
COMPUTER VISION METHODS FOR UNDERWATER PIPELINE

SEGMENTATION

Roberto Esteban Campos Ruiz

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientadores: Mariane Rembold Petraglia

José Gabriel Rodŕıguez

Carneiro Gomes

Rio de Janeiro

Março de 2018

COMPUTER VISION METHODS FOR UNDERWATER PIPELINE

SEGMENTATION

Roberto Esteban Campos Ruiz

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Mariane Rembold Petraglia, Ph.D.

Prof. Julio Cesar Boscher Torres, D.Sc.

Prof. Diego Barreto Haddad, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Ruiz, Roberto Esteban Campos

Computer vision methods for underwater pipeline

segmentation/Roberto Esteban Campos Ruiz. – Rio de

Janeiro: UFRJ/COPPE, 2018.

XII, 43 p.: il.; 29, 7cm.

Orientadores: Mariane Rembold Petraglia

José Gabriel Rodŕıguez Carneiro Gomes

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográficas: p. 38 – 41.

1. Underwater pipeline. 2. Object detection. 3.

Image segmentation. I. Petraglia, Mariane Rembold

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Pedro and Rosita, because

everything I am, I owe to you.

iv

Acknowledgment

First, thanks to God, for giving me health and for guiding me through the right

path all this time.

Thanks to my family, because this achievement is also yours. And because

despite the distance, I always count on you.

Thanks to my advisers: prof. Mariane and prof. José Gabriel for the help and

the trust they gave me, for all the teachings and all the patience they had for me.

Thanks to my friends, for the experiences lived and the shared moments, not

only academically but also personally. It would not be fair to name you, because

each one of you are just as important as the others.

Thanks to all the institutions that gave me the opportunity and facilities to

complete this work. The Analog and Digital Signal Processing Laboratory (PADS),

the Electrical Engineering Program (PEE) and the Federal University of Rio de

Janeiro. And also to the “Coordenação de Aperfeiçoamento de Pessoal de Nı́vel

Superior (CAPES)” for the financial support.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MÉTODOS DE VISÃO COMPUTACIONAL PARA SEGMENTAÇÃO DE

DUTOS SUBMARINOS

Roberto Esteban Campos Ruiz

Março/2018

Orientadores: Mariane Rembold Petraglia

José Gabriel Rodŕıguez Carneiro Gomes

Programa: Engenharia Elétrica

O processo de inspeção de tubulações submarinas é geralmente realizado por

Véıculos Operados Remotamente (ROVs) equipados principalmente com sensores

óticos e acústicos. Durante longos periodos de inspeção e em condições de baixa

visibilidade, o processo de inspeção visual torna-se cansativo e sujeito a falhas de in-

terpretação por parte do operador. Portanto, a automação desse processo apresenta

uma melhoria na manutenção das tubulações.

Este trabalho apresenta um sistema de segmentação de tubulações ŕıgidas sub-

marinas usando uma câmera monocular. Um detector de bordas baseado na cor foi

proposto aproveitando as restrições da geometria das tubulações e informações de

rastreamento. Tubulações segmentadas foram transformadas em uma representação

de vista superior 2D. O sistema foi avaliado com um conjunto de dados de 7808

imagens, anotados manualmente, obtidas em diferentes tarefas de inspeção reais. O

sistema obteve 96.5% na taxa de detecção e 96,3% de acurácia na segmentação.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

COMPUTER VISION METHODS FOR UNDERWATER PIPELINE

SEGMENTATION

Roberto Esteban Campos Ruiz

March/2018

Advisors: Mariane Rembold Petraglia

José Gabriel Rodŕıguez Carneiro Gomes

Department: Electrical Engineering

Underwater pipeline inspection is usually conducted by Remotely Operated Ve-

hicles (ROVs) equipped mainly with optical and acoustic sensors. During long in-

spections periods and low visibility conditions, traditional visual inspection becomes

a tedious job and can lead to operator misinterpretations. Therefore, the automation

of this process involves an improvement in the maintenance of the pipelines.

This work presents an underwater pipeline segmentation system for rigid

pipelines using a monocular camera. A color based edge detector was proposed,

taking advantage of the pipeline geometry restrictions, besides tracking informa-

tion. Segmented pipelines were transformed into a 2D top view representation. The

system was evaluated with a dataset containing 7808 images, manually annotated,

acquired during real inspection tasks. The system reached 96.5% of detection rate

and 96.3% of segmentation accuracy.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Objectives . 2

1.2 Text organization . 3

1.3 Related work . 3

2 System architecture and description 6

2.1 Image conditioning . 7

2.2 Pipeline detection . 9

2.2.1 Color edge detection . 9

2.2.2 Edge merging . 11

2.2.3 Pipeline hypothesis and representation 13

2.3 Initialization . 14

2.4 Tracking . 15

2.4.1 Two frame tracking . 16

2.4.2 Multi frame tracking . 16

2.5 Segmentation and 2D top view transformation 18

3 System evaluation 21

3.1 Experiment 1 . 21

3.2 Experiment 2 . 23

3.3 Test 3 . 25

3.4 Test 4 . 26

3.5 Final system setup . 27

3.6 System outputs demonstrations . 28

4 Conclusions 36

Bibliography 38

viii

A Underwater pipeline dataset 42

ix

List of Figures

1.1 Sample pipeline images. Sand (a), algae (b), seabed appearance (c)

and non-uniform lighting (d). 2

2.1 System architecture. 6

2.2 Image conditioning process. 7

2.3 Input images I and I0 (in red) from where I1 and I2 are extracted. . 7

2.4 Effect of σs and σr parameters. There is no smoothing when σr is

close to 0 independent of σs. When σr and σs are increased, the

output effect passes from an edge preserving smoothing to blurring. . 8

2.5 Bilateral filter iterations with σs = 6 and σr = 0.1. 9

2.6 Pipeline detection process. 9

2.7 Color edge detection (CED). 9

2.8 Color edge detection. From left to right: input image, color edge de-

tector [1], color edge detector [1] combined with edge score, proposed

color edge detector with θ = π
2
. All pixel values > 0 were set to 1 for

visualization. 10

2.9 Merging process. The reference red line was calculated from the blue

points. 12

2.10 Projection of the detected pipeline edges and intersection point out-

side the image area. 13

2.11 Pipeline geometric representation. 14

2.12 I ∗ h. Edge regions marked in red. 15

2.13 Intersection (left) and union (right) of two regions. 15

2.14 Weak links remotion. 16

2.15 Weak link generated by a small area overlap. 16

2.16 Two frame tracking representation. (a) node selected during (blue),

(b) matching (gray) and (c) selection (blue) between consecutive hy-

potheses, (d) tracking finalization. 17

2.17 Multi frame tracking example. Initial structure with a ghost node

(gray) at the end. 17

x

2.18 Multi frame tracking example. Result of finding the best path. The

nodes in blue were selected during the optimization. 18

2.19 Original image (left) and its 2D top view transformation (right). . . 18

2.20 Region of interest. 19

2.21 Segmented pipeline (left) and its 2D top view transformation. 19

2.22 Four points (red) used for 2D top view transformation. 19

3.1 Block diagram for Experiment 1. CED (color edge detector), CN

(color normalization), GT (ground truth). 22

3.2 Image convolution example for initialization. From left to right, input

image, convolution with a kernel: 10× 10, 10× 20 and 20× 10 with

σ = 0.2 . 25

3.3 Detection example from video 1. From left to right: ground truth

(red), tracking using 2, 5 and 9 frames (yellow). 28

3.4 Detection example from video 2. From left to right: ground truth

(red), tracking using 2, 5 and 9 frames (yellow). 29

3.5 Detection example from video 3. From left to right: ground truth

(red), tracking using 2, 7 and 15 frames (yellow). 30

3.6 Detection example from video 4. From left to right: ground truth

(red), tracking using 2, 5 and 9 frames (yellow). 31

3.7 Detection example from video 5. From left to right: ground truth

(red), tracking using 2, 5 and 9 frames (yellow). 32

3.8 Detection example from video 6. From left to right: ground truth

(red), tracking using 2, 5 and 9 frames (yellow). 33

3.9 From left to right: input image, detected pipeline (yellow), segmented

pipeline and 2D top view. 34

3.10 Pipeline center evolution over time for all videos. 35

A.1 Sample pipeline images. 43

A.2 Manually annotated pipeline borders. 43

xi

List of Tables

3.1 Best matching average between hypotheses and ground truth. 22

3.2 Bilateral filter iterations with σs = 5 and σr = 0.1. 23

3.3 Pipeline detection for each dataset. 23

3.4 Initialization detection rate for different kernel sizes, with σh = 0.2. . 24

3.5 Initialization result with hsize = 20× 40 and variable σh. 25

3.6 Correct pipeline detections during tracking. 26

3.7 Number of initialization during tracking. 26

3.8 Segmentation average accuracy. 27

3.9 Segmentation average accuracy. 27

A.1 Dataset composition. 42

xii

Chapter 1

Introduction

Underwater operations are carried out using Remotely Operated Vehicles (ROVs),

which are controlled remotely by an operator located on a ship, and equipped mainly

with optical and acoustic sensors [2]. They operate under the sea surface performing

inspection, search, recovery, repair and maintenance operations of man-made struc-

tures and oceanographic and engineering research [3]. On the particular case of un-

derwater pipeline inspection, ROVs move along the pipeline acquiring information

to determine the overall condition and ensure the conservation of these structures.

Umbilical/tether cables, used for energy supply, signal transmission and com-

munication [4], connect the ROV to the control unit. Signals are transmitted from

sensors that help to keep control of the vehicle and from sensors installed for inspec-

tion. Cameras are the principal elements to provide vehicle orientation and position

feedback with respect to the pipeline, and also to perform visual inspection. In low

visibility conditions and long range locations, multibeam and sidescan sonars are

used to produce acoustic images and a map of the surroundings. Magneto-metric

sensors are used to detect internal and external changes on a pipeline by analyzing

its cross section [5]. In a similar way to multibeam sonar, laser imaging system can

be used to produce 3D high resolution images [5].

Traditionally, the detection of pipeline damages (corrosion, cracks, biological

contamination and leaks) is performed through visual inspection by a specialized

person, at the same time of the mission or later using the recorded information. In

both cases, the extension of this operation for a long time represents a tedious job

and can lead to an erroneous analysis due to the lack of the operator concentration.

Therefore, the automation of this process entails an improvement in the maintenance

of these structures.

In visual inspection, well defined features presented in recently installed pipelines,

such as color and shape, facilitate the detection process. When the pipelines get

older, the influence of marine environment becomes visible. Sometimes, the sand

covers the pipeline or algae growth may deform the pipeline contours or makes the

1

pipeline apparency similar to the seabed appearance. Non-uniform artificial lighting,

blurring and turbulence produced by the lack of stability on the ROV movement

[2] make the inspection processes more complicated. The described situations are

shown in Figure 1.1.

(a) (b)

(c) (d)

Figure 1.1: Sample pipeline images. Sand (a), algae (b), seabed appearance (c) and
non-uniform lighting (d).

This work presents a system for the detection and segmentation of underwater

pipelines - using image processing and computer vision algorithms - as the first

step in the process of developing an automatic inspection system where traditional

methods do not work properly. Image sequences acquired during ROV inspection

missions are used as input to the system. As an output, for each image, the seg-

mented pipeline is obtained.

1.1 Objectives

The main objective of this work is to develop a monocular vision-based system for

underwater pipeline segmentation with application in real scenarios. To accomplish

this, some specific objectives are proposed:

• Generate a manually segmented dataset from real image sequences to evaluate

the system performance;

• Include the color information from the input image to improve the pipeline

detection process;

• Develop an automatic initializer that is activated at the beginning of the track-

ing and every time the tracking is lost.

2

• Compare different matching strategies and number of frames used for tracking;

• Transform the segmented pipeline into a 2D top-view representation.

1.2 Text organization

The proposed method for pipeline segmentation is described in Chapter 3 as well as

the theoretical background of the algorithms used. Chapter 4 presents the results of

experiments with real image sequences and in Chapter 5, concluding remarks and

some hints for possible improvements are given. Finally, in Appendix A, information

about the database is provided.

1.3 Related work

Many systems have been used in underwater pipeline/cable operations. Acoustic

system composed by forward looking sonar [6], side scan sonar [7] or echo sounders

[8] were used for pipeline detection from long distances and challenging visual con-

ditions. A magnetic system was used in [9] to detect narrowed cables, by applying

electrical stimulation to the cable and detecting it by magnetometers situated in

an AUV (Autonomous Underwater Vehicle). Vision systems based on cameras are

used in good visibility conditions and closeness to the pipeline [2], [10], [11] [12],

[13], [14]. Finally, some systems combine acoustic and visual information [15] or

side scanning sonar, sub-bottom profiler and a magnetometer [16], to increase their

robustness and the results reliability.

Since most of the systems developed for the visual inspection of underwater

pipelines are carried out by private companies, not much of work has been published

in the literature. Then, the most relevant vision-based approaches are reviewed

below.

In [11], Hough Transform (HT) is applied after edge detection, the two longest

and parallel lines are selected, distance from the pipeline to ROV is calculated using

calibration parameters from the camera and pipeline width. That information is

used to validate detection on future frames. The pipeline is expected to be parallel

to the camera plane and a previous knowledge of the target width is required. Tests

were conducted in a non-marine controlled environment.

To avoid selecting a fixed threshold for edge detection, [13] proposed a histogram

clustering of the gradient magnitude with three classes: background, pipeline edges

and ripple patterns. Edges with more intensity are assumed to correspond to the

pipeline borders and once thresholding was applied, the two longest lines obtained

3

from HT are selected as pipeline borders. Then, optical flow is used to predict the

pipeline location over a Region of Interest (ROI) for the next frame.

The method presented in [2] is based on image segmentation followed by a

straight line segment fitting and co-linearity analysis. Segmentation is done us-

ing the minimal-spanning tree algorithm over a bidimensional histogram (gray level

intensity vs. gradient magnitude) using three classes. Then, contours are calculated

and straight lines are found by grouping adjacent pixels according to a preference

matrix (vertical lines have preference over horizontal). Next, using total least squares

[17], a line is fitted to the pixels corresponding to each segment. Co-linearity analy-

sis is applied to merge segments that are possible parts of the same pipeline border.

A segment is taken as reference, and all segments that are close and have similar

orientation to the reference one are merged. The same criteria applied in [11] is

used to select the final borders. A Kalman Filter (KF) is used to predict a ROI,

and when there is no valid detection the system is reset and the ROI is set to the

whole image. This system was tested with a real inspection dataset containing 1457

images. The system achieved a 92% average detection rate.

A particle filter based system for underwater telecommunications cable tracking

was presented in [12]. Unlike other methods and due to the reduced cable diameter,

only the distance and orientation of the central line with respect to the image origin

was used to represent the cable. For these parameters, a constant velocity model was

adopted considering a slow vehicle motion in a 2D plane parallel to the ground. The

observation model was built from the convolution of a 1D mexican-hat function and

the rows of the input image, where peaks in the resulting signal represent a cable

location hypothesis. Results showed an average error of 3.11 pixels and 1.83◦ for

cable distance and angle, respectively, over a dataset composed by 10000 manually

annotated images.

Shape and color image segmentation were employed in [10] for pipeline detection,

where shape information was obtained by applying a canny edge detector on the

grayscale input image. Color segmentation is obtained by thresholding the Hue,

Saturation and Value channels (HSV). Shape and color information are merged by a

pixelwise AND operation, an adjustment mechanism taken from [18] and the pipeline

parameters from previous frames. Finally the central line is estimated as in [12],

and the new thresholds are set for the next frames.

In [14], a visual classification system based in a Hierarchical Neural-Tree Classi-

fier (HNTC) for pipeline recognition is presented. The input image is divided into

small regions called “macro-pixels” from where features are extracted. Then, each

macro-pixel classification is validated by analyzing their neighborhood classification.

If the mean result of the surrounding macro-pixels is less than a lower threshold,

then the macro-pixel corresponds to the sea-bottom. If the mean result is greater

4

than an upper threshold, then the macro-pixel corresponds to the pipeline. When

the mean result is between the lower and upper thresholds, an uncertain pixel mech-

anism is activated. The mechanism divides the macro-pixel into smaller regions and

repeats the process. Results show the system performance in real scenarios where

the pipeline shape is well defined.

5

Chapter 2

System architecture and

description

The proposed system for solving the pipeline segmentation problem is presented in

this chapter. Fig. 2.1 shows the system architecture. It is composed by five blocks:

image conditioning, pipeline detection, initialization, tracking and segmentation and

2D top view transformation.

Image
conditioning

Pipeline
detection

Tracking

Segmentation &
2D top view

transformation

Initialization

Figure 2.1: System architecture.

The input image, I, passes through the image conditioning block where basic

image processing operations are performed, generating I1 and I2. I2 goes to the

pipeline detection block. Here, a set of hypotheses that represent possible pipeline

locations is generated. I2 also goes to the initialization block together with the

hypothesis set. In this block a more complex process for pipeline detection is per-

formed. This block only works at the beginning of the tracking. The tracking block

6

uses information from previous detections to facilitate the selection of an hypothe-

sis from the current set. Segmentation and 2D top view transformation block uses

the information of the detected pipeline to isolate it from its environment and to

generate an image where the pipeline edges are vertical and parallel. I1 is used for

these operations.

2.1 Image conditioning

Three operations are performed in this process as illustrated in Fig. 2.2. First

I0 is generated from I by applying cropping, as shown in Figure 2.3, to remove

alphanumeric information corresponding to the inspection process. Then, I1 and I2

are generated by resizing I0 by a factor of 0.5 and 0.125, respectively. The images

I2 will be used during the detection task, and I1 will be used for segmentation and

top view representation. Finally, a noise reduction operation is applied over I2.

Commonly used noise filtering approaches tend to smooth characteristics of in-

terest such as borders, making the detection process more complicated. Bilateral

filter was used iteratively, because of its edge-preserving feature.

Cropping Resizing Filtering

I2I

I1

Figure 2.2: Image conditioning process.

I1

I2

x0.5

x0.125

Figure 2.3: Input images I and I0 (in red) from where I1 and I2 are extracted.

Bilateral filter

Bilateral filter is a non-linear edge preserving technique to smooth images [19], and

has been used in image denoising [20], multispectral fusion [21], tone mapping [22]

7

and mesh smoothing [23]. The algorithm output is a weighted average of the interest

pixel neighbors. To preserve edges, the weighted average takes into account pixel

intensity variations. If two pixel have similar spatial location and similar intensity

levels, they are considered close to each other.

The bilateral filter, BF [·], applied to the pixel p from image I is defined as:

BF [Ip] =
1

Wp

∑
q∈S

Gσs(‖p− q‖)Gσr(|Ip − Iq|)Iq, (2.1)

where the normalization factors Wp and Gσ(x) are given, respectively, by:

Wp =
∑
q∈S

Gσs(‖p− q‖)Gσr(|Ip − Iq|), (2.2)

and

Gσ(x) =
1

2πσ2
exp

(
− x2

2σ2

)
. (2.3)

In Eq. (2.1), the spatial Gaussian weighing Gσs and the Gaussian range weighing

Gσr penalize the influence of distant pixels and the difference in intensity values

between Ip and Iq, respectively. The effect of the spatial σs and range σr parameters

are shown in Figure 2.4.

σs�σr 0.05 0.2 0.8

2

4

10

Figure 2.4: Effect of σs and σr parameters. There is no smoothing when σr is close
to 0 independent of σs. When σr and σs are increased, the output effect passes from
an edge preserving smoothing to blurring.

A different effect from modifying σs and σr parameters can be reached by iterat-

ing the bilateral filter. This leads to smoother images as shown in Fig. 2.5. Strong

edges remain when the bilateral filter is iterated, in comparison to the blurring effect

generated when σr and σs are increased.

A more detailed explanation about bilateral filtering can be found in [24].

8

1 iteration 2 iteration 4 iteration

Figure 2.5: Bilateral filter iterations with σs = 6 and σr = 0.1.

2.2 Pipeline detection

The pipeline detection consist of extracting all possible locations of the pipeline from

I2. The operations required for this task are shown in Fig. 2.6, and explained next.

Color edge
detection

Edge merging

Pipeline
hypothesis

and
representation

Detection
parameters

I2

Figure 2.6: Pipeline detection process.

2.2.1 Color edge detection

The proposed color edge detection process is composed by three operations as it is

shown in Fig. 2.7. A color edge detection algorithm based on the color tensor of

Eq. (2.5) was proposed in [1]. That algorithm applies non-maximum suppression

on λ1, which is shown in Eq. (2.7), along the local prominent direction θ.

λ1
θ

Non maximum
suppression

Edge score
& filtering

I2
CED

Figure 2.7: Color edge detection (CED).

A variation is proposed by setting a fixed θ = π
2
, since we assume that the ROV

motion is realized along the pipeline during inspection, which means that pipeline

edges in I2 will always appear vertically.

Inms is obtained after computing λ1 from I2, followed by non-maximum suppres-

sion. Then, each edge i in Inms is labeled and its points are stored in the vector li.

Then, a score si is computed:

si = ni
∑

Inms(li), (2.4)

9

where ni is the length of li and
∑

Inms(li) is the energy contained in li. Higher

values of this score indicate the presence of a long and well defined edge.

Edges with ni ≤ τ1 and si ≤ 1
ns

∑
s are eliminated (ns is the length of the

vector of scores s), because they are not expected to be part of the pipeline edges.

Finally, the labels are re-indexed as lj, taking into consideration the ones eliminated

in the previous step. An example of the result obtained with the proposed color

edge detector is shown in Figure 2.8. Notice that, by making θ fixed, the pipeline

orientation is taken into consideration, resulting in better edge detection.

Figure 2.8: Color edge detection. From left to right: input image, color edge detector
[1], color edge detector [1] combined with edge score, proposed color edge detector
with θ = π

2
. All pixel values > 0 were set to 1 for visualization.

Color tensor

Proposed in [25], color tensor is applied to color gradient computation. In this

work is stated that, for color images, a simple sum of the image derivatives ignores

the correlation between the color channels. Color tensor has been used in texture

analysis [26], feature extraction [27], [1] and segmentation [28].

The color structure tensor S of an image I = (R,G,B)T is given by:

S =

(
Sxx Sxy

Sxy Syy

)
, (2.5)

where S(·) indicates a convolution of the spatial derivatives with a Gaussian filter.

And

Sxx = R2
x + G2

x + B2
x,

Syy = R2
y + G2

y + B2
y,

Sxy = RxRy + GxGy + BxBy. (2.6)

The matrix of Eq. (2.5) describes the first order local differential structure of a

pixel p. Its eigenvalues are given by:

λ1 = 1
2

(
Sxx + Syy +

√(
Sxx − Syy

)2
+
(
2Sxy

)2)
,

λ2 = 1
2

(
Sxx − Syy +

√(
Sxx − Syy

)2
+
(
2Sxy

)2)
, (2.7)

10

where λ1 represents the energy of the derivative along the most prominent direction,

and λ2 describes the amount of derivative energy perpendicular to the prominent

local orientation. As the local prominent orientation (θ) is indicated by the direction

of λ1, then:

θ = 1
2

arctan

(
2Sxy

Sxx − Syy

)
. (2.8)

A deeper explanation about the color tensor can be found in [29].

2.2.2 Edge merging

Edge merging corresponds to the process of linking non-continuous edges with dif-

ferent j index as belonging to the same original edge. This operation is performed

because, during the non-maximum suppression process, some edges can be separated

because of external interference over the pipeline edges. The interference may be

caused by marine flora, crossing objects, damage etc.

All points in lj are fitted to a line using Algorithm 1, with niter as the maximum

number of iterations, and τ2 as the maximum distance for considering a point as

inlier. Distance d from point p to line L : y = mx + b (line 4 of Algorithm 1)

is calculated using Eq. (2.9). At the end, all inliers are fitted using Total Least

Squares [17]. Therefore, the set of points lj are transformed to the set of lines Lj.

d(p, L) =
|mpx − py + b|√

m2 + 1
. (2.9)

The next step is to calculate the distance d from lj to Lk with k 6= j, and if most

of points of lj are in between the region defined by green lines in Fig. 2.9 (the region

width is controlled by τ3), the, they are considered as belonging to the same lk set.

An example of the previous step is shown in Fig. 2.9. On the left side, just

a few points are inside the region (defined by τ3), so no merging is produced. In

the middle, all points from a segment are inside the region, then these points must

belong to the same edge. Finally, the merging result is shown on the right side with

merged segments in the same color.

It is also important to mention that the order in which Lk (red line on Fig. 2.9)

were selected depends on the score sk from the Section 2.2.1. Thereby, lines with

higher score were selected first, which represent strong edges that could have been

separated during the edge detection step. Also, if two segments are merged, both

are not considered during the rest of the merging process. After a merging, a new

Lk is calculated by applying Algorithm 1.

11

Figure 2.9: Merging process. The reference red line was calculated from the blue
points.

Algorithm 1 RANSAC for lines

INPUT: li, niter, τ2
OUTPUT: Li # Fitted line parameters

1: m = 0
2: while N > iter & iter < niter do
3: p← RandomSample(li,2) # Sample randomly two points
4: r← Line(p) # Line parameters
5: d← Distance(r,p) # Distance from points to line
6: inliers← d ≤ τ2
7: if ninliers > m then
8: m← ninliers # Store max. number of inliers
9: q← lj(inliers) # Store best points

10: e← 1− m
ni

ni: length of li

11: N ← log(0.01)
log(1−(1−e)2)

12: end if
13: iter ← iter + 1
14: end while
15: Li ← TLS(q) # Fitting using total least squares

RANdom SAmple Consensus (RANSAC)

The RANdom SAmple Consensus (RANSAC) algorithm proposed in [30] is an iter-

ative parameter estimator designed to manage a dataset with outliers. It is widely

used in computer vision applications [31].

The idea behind the algorithm is to use the minimum number of data samples to

estimate the model parameters (unlike other techniques, where the initial solution

uses as much data as possible), and then check which elements of the dataset are

consistent with the estimated model.

The RANSAC algorithm consists in estimating the model parameters by ran-

domly selecting a minimum number of samples and determining how many samples

from the dataset fit the model with a tolerance τ2 (inliers). If the ratio between the

number of inliers and the overall number of samples in the dataset exceeds a thresh-

old m, then the model parameters are re-estimated using all inliers. Otherwise, the

12

process is repeated N times.

Parameters τ2 and N must be determined from specific requirements related to

the application and to the dataset. The parameter N can be set fixed as niter, or it

can be calculated as:

N =
log(1− a)

log(1− (1− v)n)
, (2.10)

where a (usually set to 0.99) is the probability that at least one random sample of

n elements is free from outliers, u is the probability that any selected data sample

is an inlier and v = 1− u is the probability that it is an outlier.

For detailed information about this algorithm, see [32].

2.2.3 Pipeline hypothesis and representation

A pipeline hypothesis means possible pipeline location. In this step many hypotheses

are generated on the basis that lines L1 and L2 could be the pipeline edges if the

y coordinate of the intersection point between them is negative. It means that the

intersection point should be outside the image as it is shown in Fig. 2.10.

x

y

Figure 2.10: Projection of the detected pipeline edges and intersection point outside
the image area.

The intersection point pint between L1 and L2 is calculated as xint(L1,L2) =

(b1 − b2)/(m2 −m1) and yint(L1,L2) is calculated by replacing xint on L1 or L2.

Each pipeline hypothesis is represented by the geometric parameters δ, α, ω, and

β. These parameters are illustrated in Fig. 2.11 and are defined as follows:

• δ: orthogonal distance from the image origin to the pipeline central line.

• α: pipeline center line angle.

13

• ω: half of the pipeline width.

• β: pipeline edge inclination respect to the center line.

The first three parameters define the pipeline position, orientation and size on the

image. The fourth parameter can be considered as the projective effect introduced

by the camera inclination (camera plane not parallel to the pipeline).

x

y

β

ω

δ

α

Figure 2.11: Pipeline geometric representation.

At the end of the pipeline detection process a set M = (δ, α, ω, β)T of parameters

representing the possible pipeline location is obtained.

2.3 Initialization

The initialization process consists in automatically detecting the pipeline in the first

frame or when the tracking is lost.

The kernel h consists in a set of mexican-hat functions, having the format shown

in Eq. (2.11), arranged vertically on a matrix, as shown in Fig. 2.12 (middle).

Experimentally it was possible to identify edge regions close to the local minima of

Iconv. Therefore, the same procedure of Section 2.2 was used, with Inms as the non-

maximum suppression of −Iconv with θ = π
2
, thus generating a set F of initialization

hypothesis that represents an approximated pipeline region.

f(x) =

(
1− x2

σ2

)
exp

(
− x2

2σ2

)
(2.11)

Since each hypothesis in F is composed by two edges (represented as lines)

with scores si and sj (i 6= j), the best hypothesis is selected as Fk = max(sisj).

This ensures the selection of two strong and long edges. Next, as the initialization

14

I h Iconv = I ∗ h

Figure 2.12: I ∗ h. Edge regions marked in red.

hypothesis only gives an approximated region, this region has to be matched to the

hypothesis generated from the regular iterative edge detection procedure

The overlap score w, shown in Eq. (2.12), is used to select the best match

between the two hypothesis:

w(AFk
, AMi

) =
AFk
∩ AMi

AFk
∪ AMi

, (2.12)

where A is the area of the hypothesis (see Fig. 2.13). Finally the pipeline edges

from the initialization is selected from the maximum w that satisfied the condition

w > τ4. Otherwise, no initialization is considered.

Figure 2.13: Intersection (left) and union (right) of two regions.

2.4 Tracking

The tracking process consist on taking advantage of previous detections to improve

the current detection. In this work, two frame and multi frame tracking approaches

were developed.

The overlap score from Eq. (2.12) and the relationship between hypothesis mag-

nitudes of Eq. (2.13) were used as matching scores for tracking (columns of M were

normalized to give a similar weight to all variables).

z(Mt−1
i ,Mt

j) = |1− ‖M
t−1
i ‖

‖Mt
j‖
| (2.13)

During the matching score computation, links with weak scores are removed. A

weak link is considered when its w score is below a threshold τ5. Fig. 2.14 shows

how weak links in red are removed and an example of an overlap area that generates

15

a weak link is illustrated in Fig. 2.15. This operation prevents the selection of wrong

hypotheses. The best scores are selected as max(w) or min(z).

Mt−1 Mt Mt−1 Mt

Figure 2.14: Weak links remotion.

Figure 2.15: Weak link generated by a small area overlap.

2.4.1 Two frame tracking

Two frame tracking consists of continuously selecting a hypothesis from Mt based

on the detection at time t− 1.

Fig. 2.16 shows how the tracking is performed. The set Mt in (a) is composed

of three hypotheses. The initialization selects the blue node and it is taken as the

reference. Then, it is matched with the new hypotheses Mt (gray links) (b). The

hypotheses in Mt with better link score (maximum w or minimum z) is selected

(blue). This process is repeated successively for next hypotheses (c). If there is no

link (d) between Mt−1 and Mt, the tracking is considered as finalized and a new

initialization has to be done at time t.

2.4.2 Multi frame tracking

The idea of multi frame tracking is to maximize (for w) or minimize (for z) the

path from Mt−k+1 to Mt (k is the number of frames used). To solve this, dynamic

programming was used.

16

Mt Mt−1 Mt Mt−1 Mt Mt−1 Mt

(a) (b) (c) (d)

Figure 2.16: Two frame tracking representation. (a) node selected during (blue),
(b) matching (gray) and (c) selection (blue) between consecutive hypotheses, (d)
tracking finalization.

Dynamic programming is an optimization technique that converts a complex

problem into a sequence of simpler subproblems [33]. A detailed explanation of the

algorithm used can be found in Chapter 10 of [34].

Fig. 2.17 illustrates an example for k = 4. A ghost node (gray) with link score

equal to 1 (dashed lines) was added to the end, in order to avoid calculating the best

path from the hypothesis in Mt−3 to each hypothesis Mt. The result of calculating

the best path from the initialized node in Mt−3 to the ghost node includes the

intermediate detections (Fig. 2.18). Once the path was calculated, the process is

repeated for a new set of k frames, with the last detection as the first node. If

there is no matching between Mt−n−1 and Mt−n (0 ≤ n ≤ k − 2), then tracking is

considered as finalized and a new initialization has to be performed in Mt−n.

Mt−3 Mt−2 Mt−1 Mt

Figure 2.17: Multi frame tracking example. Initial structure with a ghost node
(gray) at the end.

17

Mt−3 Mt−2 Mt−1 Mt

Figure 2.18: Multi frame tracking example. Result of finding the best path. The

nodes in blue were selected during the optimization.

2.5 Segmentation and 2D top view transforma-

tion

The segmentation task consists on the separation of the pipeline from the image

background. And the 2D top view transformation consists of removing the perspec-

tive effect in the image, making the pipeline edges parallel. An example of the 2D

top view transformation is shown in Fig. 2.19.

Figure 2.19: Original image (left) and its 2D top view transformation (right).

A region of interest is defined as in Fig. 2.20. During the 2D top view transfor-

mation, the upper side has a blurring effect produced by pixel interpolation.

The segmentation process is done over the region of interest in I1, since I2 has a

low resolution and some details were lost during the filtering. Thus, it is necessary

to scale by 4 δ and β parameters. The segmented image Isg is generated by cropping

the pipeline region and removing the background pixels as shown in Fig. 2.21 (left),

background pixels were set to 1.

The 2D top-view transformed image Itv (right) is generated by using the Algo-

rithm 2. The four points used to calculated the transformation are shown in Fig.

2.22, and the destination points corresponds to the vertices of a rectangle with 2ω

wide and the same hight of the region of interest. Black points represent the region

of interest limits.

18

I1

Figure 2.20: Region of interest.

Isg Itv

Figure 2.21: Segmented pipeline (left) and its 2D top view transformation.

Figure 2.22: Four points (red) used for 2D top view transformation.

Projective transformation

Projective transformation or homography is a non singular linear transformation:x
′
1

x′2

x′3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1x2
x3

 ,
19

or in block form:

x′ = Hx =

[
A2×2 t2×1

vT1×2 v

]
x, (2.14)

where A is a non-singular matrix composed by two rotations (RTR = RRT = I)

and two scaling operations (sx and sy):

A = R(α)R(−φ)

[
sx 0

0 sy

]
R(φ), (2.15)

t is the translation vector, and v = (v1, v2)
T . It should be noted that, if H is multi-

plied by an arbitrary non-zero factor, the transformation is not altered. There are

eight independent ratios among the elements of H, thus a projective transformation

has eight degrees of freedom [31].

Removing projective distortion

When an image is distorted by a projective transformation, its possible to recover

the original representation by applying the inverse transformation to the image. It

will result in a new image where the objects are shown in their correct shape [31].

Algorithm 2 is used in order to remove the projective distortion from an image.

Algorithm 2 Projective distortion remotion

1: select four points (xi
′, yi

′) on the image
2: select the corresponding points (xi, yi) in perspective free space
3: find the correspondence between (x, y) and (x′, y′) as:x′1x′2

x′3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

We can set h33 = 1 without losing generalization [31].

4: solve the system:

h11
h12
h13
h21
h22
h23
h31
h32

=

x0 y0 1 0 0 0 −x0x′0 −y0x′0
0 0 0 x0 y0 1 −x0y′0 −y0y′0
x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y′1 −y1y′1
x2 y2 1 0 0 0 −x2x′2 −y2x′2
0 0 0 x2 y2 1 −x2y′2 −y2y′2
x3 y3 1 0 0 0 −x3x′3 −y3x′3
0 0 0 x3 y3 1 −x3y′3 −y3y′3

−1

x′0
y′0
x′1
y′1
x′2
y′2
x′3
y′3

5: apply H−1 to the I1

20

Chapter 3

System evaluation

Experiments for evaluating the proposed system (Fig. 2.1) performance, as well as

the selection of internal parameters, are presented in this chapter. Four experiments

were conducted. The first one to evaluate the image conditioning and pipeline de-

tection blocks. The second is to evaluate the initializer. Tracking block is evaluated

in the third experiment and the segmentation in the last one.

The evaluation is performed by a comparison of the blocks output and the

dataset. Information about the dataset can be found in Appendix A.

For the experiments, a detection is considered as valid if the overlap area (w)

between the hypotheses (generated by the system) and the ground truth is greater

than 0.9. This value means a high similarity between the output and the ground

truth.

The following parameters were set based on qualitative analysis of the results

during the system development:

• τ1 = 5, minimum edge length (pixels);

• τ2 = 5, maximum distance from point to line on RANSAC (pixels);

• τ3 = 5, maximum distance from edge points to line during edge merging

(pixels);

• ntau = 30, maximum RANSAC iterations;

3.1 Experiment 1

The purpose of this experiment is to analyze the image conditioning and pipeline

detection processes. Also, the following parameters will be selected:

• bfiter, number of iterations for the bilateral filter;

• σs, spatial standard deviation (bilateral filter);

21

• σr, range standard deviation (bilateral filter);

• Color edge detector.

This experiment follows the structure shown in Fig.3.1. I2 passes through the

pipeline detection block (dashed lines) and the generated detections were compared

to the ground truth (GT) in order to find the best hypothesis that meets w ≥ 0.9.

CED1

CED2

CED2CN E
d
ge

m
er

gi
n
g

+
H

y
p

ot
h
es

is

A
re

a
m

at
ch

in
g

∪

I2

GT

PD1

PD2

PD3

PD4

Figure 3.1: Block diagram for Experiment 1. CED (color edge detector), CN (color
normalization), GT (ground truth).

Four different pipeline detections (PD) outputs are generated following this struc-

ture and are explained next:

• PD1, output of using the color edge detector CED1 from in [1];

• PD2, output of using the color edge detector proposed in Section 2.2.1 (CED2);

• PD3, output of using a color normalization (CN) of I2, followed by CED2;

• PD4, output of joining the hypotheses generated by CED2 and CN + CED2.

Color normalization of and RGB image is calculated using Eq. 3.1.

R′ =
R

R +G+B
;G′ =

G

R +G+B
;B′ =

B

R +G+B
(3.1)

Table 3.1 shows the best score matching average between hypothesis and ground

truth for each detector. PD1 had a result lower than those obtained by the proposed

detectors, which means that the edges produced by this detector do not contribute

to the generation of good hypotheses. This demonstrates that the pipeline orien-

tation based restriction explained in Section 2.2.1 improves the detection process.

Therefore, PD1 was not used for next test.

PD1 PD2 PD3 PD4

0.854 ±0.142 0.920 ±0.068 0.956 ±0.042 0.966±0.028

Table 3.1: Best matching average between hypotheses and ground truth.

22

The bfiter parameter is selected from the detection rate results shown in Table

3.2.

bfiter PD2 (%) PD3 (%) PD4 (%)

1 6026 (77.2) 7383 (94.6) 7535 (96.5)

2 5851 (74.9) 7363 (94.3) 7532 (96.5)

3 5750 (73.6) 7340 (94.0) 7527 (96.4)

4 5571 (71.3) 7332 (93.9) 7533 (96.5)

Table 3.2: Bilateral filter iterations with σs = 5 and σr = 0.1.

The increase of bfiter did not mean a significant improvement for PD4, the differ-

ence between its best and worst result was about 0.1%, for PD2, the difference was

5.9% and for PD3 it was 0.7%. All cases had better results with bfiter = 1, these

values were used for next experiments. The variation of σs and σr did not show

significant differences for all cases. Therefore, σs = 5 and σr = 0.1 were selected.

Table 3.3 shows a detailed detection result for each video of the dataset. For

videos 1, 2 and 4, the result of PD3 is considerably higher than PD2, and opposite

in videos 5 and 6. Results were equivalent in video 3. This is due to the difference

between scenarios on each video. As PD4 is a combination between PD2 and PD4,

this works better for all scenarios on the dataset. It is so, PD4 is chosen as the color

edge detector for the system and was used for next experiments.

Video PD2 (%) PD3 (%) PD4 (%)
1 1352 (75.2) 1685 (93.7) 1685 (93.7)
2 780 (48.8) 1586 (99.2) 1586 (99.2)
3 1755 (97.6) 1759 (97.8) 1759 (97.8)
4 1022 (71.8) 1386 (97.3) 1386 (97.3)
5 221 (78.4) 203 (71.6) 221 (78.4)
6 896 (99.0) 769 (84.6) 896 (99.0)

Total 6026 (77.2) 7383 (94.6) 7533 (96.5)

Table 3.3: Pipeline detection for each dataset.

3.2 Experiment 2

The purpose of this experiment is to analyze the initialization processes. Also, the

selection of the following parameters:

• hsize, kernel size.

• σh, mexican-hat standard deviation.

23

In this experiment, four different initialization (IN) outputs were generated and

them are explained next:

• IN1, red channel of I2 convolved with h;

• IN2, green channel of I2 convolved with h;

• IN3, blue channel of I2 convolved with h;

• IN4, combination of IN1, IN2 and IN3.

For IN4, the initialization process was performed in each color channel of I2.

Then, one was selected based on the highest w score between the hypotheses from

the pipeline detection and the hypothesis from the initializer. τ4 was set to 0.85

based on qualitative analysis during the system development.

In Table 3.4 shows the initialization detection rate results for different kernel

sizes. The first three rows shows that the kernel 10x20 (width > height) has a

better performance compared the others. From this result, tests of row 4 to 11 were

carried out to determine the best hsize for the initializer.

hsize IN1 IN2 IN3 IN4

10× 10 1555 (19.92) 1237 (15.84) 1406 (18.01) 2096 (26.84)
10× 20 5241 (67.12) 3932 (50.36) 4669 (59.80) 5976 (76.54)
20× 10 970 (12.42) 772 (9.89) 759 (9.72) 1229 (15.74)
5× 10 1765 (22.61) 1405 (17.99) 1585 (20.30) 2333 (29.88)
10× 20 5241 (67.12) 3932 (50.36) 4669 (59.80) 5976 (76.54)
15× 30 6281 (80.44) 4717 (60.41) 5641 (72.24) 6763 (86.62)
20× 40 7023 (89.95) 5485 (70.25) 6504 (83.30) 7349 (94.12)
25× 50 6739 (86.31) 5304 (67.93) 6278 (80.40) 7087 (90.77)
30× 60 6426 (82.30) 5003 (64.08) 5979 (76.58) 6699 (85.80)
35× 70 6272 (80.33) 4833 (61.90) 5881 (75.32) 6528 (83.61)
40× 80 6071 (77.75) 4643 (59.46) 5550 (71.08) 6329 (81.06)

Table 3.4: Initialization detection rate for different kernel sizes, with σh = 0.2.

The kernel 20 × 40 had better detection rate compared to the others. This

improvement had as a consequence the increase of the processing time, since the

initialization had to be performed three times.

Table 3.5 shows the influence of the σh parameter. It can be seen that the best

results were obtained with σh = 0.200 for IN4.

The effect of the relationship between the kernel height and width is shown in

Fig. 3.2. 10 × 10 and 20 × 10 kernels produced a noise output where the pipeline

edges are hardly to see. The kernel 10 × 20 produce soft and well-defined regions,

because it is composed of ten 1D mexican-hat function of 20 points arrangement in

a matrix, it tends to emphasize vertical edges, while horizontal edges are smoothed,

facilitating the pipeline identification process.

24

σh IN1 IN2 IN3 IN4

0.100 4358 (55.81) 3165 (40.54) 3978 (50.95) 5184 (66.39)
0.125 5546 (71.03) 4087 (52.34) 5041 (64.56) 6223 (79.70)
0.150 6406 (82.04) 4809 (61.59) 5767 (73.86) 6882 (88.14)
0.175 6800 (87.09) 5186 (66.42) 6194 (79.33) 7172 (91.85)
0.200 7000 (89.65) 5494 (70.36) 6519 (83.49) 7349 (94.12)
0.225 6989 (89.51) 5554 (71.13) 6552 (83.91) 7317 (93.71)
0.250 6853 (87.77) 5525 (70.76) 6460 (82.74) 7197 (92.17)

Table 3.5: Initialization result with hsize = 20× 40 and variable σh.

Figure 3.2: Image convolution example for initialization. From left to right, input
image, convolution with a kernel: 10× 10, 10× 20 and 20× 10 with σ = 0.2

3.3 Test 3

Evaluation of the tracking process was the purpose of this experiment. Also, the

selection of the number of frames used during tracking.

Since the ground truth images were sampled at 0.5 seconds, it was not possible

to test the tracking directly on them. So, the tracking process was performed on

the original videos and the result was sampled every 15 frames and then compared

to the corresponding ground truth.

During tracking, τ5 = 0.85 was used for link removing, since it was used to

compare pipeline hypotheses in consecutive frames with a different location. In Table

3.6 it is shown the detection rate of the tracking process by increasing the number

of frames from 2 to 25 frames. Area overlap w, relationship between hypotheses

magnitudes z and a linear combination of w and z (Eq. 3.2) were used as matching

score during tracking for comparison.

v = 0.5w + 0.5(1− z) (3.2)

Results using z score were inferior compared to w and w, while v results were

similar to w, so it it can be inferred that the influence of z over w in v was minimal.

The maximum detection rate for w (94.0%) was obtained using 19 frames during

tracking. However, the increment from 9 to 19 frames for tracking represents +0.1%

of variation. It is also The same goes for v, with +0.1% of variation.

Ideally, the system should be initialized once (at the beginning), but due to

the complexity of the scenarios, many re-initializations are performed during the

tracking, which mean an increment of processing time. Table 3.7 shows that as

25

frames w z v
2 7095 (90.9) 6112 (78.3) 7103 (91.0)
3 7144 (91.5) 6224 (79.7) 7142 (91.5)
5 7201 (92.2) 6310 (80.8) 7132 (91.3)
7 7303 (93.5) 6381 (81.7) 7230 (92.6)
9 7333 (93.9) 6522 (83.5) 7289 (93.4)
11 7292 (93.4) 6557 (84.0) 7302 (93.5)
15 7298 (93.5) 6638 (85.0) 7284 (93.3)
19 7338 (94.0) 6658 (85.3) 7302 (93.5)
25 7211 (92.4) 6679 (85.5) 7191 (92.1)

Table 3.6: Correct pipeline detections during tracking.

the number of frames used for tracking increments, the number of initialization was

reduced. This is because the purpose of using more frames is to maximize the path

score between them, thus reducing the options of wrong matchings in the middle.

frames w z v
2 887 1164 901
3 780 965 791
5 641 797 643
7 584 691 589
9 576 618 575
11 535 607 541
15 514 548 505
19 508 539 513
25 482 510 488

Table 3.7: Number of initialization during tracking.

Considering the complete videos for 2, 5 and 19 frames tracking (minimum,

intermediate and maximum detection rates), the similarity between the results of w

and v are 96.3%, 94.9% and 96.3%, respectively, which once again indicates that the

influence of z over w was not strong in v. Then, w score was selected for tracking.

3.4 Test 4

The segmentation accuracy was evaluated in this test. The results from tracking

with 2, 5 and 9 frames were used for comparison, 9 frames was selected instead of 19

because there was only 0.1% of difference on the detection rate between them. The

area overlap between detections and ground truth were used as metric to evaluate

the segmentation accuracy.

Tables 3.8 and 3.9 show the average accuracy. The first one calculated the

accuracy using all detections. While the second one only took into consideration

the correct detections from Table 3.6.

26

Video 2 5 9
1 0.946 0.943 0.944
2 0.959 0.961 0.961
3 0.947 0.955 0.958
4 0.920 0.921 0.943
5 0.913 0.908 0.906
6 0.971 0.973 0.974

Total 0.946 0.947 0.952

Table 3.8: Segmentation average accuracy.

Video 2 5 9
1 0.962 ±0.020 0.961 ±0.020 0.961 ±0.021
2 0.967 ±0.017 0.966 ±0.018 0.966 ±0.019
3 0.959 ±0.020 0.960 ±0.020 0.961 ±0.019
4 0.958 ±0.020 0.957 ±0.019 0.954 ±0.021
5 0.956 ±0.020 0.955 ±0.021 0.955 ±0.021
6 0.977 ±0.010 0.978 ±0.010 0.978 ±0.010

Total 0.963 ±0.020 0.963 ±0.020 0.963 ±0.020

Table 3.9: Segmentation average accuracy.

High segmentation accuracies were achieved from both tables, it means that the

detections obtained from tracking are good approximations of the real pipeline.

Finally, the 9 frames tracking approach was selected considering its implementa-

tion. It avoided buffering too many images and intermediate results while keeping

high detection rates and high segmentation accuracy.

3.5 Final system setup

The final system was proposed with the following parameters:

• Image conditioning: bfiter = 1, σs = 5, σr = 0.1;

• Pipeline detection: τ1, τ2, τ3 = 5, niter = 30, combined color edge edge detection

from RGB and normalized RGB image input;

• Initialization: hsize = 20× 40, σ = 0.2, τ4 = 0.85;

• Tracking: τ5 = 0.85, 9 frames path with w score for matching;

• Segmentation and 2D top view representation: does not depend on parameters.

27

3.6 System outputs demonstrations

The following figures show some samples of the system output (without segmenta-

tion) using 2, 5 and 9 frames for tracking.

Fig. 3.3 corresponds to the video 1. It is possible to see in row 4 that no one

of the compared methods managed to detect the pipeline. This could be due to the

illumination conditions and the distance from the camera to the pipeline. Correct

detections are observed in the presence of algae in rows 5 and 6. The system detected

the pipeline under a partial occlusion of one of its edges, as shown in row 8.

Figure 3.3: Detection example from video 1. From left to right: ground truth (red),
tracking using 2, 5 and 9 frames (yellow).

28

Output samples from video 2 are presented in Fig. 3.4. The presence of sand on

the pipeline sides is a characteristic of this video. Tracking with 2 frames presented

some wrong detections compared to the others.

Figure 3.4: Detection example from video 2. From left to right: ground truth (red),
tracking using 2, 5 and 9 frames (yellow).

29

Rows 2 and 6 of Fig. 3.5 shows the detection of the pipeline (video 3) when

there is a partial occlusion of the borders. Tracking with 5 and 9 frames presented

the same output in all samples.

Figure 3.5: Detection example from video 3. From left to right: ground truth (red),

tracking using 2, 7 and 15 frames (yellow).

30

Also, in Fig 3.6, tracking with 5 and 9 frames had the same result. Characteristics

of this video (4) are the similarity of the texture between the pipeline and the seabed,

the change in the geometry of the pipeline (row 7), partial occlusion (row 9) and

non-uniform illumination (row 10).

Figure 3.6: Detection example from video 4. From left to right: ground truth (red),

tracking using 2, 5 and 9 frames (yellow).

31

According to Table 3.3, the worst detection rates were obtained on this dataset

(Fig. 3.7). The texture of the environment made the detection process more difficult.

It is possible to distinguish the pipeline in row 3. However, tracking with 2 and 5

frames had wrong detections, also no detection was obtained in tracking with 9

frames. This can be a result of tracking wrong hypothesis in past frames.

Figure 3.7: Detection example from video 5. From left to right: ground truth (red),

tracking using 2, 5 and 9 frames (yellow).

32

Rows 4 and 5 of Fig. 3.8 show the crossing of two pipelines. It was not possible

to detect the pipeline (vertical position) in the first one, but once a part of the

pipeline border was visible, the system could detect it. A characteristic of this video

(6) is that there is sand on top of the pipeline. The distance from the pipeline to the

seabed and the good illumination condition facilitated the detection process making

the pipeline edges well defined.

Figure 3.8: Detection example from video 6. From left to right: ground truth (red),

tracking using 2, 5 and 9 frames (yellow).

33

Pipeline detection, segmentation and 2D top view transformation are shown in

Fig. 3.9 for a variety of scenarios contained in the whole dataset. The separation

of the pipeline from the environment and the the 2D transformation will facilitate

further analysis of its conservation state.

Figure 3.9: From left to right: input image, detected pipeline (yellow), segmented
pipeline and 2D top view.

34

Finally, Fig. 3.10 presents the evolution of the pipeline center for each video

over 60 seconds. Some discontinuities can be observed for videos 5 and 6. This

means consecutive re-initializations of the tracking due to wrong detections or the

absence of these. Smooth trajectories can be seen, it can interpret as correct pipeline

detections during tracking over time, which was also corroborated by a qualitative

analysis of the output videos.

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 1

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 2

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 3

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 4

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 5

0 10 20 30 40 50 600

50

100

150

time (s)

p
os

it
io

n
(p

ix
el

s)

video 6

Figure 3.10: Pipeline center evolution over time for all videos.

All the system development was realized in Matlab R2014a. Image processing

operations were speedup using MEX functions for OpenCV. Processing a video of

30 minutes takes around 1 hour on a notebook Intel core i7-5500U processor with

8GB of RAM and Ubuntu 16.04 operating system.

35

Chapter 4

Conclusions

Nowadays, the inspection of underwater pipelines has become a frequent task, which

has increased the need for an automatic inspection system. This new system can be

built from two subsystems, one that is responsible for isolating the pipeline from its

environment, and another that detects and classifies events on the pipeline structure.

An underwater pipeline segmentation system was presented in this work. The

system was evaluated on real inspection images, achieving high performance. Dif-

ferent tests and comparisons were made to determine the internal parameters of the

system.

The reduction of the input image size allows the approximation of pipeline edges

to lines. For example, the presence of small plants on the pipeline edges can be

seen as small undulations on the resized image and fitted to a line. The system not

handle large deformations.

The pipeline orientation restriction used during the edge detection process in-

creased on 11.2% the average matching compared to the edge detector without

restriction. The detection rate of the combined edge detector was 19.3% higher

than an individual edge detector.

In the initialization test, 94.1% of detection rate was achieved. A higher detection

rate was expected, due to it is a more complex process and wrong initializations can

lead to erroneous tracks.

The pipeline detection rate and the number of initializations were calculated in

order to select the matching score and the number of frames used for tracking. The

best result was obtained with 19 frames and v score. However, w score and 9 frames

for tracking were selected, since the difference of the detection rate between them is

0.1%, and fewer frames are buffered.

The segmentation process reached 96.3% of average accuracy. And finally, the

segmented pipelines were transformed into a 2D top view representation.

During this work, [35] was published in a international conference proceedings.

Future works include the improvement of the initialization process in order to

36

achieve higher detection rates. The extension of the system to multiple pipeline seg-

mentation. And the development of an event detection and classification subsystem.

37

Bibliography

[1] VAN DE WEIJER, J., GEVERS, T., SMEULDERS, A. W. M. “Robust pho-

tometric invariant features from the color tensor”, IEEE Transactions on

Image Processing, v. 15, n. 1, pp. 118–127, Jan 2006.

[2] ORTIZ, A., SIMÓ, M., OLIVER, G. “A vision system for an underwater cable

tracker”, Machine Vision and Applications, v. 13, n. 3, pp. 129–140, Jul

2002.

[3] WHITCOMB, L. L. “Underwater robotics: out of the research laboratory and

into the field”. In: IEEE International Conference on Robotics and Au-

tomation. Symposia Proceedings, v. 1, pp. 709–716 vol.1, 2000.

[4] NEXANS. “ROV umbilical and tether”. Dispońıvel em: <http:

//www.nexans.no/eservice/Norway-no_NO/navigate_331785/ROV_

umbilical_and_tether.html>. Accessed on: March 19, 2018.

[5] C, M., S, P., L, H., et al. “Subsea infrastructure inspection: A review study”.

In: IEEE International Conference on Underwater System Technology:

Theory and Applications (USYS), pp. 71–76, Dec 2016.

[6] CHEN, J., GONG, Z., LI, H., et al. “A detection method based on sonar image

for underwater pipeline tracker”. In: Second International Conference on

Mechanic Automation and Control Engineering, pp. 3766–3769, July 2011.

[7] VILLAR, S., ACOSTA, G., SOUSA, A., et al. “Evaluation of an efficient ap-

proach for target tracking from acoustic imagery for the perception system

of an autonomous underwater vehicle”, International Journal Of Advanced

Robotic Systems, v. 11, pp. 1–13, August 2013.

[8] PAVIN, A. M. “The Pipeline Identification Method Basing on AUV’s Echo-

Sounder Data”. In: OCEANS 2006, pp. 1–6, Sept 2006.

[9] XIANG, X., YU, C., NIU, Z., et al. “Subsea Cable Tracking by Autonomous

Underwater Vehicle with Magnetic Sensing Guidance”, Sensors, v. 16,

n. 8, 2016.

38

http://www.nexans.no/eservice/Norway-no_NO/navigate_331785/ROV_umbilical_and_tether.html
http://www.nexans.no/eservice/Norway-no_NO/navigate_331785/ROV_umbilical_and_tether.html
http://www.nexans.no/eservice/Norway-no_NO/navigate_331785/ROV_umbilical_and_tether.html

[10] JORDÁN, M. A., TRABES, E. “An Adaptive Vision-based Sensor for Under-

water Line Detection Employing Shape and Color Image Segmentation”,

Journal of Automation and Control Engineering, v. 3, n. 6, pp. 480–486,

April 2015.

[11] J., P. D., KUHN, V., GOMES, S. “Tracking System for Underwater Inspection

Using Computer Vision”. In: 2012 International Conference on Offshore

and Marine Technology: Science and Innovation, pp. 27–30, March 2012.

[12] ORTIZ, A., ANTICH, J., OLIVER, G. “A particle filter-based approach for

tracking undersea narrow telecommunication cables”, Machine Vision and

Applications, v. 22, n. 2, pp. 283–302, Mar 2011.

[13] CHENG, C. C., JIANG, B.-T. “A robust visual servo scheme for underwater

pipeline following”. In: 19th International Conference on Systems, Signals

and Image Processing (IWSSIP), pp. 456–459, April 2012.

[14] FORESTI, G. L., GENTILI, S. “A hierarchical classification system for ob-

ject recognition in underwater environments”, IEEE Journal of Oceanic

Engineering, v. 27, n. 1, pp. 66–78, Jan 2002.

[15] GORIL M. BREIVIK, SIGURD A. FJERDINGEN, O. S. “Robust pipeline

localization for an autonomous underwater vehicle using stereo vision and

echo sounder data”, Proc.SPIE, v. 7539, pp. 7539 – 7539 – 12, 2010.

[16] TIAN, W.-M. “Integrated method for the detection and location of underwater

pipelines”, Applied Acoustics, v. 69, n. 5, pp. 387 – 398, 2008.

[17] DE GROEN, P. “An introduction to Total Least Squares”, Nieuw Archief voor

Wiskunde, v. 14, pp. 237–254, 1996.

[18] JORDAN, M., BUSTAMANTE, J. “Auto-sintonización basada en la opti-

mización de la performance en veh́ıculos subacuáticos guiados adaptiva-

mente”. In: XXI Congreso Argentino de Control Automático, pp. 1–3, Sep

2008.

[19] TOMASI, C., MANDUCHI, R. “Bilateral filtering for gray and color images”.

In: Sixth International Conference on Computer Vision, pp. 839–846, Jan

1998.

[20] BUADES, A., COLL, B., MOREL, J. M. “A Review of Image Denoising Algo-

rithms, with a New One”, Multiscale Modeling & Simulation, v. 4, n. 2,

pp. 490–530, 2005.

39

[21] BENNETT, E. P., MASON, J. L., MCMILLAN, L. “Multispectral Bilateral

Video Fusion”, IEEE Transactions on Image Processing, v. 16, n. 5,

pp. 1185–1194, May 2007.

[22] DURAND, F., DORSEY, J. “Fast Bilateral Filtering for the Display of High-

dynamic-range Images”. In: Proceedings of the 29th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pp.

257–266, 2002.

[23] JONES, T. R., DURAND, F., DESBRUN, M. “Non-iterative, Feature-

preserving Mesh Smoothing”, ACM Trans. Graph., v. 22, n. 3, pp. 943–

949, 2003.

[24] PARIS, S., KORNPROBST, P., TUMBLIN, J., et al. “A Gentle Introduction

to Bilateral Filtering and Its Applications”. In: ACM SIGGRAPH 2007

Courses, SIGGRAPH ’07, 2007.

[25] ZENZO, S. D. “A note on the gradient of a multi-image”, Computer Vision,

Graphics, and Image Processing, v. 33, n. 1, pp. 116 – 125, 1986.

[26] BIGUN, J., GRANLUND, G. H., WIKLUND, J. “Multidimensional orientation

estimation with applications to texture analysis and optical flow”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, v. 13, n. 8,

pp. 775–790, Aug 1991.

[27] VAN DE WEIJER, J., SCHMID, C. “Coloring Local Feature Extraction”. In:

Leonardis, A., Bischof, H., Pinz, A. (Eds.), Computer Vision – ECCV

2006, pp. 334–348. Springer Berlin Heidelberg, 2006.

[28] RITTNER, L., FLORES, F., LOTUFO, R. “New Tensorial Representation of

Color Images: Tensorial Morphological Gradient Applied to Color Image

Segmentation”. In: XX Brazilian Symposium on Computer Graphics and

Image Processing (SIBGRAPI 2007), pp. 45–52, Oct 2007.

[29] J, V. D. W. Color Features and Local Structures in Images. Phd. thesis, Univ.

Amsterdam, Amsterdam, Holland, 2004.

[30] FISCHLER, M. A., BOLLES, R. C. “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated

Cartography”, Commun. ACM, v. 24, n. 6, pp. 381–395, 1981.

[31] HARTLEY, R., ZISSERMAN, A. Multiple View Geometry in Computer Vision.

2 ed. New York, NY, USA, Cambridge University Press, 2003.

40

[32] ZULIANI, M. RANSAC for Dummies. Technical report, Nov. 2008.

[33] BRADLEY, S. P., HAX, A. C., MAGNANTI, T. L. Applied Mathematical

Programming. 1 ed. , Addison-Wesley, 1977.

[34] HILLIER, F. S., LIEBERMAN, G. J. Introdução à Pesquisa Operacional. 9

ed. Porto Alegre, Brasil, McGraw-Hill, 2013.

[35] PETRAGLIA, F., CAMPOS, R., GOMES, J., et al. “Pipeline tracking and

event classification for an automatic inspection vision system”. In: 2017

IEEE International Symposium on Circuits and Systems (ISCAS), pp.

1–4, May 2017.

41

Appendix A

Underwater pipeline dataset

The dataset was obtained from 6 videos of underwater pipeline inspection tasks.

Each video has a resolution of 1280x720 pixels and was recorded at 30 fps. 7808

samples were taken as is detailed on Table A.1. One sample was took every 15

frames (0.5 second) to ensure that there are samples from the whole video. Then,

the samples passed through the image conditioning process from Section 2.1 (with-

out filtering) with the same scale of I2. Next, the pipeline borders were manually

annotated (ground truth) on all samples.

Video Number of frames Number of samples
1 26975 1799
2 26969 1599
3 26984 1799
4 25035 1424
5 7324 282
6 26984 905

Total 140271 7808

Table A.1: Dataset composition.

Some samples are shown in Fig. A.1 and Fig. A.2.

42

Figure A.1: Sample pipeline images.

Figure A.2: Manually annotated pipeline borders.

43

	List of Figures
	List of Tables
	Introduction
	Objectives
	Text organization
	Related work

	System architecture and description
	Image conditioning
	Pipeline detection
	Color edge detection
	Edge merging
	Pipeline hypothesis and representation

	Initialization
	Tracking
	Two frame tracking
	Multi frame tracking

	Segmentation and 2D top view transformation

	System evaluation
	Experiment 1
	Experiment 2
	Test 3
	Test 4
	Final system setup
	System outputs demonstrations

	Conclusions
	Bibliography
	Underwater pipeline dataset

