure, the load caused by a short-term wave is 

represented by a time series and is applied on the structure; subsequently, a numerical 

method, such as the finite element method (FE), is used to obtain the structural 

responses (displacements, internal forces, stresses, etc.) which are also represented by 

time series. Fig. 4 shows schematically the approach of structural analysis in  time 

domain. 

In the case of linear responses, i.e., a linear relation between the ocean elevation 

 t  and the structural response  tR , it is possible to obtain the response spectrum for 

a short-term period, characterized by wave spectrum  S  (or 

   S,ST,H,S ZS   ), in very simple way as (see, for example, CHAKRABARTI, 

1987): 



14 

 

 

     SS ω,SωRAOω,S 2
R   (3.1) 

 

where RAO means Response Amplitude Operator and  ωRAO  corresponds to the 

response amplitude for a regular wave having an amplitude equal to 1 meter and 

frequency ω  (or period equal to /ω2 ).  ωRAO  is obtaining by means of standard 

structural analysis tools. Eq. (3.1) is schematically represented in Fig. 5 and it 

synthetizes the so-called frequency domain methodology. 
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Figure 4. Time domain stochastic analysis representation in moorings and risers 
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Figure 5. Frequency domain stochastic analysis representation of vessel movements 

 

For nonlinear responses, due to wave loading transformation or nonlinear 

structural behavior or both, it is not possible to perform frequency domain analyses and 

the practical way is to use nonlinear stochastic time domain simulations, as 

schematically shown in Fig. 4. A random time history of the wave elevation is 

generated and then the random hydrodynamic forces acting on the structure are 

computed. Using a nonlinear time domain solver the required responses are also 

obtained in the form of random time-series. This basically constitutes the main steps of 

a time-domain stochastic analysis of marine structures.  

One of the most important aspects of stochastic analysis of marine structures, 

using either frequency approach or time domain simulations, is the statistical 

representation of the structural response. This statistical representation has the goal of 

characterizing the probability functions of the response process itself, its peaks and its 

extreme value in the short-term. This representation is needed to estimate extreme 

response characteristic values; besides, it is also important to perform fatigue analyses.  
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Another useful parameter in stochastic analysis of marine structures is the 

spectrum of a response parameter of interest, i.e.,  Sω,SR . In the frequency domain 

approach its definition is straightforward (see Eq. 3.1) while for response time series is 

obtained by means of a Fourier analysis (see, for example, NEWLAND, 1993) 

As mentioned before, the structural responses of marine structures subjected to 

short-term wave loading are not necessarily Gaussian distributed. The statistical 

characterization for a Gaussian process is well-known in literature; however this is not 

the case for non-Gaussian processes (VARGAS-BAZÁN, 2012). In last case there are 

several possible ways of dealing with this topic as it will be shown later in this work.   

 

3.2 Crossing and peaks frequencies 

 

The up-crossing and peak frequencies of a random process are parameters of 

large use in the context of its statistical characterization. The up-crossing frequency of a 

short-term stationary random process (t)S  is calculated by dividing the number of 

identified crossings at a given level "a" (giving that  0
dt

(t)dS
  at the crossing) by the 

simulated (or measured) duration STT  of this process: 

 

 

ST

ST
a

T

T;aN
   (3.2) 

 

 The zero up-crossing frequency o  is obtained when a = 0. The frequency of 

maxima (or peak frequency) is determined dividing the number of peaks of maxima 

(points where 0
dt

(t)dS
 ,  0

dt

)t(tdS



 and 0

dt

)t(tdS



 for 0t  ) by the 

duration STT  of the process: 

 

 

ST

ST
m

m
T

TN


 (3.3) 

 

It must be observed, that for a zero mean process, negative and positive peaks 

can be identified as shown in Fig. 6.  
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Figure 6. Peaks of a time-series 

 

For short-term stationary and ergodic Gaussian random processes with zero 

mean, the zero up-crossing frequency and the peak frequency are, respectively, defined 

as (see, for instance, NAESS and MOAN, 2013): 

 

 
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s
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1
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



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






 (3.4) 

 

where  snm  is the n
th

 moment of the response spectral density function  sω,SR  about 

the origin, given the short-term environmental parameters  zs t,h sS , and is 

defined as: 

 

   dωω,Sωm R0

n
n ss 



  (3.5) 

 

Note that the zero
th

 spectral moment  s0m  corresponds also to the variance of 

the stochastic process (see, for instance, FALTINSEN, 1990). In practical terms, the 

time length of a numerical simulation STT  is usually different of the short-term period 

ST .  

 

3.3 Short-term peaks distribution 

 

The short-term peak cumulative probability distribution of a response parameter 

of a marine structure is the function  s
S

rF
R

 that describes the probability of the peaks 
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(or maxima) (represented hereafter as R) of such a response parameter to be less or 

equal to a specific value R=r in a short-term term environmental condition 

 zs t,h sS . The corresponding probability density function is  
 

dr

rdF
rf

R

R

s
s

S

S
 . 

For a stationary Gaussian process, the conditional peak probability distribution, 

given a short-term condition sS  ,  corresponds to the Rice distribution whose 

probability density function is given by (see, for instance, FALTINSEN, 1990; NAESS 

and MOAN, 2013; CLOUGH and PENZIEN, 1993): 
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 (3.6) 

 

where  .  is the standard Gaussian cumulative distribution and ε  is the spectral 

bandwidth parameter which is defined as: 

 

 
 

   ss

s
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mm
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1ε   (3.7) 

 

The spectrum and the process itself is said to be narrow-banded when this 

parameter is close to zero and broad-banded when it approaches to 1.   

Note that for the case of a narrow-banded stationary Gaussian process, the Rice 

distribution becomes the Rayleigh distribution:  

 

 
   

 
 
























s
s

ss
s

S

S

0

2

R

0

2

0
R

m

r

2

1
exp1rF

m

r

2

1
exp

m

r
rf

 (3.8) 

 

 In the case of non-Gaussian responses there is not a general theoretical solution 

for the peaks distribution as for the case of Gaussian ones. In this case, the peaks 

distribution is usually defined by fitting a probability distribution model to the sample 

of identified peaks in the response time-history obtained by a numerical time domain 
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simulation.  The most used probability model is the Weibull probability distribution in 

its various different representations (NASCIMENTO, 2009). The general form of the 

Weibull cumulative probability function for the short-term response peaks is given by 

 

   

 

 





























 s

S s

s
s

ur
exp1rF

R  (3.9) 

 

where  su ,  s  and  s  are, respectively, the location, shape and scale parameters 

of the distribution. The form represented in Eq. (3.9) is known as the three-parameter 

(3P) Weibull distribution, however when   0u s  it is known as two-parameter (2P) 

Weibull distribution. There are various ways of fitting a Weibull distribution to a 

sample of response peaks. For instance, NASCIMENTO (2009) studied 5 different 

methodologies for this purpose:  

 

 Weibull-2P: Two-parameter model of Weibull distribution where the 

method of moments based on the sample mean and standard deviation is 

used to define the distribution parameters. 

 

 Weibull-3P Skewness: The three parameters of the distribution are 

obtained by the method of moments using the mean, standard deviation 

and coefficient of asymmetry of the response time-series peaks sample. 

 

 Weibull-3P Kurtosis: The three parameters of the distribution are 

computed  by the method of moments using the mean, standard deviation 

and coefficient of kurtosis of the response time-series peaks sample. 

 

 Weibull-Tail: Two-parameter distribution which is adjusted by means of 

a regression method considering only the time-series peaks sample 

higher than some exceedance levels 

 

 Weibull-PoT (Peaks over a Threshold): A three-parameter Weibull is 

fitted by the method of moments (using sample mean, standard deviation 
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and skewness) for a sub-sample of peaks exceeding a given peak 

threshold. 

 

Based on the NASCIMENTO (2009) study, the Weibull-2P approach is adopted 

in this work to represent the peaks of short-term responses time-series. The 

considerations and equations related to this method are explained in details in Chapter 

6. 

 

3.4 Short-term extreme peak distribution 

 

Assume that n21 R,,R,R  are peaks statistically independent and identically 

distributed, then the short-term extreme response peak distribution, given a short-term 

condition sS   of duration ST ,  is: 
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E
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SS
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where  s
S

rF
R

 is the short-term peaks cumulative probability distribution (defined 

above) and N is the expected number of peaks in the period ST , i.e.,   Sm TνN s , 

where  s

mν  is short-term frequency of maxima. 

The derivative of Eq. (3.10) represents the short-term conditional probability 

density function of the extreme (largest) response peak: 
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It can be shown (CHAKRABARTI, 1987; ANG and TANG, 1984) that for large 

N, the extreme peak distribution converge to Gumbel distribution when  s
S

rF
R

 is 

either the Rice distribution (Gaussian response process) or the Weibull distribution 

(non-Gaussian response process). The Gumbel density and cumulative probability 

distribution are, respectively, given by  
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 (3.12) 

 

 

where  sG  and  sGu  are the parameters of the distribution (  sGu  corresponds also 

to the most probable value of this distribution). In the case of a Gaussian process these 

two parameters are, respectively, given by  

 

 

 
  

 s

s
s

0

S0

G
m

Tln2 
  (3.13) 

 

      S00G Tln2mu sss   (3.14) 

 

In the case of a non-Gaussian process where the response peaks are modelled by 

a Weibull distribution (see Eq. 3.9) the Gumbel distribution parameters are respectively 

given by 
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           sssss 


1

SG Tlnuu  (3.16) 

 

where  su ,  s  and  s  are the Weibull distribution parameters and  s  is the 

frequency of peaks for the environmental condition sS  . 
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Chapter 4 

Long-term extreme response analysis 
 

In the previous chapter the statistical description of the short-term response has 

been described. However, the most critical (or extreme) response associated to a long 

term period is of the major concern for the design of marine structures. Design codes 

are usually based on characteristic responses associated to a return period of 100 years.  

There are many ways of characterizing the long-term extreme response, most of 

them based on the long-term extreme environmental condition e.g. 100-yr storm sea 

state, etc. Nevertheless, depending on the dynamic properties, for some structures the 

most critical responses can be associated to other environmental conditions. Then the 

most appropriate methodology to take this aspect into account is the long-term response 

analysis (SAGRILO et al., 2011, NAESS and MOAN, 2013). Another aspect which is 

incorporated in the long-term response methodology is that the marine structure is 

designed to reach a certain failure probability. Instead, when a structure is designed 

using extreme environmental conditions, project criteria which are recommended by 

technical standards are used; for instance, a combination of winds, waves and currents 

of different probabilities of occurrence. 

For a marine structure, the long term response is described by the contribution of 

all short-term responses. In literature there are many methods to perform long-term 

analysis (see for instance, SAGRILO et al., 2011), i.e., to obtain the long-term extreme 

distribution, which can be categorized in (a) methods based on all short-term peaks, (b) 

methods based on all short-term extremes, and (c) the method based on short-term up-

crossing rates. Despite the different approaches followed, when no simplifications are 

used, all methods conduct to the same result. Then, in what follows it will be described 

the methodology based on the short-term peaks distribution which was the one used in 

the present work. 
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4.1 Long-term distribution based on short-term peaks 

distributions 

 

The probability of a peak R being below a level r in the long term is given by: 
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 (4.1) 

 

where each short-term environmental condition is defined as isS   and  iP s  is the 

probability of occurrence of each one of these events.    rFrRP R  is the long-term 

cumulative probability distribution of the response peaks,    iRi rFrRP ssS
S

  is 

the conditional cumulative probability distribution of  the response peaks given a short-

term environmental event isS   (defined in the previous chapter) and sN  is the 

number of short-term environmental conditions within the long term period considered. 

 

Eq. (4.1) can be rewritten as follows: 
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 S

R

Ns

1i
iiRR dfrFPrFrF sssss SSS

 (4.2) 

 

where  sSf  is the joint probability distribution of the environmental parameters for the 

location considered. The corresponding probability density function is given by 

 

     
S

RR dfrfrf sss SS
 

(4.3) 

 

Note that Eq. (4.2) does not consider that the number of peaks of the response 

may be different in each short-term condition. Based on this observation, BATTJES 

(1970) developed a model including this factor in the long-term distribution of the 

response peaks which is given by 
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where   is the long-term mean peak frequency given by  
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S

df sss S  (4.5) 

The corresponding probability density function associated to the cumulative probability 

function defined by Eq. (4.4) is 
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The total number of peaks in the long-term is  

 

NsTN SL
  (4.7) 

 

where Ts is the short-term period duration (3-h in the present work). 

 

Considering all peaks, independently of the environmental condition, as 

statistically independent, the extreme long term response peak distribution is given by 
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 (4.8) 

 

In most practical applications there is a specific interest in the most probable 

value cr  of the long-term extreme response parameter R, i.e., the long-term distribution 

is not necessarily required in practical design applications (it is required for reliability 

analysis of marine structures). Note that the extreme peak cr  corresponds to the 

maximum value assumed by the long-term probability density function and it can be 

obtained by equating its derivative to zero, i.e., 
 

0
r

rfL
RE 



. In this way, the following 

equation is found: 
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Assuming that the long-term response peaks distribution has an exponential 

decay in the direction of the extreme, the extreme value distribution converges to the 

Type I asymptotic extreme distribution (ANG and TANG, 1984). Under this hypothesis, 

for large values of r the following relation is met: 
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From the above equation, the following expression is obtained: 
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By substituting Eq. (4.11) into Eq. (4.9) the following equation is obtained: 
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As 
 

0
r

rf cR 



 and 0NL  , Eq. (4.12) reads: 
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From the above equation, it is possible to identify the following relationship 

between the long-term distribution of the response peaks and the most probable extreme 

value cr  corresponding to  SN  environmental conditions which is given by  
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4.2 General comments 

 

Although the long-term equations seem to be simple, it is important to notice 

that a multi-dimensional integral over the domain of the environmental conditions must 
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be solved in order to obtain the extreme value distribution or even its most probable 

value. Considering only the wave parameters in S and just one wave incidence 

direction, the long-term cumulative probability function can be discretized as  

 

      SZzsT,H
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1j
zsT,HRR htt,hft,hrFrF
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 (4.15) 

 

where HsN  and TzN  are the number of divisions used for SH  and ZT , respectively, in 

order to cover all integration domain region that contributes to the response; Zt  and 

Sh  are the corresponding integration intervals;  
ji zs t,h  is the central point of each 

discrete integration area;  
jiZS zsT,H t,hf  is the corresponding zS TH   joint probability 

density function and  
jiZS zsT,HR

t,hrF  is short-term response peaks cumulative 

distribution for the short-term condition  
ji zs t,hS . 

It must be observed that the number of numerical simulations required to solve 

Eq. (4.15) is equal to TzHsxNN  for each wave incidence direction. Considering that a 

nonlinear time-domain simulation of metallic riser in a modern computer can take 2-3 

hours, the computer costs are very large to solve such equation using this standard (or 

“Brute force”) procedure. Therefore, an efficient integration approach is very 

demanding for solving this long-term integral. 
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Chapter 5 

Fatigue analysis 

 
The cyclic loads acting on a marine structure generate stress variations that can 

lead to the fatigue failure. This failure is caused by a crack generation or propagation of 

an existing crack, such as the micro cracks presented in welded joints. 

There are two methods to estimate the useful life of a structural component 

which is under the effect of cyclic stress variations. In the first methodology, the crack 

propagation analysis is performed by using Fracture Mechanics; for instance, the Paris-

Erdogan law (ETUBE, 2001; NAESS and ENGESVIK, 1985). In the second 

methodology, the evaluation of fatigue life is calculated by means S-N curves and the 

Miner’s rule. The former approach is mainly used for an existing structure while the 

latter is largely used in the design of new structures. This work is focused on the S-N 

methodology for the fatigue assessment of a marine structural component. 

An S-N curve defines the relationship between a stress range variation and the 

corresponding number of cycles that leads a certain structural component to the fatigue 

failure. In practical terms, these curves, in a double-logarithmic graph, can be linear or 

bilinear S-N curves, as it is shown in Fig. 7. To select an appropriate S-N curve for the 

design of a structural component, the engineer must consider some properties such as 

(DNV-RP-F204, 2010): 

 

 Welding type 

 Construction details 

 Manufacturing process 

 Stress concentration factors  

 Environment to which the structure will be exposed to: air, free corrosion 

and cathodic protection in seawater, etc. 
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Figure 7. Definition of a S-N curve. a. bilinear, b. one-slope (DNV-RP-F204, 2010) 

 

 

The mathematical equation that describes a one-slope S-N curve is the 

following: 

 

  m
SKSN
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  (5.1) 

 

where S  is the stress range,  SN  is the number of stress cycles of range S  that leads to 

fatigue failure, K and m are the curve parameters obtained experimentally 

 

A bilinear S-N curve is defined as 
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where QS  is the stress range inflexion point. 

If the long-term stress loading can be characterized by the stress ranges 

 N21r SSSS  , where the i
th

 range occurs in  times, according to the Miner’s 

rule (DNV-RP-F204, 2010), the total induced fatigue damage is given by  
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The Miner´s rule assumes that the fatigue failure occurs when the fatigue 

damage reaches the unity. In practice, additional safety factors (SF) are often used to 

consider uncertainties (DNV-RP-F204, 2010). Then, if the long-term period used to 

identify the stress ranges rS  is 1-yr, the design fatigue life is given by 

 

SFd

1
UV


  (5.4) 

 

Regarding the modeling and analysis of marine structures, the fatigue damage is 

computed for each short-term condition and then appropriately accumulated for a long-

term period of usually 1-yr. In what follows, methods for short and long-term fatigue 

estimation will be described. 

 

5.1 Short-term fatigue damage assessment 

 

In general, there are two distinct ways for computing the short-term term fatigue 

damage: spectral and cycle counting-based methods. The spectral methods are based on 

the spectral density of the short-term stress process while the cycle counting-based 

methods use a stress time history to identify and count the stress cycles.  

Rayleigh (or Narrow-band spectrum) approach (WIRSCHING et al., 1987; 

NOLTE et al., 1976), Wirsching correction method (WIRSCHING, 1987) and Dirlik 

method (DIRLIK, 1985) are some examples of methodologies belonging to the class of 

spectral methods. The most traditional method in the class of cycle counting approaches 

is the well-know Rainflow method. In what follows only the methods used in the 

present work will be described, i.e., the Rayleigh or narrow-band stress spectrum 

approach and the Rainflow method. 

 

5.1.1 Spectral Method: Narrow-band stress spectrum approach 

 
This approach assumes that the stress spectrum is Gaussian and also narrow-

banded and it is largely used in the case of linear structural analysis. As it was 

mentioned in Chapter 3, when the stress response process is Gaussian and also narrow-

banded, the stress peaks distribution follows a Rayleigh distribution. This distribution 

depends only on the parameters which are obtained from the stress spectrum. For an 
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idealized narrow-banded stress approach, as shown in Fig. 8, each mean up-crossing 

represents an harmonic stress cycle with a stress range twice its amplitude (peak value).  

 

 

 

Figure 8. Narrow-banded Gaussian stress process time history 

 

The total number of cycles for a narrow-banded Gaussian stress process can be 

calculated in terms of the short-term period Ts and the mean up-crossing frequency o : 

 

Soc TN   (5.5) 

 

The short-term stress peaks probability distribution is expressed by Eq. (3.8), 

then the number of stress cycles having peaks in the interval   ii ,  in the short 

term period Ts with the environmental parameters isS   is given by 
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 By substituting the one-slope SN curve equation (Eq. (5.1)) and the Eq. (5.6) 

into Eq. (5.3) and considering  0, the short-term fatigue damage is given by: 
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Note that  i
mE s  is the expected value of the stress peaks up to the exponent 

m in the short-term environmental condition isS  .  

The Eq. (5.7) can be worked out, as detailed in WIRSCHING et al.(1987) and 

NOLTE et al. ,(1976), resulting in 
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where  .  is the Gamma function and 
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with  iim s  being i
th

 moment of the stress spectrum associated to the short-term 

condition isS  . 

In the case of a bilinear S-N curve, the short-term fatigue damage for a narrow-

banded Gaussian stress process can be also calculated applying Miner’s rule leading to 
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where, C, A, r, m and SQ are the bilinear S-N curves parameters and  Q1 S  and  Q2 S  

are incomplete gamma functions  defined as follows: 
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considering the following term: 
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The use of this approach is straightforward in the case where the stress process 

can be assumed to be a linear transformation of the sea surface elevation, since the 

result of this analysis is the stress spectrum. In this case, it must observed that in the 

case of a wide-banded spectrum the calculation is not strictly correct. There are some 

approaches to take into account the stress spectrum bandwidth in the fatigue estimates, 

for instance, see WIRSHING and LIGHT (1980).  

This frequency domain based procedure can also be used for those cases where 

the stress process is defined by means of a stress time series. In this case, the stress 

spectrum can be obtained through a Fourier analysis and them the calculation follows as 

described above. It should be noted that in this case, besides the spectrum bandwidth, 

the assumption (usually not true) that the stress process is Gaussian is also implicit in 

the calculation process. 

 

5.1.2 Cycle Counting Approach: Rainflow Method 

 

Rainflow is a method developed by MATSUISKI & ENDO (1968) to identify 

and count stress ranges directly from a stress time series. This method does not have 

restrictions regarding the stress process because it works directly with stress time-series. 

There are many Rainflow cycle counting algorithms reported in literature (ARIDURU, 

2004). In this work the one described in the design standard ASTM E 1049 (2005) has 

been implemented and used in the fatigue analysis calculations.  

 

After analyzing a stress time-series, obtained by means of a numerical 

simulation for the short-term environmental condition isS  , the result of a Rainflow 

algorithm is a sequence of stress ranges as  

 

   N21ir SSS sS  (5.14) 
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and their associated number of occurrences  N21 nnn  . Then the short-term 

fatigue damage is given by 
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where  iSN  is the allowable number of stress cycles for the stress range iS  given by 

S-N curve, SLT  and ST  are, respectively, the length of simulated stress time-series and 

the short-term period.  

 

5.2 Long-term probabilistic fatigue analysis 

 
As already described in Chapter 2, ocean waves are a succession of pseudo-

stationary ergodic processes of short duration where each event corresponds to a 

specific sea state. Then, the fatigue damage assessment of any marine structure must 

take into account this long-term variability. 

The most common technique to consider all the variability of sea states in the 

long-term is to use the wave scatter diagram which contain the observed relative 

frequency and direction of each sea state, represented by a pair S=(Hs,Tz), in a given sea 

location. Considering j,i  as the relative frequency occurrence of a sea state defined by 

iSS hH  and 
jzz tT  and that the short-term period is 3-h, the number of occurrences 

j,in  of this sea sate in a period of one year may be calculated as: 

 

j,ij,i 2920n   (5.16) 

 

Considering j,id  as the short term fatigue damage induced by the short-term 

environmental condition  
ji ZS t,hS , the annual fatigue damage y1D   is then: 

 

j,i

N

1i

N

1j
j,i

N

1i

N

1j
j,ij,iyr1

Hs TzHs Tz

d2920dnD  
  

  (5.17) 
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The frequency of occurrence of a given sea state may also be calculated using 

the joint probability distribution of Hs and Tz (see Chapter 2) as follows: 

 

  tzhst,hf
ji ZSTz,Hsj,i   (5.18) 

 

Thus, the equation for calculating the annual fatigue damage can be re-written as: 

 

  tzhstz,hsfd2920D jiTz,Hs

N

1i

N

1j
j,iyr1

Hs Tz

 
 

  (5.19) 

 

The above equation can be re-written in a more elegant way by making hs0 and 

tz0: 

 

   dhsdtztz,hsftz,hsd2920D Tz,Hs
0 0

yr1  
 

   (5.20) 

 

where d(hs,tz) is the fatigue damage for a short-term sea state. 

 

 

5.3 General comments 

As already mentioned for the case of extreme response analysis, the number of 

structure numerical simulations to perform the fatigue analysis for a single wave 

direction incidence is TzHsxNN . Considering, for instance, the case of a metallic riser 

connected to a floating unit in deep water subjected to many wave incidence directions, 

the fatigue analysis can be extremely demanding in terms of computer resources. So, 

this aspect make clear that some more efficient approaches should be investigated in 

order to estimate the long-term fatigue damage of a marine structure. 

One aspect that has not been explored in literature, is the fact that in long-term 

extreme and fatigue analyses the integration domain (environmental data) is the same. 

This aspect allows the development of an integrated procedure where both analyses can 

be performed simultaneously.  

Besides the development of interpolation methods for the analysis of extreme 

and fatigue of metallic risers, the aspect mentioned above will also be explored in the 

present work.  
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Chapter 6 

Parametric Interpolation Method (PIM)  
 

The focus of this work is the long term extreme and fatigue analyses of metallic 

risers considering the long-term variability of the wave environmental parameters. For 

sake of simplicity a short-term condition will be represented in what follows by a pair of 

SH  and zT values, i.e,  zs t,hs . 

The structural model type employed in this development considers the floater 

and the lines uncoupled. As it is of common practice, only the first order induced floater 

motions were considered. As described later, a single current profile is used in the 

analyses and the wind effect on the floater is represented by an static offset dependent 

on SH .  

The idea developed in this work to speed up the long term extreme and fatigue 

analyses was to use parametric equations to interpolate the short-term parameters for 

each integration point of the integration domain. Hereafter, it will be described the 

procedures developed for both fatigue and extreme long-term analyses. 

 

6.1 Parametric Interpolation Method (PIM) for long-term 

extreme response analysis of marine structures 

 

For the present work the long-term response peaks distribution, i.e. Eq. (4.4), 

can be simply written as: 

 

 
 

      








z s

zszs

t h

zszsT,HzsT,HR
zs

R dtdht,hft,hrF
t,h

rF  (6.1) 

 

where  zsT,H t,hf
zs

 is the joint probability density function of Hs and Tz. 

 

Hereafter some details related to Eq. (6.1) will be presented for the case where 

the short-term peaks distributions are related Gaussian and non-Gaussian response 
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processes. Then, later, a method to improve the efficiency of numerical evaluation of 

the long-term integral is proposed. 

 

6.1.1 Gaussian and narrowband response processes 

 

When the response process is considered Gaussian and narrow banded, the 

short-term cumulative probability function for the response peaks is given by the 

Rayleigh distribution, (see Eq. (3.8)), and can be re-written as: 

 

  
 












zs0

2

zsT,HR t,hm

r

2

1
exp1t,hrF

zs
 (6.2) 

 

The frequency of maxima for a given short-term condition and the average long-

term frequency of maxima for a Gaussian process are given, respectively, by: 

 

 
 
 zs2

zs4
zs

t,hm

t,hm

2

1
t,h


  (6.3) 

 

    
 

z s

zs

t h

zszsT,Hzs dtdht,hft,h  
(6.4) 

 

where  zsn t,hm  is the n
th

 order spectral moment of the response spectral density.  

 

The proposed method seeks to analyze the behavior of the short-term peaks 

probability distribution parameters and peaks frequency in order to develop parametric 

equations to optimize the extreme response calculation. Note that for the present case, 

narrowband Gaussian process, both the peak up-crossing rate and the Rayleigh 

distribution function depend only on the moments of the response spectral density. 

Consequently, the prediction of these parameters by means of some parametric 

equations as function of (Hs, Tz, or both) will reduce the number of simulations required 

to solve the bi-dimensional long-term integral described by Eq. (6.1).  

For a linear case where frequency domain analysis can be used, the spectral 

density of the response process for a given short-term condition )t,(h zs sS  can be 

obtained by crossing the response amplitude operator (RAO) with the sea surface 

elevation spectral density  zs t,hω,S  as follows: 
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     zs
2
RzsR t,hω,SωRAOt,hω,S   (6.5) 

 

The corresponding spectral moments of the response process are obtained using 

the following equation: 

   dωt,h,ωSωt,hm zs

0

R
n

zsn 


  (6.6) 

 

For the sake of simplicity, it is assumed that the wave spectrum is represented by 

the Pierson–Moskowitz modified model (PIERSON & MOSKOWITZ, 1964): 

 

  








 


4
z

4

3

4
z

5

2
s

3

zsη
tω

16
exp

tω

h4
,tω,hS  (6.7) 

 

By substituting Eq. (6.7) into Eq. (6.5), the spectral density of the response 

process is expressed as: 

 

   ωRAO
tω

16
exp

tω

h4
,tω,hS 2

R4
z

4

3

4
z

5

2
s

3

zsR 








 
  (6.8) 

 

Thus, by substituting Eq. (6.8) into Eq.(6.6), the n
th

 spectral moment of the 

response spectrum can be expressed as follows: 

 

   dωωRAO
tω

16
expω

t

h4
t,hm

0

2
R4

z
4

3
5n

4
z

2
s

3

zsn 













 
  (6.9) 

 

The equation above can be rewritten in the following way: 

 

    2
sznzsn htt,hm   (6.10) 

 

where 

 

   dωωRAO
tω

16
expω

t

4
t

0

2
R4

z
4

3
5n

4
z

3

zn 













 
  (6.11) 

 

Note that the n
th

 spectral moment is a parabolic function of the significant wave 

height. Then, for a given value of Tz, i.e., zZ tT  , it is necessary just one crossing of 
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the RAO with the wave spectrum to obtain the corresponding n  which can be used to 

compute the n
th

 spectral moment for any value of Hs. In other words, for a given 

zZ tT   it is necessary just one structural frequency domain analysis to get the true 

behavior of the response spectral moments for any value of Hs. The same behavior is 

obtained by other wave spectra, such as JONSWAP model (HASSELMANN et al., 

1973). 

By substituting Eq. (6.10) into Eq. (6.3) it is possible to see that the frequency of 

maxima also depends only on the wave zero up-crossing period: 

 

   
 

 
 z

z2

z4
zzs tβ

2

1

t

t

2

1
t,th 









  (6.12) 

 

For a given zZ tT  ,  ztβ  is a constant. 

 

Then the integral for the long-term cumulative distribution of peaks can be 

solved using a single simulation for each value of tz as follows: 
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 (6.13) 

 

where the term  is given 

 

       

       
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z

z s

zs

z s
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N

1j
zzTz

t

zzTz

t h

zszsT,Hz

t h

zszsT,Hzs

ttftβ
2

1
dttftβ

2

1

dtdht,hftβ
2

1
dtdht,hft,h

 (6.14) 

 

The parameters  zt  and  ztβ  can be computed once for each discrete value 

of 
jzZ tT  in the equations above or they can be computed for some few specific points 

and interpolated by means of a parametric equation. Once again, it must be emphasized 

that in this particular situation just a single frequency domain structural analysis is 
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required for any Tz since the distributions parameters can be written analytically as an 

explicit function of Hs. 

Finally, the most probable response extreme value can be found using Eq. (4.14) 

for a given long-term period. 

 

6.1.2 Non-Gaussian processes 

 

The above approach cannot be applied when the structural response is not a 

narrow-banded and Gaussian process. For example, usually the time-series of dynamic 

responses of steel catenary risers do not follow the Gaussian distribution. In such cases, 

another approach must be addressed to optimize the extreme response calculation when 

the long-term method is used. 

In this work, the Weibull distribution is assumed to describe the short-term 

response peaks. This choice is based on previous experiences; for instance, 

BAARHOLM & MOAN (2000) pointed that, if the response deviates too much from 

the Gaussian process, the Weibull distribution may be used instead of Rayleigh's 

equation. Other authors such as CRAMER (1994), NASCIMENTO (2009), GASPAR et 

al. (2016) and ORIMOLADE et al. (2016) adopted this consideration in the analysis of 

marine structures. 

The cumulative probability distribution function of short-term response peaks 

modelled as the 2-parameter Weibull distribution is defined as: 
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and the corresponding probability density is: 
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where  zsStatic ,thu  is the static mean, i.e. the process mean.  zs,thα  and  zs,thλ  are 

the scale and shape parameters respectively. 
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By adopting the method of moments, the two parameters of this distribution can 

be evaluated based on the peaks sample mean and standard deviation using the 

following relationships: 

 

   
 












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1
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where  zs,thμ  and  zs,thσ  are the mean value and the standard deviation of the peaks 

sample for the short-term response  zs,th sS . 

The frequency of maxima for a given short-term condition can be calculated 

approximately as: 

 

 
 

ST

zsp

zs
T

t,hn
t,h   (6.19) 

 

where  zsp t,hn  is the number of peaks identified in the response time series for the 

given short-term condition and  STT is time-series length (or simulation length).  

The average long-term frequency of maxima can be calculated in its discrete 

form as: 

 

    zs

N

1i

N

1j
zs,THzs tht,hft,h

sH zT

jizsji
 

 


 (6.20) 

 

Based on the previous development, the purpose of the proposed method is to 

predict the static mean, the peaks mean, the peaks standard deviation and the number of 

peaks for any value of Hs giving a known value of  Tz, i.e., zz tT   by means of a 

parametric interpolation equation which is defined by a minimum number of numerical 

simulations.  

As a compromise between the number of numerical simulations and accuracy of 

the results, a parabolic function, based on only three numerical simulations for each 
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zero up-crossing period zz tT  , has been used to predict the static mean, the peaks 

mean and the peaks standard deviation. Regarding the number of peaks, it was 

considered the average of the three numerical simulations results: 

 

  

        
i3i2i1i zspzspzspzsp t,hnt,hnt,hn

3

1
thn   (6.21) 

 

The following parabolic equation is used to predict the mean of the peaks for 

any significant wave height, given a zero up-crossing wave period 
izZ tT  : 

 

        2
sz2sz1z0zs htahtatathμ

iiii
  (6.22) 

 

To calibrate the constants  
iz0 ta ,   

iz1 ta  and   
iz2 ta  of the above equation, it 

is necessary to find the mean of the peaks sample for the three distinct simulations, i.e. 

 
i1 zs t,hμ ,  

i2 zs t,hμ  and  
i3 zs t,hμ . The constants are then calculated as follows: 
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       
2i1iii sz2sz2z1z1 htahtatbta 
 (6.24) 

       
21i1ii1i ssz2sz1zsz0 hhtahtbt,hμta   (6.25) 

 

where: 
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zszs
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
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The expressions above can also be used in a similar way to establish the 

parametric equations for the static mean and standard deviation of peaks. Then, given 

that these expressions have been established for all NTz values of Tz of the discretized 

integration domain, it is possible to predict the time series peaks statistical parameters 

for any short-term condition in the integration domain; consequently, the scale and 

shape parameters of Weibull distribution for the short-term response peaks. Finally, it is 

possible to compute the long term cumulative distribution of peaks in the discrete form: 
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Note that the number of time domain numerical simulations required for 

calculating the above equation is 3xNTz where NTz is the number of up-crossing periods 

considered in integration mesh.  

As mentioned before, the most probable extreme response value can be 

computed using Eq. (4.14) for a given long-term period. 

It must be stressed that the interpolation scheme is conditioned on values of Tz 

because it is more or less intuitive that for a given value of this parameter any time-

series statistical parameter could follow some soft variation with respect to Hs since any 

resonant variation will not be induced by the value assumed by Hs.  

 

6.2 Parametric Interpolation Method (PIM) for probabilistic 

fatigue analysis of marine structures 

 

The total damage caused by fatigue is calculated using the Eq. (5.20). Such 

multidimensional long-term integral requires a great amount of structure numerical 

simulations to be solved; since, it is necessary to perform a dynamic analysis to obtain 

each short-term fatigue damage. 

As for the long-term extreme response prediction, an interpolation method based 

on the short-term behavior of fatigue damage is proposed in order to reduce the number 

of simulations mentioned above, 

In what follows some details will be presented for the case where the stress 

processes are Gaussian and non-Gaussian. 

 

 

6.2.1 Gaussian and narrowband stress processes 

 

For a Gaussian narrow-banded short-term stress process, the short-term fatigue 

damage for a single-slope S-N curves given by: 
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By considering the same hypothesis assumed in the item 6.1.1 of the present 

work, it is possible to calculate the zero up-crossing response (stress) frequency by 

substituting Eq.(6.10) into Eq.(3.4). This leads to 

 z0o tβ
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where 
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The equation of the short-term fatigue damage can be re-written by substituting 

Eq. (6.30) into Eq. (5.8) as follows: 
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Thus equation can be re-written again in a more compact way as follows: 
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where 
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Note that for a given value of Tz, i.e.. ZZ tT  ,it is possible to identify a single 

constant  zt . This constant is obtained from a single dynamic analysis; therefore, any 

other short-term damage value for this wave up-crossing period can be determined 

without performing another simulation.  



44 

 

The computational cost reduction is considerable because just a single frequency 

domain structural analysis is required for any Tz since the short-term fatigue damage 

can be written analytically as an explicit function of Hs. 

The total fatigue damage in the long-term will be calculated by substituting Eq. 

(6.33) in Eq.(5.19), which results in.  
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In this case one structural analysis is needed for each Tz used in the 

discretization of integration domain. However, this approach cannot be applied when 

the structural response is not Gaussian or narrowband. Structures such as metallic risers 

have a highly non-linear behavior; therefore another approach must be addressed to 

optimize the probabilistic fatigue calculation. 

 

6.2.2 Non-Gaussian processes 

 

As in the previous section, the objective of the proposed method is to predict the 

short-term fatigue damage for any value of Hs given a known value of Tz, i.e., ZZ tT   

using a parametric interpolation equation which is defined by a minimum number of 

structure numerical simulations. Based on the short-term fatigue behavior identified for 

a Gaussian narrow-banded stress process and on some tests performed in the 

development of the work, a linear-exponential function has been chosen.  The 

interpolating equation proposed is the following: 

 

        sz

t

szzs hthtthd
i

iz

ii



 (6.35) 

 

In order to calibrate the constants  ,   and   of the above equation, it is 

necessary to find the short-term fatigue damage for the three distinct simulations (three 

values of Hs giving a known value of Tz = tz), i.e.  
i1 zs1 t,hdd  ,  

i2 zs2 t,hdd   and 

 
i3 zs3 t,hdd  . The constants are the solution of the following equations system: 
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1s1s1 hhd    (6.36) 

2s2s2 hhd    (6.37) 

3s3s3 hhd    (6.38) 

 

From Eq. (6.36) it is possible to write: 

 


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 (6.39) 

 

By substituting Eq. (6.39) into Eq. (6.38) results in: 
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By substituting Eq. (6.39) and Eq. (6.40) into Eq.(6.37) the following implicit 

equation can be obtained: 
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The only unknown term in the above equation is  . The solution of this 

equation can be found by any appropriate method for find the root of a single nonlinear 

equation. In this work the Levenberg-Marquardt algorithm (PRESS et al., 2007) was 

used. Afterwards, by substituting   into Eq. (6.40) it is possible to find  , and by 

substituting   and   into Eq.(6.39) it is possible to find  . Having the three constants 

 ,   and   it is possible to calculate the short-term fatigue damage for any Hs value 

giving that Tz = tz 
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6.3 Special case: TDZ of a SCR 

 

In the case studies performed in this work, which will be described in the next 

chapter, it was observed that the interpolation equations described above did not 

perform well for the touchdown zone (TDZ) of a steel catenary riser (SCR) considering 

either extreme or fatigue analysis. Then, a more detailed study was performed for this 

specific region.  

In the riser analysis methodology used in this work, static offsets are applied at 

the top riser for taking into account the floater mean offset, low frequency wind and 

wave motions. The floater mean offset value is the calculated by taking into account the 

steady forces from current, wind and waves. Typically, the offset is considered in the 

same direction as the wave. The adopted hypothesis used to calculate the offset for each 

fatigue load case ( iOffset ) is defined as follows:  

 

max

si
maxi

h

h
OffsetOffset   (6.42) 

 

where maxOffset  is the mean displacement of the floater obtained by a distinct analysis 

where it is subject to wave, wind and current loads; sih  is the significant wave height of 

the short-term environmental condition and maxh  is usually taken as the maximum 1 

year wave height. It is common practice, to consider as a percentage of the water depth 

which varies between 1% and 5%.  

As shown in Fig. 9, the offset changes the riser TDP position from one load case 

to another. Therefore, the variation of short-term statistical response parameters with Hs 

is not parabolic, and the variation of short-term fatigue damage with Hs is not 

exponential in this SCR location.  

To clarify the aspect highlighted above, the position variation of the point P in 

Fig. 9 is analyzed. This position depends on the static offsets of the three load states 

represented by three significant wave heights ( 3s2s1s hhh  ). For the offset due to 

1sh , the point P is located on the sea floor, where stresses and fatigue damage are 

usually very small. Instead, for the offset due to 2sh , the point P is located in the TDP, 
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where stresses and fatigue damage are more critical. Finally, for the offset due to 3sh , 

the point P is located in the suspended riser segment where stresses and fatigue damage 

are lower than in the TDP. 

So, based on this stresses response behavior observed in the study cases, the 

parametric equation with best performance to predict short-term statistical response 

parameters for riser sections located in the TDP region, for any value of Hs given a 

known value of Tz = tz, is a bilinear function. For the peaks mean it is written as 

follows:  
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 (6.43) 

 

The same equation format is used for the other statistical parameters. 

 

The bi-linear equation presented also the best performance for the fatigue assessment. 

and in the same way, for the short-term fatigue damage the equation reads: 
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 (6.44) 
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Figure 9. TDP position variation with the applied offsets 

 

 

6.4 Integrated analysis of long-term extreme response and 

probabilistic fatigue using the PIM 

 

As commented previously in this work long-term response and probabilistic 

fatigue analyses are performed over the same integration domain. Moreover, the 

interpolation schemes presented before these analyses are both based on three structure 

numerical simulations for each value of the Tz in the discretized integration domain. So, 

the same structure numerical simulations, which are nonlinear time domain stochastic 

finite element-based analysis, can be used for the prediction of the long-term response 

as well as for the fatigue life estimation. This allows for the simultaneous evaluation of 

both design criteria. This integrated scheme has been implemented in the present work. 

Another important aspect is the definition of the integration domain for 

numerical analyses. By some numerical tests, it has been identified that the integration 
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domain suitable to perform probabilistic fatigue analysis of marine structures is given 

by the environmental contour of 100 yr. Besides, VIDEIRO et al. (2019) pointed that 

the key region of the joint probability distribution of significant wave heights and wave 

periods that most contributes to the long-term response is located between the 

environmental contours of 10 yr and 10,000 yr. From these two premises it is possible 

to affirm that an integration domain delimited by the 10,000-yr Hs-Tz environmental 

contour is suitable for simultaneous probabilistic fatigue analysis and long-term extreme 

response. This contour is defined from the Hs-Tz joint probability function as described 

in the Appendix A.  

The methodology to determine the most probable extreme response value and 

the fatigue life using the PIM is summarized in Fig. 10. Initially, the joint probability 

function for the riser location is informed and used to define the integration domain. 

The Tz mesh points are defined and for each of these values, three corresponding Hs 

values are selected. The structure must be simulated for all these short-term conditions. 

The simulation length is needs to be sufficient to guarantee reliable short-term statistics 

(at least 10,800s long). The response time series are then processed to obtain the fatigue 

damage and the statistical parameters of the peaks (mean, standard deviation, and 

number of peaks) of the response of interest. Afterwards, the interpolation constants are 

established for obtaining the short-term parameters for each design criterion (Weibull 

distribution parameters for extreme analysis and short-term fatigue damage for the 

fatigue life assessment). Then the long-term integrals (for fatigue and extreme analyses) 

are computed for all points of discretized Hs-Tz mesh using the interpolated parameters 

and the corresponding results are computed: the N-yr most probable extreme response 

and the fatigue life.   
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Figure 10. Flow chart of algorithm used to determine the fatigue life and the most 

probable extreme response value using the PIM 
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Chapter 7 
 

Examples 
 

Three examples are used to assess the accuracy of the Parametric Interpolation 

Method applied in long-term extreme response and probabilistic fatigue prediction. In 

all examples, the waves were considered omnidirectional. The same joint probability 

distribution model of the environmental parameters is employed for the three examples 

analyzed. This joint model is based on the conditional modelling described in Chapter 2. 

The marginal probability density function of SH  is given by a Lognormal distribution: 
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where the location and scale parameters are, respectively, -1
Hs 109.375918λ   and 

-1
Hs 103.579696ξ  . 

The conditional probability density of PT  is given by a Weibull-3P distribution: 
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where the location parameter is given by the following equation: 

 

   ssw hln4.307667-2.329473hu   (7.3) 

 

and the scale and shape parameters are, respectively, 9.313608w   and 

4.921465w   

A breaking wave limit is considered for the above probabilistic model, i.e. a 

relationship between the significant wave height and the spectral peak period, which 

defines the waves that can be physically unreal. In this paper, the criterion presented by 

HAVER & NYHUS (1986) is taken into account. It is represented by the following 

empirical equation: 
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sp H2.3T   (7.4) 

 

The breaking wave criterion is imposed in the model by changing the 

conditional distribution of Tp as: 
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where  spHsTp
htF  is the cumulative probability function of Tp conditional on Hs. 

 

The following relationship between the zero-crossing period Tz and the peak 

period Tp was applied: 
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where   is the JONSWAP peakedness parameter. In the case of  1 , the JONSWAP 

spectrum reduces to the Pierson–Moskowitz model; i.e., 414.1TT pz  . However, in 

this work this parameter has been assumed as 491.0
pT4.6   in order to be 

representative of the Brazilian offshore coast. 

The joint probability function is then: 

 

   szHsTzsHszsTzHs, htfhf)t,h(f   (7.7) 

 

The limit of the integration domain is defined using the 10.000-yr environmental 

contour. The 100-yr and 10.000-yr contour lines associated to the Hs-Tp joint probability 

model is shown in Fig. 11.  
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Figure 11.10,000-yr  and 100-yr environmental contours 

 

7.1 Example1: An idealized theoretical linear SDOF model 

 

In this first example, the long-term extreme response and fatigue assessment are 

investigated for an idealized theoretical case. The model is represented by an analytical 

response amplitude operator (RAO) associated to a single-degree-of-freedom (SDOF) 

system under wave loading. This model allows a theoretical and fast investigation about 

the performance of the Parametric Interpolation Method (PIM) when compared with the 

complete integration of the long-term integrals. For the sake of simplicity, the stress 

spectrum will be considered equivalent to the response spectrum for the fatigue 

analysis. 

The response amplitude operator (RAO) is described by the following equation: 
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(7.8) 

 

where nω  represents the system natural frequency and ξ is the critical damping ratio of 

the model. In this example the following values were assumed: 0.5ωn   and ξ=0.05. 
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Under the linear assumption, the spectral density of the system displacement 

(response) for a given stationary short-term condition  zs t,h sS  is given by 

 

     ss
SS
ωSωRAOωS

η

2
RR

  (7.9) 

 

where  sωS
Sη

 is the spectral density of the sea surface elevation  t  for the short-term 

condition sS   represented in this example by the modified Pierson–Moskovitz 

spectrum.  

As the sea surface elevation is assumed to be a Gaussian stochastic process, the 

system response is also Gaussian. Under the narrow band assumption, the short-term 

response peaks are Rayleigh-distributed and the procedure described in the section 6.1.1 

can be used. 

For this example, Tz=1.0s and Hs=0.5m are, respectively, the spacing of wave 

zero up-crossing periods and significant wave heights considered in the division of the 

integration domain highlighted in Fig.11. All the sea states considered for the full 

integration and the sea states considered for the Parametric Interpolation Method are 

identified in Fig. 12.  

 

 

Figure 12. 10,000-yr environmental contour and sea states used in the analyses. 
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7.1.1 Long-term extreme response 

The parameter  zn tα  is calibrated by using Eq. (6.11). The behavior of this 

parameter as a function of Tp is shown in Fig. 13.  

 

 

Figure 13. Relation between the parameter nα  and the wave peak up-crossing period Tp. 

 

The spectral moments are obtained using Eq. (6.10). Fig. 14 shows a comparison 

of these results with those obtained using Eq. (6.6). As expected the results are the 

same. The frequency of maxima m  is calculated using Eq. (6.12). This parameter just 

depends of Tp. Fig. 15 shows the variation of m  with Tp for this example.  

 

By solving Eq. (6.14), the average frequency of maxima obtained is 

0.09893  peaks/s. The long-term cumulative probability distribution of response 

peaks is obtained by evaluating numerically the long-term integral (see Eq. (6.13)) 

using a “structural analysis” for each integration point and using the interpolation 

functions where just one structural analysis is performed for each Tp of the integration 

grid. Fig. 16 shows the results obtained. Both curves are exactly the same. 

The return period considered in this example to calculate the long-term extreme 

value is 100 years. Therefore, the expected number of peaks is  NL =100years   Ns 

TST = 100years 0.09893 peaks/s2920states/year10800s/states = 3.11997*10
8
peaks. 

Then, the most probable long-term extreme response calculated with Eq.(4.14) using the 
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Parametric Interpolation Method is Parab

100R =53.22 and the value obtained using full 

numerical integration is exactly the same. As expected, the accuracy obtained is 100%.  

 

 

 

Figure 14. Comparison of simulated and interpolated spectral moments. 
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Figure 15. Comparison of simulated and interpolated frequency of maxima 

 

 

  

Figure 16. Long-term cumulative probability distributions of peaks obtained by full 

integration and interpolation procedure. 

Note that 392 frequency domain analyses were used when the long-term integral 

was evaluated by means of the full numerical integration approach. Using the 

interpolation curves, i.e., Parametric Interpolation Method (PIM), just 20 simulations 

were necessary for the solution. This means a huge computer saving ( 95%) for 

solving using the long-term approach. 
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7.1.2 Probabilistic fatigue analysis 

 

The behavior of the parameter ψ  (see Eq. (6.33)) varies with Tp and the SN-

Curve exponent m as shown in Fig. 17. The S-N curve parameter K is equal to 

K=5x10
10

. In this figure it can be seen that the parameter ψ reaches its maximum value 

at a peak period of Tp=13.5s for all the values considered of the SN-curve parameter m. 

This peak period value is close to the natural period of the considered SDOF, 

s12.6
s/rad0.5

2
Tn 


 

 

 

Figure 17. Relation between the parameter ψ and the wave peak period Tp and the SN-

Curve exponent m . 

 

Fig. 18 shows the variation of the short-term damage with the significant height 

Hs considering a fix peak period equal to Tp=13.5s, for different values of the SN-curve 

parameter m. As expected, the damage increases as this parameter increases. Note that 

the values obtained by the PIM are exactly the same as those obtained by the full 

integration points. 
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Figure 18. Comparison between the short-term damage obtained by the PIM and the 

obtained by the full integration. 

 

Evidently, the fatigue life depends on different factors, such as: the natural 

frequency of the SDOF and the SN curve used. Fig. 19 shows that fatigue life does not 

have a linear relationship with the natural frequency of the system; for the present case, 

it can be clearly seen that as this frequency increases its the fatigue life also increases. 

On the other hand, as the SN curve parameter m increases the fatigue decreases. Note 

again that the values obtained by the PIM are exactly the same as those obtained by the 

full integration.  
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Figure 19. Comparison between the fatigue life obtained by the PIM and by the full 

integration (“brute force” approach).  

 

As the integration and interpolation points used to perform the probabilistic 

fatigue assessment are the same as those used previously in extreme response analysis, 

the computer saving is the same. However, the most important aspect is that both 

analyses can be performed in parallel without the need of extra short-term structural 

analysis. 

 

 

7.2 Example2:  SCR installed in deep waters 

 

In this example, the computer efficiency and accuracy of the Parametric 

Interpolation Method (PIM) is evaluated in the estimation of the long-term extreme 

response and probabilistic fatigue of an oil production, 4090m long Steel Catenary Riser 

(SCR) connected to an FPSO located in a water depth of 2100m. The elasticity modulus 

considered for the steel is 207 GPa and the specific weight is 77 kN/m
3
. The FE mesh 

used in the model is shown in Table 2. The riser properties are shown in Table 3. The 

top angle is 14º. The connection with the vessel is a flex-joint whose properties are 

shown in Table 4. 

 

 

 



61 

 

 

Table 2. FE Mesh for each SCR segment  

Seg. 
Length 

(m) 

Number 

of FE 

First FE 

length 

(m) 

Last FE  

length 

(m) 

Element type 

1 1200 461 5 1 Bottom 

2 530 530 1 1 Touch down zone 

3 192 64 1 5 Suspended 

4 1352 272 5 5 Suspended 

5 500 167 5 1 Suspended 

6 300 571 1 0.05 Suspended 

7 12 240 0.05 0.05 Stress Joint 

8 - - - - Flex joint 

 

 

 

Table 3. Riser properties for each SCR segment  

Seg. 
OD 

(in) 

ID  

(in) 

Internal Fluid 

Density (kN/m
3
) 

CM CD 

1 14 12 5.9 2.0 1.2 

2 14 12 5.9 2.0 1.2 

3 14 12 5.9 2.0 1.2 

4 14 12 5.9 2.0 1.2 

5 14 12 5.9 2.0 1.2 

6 14 12 5.9 2.0 1.2 

7 16 12 5.9 2.0 1.2 

 

 

 

Table 4. Flex joint properties  

Parameter Value 

Translational Stiffness (kN/m) 2.0x10
7
 

Torsional Stiffness (kN.m/deg) 200 

Bending Stiffness (kN.m/deg) 47 
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Figure 20. Translational and rotational vessel motions RAOs at the center of motion and 

at the riser top connection  

 

 

Figure 21. SCR model 

 

The vessel first order motions RAOs are shown in Fig. 20. The SCR model is 

shown in Fig. 21. The incidence directions of the wave loading and the triangular 

current velocity profile considered in this example are shown in Fig. 22. Note that the 

wave and current are aligned. The current velocity at the top is 0.4m/s and the bottom 



63 

 

velocity is 0.0m/s. This current profile is considered to be the same for any short-term 

wave condition. Fig. 23 shows additional information such as the riser and vessel 

azimuths, local and global coordinates and the RAO direction. Furthermore, the 

JONSWAP spectrum was employed to model sea surface elevation in this example. 

Regarding the stochastic time-domain riser analyses, each short-term time-

domain simulation was taken as 10800s long. Moreover, the wave spectrum was 

decomposed in 500 wave components for the numerical simulations. 

 

 

Figure 22. Environmental loading acting on the SCR 

 

For this example, the joint probability function for the wave environmental 

parameters  is the same described in Eq. (7.7). Moreover, the integration domain is the 

same specified in Fig.11 and the sea states for both, full integration and parametric 

interpolation, are those illustrated in Fig.12. Consequently, 392 finite elements non-

linear numerical simulations in the time domain were performed. 
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Figure 23. Riser and vessel azimuths, local and global coordinates and RAO direction. 

 
7.2.1 Long-term extreme response 

In the analysis of metallic risers, different extreme long-term responses can be 

studied, for example, axial force, radius of curvature, von Mises stress, among others. In 

this work, the assessed response was the cross-section utilization factor (UF) of a riser 

cross section considering the ultimate limit state (ULS) according to DNV-OS-F201 

(2010). For steel pipe cross sections subjected to net internal overpressure, the 

utilization factor is evaluated as: 
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where dM   is the design bending moment time-series, edT   is the design effective axial 

tension time series, ldp  is the local internal design pressure,  ep   is the local external 
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pressure, kM  is the plastic bending moment resistance, kT  is the plastic axial force 

resistance and  2b tp  is the burst resistance, SC  e m  are partial safety factors. All 

these parameters are defined in DNV-OS-F201 (2010). For net external overpressure 

case, the utilization factor definition is: 
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where  2c tp  is the hoop buckling capacity of the pipe and minp  is the minimum 

internal working pressure. Considering a long-term analysis, the design is accepted 

when the utilization factor is lower or equal to the unitary value: 

 

1UFk   (7.12) 

 

where kUF is most probable value for 100-yr utilization factor of the analyzed riser 

section.  

SC  and m  are safety factors related to uncertainties associated to a safety 

class and to the material properties, respectively. Safety class is defined by DNV-OS-

F201 (2010) as follows: 

 

 Low: When riser failure implies low risk of human injury and minor 

environmental and economic consequences. 

 Normal: For conditions where riser failure implies risk of human injury, 

significant environmental pollution or very high economic or political 

consequences. 

 High: For operating conditions where riser failure implies high risk of human 

injury, significant environmental pollution or very high economic or political 

consequences. 

 

The safety class resistance factor SC  is obtained from the Table 5 (DNV-OS-F201, 

2010). 
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Table 5. Safety class resistance factor 

Safety class Low Normal High 

SC  1.04 1.14 1.26 

 

The material resistance factor m depends of the limit state considered. The 

limit states are grouped into the following four categories by DNV-OS-F201 (2010): 

 

 Serviceability Limit State (SLS): requires that the riser must be able to remain 

in service and operate properly. This limit state corresponds to criteria limiting 

or governing the normal operation (functional use) of the riser. 

 Ultimate Limit State (ULS): requires that the riser must remain intact and 

avoid rupture, but not necessary be able to operate. For operating condition this 

limit state corresponds to the maximum resistance to applied loads with 10-2 

annual exceedence probability. 

 Accidental Limit State (ALS): is a ULS due to accidental loads or infrequent 

loads.  

 Fatigue Limit State (FLS): is an ultimate limit state from accumulated 

excessive fatigue crack growth or damage under cyclic loading. 

 

Following the classification above, the material resistance factor is defined 

according to Table 6 (DNV-OS-F201, 2010). 

 

Table 6. Material resistance factor 

Limit State ULS & ALS SLS & FLS 

m  1.15 1.0 

 

For the development of this example, the safety factors used were 26.1SC   

and 15.1m  , respectively. 

Fig. 24 shows the utilization factors (UF) along the entire SCR. The values 

obtained using the Parametric Interpolation Method (PIM) are compared with those 

obtained using the full integration and the 100-year environmental contour method 

which is another design methodology included in DNV-OS-F201 (2010). The values 
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obtained with the environmental contour were multiplied by a factor of 1.15, since this 

is a common practice in engineering projects. 

Note that the results obtained by the three methods are similar; however, the 

method of environmental contours presents considerable differences in the touchdown 

zone (TDZ), which is distant approximately 2800m from the top. 

 

 

Figure 24. 100-yr utilization factor (UF) assessment along the SCR length. 

 

In the analysis of the SCR long-term response it can be seen that the top region 

is characterized by presenting mild stress levels. Meanwhile, the suspended section is 

dominated by the axial tension and the stress behavior is almost linear. In contrast, the 

stresses along the TDZ are highly influenced by the bending, and soil-structure 

nonlinearities are significant in this region. Table 7 and Fig. 25 show the critical results 

for each one of these regions. Note that the proposed method presents good accuracy in 

all segments; meanwhile, the environmental contour method under predicts 

considerably the extreme response in the TDZ. 
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Table 7. Critical values of utilization factor (UF) obtained for each SCR segments and 

an assessment of the accuracy of methods.  

  
Full Int 

 

PIM 

 

Env. Contour 

 

Position 

(m) 

Full/PIM 

 

Full/Contour 

 

Stress Joint 0.40 0.39 0.41 11.00 1.01 0.98 

Suspended 0.45 0.46 0.38 2134.86 0.99 1.20 

Touch down zone 0.84 0.82 0.59 2755.01 1.03 1.44 

 

 

Figure 25. Critical values of utilization factor (UF) obtained for each SCR segment. 

 

The critical element is the TDP, at position 2755.01m from connector where the 

UF was 0.84 by the full integration, 0.82 by the propossed method and 0.59 by the 100-

yr environmental contour approach. For this critical point, four values of Tp (i.e. tp=4.5s, 

tp=9.5s, tp=15.5s and tp=21.5s) are selected to show a comparison between the statistical 

parameters obtained from the numerical simulations and those obtained by using the 

parametric interpolation (i.e. static mean, peaks mean, peaks standard deviation and 

number of peaks). Figs. 28 to 31 show this comparison for each of the four wave peak 

periods mentioned above. It must be noticed that the proposed interpolation equation 

fits quite well the behavior of the short-term statistical parameters. However, despite 

showing a clear constant trend, the number of peaks is the most difficult parameter to be 

predicted, mainly for the Tp=15.5s. However, the results are acceptable because the 

long-term average peaks frequency obtained by the interpolation method gave 
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practically the same value as that obtained by the complete integration, i.e. 

13403.0PIM   and 13165.0Full  , respectively. 

 

 

 

 

Figure 26. Behavior of the UF static mean in the critical riser point for different wave 

peak periods. 
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Figure 27. Behavior of the mean of UF peaks in the critical riser point for different 

wave peak periods 

 

Figure 28. Behavior of the standard deviation of UF peaks in the critical riser point for 

different wave peak periods. 
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Figure 29. Behavior of the expected number of UF peaks in the critical riser point for 

different wave peak periods. 

 

The statistical variables estimated by the PIM can be used to determine the 

Weibull scale, and shape parameters by using Eqs. (6.17) and (8.18), respectively. Then, 

the probability distribution function of short-term UF response peaks, adopted as the 

two-parameter Weibull distribution, can be fitted. Five sea states were selected in order 

to show the accuracy of the PIM when fitting the probability distribution function of 

short-term UF response. These values are shown in Fig. 30 in blue circles and are also 

specified in Table 8. Note that such sea states values are located between the three 

values used to calibrate the parametric equations for each Tp.  
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Figure 30. Sea states for verification of short-term peaks distributions  obtained with the 

PIM. 

 

Table 8. Sea states for verification of the short-term peaks distributions obtained with 

the PIM. 

Hs(m) 2.0 9.0 5.5 14.0 7.5 

Tp (s) 10.5 11.5 9.5 18.5 20.5 

 

Fig. 31 shows the cumulative probability density function of short-term UF 

peaks for the critical element investigated, considering the short-term conditions 

indicated in Table 8. Note that the approximated distribution obtained by the PIM fits 

quite well the distribution fitted to the true data obtained from the numerical simulation 

time series.  
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Figure 31. Short-term cumulative probability distribution of utilization ratio peaks 

 

The long-term cumulative probability distribution of the utilization ratio peaks 

for the critical element identified (i.e., the TDP) was calculated with Eq. (6.1). This 

equation was computed using the statistical parameters directly from time domain 

simulations for each point in the integration mesh and also by using the parabolic 

interpolation method. These results are shown in Fig. 32. It must be noticed that the 

distribution predicted by using the PIM is in close agreement with that obtained using 

time domain simulations for each integration point. All the results commented above 
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just corroborate to show the accuracy of PIM in the estimation of the 100-yr utilization 

ratio presented in Table 7 and Fig. 25. 

 

  

Figure 32. Long-term cumulative probability distribution of peaks 

 

In terms of efficiency it is important to note that 392 simulations were used for 

the full integration method, and just 60 simulations were by the PIM, i.e., a computer 

cost saving of almost 85%. Considering that any riser simulation took almost 3-h to run 

in a modern desk computer, this means a huge effect on the computer demand for long-

term analysis.  

 

7.2.2 Probabilistic fatigue analysis 

The fatigue damage evaluation was performed for the 8 external section points 

shown in Fig. 21 of each structural node of the finite element model. For this purpose, 

the Rainflow cycle counting method and the bi-linear DnV E SN curve with cathodic 

protection were used (DNV-RP-F204, 2010): 

 
















MPa13.74SforS10

MPa13.74SforS10
)S(N

535.15

361.11

 (7.13) 

 

Fig. 33 presents the envelope of the most critical fatigue life among the 8 

external points for each cross section along the riser. The values obtained using the 
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Parametric Interpolation Method (PIM) are compared to those obtained with the direct 

integration approach. From these results it is possible to identify that for the most 

critical region, i.e. the TDP, the proposed method predict reasonable accurate results 

using just a few number of SCR numerical simulations. 

 

 

Figure 33. Fatigue life (FL) assessment along the SCR length. 

 

Table 9 and Fig. 34 show the critical results of fatigue life in each riser segment. 

Note that the proposed method presents good accuracy in all segments but TDZ region. 

The results, although conservative, are less accurate for the TDZ because the stresses 

along of this region are highly influenced by bending and soil-structure nonlinear 

interaction. 
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Figure 34. Critical values of fatigue life (FL) obtained for each SCR segments 

 

Table 9. Critical values of fatigue life (FL) obtained for each SCR segments and 

accuracy 

  PIM Full Int Position Full/PIM 

Connector 3883.48 4425.40 0.00 1.14 

Stress Joint 3993.55 4535.10 0.05 1.14 

Suspended 18672.14 17435.00 12.11 0.93 

Touch down zone 239.39 293.68 2841.03 1.23 

 

The critical element fatigue joint at TDZ is far 2841.03m from the connector. As 

shown in Table 9, its fatigue life was estimated as 293.68 yr by the full integration 

approach and 239.4yr by the proposed method. For this critical joint, the critical point of 

the cross section was the 5 (see Fig. 21). In order to verify the adopted premise of the 

exponential tendency of short-term fatigue damage for a given wave period, Figs. 37 to 

39 present a comparison between the statistical short-term fatigue damage obtained 

from the numerical simulations and those obtained by using the parametric 

interpolation. All the peak periods used in the integration were included in this analysis. 

Note that all cases present a good fit with the predicted values showing a clear 

exponential behavior. However, quite small differences in some results led to 

conservative fatigue life estimation by PIM. Once more, it must be stressed that same 

riser numerical simulations used in the long-term extreme assessment were used to 

compute the fatigue life along the riser. 
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Figure 35. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (1/3). 
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Figure 36. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (2/3). 
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Figure 37. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (3/3). 

 

 

7.3 Example3: SLWR in deep water 

 

In this last example, the Parametric Interpolation Method (PIM) is used in the 

estimation of the long-term extreme response and probabilistic fatigue for a 4373m 

long,  oil production, Steel Lazy-Wave Riser (SLWR) connected to another FPSO in a 

water depth of 2200m.  

As in the previous example, the elasticity modulus considered for the steel is 

207 GPa and the specific weight is 77 kN/m
3
. The FE mesh used in the model is shown 

in Table 10. The riser properties are shown in Table 11. The connection with the vessel 

is a flex-joint whose properties are shown in Table 12. 
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Table 10. FE Mesh for each SLWR segment  

Seg. Length (m) 
Number of 

FE 

First FE 

length (m) 

Last FE  

length (m) 
Element type 

1 500 336 2 0.5 Bottom 

2 500 922 0.5 0.5 Touch down zone 

3 922 1216 0.5 0.5 Hog 

4 700 1274 0.5 0.5 Sag 

5 1536 818 0.5 2 Suspended 

6 200 214 2 0.05 Suspended 

7 10 219 0.05 0.05 Suspended 

8 5 219 0.05 0.05 Stress Joint 

9 - - - - Flex joint 

 

 

Table 11. Riser properties for each SLWR segment  

Seg. 
OD 

(in) 

ID  

(in) 

Internal Fluid 

Density (kN/m
3
) 

Floater Weight 

(kN/m) 

Floater    

Force (kN/m) 
CM CD 

1 24 21 9.0 0.00 0.00 2.0 1.0 

2 24 21 9.0 0.00 0.00 2.0 1.0 

3 24 21 9.0 8.73 1.56 2.3 1.0 

4 24 21 9.0 0.00 0.00 2.0 1.0 

5 24 21 9.0 0.00 0.00 2.0 1.0 

6 24 21 9.0 0.00 0.00 2.0 1.0 

7 24 21 9.0 0.00 0.00 2.0 1.0 

8 27.5 21 9.0 0.00 0.00 2.0 1.0 

 

 

Table 12. Flex joint properties  

Parameter Value 

Translational Stiffness (kN/m) 2.00x10
8
 

Torsional Stiffness (kN.m/deg) 2.00 x10
8
 

Bending Stiffness (kN.m/deg) 28.9 

 

 

The first order vessel motions RAOs are shown in Fig. 38. The SLWR model is 

shown in Fig. 39. The wave loading and the triangular current velocity profile 

considered in this example are shown in Fig. 40. The riser and vessel azimuths, local 

and global coordinates and the RAO direction are shown in Fig. 41. 

The current profile, the Hs-Tp joint probability function, the wave spectrum 

model, the number of wave components for the spectral decomposition and the duration 

of the stochastic time-domain riser analyses were taken the same as in the previous 

example. 
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Figure 38. Translational and rotational vessel motions RAOs at the center of motion and 

at the riser top connection. 

 

 

Figure 39. SLWR model. 
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Figure 40. Environmental loading acting on the SLWR. 

 

The structural behavior of the riser varies throughout its all length, for instance, 

the top region is characterized as the critical zone presenting larger stress levels. 

Meanwhile, the suspended section is dominated by the axial tension and the stress 

behavior is almost linear. The stresses along the hump are highly influenced by the 

bending and nonlinearities are significant in this region. In contrast, the stresses are 

extremely low for the riser segments from the TDZ to the anchor point. 

For this analysis, as in the previous example the joint probability function of Hs 

and Tp is the same described in Eq. (7.7), the integration domain is the same specified in 

Fig.11 and the sea states used for full integration and PIM, are the specified in Fig.12.  

 

7.3.1 Long-term extreme response 

As in the previous example, the assessed response considered for the SLWR 

analyzed was the cross-section utilization factor (UF) considering the ultimate limit 

state (ULS); i.e. Eqs. (7.10) and (7.11). 
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Figure 41. Riser and vessel azimuths, local and global coordinates and RAO direction. 

 

Fig. 42 shows the result of the utilization factor (UF) obtained along the entire 

SLWR. Three methods are compared in this figure, the long-term full integration, the 

PIM and the 100-yr environmental contour method. As explained before, the results 

obtained by the environmental contour were multiplied by a factor of 1.15 looking for a 

better accuracy of this approach.  

It is possible to note in Fig. 42 that the results obtained by the proposed method 

present a good accuracy along the entire structure when compared to the full integration 

approach. The results obtained by the environmental contour method present a good 

accuracy; however, some differences at the critical points of the hump are observed. 
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Figure 42. Cross-section utilization factor (UF) assessment along the SLW length. 

 

Table 13 and Fig. 43 show the critical results for each one of the SLWR 

segments. Note that the proposed method presents good accuracy in all segments; 

meanwhile, the environmental contour method presents a slight difference for the sag 

and hog positions and even for points in the TDZ. 

 

 

Figure 43. Critical values of cross-section utilization factor (UF) obtained for the SLWR 

segments. 
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Table 13. Critical values of cross-section utilization factor (UF) obtained for the SLWR 

segments, comparing the accuracy of the estimation methods. 

 Position 

 
PIM 

 

Full Int 

 

Env. Contour 

 

Position 

(m) 

Full/PIM 

 

Full/Contour 

 

Stress Joint 0.344 0.346 0.342 5.0 1.01 1.01 

Suspended 0.351 0.353 0.349 5.05 1.01 1.01 

Sag 0.714 0.716 0.744 2205.0 1.00 0.96 

Hog 0.524 0.526 0.542 2801.0 1.00 0.97 

Touch down zone 0.657 0.658 0.688 3639.0 1.00 0.96 

 

The critical element is in the sag point, at position 2205m from the connector. 

This region includes the initial part of the hump where the concavity is positive. The 

bending effects  are extremely important in such riser region and affect directly the 

value of the utilization factor. As shown in Table 13, the UF obtained was 0.716 using 

the full integration methodology, 0.714 the proposed method and 0.744 by the 100-yr 

environmental contour approach. As in the previous example, for this critical point, four 

values of Tp (i.e. tp=4.5s, tp=9.5s, tp=15.5s and tp=21.5s) are selected to show a 

comparison between the statistical parameters obtained from the numerical simulations 

and those obtained by using the parametric interpolation (i.e. static mean, peaks mean, 

peaks standard deviation and number of peaks). 

Figs. 46 to 49 show such comparison for each of the four peak periods. Note that 

for all the peak periods considered, all the statistical parameters present a good accuracy 

with those ones predicted by PIM. For Tp=4.5s and 15.5s the tendency of all statistical 

parameters follows a clear linear behavior. For Tp=9.5s the static mean presents a linear 

performance while the peak mean and the standard deviation presents a parabolic 

behavior. The UF static value is relatively high when compared to its dynamic variation 

for this riser point. In the case of the Tp=21.5s, the static mean and the peak mean 

presents a linear behavior while the standard deviation presents a parabolic tendency. 

The number of peaks has a clear constant trend for all the peak periods considered. The 

long-term average peaks frequency obtained by the interpolation method gave 

practically the same value that the obtained by the complete integration, i.e., 

10533.0PIM   and 10515.0Full  , respectively. 
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Figure 44. Behavior of the UF static mean in the critical riser point for different wave 

peak periods. 

 

Figure 45. Behavior of the mean of UF peaks in the critical riser point for different 

wave peak periods.  
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Figure 46. Behavior of the standard deviation of UF peaks in the critical riser point for 

different wave peak periods. 

 

Figure 47. Behavior of the expected number of UF peaks in the critical riser point for 

different wave peak periods. 
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Figure 48. Short-term cumulative probability distribution of UF peaks for the most 

critical riser point. 

 

In the same way as it was considered in the previous example, some specific sea 

states are used to show the accuracy of the proposed method when fitting the probability 

distribution function for the peaks of the short-term UF response. This sea states are the 

represented by blue circles in Fig. 30 and are indicated in Table 8. This probability 

distribution function is adopted as the two-parameter Weibull as in the previous 

example. 
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Fig. 48 shows the cumulative probability density function of short-term UF 

peaks for the critical riser point investigated for the sea states mentioned above. As it 

was expected, the approximated distribution obtained by the proposed method fits quite 

well with that obtained from numerical simulations. 

The long-term cumulative probability distribution of UF peaks for the critical 

element identified is shown in Fig. 49. As it was expected, the distribution predicted by 

the proposed method fits well with the distribution calculated with the statistical 

parameters obtained directly from the numerical simulations associated to each 

integration mesh point. 

Again, very accurate results are obtained using just 15% of the numerical 

simulations required for the full integration approach. 

 

  

Figure 49. Long-term cumulative probability distribution of UF peaks for the most 

critical riser point.  

 

7.3.2 Probabilistic fatigue analysis 

 

In the same way that the SCR was analyzed, the 8 external section points shown 

in Fig. 39 of each structural SLWR node were considered. Likewise, the Rainflow cycle 

counting method and the bi-linear DnV E SN described in Eq. (7.13) were used for 

fatigue calculation. 
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Fig. 50 presents the envelope of the most critical fatigue life among the 8 

external points for each cross section along the entire riser. The values obtained using 

the Parametric Interpolation Method (PIM) are compared to those obtained with the 

direct integration approach. 

  

 

Figure 50. Fatigue life (FL) assessment along the SLWR length. 

 

Table 14 and Fig. 51 show the critical results of fatigue life in each riser regions. 

Comparing all these results mentioned above, it is possible to observe that the proposed 

method presents good accuracy in all segments, mainly for those points with lower 

fatigue life. In the sag and TDZ regions the results are a little bit less accurate due to the 

distortion of the results generated by the important effects of bending and structural 

nonlinearities. 

 

Table 14. Critical values of fatigue life (FL) obtained for each SLWR segment and the 

corresponding PIM accuracy. 

 Riser location PIM Full Int Position Full/PIM 

Stress Joint 3274.59 3487.30 5.00 1.06 

Suspended 3373.04 3551.00 5.45 1.05 

Sag 176675.96 152400.00 2451.00 0.86 

Hog 9777.90 10986.00 2880.50 1.12 

Touch down zone 6768.56 5536.80 3725.00 0.82 
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Figure 51. Critical values of fatigue life (FL) obtained for each SLWR segments 

 

The critical riser point for fatigue is located in the stress joint, at position 5.0m 

from the connector. At this point the estimated fatigue life was 3487.3 yr by the full 

integration approach and 3274.6 yr by the proposed method. In this location the point 5 

(see Fig. 39) on the riser cross section is the most critical. Figs. 54 to 56 present a 

comparison between the statistical short-term fatigue damages obtained from the 

numerical simulations and those obtained by using the proposed method. Note that all 

cases present a good fit showing a clear exponential behavior and a good performance 

of the interpolation scheme.  
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Figure 52. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (1/3). 
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Figure 53. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (2/3). 
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Figure 54. Behavior of the short-term fatigue damage in the critical riser point for 

different wave peak periods (3/3). 

 

 

7.4 General comments 

 

In this chapter, three practical examples were studied in which the proposed 

methodology, the so-called Parabolic Interpolation Method, was applied. 

In the first example, we analyzed a linear model of a single degree of freedom in 

which the response was obtained by crossing a theoretical RAO with the wave 

spectrum; besides, the environmental load was assumed Gaussian and narrow banded. 

The results showed a good performance of the proposed method offering good accuracy 

and reducing considerably the number of dynamic analyzes. 

In the second and third example, a SCR and a SLWR were analyzed 

respectively. Both structures were modeled in finite elements and dynamic analyzes 

were performed in the time domain. The Parametric Interpolation Method was used to 

determine both the long-term extreme response and fatigue life along the entire 
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structures. The results were good, showing acceptable approximations when compared 

with the complete integrations. 

Again, as an overall observation, it must be emphasized that the fatigue analysis 

used the same numerical simulations defined for the extreme response estimation and 

the computer cost saving of proposed approach is approximately 85% when compared 

to full integration approach. 
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Chapter 8 
 

Conclusions and recommendations for 

further studies 

 
8.1 Conclusions 

 

Extreme response assessment and fatigue damage analysis are the main design 

criteria in the everyday design practice of marine structures. Although some structures 

which have a linear behavior can be analyzed in a simplified way by analytical 

methodologies or by means of frequency domain procedures, the slender structures such 

as risers and mooring lines are sensitive to non-linear effects and require more judicious 

numerical dynamic evaluations.  

Regarding the extreme response assessment of metallic risers, this evaluation in 

the design phase is usually performed by means of some simplified procedure such as 

the environmental contour method; however, the long-term extreme response method is 

the recommended methodology for this purpose. In a similar way, the fatigue 

assessment for such structures requires a long-term methodology. So, both design 

verifications require a huge number of short-term numerical evaluations of the structure 

in order to carry out the multi-dimensional integrals related to such calculations. This 

large number of numerical analyzes represent a high computational cost regarding to 

processing and data storage. 

Aiming at improving the computational efficiency in the long-term extreme 

response and fatigue damage analysis of metallic risers used in deep and ultra-deep 

water oil fields, some efficient integration method is urgently required. This work 

proposed the Parametric Interpolation Method (PIM) for this purpose. This 

methodology uses a surrogate interpolation scheme which predicts short-term 

responses, i.e., fatigue damage and the statistical parameters of response peaks. Besides, 

the numerical simulation needed to calibrate the interpolation equations are used for 

both long-term response analysis and probabilistic fatigue analysis, so that both 

analyses can be performed in an integrated form. 
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Given the possible dynamic response dependency on the wave period, a 

parametric equation is defined for any wave period (zero-up crossing or peak period) 

used in the wave parameters integration mesh. For each period, just three numerical 

simulations are needed. Then, for a given wave direction the total number of numerical 

simulations required is 3 x NTz, where NTz is the number of Tz points needed to cover 

the integration domain region which is important in the analysis (identified in this work 

as the 10.000-yr environmental contour). 

The Parametric Interpolation Method (PIM) keeps an optimal level of accuracy 

and needs much less numerical simulations when compared to the long-term 

integrations used in both the long-term extreme response and fatigue damage analyses. 

For the risers analyzed in this work, very small errors were identified when the results 

of the present approach were compared to full integration results. Moreover, these 

results were obtained using just 15% of the numerical simulations required by the full 

integration approach. 

Based on the results presented in this work, it is concluded that PIM is a 

promising alternative for more efficient and accurate long-term extreme responses and 

probabilistic fatigue assessment of metallic risers, at least for early design stages. 

 

8.2 Recommendations for Further Studies 

 

There many research works that can be conducted as a sequence of the present work. 

Among others, the following ones can be cited: 

 

 Develop an improved method to discretize the wave zero up-crossing period Tz 

by studying the behavior of short-term response variables (i.e. fatigue damage, 

static mean, peak mean, standard deviation and number of peaks) fixing Hs and 

varying Tz and considering the participation of each Hs-Tz pair on the response; 

 Implement the Parametric Interpolation Method (PIM) for determining the 

fatigue damage and the long-term extreme values of traction and radius of 

curvature for flexible risers; 

 Implement the Parametric Interpolation Method (PIM) for determining the long-

term response and fatigue damage of other marine structures such as mooring 

lines, jumpers, wellhead structure, among others. 
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Appendix A 
 

Environmental Contour Method 

 

The Environmental Contour Method (ECM) is a practical approach used to 

estimate extreme responses of offshore structures subjected to wave loads by using only 

some short-term analyses. Different codes such as DNV-OS-F201 (2010) accept this 

methodology for the evaluation of this type of structures. Through this procedure it is 

possible to determine characteristic structure responses, obtaining approximate values 

which are usually acceptable for basic project requirements, without the need to perform 

the full integration on the Hs-Tz domain that demands the long-term response 

methodology. 

The Inverse First-Order Reliability Method (known as I-FORM) is an efficient 

method to obtain the environmental contours (BAARHOLM et al., 2010), which indeed 

represent a set of characteristic environmental parameters associated to a specified 

return period of N years. The main requirement for use of the environmental contour 

method, is the availability of a joint probability density function of Hs and Tz such taht 

described in Eq. (2.5).  

The approach to determine the contour lines considers an exceedance probability 

of 
Ns

1
pe  in a transformed bi-dimensional U1-U2 standard normal space. Ns is the 

number of expected sea states in N years. The environmental contour in the Gaussian 

standard space U1-U2 is a circle with radius equal to  e
1 pβ  , where each pair 

 21 u,u  along this circle corresponds to an N-yr exceedance probability event. (.)  

corresponds to the cumulative probability function of a standard normal variable and 

 .1  to its inverse. 

The contour line in the Hs-Tz space may be obtained by using the Rosenblatt 

transformation, the Nataf transformation, or a copula-based transformation (MANUEL 

et al., 2018). In this work, a full joint distribution on Hs ant Tz is available; therefore, 

the Rosenblatt transformation was used to obtain the characteristic sea states. In this 

technique, as explained in details by BAARHOLM et al. (2010) and MANUEL et al. 
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(2018), a relation between the significant wave height, the up-crossing (or peak) period 

and the standard Gaussian variables U1 and U2 is given by: 
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By applying this transformation, it is possible to determine in the Hs-Tz space the so 

called N-yr contour line or N-yr environmental contour. 

 

 

 

 

 

 

 

 


